
Exploring Genetic Algorithms and
Simulated Annealing for Immobile

Location-Allocation Problem

Ferran TORRENT-FONTBONA a, Vı́ctor MUÑOZ b and Beatriz LÓPEZ a

a Universitat de Girona
b Newronia S.L.

Abstract. In this paper we introduce a new kind of immobile Location-Allocation
problem that consists in determining the service each facility has to offer in order
to maximize the covered demand given the positions of the customers and their
service requirements and the positions of the immobile facilities. First, we provide
a formalization of the problem and then we tackle the problem using two heuristic
methods, genetic algorithms and simulated annealing, comparing the performance
of both algorithms.

Keywords. Location-Allocation, Immobile, Genetic Algorithms, Optimization,
Simulated Annealing

Introduction

Location-Allocation (LA) is a combinatorial problem that was first introduced in [1]. It
consists, first, in determining the positions of k facilities over n possible locations and,
second, allocating the customers to their closest facility. Depending on the features of
the problem it can be classified into different types according to [2]:

• P-median: it consists in finding the positions of the facilities that minimize the
sum of weighted distances between facilities and customers.

• Covering: it consists in finding the facility locations which provide customers
the access to facility service within a specified distance in order to maximize the
demand covering.

• Capacitated: it is a P-median problem that includes the capacity of the facilities
in order to avoid the demand overflow problem.

• Competitive: it consists in finding the facility locations where there are other facil-
ities offering the same service. This problem tries to maximize the demand taking
into account the competitors.

Out of this classification, there is the immobile version of the problem [3] which
consists in locating services when facilities and customers are known, so it consists in de-
termining the service each facility offers in order to optimize a target function. The num-
ber of possible solutions of the commented problem is

(
N f
)s, where N f is the number

of facilities and s the number of services, what demonstrates its complexity, especially
when there are a lot of facilities in the scenario.

In this paper we analyse the performance of Genetic Algorithms (GA) and Sim-
ulated Annealing (SA) on solving a given LA problem. Moreover, we contribute with
a new neighborhood function for the SA method that improves the performance of it.
Other approaches such as Self Organizing Feature Maps (SOFM) (as in [4]) or hybrid
approaches could be considered in a future.

The dataset we work with consists of 15578 facility’s locations from Catalunya taken
from Páginas Amarillas. This dataset is used for the clustering analysis exposed in this
paper. In addition, the positions of the customers and their type are taken from a random
simulation. For the test we generate a random number of customers between 0 and 30
for each facility and then we assigned to each customer its type according a probability
function.

This paper is organized as follows. First we present some related work. Second, we
formalize the problem giving its mathematical formulation. Next, we expound GA and
SA; we present the results achieved with both algorithms and we make a comparison
of their performance according to these results. Finally we expound the conclusions we
reached and we propose some future work related to the topic of the paper.

1. Related work

LA is a widely studied problem, nevertheless it is still being studied as there have been
several publications related to LA and how to solve it in the last years. For example,
in [5] some decomposition strategies have been proposed in order to solve large-scale
continuous LA problem. Moreover, in [4] Self-Organizing Feature Maps (SOFM) are
proposed to tackle LA problem, in [6] a combination of Genetic Algorithm (GA) and
Geographical Information Systems (GIS) is analysed to solve the problem and in [7] it
is proposed to solve the problem of the ambulance locations using GA.

In [8] the competitive LA is analyzed and the Clonal Selection (CS) algorithm is
proposed for solving it. In [9] the performance of some heuristic methods such as GA
and Simulated Annealing (SA) is analysed in order to compare these heuristic methods
in different LA problems. They conclude that the most suitable method depends on the
topology of the problem.

