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Abstract 
 

Two contrasting case studies of sediment and detrital mineral composition are 
investigated in order to outline interactions between chemical composition and grain 
size. Modern glacial sediments exhibit a strong dependence of the two parameters due 
to the preferential enrichment of mafic minerals, especially biotite, in the fine-grained 
fractions. On the other hand, the composition of detrital heavy minerals (here: rutile) 
appears to be not systematically related to grain-size, but is strongly controlled by 
location, i.e. the petrology of the source rocks of detrital grains. This supports the use of 
rutile as a well-suited tracer mineral for provenance studies. The results further suggest 
that (i) interpretations derived from whole-rock sediment geochemistry should be 
flanked by grain-size observations, and (ii) a more sound statistical evaluation of these 
interactions require the development of new tailor-made statistical tools to deal with 
such so-called two-way compositions. 
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1   Introduction 
 
Grain-size distribution belongs to the most important physical properties of sediments and sedimentary 
rocks. Grain size exerts strong control on the petrographic and chemical composition of sediments, 
because chemical alteration and mechanical breakdown of source rocks, followed by sorting of particles 
during transport and deposition, lead to preferential enrichment of specific materials in certain grain-size 
fractions (e.g., Weltje and von Eynatten, 2004). In this paper, we preliminarily evaluate the interaction 
between sediment grain size and chemical composition in two strongly contrasting examples: (1) whole-
rock chemistry of modern glacial sediments, and (2) mineral chemistry of individual rutile grains from 
modern sands as well as two Paleozoic sandstones. 
 
In statistical terms, both examples call for an assessment of the dependence or independence of mineral or 
sediment composition with respect to grain size. Classical techniques to apply in this case are equality-of-
means tests (or ANOVA tests) and box-plots. Equality-of-means test assesses the homogeneity of the 
mean of a variable between two groups, whereas ANOVA models do the same for several groups; these 
models are built under the hypothesis that these means follow a normal distribution with identical 
variance. To increase the credibility of such hypothesis, a logarithm or a centered log-ratio transformation 
may be applied to the data set. Independently, a series of biplots of the transformed components with 
respect to the grain size may help to assess the homogeneity of the covariance structure. This study serves 
as a first step towards a more comprehensive and quantitative understanding of the interdependence of 
sediment grain-size distribution and chemical composition. 
 
2   Data set description 
 
To study interactions between grain size and geochemistry, the ideal situation would be to deal with two-
way compositions. As (one-way) compositions can be seen as vectors of positive elements where each 
component informs of the relative importance of a part in a whole, two-way compositions are matrices of 
positive elements where each component informs of the relative importance of the combination of two 
parts from two different criteria to split the whole. In our case, we would like to split it by grain-size 
classes, and afterwards, analyze the chemical composition of the material in each grain-size class. The 
arrangement of these measurements in a matrix would give a two-way composition.  



 
Unfortunately, proper true two-way compositions have not yet been found in the literature, because most 
examples suffer from low or missing grain-size resolution or are inappropriate for a pilot study due to 
complex multiple process control on composition. Instead, we use two well-documented examples where 
some information about grain size was encoded in a variable, so that each (one-way) composition can be 
assigned to a specific grain-size class. 
 
2.1   First example: glacial sediment 
 
The composition of glacial sediments is expected to be mainly controlled by physical weathering, since 
low temperature and especially the scarcity of fluids strongly slow down chemical reactions. Nesbitt and 
Young (1996) presented a set of geochemical major element compositions from 48 sediment samples 
deposited in the Guys Bight Basin, Arctic Canada. These sediments are mainly derived from glacial 
erosion of high-grade metamorphic rocks, and subsequently sorted by fluvial transport under arctic 
climate conditions. The grain-size classes investigated comprise mud, silt to fine sand, medium sand, and 
coarse sand to gravel. Due to the different physical properties of the mineral phases involved (here: 
mainly quartz, feldspar, biotite, and garnet), each phase is expected to be preferentially enriched in certain 
grain-size fractions, which implies that each grain-size class investigated should have a distinct mineral 
content, and, hence, a distinct chemical composition. 
 
