

PATH PLANNING WITH HOMOTOPIC
CONSTRAINTS FOR AUTONOMOUS UNDERWATER

VEHICLES

Emili HERNÀNDEZ BES

Dipòsit legal: GI. 1193-2012
 http://hdl.handle.net/10803/83568

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

Ph.D. thesis
PAT H P L A N N I N G W I T H H O M O T O P I C

C O N S T R A I N T S F O R A U T O N O M O U S U N D E RWAT E R
V E H I C L E S

emili hernàndez bes

2012

Ph.D. thesis
PAT H P L A N N I N G W I T H H O M O T O P I C

C O N S T R A I N T S F O R A U T O N O M O U S U N D E RWAT E R
V E H I C L E S

emili hernàndez bes

2012

Doctoral Programme in Technology

Supervisors
Dr. Pere Ridao Rodríguez and Dr. Marc Carreras Pérez

Work submitted to the University of Girona in fulfilment of the
requirements for the degree of Doctor of Philosophy

Emili Hernàndez Bes: Path Planning with Homotopic Constraints for Autonomous
Underwater Vehicles, © 2012

Dedicated to my family and especially to Sara.

A C K N O W L E D G M E N T S

I would like to express my gratitude to those who helped me during the devel-
opment of this thesis. First of all, I would like to thank my supervisors Marc
Carreras and Pere Ridao for believing in me and encouraging me to realize
this research work. Without their advices and optimism in those moments
when things did not work, this work would not have been possible.

I also thank the members of the Underwater Robotics Lab. for the help
whenever it was necessary. I want to thank my colleagues Narcís, David,
Andrés, Aggelos, Tali, Lluís, Enric, Arnau, Chee Sing, Simone and Carles for
always being there. I would also like to extend my gratitude to the rest of the
members of the Computer Vision and Robotics Group of the Department of
Computer Engineering, in particular to Xevi, Jordi, Xavi, Rafa, Miki, Quintana,
Tudor, Sergio, Sik, Quim and Aulinas.

I am also grateful to the people in the Systems, Robotics & Vision Group
at the Mathematics and Computer Science Department of the University of
the Balearic Islands for their warm reception and hospitality during my stay.
I especially want to thank Javier Antich for his useful advices and those
interesting discussions, and Alberto Ortiz for his help during the stay. Thank
you Francesc, Toni, Biel, Julian, Oscar and Xisco for making me feel like a
member of the group.

I also wish to extend my gratitude to all my friends, in particular to Ivan
for his enormous patience and those wonderful dives that helped me to break
with the routine of the last period of the Ph.D.

I give my special gratitude to my parents, Rosa and Emili and my brother
Edu. They deserve special gratitude for their comprehension and support
of my decision to start a Ph.D. Thank you Joan for helping me with those
obstacle’s panels. Thank you Maribel, Adriana and Carla for being there.

Finally, I want to express my gratitude to Sara for her love, patience and
comprehension at every moment.

vii

A B S T R A C T

The work presented in this thesis addresses the path planning problem for
Autonomous Underwater Vehicles (AUVs). Our method proposes the utiliza-
tion of homotopy classes to provide topological information on how paths
avoid obstacles. Looking for a path within a homotopy class constrains the
search into a specific area of the search space, speeding up the computation of
the path. The method starts by generating the homotopy classes that connect
the starting point with the ending point in a workspace with obstacles. Those
classes which most probably contain lower cost solutions are determined by
means of a lower bound criterion before computing a path. Finally, a path
planner uses the topological information of homotopy classes to generate a
few probable good solutions very quickly. Three path planners from different
approaches have been proposed to generate paths for the homotopy classes
obtained. The first is the Homotopic A* (HA*), a graph-search based algorithm
that computes the shortest homotopic path according to an input homotopy
class. The second is a probabilistic sampled-based approach called Homotopic
RRT (HRRT). The last is the Homotopic Bug (HBug), a Bug-based algorithm
that combines following the lower bound path with the surroundings of the
obstacle boundaries.

This thesis also proposes a local map building approach to generate Occu-
pancy Grid Maps (OGMs) where path planning is performed. The method
first improves the dead-reckoning navigation of an AUV through a sonar
scan matching technique to generate a more feasible OGM according to the
information provided by the onboard sensors.

The local map building approach has been tested in a dataset gathered with
an AUV. Results of our path planning approach in synthetic environments
have shown that the HA* should be used when generating optimal solutions at
the expense of low performance is required, whereas the HBug is suitable for
applications where the time to perform the path planning is highly constrained.
The map building approach and the path planning method have been tested
together in real experimentation with the Sparus AUV in a controlled unknown
environment.

ix

R E S U M

Aquesta tesi aborda el problema de la planificació de camins per a Vehicles
Submarins Autònoms (AUVs). El nostre mètode proposa la utilització de
classes d’homotopia per a proporcionar informació topològica de com els
camins eviten els obstacles. Calcular un camí dins d’una classe d’homotopia
permet limitar l’espai de cerca accelerant-ne el càlcul de la solució. El mètode
proposat comença amb la generació de les classes d’homotopia que connecten
el punt inicial amb el punt final d’un workspace amb obstacles. Aquelles classes
que probablement contenen les solucions de menor cost s’identifiquen per
mitjà d’un criteri de lower bound sense haver de calcular el camí al workspace.
Finalment, un planificador de camins utilitza la informació topològica de les
classes d’homotopia per generar solucions segons les classes seleccionades
molt ràpidament. Els camins de les diferents classes d’homotopia obtingudes
es generen per mitjà de tres planificadors de camins que segueixen propostes
ben diferenciades. El primer és l’Homotopic A* (HA*), un algoritme de cerca
en grafs que calcula el camí òptim per a una classe d’homotopia utilitzada
com a paràmetre d’entrada. El segon és un algoritme probabilístic basat en la
generació de mostres aleatòries anomenat Homotopic RRT (HRRT). L’últim
és l’Homotopic Bug (HBug), un algoritme Bug que combina el seguiment del
lower bound amb el seguiment del contorn dels obstacles.

En aquesta tesi també es proposa un mètode per generar mapes locals basats
en Occupancy Grid Maps (OGMs), on posteriorment es realitza la planificació
de camins. El mètode primer millora la navegació basada en dead-reckoning de
l’AUV mitjançant una tècnica de scan matching que permet generar OGMs més
fidedignes d’acord amb la informació proporcionada pels sensors a bord del
vehicle.

La proposta presentada per a la construcció de mapes locals s’ha provat en
un dataset adquirit amb un AUV. Els resultats obtinguts amb el mètode de
planificació de camins en escenaris sintètics han posat de manifest que l’HA*
s’hauria d’utilitzar quan es requereix generar solucions òptimes sempre i quan
es pugui assumir els seus alts temps d’execució, mentre que l’HBug és un bon
candidat per aplicacions on el temps per a planificar camins està altament
restringit. La proposta de construcció de mapes i el mètode de planificació de
camins s’han testejat conjuntament en un experiment real utilitzant el Sparus
AUV en un entorn desconegut i controlat.

xi

R E S U M E N

El trabajo de esta tesis aborda el problema de la planificación de caminos
en Vehículos Submarinos Autónomos (AUVs). Nuestro método propone la
utilización de clases de homotopía para proporcionar información topológica
de cómo los caminos evitan los obstáculos. Realizar una búsqueda del camino
siguiendo una clase de homotopía específica permite limitar el espacio de
búsqueda, acelerando el cálculo de la solución. El primer paso del método
presentado genera las clases de homotopía que conectan el punto inicial con el
punto final en un workspace con obstáculos. Aquellas clases que probablemente
contienen las soluciones de menor coste son identificadas mediante un criterio
de lower bound sin necesidad de calcular ningún camino en el workspace. Por
último, un planificador de caminos utiliza la información topológica de las
clases de homotopía con el fin de generar soluciones para las clases selec-
cionadas muy rápidamente. Para generar los caminos de las diferentes clases
de homotopía obtenidas, se ha propuesto tres planificadores de caminos que
siguen estrategias bien diferenciadas. El primero es el Homotopic A* (HA*),
un algoritmo de búsqueda en grafos que calcula el camino óptimo según la
clase de homotopía seleccionada como parámetro de entrada. El segundo es un
algoritmo probabilista basado en la generación de muestras aleatorias llamado
Homotopic RRT (HRRT). El último es el Homotopic Bug (HBug), un algoritmo
Bug que alterna el seguimiento del lower bound con el del contorno de los
obstáculos.

En esta tesis también se presenta un propuesta de un método para generar
mapas locales basado en Occupancy Grid Maps (OGMs) donde posteriormente
se realiza la planificación de caminos. El método primero mejora la navegación
basada en dead-reckoning del AUV mediante una técnica de scan matching que
permite generar OGMs más fidedignos según la información proporcionada
por los sensores a bordo del vehículo.

El método propuesto para la construcción de mapas locales ha sido testeado
con un dataset adquirido con un AUV. Los resultados obtenidos con el método
de planificación de caminos en escenarios sintéticos han puesto de manifiesto
que el HA* debería de ser utilizado cuando se requiere generar soluciones
óptimas en aplicaciones donde sus altos tiempos de ejecución no sean un
problema. Por el contrario, el HBug es un buen candidato para aplicaciones
donde el tiempo para obtener los caminos debe ser muy reducido. La propuesta
presentada para la construcción del mapa y el método de planificación de
caminos han sido probados conjuntamente en un experimento real utilizando
el Sparus AUV en un escenario desconocido y controlado.

xiii

C O N T E N T S

1 introduction 1

1.1 Motivations 2

1.2 Goal of the Thesis 3

1.2.1 Objectives 4

1.3 Outline of the Thesis 6

2 state of the art 9

2.1 The Path Planning Problem 9

2.1.1 Overview 9

2.2 Graph-based Search Path Planning 10

2.2.1 Heuristic Functions Overview 11

2.2.2 The A* algorithm 12

2.2.3 Replanning Algorithms 13

2.3 Probabilistic sample-based Path Planning 15

2.3.1 The Rapidly-exploring Random Tree Approach 16

2.4 Bug-based Path Planning 18

2.5 Anytime Path Planning 23

2.5.1 The Deterministic Anytime Approach 24

2.5.2 The Probabilistic Anytime Approach 26

2.6 Topological Path Planning 28

2.7 Homotopy Classes 29

2.7.1 The Shortest Homotopic Path Problem 31

2.7.2 Homotopy Classes Generation Approaches 35

2.7.3 Constraining Path Search Topologically 36

2.7.4 Summary 39

2.8 Path planning for AUVs 40

2.9 Discussion 41

3 path planning with homotopy class constraints 45

3.1 Overview 45

3.1.1 Applicability to the Path Planning Problem 47

3.2 Homotopy Classes Generation 49

3.2.1 Reference Frame 49

3.2.2 Computation of the Canonical Sequence 50

3.2.3 Topological Graph 51

3.2.4 Systematic Homotopy Classes Computation 52

3.3 Lower Bound Estimator 54

3.4 Homotopic Path Planning Algorithms 55

3.4.1 Homotopic A* 56

3.4.2 Homotopic Rapidly-exploring Random Tree 58

3.4.3 Homotopic Bug 61

3.5 Summary 66

4 local map building 67

4.1 Scan Matching 67

xv

xvi contents

4.1.1 Problem Definition 68

4.1.2 Related Work 69

4.1.3 Scans Generation using an MSIS 72

4.1.4 The MSISpIC algorithm 81

4.2 Occupancy Grid Mapping 81

4.2.1 Problem Definition 82

4.2.2 Inverse Sensor Model 84

4.3 summary 86

5 experimental platform 87

5.1 Vehicle Experimental Platforms 87

5.1.1 Ictineu AUV 87

5.1.2 Sparus AUV 89

5.2 Map Building Hardware 91

5.2.1 Doppler Velocity Log 91

5.2.2 Motion Reference Unit 92

5.2.3 Mechanical Scanned Imaging Sonar 93

5.2.4 Multibeam Profiling Sonar 93

5.3 COLA2 Architecture 94

5.3.1 Reactive Layer 95

5.3.2 Execution Layer 96

5.3.3 Mission Layer 97

6 results 99

6.1 Map building in a Man-made Marina Environment 99

6.1.1 Scan Matching 100

6.1.2 Occupancy Grid Mapping 101

6.2 Path planning with Homotopy Class Constraints 103

6.2.1 Cluttered Scenario 105

6.2.2 Large Scenario 109

6.2.3 Discussion 117

6.3 A Water Tank Environment Test 117

6.3.1 Map Building 118

6.3.2 Path Planning with Homotopy Constraints 119

6.4 Experiment in the Formigues Islands 120

6.5 Summary 125

7 conclusions 129

7.1 Summary 129

7.2 Contributions 131

7.3 Future Work 132

7.4 Research Framework 133

7.5 Related Publications 134

a an example of homotopy classes generation 137

b transformations in 2d 139

b.1 Composition 139

b.2 Point features 139

bibliography 141

L I S T O F F I G U R E S

Figure 1 Two discrete motion models. 10

Figure 2 A* execution example. a), b) and c) depict the environ-
ment exploration at three different moments. d) Shows
the shortest path computed with backtracking from the
goal once it has been found. 14

Figure 3 Graphical comparison of graph-based search algorithms.
A* (A8 connectivity) only assumes the cost of the centre
of the discrete cells. Field-D associates costs with cell
corners and allows linear paths between cells. Hybrid-
A* associates a continuous state with each cell. Image
extracted from (Dolgov et al., 2010). 15

Figure 4 The RRT uses the qstart as the root node of a tree until
the goal configuration qgoal is reached. At each step, a
configuration qrand is selected using a random sampling
distribution. Then, the nearest node in the tree to qrand
is labeled as qnearest. Finally, a new node qnew is added
to the tree at a certain distance from qnearest towards
qrand. 17

Figure 5 Example of an RRT execution in a simple environment:
a) Exploration tree with no biased sampling; b) Explo-
ration tree making 5% of the samples coincident with the
goal. 18

Figure 6 Improving a sampled-based path with the greedy ap-
proach. 18

Figure 7 An example of the execution of the Bug1 algorithm in a
simple scenario. 19

Figure 8 Example of execution of Bug2 algorithm in a simple
scenario. 20

Figure 9 Bug2 path in a scenario with a complex obstacle. 20

Figure 10 Interval of continuities found by the range sensor at a
fixed position. 21

Figure 11 A Tangent Bug algorithm execution. 22

Figure 12 Completeness of Bug1 and Bug2 algorithms. 22

Figure 13 An ARA* search. Images extracted from (Likhachev et al.,
2004) 25

Figure 14 An ARRT example. 27

Figure 15 Example of computing the shortest path using a visibility
graph. 29

Figure 16 Computing the shortest path using a Voronoi diagram in
a scenario with 12 sites. 30

Figure 17 Example of homotopic paths. 30

xvii

xviii List of Figures

Figure 18 Different moments during the computation of the short-
est path using the funnel algorithm. The dashed blue
lines represent the interior edges of the channel. 32

Figure 19 According to (Cheng et al., 2010), the input path (dashed
line) is encoded according to the edges traversed on
the triangulated environment differentiating whether an
edge is crossed to the left or right:←−e1−→e2←−e2−→e2−→e3←−e4−→e4←−e4−→e5.
Then, it is possible to obtain its canonical representation
←−e1−→e2−→e3←−e4−→e5 which shortens the path (solid line). The next
step would expand the triangulation to improve the path
while keeping the canonical sequence of the homotopy
class. 33

Figure 20 Computing the shortest homotopic paths: a) Input paths
p1 and p2 with their respective terminal points (t1 and
t2 for p1, and t3 and t4 for p2). b) Minimum necessary
shortcuts s1 and s2 to obtain x-monotone paths. c) Mono-
tone pieces after applying shortcuts: p1 is divided into
3 monotone pieces: µ1 from t1 to t3, µ2 from t3 to t4,
and µ3 from t4 to t2; p2 is represented by one monotone
piece µ4. µ2 and µ4 belong to the same bundle since
they are homotopic because they share terminal points
and there are no more terminal points between them. d)
Paths after computing the shortest path for each bun-
dle: σ1 and σ2 are the shortest homotopic paths of p1
and p2 respectively. Figure extracted from (Efrat et al.,
2002). 34

Figure 21 A (Jenkins, 1991) and (Cuerington, 1991) example: a)
In the reference frame, the obstacles are represented as
single points bk and a path p is described topologically
according to the semi-rays traversed . b) The homotopic
shortest path of p crosses the semi-rays of the reference
frame in the same manner. 36

Figure 22 Schmitzberger et al. places a minimum number of x
points that cover the whole C-Space with their fields
of view (a), and others support points y in order to
build a redundant PRM (b), which is simplified in c).
The final PRM allows performing a suboptimal motion
planning with any homotopy class. Images extracted
from (Schmitzberger et al., 2002). 37

Figure 23 The original graph G is expanded by the L-value to gen-
erate the GL graph. In the example, trajectories τ1 and
τ2 are obtained from the start point in the complex do-
main zs with an L-value of 0+0i, to the goal zg which has
an L-value Λ or Λ̄ depending on the state of GL. Image
extracted from (Bhattacharya et al., 2010). 38

List of Figures xix

Figure 24 A topological path represented in the reference frame as
p = β1α2α2α2 with the transitions labeled. 46

Figure 25 Path p = β1α2α2α2 represented in the topological graph
with bold arrows. 47

Figure 26 Example of a valid homotopy class (β1α2) in the ref-
erence frame (a) and in the topological graph (b) that
cannot be followed in the workspace (c) because at least
one line (l1 or l2) in the reference frame intersects more
than one obstacle. 49

Figure 27 Topological path represented in the reference frame as
p = β11α10α20α10α20α20α10α1−1 50

Figure 28 A possible path in the reference frame of the canonical
sequence p = β11α10α20α1−1 obtained with the sequence
β11α10α20α10α20α20α10α1−1 . 51

Figure 29 The path β11α10α20α1−1 represented in the topological
graph. 52

Figure 30 A simple wrap in path βk1αk0βk1 . 53

Figure 31 A wrap in path αm0
αk0βk2αk1 . 53

Figure 32 Self-crossing in path βk1βm1
αm0

βk2 . 53

Figure 33 The channel and lower bound path for the homotopy
class β11α10α20α1−1 . 55

Figure 34 An HA* execution example in a simple workspace with
two obstacles for homotopy class β11β21 . 57

Figure 35 A path computed with the HRRT path planner for the
homotopy class β11α10α20α1−1 . 61

Figure 36 Perpendicular dot product. 62

Figure 37 Path computed with the HBug path planner for the ho-
motopy class β11α10α20α1−1 . 63

Figure 38 Two ways to check completeness with HBug algorithm
for the homotopy class αk0 . 65

Figure 39 The scan matching problem. 69

Figure 40 pIC correspondence computation. The large ellipse con-
tains all the statistically compatible points and the squared
point represents the correspondence with its uncertainty
(small ellipse). 71

Figure 41 Generation of an acoustic beam. Extracted from (Ribas
et al., 2010) 73

Figure 42 Interpretation of a polar image gathered with an MSIS.
The current beam is detailed. 74

Figure 43 A peaks detector for an MSIS beam. 74

Figure 44 The distortion produced by the displacement of the robot
in the scenario in Figure 42 while acquiring data can be
corrected using the relative localization system. 75

Figure 45 A scan forming process: any beam k of the scan is rep-
resented with respect to the pose of the robot when the
first beam I was gathered. 80

xx List of Figures

Figure 46 Initially each beam is gathered at different vehicle posi-
tions. 80

Figure 47 The scan grabbing process references all the beams of
the scan at the position of the robot when the first beam
was gathered. The uncertainty of the motion has been
propagated to the scan points. 80

Figure 48 A profiler sonar inverse sensor model. 84

Figure 49 Imaging sonar inverse sensor model. 85

Figure 50 The Ictineu AUV. 88

Figure 51 The Sparus AUV. 90

Figure 52 DVLs used in this research project. 92

Figure 53 Xsens MTi MRU. 92

Figure 54 Models of the MSISs used in this research project. 93

Figure 55 Imagenex Multibeam. 94

Figure 56 COLA2 architecture 95

Figure 57 The Ictineu AUV with a surface buoy equipped with a
DGPS. 100

Figure 58 DGPS trajectory with range data plotted on the orthopho-
tomap. 101

Figure 59 Dead-reckoning trajectory (in red) with range data plot-
ted on the orthophotomap. 102

Figure 60 The MSISpIC trajectory (in cyan) with range data plotted
on the orthophotomap. 102

Figure 61 Dead-reckoning and MSISpIC trajectories absolute error
with respect to the DGPS. 103

Figure 62 OGMs based on DGPS, dead-reckoning and MSISpIC
trajectories. Each trajectory is represented using a profiler
sonar model and an imaging sonar model. 104

Figure 63 Paths generated with the HA*, HRRT and HBug algo-
rithms for the four homotopy classes with the smaller
lower bound in the cluttered environment. 107

Figure 64 Cost of the paths computed with the HA*, HRRT and
HBug algorithms for each homotopy class in Table 6

sorted according their lower bound. 108

Figure 65 Accumulated computation time of the paths using the
HA*, HRRT and HBug algorithms for each homotopy
class in Table 6 sorted according their lower bound. 108

Figure 66 Paths of the five homotopy classes with the smaller lower
bound computed with the HA*. The class associated to
the index can be found in Table 7. 110

Figure 67 Normalized cost, normalized lower bound and compu-
tation time for paths generated with the HA* for each
homotopy class. 111

Figure 68 Paths of the five homotopy classes with the smaller lower
bound computed with the HRRT. The class associated to
the index can be found in Table 7. 112

Figure 69 Normalized cost, normalized lower bound and compu-
tation time for paths generated with the HRRT for each
homotopy class. 112

Figure 70 Paths of the five homotopy classes with the smaller lower
bound computed with the HBug. The class associated to
the index can be found in Table 7. 113

Figure 71 Normalized cost, normalized lower bound and compu-
tation time for paths generated with the HBug for each
homotopy class. 114

Figure 72 Comparison of the HA*, HRRT and HBug paths of the
five homotopy classes with the smaller lower bound vs
A*, RRT, ARA*, ARRT and Bug2 algorithms. 115

Figure 73 The HRRT and HBug paths cost with respect to the HA*
cost for each homotopy class. 117

Figure 74 Water tank environment set up. 118

Figure 75 A dead-reckoning trajectory with range data. 119

Figure 76 A trajectory estimated with scan matching against dead-
reckoning. The range data is plotted according to the
MSISpIC trajectory. 120

Figure 77 An 18x16m OGM with 0.1m resolution used as a C-space
and its topological graph. 121

Figure 78 Paths generated with the HA*, the HRRT and the HBug
algorithms for each homotopy class generated in the
Underwater Robotics Lab. environment. 122

Figure 79 Girona 500 I-AUV 123

Figure 80 Bathymetric map obtained in the Formigues Islands. 124

Figure 81 The paths of the five homotopy classes with the smaller
lower bound. The class associated to the index can be
found in Table 10. 125

Figure 82 Normalized cost, normalized lower bound and compu-
tation time for paths generated with the HA* for the 45

homotopy classes in Figure 81. 126

Figure 83 The paths of the five homotopy classes with the smaller
lower bound. The class associated to the index can be
found in Table 11. 126

Figure 84 Normalized cost, normalized lower bound and compu-
tation time for paths generated with the HA* for the 75

homotopy classes in Figure 83. 126

xxi

Figure 85 The reference frame of a simple scenario with two obsta-
cles with its correspondent topological graph. 137

L I S T O F TA B L E S

Table 1 Summary of selected methods that explicitly deal with
homotopy classes. 42

Table 2 A systematic generation of homotopy class candidates
with the BFS algorithm. 48

Table 3 Homotopy classes with their index of generation ob-
tained with the topological graph in Figure 25. 48

Table 4 Homotopy classes obtained with the extension of the
Jenkins method we propose. The first column shows
their index of generation. 54

Table 5 Lower bounds for each homotopy class normalized ac-
cording to the cost of the A* solution. 55

Table 6 Homotopy classes of the cluttered environment sorted by
their lower bound with the cost of the paths computed
using the HA*, HRRT and HBug algorithms. Costs in
bold show the paths that would be computed when
operating under realtime constraints. 106

Table 7 The five homotopy classes of the large environment
with the smaller lower bound and their generation in-
dex. 109

Table 8 Homotopy classes generated for the Underwater Robotics
Lab. environment with their length sorted according to
the lower bound. 120

Table 9 Homotopy classes generated for the Underwater Robotics
Lab. environment with their computation time using the
homotopic path planners. The homotopy classes have
been sorted according to their lower bound. 121

Table 10 The five homotopy classes with the smaller lower bound
in Figure 81 scenario. 125

Table 11 The five homotopy classes with the smaller lower bound
in Figure 83 scenario. 127

Table 12 Modified BFS execution. 138

xxii

Glossary xxiii

Table 13 Homotopy classes obtained for the example. 138

L I S T O F A C R O N Y M S

AAC Architecture Abstraction Component.

AD* Anytime Dynamic A*.

ADRRT Anytime Dynamic RRT.

AHRS Attitude and Heading Reference System.

AI Artificial Intelligence.

ARA* Anytime Repairing A*.

ARRT Anytime-RRT.

ASC Autonomous Surface Craft.

ASEKF Augmented State EKF.

AUV Autonomous Underwater Vehicle.

BFS Breadth-First Search.

C-space Configuration Space.

CCD Charge Coupled Device.

CL Component Labeling.

COLA2 Component Oriented Layer-based Architecture for
Autonomy.

DES Discrete Event System.

DFS Depth-First Search.

DGPS Differential Global Positioning System.

DoF Degree of Freedom.

DSTL Defence Science and Technology Lab.

DVL Doppler Velocity Log.

EKF Extended Kalman Filter.

ENU East-North-Up.

EST Expansive-Space Tree.

FM Fast Marching.

xxiv Glossary

GPS Global Positioning System.

GVD Generalized Voronoi Diagram.

HA* Homotopic A*.

HBug Homotopic Bug.

HIL Hardware In the Loop.

HRRT Homotopic RRT.

I-AUV Intervention-Autonomous Underwater Vehicle.

ICP Iterative Closest Point.

IFoG Intelligent Fiber-optic Gyro.

IGC Intelligent Gyro Compass.

MCL Mission Control Language.

MCS Mission Control System.

MPS Multibeam Profiling Sonar.

MRU Motion Reference Unit.

MSIS Mechanical Scanned Imaging Sonar.

O2CA2 Object Oriented Control Architecture for Auton-
omy.

OGM Occupancy Grid Map.

pIC Probabilistic Iterative Correspondance.

PID Proportional Integral Derivative.

PNP Petri Net Player.

PRM Probabilistic RoadMap.

r.g.v random Gaussian variable.

RL Reinforcement Learning.

ROV Remotely Operated Vehicle.

RRT Rapidly-exploring Random Tree.

SAUC-E Student Autonomous Underwater Challenge-
Europe.

SBL Single-query Bi-directional Lazy collision-checking.

SLAM Simultaneous Localization And Mapping.

SVS Sound Velocity System.

Glossary xxv

TAM Thruster Allocation Matrix.

ULV Ultra Low Voltage.

USBL Ultra-Short BaseLine.

UUV Unmanned Underwater Vehicle.

VICOROB Computer Vision and Robotics.

1
I N T R O D U C T I O N

Despite covering almost three quarters of the Earth’s surface, seas and oceans
represent some of the least known areas of the planet due to the technological
challenges that underwater research implies. Unmanned Underwater Vehicles
(UUVs) are useful devices to perform exploration, inspection and interven-
tion operations in oceans and internal waters. The development of Remotely
Operated Vehicles (ROVs) during the 80s has had a huge impact in various
application areas such as the oceanographic field, where ROVs have reduced
the need for manned submersibles, increasing the observation time from a
few hours to a few days. These robots have also played an important role in
industrial field applications for the inspection of submerged structures like
cables, pipes or dams, allowing intervention capabilities as well as rescue
operations.

In order to overcome the limitations imposed by ROVs’tether cable, which
highly restricts the working area of the vehicles, and to increase their autonomy
and reduce the human intervention for operating the vehicles, Autonomous
Underwater Vehicles (AUVs) have been developed. These vehicles are built
with autonomous capabilities in mind. They cover a wide range of potential
applications from data sampling to structure inspection. There are several
AUV applications being explored by various organizations around the world
(Davis, 1996): environmental monitoring, oceanographic research and mainte-
nance/monitoring of underwater structures are just a few examples. AUVs are
attractive for use in these areas because of their size and their non-reliance on
human operators. Recently, some research institutions have started to develop
a new generation of AUVs with one or more manipulators called Intervention-
Autonomous Underwater Vehicles (I-AUVs). Their main advantage is the low
operational cost, since there is no need for large intervention ships (or oceano-
graphic ships) with dynamic positioning capabilities. I-AUVs are designed to
be operated very close to the seabed or in close proximity to industrial struc-
tures like those used by offshore industries. Given the potential applications
and advantages of AUVs and I-AUVs, academic and commercial organizations
around the world are conducting research using these vehicles.

This thesis explores the path planning capabilities of a navigation, mapping
and guidance system for an AUV, whose main goal is to achieve a safe
guidance of the vehicle in complex scenarios where intervention and surveilling
applications are being carried out. After studying the main path planning
approaches applied to robotics, this work has focused on generating topological
information which is used to constraint the path generation. Consequently,
the necessity of developing path planning algorithms that take into account
topological constraints arises. In order to demonstrate the feasibility of our

1

2 introduction

proposal, it has been a priority to carry out experiments with real data from
AUVs.

This introduction continues with the main aspects which have conditioned
this thesis. First, some background information on the motivations and appli-
cability is provided. Then, a description of the objectives of this thesis and an
outline of this document are given.

1.1 motivations

The research presented in this thesis was carried out in the Underwater
Robotics Laboratory of the Computer Vision and Robotics (VICOROB) group
of the University of Girona. This group has been doing research in underwater
robotics since 1992, supported by several National and European programs.
The main contribution over the past few years has been the development of
several ROV and AUV prototypes. The most recent vehicles, all operative at
the present date, are the Ictineu AUV, the Sparus AUV and the Girona 500

I-AUV.
The Ictineu AUV is a small form factor with remarkable sensorial capabilities

and easy maintenance which makes it a perfect research platform for testing
in both laboratory and real application environments. The Sparus AUV was
designed as a small, simple torpedo-shaped vehicle with hovering capabilities,
which increases the vehicle’s autonomy with respect to the Ictineu AUV when
traveling long distances. Both prototypes where conceived to participate in the
2006 and 2010 editions respectively of the Student Autonomous Underwater
Challenge-Europe (SAUC-E) competition, but keeping in mind their later use
in a wide range of applications such as the inspection of hydroelectric dams,
mosaicking of areas with biological interest, harbors, underwater cables and
pipes.

In the context of a National program, the lab’s latest prototype, the Girona
500, a reconfigurable I-AUV designed for a maximum operating depth of up
to 500m was developed. The vehicle is composed of a frame supporting three
torpedo-shaped hulls providing a good hydrodynamic performance and a
large space for housing equipment while maintaining a compact size which
allows the operation of the vehicle from small boats. Concerning the basic
configuration, the vehicle is equipped with navigation sensors and basic survey
equipment. Moreover, the vehicle has a reserved space for a mission-specific
payload such as a stereo imaging system or an electric arm for manipulation
tasks.

The research efforts in the Underwater Robotics Laboratory have been ori-
ented to the development of the diverse disciplines related with the operation
of autonomous vehicles. An example can be found in the work done in control
architectures, which has lead to the creation of the Object Oriented Control
Architecture for Autonomy (O2CA2) control architecture (Carreras et al., 2001),
recently substituted by a new layer-based control architecture named Compo-
nent Oriented Layer-based Architecture for Autonomy (COLA2) implemented
in the three operative prototypes. As the complexity of the autonomous mis-

1.2 goal of the thesis 3

sions increased, advances were made towards the development of a Mission
Control System (MCS) (Palomeras, 2011). Also Artificial Intelligence (AI) capa-
bilities have been studied by using Reinforcement Learning (RL) techniques
(El-Fakdi, 2011) for automatic behavior learning.

Navigation has been addressed putting special efforts into vehicle localiza-
tion since it constitutes a major underwater problem. Different approaches
are currently being explored in the lab. The first is by means of Simultaneous
Localization And Mapping (SLAM) techniques (Ribas et al., 2010; Ridao et al.,
2011), which require neither previous knowledge of the scenario nor the use
of absolute positioning systems. Relative localization techniques based on
scan matching, which improve the localization of the vehicle by overlapping
successive sonar range scans provided by the sensors onboard the vehicle
(Hernández et al., 2009b), have also been studied. Recent achievements rely
on the combination of scan matching and SLAM in order to obtain the high
quality results of SLAM with the low computation time of scan matching
(Mallios et al., 2009, 2010a, 2011).

The principle motivation of this thesis is to expand the autonomous nav-
igation and guidance capabilities of AUVs in inspection, intervention and
surveilling applications. This kind of mission usually requires guiding the
vehicle at a close distance to the seafloor or to the surface to explore, which
makes the robot to carry on the mission in complex scenarios. Following the
studies carried out in mobile robotics (Mínguez et al., 2004), developing a
navigation and guidance system capable of generating safe trajectories between
known positions is required. The vehicle must be able to sense the environment
and build a local map of the surroundings to compute a safe path towards
the goal. After that, a path following algorithm has to guide the vehicle along
the computed path with a simple reactive obstacle avoidance behavior which
ensures the safety of the AUV in case of imminent collision.

This thesis focuses on the path planning capabilities of a navigation and
guidance system for an AUV. In inspection and surveilling missions, the
vehicle is not only required to compute a safe path between a start and a
goal position, it must generate paths that avoid obstacles in a specific manner.
This dissertation goes a step further and surveys most of the path planning
approaches that have offered important advances in robotic applications,
paying special attention to those which use homotopy classes since they
provide a topological description of how paths avoid obstacles with respect to
a set of obstacles and can be used to constrain the path search.

1.2 goal of the thesis

As stated earlier, the goal of this thesis is to explore the path planning ca-
pabilities in the context of a navigation and guidance system for an AUV.
Path planning is a discipline that has been widely studied. However, a small
number of algorithms have been applied to underwater robotics since most of
the missions are carried out in the open ocean or along the coast where the

4 introduction

presence of obstacles is relatively low and the common strategy to avoid them
is to keep a safe distance from the seafloor.

The purpose of the work presented in this thesis is to provide trajectories for
other types of missions, such as surveys and/or search tasks where the robot
is required to navigate at a fixed altitude in bottom-following mode while
acquiring opto-acoustic imagery. For this purpose, the robot has to navigate
in environments where high deliberative capabilities are required since the
number of obstacles and the complexity of the environment increase. This is
the case in applications like benthic habitat mapping, underwater archeology
and cable or pipe inspection. Although path planning for AUVs is naturally
formulated in 3D, under exposed conditions it can be considered that the robot
is only required to generate a 2D map parallel to the sea floor, where any
area with a slope greater than a certain threshold behaves as a 2D obstacle.
This thesis has considered this fact and the 3D formulation of the problem is
beyond its scope.

AUVs are usually designed to maximize their autonomy. Because of this,
most of these vehicles have limited computational capabilities, which are com-
monly shared with online data processing for map building and/or obstacle
avoidance purposes. For this reason, it is necessary to keep the computational
load for path planning tasks relatively low. Moreover, the applications listed be-
fore usually require the generation of safe paths from two known positions that
avoid obstacles in a specific manner, allowing the robot to navigate through
regions of interest as well as avoiding potentially dangerous zones. In this
dissertation both objectives are studied through the utilization of topological
description of paths provided by homotopy classes, and how to use them for
path planning purposes. Topological information provides information of how
paths would avoid obstacles before generating any paths at all. Furthermore,
with this information, it is possible to know in which areas of the scenario
the solution path will be generated. Thus, path planning algorithms can take
advantage of this topological description to accelerate the path generation
process. Once a path has been found, the real time guidance of the vehicle is
assumed to achieve it, conveniently merging a path following algorithm with
a simple reactive obstacle avoidance technique. This system is not within the
scope of this dissertation.

1.2.1 Objectives

After reviewing the research motivations and describing the problem, the goal
of this thesis is stated here as:

Development of path planning techniques for autonomous underwater
vehicles on sonar maps built with their onboard sensors.

The objective of this dissertation has been oriented to the autonomous nav-
igation and guidance of AUVs in this lab. The main goal is to develop a
method to automatically extract high-level topological knowledge of a given
environment by means of homotopy classes and use this information in path

1.2 goal of the thesis 5

planning algorithms. This dissertation reviews the main path planning ap-
proaches and focuses specially on those which use topological information
to constrain the path search, which are usually not taken into account by the
robotics community.

In most autonomous navigation and guidance applications, the AUV is
deployed with limited or no previous information about the environment.
Therefore, the vehicle has to be able to generate an internal representation
of the scenario where path planning is then performed. For this reason and
taking into account the previous work done in the Underwater Robotics Lab.,
it is also an objective of this thesis to develop a local map building system to
improve the dead-reckoning navigation of the vehicles in realtime in order to
increase the feasibility of the map.

Although it is necessary to specify the theoretical properties of the algorithms
proposed, it is also very important to show their applicability in real conditions.
For this reason, carrying out experiments with real data from AUVs in order
to demonstrate the achieved research advances has been a priority.

The goal of this thesis can be divided into the following more specific
objectives:

topologically constrained path planning. To study the most rel-
evant path planning approaches putting special attention into those
techniques that constrain the path search topologically using homotopy
classes. The objective is to constrain the generation of paths that avoid
obstacles in different manners, which are best suited for surveilling
purposes or to avoid certain undesirable zones.

path planning for auvs. Once the topological information of how paths
avoid obstacles between the start and goal positions is provided by
means of homotopy classes, a path planning algorithm has to generate a
feasible path to be followed by a robot. The objective is to develop several
algorithms based on different approaches since it is a subject of study to
highlight the advantages and disadvantages of each proposal in order to
specify what type of solution best fits in each context.

local map building. The applicability of our path planning method is
tested on maps generated with the AUV’s onboard sonar sensors. The
accurateness of the map depends on the localization estimation itself and
on the precision of the sensor readings. Although it is not the main goal
of this research work, different sensor models are studied and developed
in order capture all the information provided by the sensors on our
vehicles into the map.

scan matching navigation. In order to generate more feasible maps
of the navigated area where the path planning has to be performed, a
suitable scan matching technique developed for mobile robots is adapted
to work with the sonar sensors which AUVs are commonly equipped
with.

6 introduction

test and results. The evaluation of path planning methods, either in
synthetic or in real environments. The goal is to compare the proposed
algorithms and extract their strong and weak points. In this work, we put
special emphasis on real experimentation. Given an unknown scenario, it
is expected that the robot is capable of building an internal representation
of the environment, improved with scan matching techniques. The final
map is used by the AUV to generate paths according to the set of
homotopy classes that allow avoidance of obstacles in different manners.

