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ABSTRACT 
 
Developments in the statistical analysis of compositional data over the last two 
decades have made possible a much deeper exploration of the nature of variability, 
and the possible processes associated with compositional data sets from many 
disciplines. In this paper we concentrate on geochemical data sets. First we explain 
how hypotheses of compositional variability may be formulated within the natural 
sample space, the unit simplex, including useful hypotheses of subcompositional 
discrimination and specific perturbational change. Then we develop through standard 
methodology, such as generalised likelihood ratio tests, statistical tools to allow the 
systematic investigation of a complete lattice of such hypotheses. Some of these tests 
are simple adaptations of existing multivariate tests but others require special 
construction. We comment on the use of graphical methods in compositional data 
analysis and on the ordination of specimens. The recent development of the concept 
of compositional processes is then explained together with the necessary tools for a 
staying- in-the-simplex approach, namely compositional singular value 
decompositions. All these statistical techniques are illustrated for a substantial 
compositional data set, consisting of 209 major-oxide and rare-element compositions 
of metamorphosed limestones from the Northeast and Central Highlands of Scotland.  
Finally we point out a number of unresolved problems in the statistical analysis of 
compositional processes. 
 
 
1.  Introduction   
 
This is essentially a compositional case study. We use a suite of limestones and their 
geochemical compositions – major oxides and trace elements – to demonstrate that a 
whole variety of recent techniques of compositional data analysis can be brought into 
play to allow meaningful geological inferences. Our approach is applied 
mathematical. After a description of the provenance of the limestones we shall 
proceed to use appropriate modelling and compositional data analysis to answer a 
sequence of questions as posed by the geologist.  
 
2.  The limestones 

 
Metamorphosed limestones form potent ially useful markers within the much more 
abundant siliciclastic rocks in the Central and Northern Highlands of Scotland. 
However, limestones are relatively uncommon in the Central Highlands and 
resolution of their lithostratigraphical status has proved problematical by conventional 
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geological mapping. Limestones are more abundant in the Northern Highlands. Here 
the discriminatory power of their geochemistry, established in areas of good exposure 
and well constrained lithostratigraphy, can prove useful in aiding lithographical 
correlation areas of much poorer exposure. 
 
In this study we confine attention to two limestone data sets consisting 49 Dufftoen 
limestones and 160 Inchrory limestones, each with 17-part geochemical compositions 
(Si, Al, Ti, Fe, Mg, Ca, Na, K, Mn, P, Loi,, Ba', Rb. Sr;  V   Y; Zr). The main 
problems considered in this study are to see how these may be considered as marker 
data sets, investigating in full the nature of their differences. Also, since Inchrory 
limestones are ‘younger’ than Dufftown limestones we consider how we may describe 
the process of change from one to the other. 
 
For more geological details see Thomas and Aitchison (1998) 
 
 
3.  Are Duffinch  and Inchrory limestones compositionally different? 
 
It is tempting to investigate this question by considering the lattice of Aitchison 
(1986, Section 7.5 and Fig. 7.3) whereby we would test whether the Duffinch and 
Inchrory limestone compositions came from the same additive logistic normal 
distributions.   The fact that the distributional form of the compositional variability 
cannot be assumed to be logistic normal and that although we may attempt to fit 
multivariate logistic skew normal distributions we would have to await a set of 
comprehensive  multivariate skew normal tests before we could complete that route. 
 
But a simple examination of the estimated centres of the distributions of the major 
oxides for Duffinch and Inchrory respectively:: 
 
0.0496    0.0061    0.0003    0.0029    0.0136    0.5023    0.0007    0.0013    0.0002    0.0002    0.4229 
 
0.1276    0.0270    0.0011    0.0106    0.0069    0.4540    0.0025    0.0050    0.0003    0.0007    0.3644 
 
will easily convince us that there are compositional differences between the two 
compositional suites. Subsequent analysis, not dependent on distributional form will 
confirm that there are substantial compositional differences between the two 
limestones. 
 