2.2   Second example: detrital rutile grains 
 
Rutile belongs to the most stable heavy minerals in clastic sediments, which makes it a good candidate as 
a tracer in provenance studies of sediments. Although its chemical formula is usually described as pure 
TiO2, it contains significant amounts of trace elements (e.g., Cr, V, Fe, Nb, W, Zr, U) that can be 
precisely measured by electron microprobe or laser-ablation ICP-MS. These trace element characteristics 
can be used to reconstruct source rock petrology of detrital rutile grains (Zack et al., 2004a). Because 
rutile may occur in several grain-size fractions of the sediment, we need to evaluate if the choice of the 
rutile grain size is crucial to the trace-element geochemistry of the analyzed rutiles. We have chosen 
seven samples (called here locations) from different tectonic and metamorphic settings (EGB – 
Erzgebirge / Germany, 1 sample; EY – Central Alps / Switzerland, 3 samples; plus three samples from 
Upstate New York: Ad – Adirondack/Gloversville, Cat – Catskill and Sha – Shawangunk). The first 5 
samples are modern sands, the latter two are Paleozoic sandstones. The data are taken from Zack et al. 
(2004a) and Triebold et al. (unpublished data). We have analyzed in total approximately 750 individual 
rutile grains (each one being referred as a sample) that cover the two most prominent grain-size fractions 
containing detrital rutile for each sample (63-125 and 125-250 µm). 
 
 
3   Methodology: comparing differences on the means 
 
One of the most basic tests in statistics is equality-of-means, explained in most textbooks. Let Xi and X2 
be two random variables with normal distributions N(µ1, σ1

2) and N(µ2, σ2
2), with unknown parameters. 

In general, we may have a variable split by groups: Xi~N(µi, σi
2), with i={1,2,…,N}, with each i defining 

a group. Given a sample of size ni for the i-th group, ix  and si
2 may represent the maximum-likelihood 

estimators of the mean and the variance of this group. Then, the pooled sample size, mean and variance 
are 

∑=+= ip nnnn 21
, 

p

ii

p
p n

xn
n

xnxnx ∑=
+

= 2211  , 
p

ii

p
p n

sn
n

snsns ∑=
+

=
22

22
2
112 . (1) 

The variance sp
2 is also called intra-group variance, especially when we work with more than two groups. 

In this case, an inter-group variance is also defined, and its experimental version is computed as the 
moment of inertia of each group mean with respect to the pooled mean 
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Assume all groups to have the same population variance: σ 2 =σ1
2 = σ2

2 = ··· =σN
2. Then, it can be 

estimated with the intra-group variance, sp
2, which as a random variable follows a χ2 distribution with 

v=np−N degrees of freedom. Then we can build a test on the equality of means of group i and j. We take 



as null hypothesis equality of these means {µi =µj}, and as alternative hypothesis difference on these 
means {µi ≠µj}. Under the null hypothesis, the statistic 
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allows us to compute a p-value of the null hypothesis by computing the probability of a Student’s t 
distribution above the experimental value t~ . Recall that a hat represents an estimator (=a random 
variable), and a tilde an estimate (=a number). In this way, we may compare the means of as many groups 
as we want, but always by pairs. An alternative global approach can be obtained when comparing the 
intra-group (1) and inter-group (2) variances, which evolves into the so-called ANalyis Of VAriance 
models (ANOVA). However, we have not fully followed this approach and it is therefore not explained 
(see, e.g., Simonoff, 2003, for a good general account). 
 
Note that these techniques are based upon normality of the variable. In fact, this normality is only needed 
for the means, and the central limit theorem ensures us this normality for big samples. But for small 
samples, it is wise to check normality of the original variable. Considering our data as compositions, it 
seems reasonable to take a log-ratio transformation, so that the transformed scores may better follow such 
a normal distribution. From the available transformations, we have chosen the well-known centered log-
ratio transformation (Aitchison, 1986) 

( ) ( ) ,lnclr
x

x
g
xi

i =  (4) 

where x = [ x1, x2, … , xD] is a vector representing the composition. Finally, note in passing that no 
consideration has been made with regard to experimental errors: sample sizes are considered big enough 
as to neglect their possible effects. 
 
