
 1

Revisiting the compositional data. Some fundamental questions and new prospects 
in Archaeometry and Archaeology 

 
J. Buxeda i Garrigós 

Cultura Material i Arqueometria UB (ARQ|UB), Dept. de Prehistòria, Història Antiga i Arqueologia, Universitat de Barcelona, 
C/ de Montalegre, 6, 08001 Barcelona (Catalonia, Spain) (jbuxeda@ub.edu) 

 
 

Abstract 
 

In this paper we examine the problem of compositional data from a different starting 
point. Chemical compositional data, as used in provenance studies on archaeological 
materials, will be approached from the measurement theory. The results will show, in a 
very intuitive way that chemical data can only be treated by using the approach 
developed for compositional data. It will be shown that compositional data analysis is a 
particular case in projective geometry, when the projective coordinates are in the 
positive orthant, and they have the properties of logarithmic interval metrics. Moreover, 
it will be shown that this approach can be extended to a very large number of 
applications, including shape analysis. This will be exemplified with a case study in 
architecture of Early Christian churches dated back to the 5th-7th centuries AD. 
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1   Introduction 
 
Compositional data have generally been defined as a vector of proportions, a D-part composition x with 
strictly positive components whose sum is a constant, usually 1 (Aitchison, 1986, 2005; Barceló-Vidal 
and others, 2001; Pawlowsky-Glahn, 2004; Tolosana-Delagado and others, 2005; Pawlowsky-Glahn and 
Egozcue, 2006).  
 
The restriction to strictly positive components is not always kept in those definitions, as it is the case, for 
example, in the seminal work of Aitchison (1986). In fact, strategies have been developed for zero 
replacement, whether they can be understood as essential or rounded zeros (see for example Aitchison 
and Kay, 2003 and Palarea-Albaladejo and others, 2005, and references therein). 
 
Moreover, the above definition of compositional data has changed and nowadays expressions like ‘vector 
of proportions’ or the constant sum constraint are seldom employed. This shift on the emphasis given to 
the constraint, to the closure, is clearly related to the realization of the important role played by the scale-
invariant nature of compositional data. Aitchison (1986, p. 30-33) expressed this fact relating each 
composition x to its set of basis, an equivalence class based on a multiplicative factor. Therefore, all bases 
in a given equivalence class, even if different in terms of size, were represented by the same composition. 
Possibly the most clear realization of the importance of scale-invariance can be found in the paper by 
Barceló-Vidal and others (2001). In that paper, the authors assert this crucial role of scale-invariance, 
even more important than the usual preoccupation for the unit sum constraint. Along these lines, they also 
define the equivalence class. 
 
Furthermore, another basic element is the identification of the simplex as the natural sample space for 
closed compositional data. This space is not D-dimensional, as it could be expected for D-parts 
compositions, but it has one dimension less. Therefore, the simplex, but also the compositional space, is a 
d-dimensional one (d = D-1) (Barceló-Vidal and others, 2001). In the simplex, points are then related to 
its ray from the center, its compositional class. 
 
Finally, perturbation (⊕) and powering (⊗) have become standard basic operations, that are said to 
correspond to translation and scalar multiplication of vectors in RD,while Aitchison norm, Aitchison inner 
product and Aitchison distance have been also developed, describing the algebraic-geometric structure of 
the simplex (see especially Barceló-Vidal and others, 2001; Aitchison, 2005). 
 
During this period of development, there has been an important shift of importance from the closure 
problem to the scale invariant property. The former was the reason for an absence of interpretable 
covariance structure that was at the very origin of the compositional data problem. The latter has lead to 
the characterization of the existing algebraic-geometric structure. All this work has achieved a strong 
theoretical body on compositional data, providing good results and explanations, but also good prospects 
for the future. 
 
Even so, compositional data development has suffered from a large number of detractors (see Aitchison, 
2005 for a summary description and references). In some cases, some aspects have been discussed on 
mathematical grounds, but in some other cases, the criticisms have arisen from practical aspects during 
the application of these analyses. In Archaeometry, Baxter can be considered as the first scholar echoing 
Aitchison’s work on compositional data (Baxter, 1989). However, even if accepting that compositional 
data analysis, as described above, cannot be criticized from a mathematical point of view, he find several 
practical problems and he advocates for a use of ‘standard’ techniques on the determined components 
(Baxter and Freestone, 2006). 
 
The aim of this paper is to highlight several fundamental aspects of compositional data analysis in 
relation to projective geometries. Moreover, it is also devoted to highlight what chemical data really are. 
Finally, it is also devoted to develop the so called scale invariant property of compositional data. All these 
three aspects will contribute to strength the above proposed compositional data analysis, providing even 
more evidence on the impossible application of the so called ‘standard’ techniques. Along these lines, it is 
also the scope of this paper to extent this approach to other ‘compositional’ data sets, highlighting the 
existing relation with, at least, part of shape analysis. Thus, a large number of new subjects in 
Archaeometry and Archaeology could be addressed. Shape analysis of Early Christian churches will be 
used as an example. 
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2   Measurement and projective geometry 
 
The problems arisen by compositional data can also be approached from the field of measurement theory, 
even if no measurement is really involved. In fact, the discussion of compositional data is a discussion on 
a multivariate representation. Thus, it is about the numerical geometrical structures encountered in 
analytical geometry, structures that are axiomatized by synthetic geometry. However, the geometric 
concept of distance is, somehow, related with measurement theory. In a qualitative way, distance is 
length. In a quantitative way, the interval metrics have the analytical properties of a distance (Díez, 1993). 
 
