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Abstract

A novel test of spatial independence of the distribution of crystals or phases in rocks
based on compositional statistics is introduced. It improves and generalizes the common
joins—count statistics known from map analysis in geographic information systems.

Assigning phases independently to objects in R is modelled by a single-trial multi-
nomial random function Z(x), where the probabilities of phases add to one and are
explicitly modelled as compositions in the K-part simplex S¥. Thus, apparent incon-
sistencies of the tests based on the conventional joins—count statistics and their possibly
contradictory interpretations are avoided. In practical applications we assume that the
probabilities of phases do not depend on the location but are identical everywhere in
the domain of definition. Thus, the model involves the sum of r independent iden-
tical multinomial distributed 1-trial random variables which is an r-trial multinomial
distributed random variable. The probabilities of the distribution of the r counts can
be considered as a composition in the Q-part simplex S¢. They span the so called
Hardy-Weinberg manifold H that is proved to be a K — 1-affine subspace of S?. This is
a generalisation of the well-known Hardy—Weinberg law of genetics. If the assignment
of phases accounts for some kind of spatial dependence, then the r-trial probabilities
do not remain on H. This suggests the use of the Aitchison distance between observed
probabilities to H to test dependence. Moreover, when there is a spatial fluctuation of
the multinomial probabilities, the observed r-trial probabilities move on H. This shift
can be used as to check for these fluctuations. A practical procedure and an algorithm
to perform the test have been developed. Some cases applied to simulated and real
data are presented.

Key words: Spatial distribution of crystals in rocks, spatial distribution of phases,
joins—count statistics, multinomial distribution, Hardy—Weinberg law, Hardy—Weinberg
manifold, Aitchison geometry.



1 Introduction

There are a number of deformation mechanisms that involve mixing of particles of different phases.
For example, in cataclastic flow, particles are fragmented and displaced past each other, in diffusion
creep, grains of one phase nucleate and grow between grains of other phases. The resulting mixtures
may form spatially independent or spatially dependent patterns. If there are more than two
different phases, deviation from independence can be realised in many ways. To infer the nature
of the underlying process and to identify the active deformation mechanisms, it is necessary to
find reliable statistics by which dependent and independent spatial distribution of phases can be
distinguished from one another and where the deviation can be quantified.

Figure 1 displays an image of a thin section exposing calcite and dolomite grains.

Figure 1: Binary image in enhanced pixel mode of calcite and dolomite grains.

The problem was explicitly stated and approached by Kretz (1969) and later e.g. by Jerram et al.
(1996) and Mackenzie et al. (2005; 2006). Corresponding mathematical-statistical models date
back to Moran (1948), Cliff and Ord (1973, 1981), and can be found in textbooks like Chiles and
Delfiner (1999), Haining (2003), and many others. Map analysis in geographic information systems
(GIS) applies common statistics to joins—count, cf. Bonham-Carter (1994), O’Sullivan and Unwin
(2003). The latter report of apparent inconsistencies of the tests based on the joins—count statistics
and their possibly contradictory interpretations. Another test has been developed by Hahn (1995)
which avoids the reported inconsistencies by merging several statistics into a unique new one. She
also defines a maximum-likelihood estimator for the usually unknown probabilities of a phases in
terms of the boundaries of grains and not in terms of their total number or volume.

Usually, joins—count statistics are exemplified by analysing patterns composed of two phases in
the plane. Non of the approaches accounts for the compositional character of the counts, and
generalisations to more than two phases distributed in space seem to be largely involved (cf.
Epperson, 2003).

In Section 2 the joins—count approach for two phases in the plane is reviewed. Then we generalise
the approach to more than two phases in spaces of arbitrary dimension emphasising that counts
are actually compositions. Thus we prepare the proper basics for compositional statistics of joins—
counts. In Section 3, we introduce a measure for the deviation from independence by applying
Aitchison geometry and the corresponding transformations, respectively, to determine the distance
of an arbitrary composition from the Hardy—Weinberg manifold in the simplex representing inde-
pendence. Nevertheless, a full account of the theory will be given elsewhere. Then, in Section 4,
we set out to give a step-by-step procedure to test the null-hypotheses of independence. In Section
5, we present some preliminary results both for simulated and real-world data.



2 Common statistics of joins—counts

We assume that the unit square [0,1]> C R? is partitioned into polygonal cells given by their
boundaries (vector mode) or regularly into square pixels (pixel mode). For cellular partitions we
refer the reader to Mallet (2002). In the most simple case, one of two possible phases (states,
colours) is assigned to each cell or pixel, respectively. The assignment of phases may be indepen-
dent or account for some spatial dependence. Technically and more illustratively we refer to the
assignment of phases as to colour—coding.