4   Results and Discussion 
 
4.1   First example: glacial sediment 
 
Figure 1 shows a biplot (Gabriel, 1971) of the clr-transformed data set (a compositional biplot, as defined 
by Aitchison, 1997), distinguished by grain-size classes. It is easy to see a preferential enrichment of the 
finer grain sizes (1-2, mud to fine sand) in mafic oxides (Fe, Ti, Mg, P), whereas felsic oxides (Si, Al, K, 
Na) are relatively enriched in coarser grain sizes (3-4, medium sand to gravel). We also see a 
heterogeneous spread of each grain size. These aspects might indicate that the variance-covariance 
structure is not homogeneous among grain sizes. However, the number of samples in each group is too 
small to generate significant separate biplots. We assume this homogeneity of variance without any test. 
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Figure 1: Biplot (85.6% of explained variability) of sediment composition, distinguishing samples according to their grain size: 1-
mud, 2-silt to fine sand, 3-medium sand, and 4-coarse sand to gravel. There are not enough individuals in each of these grain sizes 

as to allow a meaningful representation of the separate biplots. 
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Figure 2 offers a graphical comparison of the clr-means of each part distinguishing among grain sizes. 
The relative association of felsic and mafic oxides with coarse and fine grain-size fractions is again 
clearly visible. Furthermore, we can detect a clear trend of progressive enrichment in Si, Al and Na 
oxides, and depletion of Ti and Mg oxides as grains become coarser. A related linear trend using non-
centred principal component analysis within an amalgamated three-part simplex (Al2O3, 
CaO+Na2O+K2O, FeO+MgO) was already described by von Eynatten (2004). The rest of the elements 
show also important differences between mud (class 1) and gravel (class 4), but the trend is not clearly 
monotonic. Surprisingly, neither Fe2O3 nor FeO follow this trend, as could be expected from the strong 
association of iron with biotite and heavy minerals. Figure 3 shows the trend of the clr-transformed total 
Fe(tot) = 0.90·Fe2O3 + FeO (classical amalgamation), which is more consistent with our expectations. The 
comparison of all the iron box-plots (Figures 2 and 3) suggests a slightly positive anomaly in the ratio 
FeO/Fe2O3 for the second grain-size class which distorts the monotonically-decreasing trend expected for 
these two species. This observation is tentatively assigned to the possible enrichment of garnet in silt and 
fine sand. Once detected this anomaly, we switch back to the full composition (distinguishing between Fe 
species) to proceed with tests on the mean. 
 
In the box-plots of Figure 2 individual boxes are notched: these notches represent a 95% (asymptotically-
valid) confidence interval around the median (McGill et al, 1978) when the samples have equal size. 
Thus, if two notches overlap, the corresponding medians are not different enough at the 5% level. 
Therefore, as a general idea, 1 (mud) and 2 (silt to fine sand) are generally not distinguishable (except for 
Fe2O3), whereas grain-size classes 3 (medium sand) and 4 (coarse sand to gravel) are only different in 
their content of Al2O3, Fe2O3 and K2O. These two groups (1 and 2 vs. 3 and 4) are then significantly 
different in their general chemistry (except by K2O, both Fe species, and maybe MgO).  
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Figure 2: Barplots and boxplots of the glacial sediment composition: (A) barplot of the geometric mean composition of each grain 

size (from SiO2 to P2O5).  (B) barplot of the geometric mean subcomposition of each grain size, discarding SiO2 and Al2O3. 
(Others) boxplots of each clr-transformed major element oxide, distinguished by grain-size classes 1 to 4 (1-mud, 2-silt to fine 

sand, 3-medium sand, and 4-coarse sand to gravel); boxplots are notched, to approximately represent a 95% confidence interval on 
the median. Note that colors of the boxplots act as legend for the barplots.  
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Figure 3: Box-plot of clr-transformed total iron Fe(tot). The other boxplots and barplots in Figure 2 do not significantly change 

when Fe2O3 and FeO are replaced by Fe(tot). Recall that the notch represents a 95% confidence interval on the median. Note that 
there is a clear trend from mud to gravel, although the notches of two consecutive boxes coincide, thus there is no strict indication 

of difference in the median/mean. Codes of grain sizes: 1-mud, 2-silt to fine sand, 3-medium sand, and 4-coarse sand to gravel. 
 
These differences are tested in Table 1, which shows the significance of some tests of equality of the 
mean. These tests take as null hypothesis equality of the means in the first and i-th group, against the 
alternative hypothesis of difference on these means. These tests assume the same variance for all groups. 
Table 1 only reports the bilateral p-values attached to these tests. From column 2, one can conclude that 
there is no important difference between mud (class 1) and silt to fine sand (class 2) grain sizes (except 
for TiO2 and Na2O, possibly), whereas both medium sand (class 3) and coarse sand to gravel (class 4) are 
strongly different to mud. Finally, classes 3 and 4 are clearly different in K2O, and may be accepted to be 
different also in Al2O3, Fe2O3, MgO and Na2O.  
 