 
4.  What is the simplest way of discriminating between Duffinch and Inchrory  
limestonesr? 
 
Aitchison (1986, Chapter 12) gave a number of practical situations where 
compositions play an explanatory or regressor role, where we may wish to see how a 
composition is changed by different treatments, where in experiments with mixtures 
we may attempt to determine the mixture which will provide the optimum response, 
and in classification or diagnostic problems where we may wish to use a composition 
as a convenient or efficient means of determining type or to find out if any 
subcomposition accounts for the substantive difference between the types.  
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Binary logistic discrimination. For two types, such as the Duffinch and Inchrory 
limestones here we may use binary logistic regression with logconstrasts of the 
compositional components as the regressor; for a D-part composition  x a logcontrast 
is defined as  
 

lc x x xD D D( , ) log . . . log ( . . . )α α α α α= + + + + =1 1 0 . 
 
For two types  (t = 0, t = 1) the binary logistic model is thus defined by  
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Maximum likelihood estimation of the parameter α  is straightforward. The beauty of 
this model is that the adequacy of a subcomposition say (1, . . . , C) can readily be 
tested since this hypothesis can be expressed as α αC D+ = = =1 0. . . . Thus the whole 
lattice of subcompositional hypotheses can be investigated and any adequate 
subcomposition identified. Examples of this procedure can be found for hongite-
kongite discrimination and Permian and post-Permian: discrimination in Aitchison 
(1986, Sections 12.6, 12.7). 
 
Figure 1 shows a portion of the substantial lattice of subcompositional hypotheses 
with some of the more interesting subcompositions highlighted. The maximum model 
at the top of the lattice retains the full 17-part composition as the explanatory variable.  
At the foot of the lattice is the hypothesis that compositional information is useless. 
At the next bottom level we have all the two-part subcompositions; at the next level 
all the three-part subcompositions, and so on. In such lattice testing we use 
generalised likelihood ratio tests always testing the hypothesis within the maximum 
model, starting with the simplest hypothesis, moving up the lattice to the next level 
only if we can reject all the hypotheses at the lower level and so on  until we reach a 
hypothesis that we cannot reject. In the event that there are several non-rejectable 
hypotheses at a particular level that we either ‘accept’ the one with the smallest 
likelihood ratio or move to the next level and ‘accept’ the hypothesis with the smallest 
likelihood ratio. It should be remembered that in the absence of any loss structure in a 
multiple hypothesis situation all testing procedures are essentially ad hoc. We can 
only report that we have found that this form of lattice testing usually leads to sensible 
inferences. 
 
The dramatic result for limestones was reported in Thomas and Aitchison (1998), 
where out of the 17-part geochemical composition a 3-part subcomposition, namely 
(Fe, Mg, Ca), is found to be an adequate discriminator. The separation of the duffinch 
and inchrory limestones on the basis of the (Fe, Mg, Ca) subcomposition was 
illustrated in a logratio scattergram, namely a (log(Fe/Ca), log(Mg/Ca)) plot. We 
show in Figure 2a the ternary diagram of the (Fe, Mg, Ca) subcompositions. Because 
of the smallness of Fe and Mg relative to Ca the subcompositional points crowd into 
the Ca corner of the ternary diagram providing little illumination of the differences in 
the duffinch and inchrory subcompositions. We can, however, use the device of a 
centering perturbation *von Eynatten, Pawlowsky-Glahn and Mateu Figueras, 2002) 
to provide a clearer picture of the separation. This is shown in Figure 2b, together 
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with the perturbed dividing logcontrast line which separates Duffinch from 
Inchrory..We record that the estimated logcontrast discriminator is 
 

6.98 +4.84 log Fe – 3.05 log Mg – 1.79 log Ca. 
 
It is worth commenting here that prior to this analysis, reliance on spider diagrams 
had suggested strongly that discrimation between the two limestones lay in the 
siliciclastic component, the (Si, Ti, Al, K, Rb, V) subcomposition, not in the 
carbonate component, the subcomposition (Fe, Mg, Ca). In the lattice of Figure 1 we 
show the results for the siliciclastic subcomposition. It is quite clear that the 
hypothesis that this had a differentiating effect has to be strongly rejected. 
 
Another worthwhile comment here is about the use of perturbation, the operation of 
change in compositions. The use above in the ternary diagram is an excellent device 
for the provision of simpler visual interpretation of ternary scattergrams. The reader 
will have noticed that we have used the 11 major oxides (proportion by weight) and 6 
trace elements (parts per million) as if these constituted a single composition, despite 
the fact that they are measured in different units. The reason for this is that it requires 
only a simple constant perturbation to attain common units. And such perturbations 
have useful invariance properties. In the present context it is simple to demonstrate 
that such a perturbation would affect only the value of α0  in the binary logistic model 
and this has no relevance within the lattice testing procedure. See Aitchison (2003) for 
further comment. 
 