The subject of joins—count statistics is to test for independence of phases, states or colours. For
reasons of simplicity we may refer to the two states as “black” and “white”. Generally, the proba-
bilities of their occurrence require a distinction whether their definition corresponds to frequencies
given in terms of proportion of either numbers, volume, surface, area, or perimeter. Just in case
of pixels, all definitions coincide.

Figure 2: Binary image in pixel mode: (A) anticlustered (left); (B) independent (centre); (C) clustered (right).

Figure 2 shows three binary images displaying an anticlustered or negatively autocorrelated pattern
(Fig. 2A), an apparently independent sometimes called random pattern (Fig. 2B), and a clustered
or positively autocorrelated pattern (Fig. 2C). If the probabilities of the colours are constant over
the square, i.e. if they are independent of the position of the pixel, then there are only two ways of
deviation from independence in the case of a binary image. If the total number of colours increases,
so do the possibilities for deviations from independence.

Figure 3: Binary image in enhanced pixel mode: (A) anticlustered (left; (B) independent (centre); (C) clustered
(right).

In practical problems, we usually analyse digital images which come in pixel mode displaying
polygonal cells (“grains”) which are homogeneous with respect to their colours.

To apply joins—counts the boundaries between grains must be explicitly given as a third “neutral”
colour just indicating the boundary. Otherwise joins between grains of the same colour could not



be detected nor counted. For the time being we refer to this mode as “enhanced pixel mode” (Fig.
3).

The probability p of a colour is generally unknown and has to be estimated by p form the given
digital image. With respect to polygonal cells, there are several distinct approaches to estimate this
probability. They basically differ in the way we think of probability, probability by total number,
probability by volume or area, probability by surface or perimeter, etc. Usually the definition of
probabilities with reference to proportions of perimeter applies.

Assuming that the probability for a cell or pixel to be black is known to be p,0 < p < 1, and to be
white is 1 — p, the probabilities of joins of kinds can easily be given if the colour—coding is assumed
to be independent. Then these probabilities are

P(black | black) = p?, P(black | white) = 2p(1 — p), P(white | white) = (1 —p)?, (1)
which can be identified to the Hardy—Weinberg law of genetics.

Let J denote the total number of all joins and Jyp, Jpw, Juwew the total number of black-black, black-
white, and white-white joins, respectively, let i and j label the two sampling units (cells, pixels)
being compared, and let a; denote the attribute of sampling unit 7 with
{ 1 if unit 7 is black
a; =

)

0 otherwise

and let d;; denote the entry in the contiguity matrix indicating or weighting the adjacency of
sampling units ¢ and j.

Then the joins—counts are defined as

1 n n 1 n o n ) 1 n o n . .
Jpp = §ZZdijaiaj, Jpw = izzdij(aiiaj) s Jww = 522(11] *(]bb +]bw) s
i=1 j=1 i=1 j=1 =1 j=1
J#i J#i J#i
with
J:Jbb+wa+wa ’ (2)

Obviously, the three statistics are not independent, a fact only noticed by few authors, e.g. Hahn
(1995), and Fortin and Dale (2005, p. 119). In fact, they are obviously are compositions (2).

Then, the actual counts are compared with the expected counts jp?, j2p(1 — p), j(1 — p)? if p is
known or with the estimated expected counts jp?, 72p(1 — p), j(1 — p)? if p is estimated by p, re-
spectively, according to the distribution given by (1). The null-hypothesis is always independence.
Hahn (1995) merges the three statistics into the unique test statistic

(Joo = I D°)? | (Jow — T 21 =P))* | (Juww —J (1 =P)*)?

T = — — — , 3
Jp? J2p(1 - p) J(1-p)? ®)
with the maximum-likelihood estimator
. 2Jpp + Jow
_ _Jow 4
p 57 (4)

in terms of joins—counts. With (4), the estimator (3) simplifies to

J(4dpy T — JZ,)?

T =
(Jow — 2J60)% (Jpw + 2J0pw)?

which is distributed as x? given the the null-hypothesis of independence (Hahn, 1995). Others, e.g.
O’Sullivan and Unwin (2003, pp. 190), check three test statistics independently and report that
the three tests may appear to contradict one another. We suspect that apparent contradictions
may origin in neglecting the dependence of the three statistics, i.e. their characteristics as being
compositions.