Table 1. Bilateral p-values of the null hypothesis (1st to 4th columns: with pooled variance from groups 1 to 4; 
5th column: with pooled variance only using groups 3 and 4). The stars show those p-values smaller than: 0.1(*), 
0.05(**) and 0.01(***). Sub-indices of the means relate to grain size: 1-mud, 2-silt to fine sand, 3-medium sand, 

and 4-coarse sand to gravel. 
 

  
µ1=0 vs  

µ1≠0 
µ2= µ 1 vs 
µ 2≠  µ 1 

µ 3= µ 1 vs  
µ 3≠  µ 1 

µ 4= µ 1 vs  
µ 4≠  µ 1 

µ 3= µ 4 vs  
µ 3≠  µ 4 

clr(SiO2) 2.4·10-55 *** 1.2·10-01  2.8·10-09 *** 1.2·10-10 *** 1.80E-01  

clr(TiO2) 1.2·10-44 *** 7.8·10-02 * 4.3·10-12 *** 1.6·10-12 *** 3.33E-01  

clr(Al2O3) 6.9·10-49 *** 2.5·10-01  2.0·10-08 *** 2.6·10-12 *** 1.91E-02 ** 

clr(Fe2O3) 9.5·10-01  1.3·10-01  5.4·10-01  3.2·10-03 *** 4.97E-02 ** 

clr(FeO) 2.4·10-02 ** 8.3·10-01  3.5·10-02 ** 9.5·10-04 *** 3.39E-01  

clr(MgO) 1.9·10-06 *** 1.5·10-01  1.7·10-05 *** 3.5·10-07 *** 9.32E-02 * 

clr(CaO) 2.5·10-03 *** 6.8·10-01  7.2·10-06 *** 1.6·10-03 *** 1.93E-01  

clr(Na2O) 7.4·10-01  6.6·10-02 * 4.0·10-09 *** 4.8·10-12 *** 2.63E-02 ** 

clr(K2O) 3.0·10-06 *** 9.7·10-01  2.6·10-01 *** 1.2·10-06 *** 3.57E-03 *** 

clr(P2O5) 3.7·10-50 *** 9.1·10-01  5.8·10-06 *** 1.4·10-07 *** 1.10E-01  

 
 
4.2   Second example: detrital rutile  
 
The rutile trace element data set contains a significant amount of missing values (below detection limit, 
i.e. rounded zeroes), which should be either filtered or replaced for statistical evaluation. Comparing the 
biplots of the log-transformed data for both treatments (Figure 4), the impact of these treatments is clearly 
high. For this reason, we will conduct the analysis with both data sets: the replaced (replacing missing 
values by half the detection limit of that specific trace element) and the filtered (erasing the observations 
containing missing values). These plots also show which elements (Cr and Zr) are most distorted by the 
different data handling since: (i) missing values tend to cluster at the opposite side of these two elements, 



and (ii) the relative position of the rest of the rays (V, W, Nb, Fe) barely changes. We decided to use the 
logarithmic transformation in this analysis instead of the clr-transformation, because: a) missing values 
are abundant, b) analyzed elements are present in small traces, c) so we can disregard the computation of 
the residual part, and the geometric mean of parts involved in the clr-transformation, d) logs are easier to 
interpret, but nevertheless e) they are numerically pretty similar. The appendix contains the same biplots 
of figure 4, obtained with clr-transformed data and log-transformed data, to demonstrate the degree of 
similarity between them (figure 7). 
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Figure 4: Biplots of the whole rutile data set: (A) filtering the missing values; (B) replacing the missing values by half of its 

detection limit. Missing values are marked with “0”, whereas fully observed compositions with “1”. 
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Table 2. Bilateral p-values of the null hypothesis in the equality-of-means tests. The stars show those p-values smaller than: 
0.1(*), 0.05(**) and 0.01(***). Tests are applied on the data after replacing missing values by half of the detection limit, and by 
filtering the samples with missing values. Geometric means (in ppm) of the components are included, for coarse (C) and fine 

(F) grain sizes; p-values have been computed for equality of the logarithmic mean of the elements. 
 