In the following discussion we will make a quite extensive use of Suppes and others (1989) work (but 
also Faugeras, 1995 and Bloomental and Rokne, 1994). Let x be a D-dimensional vector expressing, for 
example, parts of a whole. Let be all components absolute values of the appropriate type. And let be these 
absolute values relevant. Let, finally, x be a point, with components as coordinates, in a vector space over 
RD defined by 〈V, +, ·〉, where + is a binary operation with the properties of coordinate-wise addition, and 
· a function from R x V to V, with the abstract properties of scalar multiplication. Under such 
circumstances two vectors x = (3, 4, 5) and y = (6, 8, 10) (x, y ∈ R3) correspond to two different points in 
the space. 
 
Let now be irrelevant the absolute values of the coordinates of the former vectors, since we are just 
interested in the relative ones. Under such circumstances vectors x and y are equivalent, since y = 2 · x, 
i.e. (6, 8, 10) = (2 · 3, 2 · 4, 2 · 5), being 2 a scalar. Thus, both vectors have coordinates proportional. 
 
As it has been shown before, when we are just interested in the relative values of the coordinates, the 
components, of a vector x we are moving away from a vector space over RD defined by 〈V, +, ·〉, since the 
operation · does not exist anymore. Two nonzero elements of RD are then related by scalar multiplication. 
 
The previous fact has already been identified in compositional data analysis as the scale invariance 
property. However, several aspects may need further development. One of these is the concept of 
equivalence class of compositions or bases. If we consider that in a vector space a line having origin in x 
and direction y can be defined by all the elements of form x + ty, for t in RD, it is clear that the 
equivalence class [x] = {tx | t ∈ RD, t ≠ 0} cannot be considered as a line, or ray. This is so because the 
scalar multiplication function does not apply in the present vector space, and then the expression x + ty is, 
in this geometry, meaningless. The concepts of point and direction are not independent and such 
equivalence class is, in fact, a point. 
 
The geometry defined above, with no scalar multiplication, is the projective geometry. In such geometry, 
the equality of proportional elements of V implies a loss of one degree of freedom and, therefore, the 
projective geometry is one dimension less. Thus, a d-dimensional projective space arises from a d+1-
dimensional vector space. In that sense, we must highlight that the usual notation in compositional data 
analysis of D-parts that is substantially a d-dimensional vector (d = D – 1) is, in the usual projective 
geometry, seen in the other way around, just to emphasize the loss of one dimension, because of the loss 
of one degree of freedom. 
 
Therefore, we can say that a d+1-dimensional vector space gives a d-dimensional projective geometry, in 
which a projective point x in Pd is a single equivalence class [x] = {tx | t ∈ RD, t ≠ 0}. A projective point x 
is represented by a d+1-dimensional vector of coordinates, or coordinate vector, x = [x1, …, xd+1] 
(enclosed within brackets), where at least one of the xi is nonzero; xi are called homogeneous, or 
projective, coordinates. These homogeneous coordinates are, then, the components of a d+1-part 
composition. Compositional data, within the frame of projective geometry, is a subset in the positive 
orthant Rd 1+

+ . 
 
The following geometric representation for R 12+

+  (Fig. 1) is adapted after the representation from 
Aitchison, 1986 (among others) and that one from Suppes and others (1989). In such representation, the 
d-dimensional simplex is shown together with the usual projective representation. O is the origin, and Ox 
and Oy are two projective points. S2 is the unit sum 2-dimensional simplex, while P2 is the usual 2-
dimensional affine plane with x3 = 1. Simplex and affine points x, y in the simplex S2 and in the plane P2 
correspond to the projective points Ox and Oy. The affine line L determined by the projective points Ox 
and Oy, correspond to the projective line OL. Finally, the plane L∞, parallel to P2 is the projective line at 
infinity. Figure 1 shows the relation between projective points and two especial projections. On the one 
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hand, the Sd simplex. In that case, projective points are represented by homogeneous coordinates that 
have a constant sum k (k ∈ R+): 
 

Sd = {[x1, …, xd+1] : xi ≥ 0 (i = 1, …, d+1), x1 +...+ xd+1 = k}. 
 
The most common values for k are 1 and 100. On the other hand, the P2 affine plane. The usual case is the 
one shown in Figure 1. Projective points are represented by the homogeneous coordinates [x1/x3, x2/x3, 1] 
(x3 ≠ 0). Therefore, affine points are represented by the affine coordinates (x′1, x′2) (enclosed within 
parenthesis), where x′1 = x1/x3, and x′2 = x2/x3. The plane L∞ is the line at infinity, and lines through 0 
lying on L∞ are points at infinity. 
 

Figure 1: Relation between projective points, the simplex and the affine plane (for abbreviations see the text). 
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It is clear that the simplex is not an affine plane, but also that the one dimension less is the general loss of 
on degree of freedom in projective geometry. Nonetheless, the simplex is just that projective sample 
space in which the actual homogeneous coordinates have a constant sum, but they still are homogeneous 
coordinates. On the contrary, the projection in the affine plane enables to change homogeneous 
coordinates into affine coordinates in a d-dimensional affine space. At this point, it seems important to 
highlight the similarity between projection in the xd+1 = 1 affine plane and the so called additive logratio 
transformation alr. 
 
