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Abstract

In a seminal paper, Aitchison and Lauder (1985) introduced classical kernel density
estimation techniques in the context of compositional data analysis. Indeed, they gave
two options for the choice of the kernel to be used in the kernel estimator. One of
these kernels is based on the use the alr transformation on the simplex S? jointly with
the normal distribution on RP~!. However, these authors themselves recognized that
this method has some deficiencies. A method for overcoming these difficulties based on
recent developments for compositional data analysis and multivariate kernel estimation
theory, combining the ilr transformation with the use of the normal density with a full
bandwidth matrix, was recently proposed in Martin-Ferndndez, Chacén and Mateu-
Figueras (2006). Here we present an extensive simulation study that compares both
methods in practice, thus exploring the finite-sample behaviour of both estimators.
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1 Introduction

Kernel density estimation techniques are well-known nowadays. However, this method has been
developed mainly for real univariate and multivariate data (see Wand and Jones, 1995), with only
a few exceptions, as Hall, Watson and Cabrera (1987), where density estimation with spherical
data is explored.

Another such exception is the seminal paper of Aithison and Lauder (1985), where kernel density
estimation for compositional data is introduced. However, since this paper there have been many
advances, both in techniques for manipulating compositional data, as the new ilr transformation
proposed by Egozcue and others (2003) and also in kernel techniques, many of them related to the
problem of the choice of the smoothing parameter, which is crucial for the good performance of
the kernel estimator.

Many of these advances were recently compiled and expanded, from a theoretical point of view,
in Martin-Ferndndez and others (2006). There, the use of Dirichlet kernels as well as alr and ilr
Gaussian kernels fro density estimation is explored, together with the possibility of incorporating
new bandwidth matrix selection procedures, as those in Duong and Hazelton (2003) or Duong and
Hazelton (2005), to the kernel estimator.

In this paper we perform an extensive simulation study to compare how the different density
estimation methods for compositional data perform in practice.

2 Kernel density estimation for compositional data

2.1 The estimators

Given compositional data X, ..., X,,, coming from an absolutely continuous distribution on the
simplex SP, with density f : SP — R, following Aitchison and Lauder (1985) we define the kernel
estimator of f as

1 n
frm(z ,Z (x| X;, H), z¢€SP,
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where the bandwidth matrix H is a positive definite matrix and the kernel k(| X;, H): SP? — R is
a density function on SP centred on the data point X; and spread out depending on the shape
and size of the smoothing factor H.

Here we will focus on alr and ilr normal kernels. These are defined, respectively, as
kan (| X, H) = ¢(alr(x)|alr(X), H), z €SP,

ke (2| X, H) = ¢(ilr(z) [ilr(X), H), z €SP,

where ¢(-|u, X) is the density of the normal Np_q(u, ¥) distribution and alr(z) and ilr(x) stand
for the additive log-ratio and isometric log-ratio transformations (see Egozcue and others, 2003),
given by

alr(z) = [In(z1/zp),...,In(zp_1/zp)],

. - . 1 H?‘:1 Ty
ilr(x) = (y1,...,yp—1) € RP7L, with y; = In =~ |.
i(i+ 1) (Tit1)"

The proposal of Aithison and Lauder (1985), labelled AL, consists of using the kernel estimator
fng with the kernel k.. For the bandwidth matrix, they suggest to restrict its form to be
H = \T, where A > 0 and T the sample covariance matrix of the additive log-ratio compositions



Y1 = alr(X1),...,Y, = alr(X,); that is, denoting Y = L 3" | V],

U o (P S e o

n—1

Jj=1

Then, the choice of X is made by maximizing the pseudo-likelihood function

n

PL()\) = H {n i 1 Zkalr(Xi|Xj’ )‘T)}
J#i

i=1

We should note that Aitchison and Lauder (1985) themselves highlight the problem that, using
the alr transformation, it is only possible to work with a bandwidth matrix proportional to the
sample covariance matrix of the alr-transformed data, due to the fact that the results may not be
invariant under permutations of the components.

However, in real spaces, Wand and Jones (1995, p. 106) state that this parametrization of the
bandwidth matrix is appropriate only for multivariate normal alr compositions but not for general
density shapes. On the contrary, using the ilr normal kernel as proposed in Martin-Fernandez and
others (2006), all parameterizations of the bandwidth matrix H are feasible.

Therefore, we propose to use the kernel estimator f,, g with the ilr kernel, as it admits all possible
parametrizations of the bandwidth matrix. In this sense, we will label this method with CV when
the bandwidth matrix H is of full type (i.e., positive definite with no restrictions) and chosen
via cross-validation; see Duong and Hazelton (2005). And we will label this method with DH if,
following the recommendations in Duong and Hazelton (2003), we select a full bandwidth matrix
using its SAMSE plug-in procedure.

2.2 Simulation setup and results

To compare the three density estimation methods we study their performance on estimating 12
test densities, whose ternary contour plots are depicted in Figure 1 below. These densities are
closely related to the test densities appearing in Chacén (2008).

From each test density f we have generated 500 simulation samples of size n = 100 and, for each
of these samples, we have computed the three density estimates, fcv, fpu and far, and their
Integrated Squared Errors (ISEs), defined as ISE(fcv) = [(fov — f)% ISE(fon) = [(fou — f)?
and ISE(far) = [(far — f)?, respectively. The box-plots of the distributions of these ISEs for
each method and each density in the simulation study is shown in Figure 2.

By looking at Figure 2 we immediately notice the well-known fact that the CV method is usually
very variable. Precisely, in this situation it always has more variability than the other two methods.
We should say, however, than in average terms the CV method has a very good performance, with
a median ISE value that is sometimes below that of the DH and the AL methods, as it happens
for density #12, for instance. That is, CV is a good method in average terms, but it is not quite
trustworthy.

The AL method is far less variable than the CV method, although for some densities it provides
completely wrong estimations; see, for instance, the results for densities #3 and #4.

Overall, our preferred method, in view of the simulation results, is DH, the ilr kernel method with a
full bandwidth matrix chosen by a SAMSE plug-in procedure. It is often the least variable method
out of the three of them, and it is never corrupted in the sense of always having a good average
performance as well.
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Figure 1: Contour plots for the 12 test densities.
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