1.3 outline of the thesis

This thesis can be divided into three different parts. The first part consists of
an state of the art about path planning techniques, paying special attention
to those methods that use homotopy classes to constrain the path search
(Chapter 2). Based on the methods studied, Chapter 3 presents a new path
planning method that uses homotopy classes to constrain the search for the
path. The method provides general rules to generate homotopy classes in any
2D workspace that can then be accomplished by path planners. The second
part of the thesis focuses on a map building approach for navigation purposes
(Chapter 4) which improves the dead-reckoning navigation of AUVs through
scan matching techniques to generate more feasible maps with an Occupancy
Grid Map (OGM) algorithm. The resultant maps are used to perform path
planning with the method developed in part one. Finally, the third part of
this dissertation (Chapter 5) details the experimental platforms which are
compounded by the Ictineu AUV and the Sparus AUV. The experimental
results with the map building and path planning approaches are shown in
Chapter 6, whereas Chapter 7 summarizes the contributions and future work.
A brief description of each chapter is presented next.

chapter 2 State of the Art. This chapter reviews the main path planning
techniques for robotic applications. Its main goal is to provide an insight
into the different techniques studied. Because of this, a description of
the main features of each approach with some representative algorithms
shown in detail is provided. The chapter starts with a description of the
graph-based search, probabilistic sampled-based algorithms and bug-
based algorithms. An insight into anytime path planning techniques is
also provided. Further, topological path planning approaches are pre-
sented, paying special attention to those techniques based on homotopy
classes. Finally, the chapter shows some path planning solutions adopted
for AUVs.

chapter 3 Path Planning with Homotopy Class Constraints. This chapter de-
scribes our proposal to generate homotopy classes whose paths can be
followed in any 2D workspace. Then, it describes a heuristic estimator
used as a lower bound criterion to set up a preference order when look-
ing for paths of the homotopy classes. The path for each homotopy class
can be generated with three different proposals; the first is a graph-based

1.3 outline of the thesis 7

search algorithm, the second exploits the capabilities of the probabilistic
random sampling, and the third focuses the search according to the
strategies of the bug-like algorithms. The theoretical properties of each
algorithm are also detailed.

chapter 4 Local Map Building. This chapter describes a map building ap-
proach to generate an internal representation of the environment where
the path planning is performed. The chapter is divided into two main
parts. The first one focuses on improving the navigation of the AUV
through a scan matching technique designed to deal with the noisy
data and motion induced distortion introduced by sonar sensors with
rotation heads. The second part of the chapter details the utilization of
the improved navigation to generate more reliable maps with an OGM
technique.

chapter 5 Experimental Platforms. This chapter introduces the Ictineu AUV
and the Sparus AUV, the two vehicles used in the experimental phase of
this research project. Details of the main sensors used for map building
and the control architecture that operates the vehicles are also provided.

chapter 6 Results. This chapter presents the experimental results of this
thesis, which are divided into four main sections. The first shows the
results obtained with the map building procedure described in Chapter 4

applied to a dataset gathered in a man-made marina environment. Then,
the capabilities of the path planners constrained with homotopy classes
proposed in Chapter 3 are shown in different synthetic environments. A
comparison of well known path planners is also included. In the third
section, the map building procedure and the path planning method are
merged into one single experiment performed with the Sparus AUV.
Finally, at the end of the chapter, the applicability of our path planning
method on a bathymetric map is shown.

chapter 7 Conclusions. This chapter concludes the thesis with a summary of
all the work done, pointing out contributions and future work. It also
comments on the research evolution and the publications accomplished
during this research project.

2
S TAT E O F T H E A RT

The work presented in this thesis concerns a system for an AUV that first
builds an internal map according to sonar sensor readings. This map is then
used to perform deliberative path planning to generate safe and feasible paths
towards a goal position. Since most of the work has been focused on the path
planner, this chapter contains a survey of different path planning techniques
that have been studied in the development of our proposal.

After an introduction that briefly describes the path planning problem in
Section 2.1, the survey explores graph search-based, probabilistic sample-based
and bug-based path planning approaches in sections 2.2, 2.3 and 2.4 respec-
tively. Then, Section 2.5 exposes anytime path planning techniques, which
assume that in real world applications, robots have a limited time in which
to operate. Section 2.6 introduces topological path planning and Section 2.7
focuses on solutions that explicitly take into account homotopy classes. Sec-
tion 2.8 reports path planning solutions for AUVs. Finally, a discussion of the
survey is given in Section 2.9.

2.1 the path planning problem

In robotics, the path planning problem consists of computing a safe path in
the workspace that can be followed by a vehicle without collisions. Computing
the path directly in the workspace is a very complex task since it requires
taking into account the specific constraints of the robot such as size, shape and
Degrees of Freedom (DoFs). Because of this, path planning is performed on
the Configuration Space (C-space), where the robot is represented as a single
reference point called configuration q. Every configuration is a vector of all the
parameters that represent the robot in the environment in a given position,
orientation, energy, etc. The dimension of the C-space is determined by the
number of parameters of the configuration.

2.1.1 Overview

The set of configurations q of a C-space Q that are free of obstacles is the free
configuration space Qfree and the configuration space obstacles Qobst groups all
the configurations occupied by obstacles in the workspace.

Qfree = Q\Qobst

Then, the path planning problem looks for a continuous mapping p in the
Qfree

9

10 state of the art

a) A4 connectivity b) A8 connectivity

Figure 1: Two discrete motion models.

p : [0, 1]→ Qfree

where [0, 1] is the parametrization interval, p(0) corresponds to the start
configuration qstart and p(1) to the goal configuration qgoal.

A path planning algorithm is said to be optimal when it computes a path
that minimizes a set of constrains such as distance, time or energy. A path
planner is also called complete when the algorithm finds a path from the start
configuration to the goal configuration when there is a solution and reports
no solution when there is not.

2.2 graph-based search path planning

The graph-based search is one of the most popular ways to perform path
planning since it is theoretically well-grounded, has been extensively studied
and has been applied in many different domains. A graph can be organized
as a grid, where the nodes, usually called cells in this configuration, and the
edges are distributed regularly. In robotics, grids are widely used to represent
environments where the robots have to perform path planning. Every cell
of the grid corresponds to a physical region of the scenario. The value of a
cell can represent, for instance, whether the cell is occupied by an obstacle or
not (see Chapter 4 for further explanation). When the C-space is represented
by a Cartesian grid, graph search algorithms commonly use an A4 or A8

connectivity discrete motion model of the robot, see Figure 1.
The Depth-First Search (DFS) and the Breadth-First Search (BFS) are two

well-known algorithms to perform graph exploration. The DFS carries out an
uninformed search based on the expansion of the first child node, which then
directs the search towards deeper nodes. When there are no more children
nodes to explore, the search backtracks, returning to the most recent node that
has not been explored and repeats the procedure until the goal is reached.
On the other hand, the BFS expands and examines all nodes of the graph
by systematically searching through every possible solution. The algorithm
performs an exhaustive search throughout the entire graph or sequence of
nodes without considering the goal until it finds it.

2.2 graph-based search path planning 11

The Wavefront algorithm (Barraquand et al., 1992), also called NF1, is a
particular implementation of the BFS that can only be applied to grid envi-
ronments. The algorithm explores the C-space from the start according to the
selected connectivity which follows a wave pattern. Once the goal is reached
by the wave, the path is computed with a gradient descent technique. The
NF1 has been applied in many situations with success. For instance, (Mínguez,
2002) uses it in a sensor-based motion system for a mobile robot to avoid
trap situations that could arise using only an obstacle avoidance algorithm.
(Parker et al., 2003) implement a dual wavefront path planner in a mobile
robot to intercept targets in an indoor environment using information from a
distributed acoustic sensor network.

Dijkstra’s algorithm (Dijkstra, 1959) is an efficient search algorithm for
finding the optimal path in a graph when no other information besides the
graph is given. Every time a node is explored, it is updated with the cost to
reach the node from the start. Once the goal is found, the least-cost solution
can be obtained with backtracking. The A* algorithm (Hart et al., 1968; Nilsson,
1982) uses a BFS to find the least-cost path from an initial node to one goal
node. It extends the Dijkstra’s algorithm by incorporating a heuristic to the cost
estimation of paths from each node of the graph to the goal.

2.2.1 Heuristic Functions Overview

Path planning algorithms often use heuristic functions in order to estimate the
path cost from a specific node to the goal before computing it. This information
is commonly used together with the cost of traversing the graph from start to
the specific node to set up a preference order when choosing the candidate
node to be explored.

A heuristic is called optimistic (or admissible) when it returns a value that is
less or equal to the cost of the shortest path from the current node to the goal.
Formally, given a heuristic function for the a node n to the goal node ngoal,
h(n,ngoal) and a function c(n,ngoal) that returns the cost of the shortest
path from n to the goal node ngoal an optimistic heuristic accomplishes:

∀n, h(n,ngoal) 6 c(n,ngoal)

In this case the heuristic search is efficient. On the other hand, using a
pessimistic heuristic, a path is also found but it takes more time than probably
required and there is the possibility of finding a suboptimal solution. A
heuristic function is also consistent (or monotonic) when the search approaches
the solution incrementally without any backtracking, which improves the
performance. Formally, for every node n and every successor of n, n ′, the
estimated cost of reaching the goal from n is no less than or equal to the step
cost of getting to n ′ plus the estimated cost of reaching the goal from n ′:

∀n, h(n,ngoal) 6 c(n,n ′) + h(n ′,ngoal)

12 state of the art

and

h(ngoal,ngoal) = 0

2.2.2 The A* algorithm

As stated before, the A* extends the Dijkstra’s algorithm by incorporating a
heuristic to the cost estimation of paths from each node of the graph to the
goal. Each node is ordered according to the sum of its current path cost from
the start and a heuristic estimation of its path cost to the goal. The node with
the minimum value is evaluated first, since it is the most promising to belong
to an optimal path from the start node to the goal node. When applied to path
planning, the algorithm uses an optimistic heuristic to ensure that the shortest
path is found. Usually, the heuristic function is also consistent to improve
the search by ignoring those nodes already explored. However, some recent
research (Zhang et al., 2009) points out that using inconsistent heuristics can
improve the performance of A* and similar algorithms.

During the computation of the path, the A* generates a search tree which
has no cycles. In a bounded world, the number of nodes is limited, which
means the number of acyclic paths that can be generated is bounded. In the
worst possible case, the A* has to explore all the possible acyclic paths to find
the solution, which means the algorithm will always finish. Therefore, the A*
is complete.

The A* is written in pseudocode in Algorithm 1. The nodes of the algorithm
are configurations of the robot q and processed according to their position in
the OPEN priority queue. Each node in this queue is ordered according to the
sum of its current path cost from the start, g(n), and a heuristic estimation of
its path cost to the goal, h(n,ngoal). The node with the smallest sum is at the
top of the priority queue. Assuming that the heuristic function is consistent,
once a node is processed, it is added to the CLOSED set.

The algorithm receives as input the start configuration qstart and the goal
configuration qgoal, which, inside the algorithm, are equivalent to start and
goal nodes (nstart and ngoal) respectively. It starts by adding nstart into the
OPEN queue. While node n with the minimum g(n) +h(n,ngoal) is different
from the cost to reach the goal node g(ngoal), the algorithm pops n to the top
of the queue and puts it in the CLOSED set. For all the nodes n ′ reachable
from n that are not in the CLOSED set, the algorithm checks whether they
are in the OPEN queue or not. If not, n ′ is added to the priority queue with a
priority g(n ′) plus the heuristic h(n ′,qgoal) (line 12). If it is, and the cost g(n)
plus the cost of traversing from n to n ′, c(n,n ′) is less than its current cost
(line 13), g(n ′) is set to this new lower value. This process is repeated until the
ngoal is found or OPEN has no more nodes to be expanded.

Figure 2 depicts an example of an A* execution in a grid cell environment
using A4 connectivity and Manhattan distance as a heuristic estimator. The
neighbor cells are explored clockwise starting with the upper neighbor. Black
cells represent obstacles and cannot be traversed. The numbers on each cell
represent their priority value in the OPEN queue, which is the sum of the

2.2 graph-based search path planning 13

Algorithm 1 The A* algorithm
A∗(qstart,qgoal)

1: nstart ← qstart; ngoal ← qgoal
2: g(nstart)← 0; g(ngoal)←∞
3: OPEN← ∅; CLOSED← ∅
4: OPEN.push(qstart)
5: while minn∈OPEN(g(n) + h(n,ngoal)) 6= g(ngoal)) do
6: n← OPEN.top()
7: OPEN.pop()
8: CLOSED← CLOSED∪n
9: for all n ′ ∈ Succ(n)\n ′ /∈ CLOSED do

10: if n ′ /∈ OPEN then
11: g(n ′)← g(n) + c(n,n ′)
12: OPEN.push(n ′) with g(n ′) + h(n ′,ngoal)
13: else if g(n ′) > g(n) + c(n,n ′) then
14: g(n ′)← g(n) + c(n,n ′)
15: end if
16: end for
17: end while
18: if minn∈OPEN(g(n) + h(n,ngoal)) = g(ngoal)) then
19: publish solution
20: end if

cost to reach the cell from the start node and its heuristic value toward
the goal. Black dots represent nodes already considered. Those nodes with
priority values that do not have a dot depicted are stored in the OPEN queue.
Figures 2.a,b,c depict different moments during the execution. Figure 2.d
shows the final path obtained with backtracking from the goal to the start.

2.2.3 Replanning Algorithms

In real world applications, robots do not have complete knowledge of the
environment and usually carry onboard sensors that provide updated infor-
mation while navigating. Therefore, the graph that models the environment
may change as new information arrives, which can make a computed solution
suboptimal or unreachable.

In order to avoid recomputing the solution from scratch, the D* (Stentz,
1995) and D* Lite (Koening and Lickhachev, 2002) algorithms extend the A*
by taking into account the changes in the environment in order to update
the computed solution. In robot path planning, these algorithms are used in
grids to compute discrete paths which are unnatural and constrain the robot’s
movement. (Ferguson and Stentz, 2005) propose the Field D* algorithm to
generate a smooth solution which not only uses the center of the cells for
generating the paths, but the edges as well. The E* algorithm, developed by
(Philippsen and Siegwart, 2005), computes continuous cost paths by using a
Fast Marching (FM) method (Sethian, 1996), which generates a set of continu-
ous propagation curves from the start that are traversed by a gradient descent
method. (Dolgov et al., 2010) propose the Hybrid-state A* to perform path

14 state of the art

1+70+8

a b c d e f

0
startq

1+7
1

2

startq

2

3

}1,0{ abOPEN =
goalq

}1,0{ abOPEN =

1+70+8

a b c d e f

0
q

2+6 8+2

8+4

7+3

2+61+7

0

1

2

startq

3+5 4+4 5+3 6+2

2+6 8+27+3

2

3
goalq

}1,2{ deOPEN =

a) b)

1+70+8

a b c d e f

0
q

2+6 8+2 9+1

9+3 10+28+4

7+3

2+61+7

0

1

2

startq

3+5 4+4 5+3 6+2 10+0

2+6 8+2 9+17+3

2

3
goalq

}1,1,1{ fedOPEN =
goalq

1+70+8

a b c d e f

0
q

2+6 8+2 9+1

9+3 10+28+4

7+3

2+61+7

0

1

2

startq

3+5 4+4 5+3 6+2 10+0

2+6 8+2 9+17+3

2

3
goalq

}1,1,1{ fedOPEN =

c) d)

Figure 2: A* execution example. a), b) and c) depict the environment exploration
at three different moments. d) Shows the shortest path computed with
backtracking from the goal once it has been found.

2.3 probabilistic sample-based path planning 15

a) A* b) Field-D c) Hybrid-A*

Figure 3: Graphical comparison of graph-based search algorithms. A* (A8 connectiv-
ity) only assumes the cost of the centre of the discrete cells. Field-D associates
costs with cell corners and allows linear paths between cells. Hybrid-A*
associates a continuous state with each cell. Image extracted from (Dolgov
et al., 2010).

planning for autonomous vehicles in unknown semi-structured environments
represented by grid cells. Essentially, it is an extension of the A*, similar to
the Field D*, that expands every state with several continuous steering actions
computed by a kinematic model. Although its global optimality is not ensured,
the algorithm generates continuous paths that can be achieved by the vehicles.
Figure 3 depicts a graphical comparison of the solutions obtained with the A*,
Field D* and Hybrid A* algorithms.

2.3 probabilistic sample-based path planning

Probabilistic sampling-based path planners include multiple-query and single-
query methods. Both strategies generate samples of the free space which
connect the start to the goal by means of a graph or a tree data structure. Every
sample is a node that represents a configuration of the robot. These nodes are
connected with edges which represent free paths through which the robot can
navigate.

Probabilistic RoadMap (PRM) methods (Kavraki et al., 1996; Svestka and
Overmars, 1998) were originally presented as multiple-query planners: the
goal was to create a roadmap that captures the connectivity of the free space
and then answer multiple user-defined queries very quickly. Although the
connectivity of the free space is usually performed before any path planning
query, both phases can be done at the same time.

On the other hand, single-query path planners attempt to solve a query as
fast as possible and do not focus on the exploration of the entire free space.
The Expansive-Space Tree (EST) (Hsu, 2000; Hsu et al., 2002) and the Rapidly-
exploring Random Tree (RRT) (LaValle, 2006) build a tree rooted at qstart
that grows towards qgoal. The EST generates new samples in the free space
around a configuration selected in a low density sampled area, whereas the
RRT attempts to expand the sampling into the regions of the free space away
from the tree. In both algorithms, the growing of the tree is highly dependant

16 state of the art

on the sampling method. For geometric problems, it is possible to bias the
configuration sampling by using a bi-directional strategy, which is maintaining
two trees, rooted at qstart and qgoal respectively, and making them grow
toward each other until they are merged into a single one. Another single-
query path planner is the Single-query Bi-directional Lazy collision-checking
(SBL) (Sanchez and Latombe, 2002), a bi-directional EST that improves the
performance of the original bi-directional EST by using a lazy evaluation in
the node connection strategy which performs the collision checking between
nodes only when it is absolutely necessary.

2.3.1 The Rapidly-exploring Random Tree Approach

The RRT (LaValle, 2006) has become the most popular single-query planner. It
has been shown to be effective for solving path planning tasks in many kinds
of problems (Kim and Ostrowski, 2003; Alcázar et al., 2011), even with a lot of
DoFs (Kuffner and LaValle, 2000; Yang and Sacks, 2006). Algorithm 2 shows
the pseudocode of the RRT. It begins with the initial robot configuration qstart
as the root node and incrementally grows a tree T until the goal configuration
qgoal is reached. To grow the tree, first a target configuration qrand is ran-
domly selected from the C-space using the function RandomConfiguration.
Then, a NearestNeighbor (line 2) function selects the node qnearest in the
tree closest to qrand. Finally, a new node qnew is created by growing the tree
some distance from qnearest towards qrand. If extending the tree towards
qrand requires growing through an obstacle, no extension occurs. This process
is repeated until the tree grows to within some distThreshold from the goal
(line 7). Figure 4 depicts this process and Figure 5.a depicts an RRT in a simple
scenario. A property that follows from this method of construction is that
the tree growth is strongly biased towards unexplored areas of the C-space.
Consequently, exploration occurs very quickly.

Algorithm 2 Rapidly-exploring Random Tree
Extend(T ,qgoal)

1: qrand ← RandomConfiguration()

2: qnearest ← NearestNeighbor(T ,qrand)
3: qnew ← ComputeQNew(qnearest,qrand)
4: T .Add(qnew)
5: return qnew

RRT(qstart,qgoal)
5: qnew ← qstart
6: T .Add(qnew)
7: while Distance(qnew,qgoal) > distThreshold do
8: qnew ← Extend(T ,qgoal)
9: end while

Although RRTs offer very good performance, it is a common practice to use a
biased sampling towards the goal which makes a certain percentage of random
samples coincident with the goal, making the tree expand in that direction

2.3 probabilistic sample-based path planning 17

randq

startq

nearestq

newq

Figure 4: The RRT uses the qstart as the root node of a tree until the goal configuration
qgoal is reached. At each step, a configuration qrand is selected using a
random sampling distribution. Then, the nearest node in the tree to qrand
is labeled as qnearest. Finally, a new node qnew is added to the tree at a
certain distance from qnearest towards qrand.

(Frazzoli et al., 2000; Hsu et al., 2003; Kuwata et al., 2008) (see Figure 5.b).
(Branicky et al., 2001; Lacevic and Rocco, 2010; Thomas and Iser, 2010) improve
the original RRT by using a quasi-random sampling distribution such as a
Halton sequence or a Hammersley sequence since they offer lower discrepancy1

than random distributions, which means that the samples perform a coverage
of the space more uniformly.

There are other strategies to improve RRTs. For instance, (Kuwata et al., 2008;
Borrajo and Veloso, 2012) incorporate a heuristic estimator in the building
tree process in order to obtain better solutions at the expense of reducing the
performance. As stated before, it is possible to use a bi-directional strategy
(Kuffner and LaValle, 2000) which generates two trees, one from the start
and other from the goal. Both explore the respective space around them and
advance towards each other by using a simple greedy heuristic. The path is
found when both trees are merged after a collision between them is detected.
(Ferguson et al., 2006) present a replanning algorithm for repairing RRTs when
changes are made on the C-space. In such a situation, those parts of the search
tree that become invalid are pruned and the remaining tree is then grown to
the goal configuration again.

Sampling-based path planners are probabilistically complete (LaValle, 2001),
because the probability of finding a solution increases as more samples are
used. However, in practical situations, these methods may not find a solution
in a finite time. A narrow passage is a typical problem where sampling-based
path planners can get stuck. In this situation, a common practice is to fix the
number of times the tree can be expanded. If then no solution has been found,
it is assumed the goal is not reachable.

Although many authors incorporate kinematic and dynamic constraints in
the C-space (Kuwata et al., 2008; Shkolnik et al., 2009) to generate feasible
paths and trajectories for real robots, sampling-based path planners do not
compute optimal solutions. Thus, a common practice is to post-process the
path in order to improve the solution (Kuffner and LaValle, 2000; Thomas

1 Discrepancy: A measure of how uniformly points are distributed over the space.

18 state of the art

q
start

q
goal

q
start

q
goal

a) RRT b) Goal-biased RRT

Figure 5: Example of an RRT execution in a simple environment: a) Exploration tree
with no biased sampling; b) Exploration tree making 5% of the samples
coincident with the goal.

goalq

startq

Figure 6: Improving a sampled-based path with the greedy approach.

and Iser, 2010). For instance, a greedy approach starts by trying to connect
qstart directly with qgoal. If this step fails, it starts from the configuration
after qstart and tries again. This process is repeated until a configuration q can
be connected to qgoal. Next, the target is set to q and the process begins again.
Figure 6 illustrates this process, which can also be applied backwards. Notice
that using postprocessing steps to improve the path can impose a significant
overhead on the absolute computation time of the path.

2.4 bug-based path planning

Bug-based algorithms were one of the first planners developed. Although
they are reactive algorithms designed for online robot navigation that can be
applied to robots with low computational capabilities, it is possible to use

2.4 bug-based path planning 19

goalq

lq q q
2
O

1
O

q

1
lq

2
hq

2
lq

startq

1
hq

Figure 7: An example of the execution of the Bug1 algorithm in a simple scenario.

them to perform deliberative path planning on a C-space, which is the main
goal of this dissertation.

Bug-based path planners assume the robot is a point with a contact sensor
or a zero-range sensor to detect obstacles. Essentially, the Bug-like algorithms
are compounded of two different behaviors: go straight and follow the obstacle
boundary. Bug1 and Bug2 (Lumelsky and Stepanov, 1987) are two well known
path planners that have been used in many applications (Chien and Xue, 1992;
Sarid et al., 2007; Mastrogiovanni et al., 2009; Zhu et al., 2010). These path
planning algorithms try to go from the start configuration qstart to the goal
configuration qgoal in a straight line until they find an obstacle. In such case,
they surround the boundary of the obstacle until a condition is satisfied.

The Bug1 represents the most basic idea when looking for the goal while
surrounding obstacles. The algorithm tries to follow an imaginary line, called
the m-line, which connects the qstart with the qgoal until an obstacle is found.
The contact point with the obstacle is marked as a hit point qh. Then, the robot
completely surrounds the obstacle reaching the qh again, which allows the
computation of the leave point ql. That is the closest point of the obstacle’s
boundary coinciding with the new m-line which goes from ql to qgoal and
does not intersect with the surrounded obstacle. Next, the robot has to reach
the leave point in order to leave the obstacle. This procedure is repeated until
qgoal is reached. Figure 7 depicts an example of the generated path in a simple
scenario.

In a worst case scenario, the robot has to navigate half of the perimeter of the
current ith obstacle pi. Assuming this situation can arise for all the n obstacles
of the environment encountered, the upper bound of a Bug1 is defined as

UBBug1 6 dist(qstart,qgoal) + 1.5
n∑
i=1

pi (2.1)

where dist(qstart,qgoal) is de distance between the qstart and qgoal.
The Bug2 algorithm tries to improve the Bug1 by fixing the m-line from

qstart to qgoal at the beginning. The robot starts by following the m-line
until the first hit point qh1 is reached. Then, the boundary following behavior
surrounds the obstacle until it reaches a point in the m-line which is closer

20 state of the art

goalq

2
lq

2
O

1
O

1
hq

1
lq

2
hq

startq

1
hq

Figure 8: Example of execution of Bug2 algorithm in a simple scenario.

startq

q

2
hq

q

1
lq

1
hq

goalq2
lq

1
O

Figure 9: Bug2 path in a scenario with a complex obstacle.

to the goal than the previous hit point, thus becoming the first leave point ql1 .
The same process is repeated until qgoal is found. Figure 8 depicts a path
generated by the Bug2 algorithm. Note that the direction to circumnavigate the
obstacles can be fixed at the beginning of the execution or chosen randomly.

Although the Bug2 algorithm is designed to avoid the complete circumnavi-
gation of the obstacle, depending on the obstacle’s shape, this is not always
the case. Figure 9 shows the path generated by the Bug2 algorithm in a sce-
nario with a complex obstacle. The Bug2 m-line intersects with O1 obstacle
several times. Assuming that the circumnavigation direction does not change
for the whole obstacle, the algorithm generates a longer solution than the one
computed with the Bug1.

Formally, the ith obstacle is intersected by the m-line ni times, which means
there are ni leave points. However, half of these points are not valid since they
lie on the side of the obstacle that moving towards the goal would generate
a collision. As reported in (Choset et al., 2005), in the worst case, the robot

2.4 bug-based path planning 21

1
c

c
1
c

2
c

c

8
c

1
O

3
O

x
3
c

4
c

5
c

6
c

7
c

x

5
c

6
c

2
O

Figure 10: Interval of continuities found by the range sensor at a fixed position.

would traverse nearly the entire perimeter of the obstacle for each leave point.
Therefore, the upper bound of the algorithm is

UBBug2 6 dist(qstart,qgoal) + 0.5
n∑
i=1

nipi (2.2)

In order to improve the Bug2 algorithm, (Kamon et al., 1998) developed the
Tangent Bug. This algorithm supposes the robot has a finite range sensor used
to detect the obstacles in the workspace. It is assumed that the sensor is able
to detect the continuous boundary of the obstacles within its range, which
are called intervals of continuity. As depicted in Figure 10, every time that a
discontinuity appears in the boundaries gathered by the sensor, an endpoint
ci tangent to the obstacle arises.

Figure 11 depicts an execution of the Tangent Bug. Like the other Bug
algorithms, the robot initially goes in a straight line towards the goal until hit
point qh1 , where it senses the first obstacle O1 in the goal direction. At that
point, an interval of continuity limited by two endpoints C = {c1, c2} is created.
Notice that the interval of continuity intersects with the segment between
the robot and the goal. Then the robot moves to the right since c2 minimizes
a heuristic distance such as dist(x, ci) + dist(ci,qgoal), where x represents
the robot’s position. At ql1 the updated interval of continuity C = {c1 ′ , c2 ′}
no longer intersects with the line from the robot to the goal, therefore, the
robot moves towards the goal following a straight line. At qh2 obstacle O2 is
detected and the robot moves to the left since the heuristics decreases until
qm2

, where point m2 that minimizes the heuristic distance is located. At this
point, the algorithm follows the boundary of the obstacle until its next leave
point ql2 , which is set when the distance from c3 ′′ to qgoal is smaller than

22 state of the art

2
lq

c

goalq
2
O

2
m

mq

'3
c

''3
c

''4
c

q

2
hq1

O

2
m

2
mq

1
c

2
c

'1
c

'2
c

3
c

4
c

'4
c

startq

1
hq

1
lq

Figure 11: A Tangent Bug algorithm execution.

1
lq

1
O

goalq

1
O

1
hq

startq

1
O

goalq

1
O

1
hq

1
lq

startq

a) Bug1 algorithm execution b) Bug2 algorithm execution

Figure 12: Completeness of Bug1 and Bug2 algorithms.

the distance between m2 and qgoal. Finally, the robot moves straight towards
qgoal.

Bug algorithms are complete regardless of the strategy followed because
they find a path from the start to the goal when there is a solution, and report
when there is not. For instance, Bug1 reports that there is no solution after
the robot reaches the leave point and intersects with an obstacle when trying
to navigate towards the goal (Figure 12.a). On the other hand, Bug2 reports
that there is no solution when it circumnavigates the entire obstacle, which
means that a leave point has not been found (Figure 12.b). The Tangent Bug
also navigates through the whole obstacle perimeter before reporting there is
no solution.

There are many recent Bug algorithms that try to improve the performance
or the quality of the solution or both (Ng and Braunl, 2007). For instance,
(Lumelsky and Skewis, 1990) propose an improvement of the Bug2 incorpo-
rating range sensor information. The algorithm, called VisBug, enhances the

2.5 anytime path planning 23

condition that the robot uses to stop surrounding an obstacle and resumes the
movement to the goal, which results in short cuts in the path. A similar idea
is used with the DistBug (Kamon and Rivlin, 1997), which proposes another
alteration in the leaving condition that allows the robot to abandon obstacle
boundaries as soon as global convergence is guaranteed. The K-Bug (Langer
et al., 2007) changes the paradigm of contouring all the obstacles towards the
goal to the idea of contouring only the essential ones to reach the destiny
point. (Antich and Ortiz, 2009) propose the Bug2+, an improved version of the
Bug2 algorithm, which only takes into account the valid leave points when the
m-line intersects a number of times with the same obstacle. However, to the
best of the author’s knowledge, none of the Bug-based algorithms are optimal
since following the boundary of the obstacles encountered does not generate
the shortest path to the goal.

2.5 anytime path planning

In real world applications, robots have to perform path planning in a limited
amount of time with the computers they carry onboard. Algorithms that look
for the optimal solution are not usually feasible due to their computation time.
Instead, the path planner has to find the best solution within a limited time.
Therefore, anytime path planners (Ferguson et al., 2005; Likhachev et al., 2008)
are the most suitable as they find a first solution, possibly highly suboptimal,
very quickly and then refine it until time runs out.

Most of the anytime path planning literature is about deterministic ap-
proaches. They all share the strategy of using a multiplication factor to inflate
the heuristics (Likhachev et al., 2004), which is usually referred to as weighted
heuristic search. As a result, the nodes of the C-space to be explored first are
those which are closer to the goal (Ferguson and Stentz, 2007), generating
solutions very quickly at expense of their quality. On the other hand, there are
also some probabilistic anytime proposals, the vast majority of them based on
RRTs (Ferguson and Stentz, 2006). These algorithms generate an initial RRT
solution and, within the time allotted, a new RRT that improves the previous
one is computed. Essentially, this new solution is generated by an enhanced
sampling strategy and using a heuristics that only lets the tree expand into
those areas of the C-space that would possibly improve the solution. Further
details on deterministic and probabilistic anytime approaches are given in the
next sections.

Although it is not common, there is also an anytime approach inspired by
bug algorithms (Antich et al., 2009). This algorithm assumes that the scenario
is known. Every time the path that follows the m-line hits an obstacle, an
improved version of the Bug2 computes left and right boundaries of the
obstacle until the m-line is reached again. Each hit point of the path with the
obstacles is stored in the nodes of a binary search tree which is explored using
the A* algorithm with an inflated heuristic to speed up the path search. Once
computed, the path is post processed in order to obtain the optimal solution
while maintaining the manner in which the path avoids the obstacles.

24 state of the art

2.5.1 The Deterministic Anytime Approach

As stated before, most of the deterministic anytime path planning algorithms
use a weighted heuristic search to speed up the path search (Ferguson and
Stentz, 2007). The weight value ε (ε > 1) is a multiplication factor used to
control the cost of the generated solution. Some algorithms compute different
solutions using the same ε (Hansen et al., 1997; Zhou and Hansen, 2002;
Hansen and Zhou, 2007). Other approaches use a decrement factor in order
to decrease the ε value at each iteration until ε = 1, if the time does not
expire before (Likhachev et al., 2005). For instance, the Anytime Repairing A*
(ARA*) proposed by (Likhachev et al., 2004) is a reference within the class of
deterministic/heuristic based anytime path planners. It inflates the heuristic
function using the ε value to guide the search towards those states closer to
the solution whose final cost is ensured not to be more than ε times the cost of
the optimal path (Pearl, 1984).

Algorithm 3 shows a simplified version of the ARA*. This algorithm starts by
doing an A* search (line 24) with an inflation factor ε expanding each node just
once. As in the A*, the nodes in OPEN are processed according to their priority,
which in this case is the sum of its cost g(n) and its inflated heuristic value
ε · h(n,ngoal). CLOSED contains the nodes already expanded in the current
search. Once expanded, if a node becomes inconsistent during the search
(g(n) 6= minn ′∈Pred(n)(g(n

′) + c(n ′,n))) due to a cost change associated
with a neighboring node, it is inserted into the INCONS list (line 14), which
contains all inconsistent nodes already expanded. When the current path search
is finished, the nodes in the INCONS list are moved into the OPEN queue
with the priorities updated according to the new inflation factor (lines 28– 29)
which is going to be used in the next search.

Figure 13 shows three consecutive iterations of an ARA* execution in a
simple grid scenario. In this example, an A8 connectivity grid is used with
black cells representing obstacles. The cost of moving from one cell to its
neighbor is one. The heuristic is the largest of the x and y distances from
the cell to the goal. Expanded cells are shown in grey and those which are
inconsistent at the end of each iteration are shown with an asterisk. The initial
solution is computed with an inflation factor of 2.5 expanding 13 cells. The
next iteration computes the solution using ε = 1.5 and requires only one cell to
be expand. Finally, the third iteration generates the path using ε = 1.5 which
computes the optimal solution by expanding 9 cells. The total number of cells
expanded in this example are 22.

Although at each iteration the solution is intended to be improved by
decreasing ε, the generation of a new/better path is not ensured (the same
path as in the previous iteration of the algorithm can be obtained), which
means a waste of computation time in a critical context where the time to
perform the path planning is very limited. The algorithm also proposes the
reutilization of the inconsistent states between iterations, updating only the
heuristic values of these states with the new inflation factor, which can only be
used if the current path search passes through the previously visited states.

2.5 anytime path planning 25

Algorithm 3 The Anytime Repairing A*
Key(n)

1: return g(n) + ε · h(n,ngoal)

ImprovePath()

2: while minn∈OPEN(Key(n)) < Key(ngoal) do
3: n← OPEN.top(); OPEN.pop()
4: CLOSED← CLOSED∪n
5: for all n ′ ∈ Succ(n) do
6: if n ′ was not visited then
7: g(n ′)←∞
8: end if
9: if g(n ′) > g(n) + c(n,n ′) then

10: g(n ′)← g(n) + c(n,n ′)
11: if n ′ ∈ CLOSED then
12: OPEN.push(n ′) with Key(n ′)
13: else
14: INCOS← INCONS∪n ′
15: end if
16: end if
17: end for
18: end while

ARA∗(qstart,qgoal)
19: OPEN← ∅; CLOSED← ∅; INCONS← ∅
20: nstart ← qstart; ngoal ← qgoal
21: g(nstart)← 0; g(ngoal)←∞
22: OPEN.push(nstart)
23: repeat
24: ImprovePath()

25: publish solution
26: decrease ε
27: if ε > 1 then
28: OPEN← INCONS; INCONS← ∅
29: ∀n ∈ OPEN update priorities with Key(n)
30: CLOSED← ∅
31: end if
32: until ε > 1

* *s

*

* *

* *s

g

* *

*

g

*s

*

* *

*s

g

* *

*

*s

* *

g

a) ε = 2.5 b) ε = 1.5 c) ε = 1

Figure 13: An ARA* search. Images extracted from (Likhachev et al., 2004)

26 state of the art

Otherwise, no reutilization can be done, which means that in some scenarios
the total number of states explored during the execution can be larger than
using the standard A*. Generally, ε and the decrement factor values are critical
depending on the complexity of the scenario. However, authors do not provide
a general rule to set them, hence the setting of these parameters strongly
depends on the expertise of the user.

There are anytime approaches that instead of increasing the weight of the
heuristics, select a number of the most promising nodes during the search for
further expansion while the remaining nodes are pruned (Zhou and Hansen,
2005; Furcy, 2006; Aine et al., 2007). Other algorithms, such as Anytime Dy-
namic A* (AD*) (Likhachev et al., 2005) combine anytime performance with
replanning capabilities.

2.5.2 The Probabilistic Anytime Approach

There are some probabilistic anytime path planners. For instance, (Belghith
et al., 2006) is based on the PRM approach. This algorithm applies the AD*
to the PRMs generated with an improved sample strategy. However, most of
these approaches are based on RRTs since they offer very good performance.
The Anytime-RRT (ARRT) developed by (Ferguson and Stentz, 2006) is a well-
known anytime sampling-based planner that works by generating a series of
RRTs where each new tree reuses the cost information from the previous tree
to control its growth and thus improve the quality of the resultant path. Unlike
the ARA*, the ARRT scarcely reutilizes data between iterations at all because
each new tree is almost built from scratch.

Algorithm 4 shows a simplified version of the ARRT. Essentially, the al-
gorithm computes a set of solutions based on RRTs while the time does not
expire. Like the RRT, each solution is obtained by expanding a tree T (with the
function ExpandRRT) until the tree grows to within some distThreshold. At
each iteration, the cost of the tree is ensured to be less than or equal to (1− εf)

times the previous cost of the tree, where εf ∈ [0..1) is a fixed improvement
factor (line 27),

The extension of the tree starts with function ComputeQRand which gener-
ates a sample qrand. This function improves the sampling process by introduc-
ing a bias towards the goal (line 1) and constraining it into those areas of the
C-space where the heuristics from qstart to qgoal through qrand are lower
than an upper bound (line 6). Then, the kNearestNeigbor function computes
the k nearest nodes in tree T to the sample qrand and sorts them according
to their cost in order to obtain the cheaper solutions (Urmson and Simmons,
2003). Next, the first qnear node from Qnear is selected to compute a set of
extensions (line 11). The one with the lowest cost is chosen as the qnew. If the
cost of the tree from qstart to qnew through the selected qnear (line 13) is
lower than the upper bound (line 14), the extension of the tree is performed
and the function returns. Otherwise, the process is repeated for the next qnear.
Figure 14 depicts a simple example of an execution.

2.5 anytime path planning 27

Algorithm 4 The Anytime RRT
ComputeQRand(qgoal)

1: if RandomReal([0.0, 1.0]) < probThreshold then
2: return qgoal
3: end if
4: repeat
5: qrand ← RandomConfiguration()

6: until h(qstart,qnew) + h(qnew,qgoal) 6 T .cs
7: return qrand

ExtendRRT(T ,qgoal)
8: qrand ← ComputeQRand()

9: Qnear ← kNearestNeighbor(T ,qrand, k)
10: for all qnear ∈ Qnear do
11: Qext ← GenerateExtension(qnear,qrand)
12: qnew ← argminq∈Qextc(qnear,q)
13: T .cnew ← c(qstart,qnear) + c(qnear,qnew)
14: if T .cnew + h(qnew,qgoal) < T .cs then
15: T .add(qnew)
16: return {qnew, T .cnew}
17: end if
18: end for

ARRT(qstart,qgoal)
19: while there is time do
20: T ← ∅; T .cnew ←∞
21: qnew ← qstart
22: T .Add(qnew)
23: while Distance(qnew,qgoal) > distThreshold do
24: {qnew, T .cnew}← ExtendRRT(T ,qgoal)
25: end while
26: publish solution
27: T .cs ← (1− εf) · T .cnew
28: end while

gg

s

g

s

g

s

a) Initial RRT solution b) k-iteration c) Final solution

Figure 14: An ARRT example.

28 state of the art

The Anytime Dynamic RRT (ADRRT) (Ferguson and Stentz, 2007) improves
the ARRT by adding repairing capabilities. This algorithm generates a solution
that is continually improved while the time does not expire, as ARRT does,
and, at the same time, repairs the solution when changes that invalidate it
are detected in the C-space. Some other proposals, like (Abbasi-Yadkori et al.,
2010; Karaman et al., 2011), improve the ARRT with RRT-based algorithms
that apart from generating initial solutions very quickly and improving them
continuously while there is time, they also compute final solutions close to the
optimal.