In [10] the authors analyze an heuristic algorithm called Static and Transportation
Facility Location Search (STFLS) to solve the problem of locating static facilities (like
hospitals) and transportation facilities (like ambulances). One of the steps of the algo-
rithm consists in doing a clustering of the dataset to reduce the search space of the prob-
lem. Nevertheless, this clustering technique cannot be applied to our problem because
it does not consider different types of demand and facilities, but in [12] some clustering
techniques are evaluated to analyze the suitability of a pre-clustering of the data to ease
the tough search of an optimal (or nearly optimal) solution.

Finally, as said in the previous section, the most related work for us is [3] where the
authors tackle the immobile LA problem. There, they consider an stochastic demand and
a single type of customer and facility, then they propose to solve the problem using a
GA. However, they do not consider (like the other presented related work) different types
of facilities and customers, so different types of services, and they do not test with other
optimization techniques like we do in this work.

2. Mathematical model

In the LA problem we want to solve there are a few types of facilities and each type can
only serve the customers of the same type, i.e. blue customers can only be assigned to
blue facilities. Moreover, the positions of the facilities and customers are known.

The notation required for the model is the following

N f number of facilities.
Nc number of customers.
s number of services.
Ci capacity of the ith facility
xq =

〈
xq

1,x
q
2, · · · ,x

q
N f

〉
the qth solution vector. It contains the service each facility offers.

xq
i ∈ {0, · · · ,s} the service the ith facility offers in the qth solution.

M j ∈ {0, · · · ,s} the desired match of the jth customer.
zq

i j a variable that is 1 when the jth customer is assigned to the ith facility.
d2

i j the square Euclidean distance between the jth customer and the ith facility.

Thus, the problem consists in finding the type of each facility that maximizes the
global demand (2)

max
xq
{D(xq)} (1)

D(xq) =

N f

∑
i=1

Nc

∑
j=1

zq
i j

1+d2
i j

(2)

subject to

∀i

Nc

∑
j=1

zq
i j ≤Ci (3)

∀ j

N f

∑
i=1

zq
i j ≤ 1 (4)

xq
i 6= M j→ zq

i j = 0 (5)

As Equations (1) and (2) show the problem under study is the maximization of the
global demand while it is weighted by 1

1+d2
i j

. This means that each customer will be

assigned to the closest facility that satisfies the constraints of equations (3) and (5) (the
facility has not reached its maximum capacity and it offers the service the customer
desires). Equation (4) is a constraint that ensure that no customer will be assigned to
more than one facility.

3. Genetic Algorithm Approach

GA [11] exploits the ability of the evolution operators to improve the quality of a popu-
lation of solutions generation after generation in order to find the optimum solution to a
given problem.

To solve the stated LA problem using GA we defined the chromosomes (solutions)
as strings of length N f . These strings contain, in each slot, the service assigned to each
facility, thus in the ith slot there is the service assigned to the ith facility. The GA imple-
mentation is shown in Algorithm 1. It uses a population size of 50 chromosomes and 100
generations. However, it also includes a break function that ends the algorithm when no
improvement is detected after several generations (steps 11-15).

Algorithm 1 Genetic Algorithm
Require: Nchr = 50, MaxGenerations = 100, MaxUselessGenerations = 30,µmut = 0.01
1: G = 0; UG = 0; Fold =−∞

2: Initialize: create Nchr new chromosomes randomly
3: Perform allocation of customers for each chromosome
4: Compute the fitness of each chromosome
5: while (G < MaxGenerations) & (UG < MaxUselessGenerations) do
6: Create Nchr new chromosomes using crossover and mutation operators
7: Perform allocation of each chromosome
8: Compute the fitness of each chromosome
9: Insert the best Nchr to the next generation

10: Find the chromosome with maximum fitness Fmax
11: if Fmax < Fold then
12: UG =UG+1
13: else
14: UG = 0; Fold = Fmax
15: end if
16: G = G+1
17: end while

In order to create new chromosomes from the existing ones, crossover and muta-
tion operators have been used. The crossover operator consists in creating a new pair of
children combining a pair of parents using a single point crossover. The parents selec-
tion is done according to the roulette selection rule that consists in creating a number of
copies of each chromosome proportional to chromosome’s fitness and put them all into
a pool. Then, each time, a pair of copies are randomly selected from this pool to breed
a new pair of children what implies that the fittest chromosomes will have more copies
and therefore more chances to be selected as parents. The mutation operator consists in
changing the service of a facility with a certain probability µmut . Thus, all slots of all
chromosomes have a µmut probability to change their service and when the service of
one slot is changed, another random service is selected to replace the current one. For
our experiments we have chosen µmut = 0.01.