 %replaced filtered replaced 
 or filtered mean C mean F p-value  mean C mean F p-value  
V 4.47 238.02 177.55 7.88·10-04 *** 228.14 169.50 1.55·10-04 *** 

Cr 9.77 966.94 896.50 3.50·10-01  689.59 540.93 3.71·10-02 ** 

Fe 0.83 1659.42 1740.67 5.31·10-01  1706.36 1621.15 4.95·10-01  

Zr 5.30 277.38 258.11 4.82·10-01  228.14 201.05 2.15·10-01  

Nb 0.33 1925.01 2050.85 4.47·10-01  1887.38 1716.86 2.33·10-01  

W 39.40 112.30 146.33 8.72·10-04 *** 97.34 110.26 7.27·10-02 * 

 
The grain size information of this data set discriminates only between coarse (125-250µm) and fine (63-
125µm) rutile grains. The mean trace composition (geometric average in ppm) for each of these two grain 
sizes is included in Table 2, with a p-value of a test of equality of these means (null hypothesis of equality 
of log-means, against alternative hypothesis of difference between the log-means, assuming homogeneous 
logarithmic variance for all groups). Clearly, only W and V may be taken as different between the two 
sets. 
 
However, there are several populations mixed in this data set. Specifically, grains have been analyzed 
from different tectonic and metamorphic settings (EGB – Ergebirge / Germany; EY – Central Alps / 
Switzerland; and Catskill, Shawangunk and Adirondack samples from Upstate New York), including both 
modern sands and Paleozoic sandstones. Thus, a separate comparison should be done in this case, given 
that we have enough analyses of rutile geochemistry from each location. Figure 5 compares the geometric 
means obtained for each one of these seven locations, distinguishing grain size and missing value 
treatment. It is worth noting that the missing value treatment does not seem to have a strong influence, 



except at Catskill location. Although this plot offers a rather bad visual assessment of the effects of grain 
size, one can say that the ratios V/Fe (filtered) or Cr/Fe (replaced) may distinguish grain sizes at Catskill. 
At Adirondack, Nb and/or Fe may distinguish between the two grain-size classes, and the fine-grained 
rutiles from Shawangunk seem poorer in W, V and Zr and richer in Fe compared to coarse ones from the 
same location. The samples obtained from the European Alps and Erzgebirge locations are remarkably 
more homogeneous, with a slight difference in Cr content in the EGB location. This may be due to the 
fact that the North-American samples represent larger drainage areas implying a higher possibility of 
mixing rutile from different sources having certain grain-size preferences. 
A more meaningful comparison is given in Table 3, where tests of equality of the mean (like that of table 
2) are independently conducted at each location. Instead of doing a joint analysis of the variance, we 
decided to do independent equality-of-means tests, because in our opinion, the noise introduced by the 
missing values blurs the intra-groups variance structure. Conducting separate tests seems more robust 
than pooling all group variances together. The most interesting feature of this table is the fact that Fe is 
never considered to be a discriminant component (Nb only once for filtered data set at EY-29-2), whereas 
V and Zr are the elements which most often display a significant difference between the two grain sizes 
(both of them in Catskill, Shawangunk and EGB-04-S50 locations; V also in Adirondack and Zr in EY-
29-4). Cr has an important discriminating contribution at location EGB-04-S50, while W is selected as 
discriminant at EY-29-3 and EY-29-4 locations.  
 
Finally, Figure 6 offers another graphical approach to these data sets: it compares through notched box-
plots all seven locations and two grain sizes, for each of the six trace elements. It is clearly seen that, with 
the notable exception of V, differences among locations are much more important than differences 
between grain sizes. We see again that variability at North-American locations (Adirondack, Catskill and 
Shawangunk) is generally larger than variability at the European ones (EGB and EY samples), since box-
plots of the former are generally wider than those of the former. Bar-plots show that only Adirondack and 
Catskill samples seem to have a different total amount of trace elements as a function of grain size. A 
striking contrast is observed for Zr-content of the Alpine samples (EY) which is much lower compared to 
all the other samples. This is related to the lower metamorphic grade of their host rocks compared to the 
granulite grade of EGB and North-American samples and confirms the Zr-geothermometer recently 
developed by Zack et al. (2004b). 
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Figure 5: Barplots of the geometric means for every sample (location), distinguishing grain size and missing value treatment: Cf-

coarse grains, filtering of missing values; Ff- fine grains, filtering; Cr-coarse grains, replacement; Fr-fine grains, replacement.  
Locations abbreviated according: (Ad)-Adirondack; (Cat)-Catskill; (Sha)-Shawangunk; (EGB)-EGB-04-S50; (E2)-EY-29-2;  