2.6 topological path planning

Topological approaches are another way to tackle the path planning problem.
This kind of solution works with an abstraction of the C-space, a topological-
based map usually represented by a graph. These graphs represent the struc-
ture of the free space in the C-space in terms of the basic topological notions of
connectivity and adjacency (Fabrizi and Saffiotti, 2000), which represents the
environment with a reduced number of potential states (Dudek et al., 1991).

Topological-based maps are quite robust with respect to sensor noise and
small environmental changes. Moreover, graph representation yields the pos-
sibility of exploring them with graph-search algorithms. Visibility maps
(Latombe, 1991) is a well-known topological-based technique widely used
in robotics. The simplest visibility map, called visibility graph, consists of a set
of nodes in the free C-space that are within the line of sight of at least one
node of the visibility graph. Although it has been generalized to be used with
curved obstacles (Liu and Arimoto, 1992), the original version was intended
to work in polygonal C-spaces, where each edge of the obstacles is a node in
the graph. Assuming that the start and goal configurations are also nodes in
the graph, the visibility graph is built by trying to connect each node with
all the other nodes with a straight line. The connection is performed only
when the line does not intersect with an obstacle. Once the graph is generated,
it is traversed with a graph-based search algorithm to compute the shortest
path according to the graph (Hans and Rohnert, 1986). Figure 15.a depicts an
example.

In order to improve the search in the shortest-path problem, it is a common
practice to work with a reduced visibility graph which performs the connection
between two nodes only when the line that connects them is tangent to the
two obstacles they belong to (see Figure 15.b).

Using the Voronoi diagram to perform topological path planning is another
technique widely extended (Takahashi and Schilling, 1989; Acar et al., 2006).
Essentially, the Voronoi diagram is defined for a set of points called sites (Auren-
hammer, 1991). Then, the Voronoi diagram is a set of points equidistant to the
two closest sites at the same time. Figure 16 depicts an example of a Voronoi
diagram for a low number of sites. When applied to path planning, the sites
are the centre of the obstacles to be avoided and the edges of the diagram
define the possible channels that maximize the distance to the obstacles. When

2.7 homotopy classes 29

startq

goalq

startq

goalq

a) Visibility grah b) Reduced visibility graph

Figure 15: Example of computing the shortest path using a visibility graph.

applied to motion planning, it is a common practice to use the Generalized
Voronoi Diagram (GVD) since it assumes than obstacles are more complex
than single points, allowing the computation of a diagram which is closer to
reality (Bhattacharya and Gavrilova, 2007). Nevertheless, both options allow
the computation of safe paths according to the distance to obstacles.

Another way to perform path planning with topological information is by
means of homotopy classes, which are detailed in the following section.

2.7 homotopy classes

Homotopy is a topological concept related with path deformation with respect
to a set of obstacles (Munkres, 1974; Seifert et al., 1980). A homotopy class is the
set of all possible trajectories from a start to an end point that avoid obstacles
in the same manner. Given two paths, they are said to be homotopic if one
can be deformed into the other without encroaching any obstacle. Figure 17.a
shows an example where p1 and p2 are homotopic and hence, belong to the
same homotopy class. Figure 17.b depicts two paths that do not belong to the
same homotopy class since they encroach on O1 when p1 is deformed to be
coincident with p2.

Path homotopy is an equivalence relation, which means that it is possible
to identify a homotopy class by giving a representative path, whatever the
definition chosen to represent a path is. It is common practice to use the
canonical representation to describe a homotopy class since it is the simplest
representation of a class without changing its topology. Moreover, two paths
belong the same homotopy class if they have the same canonical sequence
(Cabello et al., 2002).

The homotopy concept has applications in many different areas such as VLSI
routing (Leiserson and Maley, 1985; Gao et al., 1988; Yang, 1997) or image anal-
ysis (Kalitzin et al., 2001). In robotics, homotopy classes are intrinsically taken
into account; for instance, into the map discovering problem with multiple
vehicles (Williams et al., 2002), for surveillance purposes (Tang and Ozguner,
2005) or for locally optimal navigation in unknown scenarios (Tovar et al.,

30 state of the art

0.9

1

0.7

0.8

0.9

goalq

0.4

0.5

0.6

0.1

0.2

0.3

q

0 0.2 0.4 0.6 0.8 1
0

0.1

startq

Figure 16: Computing the shortest path using a Voronoi diagram in a scenario with
12 sites.

g

1
p

2
p

2
O

1
p

1
O

s

g

1
p

2
p

2
O

1
O

s

a) p1 and p2 are homotopic b) p1 and p2 are not homotopic

Figure 17: Example of homotopic paths.

2.7 homotopy classes 31

2007). Focusing on path planning, (Antich et al., 2009) use homotopy classes to
classify all the different paths that can be generated for a scenario to ensure that
their topology is not affected after an optimization process. Along the same
line, (Laumond et al., 1994) use homotopy classes to maintain the topology
when optimizing trajectories for a non-holonomic mobile robot. (Asama et al.,
1991; Bourgault et al., 2002) address the motion planning for multiple vehicles
keeping communication between them, which means that the vehicles are
constrained to certain homotopy classes. (Fenwick and Estivill-Castro, 2005)
compute the optimal paths in the mutually visible path problem assuming
that agents are represented by points which move and pause along the paths
to achieve the goal.

In this dissertation the application of homotopy classes from the path plan-
ning point of view is studied, since they provide topological information
about how paths are generated with respect to a set of obstacles. The follow-
ing sections present an overview of the most relevant contributions related
with homotopy classes that can be applied to path planning. The aim of this
overview is not to be an exhaustive enumeration of all the publications, but
a description detailed enough to provide an insight into understanding the
proposals which have been grouped according to the problem they try to solve.

2.7.1 The Shortest Homotopic Path Problem

This section describes proposals that address the computation of the shortest
path when the homotopy is already specified, usually with an input path or
with a constrained area through which the path has to go. This is a computa-
tional geometry problem that has direct application to VLSI, network routing,
gaming or path optimization.

2.7.1.1 Triangulated environments

(Chazelle, 1982) proposed the funnel algorithm to compute the shortest path
within a simple polygon called channel. A channel is assumed to be triangulated
and hence the shortest path has to cross all the interior edges of the polygon.
Notice that the start and goal points belong to the set of vertices of the channel.
Although it was not explicitly designed to be used with homotopy classes, the
funnel algorithm intrinsically constrains the path to a specific homotopy class
described by the channel. Figure 18.a depicts a polygon with the interior edges
to be traversed by the shortest path. The algorithm considers a path as the
sequence of line segments that belong to the shortest path known within the
channel at some point of the execution of the algorithm. There is a structure
called funnel, which consists of two series of segments that represent the area
where all shortest paths can be found. The two line series of the funnel are
connected by a point called apex.

The algorithm starts by placing the initial apex at the start point. The funnel
is constructed as the segments connect the start point with the first interior
edge. At each step, the algorithm checks whether the vertices of the new
interior edge are inside the funnel or not. If they are, the funnel is updated

32 state of the art

funnel
apex

path

s

g

path

funnelapex

path

s

g

path

a) Narrowing the funnel b) Cannot update funnel

funnelapex

path

s

g

path
apex

path

funnel

s

g

c) New apex required d) New apex added

Figure 18: Different moments during the computation of the shortest path using the
funnel algorithm. The dashed blue lines represent the interior edges of the
channel.

and narrowed (see Figure 18.a). There are two situations that do no allow
the funnel to narrow. The first is when the vertex of the next interior edge is
outside the current funnel (Figure 18.b). The second is when adding the vertex
of the new interior edge makes the current line segments of the funnel go
over to its opposite line segments. In such case a new apex is set to the vertex
that belongs to the opposite line segments that avoids such a situation (see
Figure 18.c and Figure 18.d). The segment line between the current apex and
the old apex is ensured to belong to the shortest path, and hence, is added
to the path. This procedure is repeated until the channel has been completely
explored.

Following the same line, (Hershberger and Snoeyink, 1991) compute the
shortest path while keeping the homotopy of an input path in a simple polyg-
onal environment. This method can be applied to more complex paths such as
closed curves and does not require a channel to constrain the search. Essen-
tially, it triangulates the environment and splits it into simplified subpolygons.
Each one of these subpolygons contains a part of the input path, which is then
optimized with a funnel algorithm (Chazelle, 1982) before being compounded
back to generate the global optimal path.

(Cheng et al., 2010) propose a method to compute an approximate short-
est homotopic path in a polygonal triangulated environment, where each
region has a specific weight. Obstacles are represented by simple polygons.
The method is aimed at encoding the homotopy class of a given input path
according to the crossed edges of a spanning tree of obstacles. The tree checks
whether an edge is crossed to the left or right obtaining the first representation

2.7 homotopy classes 33

s
1
e
1
e

2
e

3
e

4
e

5
e

g

Figure 19: According to (Cheng et al., 2010), the input path (dashed line) is encoded
according to the edges traversed on the triangulated environment differen-
tiating whether an edge is crossed to the left or right:←−e1−→e2←−e2−→e2−→e3←−e4−→e4←−e4−→e5.
Then, it is possible to obtain its canonical representation←−e1−→e2−→e3←−e4−→e5 which
shortens the path (solid line). The next step would expand the triangulation
to improve the path while keeping the canonical sequence of the homotopy
class.

of the path, which is then improved until its canonical representation (see
Figure 19). A graph that expands the triangulations of the tree is computed to
generate a shorter path without changing its homotopy.

2.7.1.2 Non-triangulated environments

(Efrat et al., 2002) propose an algorithm that efficiently computes the shortest
homotopic path for a set of input paths. The algorithm considers the start
and goal points of each path and the obstacles as terminal points. It begins by
applying vertical shortcuts to reduce each input path to a sequence of essential
x-monotone path sections. A vertical shortcut is a vertical line segment that
joins a path p at two or more points with the property that the subpath of p
which follows the segment is homotopic to the line segment. The algorithm
applies the maximum number of vertical shortcuts ensuring that, at each step,
the length of the subpath is not increased. The second step of the algorithm
bundles the essential x-monotone paths obtained in the previous step according
to their homotopy class and chooses a representative path. Notice that if the
paths in each bundle are homotopic, they have the same shortest path. Two x-
monotone paths are homotopic if they share the same start and goal points and
there are no other terminals between them. For each bundle of x-monotonic
paths, the shortest homotopic path is computed using an improved funnel

34 state of the art

t

1
p

1
t

2
t

3
t

2
p

4
t

t

1
p

1
t

2
t

3
t

2
p

4
t

1
s

2
s

1
s

2
s

a) b)

1
µ

1
t

t

3
µ

4
µ

2
t 3

t

2
µ

4
t

1
σ

t 2
t

1
σ

2
σ

1
t 2

t

3
t

4
t

c) d)

Figure 20: Computing the shortest homotopic paths: a) Input paths p1 and p2 with
their respective terminal points (t1 and t2 for p1, and t3 and t4 for p2).
b) Minimum necessary shortcuts s1 and s2 to obtain x-monotone paths. c)
Monotone pieces after applying shortcuts: p1 is divided into 3 monotone
pieces: µ1 from t1 to t3, µ2 from t3 to t4, and µ3 from t4 to t2; p2 is
represented by one monotone piece µ4. µ2 and µ4 belong to the same
bundle since they are homotopic because they share terminal points and
there are no more terminal points between them. d) Paths after computing
the shortest path for each bundle: σ1 and σ2 are the shortest homotopic
paths of p1 and p2 respectively. Figure extracted from (Efrat et al., 2002).

technique (Chazelle, 1982) that reuses the information gained when each path
is computed. Finally, the paths are unbundled to recover final paths. Figure 20

illustrates this process and Algorithm 5 summarizes the steps of the algorithm.
(Bespamyatnikh, 2003) uses a similar idea to Efrat et al. by first turning the

paths into a set of x-monotone subpaths. Then, the subpaths that belong to the
same homotopy class are bundled. For each bundle, the shortest path is found
with a technique that assumes that the path is bound into a simplified polygon,
which allows the efficiency of the method to be improved. Bespamyatnikh also
extends the Efrat et al. proposal by allowing paths that self-intersect to be used
as an input .

In the same vein, (Grigoriev and Slissenko, 1998) propose a method to con-
struct the shortest path for a given homotopy class that does not intersect in
a scenario with semi-algebraic obstacles. For each obstacle in the scenario a
representative point is selected. From this point a curve called a cut is launched

2.7 homotopy classes 35

Algorithm 5 Efrat’s homotopic shortest path
1: Shortcut Paths
2: Bundle homotopically equivalent pieces
3: Compute the shortest path for each bundle
4: Recover final paths

and goes to infinity. Then, assigning a letter to each cut and differentiating
whether the cut is crossed clockwise or counterclockwise (e.g. α and α1 respec-
tively), any path can be represented by a word generated with its consecutive
intersections with the cuts. The computation of the shortest path for any path
consists of reducing the number of cuts –and the word– until the canonical
sequence is found.

Given a set of input paths and rectangular obstacles, (Speckmann and
Verbeek, 2010) compute the non-crossing thick minimum-link rectilinear ho-
motopic paths. This is a two step process. The first consists of computing the
shortest homotopic paths for the input paths using a modified version of the
algorithm proposed by (Efrat et al., 2002). Then the paths are untangled ac-
cording to the length of their shortest version while ensuring that the number
of links is no more than doubled. Although this solution is strongly focused
on VLSI routing, it is also interesting for path planning purposes since the
thickness of the path is a constraint that can make the solution unfeasible and
this algorithm is capable of detecting it, adapting the path, and, if it is not
possible, reporting that there is no solution.

2.7.2 Homotopy Classes Generation Approaches

There are some approaches that do not require specifing the homotopy of the
path to compute. Usually, these are two step methods that first generate the
homotopy classes according to data structures that characterize the topology
of the environment and then compute a path for each class.

For instance, (Jenkins, 1991) proposes a method to generate homotopy
classes for any 2D workspace with obstacles. Assuming that any obstacle
can be represented by a single point, the method first constructs a reference
frame which is a geometric structure compounded of a set of semi-finite
rays that establish the topological relationships between the obstacles in the
metric space. The reference frame allows the description of any path in the
workspace as a topological sequence according to the semi-rays traversed.
Then, a topological graph, whose construction is based on the reference frame,
allows the systematic generation of homotopy classes using graph-search
algorithms. Once generated, (Cuerington, 1991) proposes a method to compute
the shortest path in the workspace for each homotopy class with circular
obstacles. Essentially, the algorithm looks for the direct straight path in the
workspace that follows the homotopy class. If it does not exist, it is computed
by following the tangent lines of the corresponding obstacles that accomplish
the input homotopy class. The lines can be connected with the boundary of
the obstacles to obtain the homotopic shortest path. Figure 21 depicts a simple

36 state of the art

1
β 2

β
g

1
β

1
b 2

b

p c

1
α

2
α s

β 2
β

g

1
β

1
b 2

b

p c

1
α

2
α

p

s

a) A path p in a reference frame b) The shortest homotopic path of p

Figure 21: A (Jenkins, 1991) and (Cuerington, 1991) example: a) In the reference frame,
the obstacles are represented as single points bk and a path p is described
topologically according to the semi-rays traversed . b) The homotopic
shortest path of p crosses the semi-rays of the reference frame in the same
manner.

example of a homotopy class in the reference frame and its corresponding
shortest path. Since the method proposed in this thesis is based on the Jenkins
approach, more details are given in Chapter 3.

An example applied to robotics is proposed by (Milgram and Kaufman,
2000), who characterize topologically fixed routes such as energized wires
embedded in a factory floor that are traversed by automatically guided vehicles.
The goal is to avoid collisions between the vehicles while maintaining the
homotopy of their original paths.

(Schmitzberger et al., 2002) propose to perform motion planning on a PRM
which takes into account topological constraints. The method assumes the
coverage of the C-space by a set of visibility domains. A visibility domain is
the field of view of a point placed in the C-space. Figure 22.a depicts a scenario
with tree points and the field of view of x3. Then, a set of points that belong
to at least two different visibility domains are added in order to generate a
PRM that covers the full exploration of the C-space (see Figure 22.b). The
added points may generate redundant loops that can be identified since the
paths belong to the same homotopy class and therefore do not encroach on
any obstacles. The final step consists of removing those points that generate
redundant loops. The final result is a reduced PRM that allows the generation
of trajectories which avoid obstacles in all possible manners (see Figure 22.c).
However, the trajectories generated are far from optimal and postprocessing is
required to achieve better results.

2.7.3 Constraining Path Search Topologically

This section groups a set of representative algorithms that starts by computing
an initial path whose homotopy class is then obtained in order to prevent
the algorithm from generating another path with the same topology. This

2.7 homotopy classes 37

x

2
x

1
x

3
x

x
2
y

6
y

2
x

1
x

y

3
y

4
y

6
y

7
y

3
x

1
y

5
y

2
y

6
y

2
x

1
x

2
y

3
y

4
y

6
y

7
y

3
x

1
y

5
y

a) Field of view of x3 b) Redundant PRM c) PRM without redundant loops

Figure 22: Schmitzberger et al. places a minimum number of x points that cover the
whole C-Space with their fields of view (a), and others support points y
in order to build a redundant PRM (b), which is simplified in c). The final
PRM allows performing a suboptimal motion planning with any homotopy
class. Images extracted from (Schmitzberger et al., 2002).

methodology achieves the generation of a path for different homotopy classes
by blocking the ones previously explored.

(Fujita et al., 2003) propose a two step method to compute local minimum
paths for homotopy classes that do not cross. Given a start and goal configura-
tion in a C-space represented as a graph, the first step consists of computing,
for each node, the shortest path between the start and the goal that passes
through that node. This is done by running the Dijkstra’s algorithm from the
start to all the nodes in the graph, and running it again from the goal to all the
other nodes. The cost of both searches is added to create a cost map, which
is used to obtain the shortest path that traverses every node in the graph.
Hence, the number of computed paths is the same as the number of nodes in
the graph. The second step consists of pruning the number of paths in order
to obtain the shortest path for each homotopy class. The procedure explores
all the nodes in the graph in increasing order according to their value in the
cost map. For each node, the shortest path that passes through that node is
generated, and the nodes of the corresponding path are labeled. When the
shortest path for the next node according to the cost map is generated, two
possible situations can arise: when all path nodes adjoin at least one labeled
node, the path has the same topology as a path previously computed and
is discarded; otherwise, when the path has a node that does not adjoin any
labeled node from the previous paths, it belongs to a different homotopy class.
The process is repeated for all the computed paths. (Shiller et al., 2004) improve
the second step of this method by identifying the homotopy classes according
to their canonical sequence as (Cabello et al., 2002) propose. Therefore, the
shortest path for each node of the cost map does not have to be completely
traversed to look for a node with no junction with previous paths. Only the
computation of the canonical sequence of the path is required to check whether
it has been already found.

(Banerjee and Chandrasekaran, 2006) propose to perform path planning for
military applications. Essentially, it generates a Voronoi diagram assuming
the enemy zones to be avoided are the sites in the diagram. Based on the
Voronoi diagram, a graph that keeps the homotopy is then constructed. The

38 state of the art

Figure 23: The original graph G is expanded by the L-value to generate the GL graph.
In the example, trajectories τ1 and τ2 are obtained from the start point
in the complex domain zs with an L-value of 0+0i, to the goal zg which
has an L-value Λ or Λ̄ depending on the state of GL. Image extracted from
(Bhattacharya et al., 2010).

graph is traversed with graph-search algorithms based on the DFS which
compute paths that have a direct equivalence to the Voronoi diagram. Notice
that this method does not compute optimal paths since it focuses on avoiding
undesirable zones.

(Bhattacharya et al., 2010) propose a method to perform path planning with
homotopy class constraints using graph-search algorithms. The graph that
represents the environment is expanded with Complex Analysis values to
characterize homotopy classes while computing the path. Assuming that each
obstacle is represented by a single point, Bhattacharya et al. define a function in
the complex domain that allows the characterization of any node in the search
space according to its relative position with respect to the obstacles. Since any
trajectory is a sequence of nodes traversed in order, the line integration of
the function generates a value that represents the trajectory according to its
relative position between the obstacles. This value is called L-value and is used
to identify the homotopy classes. Therefore, two trajectories that share the
same start and end points with an equal L-value belong to the same homotopy
class, whereas different L-values means that the two trajectories do not share
the same homotopy class. In order to perform search-based path planning
with homotopy class constrains, the search space is expanded with L-values
while computing the path. Once the first path is computed, its homotopy
class is identified through the L-value. Then, to obtain the path for a different
homotopy class, the previous L-value is used to constrain the search. Figure 23

depicts a simple example. However, it is difficult to configure the path planner
to follow a specific homotopy class without finding its path and hence, its
L-value.

2.7 homotopy classes 39

2.7.4 Summary

Computing the shortest homotopic path for an input path/homotopy class
is a problem that has been studied since the 80’s. Therefore, there is a large
set of proposals that performs the computation efficiently for any possible
path. However, when there is no input homotopy class or path, the problem
becomes intractable for these solutions making it difficult to apply them to
robot path planning. On the other hand, some of these algorithms are suitable
for the optimization process, when a path has been already generated by a
path planner.

There is also a group of methods that compute the shortest path and then
identify its homotopy class. This process can be done during the path search
or once the whole path has been computed. Then, the topology of the path
is encoded in order to restrict the next path search, which ensures that the
new shortest path will have a different topology and hence, belong to another
homotopy class. By repeating this process, it is possible to obtain the k-shortest
paths of k-homotopy classes. These methods have the clear advantage of
starting with the computation of the global shortest path. However, if we are
interested in the solution of the k path, computing all the previous paths is
required.

On the other hand, there is a minor group of methods that first compute the
homotopy classes and then search for a path that follows them. In order to
generate the homotopy classes, a data structure able to codify the topology of
the environment as a graph is required. Then, the homotopy classes can be
systematically generated by exploring the graph with a graph-search algorithm.
These methods offer the flexibility of computing a path that does not belong to
the homotopy class of the global optimal path without having to compute any
previous paths. However, generating the homotopy classes systematically can
make the problem intractable depending on the number of classes generated.
This problem can be overcome by using some restriction criteria during the
generation of the classes such as allowing the generation of homotopy classes
in their canonical form, and avoiding those classes that self-cross or repeat
cycles.

A summary of the reviewed methods that takes into account the homotopy
of the paths can be seen in Table 1. The outlined features are:

• A short description of the problem to be solved.

• The dimensionality of the problem.

• The required input when it is necessary to specify the homotopy class of
the solution.

• The types of obstacles the methods are able to deal with.

• The additional data structure required to name the homotopy classes.

• The homotopy class representation.

• Whether the method can deal with paths that self-cross.

40 state of the art

2.8 path planning for auvs

Although the literature on path planning applied to AUVs is not extensive,
several proposals that follow a wide range of different approaches have been
reported. (Warren, 1990) presents an algorithm that uses artificial potential
fields to aid in the path planning. It is first required to generate a trial path
and then modify the entire path under the influence of the potential fields. A
path is a set of connected straight line segments, only those endpoints of the
segments that remain at the start and end positions are fixed, while the others
are modified according to the potential field in order to generate a safe path.
(Carroll et al., 1992) apply the A* algorithm in a graph-based environment built
according to a previously gathered bathymetry, water currents and exclusion
zones. The A* has also been adopted by (Garau et al., 2005) to compute
optimal paths in terms of energy cost in underwater environments with eddies.
Recently, (Fernandez-Perdomo et al., 2011) have adapted the A* to perform
a constant time surfacing algorithm that computes suitable trajectories to be
followed by a Glider.

(Vasudevan and Ganesan, 1994) propose to perform path planning with a
case-based algorithm which is part of a larger planning system. For a given set
of routes to be followed, the planner relies on past experience to adapt the old
routes to achieve the goal. Further, it can also build new routes by adopting the
same strategies for those cases that approximately match the current situation
such as connecting a new segment of a route with a previously existing one.
(Petillot et al., 2001) propose a path planning strategy based on nonlinear
programming techniques using acoustic images gathered with a multi-beam
forward looking sonar in an obstacle avoidance system for a ROV

(Alvarez et al., 2004) use a genetic algorithm to perform path planning for an
AUV in an ocean environment characterized by strong currents, minimizing
the energy cost. (Kruger et al., 2007) proposes a technique to perform path
planning in rivers based on analytic models, which enables an AUV to plan
optimally exploiting useful currents, avoiding adverse currents, maximizing
speed, minimizing energy and avoiding obstacles. Water currents are also taken
into account by (Petres et al., 2007), who developed a path planning algorithm
called E* that computes a continuous path from a discrete representation of
the environment based on the FM approach.

Some authors tackle the coverage path planning problem for AUVs, since
this kind of survey has a wide range of applications such as map building
purposes, mosaicking and target localization. For instance, (Maki et al., 2009)
propose a path planning method that generates a set of waypoints for an
AUV to follow the surface of the target at a constant distance, based on the
previously given information about the configurations of both the target and
the vehicle. The target application is the support leg inspection of on-water
platforms consisting of cylindrical rods. The method starts by turning the 3D
workspace into a set of 2D slices at different depths parallel to the surface.
The result is a set of 2D workspaces with cylindrical obstacles where paths
are generated following their boundaries at a safe distance. (Williams, 2010)

2.9 discussion 41

addressed the problem of designing the optimal survey route for an AUV in
mine countermeasure operations according to the area perceived by its sonar
sensors. (Paull et al., 2010) propose an adaptive path planning method that
modifies a global precomputed path according to the AUV’s measurements of
the environment with side-looking sensors to achieve complete coverage of a
specific area.

Over the last few years, data collection using AUVs has been increasing in
importance within the oceanographic research community. For this purpose,
(Binney et al., 2010) adapt an informative path planner based on a recursive
greedy algorithm focused on collecting data within a certain area using Gliders.
The algorithm uses previous knowledge of the environment gathered before
releasing the robot to compute the path. Despite receiving updated information
from the onboard sensors, the algorithm only uses it as a complement to the
previous data, but not to improve the path. On the other hand, (Smith et al.,
2010) present an algorithm designed to generate paths for AUVs to high-value
location for data acquisition. The algorithm focuses on tracking dynamic ocean
features according to ocean model predictions and predicted current velocities.
Hence, the predefined path has to be modified according to the features of
interest perceived.

2.9 discussion

In this survey we have explored a set of different proposals to perform path
planning. The graph-based search algorithms look for the global shortest path
in the C-space, which is obtained with an exhaustive exploration of the search
space. Most of these algorithms use a heuristic function in order to speed up
the exploration process by first selecting the most promising states according
to the heuristics. On the other hand, probabilistic sample-based path planners,
most of them based on the RRT, perform the exploration by growing a tree
incrementally until the goal is reached. These algorithms do not perform an
exhaustive exploration in C-space, therefore, they provide a solution very
quickly at the expense of its quality. Because of this, it is a common practice to
improve the computed path with a post-processing step.

Anytime approaches have been shown suitable to be used with robots that
have a limited amount of time to perform path planning. These algorithms
compute an initial solution highly suboptimal very quickly and improve it until
time runs out. They speed up the path generation by inflating the heuristics
to force the exploration of those configurations that are closer to the goal
according to their heuristics. During successive iterations, the inflation factor
is decreased in order to generate better solutions. However, it is difficult to set
up the correct inflation value since it is highly dependent on the complexity
of the scenario. Moreover, even with decreasing the heuristics inflation, the
generation of a better path is not ensured.

In the survey, Bug-based approaches, initially developed to perform mo-
tion planning, have also been considered for path planning purposes since
their navigation strategies are suitable to generate paths in a C-space. These

42 state of the art

C
ite

D
escription

D
im

ension
Input

O
bstacles

A
dd.data

H
om

otopy
class

Self-crossing

type
structure

representation
allow

ed

C
hazelle

(
1
9

8
2)

Shortest
path

2D
Triangulated

–
–

Triangulated
N

o

sim
ple

polygon
sim

ple
polygon

H
ershberger

and
Snoeyink

(
1

9
9

1)
Shortest

hom
otopic

path
2D

Path
Polygonal

–
Edge

sequence
Yes

C
heng

et
al.(

2
0

1
0)

A
pproxim

ate
shortest

hom
otopic

path
2D

Path
Polygonal

Spanning
tree

Edge
labelseq.

Yes

G
rigoriev

and
Slissenko

(
1

9
9

8)
Shortest

hom
otopic

path
2D

H
c/

Sem
i-algebraic

Labeled
W

ord
N

o

Path
curves

(labelseq.)

Efrat
et

al.(
2

0
0

2)
Shortest

hom
otopic

path
2D

Path
Points

–
Edge

sequence
N

o

Bespam
yatnikh

(
2

0
0

3)
Shortest

hom
otopic

path
2D

Path
Points

–
Edge

sequence
Yes

Speckm
ann

and
Verbeek

(
2

0
1

0)
R

ectilinear
hom

otopic
thick

path
2D

Paths
R

ectangular
–

Edge
seq

N
o

Jenkins
(
1

9
9

1)
H

om
otopy

classes
com

putation
2D

–
A

ny
kind

R
eference

fram
e

Edge
labelseq.

–

(points)
Topologicalgraph

C
uerington

(
1

9
9

1)
Shortest

hom
otopic

path
2D

H
c

C
ircles

R
eference

fram
e

Edge
labelseq.

Yes

M
ilgram

and
K

aufm
an

(
2

0
0

0)
Topologicalenvironm

ent
characterization

2D
Paths

–
–

Seq.nodes
Yes

Schm
itzberger

et
al.(

2
0

0
2)

M
otion

planning
w

ith
hom

otopy
classes

2D
–

G
eom

etric
–

Edge
sequence

Yes

Fujita
et

al.(
2
0

0
3)

Shortest
path

w
ith

hom
otopy

constraints
2D

–
A

ny
kind

–
Point

sequence
N

o

Shiller
et

al.(
2

0
0

4)
Shortest

path
for

each
hom

otopy
class

2D
–

A
ny

kind
–

Point
sequence

N
o

Banerjee
and

C
handrasekaran

(
2

0
0

6)
N

-shortest
paths

2D
–

Points
Voronoidiagram

Seq.traversed
edges

Yes

Bhattacharya
et

al.(
2
0

1
0)

Shortest
path

w
ith

hom
otopy

constraints
2D

–
A

ny
kind

Expanded
graph

C
om

plex
num

ber
Yes

Table
1:Sum

m
ary

of
selected

m
ethods

that
explicitly

dealw
ith

hom
otopy

classes.

2.9 discussion 43

algorithms look for a path to the goal by following a straight line until an
obstacle on the path is detected. At this point, the obstacle is surrounded
until a stopping criterion makes the path go straight towards the goal again.
Therefore, only the search space around the boundary of the obstacles towards
the goal have to be explored.

The topological approaches described in this survey mainly focus on homo-
topy classes, which provide information on how paths avoid obstacles. In order
to perform path planning for an AUV, methods that compute the shortest
homotopic path are not suitable because it is first necessary to generate a path.
Neither are the methods that restrict the path search according to the topology
of the paths previously computed. Hence, if the path we are interested in does
not belong to the homotopy class of the global optimal solution, it is required
to compute a path for each homotopy class that has a shorter path. Finally,
those methods that first generate the homotopy classes are the most suitable
to achieve success in our path planning for an AUV, since they allow us to
look for a path that accomplishes other criteria than its shortest length, such
as surveilling an area or avoiding dangerous zones.

Despite the range of the solutions surveyed to perform path planning for
AUVs, most of which are highly specific to the problem they want to solve
and hence, are difficult to apply in a different context. Some of these solutions
take into account water currents, which implies previous knowledge of the
scenario that is not provided in our target applications. Further, none of them
take into account the homotopy classes of the generated paths. Because of this,
our proposal focuses on the topological approach presented by (Jenkins, 1991),
which is a generic method to compute the homotopy classes independently
from the path planning approach selected to compute the final path in the
C-space. However, it is necessary to establish a set of restriction criteria in
order to generate only those homotopy classes that are interesting for the
problem we need to solve.

3
PAT H P L A N N I N G W I T H H O M O T O P Y C L A S S
C O N S T R A I N T S

This chapter concerns the path planning method developed for this research
project. It is assumed that the computation of the path has to be performed on
a local map built for navigation purposes with data provided by the onboard
sonar sensors of the vehicle. In order to achieve the realtime requirements of
the robot, the computation of the path has to be done in a short time.

Our method proposes the utilization of homotopy classes in order to con-
strain the path generation topologically. As pointed out in Chapter 2, a homo-
topy class of a set of trajectories from the start to the end point describes how
these trajectories avoid obstacles. From the different approaches that deal with
homotopy classes, those methods that first generate the classes neither compute
previous path to obtain its class nor require giving any input homotopy class
specified by the user. Therefore, they are suitable for the automatic generation
of homotopy classes for surveilling or zone avoiding purposes, since they may
not follow the homotopy class of the global optimal path. However, these
methods require establishing a set of restriction criteria in order to allow the
generation of only those homotopy classes that are interesting for the problem
to be solved.

Given any 2D environment, our method first generates the set of all the
homotopy classes that connect the start point with the end point with an exten-
sion of the (Jenkins, 1991) proposal we have developed. Using the topological
information, path planners do not have to explore the whole space but the
space confined in a homotopy class. Then, using a lower bound criterion that
estimates the cost of the homotopy classes in the workspace, it is possible to
set up a preference order when choosing a homotopy class to generate its path.
Finally, three different path planning algorithms have been developed in order
to compute paths in the C-space that accomplish the homotopy classes.

Section 3.1 gives an overview of the method to generate homotopy classes
proposed by (Jenkins, 1991). In Section 3.2 we propose an extension of the
method that allows the generation of homotopy classes that can be followed
in any 2D workspace. Section 3.3 shows the heuristic estimator used as a
lower bound criterion to set up a preference order when looking for paths
of the homotopy classes. Section 3.4 describes three different path planning
algorithms designed to follow the homotopy classes previously computed.
Finally, in Section 3.5 a summary is provided.

3.1 overview

The method to generate homotopy classes that we propose is based on the
(Jenkins, 1991) approach. Given a 2D workspace, this method first constructs a

45

46 path planning with homotopy class constraints

αβ

g

1
α

2
β

2
b

c

1
l

2
l

1
b

1
β

2
α

s

Figure 24: A topological path represented in the reference frame as p = β1α2α2α2
with the transitions labeled.

reference frame that allows the representation of any path in the workspace as
a topological sequence. The reference frame is also used to build a topological
graph which is explored with graph-search algorithms to generate topological
sequences that represent homotopy classes.

More in detail, the reference frame determines, in the metric space, the
topological relationships between obstacles and is used to name the homotopy
classes. In a workspace with n obstacles, construction starts by representing
each obstacle with a single point bk, where k = 1..n. Then, a central point c
is selected. This point cannot be inside an obstacle nor inside the n(n− 1)/2

lines determined by the pairwise choices of distinct bk. Finally, the n lines
lk joining c with each bk are constructed. Each line is partitioned into two
directed semifinite rays: the ray emanating from bk and away from c is labeled
βk and the ray from bk that contains c is labeled αk. Figure 24 shows an
example of a reference frame in a scenario with two obstacles with a path
described by the rays of the reference frame it crosses.

The topological graph, whose construction is based on the reference frame,
provides a model to describe the topological relationships between regions of
the metric space. The reference frame divides the metric space into regions
called wedges. Each wedge represents a node in the graph which is connected
to its neighbors through labeled edges according to the semifinite rays shared
with its contiguous wedges in the reference frame.

Figure 24 depicts an example of a reference frame of a simple workspace
with two obstacles and Figure 25 shows its correspondent topological graph.
In the reference frame, lines l1 and l2 split the workspace into four different
wedges, hence, the topological graph has four nodes. The wedges in the
reference frame and their corresponding nodes in the topological graph are
labeled in increasing order in a counter clockwise direction. As stated earlier,
nodes of the topological graph are connected with their neighbors according
to the segments shared between wedges in the reference frame. For instance,
wedges 1 and 2 share a single semifinite ray α2 in the reference frame, thus,
their nodes in the topological graph are connected with the edge labeled α2.

3.1 overview 47

g

1
α

2
β

2
α

3

2

3 4

4 2

β
1

α
2

α
1

3 4

1
β

s

1

1

Figure 25: Path p = β1α2α2α2 represented in the topological graph with bold arrows.

The wedges of nodes 1 and 4 share the α1 and β1 rays, so they are connected
with the two edges with these labels. In the reference frame, a path is defined
according to the segments it crosses, whereas, in the topological graph, it turns
into traversing the graph from the start node to the end node. Start and end
nodes are those wedges in the reference frame, nodes in the topological graph,
where the start and end points are located.

Once the topological graph is constructed, Jenkins proposes traversing it
using a modified version of the BFS. The algorithm begins at the start node and
new homotopy class candidates are systematically generated according to the
edges traversed. In order to reduce the potential number of classes generated,
the author provides a set of restriction criteria to avoid the generation of the
homotopy classes that self-cross or are duplicated according to their canonical
sequences. The algorithm does not stop when the goal node has been reached,
it continues generating potential solutions until all the homotopy classes have
been computed or the last candidate homotopy class generated is larger than
a given threshold. Table 2 shows a small part of the execution of the BFS
algorithm and Table 3 summarizes the homotopy classes generated with the
method proposed by Jenkins. It is worth noting that this method achieves the
generation of homotopy classes in any 2D workspace assuming that obstacles
are represented by single points. Despite that it can be applied to any kind
of obstacle, depending on their shape/size, resultant classes might not be
followed back in the workspace with the original obstacles. The next section
details this problem.

3.1.1 Applicability to the Path Planning Problem

Our work proposes using the Jenkins method to guide a path planning algo-
rithm following a topological path. Thus, the topological information of the
homotopy classes has to be turned into metric paths in the workspace by using
the reference frame as a link between the topological graph and the workspace.
In order to find a path in the workspace that follows a specific homotopy class,

48 path planning with homotopy class constraints

Homotopy class

α1

β1

α2

α1β1

α1α2

α1β2

β1α1

β1α2

β1β2

α2α1

α1β1α1

α1β1α2

...

Table 2: A systematic generation of homotopy class candidates with the BFS algorithm.

Idx Homotopy class

1 α1α2

2 α1β2

3 β1α2

4 β1β2

5 α1α2β2α1β1β2

6 β1β2α2β1α1α2

Table 3: Homotopy classes with their index of generation obtained with the topological
graph in Figure 25.

it is required for a path planning algorithm to be modified to look for the
intersections with the desired segments in the reference frame.

During the reference frame construction, each obstacle in the workspace
is represented by a bk point without area in order to ensure that each line
in the reference frame crosses only one obstacle; and the topological graph
is built under this assumption. However, depending on the reference frame
construction and the particular shape of the obstacles, it is possible that a
line in the reference frame intersects with more than one obstacle. In some
cases, there will be homotopy classes that cannot be followed in the workspace.
Figure 26 depicts this problem: the homotopy class to follow is β1α2, which is
shown as a path (Figure 26.a) in the reference frame with its equivalence in the
topological graph (Figure 26.b). However, in Figure 26.c the metric path cannot
be followed because obstacle 2 crosses l2 and l1. Notice that this problem
would not arise if points c and b1 were more carefully selected to avoid the

3.2 homotopy classes generation 49

αβ

g

1
α

2
β

2
b

c

1
l

2
l

1
b

2
α

s
1

β

g

1
α

2
β

2
α

3

4 2

β
1

α
2

α

1
β

s

1

αβ

g

1
α

2
β

2
b

c

1
l

2
l

1
b

1
β

2
α

s

a) Reference frame b) Topological graph c) Workspace

Figure 26: Example of a valid homotopy class (β1α2) in the reference frame (a) and
in the topological graph (b) that cannot be followed in the workspace (c)
because at least one line (l1 or l2) in the reference frame intersects more
than one obstacle.

intersection of obstacle 2 with l1. However, this solution cannot be applied in
complex scenarios with more obstacles.