3   Chemical analysis and logarithmic interval scales 
 
In §2 we have seen that multivariate representations are not really involved with measurement. Even so, it 
is clear that every coordinate in a chemical compositional vector x comes from the determination of one 
particular elemental concentration in the sample. In that sense, it would be worth asking which kind of 
measurement do we face when determining these concentrations. 
 
To answer the above question first we should focus in one important point, i.e. matter is a classificatory 
concept. In fact, all matter is classified into different atoms in an exhaustive classification, with mutually 
excluding classes, which are systematically based on the number of protons (see for example, Díez and 
Moulines, 1999, p. 102-103). This classificatory base of matter is one of the characteristics of chemistry 
itself, a discipline that has been described as a ‘…classificatory science of materials which works with 
experimental methods…’ (Schummer, 1997, p. 308). Besides, it must be acknowledge that another 
important peculiarity of chemistry is its abstraction from form, size and mass. This is achieved by three 
main procedures: standardization, forming intensive quantities, and relative quantities (Schummer, 1997, 
p. 311-312). 
 
Once we are aware of the previous stated facts, it is easy to see that chemical analysis is not really 
involved in measuring, but in enumerating, or counting, the number of each type of atoms in a sample. 
This counting is not expressed in absolute numbers, i.e. in the total number of atoms existing in the whole 
sample or in the whole individual under study. On the contrary, the result, by any of the three main 
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procedures pointed above, will be given in relative numbers (usually in % or ppm). Thus, several remarks 
should be now considered: 1- elemental concentrations are frequencies of nominal or categorical classes 
(atoms) of a classificatory concept (matter), 2- chemistry is usually interested not in frequencies, but in 
relative frequencies. Therefore, three conclusions must be retained by now: 1- it is misleading to talk 
about absolute values or concentrations when we are considering the components of a chemical 
compositional vector, since they express relative, not absolute, concentrations, 2- along these lines, alr or 
clr transformed values in compositional data analysis should not be called relative values, because non 
transformed components do are these relative values, 3- and more important, chemical data are relative 
frequencies of atoms and therefore their natural expression is in elemental atomic percentages. 
 
Determination of elemental concentrations is the process of identification of different types of atoms, and 
the enumeration of the identified atoms per type. The result is the relative frequencies for the identified 
atoms, i.e. elemental atomic percentages. Even so, atoms are not really counted. Analytical chemistry is 
the branch of chemistry that deals with this quantitative determinations (for our interests, we can now 
ignore the qualitative determinations, and even the semiquantitative ones). Without entering into further 
considerations, we can say that nowadays the determinations are, usually, based on instrumentation of 
some sort that uses physical principles to identify atoms in the sample. Besides, concentrations are 
derived from the recorded signal, usually the absorption or emission lines in a spectrum (see, for example, 
Pollard and others, 2007). These procedures in analytical chemistry do are measurements. However, the 
conversion of such measured values into estimates of relative frequencies of atoms is achieved thanks to 
the constant (or constant under several considerations) properties of atoms. Therefore, estimation of 
relative frequencies can be regarded, finally, as an indirect process of counting. 
 
A further crucial realization about chemical concentrations is that they are not always given in atomic 
percentages. On the contrary, in most fields of application it is a common practice to express the results in 
weight percentages, by using the relative atomic mass or atomic weight, i.e. the average of the atomic 
masses of all the chemical element's isotopes weighted by isotopic abundance. Moreover, atomic 
percentages and weight percentages are also expressed in oxides, usually by stoichiometric combinations 
with oxygen. It is then clear that the components attached to a composition are the result of a subjective 
choice, based on tradition or other factors, but they are not the only possible expression for the same 
chemical concentrations in a given sample. 
 
We can see this point in a short example. Let x = [20, 30, 40] be a compositional vector of three parts Fe, 
Ca and Si, with elemental atomic percentage components of a given sample A. The results can be 
reported as in Table 1. 
 

Table 1. Elemental atomic percentage concentrations for sample A. 
 

Element Atomic % 
Fe 20 
Ca 30 
Si 40 

Total 100 
 
If a researcher would prefer to express the same determined elemental concentrations on atomic 
percentages in oxides, therefore the researcher would be obliged to multiply every component by a fixed 
factor, the proportion of the atoms in the chosen oxide, and reporting the results back to percentages, i.e. 
using the closure operation. This change is shown in Table 2. 
 

Table 2. Oxide atomic percentage concentrations for sample A. 
 

Element Atomic % Factor Closure At. % oxide Oxide 
Fe 20 (2/5)-1 50 21.74 Fe2O3 
Ca 30 (1/2)-1 60 26.09 CaO 
Si 40 (1/3)-1 120 52.17 SiO2 

Total 100  230 100  
 
Another usual option is to express the results in Table 1 as elemental concentrations in weight 
percentages. In that case, the researcher would multiply the elemental atomic percentages by a different 
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set of factors, the atomic weight of the elements, and then closing back the components. This is shown in 
Table 3. 
 
 

Table 3. Elemental weight percentage concentrations for sample A. 
 