3 Compositional statistics of joins—counts

A new development is presented here to test independence of colour—coding. Three main aspects
are accounted for trying to generalise and improve the techniques described in Section 2. They
are:

e The concept of joins is generalised to more general patterns, applicable both to pixel mode
or vector mode.

e The space of the multinomial probabilities involved, i.e. probabilities of the colour—coding
and the probabilities of generalised joins, is assumed to be the simplex with its associate
Aitchison geometry.

e Equations of the equilibrium (1) (Hardy—Weinberg law) are generalised to more than two
colours and joins larger than binary.

e Dependence is checked in two different aspects: dependence of the random colour—coding
and dependence of the parameters of these multinomials along the given pattern.

Only a sketch of the whole theory is here presented.

3.1 Random colours on a set

Let G be a subset of R”. Frequently, but not necessarily, G will be assumed connected and
bounded. Each point of G is denoted by x = (z1,22,...,2p), where z; is i-th coordinate of
x € RP. A colour, k, from a set of different colours {1,..., K} is assigned to each point in G. For
instance, G can be tessellated into cells with a colour assigned. The colour assigned to the point
x is that of the cell that contains the point. There are three natural questions about the way of
assigning colours on G,

a. Which are the proportions, p = (p1,ps,...,PKk), of assigned colours for the whole G?

b. Is the proportion p stable for any subset G; C G7, i.e. is there some trend or fluctuation of
p when shifting from one point to another point across G?

c. Irrespective of a possible trend in p, is there some evidence against an independent assignment
of colours?

If the method of colour—coding was that of the cells, it is obvious that the colouring of very close
points should be largely dependent. However, when the points compared are more distant than
the diameter of the cells, dependence could be drastically reduced and may vanish.

The framework where this problem can be stated is to consider a single-trial multinomial random
function Z(x) on G, where the multinomial parameters p(x) may depend on the position x within
the G. This means that

PlZ(x) = zx|p(x)] = pr(x) , k=1,2,..., K ,

where z;, = (0,0,...,1,...,0) with the only 1 placed in the k-component. The dependence in x of
these expressions will be assumed and the argument (x) will be suppressed if not necessary. On
the other hand, vectors of probabilities can be considered to be elements of the simplex of K parts,
SE | equipped with the so-called Aitchison geometry (Billheimer et al., 2001; Pawlowsky-Glahn and
Egozcue, 2001; Aitchison et al., 2002; Egozcue et al., 2003) thus becoming an (K — 1)-dimensional
Euclidean space.

The key to confront the problem is to find out an univariate quantity measuring randomness of
the colours, which do not depend on the eventually dependence of p on x, i.e. invariant under
shifting within G. The main ideas come from the Hardy—Weinberg law of genetics (Hardy, 1908;
Weinberg, 1908).



3.2 Grouping points in a lag—pattern

Let xg be a point in G and a set of » > 2 lags r;, j = 1,...,r, such that x; = xo +r; is in G.
By default, the lag r1 = (0,0,...,0) is assumed to be in the set of lags. The set R of the lags r;
is called lag—pattern. While a lag—pattern may be admissible for some values of xq, it may not be
admissible for others ones, due to the effect of the boundary of G. If G = R”, any lag-pattern is
always admisible for every xo. However, in practice, grids are finite and boundary effects must be
taken into account. The set of G-points x; = xg + r;, for a given x¢ and R is denoted R(x).

The number of times a colour is assigned to a point in R(x() can be expressed as the sum of
random vectors
N(R(x0)) = > Z(x).

xER(x0)

This concept replaces here the idea of join—count. Now joins are more than binary and they can
be placed in an arbitrary relative position.

Given a point xg and a lag—pattern, multinomial random vectors Z(x) can be observed on the set
R(Xo)

When the multinomial random vectors Z(x) are assumed to be mutually independent, the distri-
bution of N(R(x¢)) can be obtained. The sum of these observations, i.e. the number of times
that each colour is observed on R(xg), has a known distribution. However, this distribution is
multinomial whenever the probabilities of each added 1-trial multinomial are equal. The following
section describes properties of sums of single-trial multinomial vectors.

3.3 Sums of multinomials

Sums of independent one-trial multinomials are studied. This includes the case in which differ-
ent probabilities are assumed for each added multinomial. However, attention will eventually be
focused on the well-known case where all probabilities are equal.

Proposition 1. Let Z;, j = 1,2,...,r be independent, single-trial multinomial random vectors
of K-components, with probability parameters p(j) = (p1(j),p2(4),-..,px(j)) respectively. Then,
the probability function of the random wvector N = Z;Zl Z; is given by the coefficients of the
(K — 1)-variable, r—degree polynomial

T K
&6, &2, 86) =[] <Z€ipi(j)> = (€G- (5)

j=1 \i=1 n

where n stands for a numbering of the vector of indexes n ranging all terms such that Zszl ng =r.
Specifically, ¢, = P[N = n|p(j),r].