3.2 homotopy classes generation

This section describes the generation of homotopy classes for any 2D workspace.
The approach presented here is an extension of the method proposed by (Jenk-
ins, 1991) which ensures that all the homotopy classes computed can be fol-
lowed in the workspace. As stated before, this method first builds a reference
frame which determines the topological relationships between obstacles in the
workspace and is used to name the homotopy classes. The reference frame
is then used to build the topological graph which allows the computation of
homotopy classes systematically.

3.2.1 Reference Frame

Given a workspace with n obstacles, the reference frame determines, in the
metric space, the topological relationships between obstacles and is used to
name the homotopy classes. The whole construction process is summarized in
three steps:

1. Select a random point inside each obstacle and label it bk, where k = 1..n.

2. Select the central point c of the reference frame. This point cannot be
inside an obstacle nor inside the n(n − 1)/2 lines determined by the
pairwise choices of distinct bk.

3. Construct n lines lk joining c with each bk. Each line is partitioned into
m+ 1 segments, where m is the number of obstacles that intersect with
lk in the workspace. The segments from bk and away from c are labeled

50 path planning with homotopy class constraints

11−
α

12
β

g

01
α

11−
α

12
β

02
α

2
b

01
α

01
α

02
α

02
αc p

1
l

2
l

1
b

11
β

12−
α

s

Figure 27: Topological path represented in the reference frame as p =

β11α10α20α10α20α20α10α1−1

with βks , and the segments in the opposite direction are labeled αks ,
where s = 0..u with u ∈ Z+ for the segments of lk from c that pass
through bk and s = 0..v with v ∈ Z− for the segments in the opposite
direction.

Using the reference frame, any path p can be defined topologically by the
sequence of labels of the segments crossed in order from the start to the end
point. For instance, Figure 27 depicts a reference frame for a scenario with two
obstacles. The path p is labeled β11α10α20α10α20α20α10α1−1 . There are two
special cases when defining paths in the reference frame: when p does not
cross any rays then p = ∅; and when p crosses through c meaning that all the
αk0 ’s are simultaneously crossed, all αk0 are added in subindex order to the
sequence.

Notice that the start and goal points cannot be in lines lk it the reference
frame since it would not be possible to determine whether the affected lk lines
are crossed or not.

3.2.2 Computation of the Canonical Sequence

As stated in Chapter 2, it is possible to know if the paths that do not follow the
same crossing-ray order in the reference frame are homotopic through their
canonical sequence. The canonical sequence is the simplest representation of a
path without changing its topology. With the extension of the notation used in
the reference frame, it is computed according to Algorithm 6. First, the αk0 ’s
substrings are sorted according to the subindex of the path in non-decreasing
order. Then, all the elements of the sequence that have the same character
by pairs are removed. This process is repeated until no changes are made
in the sequence. For instance, once path β11α10α20α10α20α20α10α1−1 gets its
αk0s substring sorted, it becomes β11α10α10α10α20α20α20α1−1 . At this point
a α10 and a α20 pairs can be canceled β11����α10α10α10����α20α20α20α1−1 obtaining
β11α10α20α1−1 . Since it cannot be shortened, it represents the canonical se-

3.2 homotopy classes generation 51

quence of the path. Figure 28 depicts one possible solution in the workspace
of this canonical sequence.

Algorithm 6 Canonical representation
CanonicalRepresentation(p)

1: repeat
2: psorted ← Sortαk0

′sSubstrings(p)
3: pcanceled ← CancelEqualPairs(psorted)

4: p← pcanceled
5: until (pcanceled = psorted)

6: return p

11−
α

12
β

g

01
α

11−
α

12
β

02
α

2
b

01
α

01
α

02
α

02
αc p

1
l

2
l

1
b

11
β

12−
α

s

Figure 28: A possible path in the reference frame of the canonical sequence p =

β11α10α20α1−1 obtained with the sequence β11α10α20α10α20α20α10α1−1 .

3.2.3 Topological Graph

The reference frame is used to compute a topological graph G, providing a
model to describe the relationships between regions of the metric space. Its
construction can be divided into three steps:

1. The lines in the reference frame divide the metric space into regions or
wedges and the obstacles that intersect with more than one line at the
same time split these wedges into sub-wedges. Each sub-wedge represents
a node of G.

2. Each node of G is labeled according to the wedge w and sub-wedge sw
using the notation w.sw. w ∈N is numbered counterclockwise. For each
w, its corresponding sw ∈N is numbered sequentially starting by 1 for
the one closest to c.

3. Two nodes of G are interconnected according to the number of segments
they share in the reference frame. Each edge of G is labeled with the
same label of the segment that crosses it in the reference frame.

52 path planning with homotopy class constraints

In the reference frame, a path is defined according to the segments it crosses,
whereas in G it turns into traversing the graph from the start node to the end
node. Notice that the start and end nodes of G are those sub-wedges in the
reference frame where the start and end points are located. Figure 29 depicts
the canonical sequence β11α10α20α1−1 in the topological graph.

1
α

2
β

g
3.2

3.1

01
α

11−
α

12
β

02
α

2
b

1.1

4.1 2.1

01
α

01
α

02
α

02
α
c

1
b

11
β

12−
α

s1.2

Figure 29: The path β11α10α20α1−1 represented in the topological graph.

3.2.4 Systematic Homotopy Classes Computation

Once the topological graph is constructed, it is traversed using a modified
version of the BFS algorithm. As stated in Chapter 2, the BFS is a graph search
algorithm that begins at the root node and explores all the neighboring nodes.
Then, for each of those nearest nodes, it explores their unexplored neighbors.
The process is repeated until the goal is found. Unlike the standard BFS, which
stops when all vertexes have been visited, the modified algorithm continues
until there are no more homotopy class candidates to explore or the length of
the last homotopy class candidate is larger than a given threshold.

3.2.4.1 Restriction Criteria

During the BFS execution, several restriction criteria are applied to avoid
the generation of any homotopy classes which either self-intersect or whose
canonical sequence is duplicated and has already been considered. All classes
that accomplish any of the following restriction criteria are ignored to avoid
using them as a root for future homotopy classes:

simple wrap. Any string that contains a substring of the form αks ...χkt ...αku
or βks ...χkt ...βku where χ = (α,β) with s = u represents a class that
wraps around an obstacle and is self-crossing. Figure 30 shows an exam-
ple of a path that accomplishes the simple wrap criterion.

wrap. Any string that contains a substring of the form χks ...χkt ...χku where
χ = (α,β) with s, t,u > 0 and s > t < u or with s, t,u 6 0 and s < t > u

3.2 homotopy classes generation 53

c
0
kα

kb

kβ

sg

1
kβ

Figure 30: A simple wrap in path βk1αk0βk1 .

represents a class that wraps around an obstacle and is self-crossing.
Figure 31 shows an example of a path that accomplishes the wrap
criterion.

mb
s

c
0
mα

0
kα

kb

mb
g

β

1
kα

kb

2
kβ

1
mβ

Figure 31: A wrap in path αm0αk0βk2αk1 .

self-crossing. Any string that contains a substring of the form χks ...βmt ...
αmu ...χkv where χ = (α,β) with s, v > 0 and s < v or with s, v 6 0

and s > v represents a class that self-crosses. The reversed substring
χks ...αmt ...βmu ...χkv with s, v > 0 and s > v or with s, v 6 0 and s < v
also represents a class that self-crosses. Figure 32 shows an example of a
path that accomplishes the self-crossing criterion.

b

g
1
mβ

2
kβ

mb

b
s

α
1
kβ

kb

c

0
mα

0
kα

Figure 32: Self-crossing in path βk1βm1αm0βk2 .

54 path planning with homotopy class constraints

duplicated. Duplicated strings are not allowed in the list of homotopy class
candidates. If a string is not in its canonical form, it can be simplified
without modifying its topology. Then, it is ensured that the resultant
string has already been computed by the BFS algorithm because it would
be shorter than the input string. Finally, the algorithm cannot traverse
the same edge on two consecutive occasions. By doing that, a string with
a repeated pair would be generated. Consequently, the pair would be
simplified and the string discarded for being duplicated.

Table 4 shows the homotopy classes computed for the workspace depicted
in Figure 28 applying all the restriction criteria described in this section. Notice
that all the homotopy classes can be followed in the workspace with the
original obstacles. For a detailed execution of the homotopy class generation
in this example see Appendix A.

Idx Homotopy class

1 β11β21

2 α2−1α1−1

3 β11α10α20α1−1

4 α2−1α10α20β21

Table 4: Homotopy classes obtained with the extension of the Jenkins method we
propose. The first column shows their index of generation.

3.3 lower bound estimator

The number of homotopy classes generated by the BFS algorithm highly de-
pends on the number of the nodes in the topological graph. Therefore, in
most scenarios it is not possible to compute all the correspondent paths of the
homotopy classes in the workspace in real-time. In order to set up a preference
order when choosing the homotopy classes to compute their paths, a modified
version of the funnel algorithm (Chazelle, 1982) is used to obtain a quantita-
tive measure for each homotopy class estimating its quality. This algorithm
computes the shortest path within a channel, which is a polygon formed by
the vertexes of the segments in the reference frame that are traversed in the
topological graph. The modification consists of accumulating the Euclidean
distance between the points while they are being added to the channel’s short-
est path. Hence, the result of the funnel algorithm is a lower bound of the
optimal path in the workspace of the selected homotopy class.

The lower bound estimator is used to set up a preference order to compute
the homotopy classes path in the workspace when operating under time
restrictions. Notice that the segments of the reference frame constrain the
region where the paths can go through, but do not take into account the whole
shape of the obstacles. For that reason, a homotopy class with a smaller lower
bound may have a longer path in the workspace than an another homotopy
class with a higher lower bound.

3.4 homotopic path planning algorithms 55

11−
α

12
β

g

2
b

01
α

α

2

1
b

1
β

02
α

α11
β

12−
α

s

Figure 33: The channel and lower bound path for the homotopy class β11α10α20α1−1 .

Idx Homotopy class Lower bound

1 β11β21 0.94

2 α2−1α1−1 0.95

3 β11α10α20α1−1 1.04

4 α2−1α10α20β21 1.08

Table 5: Lower bounds for each homotopy class normalized according to the cost of
the A* solution.

Figure 33 depicts an example where the funnel algorithm computes the
lower bound for the homotopy class β11α10α20α1−1 . The solid lines represent
the channel and the dashed red line is the path after applying the funnel
algorithm. It is worth noting that the modified algorithm takes into account
that some subsegments may self-intersect when creating the channel as can
be seen with the α10 and α20 segments in the figure. Table 5 shows the lower
bound for each homotopy class obtained in this example. All lower bounds
have been normalized according to the cost of the path obtained with the A*,
which belongs to class 2 (α2−1α1−1), using an A8 connectivity in a discretized
representation of the environment. Some values are lower than 1 since the A*
solution takes into account the shape of the obstacles while the computation
of the lower bound does not.

3.4 homotopic path planning algorithms

Once the homotopy classes are computed and sorted according to their lower
bound, a path planning algorithm has to find a path in the workspace that
follows a given homotopy class which essentially implies turning a topological
path into a metric path. The only link between the workspace and the topolog-
ical space is the reference frame. It allows checking whether a metric path in
the workspace is following a topological path by following the intersections in
order from the initial configuration to the current configuration.

56 path planning with homotopy class constraints

This section presents three well known algorithms that have been adapted to
compute paths for a single homotopy class. The first algorithm is the homotopic
version of the A* called Homotopic A* (HA*). It allows the computation of the
optimal path according to a homotopy class to follow. The second algorithm
is a probabilistic approach based on the RRT called Homotopic RRT (HRRT).
Finally, the third algorithm is a Bug-based approach called Homotopic Bug
(HBug) which tries to follow the lower bound path until it collides with an
obstacle. Then the algorithm surrounds the boundary of the obstacle while the
homotopy class is being followed till the point where the lower bound path
leaves the obstacle.

3.4.1 Homotopic A*

The Homotopic A* (HA*) works like the A* algorithm, but instead of exploring
the entire search space, it only explores the zones in the workspace that satisfy
a given homotopy class by checking the intersections with the reference frame
before taking into consideration the node as a candidate to be explored.

Given a node n, the algorithm uses a heuristic function f(n) based on the
distance to the goal and the cost from the start to set up the order in which
the search visits the nodes. The heuristic function is f(n) = g(n) + h(n,ngoal)
where:

• g(n) is the path-cost function, which is the cost from the start node to
the current node.

• h(n,ngoal) is the heuristic estimation of the distance from the current
node to the goal which does not overestimate the distance to the goal.

3.4.1.1 Implementation

The HA* is written in pseudocode in Algorithm 7. The nodes in the algorithm
are tuples that contain the configuration of robot q and the topological path
from qstart to q. These values are accessible through the functions Q and P
respectively. Just like the A*, open nodes are processed according to their posi-
tion in a priority queue OPEN. Each node in this queue is ordered according to
the sum of its current path cost from the start, g(n), and a heuristic estimation
of its path cost to the goal, h(n,ngoal). The node with the minimum sum is at
the top of the priority queue.

The algorithm receives as input the start configuration qstart, the goal
configuration qgoal, a candidate homotopy class to follow H and the reference
frame F. The configurations qstart and qgoal are used to set up the initial
node nstart and the goal node ngoal (line 27).

The function ComputePath computes the shortest path that follows H.
It starts by adding the nstart into the OPEN queue. As node n with the
minimum g(n) + h(n,ngoal) is different from ngoal, the algorithm pops n to
the top of the queue. For all the configurations q ′ reachable from Q(n), the
function FindIntersections (line 15) returns the intersections of the segment

3.4 homotopic path planning algorithms 57

b
1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

s

g

b
1

b
2

α
1

0

β
1

1

α
1

−1

α
2

0

β
2

1

α
2

−1s

g

b
1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

s

g

b
1

b
2

α
1

0

β
1

1

α
1

−1

α
2

0

β
2

1

α
2

−1s

g

b
1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

s

g

b
1

b
2

α
1

0

β
1

1

α
1

−1

α
2

0

β
2

1

α
2

−1s

g

a) b) c)

Figure 34: An HA* execution example in a simple workspace with two obstacles for
homotopy class β11β21 .

[Q(n), q ′] with F sorted by distance1. Then the UpdateH (line 16) generates
the new topological path according to the intersections. No intersections with F
means that the explored configuration is in the same sub-wedge of the C-space
and the function returns P(n). If there are intersections and these intersections
follow H, the function returns P(n)∪ I in order to create a new node candidate
n ′. Whether n ′is in the OPEN queue or not is then checked. If not, it is added
to the queue with a priority g(n ′) plus the heuristic h(n ′,qgoal) (line 20). If
it is, and the cost g(n) plus the cost of traversing from n to n ′, c(n,n ′) is
less than its current cost (line 21), g(n ′) is set to this new lower value. This
process is repeated until the ngoal is found or OPEN has no more nodes to be
expanded.

Figure 34 depicts an example of an HA* execution in a discrete version of the
workspace shown during the generation of the homotopy classes. The input
homotopy class is β11β21 . The algorithm explores the environment using A8

connectivity and the Euclidian distance as heuristic estimator. Figures 2.a,b
depict the explored states in grey at two different moments of execution.
Figure 2.c shows the final path obtained with backtracking from the goal to
the start with the total number of cells explored. The solution is the shortest
homotopic path for the input homotopy class. It is worth noting that cells are
explored in only those areas that accomplish the class.

3.4.1.2 Theoretical properties

The HA* inherits several properties from the A* algorithm:

optimal . The algorithm computes the least cost path for a given homotopy
class which can be used as a ground truth for other path planning
algorithms that follow homotopy classes.

1 Notice that it is possible to intersect more than one segment of the reference frame depending
on how close Q(n) and q ′ are to the c point.

58 path planning with homotopy class constraints

Algorithm 7 Homotopic A*
FindIntersections([q,q ′], F)

1: r← ∅
2: for i← 1 to |F| do
3: if x← Intersection([q,q ′], F[i]) 6= null then
4: r← r∪ {Edge(i),Distance(q, x)}
5: end if
6: end for
7: r← SortByDistance(r)

8: return r

ComputePath(nstart,ngoal, F)
9: OPEN← ∅; V ← ∅

10: OPEN.push(nstart)
11: while minn∈OPEN(n 6= ngoal) do
12: n← OPEN.top()
13: OPEN.pop()
14: for all q ′ ∈ Succ(Q(n)) do
15: I← FindIntersections([Q(n),q ′], F)
16: if H ′ ← UpdateH(P(n), I) then
17: n ′ ← {q ′,H ′}
18: if n ′ /∈ OPEN then
19: g(n ′)← g(n) + c(n,n ′)
20: OPEN.push(n ′) with g(n ′) + h(n ′,ngoal)
21: else if g(n ′) > g(n) + c(n,n ′) then
22: g(n ′)← g(n) + c(n,n ′)
23: end if
24: end if
25: end for
26: end while

HA∗(qstart,qgoal,H, F)
27: nstart ← {qstart, ∅}; ngoal ← {qgoal,H}
28: ComputePath(nstart,ngoal, F)
29: if minn∈OPEN(n = ngoal) then
30: publish solution
31: end if

complete. The completeness of the algorithm is ensured because when
ngoal is not reachable, the algorithm explores all the nodes in the OPEN
priority queue before returning that no path has been found. On the
other hand, when ngoal can be reached, the HA* finds the node that
accomplishes the homotopy class to follow in OPEN.

3.4.2 Homotopic Rapidly-exploring Random Tree

The Homotopic RRT (HRRT) is based on the goal-biased RRT algorithm which
has been shown to be very efficient in time, even in complex workspaces
(LaValle, 1999; Kim and Ostrowski, 2003). The algorithm allows a constrained
growing of the tree only in those directions that satisfy a given homotopy

3.4 homotopic path planning algorithms 59

class. Before adding a new node into the tree, the topological path traversed
is checked to ensure that it belongs to the homotopy class by computing the
intersections of the path with the reference frame.

3.4.2.1 Implementation

The HRRT is detailed in Algorithm 8. It receives as input the start configuration
qstart, the goal configuration qgoal, a candidate homotopy class to follow
H and the reference frame F. The nodes on tree T are tuples that contain the
configuration of the robot q and the topological path from qstart to q. These
values are accessible through the functions Q and P respectively. Just like the
RRT, the function Extend (line 31) iteratively extends tree T until the distance
between the configuration of nnew (Q(nnew)) and ngoal (Q(ngoal)) is lower
than a distThreshold.

The extension of the tree starts by selecting a random configuration qrand
from the C-space with the function ComputeQRand. Then, the Nearest−
Neighbor function returns the nearest node nnearest regarding a random
configuration qrand by looking for the node whose topological path is closer
to P(ngoal) (line 4). If there is more than one candidate, the node selected
is the closest to the goal according to the Euclidean distance. After qnew is
computed using the function ComputeQNew, FindIntersections (line 21)
checks whether the segment [Q(nnearest), qnew] intersects with any segment
in reference frame F2. The function returns the intersected edges sorted by
distance from Q(nnearest). Then, the function UpdateH (line 22) generates
the new topological path H ′ according to the intersections. No intersections
with F means that the tree grows in the nnearest sub-wedge and hence, the
function returns P(nnearest). If there are intersections and these intersections
follow the topological path, the function returns P(nnearest) ∪ I in order to
create a new candidate node nnew to be added to the tree; otherwise a null
path is returned and no node is added to the tree.

Figure 35 depicts an execution example of the HRRT with an exploration
tree and the solution obtained with no post-processing. The homotopy class to
follow is β11α10α20α1−1 . Notice that the algorithm constrains the expansion
of the tree only into those zones that accomplish the input homotopy class,
thus, in this example, segments α1−1 or β21 in the reference frame do not have
to be crossed by the tree.

3.4.2.2 Theoretical Properties

The HRRT has two important theoretical properties:

performance. The HRRT constrains the growing a tree only into those
directions that satisfy a given homotopy class. With respect to the RRT,
every time a new node is generated, it is checked whether the branch that
connects the tree with the new node intersects with any segment of the

2 Notice that it is possible to intersect with more than one segment in the reference frame
depending on the step between nnearest and qnew and how close these nodes are to the c
point.

60 path planning with homotopy class constraints

Algorithm 8 Homotopic RRT
NearestNeighbor(T ,qrand)

1: n← T ; d← Distance(Q(n),qrand)
2: for all c← T .Children() do
3: [n ′,d ′]← NearestNeigbor(T ,qrand)
4: if (|P(n ′)| > |P(n)|) or (|P(n ′)| = |P(n)|and d ′ < d) then
5: n← n ′; d← d ′

6: end if
7: end for
8: return {n,d}

FindIntersections([qnearest,qnew], F)
9: r← ∅

10: for i← 1 to |F| do
11: if p← Intersection([qnearest,qnew], F[i]) 6= null then
12: r← r∪ {Edge(i),Distance(qnearest,p)}
13: end if
14: end for
15: r← SortByDistance(r)

16: return r

Extend(T ,ngoal, F)
17: nnew ← {∞,null}
18: qrand ← ComputeQRand()

19: nnearest ← NearestNeighbor(T ,qrand)
20: qnew ← ComputeQNew(Q(nnearest),qrand)
21: I← FindIntersections([Q(nnearest),qnew], F)
22: H ′ ← UpdateH(P(nnearest), I}
23: if (H ′ 6= null) then
24: nnew ← {qnew,H ′}
25: nnearest.Add(nnew)
26: end if
27: return nnew

HRRT (qstart,qgoal,H, F)
28: nnew ← {qstart, ∅}; ngoal ← {qgoal,H}
29: T .Add(nnew)
30: while Distance(Q(nnew),Q(ngoal)) > distThreshold do
31: nnew ← Extend(T ,ngoal, F)
32: end while

reference frame. This extra computational load, assumed by the function
FindIntersections, makes the HRRT no to reach the performance of the
RRT, but ensures growth only into those regions that accomplish the
homotopy class.

completeness. When the HRRT is used together with the automated gener-
ation of the homotopy classes, the algorithm is complete because if the
goal is not reachable, no homotopy classes will exist and, consequently,
no paths will be generated. On the other hand, when the HRRT is exe-
cuted to find a path of an arbitrary topological sequence, the algorithm

3.4 homotopic path planning algorithms 61

b
1

b
2

α
1

0

β
1

1

α
1

−1

α
2

0

β
2

1

α
2

−1s

g

Figure 35: A path computed with the HRRT path planner for the homotopy class
β11α10α20α1−1 .

is probabilistically complete because it is not ensured that a path will be
found.

3.4.3 Homotopic Bug

The Homotopic Bug (HBug) is the third and last approach of this dissertation
to generate paths according to a homotopy class. The algorithm is based on
the Bug2. Essentially, it tries to follow directly the lower bound path obtained
with the modified funnel algorithm which ensures that the homotopy class is
being accomplished. However, as mentioned in Section 3.3, the segments in
the reference frame constrain the regions the paths can go through, but do not
take into account the shape of the obstacles. For this reason, the lower bound
path may intersect with the obstacles. In such cases, the obstacle boundary
is followed in a clockwise or counterclockwise direction according to the
homotopy class until the lower bound path leaves the obstacle. This process is
repeated for all the obstacles intersected by the lower bound path.

3.4.3.1 Perpendicular Dot Product

The perpendicular dot product is used to compute the direction to surround
an obstacle while keeping the homotopy class. Formally, the perpendicular
dot product, referred to as perp dot product, v⊥1 · v2 for v1 and v2 vectors in
the plane is a modification of the two-dimensional dot product in which v1 is
replaced by the perpendicular vector rotated 90 degrees to the left, as defined
by (Hill, 1994). It satisfies the identities:

v⊥1 · v2 = ‖v1‖ ‖v2‖ sin(θ) (3.1)

62 path planning with homotopy class constraints

ccw

1
v
1

2
v⊥

1
v

1
v

cw

1

2
v⊥

1
v

a) Counterclockwise direction b) Clockwise direction

Figure 36: Perpendicular dot product.

(v⊥1 · v2)2 + (v1 · v2)2 = ‖v1‖2 ‖v2‖2 (3.2)

where θ is the angle from vector v1 to vector v2.
Based on Equation 3.1, the sign of the perpendicular dot product indicates

the turning direction from v1 to v2: if v⊥1 · v2 is greater than 0, the direction is
counterclockwise (Figure 36.a); if it is less than 0, it is clockwise (Figure 36.b)
and if it is 0, v1 and v2 are parallel.

3.4.3.2 Implementation

The HBug detailed in Algorithm 9 receives as input parameters the lower
bound path P, a candidate homotopy class to follow H and the reference frame
F. Notice that the first and last elements of P are the start (s) and goal (g) nodes
respectively.

The algorithm is a three step process. First, the function BoundaryNodes
checks the intersections of P with the obstacles in the C-space. Every time
that P hits or leaves an obstacle, a boundary node is created. Each node
contains the contact point c and the obstacle label k, which is the subindex
of the point bk that represents the obstacle in the reference frame. These
parameters are accessible through the functions Q and Obst respectively.
Then, ObstacleNodes computes the nodes O based on the boundary nodes N
previously computed. Each obstacle node contains the first boundary node that
hits obstacle nh, the last node in its boundary without changing the obstacle
nl, and the direction d to surround the obstacle while following H (line 23).
Finally, the function BuildPath creates the path P ′ in the workspace by joining
the boundary of each obstacle oi ∈ O from nh to nl with the direction d.

The direction d to surround an obstacle is set according to the direction
of a hit node nh towards its successor nh+13 with respect to point bk that
represents the obstacle in the workspace in the reference frame. Notice that
nh and nh+1 are ensured to belong to the same obstacle since for any point
that hits an obstacle there has to be another that releases it. The perpendicular
dot product between vectors (Q(nh) − bk) and (Q(nh+1) − bk) computes the
boundary following the direction (line 15). If the result is less than 0, the

3 When the lower bound path intersects with an obstacle only once, the nh+1 node is also the nl
node.

3.4 homotopic path planning algorithms 63

11−
α

12
β

g

}2,{: 44 cn

01
α

2b
ccw }2,{: 33 cn

1b

02
α

}1,{: cn

}1,{: 22 cn

1b

11
β 12−

α
scw

}1,{: 11 cn

Figure 37: Path computed with the HBug path planner for the homotopy class
β11α10α20α1−1 .

direction from nh to nh+1 is counterclockwise; if it is greater than 0, the
direction is clockwise.

The result of the perpendicular dot product can be 0 if the vectors (Q(nh) −

bk) and (Q(nh+1) − bk) are parallel, which means that nh, nh+1 and bk
belong to the same lk in the reference frame (line 16). In such cases, d is
obtained according to two conditions: the initial direction selected to cross lk
from the start point, and the number of times that lk is crossed until αk or
βk, denoted by χk, of the homotopy class, on which nh+1 relies, is reached.
The initial direction is obtained with the dot product from the start s to the
first χk with the same subindex as lk4 (line 17). The number of times that lk is
crossed depends on the number of χk found in the homotopy class from the
beginning to the index ik, which indicates the position of the χk that contains
nh+1 (line 19).

Figure 37 depicts an example scenario where the HBug is applied. The
homotopy class to follow is β11α10α20α1−1 . The dashed line represents its
lower bound path, which intersects the first obstacle generating two boundary
nodes, n1 and n2, both located on line l1 in the reference frame. The point that
represents the obstacle is b1, also on l1, which makes the perpendicular dot
product between (Q(n1) − b1) and (Q(n2) − b1) unable to set the direction
(d = 0). Therefore, using the start point s and a point of the edge β11 , the
initial direction is set clockwise (cw). The last edge involved in this situation
is α10 , located in the second position in the homotopy class. The number
of edges with subindex 1 up to this position is 2, thus, the direction is not
changed. Then, the lower bound path intersects the second obstacle in n3 and
n4. Using the base point b2, the perpendicular dot product sets the direction
as counterclockwise (ccw). Finally, the path is composed from s to g with the
boundaries of obstacle 1 (from n1 to n2) and obstacle 2 (from n3 to n4) joined
by straight lines.

4 Notice that the start point cannot be in line lk in the reference frame since the perpendicular
dot product would also be 0.

64 path planning with homotopy class constraints

Algorithm 9 Homotopic Bug
BoundaryNodes(P)

1: N← ∅
2: for i← 1 to |P|− 1,pi ∈ P do
3: C← ContourPoints(pi, pi+1)
4: for all j← 1 to |C|, cj ∈ C do
5: k← Label(cj)
6: N← N∪ {cj,k}
7: end for
8: end for
9: return N

ObstacleNodes(N,H, F)
10: O← ∅
11: h← 1

12: while nh ∈ N/h < |N|− 1 do
13: nl ← last nj ∈ N/j > h without changing Obst(nh)
14: bk ← point of Obst(nh) in F
15: d← (Q(nh) − bk)

⊥ · (Q(nh+1) − bk)

16: if d = 0 then {parallel}
17: d← (s− bk)

⊥ · (point of 1
st χk ∈ H− bk)

18: ik ← index of χk ∈ H where nh+1 relies on
19: if |χk| ∈ H1..ik is even then
20: switch d
21: end if
22: end if
23: O← O∪ {nh,nl,d}
24: h← l+ 1

25: end while
26: return O

BuildPath(O)

27: P ′ ← ∅
28: for i← 1 to |O|,oi ∈ O do
29: P ′ ← P ′∪ Boundary(oi)
30: end for
31: return P ′

HBug(P,H, F)
32: N← BoundaryNodes(P)
33: O← ObstacleNodes(N, H, F)
34: P ′ ← BuildPath(O)

3.4.3.3 Theoretical properties

The HBug algorithm has been designed to be used together with the automated
computation of the homotopy classes. Nevertheless, the algorithm itself has
several properties:

completeness. As a Bug-based algorithm, when there is a solution path the
HBug finds it. On the other hand, when there is no solution, the function
BuildPath tries to follow the boundary of the obstacle that does not
allow the solution to exists. However, by doing this, it crosses segments

3.4 homotopic path planning algorithms 65

in the reference frame that do not describe the specific homotopy class
that has to be followed. To avoid checking the intersections with the
reference frame, it is also possible to find that no solution exists when
the algorithm again reaches the hit point after surrounding the whole
obstacle. Figure 38 depicts both situations for the homotopy class αk0 .

1
kβ

kb

g

1
n
2
n

s
0
kα

1
kβ

g

kb

g

1
n
2
n

s
0
kα

a) Intersection of the reference frame b) Findind a visited contact point

Figure 38: Two ways to check completeness with HBug algorithm for the homotopy
class αk0 .

no optimal. The HBug algorithm does not compute the optimal solution.
The cost of the solution for a specific homotopy class depends on how
far the subsegments in the reference frame are from the boundary of the
obstacles.

performance. During the path computation, the HBug only considers those
nodes of the C-space that belong to the lower bound path, which is al-
ready computed, as long as it does not traverse an obstacle. When it
does, the algorithm only looks for the free space around the intersected
obstacle. Therefore, the number of explored nodes in the C-space is dras-
tically reduced when compared with the HA* and HRRT algorithms. This
property has been reported in experimental results shown in Chapter 6.

upper bound. As with the Bug1 and Bug2 algorithms described in Chapter 2,
it is possible to establish an upper bound for the path length. The ideal
path would be the lower bound path length LB, which can only be
achieved when it does not intersect with an obstacle in the C-space.
However, most of the homotopy classes require the circumnavigation of
the n obstacles in the environment that cross with the lower bound path.
Depending on the shape of the obstacles, the worst possible case would
be to follow almost the whole perimeter p of the obstacles involved. Thus,
the upper bound is

UBHBug 6 LB+

n∑
i=1

pi (3.3)

66 path planning with homotopy class constraints

3.5 summary

Given an environment with obstacles, in this chapter we have proposed a
method to generate homotopy classes from a start to an end position that
can be followed in the C-space. The method starts by constructing a reference
frame which establishes the topological relationships between the obstacles
in the metric space. This frame allows us to describe any path according to
a sequence of intersected segments. The reference frame is used to set up a
topological graph that allows the systematic generation of homotopy classes
by means of a graph-based search algorithm. In order to contain the number of
classes generated, only those that neither self-intersect nor are duplicated are
allowed to be generated. The computed homotopy classes are sorted according
to a lower bound criterion which estimates their quality before generating a
path.

The next step consists of turning the topological information provided by the
homotopy classes into metric paths in the C-space. Three path planners from
three different approaches have been proposed to achieve this goal. The first
is the HA*, a graph-based search algorithm based on the A*. This algorithm
performs an exhaustive exploration of the C-space according to a heuristic
function. When the exploration of a node implies an intersection with the
reference frame, it is checked whether the segment has to be crossed according
to the input homotopy class. In such cases, it is explored, otherwise it is
discarded. The result of the HA* is the optimal path for the input homotopy
class.

The second path planner is the HRRT based on the goal-biased RRT al-
gorithm to perform a fast exploration of the C-space. Following the same
idea as the HA*, the HRRT constrains the growing of the tree only in those
directions that satisfy an input homotopy class. Before adding a new node into
the tree, the topological path traversed is checked to ensure that it belongs
to the homotopy class by computing the intersections in the path with the
reference frame.

The last proposed path planner is a Bug-based algorithm called HBug. This
algorithm tries to follow the lower bound path, ensuring the accomplishment
of the homotopy class. Since the segments in the reference frame constrain
the regions the paths can go through but do not take into account the shape
of the obstacles, the lower bound path may intersect with obstacles. In this
situation, the obstacle boundary is followed in the direction that accomplishes
the homotopy class until the lower bound path leaves the obstacle. This process
is repeated for all the obstacles intersected by the lower bound path. As a
result, the HBug generates a suboptimal path that follows the homotopy class
very quickly because the explored C-space is constrained between the nodes
of the lower bound path (already explored) and the partial boundary of the
obstacles intersected. Moreover, an intersection check with the reference frame
is not required every time a node is explored.

4
L O C A L M A P B U I L D I N G

As stated in Chapter 1, the main goal of our map building algorithm is to
compute a map with which the robot can perform path planning to generate
safe trajectories while avoiding obstacles. Nevertheless, robot localization and
map building is a research discipline by itself. Over the few last years, great
efforts have been made to provide a coupled solution to the Simultaneous
Localization And Mapping (SLAM) problem (Bailey and Durrant-Whyte, 2006;
Durrant-Whyte and Bailey, 2006). In underwater applications, autonomous
robot localization and map building is an even harder problem to solve and is
beyond the scope of this work. Since this research project focuses on path plan-
ning, a simple approach for local map building is adopted as a support for the
proposed algorithms. Hence, for the sake of simplicity, an uncoupled approach
for the localization and the map building problems is adopted. First, the local-
ization problem is addressed through sonar scan matching (Section 4.1), and
then the map, with which the robot can perform path planning is generated
using an Occupancy Grid Map (OGM) algorithm (Section 4.2).

4.1 scan matching

In order to generate a local map to perform path planning, the robot has to
be localized, which can be easily done by means of dead-reckoning. Then, the
exteroceptive robot measurements can be compounded with the robot pose
to iteratively map the robot’s surroundings. Even though a local map works
as a short term memory, if the dead-reckoning drifts very fast, the map may
become distorted even in a very short period of time. Hence, inspired in mobile
robotics domain (Mínguez et al., 2004), it is proposed an approach that uses
scan matching to improve the dead-reckoning estimate. Scan matching is an
interesting method since it does not need an a priori map of the environment,
and is able to work in both structured and unstructured environments, the
latter being the most common underwater.

Although a large literature exists reporting successful applications of scan
matching with mobile robots (Lu and Milios, 1994; Mínguez et al., 2005; Mon-
tesano et al., 2005; Burguera et al., 2007), very few attempts have been done to
use sonar scan matching in underwater applications. In (Castellani et al., 2004)
a non-probabilistic variation of Iterative Closest Point (ICP) (Besl and McKay,
1992) is proposed to achieve on-line performance for registering multiple views
captured with a 3D acoustic camera. (Silver et al., 2004) proposed the use of a
particle filter to deal with the sonar noisy data. In (Hernández et al., 2009b)
we proposed the MSISpIC to deal with data gathered by an AUV using an Me-
chanical Scanned Imaging Sonar (MSIS). This algorithm is our scan matching
proposal and will be detailed in this chapter. Essentially, it is an extension of

67

68 local map building

the Probabilistic Iterative Correspondance (pIC) algorithm (Montesano et al.,
2005) that takes into account the distortions in the acoustic image due to the
vehicle’s motion. In (Bülow et al., 2010) a 2D scan matching method based
on spectral registration of rendered scan data is presented, which has been
recently extended to work with 3D sonar images (Bülow and Birk, 2011).

Scan matching can delay the drift of dead-reckoning estimation. However,
it is not able to bound it over time. For this reason, recent studies have
been developed to combine SLAM and sonar scan matching underwater. In
(Roman and Singh, 2005), an ICP variant is used to register bathymetric
sub-maps gathered with a multibeam sonar profiler. (Mallios et al., 2010b)
used the MSISpIC to develop an algorithm that incorporates point-to-point
scan matching in an Augmented State EKF (ASEKF) to bound the drift. The
algorithm was tested in a dataset gathered in a man-made marina environment.
With the same dataset, (Burguera et al., 2010) proposed an iterated Extended
Kalman Filter (EKF) to estimate the trajectory of the AUV.

This section is organized as follows. First, Section 4.1.1 formally describes the
scan matching problem. Next, Section 4.1.2 details the scan matching algorithm
adopted from the mobile robotics domain to improve AUV localization. Then,
Section 4.1.3 descibes the method we propose to gather full scans of the
environment with the sonar sensors our vehicles are equipped with. Finally,
Section 4.1.4 provides a full description of the MSISpIC, the scan matching
algorithm we propose, which takes into account the uncertainties of the sensor
and the dead-reckoning estimation.

4.1.1 Problem Definition

Assuming we have a robot equipped with sensors that provide an estimation
of displacement through dead-reckoning as well as with a range and bearing
sensor to perceive the environment, the scan matching problem can be defined
as follows:

Let

• Sref = {r1, r2, ..., rn} be the reference scan, a set of n measurements,
represented by Cartesian points, gathered with a range and bearing
sensor at the reference frame {R}.

• Snew = {n1,n2, ...,nm} be the new scan, a set of m measurements,
represented by Cartesian points, gathered with a range and bearing
sensor at the new reference frame {N}.

• q0 = (x0,y0, θ0) be an initial guess of the robot’s relative displacement
between the two consecutive gathered scans Sref and Snew.

The goal of scan matching algorithms is to estimate the robot’s motion that
maximizes the overlap between Sref and Snew, using as the initial motion q0
in order to to obtain a better estimation of the real displacement q = (x,y, θ).
Figure 39 illustrates this process.

4.1 scan matching 69

Scan

matching+ =matching+ =

Figure 39: The scan matching problem.

4.1.2 Related Work

This section describes the ICP (Besl and McKay, 1992) and the pIC (Montesano
et al., 2005) algorithms. The ICP is a well-known scan matching reference
which is the base of the pIC, whereas our scan matching algorithm is based
on the pIC. Both techniques have been applied with success to mobile robots
which are usually equipped with laser-based range sensors that provide fast
and accurate measurements. However, underwater robots use sonar-based
sensors which usually gather data slower and are not as accurate as laser-based
ones. The solution we propose to this problem will be detailed in Section 4.1.3

4.1.2.1 Iterative Closest Point

The Iterative Closest Point (ICP) (Besl and McKay, 1992) is an algorithm
originally developed for computer vision purposes. It addresses scan matching
with a two step iterative process. First, at each iteration, there is an association
step in which the correspondences between scans are computed using a
rough displacement estimation in terms of the Euclidian distance. Next, a
minimization error process is applied in order to compute a new estimation
of this displacement. The process is repeated using the prior displacement
estimation until convergence.