Element Atomic % Factor Closure Weight % 
Fe 20 55.847 1116.94 32.44 
Ca 30 40.08 1202.4 34.93 
Si 40 28.086 1123.44 32.63 

Total 100  3442.78 100 
 
In our final case, the researcher could be interested in reporting the elemental atomic percentages as 
weight percentages, but for oxides. In such case, the fixed factors would be a combination of the 
proportion of the atoms in the chosen oxide and their atomic weights. As in previous cases, the data 
would be finally closed. Table 4 shows this case. 
 

Table 4. Oxide weight percentage concentrations for sample A. 
 

Element Atomic % Factor Closure Wt. % oxide Oxide 
Fe 20 0.695504-1 28.76 18.40 Fe2O3 
Ca 30 0.7147698-1 41.97 26.85 CaO 
Si 40 0.4675234-1 85.56 54.75 SiO2 

Total 100  156.29 100  
 
The final purpose of this example is to highlight that the same elemental chemical concentrations can be 
expressed in, at least, four different common ways. Thus vectors x = [20, 30, 40], x′ = [21.74, 26.09, 
52.17], x″ = [32.44, 34.93, 32.63], and x″′ = [18.40, 26.85, 54.75] should be considered as equivalent, 
even if expressed in what could be assumed as coordinates determined in different scales. It is also 
obvious that the vectors u(1) = [(2/5)-1, (1/2)-1, (1/3)-1], u(2) = [55.847, 40.08, 28.086], and u(3) = [0.695504-

1, 0.7147698-1, 0.4675234-1] of transformation factors can be identified with the perturbing vectors in the 
operation of perturbation.  
 
The previous example makes clear that if the differences of intervals for two samples A and B expressed 
in different kinds of scale (for example, elemental atomic percentage and oxide weight percentage) must 
be constant, it is necessary for the operation of perturbation to be invariant under such kind of change of 
scale. This is the same as saying that perturbation should be the translation within the group of 
transformations. However, translation is an additive operation, while perturbation is a multiplicative one. 
This result leads to two different conclusions: 
 
1- In compositional data analysis we are not dealing with interval metrics having the analytical properties 
of a distance, but with logarithmic interval metrics. Therefore, different kinds of coordinates can be seen 
as belonging to exponential transformations of the type f(x) = axn (a, n ∈ R+), with the special case of n = 
1, being a the multiplicative factor. These transformations take the form of ln(f(x)) = ln(x) + ln(a), and 
they keep invariant the values ln(f(x)) - ln(f(y)) / ln(f(z)) - ln(f(w)). By extension, this is also true of any 
fixed perturbation. 
 
2- The fixed exponential n in the previous exponential transformation of the type f(x) = axn (a, n ∈ R+), 
with the special case of a = 1, is the powering operation. 
 
At this point, it is important to recall the projection of the projective points onto the x3 = 1 P2 affine plane 
shown in Figure 1. We have already pointed out the similarities between this projection and the alr 
transformation. The main difference between them is that the alr transformation takes the logarithms of x3 
= 1 P2 affine coordinates. The original reason for that was the need for symmetry in the rations. Even so, 
as it has been shown, since compositional data correspond to a multiplicative model, the appropriate 
metric is that of logarithmic interval one. Therefore, taking logarithms is necessary from measurement 
theory in order to have an appropriate projection. 
 
So, if a fixed perturbation operation arises naturally as a translation in exponential transformations, in a 
change of measurement scale for the coordinates, this operation can also model changes, not necessarily 
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fixed, related with, for example, weathering processes (see for example, Aitchison and Thomas, 1998; 
Buxeda, 1999).  
 
Considering the projective geometry and the multiplicative model, we can model these changes, these 
perturbations, in the affine space. If we take the three parts compositional vector x0 = [20, 30, 40] and we 
induce three perturbation cycles, with the perturbing vector u = [4, 6, 2], then we have x3 = x0 ⊕ (3 ⊗ u). 
First, let’s take the x3 = 1 affine coordinates from the x0 homogeneous coordinates, i.e. x0 = (0.5, 0.75). 
Since for a given projective point we can use any vector as homogeneous coordinates, let’s take the affine 
coordinates, with x3 = 1, as the new homogeneous coordinates x0 = [0.5, 0.75, 1]. Then, because we are 
dealing with logarithmic interval metrics, let’s take the logarithms of the previous homogeneous 
coordinates alr(x0) = [-0.693147, -0.287682, 0]. Now, let’s do the same procedure for the perturbing 
vector. This gives an affine perturbing vector u = (2, 3), which can be used for a new set of homogenous 
coordinates for the perturbing vector u = [2, 3, 1]. Now, we can use a matrix operation for translation in 
the affine space with x′ = x + u = xI + u, where I is the identity matrix. In the homogeneous coordinate 
system this can be done in three successive steps, adjusting the values of x at every step, but it could be 
done in one single operation as follow, 
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The result of these successive perturbations can be seen in the affine plane in Figure 2. 
 

Figure 2: Initial composition and three successive perturbations as projected in the affine plane. 
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Thus, before finishing this section, it is important to highlight that compositional data are an especial case 
in projective geometry, whose vector space is the positive orthant, following a multiplicative model with 
a logarithmic interval metrics. 
 