 
5.  What is the nature of the change between duffinch and inchrory limestones? 
 
Inchrory limestones are younger than Dufftown limestones and so it is reasonable to 
ask whether we can describe how a generic Inchrory limestone may be altered into a 
generic Dufftown limestone. We confine our discussion to the major oxide 
compositions. We recall that the operation of change for compositions is a 
perturbation  Suppose that x and X denotes the compositions of generic Inchrory and 
Dufftown limestones and that X  arises as a perturbation p of x, namely, X p x= ⊕ . 
Then we know that in terms of centres of the distributions 
 

cen X cen p cen x( ) ( ) ( )= ⊕ ,  
 

so that 
 
    cen p cen X cen x( ) ( ) ( )= Θ , 
 
and is easily determined from the centres in Section 3 as  
 
 
    Si            Al          Ti             Fe          Mg          Ca          Na           K           Mn           P           Loi            
 
 0.0554    0.0321    0.0381    0.0394    0.2823    0.1578    0.0390     0.0366    0.1038    0.0499    0.1655 
 
We have in our modelling allowed the perturbations to be variable and are using the 
centre of these to give an indication of the nature of the perturbation, This centre is, of 
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course, exactly what we obtain if we assumed that there was a constant perturbation at 
work. 
 
First we note a trivial point, namely that the there is near equality pf the Ca and Loi 
components. This is simply recording the stability of the (Ca, Loi) subcomposition, in 
other words the fact that Loi will always match the Ca component. 
 
Second, since we saw the importance of the (Fe, Mg, Ca) subcomposition in 
discriminating between the two liimestones we note the considerable differences in 
the perturbation components of these oxides, namely [0.0394    0.2823    0.1578], 
showing how in the change from Inchrory to Dufftown Fe has given way substantially  
to Mg and less so to Ca. The perturbation components of all the other oxides rxcept 
from Mn are reasonable constant indicating stability of the associated 
subcomposition. The question then arises: is there some geological explanation fo the 
relative increase in Mn? 
 
  
6.  Are there any helpful graphical representations of the variability in the 
limestones? 
                  
We have already seen the use of a logratio scattergram to demonstrate the separation 
between Duffinch and Inchrory limestones. There is hopefully no need to repeat the 
warnings of Chayes and others on the misuse of such other graphical tools such as 
Harker diagrams. We have also seen the use of a centering perturbation to improve 
the use of a ternary diagram to show the relevance of the carbonate (Fe, Mg, Ca) 
subcomposition as a discriminator between the Duffinch and Inchrory.limestones.  
 
The main advance in other graphical descriptions of compositional variability has 
been the extension of the familiar and powerful unconstrained biplot technique to 
compositional data; see Aitchison (1990b, 1997, 2001) and Aitchison and Greenacre 
(2002) for details. We are currently exploring these and will present an example at 
CODAWORK03. 
 
 
7.  Is it possible to order specimens within the limestone suites? 
 
If it is assumed that there is a  process of change from Inchrory-ness to Dufftown-ness 
can we somehow order the limestones within this process there are simple 
compositional more or less equivalent ways of doing this. From the discrimination 
analysis we can compute for each limestone the probability of allocation to the 
Inchrory set and arrange these probabilities in decreasing order. Or we use the 
principal logcontrast component (Aitchison, 1986, Section 8.3) or equivalently by use 
of the first coefficients in a singular value decomposition (Aitchison, 2003). With 
such techniques it is also possible to interpret the possible position of other non-
Inchrory, non Duffinch limestones with the Inchrory to Duffinch process. We do not 
report details here; for some earlier results, see Thomas and Aitchison (1998).   
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8.  Can we identify possible compositional processes from the limestone data? 
 