The algorithm receives as an input a reference scan Sref with points ri
(where i = 1..n), a new scan Snew with points nj (where j = 1..m) and
a relative displacement estimation q = (x,y, θ) between them. The goal of
the ICP is to compute the corrected motion between the two scans qICP by
performing the following steps at each iteration k:

1. Transform each point of Snew to the coordinate system of Sref using the
current estimation qk. For each nj, compute its correspondence point
cj of Sref, which is the closest point among those with a distance lower
than a given threshold dmin.

cj = arg minri∈Sref{‖ri −qk ⊕nj‖ 6 dmin}

70 local map building

Point cj is the pairing of nj if, and only if, ‖ri − qk ⊕ nj‖ 6 dmin.
Otherwise cj does not have a pairing in Snew. At the end of this step,
the correspondence set C, compounded of tuples {cj,nj}, is obtained. C
is formally defined as:

C = {{cj,nj} ∈ Sref×Snew/cj = arg minri∈Sref{‖ri−qk⊕nj‖ 6 dmin}}

2. Compute the displacement qmin which minimizes the mean square
error between C elements:

qmin = arg minqk

|C|∑
i=1

‖ci −qk ⊕ni‖2

Convergence is reached when the global alignment error between Sref
and Snew for the estimated global displacement is less than a given
threshold. Another convergence condition appears when the difference
between the displacement estimations in two consecutive iterations
is smaller than a certain threshold. If there is convergence, the esti-
mated value qmin is returned as qICP. Otherwise, another iteration with
qk+1 = qmin is required.

Although the ICP is a reference within scan matching techniques, it uses
the Euclidian distance in the association step and in the minimization process.
This represents a limitation since it does not take into account the sensor’s
rotation.

4.1.2.2 Probabilistic Iterative Correspondence

The Probabilistic Iterative Correspondance (pIC) algorithm (Montesano et al.,
2005) is a statistical extension of the ICP. The ICP does not model the uncer-
tainty of the sensor measurements. Because of this, if the scan data is very
noisy, two statistically compatible points could appear far enough, in terms
of the Euclidean distance. This situation might prevent a possible associa-
tion or even generate a wrong one. The pIC algorithm models the relative
displacement q as well as the observed points in both scans ri and ni as
random Gaussian variables (r.g.vs). Whereas the geometric ICP algorithm uses
the closest point rule to find the correspondence for a point in the new scan,
the pIC algorithm first computes the set of compatible points in terms of the
Mahalanobis distance, and then the virtual expected compatible point to be
used as the correspondence (Figure. 40).

The pIC algorithm is described in pseudocode in Algorithm 10. The inputs
are the reference scan Sref with points ri (where i = 1..n), the new scan Snew
with points nj (where j = 1..m) and the initial relative displacement estimation
q with its covariance Pq. The following procedure is iteratively executed until
convergence. First, the points of the new scan nj are compounded with the

4.1 scan matching 71

Y(m)

X(m)X(m)

Figure 40: pIC correspondence computation. The large ellipse contains all the statis-
tically compatible points and the squared point represents the correspon-
dence with its uncertainty (small ellipse).

current estimation of the robot’s displacement qk (line 5). The result cj are the
points of the new scan referenced to the reference frame. Then, for each point
cj, a set Aj of all the compatible points in the reference scan Sref is established
using a compatibility test over the squared Mahalanobis distance:

D2M = (ri − cj)P
−1
ij (ri − cj)

T (4.1)

The next step consists of computing the virtual association point aj as the
expectancy over the random variable defined by the set Aj (line 7). To do so,
it is necessary to evaluate the probability p(ri = cj) of each ri, for being the
correct pairing for cj, whose error is defined as a r.g.v.

eij = ri −qk ⊕nj

eij ∼= N(r̂i − q̂k ⊕ n̂j,Peij)

Peij = Pri + J1⊕PqJ
T
1⊕ + J2⊕PnjJ

T
2⊕

where:

qk ≡ N(q̂k,Pq)

nj ≡ N(n̂j,Pnj)

ri ≡ N(r̂i,Pri)

J1⊕ and J2⊕ are the well-known Jacobian matrixes of the compounding
operation with respect to the first and second arguments respectively (Smith
et al., 1990).

72 local map building

then p(ri = cj) = p(eij = 0) can be computed as follows:

p(eij = 0) =
feij(ri − cj)∑

ri∈Aj feij(ri − cj)
(4.2)

where feij is the probability density function of eij r.g.v. Once âj has been
computed as the expectance of ri over Aj, a similar procedure can be used
to estimate its uncertainty Paj before computing the error covariance Pej of
the matching error (âj − ĉj). Then, it is possible to estimate the displacement
q̂min which minimizes the mean square error of the Mahalanobis distance
(Bar-Shalom and Fortman, 1998) between âj and ĉj (line 11). This is done
through the Least Squares minimization method. If there is convergence, the
function returns, otherwise another iteration is required.

Algorithm 10 Probabilistic Iterative Correspondance
pIC(Sref,Snew, q̂,Pq)

1: k← 0

2: q̂k ← q̂

3: repeat
4: for j← 1 to |Snew| do
5: ĉj ← q̂k ⊕ n̂j
6: Aj ← {ri ∈ Sref/D2M(ri, cj) 6 χ22,α}

7: âj ←
∑
ri∈Aj r̂ip(ri = cj)

8: Paj ←
∑
ri∈Aj [(r̂i − âj)(r̂i − âj)

T]p(ri = cj)

9: Pej ← Paj + J1⊕PqJ
T
1⊕ + J2⊕PnjJ

T
2⊕

10: end for
11: q̂min ← arg minq

{∑
j

(
(âj − ĉj)

TP−1ej (âj − ĉj)
)}

12: if Convergence() then
13: q̂pIC ← q̂min
14: else
15: q̂k+1 ← q̂min
16: k++

17: end if
18: until Convergence() ork > maxIterations
19: return q̂pIC

4.1.3 Scans Generation using an MSIS

The pIC algorithm was conceived to be used with a laser range finder in struc-
tured environments. These sensors gather a full range scan of the environment
almost instantaneously and thus, the displacement of the vehicle is negligible.
However, in underwater robotics, commercially available scan sensors are
based on acoustics. Most of these sensors have a mechanical head that rotates
at fixed angular steps. At each step, a beam is emitted and received, measuring
ranges to the obstacles found in its trajectory. Because of this, getting a com-
plete scan lasts few seconds while the vehicle is moving, generating deformed

4.1 scan matching 73

scans. Therefore, it is necessary to correct them taking into account the vehicle
pose when the beam was grabbed.

This section describes the process of gathering a full scan, as the one expected
by the pIC algorithm as the input, using the sensors of the experimental
platforms used in this work. To perceive the environment an MSIS is used,
and a combination of Doppler Velocity Log (DVL) and Motion Reference Unit
(MRU) readings to estimate the vehicle’s motion. For a detailed explanation of
the vehicles and their sensors see Chapter 5.

4.1.3.1 Perceiving the environment with an MSIS

An MSIS returns a polar acoustic image composed of beams. Each beam has a
particular bearing angle value and a set of intensity measurements. The angle
corresponds to the orientation of the sensor head when the beam was emitted.
The beam itself contains an acoustic linear image which corresponds to the
intensity levels of beam’s echoes perceived by the sensor at a certain distance.
The beam information is returned as an array of acoustic intensities. Figure 41

illustrates an example of the echoes strength intensity levels of one single beam
according to the obstacles in its trajectory and Figure 42 shows a full example
scan gathered in a water tank environment.

Figure 41: Generation of an acoustic beam. Extracted from (Ribas et al., 2010)

Since the pIC algorithm is intended to work with range scans, a segmentation
process to obtain range and bearing data is required. Each beam gathered is
segmented using a predefined threshold to compute the intensity peaks. Due
to the noisy nature of the acoustic data, a minimum distance between peaks
criteria is also applied. Therefore, the positions finally considered are those
corresponding to high intensity values above the threshold with a minimum
distance between each other. Figure 43 illustrates this process.

74 local map building

Figure 42: Interpretation of a polar image gathered with an MSIS. The current beam
is detailed.

…

intensities

ranges (m)…

Threshold

Distance

Local maxima

finder
…

ranges (m)

Distance

In
te

n
si

ty
 l

e
v
e

l

Threshold

Input

In
te

n
si

ty
 l

e
v
e

l

Threshold

Input

Output
Range (m)

range1 range2

Figure 43: A peaks detector for an MSIS beam.

4.1 scan matching 75

4.1.3.2 Relative Vehicle Localization

The pIC algorithm needs a complete scan to be registered with the previous
one in order to estimate the vehicle’s displacement. Since an MSIS needs a
considerable period of time to obtain a complete scan, if the vehicle does
not remain static, the vehicle’s motion induces a distortion in the acoustic
image. To deal with this problem, it is necessary to know the vehicle’s pose
at the beam reception time with a relative localization system. All the range
measurements belonging to the same scan have to be referenced to the same
coordinate system. Figure 44 depicts an example of a distorted acoustic image
due to the motion of the vehicle while perceiving the environment and the
resultant corrected image using a relative localization system.

Relative

localization+ =

0 5 10 15 20

(m)

0 5 10 15 20

(m)(m) (m)

Figure 44: The distortion produced by the displacement of the robot in the scenario in
Figure 42 while acquiring data can be corrected using the relative localiza-
tion system.

The localization system for gathering scans is a slight modification of the
navigation system described in (Ribas et al., 2006). In this system, an MRU
provides heading measurements and a DVL unit which includes attitude,
heading and depth sensors is used to estimate the vehicle’s pose while the scan
is being gathered. On one hand, the beams acquisition of the MSIS depends
on the fire up range (the larger the distance the slower the acquisition). On
the other hand, the DVL readings arrive at a frequency from 1.5Hz to 3Hz,
depending on the sensor model, while the MRU returns data at 10Hz. Since
all data is gathered asynchronously, an EKF is used to estimate the vehicle’s
6DoF pose whenever a sonar beam is read. DVL and MRU readings are used
asynchronously to update the filter. In order to predict the robot motion
between the DVL measurements, a simple 6DoF constant velocity kinematics
model is used.

The information of the system at step k is stored in the state vector x
k

with
estimated mean x̂

k
and covariance P

k
defined as follows:

x̂
k
=
[
η̂
B , ν̂R

]T
P
k
=E

[(
x
k
− x̂

k

)(
x
k
− x̂

k

)T]
(4.3)

where:

η
B = [x,y, z,φ, θ,ψ]T , ν

R = [u, v,w,p,q, r]T (4.4)

76 local map building

As defined in (Fossen, 1994), ηB is the position and attitude vector referenced
to a base frame B, and νR is the linear and angular velocity vector referenced
to the robot’s coordinate frame R. The coordinate frame B is chosen coincident
with the initial reference frame I but oriented to the north, hence the compass
measurements can be integrated in a straight forward manner.

The vehicle’s movement prediction is performed using the 6DoF kinematic
model:

x
k
=f(x

k−1
,w

k
)=

ηBk
νR
k

=
ηBk−1 + J(ηBk−1) [νRk−1∆T + 1

2wk∆T
2

]
νR
k−1

+w
k
∆T

 (4.5)

J(η)=

cψcθ cψsθsφ−sψcφ cψsθcφ+sψsφ 0 0 0

sψcθ sφsψsθ+cψcφ sψsθcφ−sφcψ 0 0 0

−sθ cθsφ cθcφ 0 0 0

0 0 0 1 sφtθ cφtθ

0 0 0 0 cφ −sφ

0 0 0 0 sφ/cθ cφ/cθ

(4.6)

Although in this model the velocity is considered to be constant, in order
to allow for slight changes, a velocity perturbation modeled as the integral of
a stationary white noise w

k
is introduced. The covariance matrix Q

k
of this

acceleration noise is diagonal and in the order of magnitude of the maximum
acceleration increment that the vehicle may experience over a sample period.

E[w
k
] = 0, E[w

k
w
T

j
] = δ

kj
Q (4.7)

Hence, w
k

is the acceleration noise which is integrated and added in velocity,
being nonlinearly propagated to the position. Finally, the model prediction
and update is carried out as detailed below:

prediction. The estimate of the state is obtained through function f, de-
scribed in Equation 4.3:

x̂
k
= f(x̂

k−1
) (4.8)

and its covariance matrix as:

P
k
= F

k
P
k−1
F
T

k
+G

k
Q
k
G
T

k
(4.9)

where F
k

and G
k

are the Jacobian matrices of partial derivatives of the
non-linear model function f with respect to the state x

k
and the noise

w
k

, respectively.

4.1 scan matching 77

update using dvl measurements. The model prediction is updated by
the standard Kalman filter equations each time a new DVL measurement
arrives:

z
DVL,k = [u

b
, v
b

,w
b

,uw , vw ,ww ,φa , θa ,ψc , z
depth

]T (4.10)

where subindex b stands for the bottom tracking velocity, w for the
through water velocity, a for attitude and c represents the compass. The
measurement model is:

z
DVL,k = H

DVL,kxk|k−1 + vk (4.11)

H
DVL

=

0
3×3 0

3×3 I
3×3 0

3×3

0
3×3 0

3×3 I
3×3 0

3×3

0
3×3 0

3×3 0
3×3 0

3×3

0 0 1 0
1×3 0

1×3 0
1×3

 (4.12)

Notice that the DVL has a pressure sensor which provides precise depth
measurements (zdepth). The measurement noise v

k
is a gaussian zero-

mean white noise:

E[v
k
] = 0, E[v

k
v
T

j
] = δ

kj
R
DVL,k (4.13)

where the correlated covariance matrix R
DVL,k is computed with the same

method described in (Ribas et al., 2010) using the σ values provided by
the manufacturer’s specifications:

R
DVL,k =

 σ
2
u σuv σuw

σvu σ2v σvw

σwu σwv σ2w

 (4.14)

Since the DVL sensor provides a status measurement for the bottom
tracking and water velocities, depending on the quality of the measure-
ments, different versions of the H matrix are used to fuse one (removing
row 2), the other (removing row 1), or both readings (using the full
matrix).

update using mru measurements. Whenever a new attitude measure-
ment is available from the MRU sensor, the model prediction is updated
using the standard EKF equations:

z
MRU,k = [φ, θ,ψ]T , z

MRU,k = H
MRU,kxk|k−1 + vk (4.15)

78 local map building

H
MRU

=
[
0
3×3 I

3×3 0
3×6

]
(4.16)

where the measurement noise v
k

is a gaussian zero-mean white noise:

E[v
k
] = 0, E[v

k
, vT
j
] = δ

kj
R
MRU,k (4.17)

where the covariance matrix R
MRU,k is non-correlated since the MRU is

mounted aligned with the vehicle’s axes. σ values are set according to
the manufacturer’s specifications:

R
MRU,k =

σ2φ 0 0

0 σ2θ 0

0 0 σ2ψ

 (4.18)

4.1.3.3 Scan Forming

The presented navigation system is able to estimate the vehicle’s pose, but the
uncertainty will grow without limit due to its dead-reckoning nature. Moreover,
the pIC algorithm only requires the robot’s relative pose and uncertainty with
respect to the initial reference frame I at the beginning of the scan. Hence, a
slight modification to the filter is introduced making a reset in position (setting
x, y, z to 0 in the vector state) whenever a new scan is started. Therefore, while
the filter is running, the estimated position is always relative to the position
where the first beam of the scan was gathered. Note that it is important to
keep the ψ value since it represents an absolute angle with respect to the
magnetic north. For this reason, a reset would mean an unreal high rotation
during the scan. The same thing applies to φ and θ. Since it is only required
the uncertainty accumulated during the scan, the reset process also affects the
x, y, and z terms of the covariance matrix P.

The modified EKF provides the vehicle’s relative pose where the beams were
gathered including its uncertainty accumulated during the scan. Therefore,
using a similar procedure than in (Ribas et al., 2008), it is possible to reference
all the ranges computed from the beams to the initial frame I, removing the
distortion induced by the robot’s motion by using the following method.

The mathematical method needed to compute the undistorted points of the
scan and their uncertainty is detailed below while a geometric representation
of the transformations involved is provided in Figure 45.

Let

• ρ ≡ N(ρ̂,Pρ) be a r.g.v corresponding to the polar measurement where
ρ̂ = (β, r) is the observed measurement and Pρ its corresponding uncer-
tainty.

4.1 scan matching 79

• xBR ≡ N(x̂BR ,PBR) be a r.g.v corresponding to the vehicle’s uncertain
position where the ρ beam was gathered. This value is estimated by the
EKF and is represented in the northern referenced frame B.

• xIB ≡ N(x̂IB,PIB) be a r.g.v corresponding to the transformation needed
to map B frame to I frame. In this particular case, it is a null translation
followed by a rotation used to align B with I.

• xRS be a deterministic vector that describes the position and attitude of
the sensor frame S with respect to the robot’s frame R. Note that this is a
non-random rigid body transformation.

Then, it is possible to compute the pose and uncertainty of any observed
point referenced to the initial frame I as follows:

1. pS = P2C(ρ) ⇒ pS = N(P2C(ρ̂)︸ ︷︷ ︸
p̂S

, JSPρJTS︸ ︷︷ ︸
PS

)

where P2C(ρ) turns polar coordinates into Cartesian coordinates and

JS =
∂P2C(ρ)

∂ρ

∣∣∣∣
ρ̂

2. pR = xRS ⊕pS ⇒ pR = N(xRS ⊕ p̂S︸ ︷︷ ︸
p̂R

, J2⊕PSJT2⊕︸ ︷︷ ︸
PR

)

3. pB = xBR ⊕pR ⇒ pB = N(x̂BR ⊕ p̂R︸ ︷︷ ︸
p̂B

, J1⊕PBRJT1⊕ + J2⊕PRJ
T
2⊕︸ ︷︷ ︸

PB

)

4. pI = xIB ⊕pB ⇒ pI = N(x̂IB ⊕ p̂B︸ ︷︷ ︸
p̂I

, J1⊕PIBJT1⊕ + J2⊕PBJ
T
2⊕︸ ︷︷ ︸

PI

)

First, function P2C transforms the bearing and range data ρ = (β, r)T from
Polar space to Cartesian space. The result is the observed point pS referenced
to the sensor frame S. As stated, pS is an r.g.v whose mean p̂S and covariance
PS can be easily computed. Then, by means of a rigid body transformation, the
point is referenced to the robot’s frame R. Again, the new representation pR is
an r.g.v with mean p̂R and covariance PR. Now, the robot’s relative position
xBR computed with the EKF is compounded with the robot’s referenced point
pR to get the r.g.v pB with mean p̂B and covariance PB. Finally, the last
compounding operation rotates the point to reference it to the initial frame I.
As in the previous cases, pI is an r.g.v with a known mean p̂I and covariance
PI. Algorithm 11 describes this process in algorithmic notation. In order to
show an illustrated example, the full process is applied to a scan depicted
in Figure 46, where each beam is gathered in a different vehicle position. As
a result, the algorithm references the scan measurements in the position of
the robot where the first beam of the scan was gathered, which is depicted in
Figure 47.

80 local map building

{S}
x

y

x

y

{R} {S}

N

{B}

Figure 45: A scan forming process: any beam k of the scan is represented with respect
to the pose of the robot when the first beam I was gathered.

N

1z
endz

x

}{B

xx
}{B

}{ endR
y

y

}{I

xy

y

x

Figure 46: Initially each beam is gathered at different vehicle positions.

z
endz

N

1z

x

y

}{B

}{I

}{ endR

x

y

}{I

y

x

Figure 47: The scan grabbing process references all the beams of the scan at the
position of the robot when the first beam was gathered. The uncertainty of
the motion has been propagated to the scan points.

4.2 occupancy grid mapping 81

Algorithm 11 Scan grabbing
ScanGrabbing()

1: ResetDeadReckoningXYZ()
2: {x̂IB,PIB}← GetDeadReckoning()

3: S← ∅
4: while |S| < beamsPerScan do
5: beam← GetBeam()

6: beam← Segment(beam)

7: {ρ̂,Pρ}← LocalMaximaFinder(beam)

8: {x̂BR ,PBR}← GetDeadReckoning()

9: n̂← x̂IB ⊕ x̂
B
R ⊕ x

R
S ⊕ P2C(ρ̂) {ρ̂ from the local frame I}

10: PB ← [J1⊕]x̂BR
PBR[J

T
1⊕]x̂BR

+ [J2⊕]p̂R [J2⊕]p̂S [JS]ρ̂Pρ[J
T
S]ρ̂[J

T
2⊕]p̂S [J

T
2⊕]p̂R

11: Pn ← [J1⊕]x̂IB
PIB[J

T
1⊕]x̂IB

+ [J2⊕]p̂BPB[J
T
2⊕]p̂B {Pρ from the local frame I}

12: S← S∪ {n̂,Pn}
13: end while
14: q̂← x̂BR
15: Pq ← PBR
16: return {S, q̂,Pq}

4.1.4 The MSISpIC algorithm

The MSISpIC is an extension of the pIC algorithm that deals with motion
induced distortions involved in the scan grabbing process when using imaging
or profiler sonar sensors. The algorithm, described in pseudocode in Algo-
rithm 12, iteratively grabs two scans and register them using the pIC algorithm
(line 5). It is worth noting that the pIC takes as input two consecutive scans
(Sref and Snew) and its relative displacement which coincides with the pose
of the vehicle at the end of the first scan (qref). The output is an improved
estimation of the robot’s displacement qnew. The iterative compounding of
the relative displacement allows us to track the robot’s global position (line 6).

Algorithm 12 MSISpIC
MSISpIC()

1: {Sref, q̂ref,Pqref }← ScanGrabbing()

2: q̂global ← 0

3: loop
4: {Snew, q̂new,Pqnew }← ScanGrabbing()

5: q̂pIC ← pIC(Sref,Snew, q̂ref,Pqref)
6: q̂global ← q̂global ⊕ q̂pIC
7: Sref ← Snew
8: q̂ref ← q̂new
9: end loop

4.2 occupancy grid mapping

This section concerns about Occupancy Grid Map (OGM) techniques which
group a set of algorithms used to build a representation of the environment

82 local map building

based on the data gathered by the vehicle while navigating. Scan matching
techniques improve the dead-reckoning estimation of the vehicle, but do not
compute its exact displacement due to the intrinsic noisy data gathered with
the sonar sensors. Therefore, most of the time raw data is not suitable to build
a robust representation of the environment where the robot has to perform
path planning.

OGM algorithms address the problem of generating consistent maps from
noisy and uncertain measurement data under the assumption that the vehicle
pose is known. The basic idea of occupancy grids is to represent the map as
a field of random variables arranged in an evenly space grid. Each random
variable is binary and corresponds to the occupancy of the location it cov-
ers. OGM algorithms implement approximate posterior estimation for those
random variables (Thrun et al., 2005).

OGM techniques were originally developed by (Moravec and Elfes, 1985)
and have been used in mobile robotics since its early origins in the middle
eighties as a robust map representation for SLAM (Hähnel et al., 2003), as
well as for obstacle avoidance (Borenstein and Koren, 1991) and path planning
(Elfes, 1989). In underwater robotics, grid mapping has been used in many
applications such as searching hydrothermal vent fields (Jakuba and Yoerger,
2008) as well as for SLAM applications (Fairfield et al., 2007).

4.2.1 Problem Definition

The standard OGM problem consists of computing the grid histogram related
to the density function p(m|z1, ..., zT), where m is the map and z1, ..zT are the
robot’s measurements for a time t from 1 to T . The problem assumes that the
robot’s trajectory (x1, ..., xT) is known. Since maps are defined over a high
dimensional space, the following assumption is commonly applied in order to
keep the problem tractable:

p(m|z1, ..., zT) =
∏
x,y

p(mx,y|z1, ..., zT)

where it has been assumed that each individual grid cell is conditional inde-
pendent of the rest converting the multidimensional mapping problem into a
set of one dimensional mapping problems (one for each cell). Then, the Bayes
rule can be used to estimate the individual probability of each cell at each time
step t:

p(mx,y|z1, .., zt) =
p(zt|z1, .., zt−1,mx,y)p(mx,y|z1, .., zt−1)

p(zt|z1, ..., zt−1)

Under the static world assumption, given a certain map m, the conditional
dependence between the last and the past measurements disappears:

p(mx,y|z1, ..., zt) =
p(zt|mx,y)p(mx,y|z1, ..., zt−1)

p(zt|z1, ..., zt−1)

4.2 occupancy grid mapping 83

Then, the Bayes rule can also be applied to p(zt|mx,y) to obtain the following
recursive formulation:

p(mx,y|z1, ..., zt) =
p(mx,y|zt)p(zt)p(mx,y|z1, ..., zt−1)

p(mx,y)p(zt|z1, ..., zt−1)
(4.19)

By analogy, for the opposite situation ¬m:

p(¬mx,y|z1, ..., zt) =
p(¬mx,y|zt)p(zt)p(¬mx,y|z1, ..., zt−1)

p(¬mx,y)p(zt|z1, ..., zt−1)
(4.20)

Dividing (4.19) by (4.20) leads to cancelation of various probabilities difficult
to calculate:

p(mx,y|z1, ..., zt)
p(¬mx,y|z1, ..., zt)

=
p(mx,y|zt)

p(¬mx,y|zt)

p(mx,y|z1, ..., zt−1)
p(¬mx,y|z1, ..., zt−1)

p(¬mx,y)

p(mx,y)

=
p(mx,y|zt)

1− p(mx,y|zt)

p(mx,y|z1, ..., zt−1)
1− p(mx,y|z1, ..., zt−1)

1− p(mx,y)

p(mx,y)

(4.21)

(4.21) is commonly expressed using log odds to avoid numerical instabilities
for probabilities near zero or one:

ltx,y = lt−1x,y +mtx,y − l
0
x,y

where:

ltx,y = log
p(mtx,y)

1− p(mtx,y)

lt−1x,y = log
p(mt−1x,y)

1− p(mt−1x,y)

mtx,y = log
p(mtx,y|zt)

1− p(mtx,y|zt)

l0x,y = log
p(m0x,y)

1− p(m0x,y)

Notice that the probabilities can be easily recovered from the log odds ratio
using for example ltx,y:

p(mtx,y) = 1−
1

1+ exp {ltx,y}

From the computational point of view, to compute the new log odds value
of a grid cell probability ltx,y, its previous value lt−1x,y has to be incremented to
a certain value mtx,y as stated by the inverse sensor model corresponding to
the last measurement zt and the initial probability of the grid cell l0x,y must be
subtracted.

84 local map building

4.2.2 Inverse Sensor Model

A conventional sensor model used in probabilistic localization algorithms is
described by a density function p(z|x) which allows the computation of the
observation probabilities for a given robot position. For mapping applications,
the inverse sensor model p(m|z) is used instead, providing a mean to compute
the map occupancy probability related to a certain observation. In this section,
two inverse sensor models are provided, a straight forward classical one
applicable to a sonar profiler and a proposed new one more suitable for
imaging sonar sensors.

4.2.2.1 Profiler Sonar

A sonar profiler is a range and bearing sensor which behaves as common
time-of-flight air ultrasonic sensors do. The main difference between them is
that air ultrasonic sensors normally have a very wide angle β (e.g. 30

◦) in their
beam pattern while underwater pencil-beam type sonar profilers have overture
angles of 3

◦ or even 1
◦. For this sort of sensor, the classical cone model broadly

used in mobile robotics can be used. Given a certain range measurement, this
model provides the probability of being occupied in the map for each grid cell
that belongs to the sector related to the beam pattern. The model establishes
three probabilities in their log odd form, which are depicted in Figure 48:

• locc. The probability of being occupied, which is assigned to all the grid
cells within the sensor cone range close to the range distance. The width
of this area is set by an α parameter.

• lfree. The probability of being free, which is assigned to all the cells
between the origin of the beam and the observed range minus the α/2
interval.

• lunknown. The probability of being unknown, assigned to all the grid
cells further than the observed range plus the α/2 interval.

Figure 48: A profiler sonar inverse sensor model.

4.2 occupancy grid mapping 85

scale
Beam acquisition

Beam

ReflectionShadow

Inverse modelInverse model

Figure 49: Imaging sonar inverse sensor model.

4.2.2.2 Imaging Sonar

A range finder sensor is usually modeled as a cone, whereas an imaging sonar
beam pattern is often represented with a fan shape. This beam pattern has
two overture angles, a narrow horizontal angle (e.g. 3

◦) and a wide vertical
one (e.g. 40

◦). Since the work presented in this document is conceived in 2D,
the imaging sonar is represented as a sector with an overture of β = 3◦. As
stated earlier, there is a relationship between the amount of acoustic energy
reflected at a certain distance and its occupancy probability within the beam
cone. Under this hypothesis, an inverted beam model like the one shown
in Figure 49 can be established, where for each bin intensity, a related log
odd probability value is assigned to all cells that have the same range within
the sensor cone. These log odd probabilities are computed using a linear
transformation whose limits are set according to the intensity bounds of the
sensor.

As stated in the profiler sonar model, if a bin has a higher intensity value
than a predefined threshold, it is assumed that an obstacle is found and hence,
a lunknown value is assigned from the next bin to the end of the beam because
it is not possible to know the information behind it. However, small obstacles
that do not return high intensity levels create shadows in the beam’s projection
that become unknown areas. These are projected into the map according to
their intensity values.

86 local map building

4.3 summary

In this chapter we have proposed a local map building method that achieves
the computation of an OGM in realtime while the robot is navigating. The
method first improves the dead-reckoning navigation through scan matching.
We have proposed the MSISpIC, an extension of the pIC algorithm that deals
with the data gathered with an MSIS. The algorithm removes the motion
induced distortion of the scan and predicts its uncertainty by using an EKF
with a constant velocity model and acceleration noise, updated with velocity
and attitude measurements obtained from a DVL and an MRU respectively.
Then, the standard pIC improves the relative displacement between them.

In order to generate an OGM, two inverse sensor models have been proposed:
the commonly used range finder, modeled as a sector where the area far from
the sensor is assumed to be occupied by a detected obstacle, whereas the rest
of the sector is a free zone; and an imaging sonar sensor, which takes into
account the probability of occupancy at each discretized part of the beam cone
according to the amount of acoustic energy reflected.

5
E X P E R I M E N TA L P L AT F O R M

This chapter reports the main features of the experimental platforms used in
this dissertation, which are Ictineu AUV and Sparus AUV, including their
design principles, the actuators and the on board sensors. Next, a detailed
description of the sensors used for map building purposes is provided. Finally,
an insight of the control architecture used in the robots is given.

5.1 vehicle experimental platforms

The VICOROB group of the University of Girona started the development
of underwater vehicles in 1995 with the construction of Garbi (Amat et al.,
1996) which was conceived as a ROV. In 2005, the vehicle was rebuilt and
converted into the Garbi AUV which was equipped with four thrusters, a
simple sensor suite and two battery packs. The Garbi’s dimensions were 1.3m
long, 0.9m high and 0.7m wide with a maximum speed of 1knot and a weight
of approximately 150Kg. In 2001, Uris (Batlle et al., 2004) was developed, a
light weight (35Kg) low cost AUV. It was a spherical shaped vehicle (35cm

diameter) used as a research platform in a water tank testing facility. The
experience obtained with the development of these vehicles by the group made
it possible to build two more low-cost vehicles: the Ictineu AUV and the Sparus
AUV, which have been used in some of the experiments in this thesis.

5.1.1 Ictineu AUV

The Ictineu AUV, depicted in Figure 50, is the result of a project started in
2006. During the summer of that year, the Defence Science and Technology Lab
(DSTL), the Heriot-Watt University and the National Oceanographic Center of
Southampton organized the first SAUC-E, a European wide competition for
students to promote research and development in underwater technology. The
Ictineu AUV was originally conceived as an entry for the SAUC-E competition
by a team of students collaborating with the VICOROB group at the University
of Girona (Ribas et al., 2007). Although the competition determined many
of the vehicle’s specifications, Ictineu AUV was also designed keeping its
posterior usage as an experimental platform for various research projects in
our laboratory in mind. The experience obtained from the development of
previous vehicles by the group made it possible to build a low-cost vehicle of
reduced weight (52Kg) and dimensions (0.74x0.465x0.524m) with remarkable
sensorial capabilities and easy maintenance.

The Ictineu AUV was built using a typical open frame design. This configu-
ration has been widely adopted by commercial ROVs because of its simplicity,
toughness and reduced cost. Although the hydrodynamics of open frame

87

88 experimental platform

Figure 50: The Ictineu AUV.

vehicles is known to be less efficient than that of closed hull type vehicles,
they are suitable for applications requiring neither high velocity movements
nor traveling long distances. The robot’s chassis is made of Delrin, a plastic
engineering material which is lightweight, durable and resistant to liquids. An-
other aspect of the design is the modular conception of its components which
simplifies upgrading the vehicle and makes it easier to carry out maintenance
tasks.

The thrusters and most of the sensors are watertight and mounted directly
on the vehicle’s chassis. On the other hand, two cylindrical aluminum pressure
vessels house the power and computer modules while a smaller one made of
Delrin contains an MRU. Their end-caps are sealed with conventional O-ring
closures while the electrical connections with other hulls or external sensors
are made with plastic cable glands sealed with epoxy resin. The Ictineu AUV
is propelled by six thrusters which allow it to be fully actuated in Surge
(movement along X axis), Sway (movement along Y axis), Heave (movement
along Z axis) and Yaw (rotation around Z axis) achieving maximum speeds of
3knots. It is passively stable in both Pitch and Roll DoFs as its meta-centre is
above the centre of gravity. This stability is the result of an accurate distribution
of the heavier elements in the lower part of the frame combined with the effect
of technical foam placed in the top, which provides a slightly positive buoyancy
to the vehicle.

One of the main objectives of the laboratory was to provide the underwater
robot with a complete sensor suite. The robot includes a Tritech Miniking MSIS
designed for use in underwater applications such as obstacle avoidance and
target recognition. The robot is also equipped with a SonTek Argonaut DVL

5.1 vehicle experimental platforms 89

which measures ocean currents, vehicle speed over ground and altitude using
its 3 acoustic beams. The particular spatial distribution chosen to place the
acoustic sensors within the vehicle’s frame avoids dead zones, improving their
overall performance. Moreover, the Ictineu AUV has a compass which outputs
the sensor heading (angle with respect to the magnetic North), a pressure
sensor for water column pressure measurements and an Xsens MTi low cost
miniature MRU which provides 3D orientation (attitude and heading), a 3D
rate of turn as well as 3D acceleration measurements. Finally, the robot is
also equipped with two cameras; a forward-looking color camera, mounted
on the front of the vehicle and a downward-looking Tritech Super SeaSpy
color Charge Coupled Device (CCD) Underwater Camera, located in the lower
part of the vehicle. The latter is mainly used to capture images of the seabed
for research on image mosaicking while the former is intended for target
detection and tracking, inspection of underwater structures and to provide
visual feedback when operating the vehicle in the ROV mode. At present,
the Ictineu AUV is being used as a research platform for various underwater
inspection projects which include dams (Ridao et al., 2010), harbors, shallow
waters and cable/pipeline inspections (El-Fakdi et al., 2010).

5.1.2 Sparus AUV

The Sparus AUV, depicted in Figure 51, is the second experimental platform
used in this thesis. It was built by a group of students in the Univerisity of
Girona to face the SAUC-E competition 2010 edition (Hurtos et al., 2010). The
main goal of the Sparus design was to build a small, simple torpedo-shaped
vehicle with hovering capabilities.

The Sparus AUV is equipped with three Seabotix thrusters integrated in a
classical torpedo shape. Two are placed horizontally at the back of the vehicle
for the Surge and Yaw DoFs, and the third is placed vertically for the Heave
DoF. The horizontal propellers at the back of the vehicle are separated from its
longitudinal axis to generate a torque for the Yaw DoF. The vertical thruster is
placed in the centre of the vehicle, where the centre of gravity and buoyancy
are located. Therefore, the mechanical structure and components are organized
around this configuration.

All the sensors of the vehicle are placed at the front. The robot also has
two cylindrical aluminum pressure vessels. The first one, placed at the front,
houses the battery. The second one, which houses the electronics, computer
and inertial navigation system, is placed at the back. Having the batteries
in a separate housing increases the weight, length and consumption of the
vehicle. However, it minimizes the downtime between missions by allowing
battery packs to be quickly swapped. Moreover, potentially explosive gases
that can be released from the batteries do not interfere with sparking and high
temperature electronics.

The main structure is made of aluminum profiles and stainless steel clamps
that hold the two pressure vessels. The battery housing is held with only one
clamp in the top, to allow easy and fast replacement for a second battery

90 experimental platform

Figure 51: The Sparus AUV.

housing. The housings are designed to resist water pressure to a 100m depth.
They are made of aluminum, which efficiently transmits internal heat to the
environment, it is easy to machine and is lighter than stainless steel. In order to
eliminate screws, a 1.8mm nylon thread before the O-ring secures the end-caps.
The electronics housing can be easily opened from the back of the vehicle,
allowing access to the electronics and computer. The dimensions of the vehicle
are 1.22m length by 0.23m diameter, and its weight is around 30kg.

To provide the vehicle with the required buoyancy, there is technical foam
distributed all over the top part of the robot. It is strategically located to place
the buoyancy centre above the gravity centre, at the same longitudinal position,
ensuring Pitch and Roll stability. The vehicle is trimmed with lead weights to
bring the gravity centre in line with the vertical thruster. Small zinc anodes
are added to eliminate corrosion due to sea water and different metals on the
vehicle. Finally, a two-part ABS skin covers the AUV to reduce water drag and
to protect the components inside.

Two types of underwater connectors were used to connect all the exter-
nal components on the vehicle: Subconn® for high current connections and
Lumberg® for low current parts. Another Subconn® connector is used for
the umbilical cable. The main battery switch is IP68 rated and covered with
resin. The robot has a WiFi adapter, also covered with resin, placed on the
top. The embedded on-board computer was chosen as a trade-off between
processing power, size and power consumption. An Ultra Low Voltage (ULV)
Intel® CoreTM Duo processor with the 3.5" small form factor was selected.
The vehicle is also equipped with a complete sensor suite composed of two

5.2 map building hardware 91

color video cameras (forward-looking and downward-looking), an MRU MTi
from XSens Technologies, a Micron MSIS from Tritech, an echo-sounder, a
pressure sensor and a DVL from LinkQuest which also includes a compass/tilt
sensor. Temperature, voltage and pressure sensors as well as water leakage de-
tectors are installed into the pressure vessels for safety purposes. The on-board
computer, the sensors and the three thrusters are powered by two battery
packs. The first one, at 12V , powers the computer, the electronics and the
sensors while the second one, at 24V , provides power to the thrusters. Each
battery pack has a 10Ah capacity, which allows for an autonomy of 2.5 hours.
Until the present, the Sparus AUV has been used as a research platform to
obtain seabed photo mosaics covering areas of biological interest (Schmiing
et al., 2009), dataset acquisition to apply scan matching and SLAM techniques
(Mallios et al., 2011).

5.2 map building hardware

This section details the sensors used for map building purposes in this research
project.

5.2.1 Doppler Velocity Log

DVL sensors are specially designed for ROV/AUV applications which measure
vehicle speed over water, vehicle speed over ground and altimetry using a
precise 3-axis measurement system based on the Doppler shift effect.

On one hand, the Ictineu AUV is equipped with a SonTek Argonaut DVL
(see Figure 52.a). This system operates at a frequency of 1500kHz and has
a range of about 15m. Its three acoustic transducers are slanted 25

◦ off the
housing vertical axis and equally spaced at 120

◦ relative azimuth angles. This
beam geometry permits measuring velocities in 3D maintaining an optimal
balance with total measurement range and near-boundary operation. The
velocities can be obtained either in the beam coordinate system, in which
the velocities are reported along the beams, or in the XYZ coordinate system,
in which velocity measurements are stored using a right-handed Cartesian
coordinate system relative to the robot. Its depth rating is 200m.

On the other hand, the Sparus AUV is equipped with a LinkQuest NavQuest
600 Micro DVL (see Figure 52.b). This system operates at a frequency of 600kHz

and has a range of about 110m. The minimum altitude is 0.3m, which allows
operation of the vehicle close to the bottom. It has four acoustic transducers
slanted 22

◦ off the housing vertical axis. The LinkQuest DVL also offers the
possibility of obtaining the velocities in the beam coordinate system or in the
XYZ coordinate system. Its standard depth rating is 800m.