Proof. Define the moment—generating function as

Bl1, €0, €x) = E 6,607, €K ]
The moment—generating function of a one-trial multinomial with parameters in p(j) is
K
G616, Exid) = D &mild) -
i=1

The sum of independent one-trial multinomial random vectors has moment—generating function

HJ¢(£1’§2aa§KaJ) ]

A conclusion is that N is not a multinomial random vector. A corollary of the previous result is
the well-known additive property of the multinomial distribution.



Proposition 2. In the conditions of Proposition 1, if p(1) = p(2) = --- = p(r) = p, then N is
multinomial distributed with probability parameters p and r trials, i.e

7! HKlp
qn:P[N:(nthv--'vnK)'paT]* H] / anfr- (6)
i=1 "

Proof. For equal p(j), (5) simplifies to

¢(£17 §2a s 7§K (Z gzpz> . (7)

After a little bit of combinatorics ¢, can be identify with (6). O

A discrete probability function, as given in (5) or (6) can be considered as a composition in the
simplex S?, where @ stands for the number of probability points (non-null probabilities). In
general () > K, as determined in the following proposition.

Proposition 3. Let N be a sum of r one-trial multinomial random vectors. The number of points
in the sample space with non-null probability is

(r+K—1)!

@= (K —1)!

(8)

Proof. @ is the number of additive partitions of K or a combination of two elements with repetitions
rand K — 1. O

An important question is which are the properties that characterise the probability functions of a
sum of independent one-trial multinomials. A key property is that r-trial multinomials are in a
(K — 1)—dimensional linear manifold (affine subspace) of the simplex of @) parts as presented in
the following new proposition.

Proposition 4. Let M C S@ be the set of compositions q = (q1,qa, - - -, qq) such that the compo-
nents are the r-trial multinomial probabilities, Eq. (6), for some parameter p € S¥. Then, M is a
(K — 1)-dimensional linear manifold of the simplex of S%, called HardyWeinberg linear manifold
or H-manifold (cf. Rocklin and Oster(1976), Akin and Szucs (1994)).

Proof. Define the function m : S — SS9, such that q = m(p), i.e. it assigns the multinomial
probabilities to a parameter vector p € S¥. Let p. = K~1(1,1,...,1) the neutral element in S¥.
The image m(p,) is not the neutral element in S but the composition with components

r!

o= ——
" K T H —qny!

Denote mgy(p) = m(p) © qo, so that the image of the neutral element in S¥ is the neutral element
in S9. To prove the statement it suffices that My = M ©m(py) is a (K — 1)-dimensional subspace
of S9.

To proof that M is a subspace, it should be closed under powering and perturbation in S€. The
components of elements in My have the form ¢o,(p) = c]_[f:1 p;.” , where c is a constant equal for
the @@ components. For a composition in My and a € R, the a—power has components

[0

K K
r[p?J =C H(p_(yx)nj )
j=1 j=1



where ¢ is equal for all components. This shows that Mj is closed under powering and moreover,
it corresponds to a—powering of the vector of parameters p € SX. This is « ©mg(p) = my(a®p).

Consider mg(t) € My corresponding to the parameters t € S¥. The perturbation in My, mg(t) ®
my(p) has components proportional to

K K K
1R | A | (ORI
j=1 j=1

Jj=1

which implies
my(t) & mo(p) = mo(t ®&p) .

Then, My is closed under perturbation in My C S and perturbations in the subspace My corre-
spond to perturbations of the parameters in S¥. Therefore, ¢ = mg(p) an isomorphism between
S and the subspace M — qo = My C S?. As the dimension of S¥ is K — 1, this is also the
dimension of M and M,. O

More explicit characteristics of M can be found.

Proposition 5. The composition

qozc[...7“,..l : (9)

ni!- ng!

is a point of M C S9. The subspace My = M © qo C S9 contains the compositions whose

components are
K K
q@qo:C[...,HpZ’“,...l ,an:r (10)
k=1 k=1

for some preselected order of the combinations of n. Moreover,

K K
cr(q© qo) = [,Z(nk—;;) lnpk,...] ) zQ:Z(nk— %) Inp, =0,
k=1 n=1k=1
and, for the ny’s corresponding to the value of n,
@ r
;<nk—K)lnpk:0,k:1,2,...7K. (11)

Proof. Consider the neutral element of S¥, p, = K~1[1,1,...,1]. Then m(p.) = qo and my(p.) =
qe where q. is the neutral element in S9. In fact, when all probabilities p; are equal, each
component of m(p.) has the common factor py'py? - - - pf* = p" and, after closure, the remaining
coefficients are those of Equation (9). Carrying out the negative perturbation q©qo Equation (10)
follows.

