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Abstract 

 
All of the imputation techniques usually applied for replacing values below the 
detection limit in compositional data sets have adverse effects on the variability. In this 
work we propose a modification of the EM algorithm that is applied using the additive 
log-ratio transformation. This new strategy is applied to a compositional data set and the 
results are compared with the usual imputation techniques. 
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1 Introduction 
 
In compositional data analysis multivariate statistical methods based on log-ratio methodology are 
applied. Then one realises that zeros are a problem because ratios and logarithms can’t be made. Presence 
of rounded zeros is very common when a compositional data set is analyzed. These rounded zeros are 
produced by the values below to the detection limit of the process of measure. In compositional data 
analysis other different kind of zeros is considered. A zero is called essential zero or structural zero if this 
null value means that the part is completely absent. Essential zeros must be treated in a different way 
(Aitchison, 1986; Martín-Fernández, Barceló-Vidal y Pawlowsky-Glahn, 2003) than the rounded zeros. 
For these ones, imputation techniques are commonly used because, in essence, a rounded zero can be 
considered as a missing value. It is very important to emphasize that the decision to apply specific 
techniques for missing values to deal with the rounded zeros is independent to the statistical methodology 
(Euclidean, log-ratio,...) that one has selected. In other words, even when one scientist selects the 
Euclidean option he has the “rounded zeros problem” because he should to deal with the missing values.   
 
All the papers and books related to imputation techniques recommend that one should be careful to use a 
replacement strategy because the general structure of the data could be seriously distorted. In particular, 
the covariance structure and the metric properties of the data set should be preserved in order to avoid that 
further analysis on sub-populations be misleading. Note that last sentence express the clue of the 
replacement techniques for rounded zeros in compositional data. The specific nature of compositional 
data forces to decide in advance which kind of covariance structure and metric properties one wants to 
preserve. According to the existing possibilities, one has to decide between the preservation either the 
classical –Euclidean– covariance and metric or the covariance and the metrics induced by the log-ratio 
methodology. As is well known, compositional data are formed by continuous variables, which scale of 
measurement is ratio scale and their main operations are perturbation and subcomposition. Consequently, 
at least for compositional data, the replacement strategies must be coherent with all these basic aspects. 
 
From a non-parametric point of view, Aitchison (1986, p. 269) proposes an additive replacement method. 
Zhou (1997) and Tauber (1999), from descriptive point of view, illustrate that this additive replacement 
could produce spurious groups in cluster analysis when the imputed values tend to zero. Martín-
Fernández, Barceló-Vidal and Pawlowsky-Glahn (2000) and Fry, Fry and McLaren (2000) show that the 
additive replacement doesn’t preserves the ratio of non-zero values and, consequently distort the 
covariance structure of the data set. Martín-Fernández, Barceló-Vidal and Pawlowsky-Glahn (2003) 



analyse in depth the additive replacement and propose a multiplicative replacement which has better 
behaviour in relation to the compositional nature of the data.   
 
As is stated in Little y Rubin (2002) and Schafer (1997), the EM algorithm (Dempster, Laird and Rubin, 
1977) and the multiple imputation method (Rubin, 1987) are the most reliable methods applied in a 
parametric context of missing data. Both techniques rely on fully parametric models for multivariate data, 
usually the normal distribution, and contain in its formulation the variance-covariance matrix. If one 
directly applies to compositional data a serious distortion of the structure of data is produced. It is easy to 
show how this strategy can impute (Martín, Palarea and Gómez, 2003), negative values or observations 
which sum vector is greater than one (or 100%). Following Aitchison (1986), if one applies the additive 
log-ratio transformation (alr) a normal multivariate model could be considered because the data are in the 
real space. This strategy is applied in Buccianti and Rosso (1999), where from empirical point of view the 
authors describe the performance of the EM algorithm and, its extension, the Sandford’s method 
(Sandford, Pierson and Crovelli, 1993). In Martín, Palarea and Gómez (2003) a first application of 
multiple imputation via Markov Chain Monte Carlo (MCMC) to rounded zeros is made, and its behaviour 
is described. All of these strategies have adverse effects in relation to the covariance structure of 
compositional data set. 
 
In the following section we present a modification of the EM algorithm in order to be applied in the 
rounded zeros problem. The performance of this new method takes into account that the rounded zeros 
must be replaced by small values below the detection limit. Next, we apply all the methods to a 
compositional data set and compare their behaviour. Finally, main conclusions and future lines of 
research are presented. 
 
2 A modified EM algorithm for dealing with rounded compositional zeros 
 
The common EM (Expectation-Maximization) algorithm for missing data problems is a broadly 
applicable iterative algorithm for computing maximum-likelihood estimates for parametric models in 
situations where portions of a data matrix Y are missing. The data matrix Y contains a random sample of 
size n on (Y1,...,Yp). The observed part of Y is denoted by Yobs, and the missing part by Ymiss, so that Y = 
(Yobs, Ymiss). As is well known, the E step finds the conditional expectation of the missing data, or 
functions of missing data, given the observed data and current estimated parameters, and then substitutes 
these expectations for the missing data. The M step performs maximum-likelihood estimation of θ just if 
there were no missing data in the matrix Y. 
 
Almost all of the missing data methods used in statistical practice, both ad hoc procedures and principled 
ones, rely at least implicitly on an assumption called ignorability, that is, the analyst can ignore the 
mechanism generating the missing data and consider the observed-data likelihood as the relevant 
likelihood for the vector of unknown parameters θ of the complete-data model. Typically, two 
ignorability situations are distinguished: MAR (missing at random), when the probability that one value 
is missing depends on the Yobs part of the vector but not on Ymiss; and MCAR (missing completely at 
random), when the missing data are a simple random sample of all data values, that is, the missingness 
does not depend on the data values. MCAR is a more restrictive, unrealistic and infrequent case of MAR. 
Only under MCAR some ad hoc missing-data methods can provide proper inferences. The common EM 
algorithm and the multiple imputation method assume that the missingness mechanism is MAR and its 
developments are based on observed-data likelihood. 
 