Alternatively, both DVLs are equipped with a compass/tilt sensor which
allows transforming the velocities to an East-North-Up (ENU) coordinate
system so the data can be reported independently of instrument orientation.
It can also record the distance to the bottom for each beam independently,
estimate depth by means of a pressure sensor and measure water temperature

92 experimental platform

a) SonTek Argonaut DVL b) LinkQuest NavQuest 600 Micro DVL.

Figure 52: DVLs used in this research project.

Figure 53: Xsens MTi MRU.

for sound speed calculations. These two devices are versatile sensors, which
together with their compact size, low power consumption and depth ratings,
make them well suited for underwater vehicle positioning applications.

5.2.2 Motion Reference Unit

The Xsens MTi sensor, depicted in Figure 53, is a gyro-enhanced low cost
miniature MRU which provides 3D orientation (attitude and heading), 3D
rate of turn (rate gyro) as well as 3D acceleration measurements. Although
the sensor is able to provide data at higher rates, the system gathers mea-
surements from the MTi at a rate of 10 Hz. In order to produce drift-free
angular measurements, the sensor also measures the directions of gravity and
magnetic north. Our particular device configuration has 17m/s2 full scale in
acceleration measurements, which is far from the low accelerations that the
Ictineu AUV and the Sparus AUV experience nowadays. For this reason, we do
not usually rely on its acceleration estimates. On the other hand, the angular
measurements are much more reliable and, as they are output at a higher rate
than the data from the DVL sensor, they are mainly used for the estimation of
attitude.

5.2 map building hardware 93

a) Miniking MSIS b) Micron MSIS .

Figure 54: Models of the MSISs used in this research project.

5.2.3 Mechanical Scanned Imaging Sonar

Tritech MiniKing and Micron devices are small compact MSISs designed
for use in underwater applications such as obstacle avoidance and target
recognition for ROVs and AUVs. This sonar can perform scans in a 2D plane
by rotating a fan-shaped sonar beam through a series of small angle steps. It
can be programmed to cover variable length sectors from a few degrees to full
360
◦ scans. A fan-shaped beam with a vertical aperture angle of 40

◦ and a
narrow horizontal aperture of 3

◦ allows forming a sonar image with enough
information about the surrounding environment to recognize the size and
shape of a target at distances of up to 100 meters. Miniking and Micron sensors
are mounted on the upper front part of the Ictineu AUV and Sparus AUV
respectively to provide a clear view and avoid occlusions in the resulting data.
Figure 54 depicts both MSISs. The principles of sonar theory are described in
(technology corp., 2002) and (Urick, 1983) provides a deeper explanation.

5.2.4 Multibeam Profiling Sonar

The Multibeam Profiling Sonar (MPS) Model 837B “Delta T" 1000 from Ima-
genex is a high resolution multiple receiver sonar system designed to provide
video-like imaging using sonar technology. The acoustic array is designed to
provide detection over a 120x2.5◦ field of view covered by 480 beams for bot-
tom profiling applications. The 2.5◦ field of view is also applicable to obstacle
avoidance in near-bottom applications where the narrow vertical extent of
the beam reduces false obstacle detection. This sensor operates at a 120kHz

frequency to provide detection up to 300m range. The beam rate frequency is
between 5-10Hz depending on the depth of the area scanned. The MPS has
an MRU sensor to capture roll, pitch and heading. The stainless steel housing
provides a 1000m depth rating, which makes it suitable for ROV and AUV
applications.

94 experimental platform

Figure 55: Imagenex Multibeam.

5.3 cola2 architecture

The architecture used in all the underwater vehicles available at University of
Girona was the O2CA2 first proposed in (Ridao et al., 2002). It was a behavior-
based control architecture (Brooks, 1986) that implemented a reactive layer in
which a set of behaviors were able to perform some specific tasks. With the
inclusion of a component with the ability to merge the behaviors responses
(Carreras et al., 2001), it was possible to enable several of these behaviors
simultaneously in order to perform a more complex task. However, traditional
behavior-based architecture limitations appeared when trying to undertake
long-range missions. Recently, this reactive architecture was turned into a
layer-based architecture (Ribas et al., 2012) by adding an MCS, which adds
the functionalities of a deliberative and an execution layer. The MCS is an
independent set of components that can be connected with the O2CA2 reactive
architecture but also with any other reactive architecture/layer implemented by
an autonomous vehicle or manipulator (Palomeras et al., 2010). The new layer-
based control architecture, named COLA2, was implemented in the Ictineu
AUV and the Sparus AUV. It is based on software modules that encapsulate
a set of related functions or data called components. Components may exist
autonomously from other components in a network node having the ability
to communicate with each other. The architecture, depicted in Figure 56, is
organized in three layers following the hybrid model (Arkin and Balch, 1997;
Firby, 1989): the mission layer, the execution layer and the reactive layer. The
mission layer obtains a mission plan by means of an on-board automatic
planning algorithm or by compiling a high-level mission description given
by a human operator. The mission plan is then interpreted by the execution
layer. It is executed by means of enabling/disabling the vehicle’s behaviors or
primitives contained in the reactive layer.

5.3 cola2 architecture 95

Figure 56: COLA2 architecture

5.3.1 Reactive Layer

The reactive layer implemented in our vehicles is based on the O2CA2 reactive
architecture presented in (Ridao et al., 2002). Its goal is to execute basic
primitives in order to fulfill the missions defined at the mission layer. Primitives
are basic robot functionalities offered by the robot’s control architecture. For
an AUV, a primitive can range from a basic component that checks the battery
level to a complex component that navigates toward a 3D way point. Primitives
have a goal to achieve. For instance, the goal of an achieve altitude primitive
would be to drive the robot at a constant altitude.

The reactive layer is highly dependant on the sensors and actuators of the
robot. It is divided into three modules: the vehicle’s interface module, the
perception module and the guidance and control module.

• The vehicle’s interface module contains components called drivers which
interact with the hardware. It includes sensor drivers used to read data
from sensors and actuator drivers to send commands to the actuators.
An additional function provided by the drivers is to convert all the data
to the same units as well as to reference all the gathered data to the
vehicle’s fixed body frame. Optionally, a Hardware In the Loop (HIL)
simulator called Neptune (Ridao et al., 2004) can replace the drivers,
allowing the execution of the architecture in simulation mode without
modifying the rest of the components.

• The perception module receives the data gathered by the vehicle’s inter-
face module. Perception module components are called processing units
and the main ones are: the navigator, the obstacle detector and the target

96 experimental platform

detectors. The navigator processing unit estimates the vehicle’s position
and velocity merging the data obtained from the navigation sensors by
means of an EKF (Ribas et al., 2010). The obstacle detector measures the
distance from the robot to the obstacles, mainly detected using acoustic
sensors. Target detectors process acoustic or visual images to extract the
most relevant features. Multiple target detectors have been programmed
in order to detect different objects (El-Fakdi et al., 2010; Ribas et al., 2007).

• The guidance and control module includes a set of behaviors, a compo-
nent to merge the behavior responses if necessary, a velocity controller
and a low level controller. Behaviors receive data from the vehicle’s in-
terface or perception modules, remaining independent of the physical
sensors and actuators used. Simple behaviors can be programmed as
simple controllers, however, when the number of parameters to tune
increases, they may be difficult to adjust. Then, RL techniques can be
used to improve the adaptability of the vehicle’s behaviors to the environ-
ment (Carreras et al., 2003; El-Fakdi et al., 2010). The second component
is a coordinator used to combine all the responses generated by the
behaviors into a single one. In general, a behavior response is a veloc-
ity request specified in the vehicle’s body frame, which usually affects
some particular DoFs at the same time. The coordinator generates a
combined response for each DoF according to the behaviors priority. The
last component is a velocity controller, which takes the merged velocity
request and turns it into a force request. A simple Proportional Integral
Derivative (PID) for each DoF is used for this task. The low level con-
troller takes as input the force request provided by the velocity controller
and computes a set-point for each thruster to achieve the desired force.
A Thruster Allocation Matrix (TAM) plus a function for each thruster
relating its input setpoint to the force it generates are used in this last
step.

5.3.2 Execution Layer

The execution layer acts as the interface between the reactive layer and the mis-
sion layer, translating high-level plans into low-level commands. Additionally,
the execution layer monitors the primitives being executed in the reactive layer.
The execution layer of the COLA2 is composed of two main components: the
Architecture Abstraction Component (AAC) and the Petri Net Player (PNP).

The AAC is the lower level component of the execution layer. Its function
is to keep the mission and execution layers vehicle-independent, making the
reactive layer the only one tied to the vehicle’s hardware. The AAC provides
an interface to the reactive layer based on three types of signals: actions, events
and perceptions.

• Actions enable or disable basic primitives within the vehicle’s reactive
layer. For instance, an action can enable a primitive that controls the

5.3 cola2 architecture 97

vehicle’s depth, pointing to a desired setpoint and the maximum time to
reach it.

• Events are triggered in the reactive layer to announce changes in the state
of its primitives. Following the last example, an event can announce that
the desired depth has been reached within the required time or that the
time has run out.

• Perceptions, meaning specific sensor or processing unit values, are trans-
mitted from the reactive layer to the mission layer in order to be used
to extract relevant information about the current world state when an
on-board planner is used. Therefore, the execution layer is not using the
perceptions, just transferring them from the reactive to the mission layer.

The second module included in the execution layer is the PNP, which
executes mission plans using the Petri net formalism (Murata, 1989) by sending
actions and receiving events through the AAC. The execution layer behaves
as a Discrete Event System (DES) which connects high-level discrete plans,
given by the mission layer, with low-level continuous primitives, in the reactive
layer. The PNP controls all the timers associated with timed transitions, fires
enabled transitions, sends actions from the execution layer to the reactive layer
and, if necessary, fires enabled transitions in the mission layer when events are
received.

5.3.3 Mission Layer

Nowadays, predefined plans are the state of the art for AUV missions. How-
ever, offline plans may fail during execution when the assumptions upon
which they were based are violated (Turner, 2005). On the other hand, the
use of online generated plans may result in unpredictable vehicle behaviors.
Therefore, it is worth finding a compromise between predefined offline plans
and automatically generated online plans. The COLA2 architecture introduces
a high-level language, called Mission Control Language (MCL), for easily
describing offline plans that are then automatically compiled into a formal
Petri net (Palomeras et al., 2009). A mission can be either predefined by a user
by means of a high-level language, the MCL, or using this same language,
predefine some planning operators and let an onboard planner automatically
execute, at each moment, the ones which are most appropriate to fulfill the
mission.

In summary, the COLA2 is a layered architecture that combines the compo-
nents in each layer. First of all, the reactive layer can be seen as a behavior-based
architecture in which a set of behaviors are coordinated to fulfill a goal. How-
ever, instead of using the subsumption approach (Brooks, 1986) to coordinate
them, the execution layer is in charge of enabling, prioritizing, and configuring
behaviors following the plans described in the mission layer. This approach
offers a good response without being limited to simple missions, as occurs
in pure behavior-based architectures. Other advantages of the COLA2 archi-
tecture are the inclusion of an AAC, which makes the execution and mission

98 experimental platform

layers independent of hardware changes, and the use of a formal DES (Petri
nets), which allows us to systematically verify and execute mission plans
without complicating their description thanks to the MCL.

6
R E S U LT S

This chapter presents the results of this thesis, which are organized over
four experiments. The first experiment (Section 6.1) consists of applying the
map building procedure detailed in Chapter 4 to a dataset gathered with the
Ictineu AUV in a man-made environment. The experiment runs the MSISpIC
to improve a dead-reckoning trajectory and then computes an OGM with
the two different inverse sensor models proposed in Chapter 4. Section 6.2
reports the second experiment, which shows the results obtained with the path
planning method described in Chapter 3 in two different bitmap scenarios
with irregular obstacles. The first one is a small cluttered environment which
allows listing and tracking all the generated homotopy classes in the reference
frame. The path for each homotopy class has been computed with the HA*,
the HRRT and the HBug algorithms. The second one is a large scenario
which accentuates the differences between the path planning algorithms. This
environment is also used for two comparisons: the first one compares the
homotopic path planners with their respective non-homotopic versions, the
second one compares the HRRT and HBug with respect to the HA*, since it
computes the shortest path for each homotopy class. Section 6.3 reports the
next experiment, which was carried out using the Sparus AUV in a scenario
built in the water tank of the Underwater Robotics Lab. of the University of
Girona, and offers a controlled unknown environment to test the map building
procedure together with the path planning method proposed in this thesis.
Finally, in order to show the applicability of our path planning method in
the context of the TRIDENT European project (EU FP7 ICT-248497), the last
experiment (Section 6.4) presents the results obtained with the HA* algorithm
in a bathymetry gathered in the Formigues Islands.

6.1 map building in a man-made marina environment

The goal of this experiment is to test the map building procedure described
in Chapter 4 with a dataset obtained in an abandoned marina located in Sant
Pere Pescador, on the Catalan coast (Ribas et al., 2008). The experiment was
carried out using the Ictineu AUV (Ribas et al., 2007), which is described in
Chapter 5, teleoperated along a 600m path.

In order to obtain a ground truth of the trajectory, a surface buoy equipped
with a Differential Global Positioning System (DGPS) receiver was attached
to the robot in order to gather the ground truth trajectory (see Figure 57).
Since there is no DGPS signal when the device is submerged, the vehicle was
teleoperated at a constant depth during the whole experiment.

The MSIS was configured to scan the whole 360
◦ sector and was set to fire up

to a 50m range with a 0.1m resolution and a 1.8◦ angular step. Dead-reckoning

99

100 results

Figure 57: The Ictineu AUV with a surface buoy equipped with a DGPS.

was computed using the velocity readings coming from the DVL and the
heading data obtained from the MRU sensor, both merged using the EKF
described in Chapter 4. Standard deviation for the MSIS sensor was set as is
specified by the manufacturer: 0.1m in range and 1.8◦ in angular measurements.
The whole dataset was acquired in 53min and the off-line execution of the
algorithm implemented in MATLAB in a Intel® CoreDuoTM@1,83GHz laptop
took less than 14min. Therefore, it would be possible to execute the algorithm
online in the vehicle while navigating.

6.1.1 Scan Matching

Figure 58 depicts the DGPS trajectory and the raw data plotted on an or-
thophotomap. The range data obtained from the MSIS beams through the
segmentation process described in Section 4.1.3 almost perfectly match with
the walls of the marina environment. Therefore, the DGPS trajectory can be
used as a ground truth. Notice that the range measurements that appear in
the middle of the water correspond to different objects laying on the seafloor,
which returns an intensity level higher than the segmentation threshold.

Figure 59 shows the range data plotted with respect to the dead-reckoning
trajectory. It can be clearly appreciated that dead-reckoning suffers from
an important drift that makes the range data appear sparser. This issue is
accentuated in those areas where the robot navigates closing loops, like the
triangle shaped channel at the beginning of the experiment or the last part of
the trajectory, after the corridor.

Using the MSISpIC, the drift is considerably reduced, as can be appreciated
in Figure 60. Most of the error in the trajectory estimated by the MSISpIC

6.1 map building in a man-made marina environment 101

Figure 58: DGPS trajectory with range data plotted on the orthophotomap.

appears when the robot is traversing an area where the scan only observes one
or two walls parallel to the robot’s path, being able to correct the lateral and
rotational displacement but still drifting in the forward direction. It is worth
noting that, even in the presence of structures in all directions, scan matching
algorithms are expected to drift due to their iterative formulation. However,
the trajectory obtained with the MSISpIC shows an important improvement
with respect to the dead-reckoning trajectory. Figure 61 depicts the absolute
error of the displacement accumulated in both trajectories with respect to the
DGPS. After traveling 600m, the dead-reckoning trajectory differs around 40m

whereas the MSISpIC maximum difference is set around 12m.

6.1.2 Occupancy Grid Mapping

In order to generate the map, the OGM technique described in Chapter 4 was
applied with the different trajectories obtained. The cell resolution for all the
maps is 0.4m. The probability range was set up experimentally to be p(mx,y =

free) = 0.3, p(mx,y = occupied) = 0.9 and p(mx,y = unknown) = 0.5. These
values are fixed for the sonar profiler model and linearly interpolated for the
imaging sonar model (except the p(mx,y = unknown) value).

Figure 62.a and Figure 62.d depict the OGMs generated with the trajectory
based on DGPS and the corrected MRU measurements, computed through
SLAM (Ribas et al., 2008), used as a ground truth. Since the DGPS frequency
rate was 1Hz, the trajectory of the vehicle through successive sensor measure-
ments was interpolated by means of a spline in order to obtain a position and
heading at the time each MSIS beam was received.

Using the dead-reckoning trajectory, most of the map obtained with the
sonar profiler model (Figure 62.b) shows better defined walls when compared
with the raw range measurement, except in the last part (after the corridor)

102 results

Figure 59: Dead-reckoning trajectory (in red) with range data plotted on the orthopho-
tomap.

Figure 60: The MSISpIC trajectory (in cyan) with range data plotted on the orthopho-
tomap.

6.2 path planning with homotopy class constraints 103

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

Nº of scan matching

E
rr

or
 (

m
)

Dead−reckoning
MSISpIC

Figure 61: Dead-reckoning and MSISpIC trajectories absolute error with respect to the
DGPS.

where the left wall is practically undistinguishable, as can be seen in Fig-
ure 59. Figure 62.e depicts the map generated with the imaging sonar model.
The thickness of the walls increases because the neighbor bins of the one
corresponding to the maximum return also have a remarkable intensity.

The maps generated with the scan matching trajectory are depicted in
Figure 62.c and Figure 62.f. They show a substantial improvement with respect
to the one generated using dead-reckoning. When comparing the maps built
using raw data (see Figure 60), the one generated with scan matching is more
accurate and the walls are less sparse. It can be appreciated that in the grid
map, using the sonar profiler model, an almost unknown area appears within the
corridor. This is due to the lack of range detection for the beams parallel to the
walls of the corridor. When no range is detected, the entire sensor cone model
is mapped to the unknown probability. In general, noisy measurements are
clearly removed with the imaging sonar model since all the bins are mapped
to a certain probability depending on the acoustic intensity.

6.2 path planning with homotopy class constraints

This section shows the simulations performed with the topological path search
and the path planning algorithms described in Chapter 3. The environments
are represented by bitmap images, where each pixel depicts a cell of an OGM.
Black pixels represent occupied cells and white pixels represent free cells. The
OGMs are also used as C-spaces, assuming that the vehicle is a single point
without area.

The tests have been carried out in two different scenarios with irregular
obstacles, the most common to be found in unstructured underwater environ-
ments. In order to identify the obstacles in the scenarios, a modified version of
the Component Labeling (CL) algorithm (Chang et al., 2004) has been applied,
which efficiently labels connected cells and their contours in greyscale images
at the same time. For the construction of the reference frame, the c point has

104 results

D
G

PS
D

ead-reckoning
M

SISpIC

Profiler
sonar

a)
b)

c)

Im
aging

sonar

d)
e)

f)

Figure
6

2:O
G

M
s

based
on

D
G

PS,dead-reckoning
and

M
SISpIC

trajectories.Each
trajectory

is
represented

using
a

profiler
sonar

m
odeland

an
im

aging
sonar

m
odel.

6.2 path planning with homotopy class constraints 105

been set at a fixed position in order to ensure the same topological graph
construction, and homotopy classes generation, through different executions.
The homotopy classes have been set at a maximum of 20 character length. In
order to show all the possible results, no time restrictions have been taken into
consideration.

6.2.1 Cluttered Scenario

This experiment shows the results obtained with the path planning method
proposed in this dissertation in a cluttered environment with a low number of
obstacles. The aim of this experiment is to show the whole set of the generated
homotopy classes and to test the homotopic path planners in a tractable
environment

The environment is represented by a 200x200 pixel bitmap with five irregular
obstacles (see Figure 63). It has been strategically designed to avoid ideal
conditions for the path planners. The obstacles present concave regions, hence
the HA* can be temporally trapped exploring states which will not be in the
optimal path cost for the homotopy class. The obstacles are relatively large
in order to represent a challenging environment for the generation of the
HRRT tree, whose growth depends on the chosen step. The step is empirically
selected according to the environment. In this particular scenario, a step too
large would require exploring fewer configurations in the C-space but more
attempts to expand the tree would have to be done because the candidate
nodes of the tree could be generated inside an obstacle; a step too small
would make the tree expand easily, but more configurations would have to be
explored. The HBug is based on the Bug2 algorithm which follows an obstacle
boundary from a hit point to a leave point. The HBug works with the same
principle but the hit and leave points are set according to the intersections
of the obstacles with the lower bound path, whose quality depends on the
number of the reference frame segments that are required to traverse. When a
lower bound path is constrained by a high number of segments, it intrinsically
contains more restrictions of the reference frame and therefore its quality is
closer to the final solution. Based on this fact, the c point of the reference frame
has been placed in a corner to minimize the intersections in the reference
frame with the obstacles.

The construction of the reference frame, the topological graph and the
generation of the homotopy classes with their lower bound computation took
7.9ms. Table 6 lists the homotopy classes sorted by their lower bound with
the path cost for HA*, the HRRT and the HBug algorithms, which are also
compared in Figure 64. The homotopy classes have been sorted according to
their lower bound. To ensure the stability of the results, the path cost and
time for the HRRT are the average of 100 executions using a step of 10 cells.
Path costs and lower bounds have been normalized with respect to the A*
path cost. Despite that most of the solutions obtained with the HBug have
a lower cost than the HRRT solutions, the difference is very small. When
compared with the HA*, the solution obtained for eighth class (index 13) with

106 results

Idx Homotopy class Lower bound HA* HRRT HBug

2 α21α11β41α31α51 0.89 1 1.32 1.35

8 β22α11β41α31α51 0.90 1.03 1.37 1.32

3 α21α11β41α31β52 0.97 1.28 1.64 1.62

9 β22α11β41α31β52 0.99 1.30 1.69 1.58

1 α50α30α40α10α20 1.05 1.11 1.42 1.31

11 β22β12β42α32β52 1.06 1.36 1.74 1.63

10 β22β12β42α32α51 1.08 1.26 1.61 1.55

13 β22β12β43β33β52 1.12 1.18 1.45 1.36

5 α21β12β42α32β52 1.24 1.71 2.31 2.23

4 α21β12β42α32α51 1.26 1.61 2.18 2.13

12 β22β12β43β33α51 1.27 1.45 1.93 1.81

7 α21β12β43β33β52 1.33 1.53 2.03 1.95

6 α21β12β43β33α51 1.45 1.80 2.49 2.40

Table 6: Homotopy classes of the cluttered environment sorted by their lower bound
with the cost of the paths computed using the HA*, HRRT and HBug algo-
rithms. Costs in bold show the paths that would be computed when operating
under realtime constraints.

the HBug is the closest one to the optimal path (1.15 times the HA* cost) and
the solution obtained for thirteenth class (index 6) with the HRRT shows the
largest difference (1.38 times the HA* cost).

Figure 63 depicts the paths of the four homotopy classes with smaller lower
bound in Table 6 generated with the HA*, HRRT and HBug path planners.
Figure 65 depicts the accumulated computation time for each path, which
takes into account the computation of the reference frame, the topological
graph, the homotopy classes with their lower bound and the paths generation.
The HA* took almost 4.5s to generate paths for the whole set of homotopy
classes being the class with index 1 the fastest to be generated (94.4ms) and
the class with index 12 the slowest (603.8ms). The total computation time with
the HRRT was reduced to 0.6s with the fifth class (index 1) being the fastest
one to be generated (12.2ms) and the ninth class (index 5) the slowest (88.1ms).
Finally, the total computation time using the HBug was only 8.5ms. The fastest
path (index 10 class) was generated in 3.2x10

−5s and the index 6 class path
was the slowest one to be generated with only 7.6x10

−5s. These low values
justify the almost flat line for this path planner when compared with the HA*
and the HRRT in Figure 65.

When operating under time restrictions, it is possible to stop the path search
when the lower bound of the next homotopy class, whose path is going to be
computed, is higher than the minimum cost of the paths already computed. In
such cases, it is ensured that the best path has already been computed because
it is not possible to obtain a path with a lower cost than its lower bound.
For instance, in Table 6 the HA* would stop before computing a path for the

6.2 path planning with homotopy class constraints 107

α
2
1
α
1
1
β
4
1
α
3
1
α
5
1

β
2
2
α
1
1
β
4
1
α
3
1
α
5
1

α
2
1
α
1
1
β
4
1
α
3
1
β
5
2

β
2
2
α
1
1
β
4
1
α
3
1
β
5
2

H
A

*

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

H
R

R
T

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

H
Bu

g

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

b 1

b 2

b 3

b 4
b 5

α 1 0

α 1 1

β 1 2

α 2 0

α 2 1

β 2 2

α 3 0

α 3 1

α 3 2

β 3 3

α 4 0

β 4 1

β 4 2

β 4 3

α 5 0

α 5 1

β 5 2

c

s

g

Fi
gu

re
6

3
:P

at
hs

ge
ne

ra
te

d
w

it
h

th
e

H
A

*,
H

R
R

T
an

d
H

B
u

g
al

go
ri

th
m

s
fo

r
th

e
fo

u
r

ho
m

ot
op

y
cl

as
se

s
w

it
h

th
e

sm
al

le
r

lo
w

er
bo

u
nd

in
th

e
cl

u
tt

er
ed

en
vi

ro
nm

en
t.

108 results

0 2 4 6 8 10 12 14
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Nº of homotopy class

C
os

t

Lower bound
HA*
HRRT
HBug

Figure 64: Cost of the paths computed with the HA*, HRRT and HBug algorithms for
each homotopy class in Table 6 sorted according their lower bound.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Nº of homotopy class

T
im

e(
s)

HA*
HRRT
HBug

Figure 65: Accumulated computation time of the paths using the HA*, HRRT and
HBug algorithms for each homotopy class in Table 6 sorted according their
lower bound.

6.2 path planning with homotopy class constraints 109

Idx Homotopy class

25 α15−1α90α120α10α40α60α50α81α3−1α112α132β72α2−2α142β102

26 α15−1α90α120α10α40α60α50α81α3−1α112α132β72α2−2β143β102

5 α10−1α14−1β21α7−1α13−1α11−1α30α80β51α61α4−1α1−2α122β92α152

1 α10−1α14−1β21α7−1α13−1α11−1α30α80α50α60α40α1−2α122β92α152

41 α15−1α90α120α10β41α6−1α5−1α81α3−1α112α132β72α2−2α142β102

Table 7: The five homotopy classes of the large environment with the smaller lower
bound and their generation index.

fifth homotopy class (index 1) since its lower bound (1.05) is higher than the
path length obtained with the first class (index 2, cost 1). The accumulated
computation time would be 1.54s (see Figure 65). On the other hand, the HRRT
and the HBug algorithms would stop before computing the path of the two
last classes with a lower computation time than the HA* (0.53s for the HRRT
and 8.4x10

−3s for the HBug) at the expense of higher path costs.

6.2.2 Large Scenario

This experiment tests the scalability of the path planning proposed in this
thesis with a bitmap of 1000x1000 pixels with 15 irregular obstacles, depicted
in Figure 66. The construction of the reference frame, the topological graph and
the generation of 112 homotopy classes with their lower bound computation
took 0.304s.

The next three sections present the results obtained with the HA*, HRRT
and HBug algorithms respectively. In each section, the paths obtained with
the corresponding path planner for the five homotopy classes with smaller
lower bound are also shown and listed in Table 7. The last section makes two
comparisons: the first one compares the homotopic path planners with their
non-homotopic versions: the A* and the ARA* for the HA*, the RRT and the
ARRT for the HRRT, and the Bug2 for the HBug. The A*, the RRT and the Bug2

are designed to compute only one path towards the goal. The ARA* and the
ARRT compute several paths but without taking into account their homotopy.
Because of this, only the solutions generated with the homotopy classes in
Table 7 are used in the comparison with these well-known path planners. The
second comparison shows the results of the HRRT and the HBug against the
HA*, since it computes the shortest path for a given homotopy class.

6.2.2.1 Results Obtained with the HA*

This section shows the results obtained with the HA* algorithm. The path
planner has been used to compute the path for all 112 homotopy classes in
the scenario. The paths of the homotopy classes with the smaller lower bound,
shown in Table 7, are depicted in Figure 66. Figure 67 shows the cost and
computation time for each homotopy class path computed with the HA*. The

110 results

b
1

b
2b

3

b
4

b
5

b
6

b
7

b
8

b
9

b
10 b

11

b
12

b
13

b
14b

15

α
1

0

α
1

−1

α
1

−2

β
1

1

α
2

0

β
2

1

α
2

−1

α
2

−2

α
3

0

β
3

1

α
3

−1

α
3

−2

α
4

0

α
4

−1

β
4

1

α
5

0β
5

1
β

5
2

α
5

−1α
6

0

α
6

1β
6

2

α
6

−1

α
7

0

α
7

−1

β
7

1

β
7

2

β
7

3

α
8

0

α
8

−1

α
8

1

β
8

2

α
9

0

β
9

1

β
9

2

β
9

3

α
10

0

α
10

−1

α
10

1

β
10

2

α
11

0

α
11

−1

α
11

1

α
11

2

β
11

3

α
12

0

α
12

1

α
12

2

β
12

3

α
13

0

α
13

−1

α
13

1

α
13

2

β
13

3

α
14

0

α
14

−1

α
14

1

α
14

2

β
14

3

α
15

0

α
15

1

α
15

2

β
15

3

α
15

−1

c

s

g

25
26
5
1
41

Figure 66: Paths of the five homotopy classes with the smaller lower bound computed
with the HA*. The class associated to the index can be found in Table 7.

homotopy classes have been sorted according to their lower bound. Notice that
the path cost and the lower bound have been normalized with respect to the
A* cost.

The fastest path was generated in 7.49s and corresponds to the first class
(index 25), which coincides with the global optimal solution. The slowest
took 53.69s (class 75) to be generated with a cost 1.6 times of the global
optimal solution. The computation time between different homotopy classes
may change substantially depending on the number of states that the HA*
has to consider. The mean computation time was 30.99s. On one hand, it
cannot be accepted for a realtime application since generating the optimal
path for the whole set of homotopy classes would take around 58min. On
the other hand, when operating under time restrictions, it would be possible
to stop the path generation process before computing the path of the third
homotopy class (with index 5 in Table 7) since its lower bound is higher than
the cost obtained with the first homotopy class (index 25). In such cases, the
accumulated computation time for the path generation would be 30.94s (31.25s

6.2 path planning with homotopy class constraints 111

0 20 40 60 80 100 120
0

1

2

3

Nº of homotopy class

Lo
w

er
 b

ou
nd

 &
 C

os
t

0 20 40 60 80 100 120
0

20

40

60

T
im

e
(s

)

Cost
Lower bound
Time

Figure 67: Normalized cost, normalized lower bound and computation time for paths
generated with the HA* for each homotopy class.

taking into account the computation of the reference frame, the topological
graph and the generation of the homotopy classes with their lower bound).

6.2.2.2 Results Obtained with the HRRT

This section shows the results obtained with the HRRT algorithm. The path
planner has been used to compute the path for all the homotopy classes in the
scenario. Figure 68 depicts the path of the homotopy classes with the smaller
lower bound, shown in Table 7, computed with the HRRT. The algorithm has
been empirically configured with a step and a distThreshold of 15 cells. In order
to stabilize the results, Figure 69 shows the average cost and computation
time of 100 executions for each homotopy class path computed with the path
planner. The homotopy classes have been sorted according to their lower
bound. The path cost and the lower bound have been normalized with respect
to the A* cost.

The best solution computed with the HRRT was obtained in 0.069s, again
with the first class (index 25), with a cost 1.4 times the global optimal solution.
However, the fastest path was generated in 0.038s (class 14, index 93) with
a path cost 1.83 times the global optimal solution. On the other hand, the
slowest (class 70, index 19) took 1.248s with a cost of 2.19 times the global
optimal solution. The mean computation time for each path was only 0.239s,
almost 130 times faster than the HA* at the expense of computing higher cost
solutions.

In this scenario, the paths for the whole set of homotopy classes were
computed in 26.84s, which is four seconds faster than the HA* assuming it
is operating under time restrictions. However, none of the paths generated
was the optimal solution for its homotopy class. When operating under time
restrictions, it would be possible to stop the path computation with the HRRT
before computing the eightieth homotopy class (index 35) since its lower bound
is higher than the cost obtained with first homotopy class (index 25). In such
cases, accumulated computation time for the path generation would be 18.863s

112 results

b
1

b
2b

3

b
4

b
5

b
6

b
7

b
8

b
9

b
10 b

11

b
12

b
13

b
14b

15

α
1

0

α
1

−1

α
1

−2

β
1

1

α
2

0

β
2

1

α
2

−1

α
2

−2

α
3

0

β
3

1

α
3

−1

α
3

−2

α
4

0

α
4

−1

β
4

1

α
5

0
β

5
1

β
5

2

α
5

−1

α
6

0

α
6

1β
6

2

α
6

−1

α
7

0

α
7

−1

β
7

1

β
7

2

β
7

3

α
8

0

α
8

−1

α
8

1

β
8

2

α
9

0

β
9

1

β
9

2

β
9

3

α
10

0

α
10

−1

α
10

1

β
10

2

α
11

0

α
11

−1

α
11

1

α
11

2

β
11

3

α
12

0

α
12

1

α
12

2

β
12

3

α
13

0

α
13

−1

α
13

1

α
13

2

β
13

3

α
14

0

α
14

−1

α
14

1

α
14

2

β
14

3

α
15

0

α
15

1

α
15

2

β
15

3

α
15

−1

c

s

g

25
26
5
1
41

Figure 68: Paths of the five homotopy classes with the smaller lower bound computed
with the HRRT. The class associated to the index can be found in Table 7.

0 20 40 60 80 100 120
0

1

2

3

Nº of homotopy class

Lo
w

er
 b

ou
nd

 &
 C

os
t

0 20 40 60 80 100 120
0

0.5

1

1.5

T
im

e
(s

)

Cost
Lower bound
Time

Figure 69: Normalized cost, normalized lower bound and computation time for paths
generated with the HRRT for each homotopy class.

6.2 path planning with homotopy class constraints 113

b
1

b
2b

3

b
4

b
5

b
6

b
7

b
8

b
9

b
10 b

11

b
12

b
13

b
14b

15

α
1

0

α
1

−1

α
1

−2

β
1

1

α
2

0

β
2

1

α
2

−1

α
2

−2

α
3

0

β
3

1

α
3

−1

α
3

−2

α
4

0

α
4

−1

β
4

1

α
5

0
β

5
1

β
5

2

α
5

−1α
6

0

α
6

1β
6

2

α
6

−1

α
7

0

α
7

−1

β
7

1

β
7

2

β
7

3

α
8

0

α
8

−1

α
8

1

β
8

2

α
9

0

β
9

1

β
9

2

β
9

3

α
10

0

α
10

−1

α
10

1

β
10

2

α
11

0

α
11

−1

α
11

1

α
11

2

β
11

3

α
12

0

α
12

1

α
12

2

β
12

3

α
13

0

α
13

−1

α
13

1

α
13

2

β
13

3

α
14

0

α
14

−1

α
14

1

α
14

2

β
14

3

α
15

0

α
15

1

α
15

2

β
15

3

α
15

−1

c

s

g

25
26
5
1
41

Figure 70: Paths of the five homotopy classes with the smaller lower bound computed
with the HBug. The class associated to the index can be found in Table 7.

(19.167s taking into account all the steps in the method), which is 12s faster
than the HA*.

6.2.2.3 Results Obtained with the HBug

This section shows the results obtained with the HBug algorithm. The path
planner has been used to compute the path for all the homotopy classes in
the scenario. The HBug paths for the homotopy classes with the smaller lower
bound, shown in Table 7, are depicted in Figure 70. Figure 71 shows the cost
and computation time for each homotopy class path computed with the HBug.
The homotopy classes have been sorted according to their lower bound. As
with other path planner solutions, the path cost and the lower bound have
been normalized with respect to the A* path cost.

The fastest path was generated in 1.12x10
−4s. It corresponds to the first class

(index 25) with a path cost only 1.05 times the optimal solution. The HBug
is not intended to provide the optimal solution, however, placing the c point
of the reference frame in a central position combined with a relatively high

114 results

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Nº of homotopy class

Lo
w

er
 b

ou
nd

 &
 C

os
t

0 20 40 60 80 100 120
1

1.2

1.4

1.6

1.8

2
x 10

−4

T
im

e
(s

)

Cost
Lower bound
Time

Figure 71: Normalized cost, normalized lower bound and computation time for paths
generated with the HBug for each homotopy class.

number of obstacles, makes each reference frame line intersect with several
obstacles at the same time. Hence, the number of segments that constrain the
solution is relatively high, generating a lower bound path, in which the HBug
solution is based, very close to the global optimal path.

The homotopy class 110 (index 102) was the one that took the most time to
compute (1.98x10

−4s) with a cost 2.24 times above the global optimal solution.
The mean computation per path was only 1.50x10

−4s, almost 1600 times faster
than the HRRT and 2x10

5 times faster than the HA*. In this environment, the
paths for the whole set of homotopy classes were computed in 16.8ms, which
is almost negligible when compared with the 304ms spent in the generation of
the reference frame, topological graph and the homotopy classes with their
lower bound. Moreover, when operating under time restrictions, it is possible
to stop the path computation before computing the fifth homotopy class (with
index 41 in Table 7) since its lower bound is higher than the cost obtained with
the first homotopy class (index 25). In such cases, the accumulated computation
time for the path generation would be only 5.12x10

−4s (304.5ms taking into
account all the steps in the method).

The HBug shows a very good performance because part of its solution is
implicitly generated in the lower bound computation. When the lower bound
path intersects with an obstacle in the scenario, its boundary is followed in a
clockwise or counterclockwise direction according to the homotopy class until
the lower bound path leaves the obstacle. Notice that the whole boundary of
each obstacle is already computed by the CL algorithm.

6.2.2.4 Comparative Results

In this section a comparison of the proposed path planners against the A*,
the RRT, their respective anytime versions (ARA* and ARRT) and the Bug2

algorithm is presented. The A*, the RRT and the Bug2 algorithms are designed
to compute only one path towards the goal; the ARA* and ARRT compute

6.2 path planning with homotopy class constraints 115

1.8

2

A*

RRT

1.4

1.6

1.8
C
o
s
t

RRT

Bug2

ARA*

ARRT

HA*

HRRT

1

1.2

1.4C
o
s
t

HRRT

HBug

0 10 20 30 40 50 60 70 80

1

Time (s)

1.2

1.3

1.6

1.7

1.8

0.3042 0.3044 0.3046
1

1.1

0.35 0.4 0.45 0.5 0.55 0.6

1.4

1.5

1.6

0.3042 0.3044 0.30460.35 0.4 0.45 0.5 0.55 0.6

Figure 72: Comparison of the HA*, HRRT and HBug paths of the five homotopy
classes with the smaller lower bound vs A*, RRT, ARA*, ARRT and Bug2

algorithms.

several paths but without taking into account their homotopy. Because of
this, the comparison with these well-known path planners is against the five
homotopy classes with the smaller lower bound. These classes are shown in
Table 7. Figure 72 depicts the comparison. In order to ensure the stabilization
of the results of the probabilistic path planners, the data obtained with the
RRT and the ARRT are the average of 100 executions. Notice that all the time
values of the HA*, the HRRT and the HBug include the computation time of
the reference frame and topological graph construction, and the generation of
the homotopy classes with their lower bound.

The A* returned the optimal path in 11.90s. The ARA* generated the first
solution in 7.40s and found the optimal solution after 301s. The RRT algorithm
took 0.012s to compute a path with a cost 1.48 times the global optimal solution.
The ARRT took 3.13s to obtain the first solution and 78.30s to compute all of
them, ensuring that any new solution generated is closer to the optimal one.
The Bug2 algorithm computed the path in 0.044s with a cost 1.90 times the
optimal solution. In order to obtain the best possible path with this algorithm,
we have manually chosen the directions to surround the obstacles: the m-line,
which connects the start with the goal, intersects with the obstacles labeled b1,

116 results

b7 and b10; the directions are clockwise for b1, counter-clockwise for b7 and
clockwise for b10.