3   Shape analysis, and projective geometry 
 
In the previous section we have seen how compositional data are a particular case in projective geometry. 
The case of compositional data is a clear case in which components are parts of a whole. However, 
considering as a starting point that we are dealing with parts of a whole is misleading. In fact, projective 
geometry is not really on parts of a whole, but on projective points, i.e. on proportional equivalence 
classes in a vector space without · as a function from R x V to V, with the abstract properties of scalar 
multiplication. Therefore, any case of proportional equivalence classes, limited to the positive orthant, 
and following a multiplicative model can, and should, be dealt with the theoretical and methodological 
framework that is being developed for compositional data. 
 
A typical case is that of shape analysis. Let’s consider, for example, that we are studying rectangles. And 
let’s consider that we have two different models. On the one hand (Fig. 3, a), rectangles in a proportion 
based on the irrational number of √2 (i.e. 20.5 ≈ 1.4142). Such rectangles are based in a square with side 1, 
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whose diagonal has been projected to one side in order to get the rectangle. Therefore, if one side is 1, the 
other one is 20.5. Furthermore, all rectangles in such projective point have a proportion of 20.5 when the 
longest side is divided by the shortest one. On the other hand (Fig. 3, b), rectangles in a proportion based 
on the irrational number Φ (i.e. the Golden Section; Φ ≈ 1.618) (see for example, Ghyka, 1978). In that 
case, starting with the square of side 1, the line that goes from the centre of the side to the corner is 
projected. Thus, if the short side of the rectangle is 1, the longest one is 1.618. And all rectangles 
belonging to this equivalence class have the short side in a proportion of Φ with the long one. It is then 
clear that this kind of rectangles have no free lengths for their sides, having one dimension less and being 
a typical case of projective geometry.   
 

Figure 3. a) rectangles whose sides are in proportion of √2. b) rectangles whose sides are in proportion of Φ. 
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In this case, it is clear that changing a rectangle from the √2 type to the Φ type would require, for 
example, multiply the short side by 1 and the long one by (1.6181/1.4142). Thus, u = [1, 1.6181/1.4142] 
would be such a perturbation vector. Then, we are clearly dealing with proportional equivalence classes in 
the positive orthant, following a multiplicative model. 
 
To provide an example of application to a real archaeological case study, let’s consider the Early 
Christian Churches, dating back to the 5th-7th century AD. The present case study is an update of a 
previous study, and some references will not be given now (for details, see Gurt and Buxeda, 1996). The 
objective of the study is to compare the Early Christian Churches in the eastern part of the Iberian 
Peninsula and the Balearic Islands with those existing in northern Africa and the Levant, in order to 
identify different types of designs. The main objective, however, is not the existing build spaces, but the 
proportional systems underlying the measures of different parts. Thus, it is out of interest whether the 
apse has two chambers, one to each side, or it is just extant. In the former case, the head of the Church 
would look like the one reproduced in Figure 4, i.e. as a rectangle. On the contrary, an extant apse would 
look like the usual churches of nowadays, breaking the rectangular shape. 
 
The fact that ancient buildings, and for sure those of the Greek and Roman traditions, are based on 
proportional systems is well known. This is even more the case for the aedes sacrae, i.e. the religious 
buildings. One of the best sources is found in Vitruvius’ ten books on architecture. This Roman architect, 
who lived in the 1st century BC, wrote those books not for other architects, but just as general book for the 
emperor Augustus. Even so, he clearly states the need for such a system of proportions:  
 
"Aedium compositio constat ex symmetria, cuius rationem diligentissime architecti tenere debent. Ea autem 
paritur a proportione, quae graece analogía dicitur. Proportio est ratae partis membrorum in omni opere 
totoque commodulatio, ex qua ratio efficitur symmetriarum. Namque non potest aedis ulla sine symmetria 
atque proportione rationem habere compositionis, nisi uti [ad] hominis bene figurati membrorum habuerit 
exactam rationem" (Vitruvius, III, 1, 1) (Gros, 1990, pp. 5-6). 
 
These principles seem to have been adopted in the Early Christian churches. Here, the information is less 
evident, but can also be identified for example in the letters written by the 4th century AD bishop Gregory 
of Nyssa: 
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"Fiat autem ex computatione perfectioni tuae notum, quantam dimensionem universum opus computabitur. 
(...) Altitudinem autem in his etiam proportio latitudinis efficiet." (Gregory of Nyssa, Letter XXV) (Migne 
(Ed.), 1863, cols. 1093-1100). 
 
Unfortunately, the information is very scarce and the proportional systems in use, its design and application, 
as well as their philosophical and liturgical implications, are still not well understood, and the research need to 
be pushed forward. 
 
In the present case, the study has been based on five different measures (Figure 4). Three of them (ANEI, 
ANCI, and ANDI) account for the width of the building, and the separations are established in the two 
column lines that divide the space in three naves, the central one and the two aisles. The other two (LAEX 
and LNEX) account for its length. The division is established in the separation of the apse and the nave, the 
space for the public. In some churches, like in El Bovalar (Seròs, Lleida) (Figure 4), the building is extended 
with other spaces for different purposes. In that case, the space corresponds to the baptistery, placed in a 
separate space because the non-baptized were not allowed to go into the church. Even if these spaces have not 
been considered, it must be noticed that the identification of such spaces as something different is not always 
clear. This is especially the case for the so called churches with opposite apses, one at every end of the 
building. Finally, it must be taken in consideration that most of these buildings have not been well preserved. 
Therefore, it is not always apparent that measurements are taken as appropriate. This is especially the case for 
those churches that have been transformed during their ancient period of use. For example, the church of Es 
Cap des Port (Fornells, Menorca) was left with only the central nave (ANCI), while the aisles were 
transformed in several rooms used as burial environments. 
 