To maintain the population size, a reinsertion operator (step 9) has been used after
each new generation breeding. It consists in inserting, to the next generation, the best
members of the population between the old and the new generations according the fitness
(step 8) of each one. The fitness is calculated according to Equation 2, so the fitness of a
solution is the global weighted demand.

Regarding the allocation process (step 7), it is needed to calculate the fitness of each
chromosome. Allocation takes into account the maximum capacity of each facility so

the demand assigned to each facility never overflows its capacity. It is done by assigning
each customer to the closest facility with the desired service. When a facility reaches its
maximum capacity, then the customers that have another facility with the desired service
closer than the others are re-allocated to this facility. If there is not another facility to re-
allocate the customers, the most remote customers are deleted, so they are not assigned
to any facility. Note that this criterion maximizes D as it moves the customers having
a close facility as alternative what reduces the impact on D and if there is no option to
re-allocate customers to other facilities, it removes the most remote customers that have
the lower weight.

4. Simulated Annealing Approach

SA [11], is a heuristic method based on a metallurgy technique that heats and cools the
material to move their atoms in order they can reach lower energy states. SA tries to
iteratively improve an initial solution with this heating-and-cooling process.

Algorithm 2 shows our implementation of this technique where we defined a solu-
tion s as a string containing the service each facility has to offer. Additionally, s has to
contain the number of customers assigned to each facility. Then, we defined the energy
of a solution as its demand (see Equation (2)), thus the SA algorithm seeks the highest
energy solution. To calculate D it is needed to perform the allocation of the customers;
which is done following the same criterion stated in Section 3.

Algorithm 2 Simulated Annealing
Require: Ta = 0.0001, T = 1, δT = 0.99, Ebest =−∞

1: if Ncustomers
N f acilities

< 15 then
2: τ = 0.04
3: else
4: τ = 0.1
5: end if
6: Select an initial random solution s
7: Compute the energy of s E
8: while Ta < T do
9: if T < 10Ta then

10: τ = 0.02
11: end if
12: Select a neighbor solution s′

13: Compute the energy E ′ of the new solution
14: if E−E ′ < 0 then
15: E = E ′; s = s′

16: if Ebest < E then
17: Ebest = E; sbest = s
18: end if
19: else
20: Select a uniform random number x between 0 and 1
21: if x < e−

E−E′
T then

22: E = E ′; s = s′

23: end if
24: end if
25: T = δT ·T
26: end while

Traditionally, simulated annealing algorithm generates a new s′ solution from the
current one s moving the algorithm to a neighbor point, i.e. it evaluates the target funtion
on a neighbor point of the current position of the algorithm. Therefore, the algorithm
needs a coordinate system where the neighbor point selection can be defined. Neverthe-
less, the search space of the problem we concern does not have a coordinate system.
Thus, we defined a new neighborhood function that states that a neighbor solution s′ is
that where most of the facilities offer the same service as in s and just a few of them
change the service they offer. There are several manners to select which facilities should
change the service and which should not. One way to select which facilities should
change their service is making a random selection but also assigning different probabil-
ities to each facility depending in some paramenters. Here we propose and analyze four
different probability functions that depend on different parameters.

1. Exponential probability with variable τ: the probability function is defined by
Equation (6), where Ni is the number of customers assigned to the ith facility
and Ci its capacity. Thus the probability to change the service depends on the
number of customers the facilty has and the variable τ that depends on the ratio
Ncustomers
N f acilities

(steps 1-5 Algorithm 2) and the phase where the algorithm is (steps 9-11
Algorithm 2).