The HA* computed the optimal path (index 25) in 7.79s and obtained the
path for the five selected homotopy classes in 71.61s. The computation of the
optimal path of the best homotopy class with the HA*, which corresponds
to the A* solution, was 1.53 times faster than the A*. The computation of the
first path took 0.390s longer than the first solution of the ARA*, but the ARA*
needed more iterations to refine the path to obtain the same solution as the
HA*.

Using the HRRT, the best solution (index 25) was computed in 0.373s with a
cost 1.40 times the optimal one, and obtained the path for the five homotopy
classes with the smaller lower bound in 0.603s. The HRRT computation time
was better than the A* and the ARRT. The reduced computation time of the
RRT could not be reached due to the computation of the homotopy classes and
the extra load of checking the topological restrictions of the HRRT. Despite that
the class with index 25 had a lower cost than the RRT solution, the difference
was small.

Using the HBug, our path planning method computed the best solution
(index 25) in 0.304s with a cost 1.05 times the optimal one, and obtained the
path for the whole set of homotopy classes in 0.321s. As stated in the previous
section, the computation of the paths with the HBug for each homotopy
class offers a very good performance. Only the RRT and Bug2 had lower
computation times at the expense of finding higher cost solutions. Notice that
most of the time was spent in the computation of the reference frame, the
topological graph and the generation of the homotopy classes with their lower
bound.

Until now, the quality of all the solutions has been compared with the A*
cost, which generates the global optimal path. However, the standard A* is not
able to take into account any topology during the path generation. On the other
hand, the HA* computes the shortest path for each homotopy class, which
is the optimal solution according to the topological constraints. Therefore, in
Figure 73, a comparison of the solutions generated with the HRRT and the
HBug against the HA* cost for each specific homotopy class is depicted.

The HRRT generates solutions between 1.35 (class 15, index 73) and 1.82

(class 83, index 61), with a mean of 1.57 times with respect to the optimal path
cost for the specific homotopy class generated with the HA*. As stated before,
the c point in the reference frame is placed amid the obstacles in the scenario,
which lets each line in the reference frame intersect with several obstacles,
allowing the computation of lower bound paths closer to the final solution
when using the HBug. This path planner generates solutions between 1.03

(class 5, index 41) and 1.19 (class 100, index 101), with a mean of 1.1 times with
respect to the optimal path cost computed with the HA*.

6.3 a water tank environment test 117

0 20 40 60 80 100 120
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Nº of homotopy class

C
os

t

HRRT
HBug

Figure 73: The HRRT and HBug paths cost with respect to the HA* cost for each
homotopy class.

6.2.3 Discussion

The method of generating the homotopy classes was initially combined with
the HRRT (Hernández et al., 2011a,c) because RRT-based solutions have been
used with success in contexts where high performance is required. Although it
is complete when used together with the homotopy classes generation method,
and probabilistically complete when not, it obtains suboptimal solutions.

The HA* (Hernández et al., 2011b) computes the optimal path cost for an
input homotopy class. It is a graph-based search algorithm that exhaustively
explores the search space. Because of this, it is the slowest of the solutions
proposed, but it can be used to provide a ground truth.

The HBug (Hernández et al., 2012) was proposed to take the maximum
advantage of the homotopy classes generation process, which includes the
computation of the lower bound. This algorithm tries to follow the lower
bound path which is already computed. When it intersects an obstacle, the
algorithm follows the obstacle’s boundary in the direction which accomplishes
the homotopy class until the lower bound path is reached again. With this
simple process it is possible to generate a path according to a homotopy class
with a very low computational load, which implies a high performance.

As a conclusion, the HA* should be used when generating optimal solu-
tions at the expense of low performance is required. On the other hand, the
HBug is suitable for applications where the time in which to perform path
planning is highly constrained. Finally, the HRRT should be avoided since the
HBug generates, most of the times, lower cost solutions with a portion of the
computation time.

6.3 a water tank environment test

The aim of this experiment was to test the map building procedure together
with the path planning algorithms proposed in this dissertation. The experi-

118 results

a) Underwater Robotics Lab. water tank b) Detail of the two obstacles

Figure 74: Water tank environment set up.

ment was carried out using the Sparus AUV (see Chapter 5) in the Underwater
Robotics Lab. of the University of Girona. In order to stack obstacles of differ-
ent shapes and sizes in the water tank to create a controlled unknown scenario,
we built a set of plates, each made of a 1.20x0.60x0.04m roof insulator panel
covered with plastic mesh and concrete on both sides. The insulator is a cheap
alternative to wood and offers buoyancy while the concrete adds weight and
allows simulating a harbor’s texture and acoustic reflection. Notice that none
of the materials in the panels are ferromagnetic, hence the vehicle’s compasses
are not affected while navigating at close distance.

For the experiment, triangular and square obstacles where set up. Each
panel was stacked at a 3m depth using weights (Figure 74). The MSIS was
configured to scan the whole 360

◦ sector and was set to fire up to a 5m range
with a 0.1m resolution and a 1.8◦ angular step. The robot’s trajectory is based
on dead-reckoning, computed using the velocity readings coming from the
DVL and the heading data obtained from the MRU sensor, both merged with
an EKF. To avoid perturbations in the DVL measurements, the test zone was
limited to the maximum depth area, which is at the centre of the water tank.

6.3.1 Map Building

During the experiment, the robot was teleoperated through the obstacles at a
3m depth. Figure 75 depicts the range data obtained with the MSIS according to
the dead-reckoning trajectory estimated with an EKF. Figure 76 shows the raw
map obtained with the trajectory computed with the MSISpIC, which has been
used to improve the dead-reckoning (Hernández et al., 2009a). Since the Global
Positioning System (GPS) is not accurate inside the Underwater Robotics Lab.,
there is no ground truth trajectory to compare with. Nevertheless, it can be
appreciated that the raw map is less sparse when using the trajectory estimated
with the MSISpIC algorithm.

The corrected trajectory was used to compute an OGM with a 0.1m reso-
lution, depicted in Figure 77.a. The inverse sensor model of the MSIS was
implemented as a profiler sonar sensor with an overture of 3

◦ as explained in
Chapter 4. Since the OGM was also used as a C-space for the path planners,

6.3 a water tank environment test 119

every obstacle perceived was expanded according to the AUV’s size in order
to generate paths that would be feasible to follow with the vehicle.

−10 −8 −6 −4 −2 0 2 4 6

−10

−8

−6

−4

−2

0

2

4

X (m)

Y
 (

m
)

Figure 75: A dead-reckoning trajectory with range data.

6.3.2 Path Planning with Homotopy Constraints

Figure 77.a depicts the OGM computed with MSISpIC trajectory. The environ-
ment is represented by an 8-bit greyscale image in which each pixel depicts
a cell of the OGM. Since the proposed path planning algorithms only distin-
guish between free cells and occupied cells, a pixel value between 0 and 127

represents an occupied cell, whereas a value between 128 and 255 represents a
free cell. As stated before, the OGM is also used as a C-space assuming that
the vehicle is a single point without area. The figure also depicts the obstacles
identified by the CL algorithm and the reference frame. Its topological graph
is shown in Figure 77.b.

With the method described in Chapter 3, four homotopy classes were gener-
ated. The computation time to apply the CL algorithm, construct the reference
frame with its topological graph and generate the homotopy classes with their
lower bound took 157.8ms. Table 8 shows the homotopy classes classified
according to their lower bound and the paths’length obtained with the HA*,
the HRRT and the HBug algorithms. Table 9 shows the computation time
for each single path with the proposed path planners that accomplish the
homotopy classes. To ensure the stabilization of the results, the HRRT cost
and computation time are the average of 100 executions using a step and a
distThreshold of 0.5m. Finally, Figure 78 depicts the path generated for each

120 results

−10 −8 −6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

X (m)

Y
 (

m
)

Dead−reckoning
MSISpIC

Figure 76: A trajectory estimated with scan matching against dead-reckoning. The
range data is plotted according to the MSISpIC trajectory.

Idx Homotopy class Lower bound(m) HA*(m) HRRT(m) HBug(m)

1 α20α10 7.00 7.88 11.20 9.89

2 α20β11 7.11 8.76 13.77 10.81

4 β21β11 7.50 8.52 11.94 10.53

3 β21α10 7.75 9.16 14.17 11.14

Table 8: Homotopy classes generated for the Underwater Robotics Lab. environment
with their length sorted according to the lower bound.

homotopy class using the HA*, the HRRT and the HBug. In this scenario the
best results are achieved with the HA* since it computes the optimal path
for each homotopy class taking only 218.168ms to accomplish all the steps of
the proposed method. The HRRT and HBug compute the paths faster at the
expense of higher path costs. However, for this scenario the time differences
between the homotopic path planners are not significative: around 58ms and
60ms more than the HRRT and the HBug respectively.

6.4 experiment in the formigues islands

The path planning proposal presented in this thesis has also been considered as
a part of the TRIDENT European project (EU FP7 ICT-248497). This project is
focused on providing a new methodology for multipurpose underwater inter-
vention tasks with diverse potential applications like underwater archaeology,

6.4 experiment in the formigues islands 121

b
1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c s

g

3.1
g 11

β

1
α

2
β4.1

1.1 α

01
α

12
β

02
α

02
α

2.1

4.1

1.1 s
01

α

a) C-space with reference frame b) Topological graph

Figure 77: An 18x16m OGM with 0.1m resolution used as a C-space and its topological
graph.

Idx Homotopy class Lower bound(m) HA*(ms) HRRT(ms) HBug(ms)

1 α20α10 7.00 10.006 0.253 0.013

2 α20β11 7.11 10.689 0.863 0.012

4 β21β11 7.50 12.882 0.424 0.013

3 β21α10 7.75 26.791 1.312 0.011

Total paths 60.368 2.852 0.049

Total process 218.168 160.382 157.849

Table 9: Homotopy classes generated for the Underwater Robotics Lab. environment
with their computation time using the homotopic path planners. The homo-
topy classes have been sorted according to their lower bound.

122 results

α
2
0
α
1
0

α
2
0
β
1
1

β
2
1
β
1
1

β
2
1
α
1
0

H
A

*
b

1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g
b

1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g
b

1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g
b

1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g

H
R

R
T

b
1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g
b

1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g
b

1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g
b

1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g

H
Bug

b
1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g
b

1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g

b
1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g

b
1

b
2

α
1

0

β
1

1

α
2

0

β
2

1

c
s

g

Figure
7

8:P
aths

generated
w

ith
the

H
A

*,the
H

R
R

T
and

the
H

B
u

g
algorithm

s
for

each
hom

otopy
class

generated
in

the
U

nd
erw

ater
R

obotics
L

ab.
environm

ent.

6.4 experiment in the formigues islands 123

Figure 79: Girona 500 I-AUV

oceanography and offshore industries, going beyond present-day methods
typically based on manned and/or purpose built systems. A team of two
cooperative heterogeneous robots with complementary skills, an Autonomous
Surface Craft (ASC) and an I-AUV endowed with a dexterous manipulator
will be used to perform underwater manipulation tasks.

The experiments of the project consist of two steps. In the first step, the
I-AUV is deployed from the ASC to perform a path following survey, in which
it gathers optical/acoustic data from the seafloor to do an accurate terrain
tracking. After the survey, the I-AUV docks in the ASC and sends the data
back to a ground station where a map is set up and a target object is identified
by the end user. In the second step, the ASC navigates towards a waypoint
near the intervention area where the I-AUV is launched to search for the object.
When the object has been found, the I-AUV switches to free floating navigation
mode to start the manipulation process.

The I-AUV that will be used to carry out the experiments is the Girona
500 (Ribas et al., 2011), depicted in Figure 79. The vehicle is equipped with
a phased array DVL Explorer from RDI, an Attitude and Heading Reference
System (AHRS) from Tritech composed of an Intelligent Gyro Compass (IGC)
for attitude and an Intelligent Fiber-optic Gyro (IFoG) for heading, a Linquest
Ultra-Short BaseLine (USBL) 1500HA with modem, a Super Seaking dual
frequency profiling sonar from Tritech, a Sound Velocity System (SVS) with a
pressure sensor from Valeport, a GPS sensor, an Imaginex Sidescan sonar, a
Tritech SeaSpy CCD camera and an Imagenex MPS.

The results presented in this dissertation focus on the path planning ap-
proach to be used in the second step of the experiments when the I-AUV has
to compute safe paths for the intervention based on the generated map. The
method has been applied to a bathymetric map. The path planning method is
in charge of generating the different homotopy classes for the environment.
After that, the HA* algorithm computes the shortest path for each class. Since

124 results

Figure 80: Bathymetric map obtained in the Formigues Islands.

the target has to be selected by the user once the vehicle has performed the
survey and reached the surface, time is not a constraint.

The bathymetry was gathered with a MPS Model 837B "Delta T" 1000 from
Imagenex. This sensor is a multiple receiver sonar system designed to provide
video-like imaging using sonar technology. The MPS has 480 beams spread in
a 120

◦ swath overture, the beam rate frequency is between 5-10Hz, depending
on the depth of the scanned area. The sensor has an MRU sensor to capture
roll, pitch and heading.

The experiment took place in the Formigues Islands, on the Catalan Coast.
The MPS was fastened to a mast with a DGPS sensor. The mast was attached
to a boat to perform a survey mission in an area of 100x58m. The datasets
gathered with the MPS and the DGPS were merged with the commercial
software provided by Imagenex to generate the bathymetric map, depicted in
Figure 80 with a 0.2m resolution.

In the experiment, it was assumed that the vehicle would navigate at a
7.5m depth. Therefore, using an OGM technique (Hernández et al., 2009a), the
cells in the bathymetric map with a lower depth were mapped as occupied
and the cells with a higher depth were mapped as free. Figure 81 depicts the
resultant C-space as a 500x290 bitmap. The construction of the reference frame,
the topological graph and the generation of 45 homotopy classes with their
lower bound computation took 0.273s. Figure 82 depicts the normalized cost
with respect to the optimal path cost computed with the A* algorithm and
the computation time for each homotopy class sorted by their normalized
lower bound. Table 10 shows the five best homotopy classes according to their
lower bound and their paths are depicted in Figure 81. The whole process was
computed in 99.2s. When operating under realtime constraints, it is possible
to stop before computing the class 11 path. In such cases, the process would
take 34.396s.

Changing the start point and/or the goal point may change the number
of homotopy classes generated. For instance, Figure 83 depicts the five best

6.5 summary 125

b
1

b
2 b

3

b
4

b

β1
1

α2
1

β2
2

α3
0

β3
1

α4
0

β4
1

α5
1

β5
2

β5
3

α

α9
-1

b
5

b
6

b
7

b
8

b
9

α2
0

α2
-1 α2

-2

α

α5
0

1

α6
0

α6
-1

α6
-2

α6
1

β6
2

α7
0α7

1

β7

α7
-1

α7
-2

α8
0

β8
1

β8
2

α9
0

β9
1

c

s

α1
0

α3
-1

α4
-1

α5
-1

β7
2

9
1

β9
2

α10
0

α11
0

b
11

5

9

6
b
10

b
11

β10
1

β11
1

g

6

10

12

Figure 81: The paths of the five homotopy classes with the smaller lower bound. The
class associated to the index can be found in Table 10.

homotopy classes according to their lower bound when a different goal point is
selected (Table 11). Our method computed 75 homotopy classes in 0.292s. The
cost for each homotopy class with its lower bound and computation time is
shown in Figure 84. The paths for all the homotopy classes were computed in
226.4s. When operating under realtime constraints, it is possible to stop before
computing the class 7 path. In such cases, the process would take 3.581s.

Idx Homotopy class

5 α6−1α71β91α3−1α110α100

9 α6−2β72β92α3−1α110α100

6 α6−1α71β91α3−1α110β101

10 α6−2β72β92α3−1α110β101

12 α6−2β72β92α3−1β111β101

Table 10: The five homotopy classes with the smaller lower bound in Figure 81 sce-
nario.

6.5 summary

This chapter has grouped the results obtained with the map building and path
planning methods proposed in this thesis. The local map building procedure
has been applied to a dataset gathered with the Ictineu AUV in a man-made
environment. The experiment first applied the MSISpIC to improve the dead-
reckoning trajectory and then generated an OGM with two different inverse
sensor models.

126 results

0 5 10 15 20 25 30 35 40 45

1

1.5

Nº of homotopy class

Lo
w

er
 b

ou
nd

 &
 C

os
t

0 5 10 15 20 25 30 35 40 45

5

10

T
im

e
(s

)

Cost
Lower bound
Time

Figure 82: Normalized cost, normalized lower bound and computation time for paths
generated with the HA* for the 45 homotopy classes in Figure 81.

b
1

b
2 b

3

b
4

β1
1

α

α2
1

β2
2

α3
0

β3
1

α4
0

β4
1

α5
β5

2

β5
3

α7
0

α8

α9
-1

4
b
5

b
6

b
7

b
8

b
9

α2
0

α2
-1

α2
-2

4
0

α

α5
0

5
1

α6
0

α6
-1

α6
-2

α6
1

β6
2

α7
1

β7

α7
-1

α7
-2

α8
0

β8
1 β8

2

α9
0

β

c

s

g

αα

α4
-1

α5
-1

β7
2 β9

1

β9
2

b
b
11

α1
0

α3
-1 α10

0α11
0

11

15

1

31 b
10

11

β10
1

β11
1

31

46

Figure 83: The paths of the five homotopy classes with the smaller lower bound. The
class associated to the index can be found in Table 11.

0 10 20 30 40 50 60 70 80

1

1.5

2

2.5

Nº of homotopy class

Lo
w

er
 b

ou
nd

 &
 C

os
t

0 10 20 30 40 50 60 70 80

2

4

6

8

T
im

e
(s

)

Cost
Lower bound
Time

Figure 84: Normalized cost, normalized lower bound and computation time for paths
generated with the HA* for the 75 homotopy classes in Figure 83.

6.5 summary 127

Idx Homotopy class

11 α60α70α90α30α110α100α10α5−1α4−1α2−2β82

15 α6−1α71β91α3−1α110α100α10α5−1α4−1α2−2β82

1 α80α20α40α50α10α100α110α30α9−1α7−2β62

31 α80α20α40α50α10α100α110α30α90α7−1α61β81α2−1α2−2β82

46 α6−1α71β91α3−1α110α100α10α50α40α20α80α60α70α90α9−1α7−2β62

Table 11: The five homotopy classes with the smaller lower bound in Figure 83 sce-
nario.

In the second experiment, our path planning approach has been applied
to two different bitmap scenarios with irregular obstacles. The first one is
a small cluttered environment which allows detailing the homotopy classes
generation process. The path for each homotopy class has been computed with
the HA*, the HRRT and the HBug algorithms. The second scenario represents
a large environment that has shown up the differences between our path
planners. Different comparisons have been made between the proposed path
planners with their respective non-homotopic versions and with themselves.
This experiment has been used to conclude that the HA* should be used when
generating optimal solutions at the expense of higher computation time is
required, whereas the HBug is suitable for applications in which the time to
perform the path planning is highly constrained. The HRRT should be avoided
since the HBug generates lower cost solutions much faster.

The map building approach and the path planning method have been tested
together in a real experiment using the Sparus AUV in a scenario built in the
water tank of the Underwater Robotics Lab. of the University of Girona. Finally,
the path planning method has been tested in the context of the TRIDENT
European project, where the HA* has been applied in a bathymetry gathered
in the Formigues Islands.

7
C O N C L U S I O N S

This chapter concludes the work presented throughout this dissertation. It first
summarizes the thesis by reviewing the contents described in each chapter.
Then, it points out the research contributions extracted from the proposals and
the experiments. In addition, all aspects which have not been accomplished as
well as some interesting future research issues are commented on in the future
work section. Then, the research framework in which this thesis was achieved
is described. Finally, publications related to this work are listed.

7.1 summary

This thesis addresses the path planning problem for Autonomous Underwater
Vehicles (AUVs). The method proposes the utilization of homotopy classes
to provide topological information on how paths avoid obstacles. Therefore,
looking for a path within a homotopy class constrains the search into a specific
area of the Configuration Space (C-space), speeding up the generation of
the path. In addition to the path planning method, a local map building
approach has also been proposed. Essentially, it first improves the dead-
reckoning navigation of the AUV through a sonar scan matching technique to
generate a more feasible Occupancy Grid Map (OGM) where the path planning
is carried out. The local map building results of this research project have been
presented in a dataset gathered with the Ictineu AUV, one of the experimental
platforms available to the Computer Vision and Robotics (VICOROB) group
at the University of Girona. The results of our path planning approach have
been obtained in synthetic scenarios designed to stress our method, and with
the Sparus AUV in a controlled unknown scenario built in the Underwater
Robotics Lab. of the University of Girona.

After a brief description of the path planning problem, Chapter 2 has given
an overview of the main approaches applied to robotics. The chapter starts
with the graph-based search algorithms, which compute the global shortest
path in the C-space by means of an exhaustive exploration of the search
space, normally improved through a heuristic estimator. On the other hand,
most probabilistic sample-based path planners perform the exploration by
incrementally growing a tree until the goal is reached. Since the C-space is not
explored in detail, the generation of the solution occurs very quickly at the
expense of its quality. Anytime path planners obtain a highly suboptimal first
solution very quickly which is improved through successive iterations while
the time does not expire. Although, the solution is intended to be improved
at each iteration, the generation of a new/better path is not ensured. In the
survey, Bug-based approaches have also been considered for path planning
purposes. Following the same strategies described for motion planning, these

129

130 conclusions

algorithms can generate suboptimal solutions very quickly. An insight into
topological path planning has also been provided, paying special attention to
those solutions that deal with homotopy classes. Representative path planning
approaches for AUVs have been described at the end of the chapter.

Chapter 3 has presented the path planning proposal of this research work,
which uses homotopy classes to guide the path planners topologically. The
method starts by generating the homotopy classes that connect the start point
with the end point in a workspace with obstacles. Then, a lower bound crite-
rion estimates their cost. Hence, those classes which most-probably contain
the lower cost solutions are known without computing any path at all. Finally,
a path planner uses the topological information of the homotopy classes to
generate some good solutions very quickly. Three path planners have been pro-
posed to generate paths for the homotopy classes obtained: the Homotopic A*
(HA*), a graph-search based algorithm that computes the shortest homotopic
path according to an input homotopy class; a probabilistic approach based
on the Rapidly-exploring Random Tree (RRT) called Homotopic RRT (HRRT);
and the Homotopic Bug (HBug), a Bug-based algorithm that combines the
lower bound path with the surrounding of obstacle’s boundaries.

Chapter 4 has described our local map building proposal. The chapter is
divided into two main parts. The first one focuses on improving the dead-
reckoning navigation of AUVs through scan matching. After providing a
definition of the problem, an extension of the Probabilistic Iterative Correspon-
dance (pIC) algorithm, called MSISpIC, has been introduced. This algorithm
deals with uncertainties and motion induced distortions introduced by sonar
sensors with a mechanical rotating head emitter/receiver that AUVs are usu-
ally equipped with. The improved navigation is used to build an OGM in
which the path planning is performed. For the construction of the map, two
inverse sensor models have been shown: the standard range sonar sensor and
an imaging sonar sensor, which takes into account the probability of occupancy
at each discretized part of the beam cone according to the amount of acoustic
energy reflected.

Chapter 5 has reported the main features of the experimental platforms
used in this dissertation, the Ictineu AUV and the Sparus AUV, including the
design principles, the actuators and the on board sensors. An insight into the
sensors used for map building purposes and the control architecture used in
the robots have also been provided.

The results, presented in Chapter 6, have been organized in several sections
according to whether they belong to map building, path planning or both. The
first experiment has tested the map building approach in a dataset gathered
with the Ictineu AUV in a man-made environment. The experiment improved
the dead-reckoning trajectory with the MSISpIC and then computed its OGM
with the two inverse sensor models proposed. The second experiment groups
a set of several tests using our path planning method in different simulated
scenarios. After the computation of the homotopy classes, their correspondent
paths have been generated in the C-space by means of the HA*, the HRRT and
the HBug algorithms. In these experiments, the proposed path planners have

7.2 contributions 131

been compared with their respective non-homotopic versions, and a second
comparison has put the results obtained with HRRT and HBug in front of
the HA* solutions, since it computes the shortest path for each homotopy
class. The third experiment has tested the map building and the path planning
methods together with the Sparus AUV in a scenario built in the water tank
of the Underwater Robotics Lab. of the University of Girona. The last set of
experiments have shown the applicability of our path planning method on a
bathymetric map in the context of the TRIDENT European project.

7.2 contributions

The thesis work has accomplished the proposed goal of developing a path
planning method for AUVs that takes into account topological constraints
addressed through homotopy classes in sonar-based maps improved with scan
matching. In the development of this goal, various research contributions were
achieved. These contributions are listed below.

homotopy classes for path planning. Some of the most relevant path
planning approaches have been studied, specially those which take into
account homotopy classes. With these methods, it is possible to generate
paths that avoid obstacles in different manners, which is interesting for
surveilling purposes and to avoid certain undesirable zones. In this re-
search project we have extended an existing method in order to generate
only those homotopy classes which can then be followed in the C-space.
Furthermore, we have proposed a lower bound criterion to set up a
preference order when choosing a homotopy class to compute its path.

path planning for auvs. In this research work we have developed three
path planners that generate solutions according to an input homotopy
class. Each one is based on a different approach: the HA* generates
the optimal path for a given input homotopy class, which makes the
algorithm suitable to be used as a ground truth; the HRRT computes
the solution through probabilistic random sampling, which speeds up
the exploration process of the search space. Finally, the HBug efficiently
looks for a path by following obstacle boundaries according to an input
homotopy class.

With the method proposed, which assumes that homotopy classes are
sorted according to their lower bound, it is possible to stop the path
search when running under time constraints when the lower bound of
the next homotopy class is equal to or higher than the lowest cost of the
previous solutions. At this point, it is ensured that the global optimal
solution has been found.

scan matching for auvs. In this research project it has been proposed
the MSISpIC, a scan matching algorithm that works with mechanically
scanned imaging/profiler sonars. These sensors are commonly available
in AUVs nowadays. The MSISpIC deals with the motion induced distor-

132 conclusions

tion introduced during the scan acquisition process by estimating the
relative displacement with an Extended Kalman Filter (EKF) while the
scan is being gathered.

local map building. The improved localization obtained from the scan
matching algorithm is used to build an OGM to perform the path plan-
ning. The accurateness of the map depends on the localization estimation
itself and on the accuracy of the sensor readings. Therefore, apart from
the commonly applied inverse range sensor model, an inverse imaging
sonar sensor model has also been proposed, which takes into account
the amount of acoustic energy reflected at each point in the perception
area.

tests and results . The applicability of the map building approach has
been tested on a dataset gathered with the Ictineu AUV in a man-made
marina environment. The path planning proposal has been extensively
tested in synthetic scenarios. As a final result, it has also been tested with
the Sparus AUV in a controlled unknown environment, where the local
map building method provided the map with which the paths for each
homotopy class were computed using the path planners proposed.

7.3 future work

During the development of this thesis, new problems and topics of interest
for future research have arisen. The following points are considered the most
logical lines to continue this research.

traverse the computed paths with auvs. The next logical step to be
performed in this research work is to turn the computed path into
a feasible trajectory to be followed by the vehicles. For this reason,
it is necessary that path planners take into account the kinodynamic
constraints of the vehicles. For safety purposes, it would also be required
to set up a simple obstacle avoidance to adapt the trajectory or stop the
vehicle in case of imminent collision.

extend the lower bound estimator. In order to improve the accuracy
of the whole path planning method, the lower bound estimator should
take into account more restriction criteria than the shortest distance such
as dangerous zones.

homotopy classes in changing environments. The method propo-
sed in this thesis starts the generation of the homotopy classes according
to a fixed map. Although the method is robust to small changes in
the environment such as updated size or shape of an obstacle already
detected, when obstacles are added/removed according to the sensorial
information, the topological environment changes. Consequently, the
homotopy classes have to be recomputed from scratch. Therefore, it is
important to study how classes can be adapted to changing environments
and how they evolve when new obstacles are added.

7.4 research framework 133

extension of the homotopy classes. The natural extension of the work
performed in this research project is to compute homotopy classes in 3D
environments. However, while the homotopy class of a set of trajectories
a is a clear concept well defined in 2D, a deeper study is required to
clarify whether they are detailed enough to constrain the path search
in 3D. Notice that with the current definition of a homotopy class any
obstacle placed on the seafloor could be avoided from the left, the right
or from above without changing its class.

7.4 research framework

The results and conclusions presented in this thesis have been possible after
the realization of countless tests and experiments, which were the fruit of
numerous efforts made during the development of the different research robots
and the necessary software and equipment. All the work done during the
evolution of this thesis is summarized here with references to the most relevant
research publications made by the author. A complete list of publications can
be consulted in the next section.

At the beginning of this thesis, in 2006, the Ictineu AUV was built to face
the first edition of the Student Autonomous Underwater Challenge-Europe
(SAUC-E). To confront this competition, not only a vehicle had to be built, but
the Object Oriented Control Architecture for Autonomy (O2CA2), developed
for older vehicle platforms, also had to be remodeled and a Mission Control
System (MCS) developed. The experience acquired with the Ictineu AUV
was reflected in [CCIA’06, ICRA’07]. In parallel with this competition, the
Underwater Robotics Lab. was starting a series of experiments to automatically
survey the wall of a dam. For these experiments, it was also necessary to have
a functional MCS [IROS’06]. Relative localization techniques with Mechanical
Scanned Imaging Sonars (MSISs) were also studied [ICRA’09].

In order to generate paths for the AUV, it was necessary to build a map
with the data gathered by the vehicle’s onboard sensors. Despite the fact that a
Simultaneous Localization And Mapping (SLAM) proposal was being devel-
oped in our laboratory, this technique was intended to build a map as close to
reality as possible but it was not suitable for online computation. Therefore,
the solution to build a map fast enough for online generation while navigating
was addressed through sonar scan matching techniques. A first approach to
the algorithm which only corrected the displacement but not the rotation was
presented in [WAF’08, JoPhA’09]. The final version was presented in [IROS’09].
Both papers presented the results obtained with a dataset gathered with the
Ictineu AUV in a man-made marina environment. Once the dead-reckoning
navigation was improved, in [MCMC’09] we generated an OGM, in which
the path planning could be performed. In order to generate a map that takes
into account the data gathered with an MSIS, an imaging sonar inverse sensor
model was proposed.

The path planning was addressed through the utilization of homotopy
classes. The extension of an existing method to efficiently generate only those

134 conclusions

classes that can be reached in any 2D workspace was presented with the
HRRT in [ICRA’11]. This paper also contains the first results of the whole
path planning method on the Sparus AUV. In [ICAPS’11], the lower bound
estimator to establish a preference order to compute the paths for the homotopy
classes and a set of improved restriction criteria during the homotopy classes
generation, which would reduce the potential class candidates was presented.
The HA* was developed as a simple graph-search approach, based on the A*,
adapted to compute paths according to specific homotopy classes. Since the
algorithm computes the optimal path for any homotopy class, it can be used
as a ground truth. The results with this algorithm were presented in [IWC’11].
At the same time, the applicability of this method was tested on bathymetric
maps in the context of the TRIDENT European Project [OCEANS’11b]. In
order to take the maximum advantage of the lower bound computation, we
developed the HBug. This algorithm tries to follow the lower bound path, and
when an intersection with an obstacles in the workspace occurs, its boundary
is surrounded in the direction that accomplishes the input homotopy class.
The HBug with the path planning method working together with the local
map building approach has appeared in [NGCUV’12], while exhaustive HBug
tests in synthetic scenarios and a comparison with the other homotopic path
planners will be presented in [ICINCO’12].

7.5 related publications

Sonar Scan Matching and Map building

waf’08 E. Hernández, P. Ridao, D. Ribas and J. Batlle. Probabilistic Scan
Matching with a Mechanical Scan Imaging Sonar. IX Workshop on Phys-
ical Agents (WAF). Vigo, Spain. 2008.

jopha’09 E. Hernández, P. Ridao, D. Ribas and J. Batlle. MSISpIC: A Proba-
bilistic Scan Matching Algorithm Using a Mechanical Scanned Imaging
Sonar. Journal of Physical Agents, 2009, Vol.3, N.1, pages 3–11. ISSN:
1888-0258.

iros’09 E. Hernández, P. Ridao, D. Ribas and A. Mallios. Probabilistic sonar
scan matching for an AUV. In Proceedings of the Intelligent IEEE/RSJ
International Conference on Robots and Systems (IROS), pages 255–260.
St. Louis, MO, USA. 2009.

oceans’09 A. Mallios, P. Ridao, E. Hernández, D. Ribas, F. Maurelli and Y.
Petillot. Pose-Based SLAM with Probabilistic Scan Matching Algorithm
using a Mechanical Scanned Imaging Sonar. Oceans IEEE-EUROPE.
Bremen, Germany. 2009.

mcmc’10 E. Hernández, P. Ridao, A. Mallios and M. Carreras. Occupancy
Grid Mapping in an Underwater Structured Environment. In Proceedings
of the 8th IFAC International Conference on Manoeuvring and Control
of Marine Craft (MCMC). Sao Paulo, Brazil. 2009.

7.5 related publications 135

oceans’10 A. Mallios, P. Ridao, D. Ribas and E. Hernández. Probabilistic
Sonar Scan Matching SLAM for Underwater Environment. OCEANS
2010 IEEE - Sydney, pages 1–8. Sidney, Australia. 2010.

oceans’11a A. Mallios, P. Ridao, M. Carreras and E. Hernández. Navigating
and Mapping with the Sparus AUV in a Natural and Unstructured
Underwater Environment. OCEANS 2011, pages 1–7. Kona, Hawai. 2011.

ar’12 A. Mallios, P. Ridao, D. Ribas and E. Hernández. Scan Matching SLAM
in Underwater Environment. Autonomous Robots Journal. 2012. (Sub-
mitted).

Path Planning Methods with Homotopy Constrains

oceans’11b E. Hernández, M. Carreras, E. Galceran and P. Ridao. Path plan-
ning with homotopy class constraints on bathymetric maps. OCEANS,
2011 IEEE - Spain, pages 1–6. Santander, Spain. 2011.

icra’11 E. Hernández, M. Carreras, J. Antich, P. Ridao and A. Ortiz. A
Topologically Guided Path Planner for an AUV Using Homotopy Classes.
In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 2337–2343. Shanghai, China. 2011.

iwc’11 E. Hernández, M. Carreras, J. Antich, P. Ridao and A. Ortiz. A Search-
based Path Planning Algorithm with Topological Constraints. Applica-
tion to an AUV. In Proceedings of the 18th IFAC World Congress. Milan,
Italy. 2011.

icaps’11 E. Hernández, M. Carreras and P. Ridao. A Path Planning Algo-
rithm for an AUV Guided with Homotopy Classes. In Proceedings of the
21st International Conference on Automated Planning and Scheduling
(ICAPS). Freiburg, Germany. 2011.

ngcuv’12 E. Hernández, M. Carreras, P. Ridao and A. Mallios. Homotopic
Path Planning for an AUV on Maps Improved with Scan Matching. In
Proceedings of IFAC Workshop on Navigation, Guidance and Control of
Underwater Vehicles (NGCUV). Porto, Portugal. 2012.

icinco’12 E. Hernández, M. Carreras and P. Ridao. A Bug-based Path Plan-
ner Guided with Homotopy Classes. In Proceedings of the 9th Interna-
tional Conference on Informatics and Control, Automation and Robotics
(ICINCO). Rome, Italy. 2012. To appear.

Other Works Related with Underwater Robotics

ccia’06 E. Hernández, P. Ridao, M. Carreras, D. Ribas, N. Palomeras, A.
El-fakdi, F. Chung, T. Almohaya, X. Ribas, G. García, J. Massich and
N. Hurtós. Ictineu AUV, un Robot per a Competir. 9th Congrés Català
d’Intel.ligència Artificial (CCIA). Perpignan, France. 2006.

136 conclusions

iros’06 N. Palomeras, M. Carreras, P. Ridao and E. Hernández. Mission
control system for dam inspection with an AUV. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2551-2556. Beijing, China. 2006.

icra’07 D. Ribas, N. Palomeras, P. Ridao, M. Carreras and E. Hernández.
ICTINEU AUV Wins the first SAUC-E competition. In Proceedings of
IEEE International Conference on Robotics and Automation (ICRA),
pages 151–156. Rome, Italy. 2007.

ecai’08 A. El-Fakdi, M. Carreras and E. Hernández. Gradient-based Rein-
forcement Learning for Autonomous Underwater Cable Tracking. In
Proceedings of the 18th European Conference on Artificial Intelligence
(ECAI). Patras, Greece. 2008.

icra’09 W. Kazmi, P. Ridao, D. Ribas and E. Hernández. Dam wall detection
and tracking using a Mechanically Scanned Imaging Sonar. In Proceed-
ings of IEEE International Conference on Robotics and Automation
(ICRA), pages 3595–3600. Kobe, Japan. 2009.

icra’11 P. Ridao, D. Ribas, E. Hernández and A. Rusu. USBL/DVL navi-
gation through delayed position fixes. In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 2344–2349.
Shanghai, China. 2011.

A
A N E X A M P L E O F H O M O T O P Y C L A S S E S G E N E R AT I O N

This appendix shows a full example of the generation of the homotopy classes
with the method developed in this dissertation in a simple environment with
two obstacles. The scenario is depicted in Figure 85.a with its reference frame.
Figure 85.b shows its topological graph.

Table 12 shows the full execution of the modified Breadth-First Search
(BFS) algorithm. When a candidate homotopy class accomplishes one of the
restriction criteria, it is described and the class is discarded from being used
as a root for future homotopy classes. In this example, the execution of the
BFS is stopped when, due to the restriction criteria, there are no more class
candidates to be generated. Those homotopy class candidates that pass all
the restriction criteria and finish at node 3.2 in the graph are marked with an
asterisk. Table 13 summarizes the homotopy classes obtained with their index
of generation according to the BFS.

11−
α

12
β

g

01
α

11−
α

12
β

02
α

2
b

01
α

01
α

02
α

02
αc p

1
l

2
l

1
b

11
β

12−
α

s

1
α

2
β

g

3.2

3.1

01
α

11−
α

12
β

02
α

1.1

4.1 2.1

01
α

01
α

02
α

02
α

11
β

12−
α

s1.2

a) Reference frame b) Topological graph

Figure 85: The reference frame of a simple scenario with two obstacles with its corre-
spondent topological graph.

137

138 an example of homotopy classes generation

Homotopy class Comment Homotopy class Comment

β11 β11α10α20α1−1
β21

α2−1

β11α10 β11α10α20α2−1
β11 Simple wrap

β11α20

β11β21 * β11β21α1−1
α10α20

α2−1
α10 β11β21α1−1

α20α10 Duplicated

α2−1
α1−1

*

α2−1
α20 β11β21α1−1

α2−1
β11 Simple wrap

β11α10α20 α2−1
α10α20β11α2−1

Simple wrap

β11α20α10 Duplicated α2−1
α10α20β21α1−1

β11β21α1−1
α2−1

α1−1
β21β11α2−1

Simple wrap

α2−1
α10α20 α2−1

α1−1
β21α20α10 Duplicated

α2−1
α1−1

β21 β11α10α20α1−1
β21α10 Simple wrap

α2−1
α20α10 Duplicated β11α10α20α1−1

β21β11 Simple wrap

β11α10α20α1−1
β21α20 Simple wrap

β11α10α20α10 Duplicated

β11α10α20α1−1
* β11β21α1−1

α10α20α10 Duplicated

β11α10α20α2−1
β11β21α1−1

α10α20β11 Simple wrap

β11β21α1−1
α10α20β21 Simple wrap

β11β21α1−1
α10

β11β21α1−1
α20 α2−1

α10α20β21α1−1
α10 Simple wrap

β11β21α1−1
α2−1

α2−1
α10α20β21α1−1

α20 Simple wrap

α2−1
α10α20α10 Duplicated

α2−1
α10α20β11 α2−1

α10α20β21α1−1
α2−1

Simple wrap

α2−1
α10α20β21 *

α2−1
α1−1

β21α10α20α10 Duplicated

α2−1
α1−1

β21α10 α2−1
α1−1

β21α10α20α1−1
Simple wrap

α2−1
α1−1

β21β11 α2−1
α1−1

β21α10α20α2−1
Simple wrap

α2−1
α1−1

β21α20

Table 12: Modified BFS execution.