Figure 4: El Bovalar, with indication of the considered measures (in cm). 
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Thus, 7 churches from the Iberian Peninsula and the Balearic islands have been studied (Table 5, from 
Casa Herrera to El Germo). Casa Herrera and El Germo have been duplicated because of the difficulties 
in the identification of the spaces under study. As already stated above, both churches exhibit opposite 
apses. Moreover, 28 churches from the Levant have also been considered (Table 5, labelled with SI and 
P). Finally, 6 churches from northern Africa have also been included (Table 5, labelled with AF). The 
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values contained in this Table 5 describe, up to a certain degree, these churches in terms of size and 
composition, i.e. system of proportions or shape. Since we are just interested in composition, these data 
can be regarded just as homogeneous coordinates. 
 

Table 5. Studied churches and measures. 
 

Church Label LNEX LAEX ANEI ANCI ANDI 
Casa Herrera 1 A      CH1A      2145 630 385 590 395 
Casa Herrera 2 A      CH2A     1640 630 385 590 395 
El Bovalar            BOVA     1601 421 310 490 296 
Son Peretó            SONP      1898 488 336 534 370 
Vil.la Fortunatus VF02       1616 502 318 634 336 
Son Bou               SONB      1606 640 310 456 310 
Es Cap des Port    FOR1      1775 523 253 683 295 
El Germo 2 A          GO2A     1700 395 210 360 200 
El Germo 2 B          GO2B      1475 395 210 360 200 
Sei Slelman           SI01       2675 515 395 880 395 
Narab Sams            SI02        2105 425 300 625 320 
Kafr Nabo             SI03       2497 483 390 811 390 
Kfellusin             SI04        1588 420 315 604 291 
Gerade                SI05        1615 345 285 612 273 
Batuta                SI06       1616 360 267 653 268 
Sergible              SI07       1919 472 330 705 340 
Darqita               SI08       2185 552 333 795 345 
Kfeir DarCazze        SI09       2030 435 291 648 286 
Baqilha               SI10       1580 430 295 615 280 
Faferlin              SI11       2420 410 360 720 368 
Qa1'at Kalota         SI12       2179 490 337 820 353 
Ruweiha               SI13        3135 885 415 985 415 
Dehes                 SI14        1943 444 406 685 381 
Berris North           SI15        1334 413 240 655 240 
Behyo                 SI16        1918 455 310 680 310 
Ba'uda                SI17        1514 440 280 635 280 
Gubelle               SI18        1555 365 317 680 324 
Kimar                 SI19       2515 440 371 756 406 
Sugane                SI20       1732 372 317 626 352 
Sinhar                SI21       2171 325 225 517 313 
Burg Heidar           SI22       2006 410 380 725 360 
Bettir                SI23       1367 335 240 440 240 
Bafetin               SI24       1520 385 360 590 330 
Brad                  SI25        3772 552 590 1054 592 
Kalota                SI26        1819 417 297 691 342 
El Ksefe North         P275       1955 400 320 600 320 
Ein Hanniya           P270        1360 400 265 670 265 
Sbetila I             AF01      2520 560 445 700 420 
Sbetila IV            AF02      2820 650 360 635 330 
Tebessa               AF03      3670 960 520 940 505 
Naidra II             AF05       1730 650 310 700 310 
Henchir Goraat ez Zid AF06       1570 475 280 400 290 
El Asabaa             AF07       2340 585 530 680 550 

 
As a first exploratory tool, the variation matrix is calculated (Table 6). This variation matrix is the 
standard one introduced by Aitchison (1986). It shows all logratio variances and the total variation (vt). 
The value τ.i corresponds to the value tr(Σi), i.e. the trace of the variance-covariance matrix of the alr 
transformed data by using the ith component as divisor. Moreover two other values enable to measure two 
problems arising from this alr transformation (Buxeda, 1999). On the one hand, the variation matrix will 
then allow us to measure the variability linked to the component used as divisor in the alr transformation. 
In that sense, vt/τ.i is the percentatge of τ.i explained by the vt, while the subtraction 1-(vt/τ.i) is the 
variability imposed on Σi by the component xi due to its special role in this asymmetric transformation 
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alr. On the other hand, it must be stressed that the alr transformation impose a distortion because of the 
relations existing between all components and the component used as divisor. This distortion can be 
measured with a correlation coefficient rv,τ. between the τji (j=1,...,i-1,i+1,...,d+1) values in the ith column 
and the τ.j (j=1,...,i-1,i+1,...,d+1) values of the totals of the other columns, 1 being the value for no 
distortion. 
 

Table 6. Variation matrix of the data in Table 5. 
 