2. Exponential probability with τ = 0.05: the probability function is also defined
by Equation (6), but τ is a constant parameter; so the probability to change the
match just depends on the number of customers of the facility.

3. Uniform probability with variable τ: all facilities have the same chances to
change their service since this probability function does not depend on the num-
ber of customers the facilities have assigned. So, each facility has a probability of
τ to change its service. Nevertheless, τ depends on the ratio Ncustomers

N f acilities
(steps 1-5

Algorithm 2) and the phase where the algorithm is (steps 9-11 Algorithm 2).
4. Uniform probability with τ = 0.05: all facilities have the same probability (τ) to

change their match and this probability is always the same, τ = 0.05.

P(change the ith service) = e−
Ni/Ci

τ (6)

Regarding the probability functions defined before, note that both exponential prob-
ability functions state that the emptier the facilities are the more chances they have to
change their match. Moreover, regarding the paramater τ , we empirically found that
with low Ncustomers

N f acilities
a lower τ works better because since all facilities would be emptier

it reduces the probability of change. Additionally, we reduce τ (in cases 1 and 3) when
the algorithm reaches the final iterations to force the convergence. The different values
assigned to τ can be seen in Algorithm 2.

To compare the performances of the four neighborhood functions we used three
measures:

• D: the value of the global weighted demand (Equation 2). The higher it is the
better the perfomance of the algorithm.

• % of allocated customers: this value indicates the percentage of satisfied cus-
tomers, thus the percentage of customers assigned to a facility that offers the ser-
vice the require. The higher it is the better.

Exponential prob. with variable τ Exponential prob. with τ = 0.05

N f Nc D
% allocated
customers

% facil.
with occup. < 4%

D
% allocated
customers

% facil.
with occup. < 4%

18 300 217.04 95.33 0.00 211.34 94.00 0.00
18 138 104.43 97.82 5.56 103.85 98.55 16.67
72 1403 1223.49 99.43 0.00 1218.94 98.93 0.00
72 699 616.49 99.86 4.17 616.55 100 4.17

127 2177 2010.62 100 0.00 2013.74 100 0.79
127 1066 996.03 100 9.45 994.11 100 8.66
313 5932 5579.03 99.83 0.32 5571.28 99.71 0.96
313 2783 2622.78 99.86 6.39 2622.36 99.89 8.95

Uniform prob. with variable τ Uniform prob. with τ = 0.05

N f Nc D
% allocated
customers

% facil.
with occup. < 4%

D
% allocated
customers

% facil.
with occup. < 4%

18 300 214.45 95.00 0.00 216.15 93.00 0.00
18 138 103.04 98.55 11.11 104.01 96.38 16.67
72 1403 1221.93 98.93 0.00 1218.18 98.93 2.78
72 699 614.95 99.86 6.94 613.67 99.86 8.33

127 2177 2005.71 100 6.30 2007.23 100 10.24
127 1066 993.98 100 14.96 991.81 100 18.11
313 5932 5535.93 99.73 15.34 5531.09 99.68 13.10
313 2783 2612.07 99.96 28.43 2606.94 99.75 29.07

Table 1. LA results using SA with different neighborhood functions. Best results are in bold face.

• % of facilities with an occupation lower than 4%: this measure indicates the per-
centage of empty facilities, which are those with an occupation (Ni

Ci
) lower than

4%. So, it indicates the number of underused facilities. Note that in our problem
we cannot change the number of facilities and their positions, so we cannot re-
move this underused facilities. This measure may indicate that there is another
better solution because the resources (facilities) are underused. The lower this
value is the better.