In order to compute the clr(q © qq), first compute the geometric mean of all the components.
The sum of powers of each component of q © qg is r. The sum of all these powers over the @
components is @Qr. In the product of all components, the power of each p; are equal by symmetry.
Then, in the product of the geometric mean, the power of each p; is Qr/K. The geometric mean
implies a power 1/@Q and the geometric mean is
g = (p1p2 .. .pK)T/K .

Dividing each component of q©qg by g and taking logarithms the expression of clr(q&qq) follows.
Taking into account the symmetry in the p;’s, Equation (11) also follows.

O



4 Procedure

The aim is to check for evidences against the hypothesis that the colours of the points in G are
assigned independently. This hypothesis is difficult to test in one single step and therefore a
sequence of hypotheses of independence on different lag—patterns is checked instead.

For each lag-pattern three compositions in S@ are obtained: (i) the multinomial parameter m(p) €
M C 89 corresponding to the estimated probabilities of the colours, p € SX, obtained using all
available points; (ii) for a given lag-pattern, the estimated multinomial probabilities q € S? using
the counts of colours over the lag—pattern; and (iii) the orthogonal projection gz; of q on the
Hardy—Weinberg linear manifold M.

The squared distance d2(q, m(p)) measures the total deviation from independence for the lag—
pattern over G. The squared distance d2(qx, m(p)) measures the deviation along M due to either
local changes of multinomial probabilities within the whole set G or, in particular, due to errors
when estimating p by p. The squared distance d2(q, gz¢) measures the lack on independence of
the colour—coding.

The orthogonality of the projection onto the H—manifold implies (Pythagoras theorem)

d:(@m(p) = di(@n,m®) + da@an) - (12)
—_——— | — N —
global dependence fluctuation of probability dependence

In order to obtain these square distances it is convenient to shift the H—manifold to the origen by
subtracting qp, thus considering the subspace My = M & qp.

1. Estimate the probabilities of each colour on G.

Pixels, pixel mode: Count the total number of times each colour appears, ¢;, and estimate p
as e ta

~ 7 .

pz_nG+aK7/l_1727"'7K7
being the more usual values of o, 0.5 and 1. The number of points considered in G is denoted
ng and K is the number of colours. This preliminary counting of colours following individual
points in G can be identified as counting following the degenerate lag—pattern constituted by

a single lag vector r1 = 0 (see items 2, 3, 4 and 5).

Grains, enhanced pixel mode: Count the total number ¢; of pixels indicating a grain bound-
ary, and the total number of grain boundary pixels ¢;; seperating grains of colours ¢, j, 4,7 =
1,..., K, and estimate p as

K
Yttt a
pp= — ,i=1,2,...

cp +aK

2. Define a sequence of lag—patterns to be tested. Define a sequence of lag—patterns Ry, Ra,

., Ry. Conveniently, the complexity of the sequence is considered as being increasing. For

instance Rj(x¢) may contain the neighbours (length of vectors r; in the pattern of length 1)

of x¢ in the direction of the reference axes (or alternatively, following the direction of only

one axis). The second Rg(xg) may be the six points, regularly distributed at a distance of

2. Another possibility is to group a set of vectors on a straight line, etc. A lag—pattern for

which independence is not rejected should be considered as an inadequate training pattern
in a multi—point spatial analysis.

3. Move lag—pattern over G. Search for all possible positions x¢ for which the points xq + r,
i=1,2,...,r are in G.

4. Compute the number of times colours appear on the lag—pattern for each admissible xy. This
is, compute the realization of N(R(xg)) for each x¢. Denote the number of admissible
positions of the lag—pattern mg.



. Estimate the probabilities of the QQ probability points. Using the data obtained in step 4, and
assuming they are independent, estimate the probabilities for each probability point. There
are ) probability points of the sum of r one-trial multinomials given by (8). Zeroes should
be avoided. For instance (notation of section 3.3),

~ my + «
= m; =m
qn mR+aQ Z J R

where m,, is the number of times the combination of colours corresponding to the numbering
n have been found when running xq over G.

. Compute the composition on the H-manifold corresponding to p. The parts of m(p) € S%
are X«
~ rl TI2 Py
m(p), = — 22— Z ni=r,
Hz 1 7’1,1
where the subindex n denotes the component of the compositional vector following the num-
bering criterion, and after removing qq is

my(p) = (@O qo) = l H ] ,an:r.