(E3)- EY-29-3; (E4)- EY-29-4. Vertical scale of barplots is ppm (cumulative). 
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Figure 6: Barplots and boxplots of the rutile data set (filtering the missing values), distinguishing between grain size (C: coarse, F: 
fine) and location. Boxplot colors act as a legend for bar-plots. The notch represents a 95% confidence interval on the median The 
following abbreviations for location have been used: (Ad)-Adirondack; (Cat)-Catskill; (Sha)-Shawangunk; (EGB)-EGB-04-S50; 

(E2)-EY-29-2; (E3)- EY-29-3; (E4)- EY-29-4. Note that vertical scale of boxplots is in logarithms. 
 

Table 3. Bilateral p-values of the null hypothesis in the equality-of-means tests. The stars show those p-values smaller than: 
0.1(*), 0.05(**) and 0.01(***). Tests are applied on the data after replacing missing values by half of the detection limit, and by 

filtering the samples with missing values. Each sample/location is analyzed separately. 
Adirondack filtered  replaced  EGB-04-S50 filtered  replaced  

ln(V) 0.018 ** 0.362  ln(V) 0.004 *** 0.030 ** 

ln(Cr) 0.445  0.749  ln(Cr) 0.001 *** 0.016 ** 

ln(Fe) 0.623  0.028  ln(Fe) 0.185  0.191  

ln(Zr) 0.501  0.512  ln(Zr) 0.008 *** 0.066 * 

ln(Nb) 0.234  0.012  ln(Nb) 0.149  0.519  

ln(W) 0.395  0.559  ln(W) 0.518  0.026 ** 

Catskill filtered  replaced  EY-29-2 filtered  replaced  

ln(V) 2·10-5 *** 9·10-5 *** ln(V) 0.229  0.303  

ln(Cr) 0.002 *** 0.523  ln(Cr) 0.024 ** 0.080 * 

ln(Fe) 0.460  0.122  ln(Fe) 0.956  0.434  

ln(Zr) 0.001 *** 0.174  ln(Zr) 0.657  0.897  

ln(Nb) 0.604  0.105  ln(Nb) 0.044 ** 0.124  

ln(W) 0.866  0.251  ln(W) 0.381  0.308  

Shawangunk filtered  replaced  EY-29-3 filtered  replaced  

ln(V) 0.017 ** 0.002 *** ln(V) 0.631  0.986  

ln(Cr) 0.420  0.344  ln(Cr) 0.170  0.163  

ln(Fe) 0.387  0.352  ln(Fe) 0.515  0.632  

ln(Zr) 0.029 ** 0.096 * ln(Zr) 0.226  0.090 * 

ln(Nb) 0.419  0.980  ln(Nb) 0.214  0.205  

ln(W) 0.675  0.968  ln(W) 0.009 *** 0.029 ** 

total  filtered  replaced  EY-29-4 filtered  replaced  

V 4  3  ln(V) 0.911  0.733  

Cr 3  2  ln(Cr) 0.849  0.644  

Fe 0  0  ln(Fe) 0.842  0.997  

Zr 4  4  ln(Zr) 0.011 ** 0.008 *** 

Nb 1  0  ln(Nb) 0.313  0.321  

W 2  3  ln(W) 0.002 *** 0.004 *** 



5   Conclusions 
 
Using graphical tools and statistical tests, we confirm in the case of the glacial sediments a strong 
compositional difference among the four grain-size fractions. Specifically, we detect a clear trend of 
depletion of Si, Al and Na oxides, as well as enrichment of Mg and Ti oxides with decreasing grain size. 
The two iron species do not show such a clear-cut trend, but the total Fe(tot) does: in particular, coarse sand 
and gravel is clearly poorer in Fe(tot) than mud. Finally, there is no significant difference between the 
composition of the mud and silt (to fine sand) grain-size fractions, except for FeO/Fe2O3. Similarly, the 
contrast between medium sand and coarse sand to gravel is quite low. The strongest contrast is observed 
between silt (incl. fine sand) and sand (including some gravel/granules). The grain size resolution of the 
chosen example is not detailed enough to develop a more quantitative picture of the interaction between 
grain size and glacial sediment chemistry. 
 