Aitchison and Thomas (1998) explained how modern compositional data analysis 
could be used to investigate identify and analyse possible compositional processes, 
using two simple examples: Arctic lake sediments to identify the process in relation to 
depth and simple olivine data to identify possible equilibrium relationships. The 
statistical technique used depended largely on compositional regression analysis and 
logcontrast principal component analysis. In a complementary paper Aitchison and 
Barceló-Vidal (2002) used compositional singular value decompositions to provide a 
staying- in-the-simplex approach where the compositions of the data set are expressed 
as power-perturbation combinations. Thus for an N D×  compositional data matrix 
with nth row the composition xn  the singular value composition provides the 
expression 
 

               x u p b u p bn n nR R R= ⊕ ⊗ ⊕ ⊕ ⊗$ ( ) . . . ( )ξ 1 1 1 , 
 

where $ξ  is the estimate of the centre of the data set, and p i Ri ( , . . . , )= 1  are positive 
‘singular values’ in descending order of magnitude, the b i Ri ( , . . . , )= 1  are 
orthogonal compositions, R is a readily defined rank of the compositional data set and 
the u’s are power components specific to each composition. . In practice R is 
commonly D − 1 , the full dimension of the simplex. In a way similar to that for data 
sets in DR  we may consider an approximation of order Rr < to the compositional 
data set given by 
 
    x u p b u p bn

r
n nr r r

( ) $ ( ) . . . ( ).= ⊕ ⊗ ⊕ ⊕ ⊗ξ 1 1 1  
 
Such an approximation retains a proportion 
  

   ( . . . ) / ( . . . )p p p pr R1
2 2

1
2 2+ + + +  

 
of the total variability of the N D×  compositional data matrix as measured by the 
trace of the estimated centered logratio covariance matrix or equivalently in terms of 
the total mutual squared distances as 
 

{ ( )} ( , ).N N x xS
m n

D

m n− −

<
∑1 1 2∆   

 
We have presented the process above as relative to the centre $ξ  but an alternative and 
possible more meaningful way is simply to omit this centering step.   
 
In applying this to the possible limestone process we have chosen not to centre and 
applied the singular value decomposition to the combined inchrory duffinch data. Up 
to the fourth order the b compositions are 
 
        Si          Al            Ti            Fe          Mg          Ca          Na          K           Mn           P          Loi 
    
    0.1175    0.0955    0.0648    0.0857    0.0865    0.1426    0.0717    0.0781    0.0566    0.0618    0.1391 
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    0.0675    0.0622    0.0788    0.0724    0.1254    0.1102    0.0560    0.0701    0.1460    0.0991    0.1123 
 
    0.0993    0.1111    0.1080    0.1028    0.0709    0.0807    0.0389    0.1190    0.0815    0.1076    0.0803 
 
    0.0674    0.0810    0.0899    0.0765    0.0422    0.1190    0.1011    0.0845    0.0899    0.1354    0.1132 
 
with successive degrees of approximation 0.46, 0.69, 0.84, 0.92.  
 
We note that in the first approximation the major relative increase is in Ca and to a 
lesser extent Si. At the second approximation, both Mg and Ca show a relative 
increase and the increase in Mn seen earlier is also evident. At the third 
approximation the main feature seems to be some relative depletion of Na, to a 
relative gain in K? And so on in a tentative interpretation. 
 
There are substantial statistical deficiencies in this area of compositional data 
analysis. For example at the various stages of approximation the near equality of a 
subset of components suggests that the corresponding subcomposition is stable for 
that stage. But can we devise suitable statistical tests of such a subcompositional 
stability hypothesis, Also although the singular value decomposition is identifying 
orthogonal aspects of the process it may be that some other representation, say of the 
first two stages may provide a more enlightening view of the process. This would be a 
restructuring rather similar to the varimax technique in principal component analysis, 
but how should it be done compositionally? Again, suppose that the geologist suggest 
that there may be two basic processes at work, possibly independently, a carbonate 
and a siliciclastic process. A possible method of modelling might then be to set  
 

 x u u pn n n$ ( ) ( )= ⊗ ⊕ ⊗ ⊕1 1 1 2 2 2π β π β , 
 
where β β1 2,  are D-part compositions somehow representing carbonate and 
siliciclastic subcompositions, but how, π π1 2,  are parameters representing the extent 
of the carbonate and siliciclastic importance and requiring estimation, the u 
coordinates again requiring to be determined and the p a composition, rather like the 
error term in a regression analysis. It is obvious that there is much statistical research 
remaining to be done in this important area of compositional data analysis. We are 
currently working in this area and will certainly report any new work at 
CODAWORK03. 
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