 LNEX LAEX ANEI ANCI ANDI 

LNEX 0 0.048495 0.030029 0.039236 0.026186 
LAEX 0.048495 0 0.041613 0.062535 0.045193 
ANEI 0.030029 0.041613 0 0.032683 0.005548 
ANCI 0.039236 0.062535 0.032683 0 0.030451 
ANDI 0.026186 0.045193 0.005548 0.030451 0 
      
τ.i 0.143946 0.197836 0.109873 0.164905 0.107378 
vt/τ.i 0.502924 0.365928 0.658886 0.439003 0.674195 
rv,τ 0.987444 0.912614 0.953083 0.987019 0.987490 
      
vt 0.072394     

 
The observation of this variation matrix enables to realize that the variable with a higher variability is the 
length of the apse (τ.i = 0.197836). Obviously, if the studied churches do correspond to different systems 
of proportions, this variable will be the one with a highest degree of discrimination. At the opposite side, 
we have the width of the two aisles (τ.i ≈ 0.1085, in both cases), suggesting that the width of the aisles 
will not have a so important discriminant power. It is also important to point that the value τANEI,ANDI (= 
0.005548) is, by far, the lowest in all the variation matrix. Obviously, this value is due to the fact that 
both aisles are, in principle, of the same size and, therefore, both values are almost the same in all 
churches. In this respect, the value τLAEX,ANCI (= 0.062535) is the highest one. Of course, this is a clear 
indication that the relation between the length of the apse and the width of the central nave is the 
architectural element that could help the most in differentiating the existing systems of proportions. 
Moreover, this relation also agrees with LAEX and ANCI, being the two variables with the highest τ.i 
values. Finally, the length of the nave is the third variable in terms of variability, and its highest value is 
that of τLNX,LAEX (=0.048495), again a high variability related to the length of the apse. 
 

Figure 5: Ternary diagram representing all the studied churches. 
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As it can be seen in Figure 5, once we consider the data in Table 5 as homogeneous coordinates, we could 
represent them in any new set of homogeneous coordinates; since the whole set of possible homogeneous 
coordinates represent the same projectives points. In this sense, we can select the three variables LNEX, 
LAEX, and ANCI, the ones carrying the highest variability, and we can select as a new set of 
homogeneous coordinates the ones subject to the constant sum of 100. This representation can be, at first, 
senseless from an intuitive point of view, since we are not dealing with parts of a whole. But this is a 
misleading interpretation of what homogeneous coordinates of projective points are. Thus, it is possible to 
represent these churches in such a ternary diagram as Figure 5, and to use all tools developed for the 
study of compositional data in such ternary diagrams. For our present case study, it is now important to 
indicate that all churches show not really big differences, something that could be expected after the low 
total variability (Table 6), but still they do not seem to form a compact cloud of points. 
 
Considering that the two variables carrying the highest amount of variability are LAEX and ANCI, the 
length of the apse and the width of the central nave, we can further explore this variability with the use of 
bivariate Kernel density estimates (Bowman and Azzalini, 1997) with S-Plus (MathSoft, 1999). Here, and 
in what follows, we will use two different types of projection. On the one hand, the alr transformation, 
because of its similarities with the xd+1 = 1 affine space transformation. On the other hand, the centred 
logratio clr transformation (see, for example, Aitchison, 2005). In the former case (Fig. 6, a) a wide 
maximum can be seen that relates, somehow, medium-high alr-values of the width of the nave, with low-
medium alr-values of the length of the apse. Moreover, two small maximums can be also seen relating 
medium-high alr-values of the length of the apse, with lower alr-values of the width of the central nave, 
in comparison with the wide maximum. In the clr transformation (Fig. 6, b), the picture is slightly 
different, since it exhibits two clear maxima. One of them, the larger one, relates large clr-values of the 
width of the central nave with low clr-values of the length of the apse. The second one, which is clearly 
smaller, relates low clr-values of the width of the central nave with large clr-values of the length of the 
apse. 
 

Figure 6: Bivariate Kernel density estimate plots for variables LAEX and ANCI. a) projected through alr transformation. b) 
projected through clr transformation. 
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If now we decide to include the third most variability carrying variable, LNEX, the length of the nave, we 
will obtain somehow similar pictures when performing 3-variate Kernel density estimates. With alr-
values (Fig. 7, a), the previous picture of a wide large maximum and two more small maxima is still 
recovered. However, one of these small maxima is falls now clearly apart because of the high alr-values 
of the length of the nave. Something similar happens with the clr-values (Fig. 7, b). Now, the large 
maximum can be seen as a quite consistent spherical group, but the small maximum is now divided in at 
least two clear distinct tendencies because of the existence of several high clr-values for the length of the 
nave. 
 

Figure 7: Three-variate Kernel density estimate plots for variables LAEX, ANCI, and LNEX. a) projected through alr 
transformation. b) projected through clr transformation. 
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coordinates. For the alr-values, the dendrogram resulting by using all the variables alr-transformed, with 
ANDI as divisor, performed using S-Plus with the squared Euclidian distance formula and the centroid 
agglomerative algorithm can be seen in Figure 8, a. For the clr-values, the dendrogram resulting by using 
all the variables clr-transformed, performed using S-Plus with the squared Aitchison distance and the 
centroid agglomerative algorithm can be seen in Figure 8, b. 
 

Figure 8: Dendrogram resulting from cluster analysis. a) on the alr-values. b) on the clr-values. 
 