Regarding the second example, the chemistry of detrital rutile appears to be not strongly or systematically 
affected by grain size. Either after removing the samples with zeroes or replacing them, V content appears 
to be significantly different between the two analyzed grain-size fractions in the Paleozoic sandstone 
samples (Catskill, Shawangunk). The same holds true, at a lower significance level, for Zr. W plays a 
discriminative role in two out of three EY (Alpine) samples. Surprisingly, Fe content does not show any 
significant variation with regard to rutile grain size. In contrast, location and, hence, source rock 
petrology, exerts a strong control on rutile geochemistry, thus supporting its use as a well-suited tracer 
mineral for provenance studies. These findings also suggest that trace element composition of rutile has 
no influence on rutile behavior during weathering, transport, and diagenesis. 
 
This preliminary study on the interactions between sediment and/or mineral composition and grain size 
plays essentially a confirmatory role regarding prior ideas on the significance of sediment grain size for 
two particular examples. However, some details are surprising and need further evaluation. The approach 
also marks a first step towards the study of multi-way compositions (e.g., grain size, chemistry, and 
mineralogy) which parts admit an array-like structure. 
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Figure 7: Biplots of the whole rutile data set. Missing values are marked with “0”, whereas fully observed compositions with “1”: 

(upper) filtering the missing values; (lower) replacing the missing values by half of its detection limit;  
(left) taking log-transformed variables, (right) taking clr-transformed variables, including the residual part as “Other”. 
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Appendix 2: a first dip in a log-linear modelling of the glacial sediment data set 
 
True two-way compositions may be related to two-way contingency tables. A contingency table is the 
result of counting how many times the intersection of all possible levels of two categorical variables 
occurs. Contingency tables can be analyzed using log-linear models (e.g., Simonoff, 2003). Let X1 and X2 
represent the two categorical variables, respectively with I and J levels. Let nij represent the number of 
times we observed X1=i and X2=j, with 1≤i ≤I and 1≤j≤J, and pij be the probability of occurrence of that 
event. Let pi· and p·j represent the marginal probabilities of X1=i and X2=j respectively (with the dot 
indicating summation by the replaced index). Denote by n the total number of observations. It is well-
known that the expectation of E[nij]= npij. Also, if X1 and X2 are independent, this implies that pij = pi·p·j, 
which means that E[nij] = n· pi·p·j. Taking logs of these expressions we get in general, 

[ ] ijijij ppnn logloglogElog 0 +=+= λ    
If we assume independence of the two categorical variables, we obtain 

jijiij ppp ⋅⋅⋅⋅ +=+= λλlogloglog ,  

involving the so-called row and column effects, respectively denoted by λi· and λ·j. Since there are many 
sets of {λi·} and {λ·j} giving the same probabilities, one classically selects those which sum up to zero. 
This implies that these row and column effects can be computed as the clr transformations (4) of the 
marginal probability vectors. Finally, if independence is not desired, one can add an interaction effect 
between row i-th and column j-th, denoted by λij, which gives 

ijjiijp λλλ ++= ⋅⋅log .  
If a perfect fit is sought, interactions can be computed as 

ji

ij
ij pp

p

⋅⋅

= logλ . (5) 

However, this would mean that we would use I+J+I·J parameters to describe a table of I·J numbers (with 
I·J−1 degrees of freedom, due to the closure). The usual application of log-linear models is not to get this 
perfect fit, but to structure a set of tests of independence (levels i-th and j-th are independent if we accept 
the null hypothesis {λij=0}) or assume parsimonious models for interactions, and estimate its parameters. 
We will consider an interaction model which takes into account that one of our categories (e.g., grain size, 
say, by columns) is ordered. In this case, interactions are computed with the model 

( )νντλ −= jiij
, (6) 

where {vj} are previously-specified values for all j-th levels of the column variable (e.g., in our grain size, 
they will be vj=j, and 5.2−=ν  is their mean), and {τi} are the I model parameters to estimate.  
 