Idx Homotopy class

1 β11β21

2 α2−1α1−1

3 β11α10α20α1−1

4 α2−1α10α20β21

Table 13: Homotopy classes obtained for the example.

B
T R A N S F O R M AT I O N S I N 2 D

In (Smith et al., 1990) two operations representing the most frequently encoun-
tered spatial relationships in stochastic mapping applications were presented.
One of these operations is the composition transformation, represented by the
operators ⊕:

xA
C
= xA

B
⊕ xB

C

b.1 composition

Given two spatial transformations (reference B relative to reference A and
reference C relative to reference B):

xA
B
=

x
1

y
1

φ
1

 xB
C
=

x
2

y
2

φ
2

The location of C relative to A can be described by the composition transfor-

mation:

xA
C
= xA

B
⊕ xB

C
=

x
1
+ x

2
cosφ

1
− y

2
sinφ

1

y
1
+ x

2
sinφ

1
+ y

2
cosφ

1

φ
1
+φ

2

The estimated location of C relative to A can be described as the composition

transformation:

xA
C
= xA

B
⊕ xB

C

b.2 point features

Given the location of a point feature P relative to reference B:

xB
P
=

[
x
2

y
2

]

In a similar manner, as mentioned before, the location of P relative to
reference A can be described by the composition transformation:

139

140 transformations in 2d

xA
P
= xA

B
⊕ xB

P
=

[
x
1
+ x

2
cosφ

1
− y

2
sinφ

1

y
1
+ x

2
sinφ

1
+ y

2
cosφ

1

]

The estimated location of P relative to A can be described as the composition
transformation:

xA
P
= xA

B
⊕ xB

P

B I B L I O G R A P H Y

Abbasi-Yadkori, Y., Modayil, J., and Szepesvari, C. (2010). Extending rapidly-
exploring random trees for asymptotically optimal anytime motion plan-
ning. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 127 –132.

Acar, E., Choset, H., and Lee, J. Y. (2006). Sensor-based coverage with extended
range detectors. IEEE Transactions on Robotics, 22(1):189 – 198.

Aine, S., Chakrabarti, P. P., and Kumar, R. (2007). AWA* - a window constrained
anytime heuristic search algorithm. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI), pages 2250–2255.

Alcázar, V., Veloso, M., and Borrajo, D. (2011). Adapting an rrt for automated
planning. In Borrajo, D., López, C. L., and Likhachev, M., editors, Proceed-
ings of the Fourth International Symposium on Combinatorial Search (SoCS),
pages 2–9, Cardona, Spain. AAAI Press.

Alvarez, A., Caiti, A., and Onken, R. (2004). Evolutionary path planning for
autonomous underwater vehicles in a variable ocean. IEEE Journal of
Oceanic Engineering, 29(2):418–429.

Amat, J., Batlle, J., Casals, A., and Forest, J. (1996). Garbi: a low cost ROV,
constrains and solutions. In 6e Seminaire IARP en robotique sous-marine,
pages 1–22, Toulon-La Seyne, France.

Antich, J. and Ortiz, A. (2009). Bug2+: Details and formal proofs. Technical
Report Report A-1-2009, University of the Balearic Islands.

Antich, J., Ortiz, A., and Minguez, J. (2009). A bug-inspired algorithm for
efficient anytime path planning. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5407 –5413.

Arkin, R. and Balch, T. (1997). AuRA: Principles and practice in review. Journal
of Experimental and Theoretical Artificial Intelligence, 9:175–189.

Asama, H., Ozaki, K., Itakura, H., Matsumoto, A., Ishida, Y., and Endo, I.
(1991). Collision avoidance among multiple mobile robots based on rules
and communication. In Proceedings of the IEEE/RSJ Intelligent Robots and
Systems (IROS). International Workshop on Intelligence for Mechanical Systems,
volume 3, pages 1215–1220.

Aurenhammer, F. (1991). Voronoi diagrams – a survey of a fundamental
geometric data structure. ACM Computing Surveys, 23(3):345–405.

Bailey, T. and Durrant-Whyte, H. F. (2006). Simultaneous localization and
mapping (SLAM): Part II, state of the art. IEEE Robotics and Automation
Magazine, 13(3):108–117.

141

142 bibliography

Banerjee, B. and Chandrasekaran, B. (2006). A framework for planning multiple
paths in free space. In Proceedings of 25th Army Science Conference, Orlando,
FL.

Bar-Shalom, Y. and Fortman, T. (1998). Tracking and Data Association. Academic
Press.

Barraquand, J., Langlois, B., and Latombe, J.-C. (1992). Numerical potential
field techniques for robot path planning. IEEE Transactions on Systems,
Man and Cybernetics, 22(2):224 –241.

Batlle, J., Ridao, P., Garcia, R., Carreras, M., Cufi, X., El-Fakdi, A., Ribas, D.,
Nicosevici, T., and Batlle, E. (2004). URIS: Underwater Robotic Intelligent
System, chapter 11, pages 177 – 203. Instituto de Automatica Industrial,
Consejo Superior de Investigaciones Cientificas, 1st edition.

Belghith, K., Kabanza, F., Hartman, L., and Nkambou, R. (2006). Anytime
dynamic path-planning with flexible probabilistic roadmaps. In IEEE
International Conference on Robotics and Automation (ICRA), pages 2372–
2377, Orlando, Florida, USA.

Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256.

Bespamyatnikh, S. (2003). Computing homotopic shortest paths in the plane.
Journal of Algorithms, 49:284–303.

Bhattacharya, P. and Gavrilova, M. (2007). Voronoi diagram in optimal path
planning. In 4th International Symposium on Voronoi Diagrams in Science and
Engineering (ISVD), pages 38 –47.

Bhattacharya, S., Kumar, V., and Likhachev., M. (2010). Search-based path
planning with homotopy class constraints. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), volume 2, pages 1230–1237,
Atlanta, Georgia, USA.

Binney, J., Krause, A., and Sukhatme, G. (2010). Informative path planning for
an autonomous underwater vehicle. In IEEE International Conference on
Robotics and Automation (ICRA), pages 4791 –4796.

Borenstein, J. and Koren, Y. (1991). The vector field histogram-fast obstacle
avoidance for mobile robots. IEEE Transactions on Robotics and Automation,
7(3):278–288.

Borrajo, D. and Veloso, M. (2012). Probabilistically reusing plans in determin-
istic planning. In Proceedings of ICAPS’12 workshop on Heuristics and Search
for Domain-Independent Planning. AAAI Press.

Bourgault, F., Makarenko, A., Williams, S., Grocholsky, B., and Durrant-Whyte,
H. (2002). Information based adaptive robotic exploration. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), volume 1,
pages 540–545.

bibliography 143

Branicky, M., LaValle, S., Olson, K., and Yang, L. (2001). Quasi-randomized
path planning. In IEEE International Conference on Robotics and Automation
(ICRA), volume 2, pages 1481–1487, Seoul, Korea.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(3):14–23.

Bülow, H. and Birk, A. (2011). Spectral registration of noisy sonar data for
underwater 3d mapping. Autonomous Robots, 30:307–331. 10.1007/s10514-
011-9221-8.

Bülow, H., Pfingsthorn, M., and Birk, A. (2010). Using robust spectral registra-
tion for scan matching of sonar range data. In 7th Symposium on Intelligent
Autonomous Vehicles (IAV), volume 7, Lecce, Italy. IFAC.

Burguera, A., Gonzalez, Y., and Oliver, G. (2007). Probabilistic sonar scan
matching for robust localization. In IEEE International Conference on Robotics
and Automation (ICRA), pages 3154–3160, Roma, Italy.

Burguera, A., Oliver, G., and González, Y. (2010). Scan-based SLAM with
trajectory correction in underwater environments. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2546 –2551, Taipei,
Taiwan.

Cabello, S., Liu, Y., Manler, A., and Snoeyink, J. (2002). Testing homotopy
for paths in the plane. In Proceedings of the Symposium on Computational
Geometry (SoCG), pages 160–169, Barcelona, Spain.

Carreras, M., Batlle, J., and Ridao, P. (2001). Hybrid coordination of reinforce-
ment learning-based behaviors for AUV control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), volume 3, pages 1410 –
1415, Wailea, Hawaii, USA.

Carreras, M., Ridao, P., and El-Fakdi, A. (2003). Semi-online neural-qlearning
for real-time robot learning. In IEEE/RSJ Conference on Intelligent Robots
and Systems (IROS), pages 662 – 667.

Carroll, K., McClaran, S., Nelson, E., Barnett, D., Friesen, D., and William,
G. (1992). AUV path planning: an A* approach to path planning with
consideration of variable vehicle speeds and multiple, overlapping, time-
dependent exclusion zones. In Proceedings of the 1992 Symposium on Au-
tonomous Underwater Vehicle Technology (AUV), pages 79 –84.

Castellani, U., Fusiello, A., Murino, V., Papaleo, L., Puppo, E., Repetto, S., and
Pittore, M. (2004). Efficient on-line mosaicing from 3D acoustical images.
OCEANS ’04. MTTS/IEEE TECHNO-OCEAN ’04, 2:670–677.

Chang, F., jen Chen, C., and Lu, C.-J. (2004). A linear-time component-labeling
algorithm using contour tracing technique. Computer Vision and Image
Understanding, 93:206–220.

144 bibliography

Chazelle, B. (1982). A theorem on polygon cutting with applications. In 23rd
Annual Symposium on Foundations of Computer Science (SFCS), pages 339

–349.

Cheng, S.-W., Jin, J., Vigneron, A., and Wang, Y. (2010). Approximate shortest
homotopic paths in weighted regions. In Cheong, O., Chwa, K.-Y., and
Park, K., editors, Algorithms and Computation, volume 6507 of Lecture Notes
in Computer Science, pages 109–120. Springer Berlin / Heidelberg.

Chien, Y.-P. and Xue, Q. (1992). Path planning for two planar robots moving in
unknown environment. IEEE Transactions on Systems, Man and Cybernetics,
22(2):307 –317.

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A., Burgard, W., Kavraki,
L. E., and Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, Cambridge, MA.

Cuerington, A. (1991). The shortest path problem in the plane with obstacles:
Bounds on path lenghts and shortest paths within homotopy classes.
Master’s thesis, Naval Postgraduate School, Monterey, California.

Davis, D. (1996). Precision maneuvering and control of the Phoenix Autonomous Un-
derwater Vehicle for entering a recovery tube. PhD thesis, Naval Postgraduate
School, Monterey, California.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271. 10.1007/BF01386390.

Dolgov, D., Thrun, S., Montemerlo, M., and Diebel, J. (2010). Path planning for
autonomous vehicles in unknown semi-structured environments. Interna-
tional Journal of Robotics Research, 29(5):485–501.

Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. (1991). Robotic exploration as
graph construction. IEEE Transactions on Robotics and Automation, 7(6):859–
865.

Durrant-Whyte, H. F. and Bailey, T. (2006). Simultaneous localization and
mapping (SLAM): Part I, the essential algorithms. IEEE Robotics and
Automation Magazine, 13(2):99–108.

Efrat, A., Kobourov, S., and Lubiw, A. (2002). Computing homotopic shortest
paths efficiently. In Möhring, R. and Raman, R., editors, Algorithms – ESA
2002, volume 2461 of Lecture Notes in Computer Science, pages 277–288.
Springer Berlin / Heidelberg.

El-Fakdi, A. (2011). Gradient-Based Reinforcement Learning Techniques for Under-
water Robotics Behavior Learning. PhD thesis, University of Girona.

El-Fakdi, A., Carreras, M., and Galceran, E. (2010). Two steps natural actor critic
learning for underwater cable tracking. In IEEE International Conference
on Robotics and Automation (ICRA), pages 2267–2272, Anchorage, Alaska,
USA.

bibliography 145

Elfes, A. (1989). Using occupancy grids for mobile robot perception and
navigation. Computer, 22(6):46–57.

Fabrizi, E. and Saffiotti, A. (2000). Extracting topology-based maps from
gridmaps. In IEEE International Conference on Robotics and Automation
(ICRA), pages 2972–2978.

Fairfield, N., Kantor, G., and Wettergreen, D. (2007). Real-time SLAM with
octree evidence grids for exploration in underwater tunnels. Journal of
Field Robotics, 24:3–21.

Fenwick, J. and Estivill-Castro, V. (2005). Optimal paths for mutually visible
agents. In Deng, X. and Du, D.-Z., editors, Algorithms and Computation,
volume 3827 of Lecture Notes in Computer Science, pages 869–881. Springer
Berlin / Heidelberg.

Ferguson, D., Kalra, N., and Stentz, A. (2006). Replanning with RRTs. In IEEE
International Conference on Robotics and Automation (ICRA), pages 1243 –
1248.

Ferguson, D., Likhachev, M., and Stentz, A. (2005). A guide to heuristic-based
path planning. In Proceedings of the International Workshop on Planning under
Uncertainty for Autonomous Systems, International Conference on Automated
Planning and Scheduling (ICAPS).

Ferguson, D. and Stentz, A. (2005). Field D*: An interpolation-based path
planner and replanner. In Proceedings of the International Symposium on
Robotics Research (ISRR), pages 1926–1931.

Ferguson, D. and Stentz, A. (2006). Anytime RRTs. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5369 – 5375.

Ferguson, D. and Stentz, A. (2007). Anytime, dynamic planning in high-
dimensional search spaces. In IEEE International Conference on Robotics and
Automation (ICRA), pages 1310–1315.

Fernandez-Perdomo, E., Cabrera-Gamez, J., Hernandez-Sosa, D., Isern-
Gonzalez, J., Dominguez-Brito, A., Prieto-Maranon, V., and Ramos, A.
(2011). Adaptive bearing sampling for a constant-time surfacing A* path
planning algorithm for gliders. In IEEE International Conference on Robotics
and Automation (ICRA), pages 2350 –2355.

Firby, R. (1989). Adaptive Execution in Complex Dynamic Worlds. PhD thesis,
Yale University, New Haven, Connecticut.

Fossen, T. (1994). Guidance and Control of Ocean Vehicles. Wiley.

Frazzoli, E., Dahleh, M. A., and Feron, E. (2000). Real-time motion planning for
agile autonomous vehicles. AIAA Journal of Guidence, Control and Dynamics,
25:116–129.

146 bibliography

Fujita, Y., Nakamura, Y., and Shiller, Z. (2003). Dual dijkstra search for paths
with different topologies. In IEEE International Conference on Robotics and
Automation (ICRA), volume 3, pages 3359–3364.

Furcy, D. A. (2006). ITSA*: Iterative tunneling search with A*. In AAAI
Workshop of Heuristic Search.

Gao, S., Jerrum, M., Kaufman, M., Mehlhorn, K., and Rülling, W. (1988). On
continuous homotopic one layer routing. In Proceedings of the 4th annual
symposium on Computational geometry, SCG ’88, pages 392–402, New York,
NY, USA. ACM.

Garau, B., Alvarez, A., and Oliver, G. (2005). Path planning of autonomous
underwater vehicles in current fields with complex spatial variability: an
A* approach. In IEEE International Conference on Robotics and Automation
(ICRA), pages 194 – 198.

Grigoriev, D. and Slissenko, A. (1998). Polytime algorithm for the shortest
path in a homotopy class amidst semi-algebraic obstacles in the plane.
In Proceedings of the International Symposium on Symbolic and Algebraic
Computation (ISSAC), pages 17–24, New York, NY, USA. ACM.

Hähnel, D., Burgard, W., Fox, D., and Thrun, S. (2003). An efficient fastSLAM
algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), volume 1, pages 206–211.

Hans and Rohnert (1986). Shortest paths in the plane with convex polygonal
obstacles. Information Processing Letters, 23(2):71–76.

Hansen, E. and Zhou, R. (2007). Anytime heuristic search. Journal of Artificial
Intelligence Research (JAIR), 28:267–297.

Hansen, E. A., Zilberstein, S., and Danilchenko, V. A. (1997). Anytime heuristic
search: First results. Technical report, University of Massachusetts.

Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107.

Hernández, E., Carreras, M., Antich, J., Ridao, P., and A.Ortiz (2011a). A
topologically guided path planner for an AUV using homotopy classes. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 2337–2343, Shanghai, China.

Hernández, E., Carreras, M., Antich, J., Ridao, P., and Ortiz, A. (2011b). A
search-based path planning algorithm with topological constraints. Appli-
cation to an AUV. In Proceedings of the 18th IFAC World Congress, Milan,
Italy.

bibliography 147

Hernández, E., Carreras, M., and Ridao, P. (2011c). A path planning algorithm
for an AUV guided with homotopy classes. In Proceedings of the 21st
International Conference on Automated Planning and Scheduling (ICAPS),
Freiburg, Germany.

Hernández, E., Ridao, P., Mallios, A., and Carreras, M. (2009a). Occupancy
grid mapping in an underwater structured environment. In Proceedings of
the 8th IFAC International Conference on Manoeuvring and Control of Marine
Craft (MCMC), Guaruja, Sao Paulo, Brazil.

Hernández, E., Ridao, P., Ribas, D., and Mallios, A. (2009b). Probabilistic sonar
scan matching for an auv. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 255–260, St.Louis,MO,USA.

Hernández, E., Carreras, M., Ridao, P., and Mallios, A. (2012). Homotopic path
planning for an AUV on maps improved with scan matching. In Proceed-
ings of IFAC Workshop on Navigation, Guidance and Control of Underwater
Vehicles (NGCUV), Porto, Portugal.

Hershberger, J. and Snoeyink, J. (1991). Computing minimum length paths of
a given homotopy class. Computational Geometry: Theory and Applications,
4:331–342.

Hill, Jr., F. S. (1994). The pleasures of “perp dot" products, pages 138–148. Academic
Press Professional, Inc., San Diego, CA, USA.

Hsu, D. (2000). Randomized single-query motion planning in expansive spaces. PhD
thesis, Standford University, Stanford, CA, USA. AAI9986110.

Hsu, D., Jiang, T., Reif, J., and Sun, Z. (2003). The bridge test for sampling nar-
row passages with probabilistic roadmap planners. In IEEE International
Conference on Robotics and Automation (ICRA), volume 3, pages 4420–4426.

Hsu, D., Kindel, R., and Latombe, J.C.and Rock, S. (2002). Randomized
kinodynamic motion planning with moving obstacles. The International
Journal of Robotics Research, 21(3):233–255.

Hurtos, N., Mallios, A., Carreno, S., Campos, R., Lee, C., Fuster, X., Cusi, S.,
Galceran, E., Carrera, A., Villanueva, M., Palomeras, N., Ribas, D., and
Carreras, M. (2010). Sparus, the University of Girona’s entry for SAUC-E
2010. International Journal of Maritime Engineering, 4:167–171.

Jakuba, M. and Yoerger, D. (2008). Autonomous search for hydrothermal vent
fields with occupancy grid maps. In Australasian Conference on Robotics
and Automation, Canberra, Australia.

Jenkins, K. D. (1991). The shortest path problem in the plane with obstacles:
A graph modeling approach to producing finite search lists of homotopy
classes. Master’s thesis, Naval Postgraduate School, Monterey, California.

148 bibliography

Kalitzin, S., Staal, J., ter Haar Romeny, B., and Viergever, M. (2001). A compu-
tational method for segmenting topological point-sets and application to
image analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23(5):447–459.

Kamon, I., Rimon, E., and Rivlin, E. (1998). TangentBug: A range-sensor-
based navigation algorithm. The International Journal of Robotics Research,
17(9):934–953.

Kamon, I. and Rivlin, E. (1997). Sensory-based motion planning with global
proofs. IEEE Transactions on Robotics and Automation, 13(6):814–822.

Karaman, S., Walter, M., Perez, A., Frazzoli, E., and Teller, S. (2011). Anytime
motion planning using the RRT*. In IEEE International Conference on
Robotics and Automation (ICRA), pages 1478–1483.

Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation (ICRA), 12(4):566–580.

Kim, J. and Ostrowski, J. (2003). Motion planning a aerial robot using rapidly-
exploring random trees with dynamic constraints. In IEEE International
Conference on Intelligent Robotics and Automation (ICRA), volume 2, pages
2200–2205.

Koening, S. and Lickhachev, M. (2002). D*lite. In Eighteenth national conference
on Artificial intelligence, pages 476–483, Menlo Park, CA, USA. American
Association for Artificial Intelligence (AAAI).

Kruger, D., Stolkin, R., Blum, A., and Briganti, J. (2007). Optimal AUV path
planning for extended missions in complex, fast-flowing estuarine en-
vironments. In IEEE International Conference on Robotics and Automation
(ICRA), pages 4265–4270.

Kuffner, J.J., J. and LaValle, S. (2000). RRT-connect: An efficient approach to
single-query path planning. In IEEE International Conference on Robotics
and Automation (ICRA), volume 2, pages 995–1001.

Kuwata, Y., Fiore, G., Teo, J., Frazzoli, E., and How, J. (2008). Motion plan-
ning for urban driving using rrt. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1681–1686.

Lacevic, B. and Rocco, P. (2010). Sampling-based safe path planning for robotic
manipulators. In IEEE Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1–7.

Langer, R., Coelho, L., and Oliveira, G. (2007). K-Bug, a new bug approach for
mobile robot’s path planning. In IEEE International Conference on Control
Applications (CCA), pages 403 –408.

Latombe, J. (1991). Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA.

bibliography 149

Laumond, J.-P., Jacobs, P., Taix, M., and Murray, R. (1994). A motion planner for
nonholonomic mobile robots. IEEE Transactions on Robotics and Automation,
10(5):577–593.

LaValle, S. M. Kuffner, J. J. (1999). Randomized kinodynamic planning. In
Proceedings of the IEEE International Conference on In Robotics and Automation
(ICRA), volume 1, pages 473–479.

LaValle, S. M. Kuffner, J. J. (2001). Randomized kinodynamic planning. Inter-
national Journal of Robotics Research, 20(5):378–400.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press, Cam-
bridge, U.K. Available at http://planning.cs.uiuc.edu/.

Leiserson, C. E. and Maley, F. M. (1985). Algorithms for routing and testing
routability of planar vlsi layouts. In Proceedings of the seventeenth annual
ACM symposium on Theory of computing, STOC ’85, pages 69–78, New York,
NY, USA. ACM.

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and Thrun, S. (2005).
Anytime dynamic A*: An anytime, replanning algorithm. In Proceedings of
the International Conference on Automated Planning and Scheduling (ICAPS).

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and Thrun, S. (2008).
Anytime search in dynamic graphs. Artificial Intelligence Journal (AIJ),
172(14):1613 – 1643.

Likhachev, M., Gordon, G., and Thrun, S. (2004). ARA*: Anytime A* with
provable bounds on sub-optimality. In Proceedings of the advances in Neural
Inforamtion Processing Systems 16 (NIPS). MIT Press.

Liu, Y.-H. and Arimoto, S. (1992). Path planning using a tangent graph for
mobile robots among polygonal and curved obstacles. International Journal
of Robotics Research, 11:376–382.

Lu, F. and Milios, E. (1994). Robot pose estimation in unknown environments
by matching 2D range scans. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 935–938.

Lumelsky, V. and Skewis, T. (1990). Incorporating range sensing in the robot
navigation function. IEEE Transactions on Systems, Man and Cybernetics,
20(5):1058–1069.

Lumelsky, V. and Stepanov, E. (1987). Path planning strategies for a point
mobile automaton moving amidst unknown obstacles of arbitrary shape.
Algorithmica, 2:403–430.

Maki, T., Ura, T., and Sakamaki, T. (2009). Map based path-planning and
guidance scheme of an AUV for inspection of artificial structures. In
OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global
and Local Challenges, pages 1 –7.

150 bibliography

Mallios, A., Ridao, P., Carreras, M., and Hernandez, E. (2011). Navigating and
mapping with the SPARUS AUV in a natural and unstructured underwater
environment. In OCEANS 2011, pages 1 –7.

Mallios, A., Ridao, P., Hernandez, E., Ribas, D., Maurelli, F., and Petillot, Y.
(2009). Pose-based SLAM with probabilistic scan matching algorithm
using a mechanical scanned imaging sonar. In Oceans IEEE - EUROPE,
pages 1–6.

Mallios, A., Ridao, P., Ribas, D., and Hernández, E. (2010a). Probabilistic sonar
scan matching SLAM for underwater environment. In OCEANS 2010 IEEE
- Sydney, pages 1 –8.

Mallios, A., Ridao, P., Ribas, D., Maurelli, F., and Petillot, Y. (2010b). EKF-
SLAM for AUV navigation under probabilistic sonar scan-matching. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4404 –4411. IEEE.

Mastrogiovanni, F., Sgorbissa, A., and Zaccaria, R. (2009). Robust navigation
in an unknown environment with minimal sensing and representation.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
39(1):212–229.

Milgram, R. and Kaufman, S. (2000). Topological characterization of safe
coordinated vehicle motions. In IEEE International Conference onRobotics
and Automation (ICRA), volume 3, pages 2039–2045.

Mínguez, J. (2002). Robot Shape, Kinematics, and Dynamics in Sensor-Based Motion
Planning. PhD thesis, Universidad de Zaragoza,.

Mínguez, J., Lamiraux, F., and Montesano, L. (2005). Metric-based scan match-
ing algorithms for mobile robot displacement estimation. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3557–3563.

Mínguez, J., Montesano, L., and Montano, L. (2004). An architecture for
sensor-based navigation in realistic dynamic and troublesome scenarios.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
3:2750–2756.

Montesano, L., Mínguez, J., and Montano, L. (2005). Probabilistic scan match-
ing for motion estimation in unstructured environments. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3499

– 3504.

Moravec, H. and Elfes, A. (1985). High resolution maps from wide angle
sonar. In IEEE International Conference on Robotics and Automation (ICRA),
volume 2, pages 116–121.

Munkres, J. (1974). Topology; a first course. Prentice-Hall.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541 – 580.

bibliography 151

Ng, J. and Braunl, T. (2007). Performance comparison of bug navigation algo-
rithms. Journal of Intelligent & Robotic Systems, 50:73–84. 10.1007/s10846-
007-9157-6.

Nilsson, N. J. (1982). Principles of Artificial Intelligence. Springer.

Palomeras, N. (2011). A Mission Control System for an Autonomous Underwater
Vehicle. PhD thesis, University of Girona.

Palomeras, N., Garcia, J., M., P., Fernandez, J., Sanz, P., and Ridao, P. (2010). A
distributed architecture for enabling autonomous underwater intervention
missions. In IEEE Systems Conference, pages 159 – 164.

Palomeras, N., Ridao, P., Carreras, M., and Silvestre, C. (2009). Using petri nets
to specify and execute missions for autonomous underwater vehicles. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4439–4444.

Parker, L., Birch, B., and Reardon, C. (2003). Indoor target intercept using an
acoustic sensor network and dual wavefront path planning. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), volume 1,
pages 278–283.

Paull, L., Saeedi, S., Li, H., and Myers, V. (2010). An information gain based
adaptive path planning method for an autonomous underwater vehi-
cle using sidescan sonar. In IEEE Conference on Automation Science and
Engineering (CASE), pages 835–840.

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem solving.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Petillot, Y., Tena Ruiz, I., and Lane, D. (2001). Underwater vehicle obstacle
avoidance and path planning using a multi-beam forward looking sonar.
IEEE Journal of Oceanic Engineering, 26(2):240–251.

Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., and Lane, D. (2007).
Path planning for autonomous underwater vehicles. IEEE Transactions on
Robotics, 23(2):331–341.

Philippsen, R. and Siegwart, R. (2005). An interpolated dynamic navigation
function. In IEEE International Conference on Robotics and Automation (ICRA),
pages 3782–3789.

Ribas, D., Neira, J., Ridao, P., and Tardós, J. (2006). AUV localization in
structured underwater environments using an a priori map. In 7th IFAC
Conference on Manoeuvring and Control of Marine Crafts (MCMC), Lisbon,
Portugal.

Ribas, D., Palomer, N., Ridao, P., Carreras, M., and Hernandez, E. (2007).
Ictineu AUV wins the first SAUC-E competition. In IEEE International
Conference on Robotics and Automation (ICRA), pages 151–156, Roma, Italy.

152 bibliography

Ribas, D., Palomeras, N., Ridao, P., Carreras, M., and Mallios, A. (2012). Girona
500 AUV, from survey to intervention. IEEE/ASME Transactions on Mecha-
tronics, 17(1):46–53.

Ribas, D., Ridao, P., Magí, L., Palomeras, N., and Carreras, M. (2011). The
Girona 500, a multipurpose autonomous underwater vehicle. In Proceed-
ings of the Oceans IEEE, pages 1–5, Santander, Spain.

Ribas, D., Ridao, P., and Neira, J. (2010). Underwater SLAM for Structured
Environments Using an Imaging Sonar. Number 65 in Springer Tracts in
Advanced Robotics. Springer Verlag, Heidelberg, Germany.

Ribas, D., Ridao, P., Tardós, J., and Neira, J. (2008). Underwater SLAM in man
made structured environments. Journal of Field Robotics, 25(11-12):898–921.

Ridao, P., Batlle, E., Ribas, D., and Carreras, M. (2004). Neptune: a HIL
simulator for multiple UUVs. In MTTS/IEEE OCEANS, volume 1, pages
524 – 531.

Ridao, P., Batlle, J., and Carreras, M. (2002). O2CA2, a new object oriented
control architecture for autonomy: the reactive layer. Control Engineering
Practice, 10(8):857–873.

Ridao, P., Carreras, M., Ribas, D., and Garcia, R. (2010). Visual inspection of
hydroelectric dams using an autonomous underwater vehicle. Journal of
Field Robotics, 27(6):759–778.

Ridao, P., Ribas, D., Hernandez, E., and Rusu, A. (2011). USBL/DVL navigation
through delayed position fixes. In IEEE International Conference on Robotics
and Automation (ICRA), pages 2344 –2349.

Roman, C. and Singh, H. (2005). Improved vehicle based multibeam
bathymetry using sub-maps and SLAM. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 3662–3669.

Sanchez, G. and Latombe, J.-C. (2002). On delaying collision checking in prm
planning – application to multi-robot coordination. International Journal of
Robotics Research, 21:5–26.

Sarid, S., Shapiro, A., and Gabriely, Y. (2007). MRBUG: A competitive multi-
robot path finding algorithm. In IEEE International Conference on Robotics
and Automation (ICRA), pages 877 –882.

Schmiing, M., Afonso, P., Tempera, F., and Santos, R. (2009). Integrating recent
and future marine technology in the design of marine protected areas -
the azores as case study. In OCEANS-EUROPE, pages 1 – 7.

Schmitzberger, E., Bouchet, J., Dufaut, M., Wolf, D., and Husson, R. (2002).
Capture of homotopy classes with probabilistic road map. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), volume 3,
pages 2317–2322.

bibliography 153

Seifert, H., Threlfall, W., Birman, J., and Eisner, J. (1980). Seifert and Threlfall, A
textbook of topology. Pure and applied mathematics. Academic Press.

Sethian, J. (1996). Level Set Methods. Evolving Interfaces in Geometry, Fluid
Mechanics, Computer Vision, and Materials Science. Cambridge University
Press.

Shiller, Z., Fujita, Y., Ophir, D., and Nakamura, Y. (2004). Computing a set
of local optimal paths through cluttered environments and over open
terrain. In IEEE International Conference on Robotics and Automation (ICRA),
volume 5, pages 4759 – 4764.

Shkolnik, A., Walter, M., and Tedrake, R. (2009). Reachability-guided sampling
for planning under differential constraints. In IEEE International Conference
on Robotics and Automation (ICRA), pages 2859 –2865.

Silver, D., Bradley, D., and Thayer, S. (2004). Scan matching for flooded subter-
ranean voids. In IEEE Conference on Robotics Automation and Mechatronics
(RAM), volume 1, pages 422–427.

Smith, R., Pereira, A., Chao, Y., Li, P., Caron, D., Jones, B., and Sukhatme, G.
(2010). Autonomous underwater vehicle trajectory design coupled with
predictive ocean models: A case study. In IEEE International Conference on
Robotics and Automation (ICRA), pages 4770 –4777.

Smith, R., Self, M., and Cheeseman, P. (1990). Estimating uncertain spatial
relationships in robotics. In Autonomous robot vehicles, pages 167–193, New
York, NY, USA. Springer-Verlag New York, Inc.

Speckmann, B. and Verbeek, K. (2010). Homotopic rectilinear routing with few
links and thick edges. In López-Ortiz, A., editor, LATIN 2010: Theoretical
Informatics, volume 6034 of Lecture Notes in Computer Science, pages 468–479.
Springer Berlin / Heidelberg.

Stentz, A. (1995). The focussed D* algorithm for real-time replanning. In
Proceedings of the International Joint Conference on Artificial Intelligence.

Svestka, P. and Overmars, M. (1998). Robot Motion Planning and Control (LNCIS,
229), chapter Probabilistic path planning, pages 255–304. Springer Verlag.

Takahashi, O. and Schilling, R. (1989). Motion planning in a plane using gen-
eralized voronoi diagrams. IEEE Transactions on Robotics and Automation,
5(2):143 –150.

Tang, Z. and Ozguner, U. (2005). Motion planning for multitarget surveillance
with mobile sensor agents. IEEE Transactions on Robotics, 21(5):898 – 908.

technology corp., I. (2002). Sonar theory and applications. http://www.

imagenex.com/sonar_theory.pdf. [Online; accessed 12-September-2007].

http://www.imagenex.com/sonar_theory.pdf
http://www.imagenex.com/sonar_theory.pdf

154 bibliography

Thomas, U. and Iser, R. (2010). A new probabilistic path planning algorithm
for (dis)assembly tasks. Robotics (ISR), 2010 41st International Symposium
on and 2010 6th German Conference on Robotics (ROBOTIK), pages 1 –6.

Thrun, S., Burgard, W., and Dieter, F. (2005). Probabistic Robotics. The MIT
Press.

Tovar, B., Murrieta-Cid, R., and LaValle, S. (2007). Distance-optimal navigation
in an unknown environment without sensing distances. IEEE Transactions
on Robotics, 23(3):506–518.

Turner, R. (2005). Intelligent mission planning and control of autonomous
underwater vehicles. In International Conference on Automated Planning and
Scheduling (ICAPS), Monterey, California, USA.

Urick, R. (1983). Principles of underwater sound. Peninsula Publishing, Los Altos,
California, 3rd edition edition.

Urmson, C. and Simmons, R. (2003). Approaches for heuristically biasing
RRT growth. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 2, pages 1178–1183.

Vasudevan, C. and Ganesan, K. (1994). Case-based path planning for au-
tonomous underwater vehicles. In IEEE International Symposium on Intelli-
gent Control, pages 160–165.

Warren, C. (1990). A technique for autonomous underwater vehicle route
planning. IEEE Journal of Oceanic Engineering, 15(3):199–204.

Williams, D. (2010). On optimal auv track-spacing for underwater mine
detection. In IEEE International Conference on Robotics and Automation
(ICRA), pages 4755 –4762.

Williams, S., Dissanayake, G., and Durrant-Whyte, H. (2002). Towards multi-
vehicle simultaneous localisation and mapping. In IEEE International
Conference on Robotics and Automation (ICRA), volume 3, pages 2743–2748.

Yang, C. (1997). The smallest pair of noncrossing paths in a rectilinear polygon.
IEEE Transactions on Computers, 46(8):930–941.

Yang, J. and Sacks, E. (2006). RRT path planner with 3dof local planner. In
IEEE International Conference on Robotics and Automation (ICRA), pages 145

–149.

Zhang, Z., Sturtevant, N., Holte, R., Schaeffer, J., and Felner, A. (2009). A* search
with inconsistent heuristics. In Proceedings of the 21st international jont
conference on Artifical intelligence, IJCAI’09, pages 634–639, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Zhou, R. and Hansen, E. A. (2002). Multiple sequence alignment using anytime
A*. In Eighteenth national conference on Artificial intelligence, pages 975–976,
Menlo Park, CA, USA. American Association for Artificial Intelligence
(AAAI).

bibliography 155

Zhou, R. and Hansen, E. A. (2005). Beam-stack search: Integrating backtracking
with beam search. In Proceedings of the 15th International Conference on
Automated Planning and Scheduling (ICAPS), pages 90–98.

Zhu, Y., Zhang, T., Song, J., and Li, X. (2010). A new bug-type navigation
algorithm considering practical implementation issues for mobile robots.
In IEEE International Conference on Robotics and Biomimetics (ROBIO), pages
531–536.

	Dedication
	Acknowledgments
	Abstract
	Resum
	Resumen
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivations
	1.2 Goal of the Thesis
	1.2.1 Objectives

	1.3 Outline of the Thesis

	2 State of the Art
	2.1 The Path Planning Problem
	2.1.1 Overview

	2.2 Graph-based Search Path Planning
	2.2.1 Heuristic Functions Overview
	2.2.2 The A* algorithm
	2.2.3 Replanning Algorithms

	2.3 Probabilistic sample-based Path Planning
	2.3.1 The Rapidly-exploring Random Tree Approach

	2.4 Bug-based Path Planning
	2.5 Anytime Path Planning
	2.5.1 The Deterministic Anytime Approach
	2.5.2 The Probabilistic Anytime Approach

	2.6 Topological Path Planning
	2.7 Homotopy Classes
	2.7.1 The Shortest Homotopic Path Problem
	2.7.2 Homotopy Classes Generation Approaches
	2.7.3 Constraining Path Search Topologically
	2.7.4 Summary

	2.8 Path planning for AUVs
	2.9 Discussion

	3 Path Planning with Homotopy Class Constraints
	3.1 Overview
	3.1.1 Applicability to the Path Planning Problem

	3.2 Homotopy Classes Generation
	3.2.1 Reference Frame
	3.2.2 Computation of the Canonical Sequence
	3.2.3 Topological Graph
	3.2.4 Systematic Homotopy Classes Computation

	3.3 Lower Bound Estimator
	3.4 Homotopic Path Planning Algorithms
	3.4.1 Homotopic A*
	3.4.2 Homotopic Rapidly-exploring Random Tree
	3.4.3 Homotopic Bug

	3.5 Summary

	4 Local Map Building
	4.1 Scan Matching
	4.1.1 Problem Definition
	4.1.2 Related Work
	4.1.3 Scans Generation using an MSIS
	4.1.4 The MSISpIC algorithm

	4.2 Occupancy Grid Mapping
	4.2.1 Problem Definition
	4.2.2 Inverse Sensor Model

	4.3 summary

	5 Experimental Platform
	5.1 Vehicle Experimental Platforms
	5.1.1 Ictineu AUV
	5.1.2 Sparus AUV

	5.2 Map Building Hardware
	5.2.1 Doppler Velocity Log
	5.2.2 Motion Reference Unit
	5.2.3 Mechanical Scanned Imaging Sonar
	5.2.4 Multibeam Profiling Sonar

	5.3 COLA2 Architecture
	5.3.1 Reactive Layer
	5.3.2 Execution Layer
	5.3.3 Mission Layer

	6 Results
	6.1 Map building in a Man-made Marina Environment
	6.1.1 Scan Matching
	6.1.2 Occupancy Grid Mapping

	6.2 Path planning with Homotopy Class Constraints
	6.2.1 Cluttered Scenario
	6.2.2 Large Scenario
	6.2.3 Discussion

	6.3 A Water Tank Environment Test
	6.3.1 Map Building
	6.3.2 Path Planning with Homotopy Constraints

	6.4 Experiment in the Formigues Islands
	6.5 Summary

	7 Conclusions
	7.1 Summary
	7.2 Contributions
	7.3 Future Work
	7.4 Research Framework
	7.5 Related Publications

	A An Example of Homotopy classes Generation
	B Transformations in 2D
	B.1 Composition
	B.2 Point features

	Bibliography