 
The results show the existence of a quite large number of different groups and non classified individuals. 
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transformed data (Fig. 8, b), it is easy to identify three groups labelled SP1, SP2, and SP3 that include 
most of the churches from the Levant. These groups are merged at a closed ultrametric distance and they 
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groups in Figure 7, b. It is then clear, that the structure underlying the studied churches is based in a two 
different models, in a wide sense, that can be identified with an eastern model, and a western one. These 
two main models offer, however, a significant variability that needs to be further explored. Besides, some 
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points of interest arise. First, in group HA2 is classed the eastern church of Bettir (SI23). The space of 
this church is organized, in terms of liturgical elements, in a similar way to those churches classed in the 
eastern model. Even so, from an architectural proportion system, it is clearly related to the western one. A 
second point of interest is the existence of several churches not well classed. Some of them merge with 
group HA2 and should be considered as close to the western model. For example, the church of Villa 
Fortunatus (VF02) was not built as a church from the very beginning. Instead, it corresponds to several 
chambers of a rural Roman villa that were transformed in a small church. Then, it seems clear that even if 
the new building was partly determined by the existing one, the adaptation was made in order to obtain 
what was seen as a typical western church. Another group of churches that have not been classed can be 
seen at the right hand side of the dendrogram. These churches have intermediate characteristics between 
the two models. Among them, the church of Es Cap des Port (FOR1), located in Minorca, is a clear 
example of western church that is based on the eastern model. The fact that this church has suffered 
several changes and that it is difficult to identify the original design must be the responsible for this 
intermediate like classification. Finally, it is important to highlight the fact that the five churches at the 
left hand side of the dendrogram do not correspond to any defined model. Instead, they seem to be special 
cases that can only be explained in a one to one basis, even as members of different models. 
 
4   Conclusions 
 
As it has been shown, we believe that what is called compositional data analysis is the special case in 
projective geometry in the positive orthant whether the coordinates have the properties of logarithmic 
interval metrics, since the coordinates behave as they belong to exponential transformation groups.  
 
The cases that can be account for are numerous and of very different nature. They can include all 
coordinates based on frequencies, but also parts of a whole in a wide sense. The latter can include non 
evident parts of a whole, as it is the example shown here with different measures of the churches. This is 
so, because the important thing is that all parts, all coordinates, are not free, because they belong to a 
given projective point, or equivalence class, and therefore one of their dimensions is loss. In all these 
situations, the coordinates can include two types of information, size and composition. If size is relevant, 
then, the problem is not of a compositional nature and it is not a projective geometry case. However, if 
size is not important and relevant information is in composition, then we are dealing with a projective 
geometry case. 
 
Besides, there are a large number of situations where the coordinates are relative frequencies, as it is the 
case for chemical data. In such cases, size is not preserved anymore and the only possible study is in 
terms of composition. In our opinion, the term relative value should be used to describe this coordinates, 
while the term absolute value should be preserved for those coordinates that include information on size. 
 
Whether the values of the coordinates are absolute of relative, it is important to realize that all of them are 
homogeneous coordinates in a projective geometry. In that sense, it is important to realize that the 
simplex is still in the projective geometry, even if it is the particular case in which the sum of the 
coordinates adds up to a constant. 
 
Those homogeneous coordinates can be, then, frequencies, relative frequencies and measures. Chemical 
data are a special case, since they are, finally, frequencies, or relative frequencies. However, the way 
those frequencies are counted is an indirect method of counting, and the discrete particles or compounds 
being counted are observed through their physical characteristics and properties, which can be considered 
fixed at the level of interest. Because of that, the results are not given necessarily as relative frequencies 
of counts of such particles or compounds. Usually, they are also expressed as, for example, weight. Even 
so, this should be understood as the use of different equivalent scales, and this should not change the 
results in terms of composition. 
 
In Archaeology and Archaeometry the list of subjects that should be considered as compositional data 
analysis cases is a long one. It includes chemical analysis, but also the study of assemblages, like pottery. 
The latter case, however, is a very especial case, since the usual state of the recovered archaeological 
material is fragmentary and uncomplete, imposing difficulties in the identification of frequencies. 
Furthermore, there are also a large number of cases that could be classified as shape studies, like the 
proposed case of models of proportions in Early Christian churches. As it can be easily understood, 
however, shape analysis in terms of compositional data analysis can not readily be applied for those 
situations affected of allometry. This can be clearly seen with the example of our older son Jaume, a 4 
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years old child who is happily growing up. If we look to his evolution, we can see that his cranial 
perimeter and his height do not develop at the same rhythm (Figure 9). The fitted model do not 
correspond to a linear one, but to a reciprocal-X (Y = a + b/X). Under these circumstances different bones 
of several living organisms belonging to the same taxon could not be identified as the same projective 
point. Facing this kind of cases, or, by extension, any possible case whose regression model was not a 
linear one, the study should be designed to account for such change. 
 

Figure 9: Typical allometry in a living organism. 
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In our opinion, the ideas we have here exposed strength even more the approach known as compositional 
data analysis. The difficulties encountered by different scholars, and existing in this field are due on the 
one hand to the need to develop forward this theoretical and methodological corpus, and on the other 
hand to the need of become confidence with the nature, potential and limitations of the study of these 
kind of data. In any case, what does not seem to be acceptable is to consider that the problems 
encountered can be better solved by working with the so called ‘standard’ approaches, because in those 
cases that belong to the field of compositional data analysis the ‘standard’ approaches are just 
meaningless and wrong, regardless of the effect that this misapplication will induce. 
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