As we explained in the first section of this contribution, we have no true two-way compositions, but 
classical geochemical compositions with an additional record of grain size. Thus, we first construct a two-
way composition representing the mean of the glacial sediment data set, which we will afterwards model 
with log-linear techniques. To do so, we compute the center (=closed geometric mean of parts) of the 
composition for each grain size, and each center is multiplied by a weight proportional to the number of 
observations in that grain size (Table 4). Thus, each cell of Table 4 contains pij the proportion of the i-th 
chemical species of the j-th grain fraction in the whole composition (equivalent to a joint probability). 
This has been indirectly obtained as pij = mi|j · p·j, being mi|j the computed mean proportion of the i-th 
chemical species in the j-th grain fraction (equivalent to a conditional probability). Then, interaction 
effect are computed using equation (5), which gives 

∑ ⋅⋅⋅⋅
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====
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These effects are plotted in Figure 8(A), and they can be interpreted as the log-ratio of the mean of each 
grain size against a given global mean. This global mean is a weighted arithmetic mean of the means of 
all grain-sizes, which is a strange mixture of geometric and arithmetic criteria. Instead, we could have 
chosen the global closed geometric mean (denoted: mi), ignoring grain size differences. This gives an 
estimate of the interaction effects equal to  
 

i

ji
ij m

m
log=λ .  

This second way of estimating interaction effects was used to obtain Figure 8(B). These two figures are 
barely distinguishable (as are the two last columns of table 4, containing pi· and mi), implying that the 
global geometric mean and the mixed geometric-arithmetic mean are surprisingly almost equal. 
 



Table 4: Constructed two-way mean composition of the glacial sediments. 

X2=j mud 
silt to 

fine sand 
medium 

sand 
coarse sand 

to gravel 
X1=i vj 1 2 3 4 

marginal 
composition 

mi 
compositional 
mean (global) 

SiO2 2.78·10-1 1.13·10-1 1.63·10-1 1.33·10-1 6.88·10-1 6.88·10-1

TiO2 2.86·10-3 1.00·10-3 8.38·10-4 6.12·10-4 5.31·10-3 5.16·10-3

Al2O3 6.15·10-2 2.42·10-2 3.23·10-2 2.75·10-2 1.46·10-1 1.46·10-1

Fe2O3 1.30·10-2 4.45·10-3 5.31·10-3 3.42·10-3 2.62·10-2 2.60·10-2

FeO 1.12·10-2 4.35·10-3 3.70·10-3 2.33·10-3 2.16·10-2 2.10·10-2

MgO 1.11·10-2 3.89·10-3 3.70·10-3 2.59·10-3 2.13·10-2 2.09·10-2

CaO 1.39·10-2 5.34·10-3 6.98·10-3 5.07·10-3 3.13·10-2 3.14·10-2

Na2O 1.32·10-2 5.55·10-3 8.19·10-3 7.25·10-3 3.42·10-2 3.40·10-2

K2O 1.09·10-2 4.15·10-3 4.94·10-3 5.01·10-3 2.50·10-2 2.50·10-2

P2O5 9.03·10-4 3.40·10-4 2.95·10-4 2.07·10-4 1.75·10-3 1.71·10-3

marginal 
granulometry 4.17·10-1 1.67·10-1 2.29·10-1 1.88·10-1 1.00 1.00
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Figure 8: interaction effects grainsize-geochemistry, computed: (A) with the marginal mean composition (mixed geometric-
arithmetic approach), (B) with the global compositional mean (purely geometric approach). Codes of colours follow Figure 2. 
 
Figure 8 clearly shows a decreasing trend from mud to gravel for Fe2O3 (bright green), FeO (bluish 
green), TiO2 (orange), P2O5 (magenta) and MgO (cyan blue). Subtler trends are also observed for CaO 
(electric blue, decreasing), and Na2O (dark blue, increasing), even for SiO2 (red, slightly increasing). 
Finally, lacking a true test of independence, Al2O3 proportion (yellow) presents a fairly flat and null 
interaction effect with grain size. K2O (violet) pattern is much complex: it might either be interpreted as a 
preferential depletion in sand out of a fairly independent behaviour with grain size, or as a preferential 
enrichment of K2O in coarser grains with respect to a general decreasing trend. In the other cases, the 
good similitude of the dots with true straight lines is a very promising result. Note that we can also 
observe here the anomalous high FeO content (bluish green) in silt and fine sand. These increasing or 
decreasing trends are also clear after estimating the τi parameters of a model attending to the ordering of 
grain size (Eq. 6). Each of these lines was obtained by regression of the four dots in Figure 8 forcing a 
zero intercept, and they are all summarized in table 5. 
 

Table 5: slope parameters of the ordered-categories model. 
X1=i SiO2 TiO2 Al2O3 Fe2O3 FeO MgO CaO Na2O K2O P2O5 
τi 0.0237 -0.2726 -0.0042 -0.1758 -0.2790 -0.2343 -0.0677 0.0676 -0.0088 -0.2477 
 