Table 1 shows the results obtained with the different neighborhood functions. As
it shows, the best results are generally obtained with the first neighborhood function,
what means that increasing the chances a facility has to change its service when it has
a low occupation, improve the solution search. Moreover, reducing the value of τ in
the last iterations of the algorithm also improves the performance of the algorithm. If
we compare the second and third neighborhood functions we can see that the use of
an exponential function which depends on the occupation and the use of the variable τ

have, approximately the same relevance, since it is not clear which of both has the best
perfomance. Nevertheless it seems that when there are a lot of facilities in the scenario,
it is more relevant the use of the exponential function, but when there are a few facilities,
the variable τ takes more relevance.

5. Comparison

To analyse the results obtained with both algorithms, GA and SA, we also computed
an additional simple method which solves individual LA where each facility decides its

N f Nc D % of allocated customers

Individual GA SA Individual GA SA

8 170 76.97 106.73 106.27 56.47 80.00 80.00
18 361 165.32 252.00 250.26 54.57 95.01 96.12
42 859 424.46 719.40 736.21 54.37 99.88 100.00
46 707 348.48 542.36 560.20 55.02 97.17 97.60
48 921 473.54 792.45 805.75 55.48 99.67 99.89
50 968 470.02 764.65 790.84 53.93 98.67 98.86
72 1335 687.08 1168.23 1195.90 55.13 99.33 99.40

127 2196 1155.13 2003.44 2041.05 56.19 100.00 100.00
313 5779 2938.99 5106.05 5407.44 55.67 96.12 99.78
1495 27762 15217.71 - 27662.54 55.73 - 99.97

N f Nc % of facil. with occupation < 4% Elapsed time (s)

Individual GA SA Individual GA SA

8 170 0.00 0.00 0.00 0.000 0.428 0.110
18 361 0.00 0.00 0.00 0.005 2.218 0.545
42 859 2.38 7.14 2.38 0.009 16.358 4.09
46 707 19.57 6.52 0.00 0.008 8.160 1.826
48 921 6.25 6.25 0.00 0.011 20.967 5.564
50 968 10.00 8.00 2.00 0.004 16.311 4.142
72 1335 11.11 6.94 0.00 0.020 41.709 12.303

127 2196 12.60 7.09 1.57 0.022 77.88 44.796
313 5779 15.34 12.14 0.96 0.135 566.098 318.244
1495 27762 11.84 - 0.33 3.607 - 6130.372

Table 2. LA results. Best results are in bold face.

service by simply selecting the service that maximizes its demand without taking into
account the other facilities. Table 2 presents the results obtained with the three meth-
ods using different situations with different facilities and customers but the number of
services is constant: 5. Individual is the designed label to the simple method results. In
addition to the previous measures (”D”, ”% of allocated costumers” and ”% facil. with
ocupation < 4%”) we have also analysed the Elapsed time in seconds. The computer we
used to test the algorithms is an Intel(R) Core(TM) i5 760 @ 2.80GHz with 8.00 GB of
RAM and Windows 7.

It can be seen in Table 2 that the individual LA is the fastest method as it does not
have to perform several iterations to reach the final result, nevertheless it is the worst
method as it is not able to provide service to a lot of customers what implies that its
results have the lowest global weighted demand D.

Regarding GA and SA, the slowest part of these algorithms is the allocation of the
customers as the algorithms have to calculate all distances between customers and fa-
cilities to find the best allocation. Between them, the fastest algorithm is SA because it
has to perform a lower number of allocations (GA has to do Nchr at each iteration). Also,
this part of the algorithm consumes a lot of memory resources limiting the size of the
problem to be handled. This is the reason we do not have GA results for the problem with
1495 facilities (last row of Table 2). So, in terms of computational resources, SA is much
more efficient than GA. Moreover, SA provides better results than GA as it is able to find
a greater D and is able to allocate a greater number of customers in most cases. It is also
able to find results with a lower number of empty facilities and so it better distributes the

demand between all the facilities. This fact is induced by the SA neighborhood function
that tends to change more the services of the less occupied facilities. Additionally, we
can see that GA and SA provide similar results when the problem has a low complexity,
so when the problem only includes a few facilities; but when the problem becomes more
complex (more facilities), the solutions found by GA have a poorer quality, only SA is
able to maintain the quality of the results.