. Compute the Aitchison distance d2(q, m(p)). This can be computed in a number of ways.
Here the clr-way is suggested. First, compute the clr—coefficients of the two vectors q, m(p)
or better g © qg, my(p). Denote by q a generic vector in S%; the clr—coefficients constitute
a real vector of () components

clr(q)n:C{..,lng(gr(;)7...],g( ) = exp Zlnqj

The Aichison distance between the two compositions is then the ordinary Euclidean distance
between clr(q), clr(m(p)) or clr(q © qo), clr(mg(p))

. Find an orthonormal basis of the H-manifold or the shifted subspace My = M&qg. To get K —
1 independent vectors in My, consider, e.g., an orthogonal basis in S, b;, i =1,2,..., K —1.
They can be obtained using some sequential binary partition (Egozcue and Pawlowsky-Glahn,
2005). Compute the K — 1 compositions mg(b;) € S?, and their respective clr(mg(b;)).
Group these clr—coefficients in a matrix B by rows. They are independent vectors of R? and
are in the clr—transformed subspace clr(My). B is a (K — 1,Q) matrix, with rank K — 1
provided K < . Recall that the rows of B add to zero due to clr-transformation. Proceed
to the SVD of B given by

Bt = U - D . Vv

<~ ~— ~ ~—

(QK-1) (QK—-1) (K—1,K—1) (K-1,K-1)

where the diagonal matrix D has positive entries (singular values), U has unitary and orthog-
onal real column—vectors, and V has unitary and orthogonal real row—vectors. Therefore,
the columns of U, u;, i = 1,2,..., K — 1 are the clr—coefficients of K — 1 orthonormal
compositional vectors in the subspace Hp.

. Find the projection of @ on M. These is done in terms of clr—coefficients. Use clr(q) to get
the orthogonal projections

vi = (q, clr_l(ui)>a ={cIr(@eqo),w;), i=1,2,..., K -1



so that
K-1

arx © a0 = P o (w),
i=1

and, therefore, the clr—expression is
K-1
clr(qr © qo) = Z Vil -
i=1

10. Compute the distances d2(qx, m(p)) and d2(q,dy). The first one is the Euclidean distance
between clr(qy © qo) and clr(mg(p)) computed previously in step 7. The second distance is
also computed in terms of clr—coeflicients of gy © qo (step 9) carrying out the substraction

clr(qy © qo) — clr(q © qp) = clr(qy) — clr(q) -
The required distance is found as the Euclidean distance of the respective clr—vectors.
11. Find the p—value in a test of hypothesis. Consider the following tests of hypothesis:

— H§1 : the colour—coding is globally independent in G following the lag—pattern R. The
natural test statistics for this hypothesis is d2(q, m(p)), with rejection for large values.

— H;"° : the probabilities of each colour are spatially invariant on G with respect the
lag-pattern R. The appropriate test statistics is d2 (s, m(p)), with rejection for large
values.

- HSmpl : the multinomial sampling of the colour—coding is independent in G with respect
to the lag—pattern R. The test statistic is d2(q, qx), with rejection for large values.

The distribution of the three mentioned test statistics is not exactly known although one
can assume that they are asymptotically x2. Moreover, the asymptotic conditions will be
seldom attained whenever the number K of colours and the number r of points in the lag—
pattern are not very small. The reason is that, for large @, there will be small probabilities
that should be estimated with a very large number of multinomial trials. Therefore, the
distribution of these test statistics should be studied by simulation under the conditions of
the null hypothesis.

The mentioned three test statistics are linked by the Pythagoras theorem (12) and cannot be inde-
pendent. The distribution of the test statistics, and the estimation of the multinomial parameters
are critical issues that should be addressed in the future.

5 Practical applications

Following the procedure outlined in the previous Section 4, we shall analyse some preliminary
examples and simulated binary images, i.e. two—dimensional binary patterns, as their results can
easily be visualised in the three part simplex S* of compositions ¢ = [q1,¢2,43], ¢1 + g2 + ¢35 = 1,
containing the one-dimensional Hardy—Weinberg manifold M C S? defined by compositions of the
form g = [p?, (1 — p)?,2p(1 — pl)] characterising the independent case.

In case of grains, they have been generated by Voronoi (—Thiessen—Dirichlet) cells, even though we
never employ their feature as being convex.
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Figure 4: The three-part simplex S, the one-dimensional Hardy—Weinberg manifold H (red line), and an arbitrary
composition g of three parts (blue cross).

5.1 General considerations

Figure 4 shows the two—dimensional simplex S3, the one-dimensional Hardy—Weinberg manifold
corresponding to independent colour coding, and an arbitrary composition of three parts indicating
deviation from independence.

Just by visual inspection we may conclude that the colour—coding represented by the composition
q = |¢q1,92, g3] tends to some extent towards clustering. A point above the line representing the
Hardy—Weinberg manifold would indicate a tendency towards anticlustering. In the next step we
apply compositional geometry to quantify the deviation in terms of the distance of the composition
q from the Hardy—Weinberg manifold ‘H. Eventually, we would like to test whether the deviation is
significant or not by comparison of the actual distance with quantiles of an appropriate distribution.

To construct an orthonormal basis of the H—manifold, or more specifically the shifted subspace
My = M © qg, we proceed as follows. We choose by = (1,1,...,1)" and the K — 1 basis vectors
b, i=1,...,K —1as

by=(2,1,....1)" by=(221,....1)% by =(22,2,....1)% ....bg_1 = (2,2,...,2, 1),
and apply the mapping m : S¥ — S? of Proposition (4) to get
vi=m(b;) —m(bg), i=1,2,... K,

which are elements of S9. After applying the clr-transform, we have K — 1 linearly independent
vectors in R9. Next we use the Gram-Schmidt orthogonalisation to accomplish a set of orthonormal
vectors u;. Applying exponentiation we transform them back to M. Then we use this orthonormal
basis to compute the required distances related to an actual count on a lag—pattern.

Eventually, a sign has been assigned to the Aitchison distance such that it is negaitive if the
composition ¢ is above the line representing the Hardy—Weinberg manifold, and positive otherwise.

5.2 Examples
5.2.1 Simulation of independence

To get some first ideas we take a look at the most simple case of binary images. To this end we
simulate a total of 1.200 binary images with independent colour coding for different probabilites
p. We actually choose (i) p = (0.5,0.5)%, (ii) p = (0.45,0.55), (iii) p = (0.3,0.7)", and (iv) (i)
p = (0.1,0.9)%, and generate 300 images for each case.



Choosing a lag—pattern of five pixels in a row or a column, respectively, moving the centre pixel
along the boundary pixels, and registering the colours in the first and fifth pixel only, i.e. r = 2, we
degenerate our approach to mimic joins—counts. More specifically, we count the total number ¢; of
pixels indicating a grain boundary, and the total number of grain boundary pixels c¢;; seperating
grains of colours ¢,j, 7,5 =1,..., K, and estimate p as

K
1 Cij ta

B = Lot ,i=1,2,...,K.
cp +aK

Figure 5 displays an enlarged part of a binary image and the lag—pattern used to be evaluated,
here to actually count the colours, thus simplifies to ordinary counting of joins.

Figure 5: The 1 x 5-lag pattern with r = 2 to count joins parallel to the z—axis in a binary image given in enhanced
pixel mode.

The results are displayed in Figure 6.
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Figure 6: Simulated independet colour coding for several values of p: (A) Joins—counts in the simplex completed
by the Hardy—Weinberg manifold (left); (B) Histogram of signed Aitchison distances for several values of p (right).

From the histogram we may conclude that the variance of signed distances increases as p decreases.
This seems plausible as changing the colour—coding for just one grain may largely change the
distance if p is small while the distance hardly changes if p is close to 0.5 (Fig. 7).



Figure 7: Two simulations: (A) with p = 0.5 (left); (B) with p = 0.1 (right).

5.2.2 Independence vs. dependence in enhanced pixel mode

Next we analyse three binary images, all three of them simulated with p = 0.5 (Fig. 8).
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Figure 8: Three simulated binary images for p = 0.5: (A) anticlustered (left); (B) independent (centre); (C)
clusteres (right).

The numerical results are as follows:
Case (A)
We estimated p with p; = 0.5088, p> = 0.4912, computed

q: 11 = 0.2114 q12 = 0.5949 G22 = 0.1937
a’H : E]\Hll =0.2610 E]\H12 = 0.4998 Z]\'Hgg = 0.2392

and got the distances
d0(@, (@) = 0.3149, d, (@, Gpe) = 0.3147

Case (B)
We estimated p with p; = 0.5117, p> = 0.4883, computed

q: 711 = 0.2667 G12 = 0.4901 G2z = 0.2432
an Jr11 = 0.2616 Jr12 = 0.4997 Gr22 = 0.2386



and got the distances

d, (G, m(P)) = 0.03152, d,(q,dr) = 0.031498

Case (C)
We estimated p : with p; = 0.5002, P> = 0.4998, computed
q: G = 04159 Gio = 0.1687 oo = 0.4154
m(p): m(p);; =0.2502 m(p)12 =0.5 m(p)2e = 0.2498
aH : Z]\’Hll ES 02501 (/]\'}-(12 = 05 (/]\'}-{22 = 02499

and got the distances
d.(q,m(p)) = 1.302, d.(q,qx) = 1.302

While there is no evidence against the null-hypothesis in case A, we are led to reject it for cases
A and C with respect to the lag—pattern exposed in Figure 5.

For the second example we analyse two binary images which exemplifiy the many possibilities of
deviation from independence yet including instances of independence (Fig. 9).