Finally, as conclusion we can say that LA results are much better when we try to
maximize the global demand instead of maximizing the demand of each facility sep-
arately (individual LA). Moreover, SA is better than GA in all terms (speed, memory
resources, solution quality and demand distribution) especially when the problems are
more complex. This latter conclusion implies that, for this kind of problem, improving a
single solution using our neighborhood function is better than improving the quality of a
population of solutions using crossover and mutation operators.

6. Conclusion and Future Work

In this paper we presented two approaches for solving the Capacitated Immobile LA.
Particularly we explored GA and SA methods to solve the presented problem. In so do-
ing we defined a new SA neighborhood function that allows the algorithm to find a better
solution given a certain number of iterations. Finally, we presented the results obtained
after performing LA with SA and GA and we compared them in order to find the best
algorithm, which has been SA. We also presented the LA results obtained after maximiz-
ing the weighted demand of each facility separately to proof this method provides the
worst results (lower D and lower occupation of the facilities) than maximizing the global
weighted demand.

Nevertheless, the use of SA is unfeasible for problems with a lot of facilities, thus
it may be important to find more efficient algorithms for large scale problems. We are
currently exploring partition methods to reduce the problem [12].

It would be also interesting to analyze the performance of some complete optimiza-
tion techniques, in order to compare the solutions found by the heuristic methods pre-
sented here and the optimal solutions as well as the needed computational resources by
the algorithms.

Moreover, it would be interesting to complete this study using real customers data
and real distances, not the Euclidean distance between facilities and customers. So, tak-
ing into account the streets and other obstacles that increase the distances. Even, it would
be interesting to use time distances instead of physical distances, or to combine both.

References

[1] L. Cooper. Location-Allocation problems, Operations Research (1963), 331-343.
[2] R.L. Church. Location modelling and GIS, Geographical Information Systems 1 (1999), 293-303.
[3] S.H.R. Pasandideh and S.T.A. Niaki, Genetic application in facility location problem with random de-

mand within queuing framework, Journal of Intelligent Manufacturing, 23 3 (2012), 651-659.
[4] K.H. Hsieh and F.C. Tien, Self-organizing feature maps for solving location-allocation problems with

rectilinear distances, Computers & Operations Research 31 7 (2004), 1017-1031.
[5] J. Brimberg and P. Hansen and N. Mladenović, Decomposition strtegies for large-scale continuous

location-allocation problems, IMA Journal of Management Mathematics 17 4 (2006), 307-316.

[6] X. Li and A.G.O. Yeh, Integration of genetic algorithms and GIS for optimal location search, Interna-
tional Journal of Geographical Information Science 19 5 (2005), 581-601.

[7] S. Sasaki and A.J. Comber, Using genetic algorithms to optimise current and future health planning -
hte example of ambulance locations, International Journal of Health Geographics 9 1 (2010), 4-14.

[8] P. Xiu-Li and F. Yu-Qiang, Solving competitive facilities location problem with the clonal selection
algorithm, International Conference on Management Science and Engineering (ICMSE’06) (2006), 413-
417

[9] M.A. Arostegui and S.N. Kadipasaoglu and B.M. Khumawala, An empirical comparison of tabu search,
simulated annealing, and genetic algorithms for facilities location problems. International Journal of
Production Economics 103 2 (2006), 742-754.

[10] W. GU and X. Wang. Studies on the perfomance of a heuristic algorithm for static and transportation
facility location allocation problem. Proceeding HPCA’09 Proceedigns of the Second International Con-
ference on High Perfomance and Applications (2010), 27-37.

[11] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Pearson, New Jersey, 2010 (third
edition).

[12] F.Torrent and V. Muñoz and B. López, An Experimental Analysis of Clustering Algorithms for Support-
ing Location-Allocation, Submitted to AI 2012.