Figure 9: Two simulated images: (A) three colours, colours 1 and 2 are independent with respect to each other,
colour 3 does not mix with colours 1 and 2 (left); (B) five colours, colours 1 and 3 are independent with respect to
each other, colours 4 and 5 anticlustered, colours 1 and 3 do not mix with colours 4 and 5, colour 2 does not mix
with any other colour (right).

For the case of tree colours we compute the distances

do(q, m(p)) = 4.4321, d.(q,pr) = 4.3537
and for the case of five colours

d,(q, m(p)) = 7.6569, d.(q,Py) = 7.5632

These large distances lead us to infer that the null-hypothesis of indepedence should probably be
rejected with respect to the lag—pattern exposed in Figure 5; they do not provide much insight into
the actual pattern of deviation from independence. However, the various compostions q arranged
as matrices may provide a more detailed analysis.

For the example with three colours we get

0.18636 0.16204
q= [ 031101 0.16524 and Gy = [ 0.29014 0.12988
0.01023 0.00748 | 0.31966 0.19086 0.17087 0.05620




indicating almost complete separation of the third color from the others, and no evidence of
dependence of colours one and two with respect to the lag—pattern exposed in Figure 5.

For the example with five colours we get

0.17184

0.00678 0.085621

0.27966  0.005469 0.14365

0.00371  0.002020  0.00161 | 0.02772

0.00584  0.005496  0.00223 | 0.19765 0.06067

Q)
Il

and
0.00994

0.08443 0.01791

ar = | 0.14184 0.06020 0.05056
0.07868 0.03339 0.05609 0.01556
0.12688 0.05384 0.09045 0.05018 0.04045

confirming and quantifying the visual inspection with respect to the lag—pattern exposed in Figure
5.

5.2.3 Independence vs. dependence in pure pixel mode

Next we analyse two binary images in “pure” pixel mode (Fig. 10) with a knight—shaped lag—
pattern with r = 4.

Figure 10: Simualted binary images in “true” pixel mode: (A) clustered,, p = 0.5 (left); (B) independent, p = 0.5
(right).

Let q; denote the relative frequency of 7 — 1 red and 5 — ¢ blue pixels within the knight-shaped
lag—pattern comprising a total of 4 pixels, and let m(p) be the corresponding vector of probabilities
according to the estimated p assuming independence.

For case A it is p1 = Ppoq = 0.5339 and pz = ppye = 0.4661 . Then

4 = (0.3907,0.0512,0.0468,0.0515,0.4598)"
m(p) = (0.0471,0.2162,0.3715,0.2837,0.0812)"



resulting in the Aitchison distance of d,(q, m(p)) = 4.0466 suggesting rejection of the null-
hypothesis of independence.

For case B it is p1 = Preq = 0-5009 and P2 = Piyjye = 0-4991, and

4 = (0.0622,0.2499,0.3792,0.2522, 0.0627)"
m() = (0.0625,0.2500,0.3750,0.2500, 0.0625)"

~

resulting in the Aitchison distance of d,(q, m(p)) = 0.0117 indicating missing evidence to reject
the null-hypothesis of independence.

6 Conclusions

We introduced a novel test of spatial independence of the distribution of phases (states, colours)
based on compositional statistics. In the most simple case it degenerates to joins—count statistics
known from map analysis in geographic information systems. Applying a compositional statistical
model the case of independent spatial distribution of phases is characterized as Hardy—Weinberg
manifold H as it generalizes the well-known Hardy—Weinberg law of genetics.

Then we suggest to measure deviation from independence by the actual Aitchison distance to the
Hardy—Weinberg manifold. Large distances suggest that there is evidence against the hypothesis
of independence. Unfortunately, the distribution of this distance in case of independence is not
known. Therefore we did not yet succeed to design a test—of—significance.

In case of digital images in pixel mode the method readily applies. Its proper application would
consist in a systematic sequence of trials with different lag—patterns until evidence against the
hypothesis of independence reveals itself. The most efficient application would be to cast any
suspicion of spatial dependence into a lag—pattern specifically designed for the purpose to confirm
and quantify the user’s suspicion.

In case of digital images displaying grains and their boundaries explicitly (“enhanced” pixel mode)
special provision must be developed to account for the grain boundaries. For the time being,
applications are confined to the most simple lag—pattern with » = 2 when the method degenerates to
a consistent version of joins—counts. Generally, properly designed lag—patterns and their evaluation
adjusted to the presence of explicit boundaries should detect any kind of dependence analogously
to the “pure” pixel mode.

More involved applications including an extension from 2d images to 3d models will be presented
in a forthcoming communication.
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