On the other hand, a missingness mechanism is called NMAR (not missing at random) when the 
probability that one value is missing depends on Ymiss part of the vector. This case represents the 
nonignorable situation and, usually, is hardest to deal with analytically and special models and methods 
are required. For continuous data, one group of nonignorable methods is based on models known as 
stochastic censoring or selection models (Heckman, 1976; Amemiya, 1984). Other used models are 
pattern-mixture models and pattern-set mixture models (Little, 1993). Nevertheless, in some empirical 
NMAR situations the MAR assumption has been found to yield more accurate predictions of the missing 
values than nonignorable modeling (Rubin, Stern and Vehovar, 1995). Clearly, in a compositional 
context, the rounded zeros problem is a NMAR case: data have a left censored point in the detection limit. 
This fact could explain why the common EM algorithm and the multiple imputation methods have 
adverse effects (see subsections 3.2.2 and 3.2.3). 
 



Suppose that Y=(Y1,...,YD-1) are the alr-transformed variables of the X=(X1,…,XD) compositional data 
set. Assume that Y has a (D-1)-variate normal distribution with mean vector µ and covariance matrix Σ. 
As is well-known, the complete-data log-likelihood function for µ and Σ based on a sample of size n is  
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Because the normal model belongs to the regular exponential family, the EM algorithm has a particularly 
simple implementation. In particular, the complete-data log-likelihood is lineal in the following complete-
data sufficient statistics needed to estimate the mean and covariance matrix,  
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Let θ(t) = (µ(t), Σ(t)) denote the estimates of the parameters at the tth iteration. In this work, in order to 
propose a modified EM algorithm we consider the matrix C = (cij) of censoring points for Y, where cij = 
ln(δj/xiD), i = 1,…,n and j = 1,..,(D-1), with δj being the detection limit for Xj.  Then, the modified E step 
of the EM algorithm requires the computation of the expectations of T1 and T2 conditioning on the 
observed data, Yobs, and the current parameter estimates, θ(t),  as follows: 
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with yobs,i representing the set of variables observed for case i, i = 1,...,n, and  
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We propose that in this modified EM algorithm missing values yij are thus replaced by the conditional 
mean of yij given the set of values yobs,i observed for that case and the censoring point cij. By analogy with 
the strategy in Amemiya (1984), when we assume normality this conditional mean can be obtained by  
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where *

i,obsy represents the extended vector (1 yobs,i), jβ̂  is the vector of regression coefficients (including 
the constant term) of Yj on the observed variables for case i, jσ̂  is the estimated standard deviation of Yj, 
and Φ  and φ  are the distribution and density function respectively of the standard normal variable. 



 
The modified M step fully coincides with the common M step. Here, the new estimates θ(t+1) of the 
parameters are computed from the estimated complete-data sufficient statistics:  
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The E and M steps are iteratively repeated until convergence. In particular, we have implemented an 
usual criterion: the algorithm stops when max{|µ(t+1) - µ(t)|, |Σ(t+1) - Σ(t)|} is lower than the tolerance level ε . 
In particular, in the case study of subsection 3.2.4 we take ε= 0.0001. After the algorithm stops, we return 
to the simplex by the inverse alr-transformation obtaining a compositional data set without zeros. 
 
3 Empirical application 
 
3.1 The Halimba data set 
 
The data set, provided by G. Bardossy from the Hungarian Academy of Sciences, and previously used in 
Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003), corresponds to the subcomposition 
[Al2O3,SiO2,Fe2O3,TiO2,H2O,Res6] of 332 samples from 34 core-boreholes in the Halimba bauxite 
deposit (Hungary). Let us call this data set X. The sixth part Res6 consists in a residual part of the 
composition, i.e., it is equal to (100-( Al2O3+…+ H2O))%. A brief descriptive analysis of the data set give 
us that the smallest values appear in components SiO2, TiO2 and Res6, and that the larger variability 
appears in the second and sixth components, i.e. SiO2 and Res6. As is well known, the compositional 
variation array provides a useful descriptive summary of the pattern of variability of compositions. In this 
array we set out the logratio variance var[ln(Xk/Xj)]; (j=1,2,…,5; k=j+1,…,6) as an upper triangular array 
and we use the lower triangle to display in position (j,k) an estimate of the logratio expectation 
E[ln(Xk/Xj)]; (j=2,…,6; k=1,…,j-1). The variation array of the Halimba data set X is given in Table 1. 
Observe that the sign of the logratio means corroborate that the parts SiO2, TiO2 and Res6 take smallest 
values. The larger values of logratio variance appear when SiO2 or Res6 are involved. In this table we 
have reported in black the values corresponding to the parts without values smaller than 0.01. Finally, we 
can compute the compositional geometric mean and the total variability of the data set X, respectively:  
 

( )ˆ 0.5644, 0.0246, 0.2421, 0.0282, 0.1242, 0.0166ξ =  and totvar(X) = 0.9718 . 
 

Table 1. Variation array of Halimba data set: Uppertriangle var[ln(Xk/Xj)]; lower triangle E[ln(Xk/Xj)] (see text for more details). 
 

k 
j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 

Al2O3 0 0.8946 0.1288 0.1793 0.0885 0.6105 
SiO2 3.1314 0 0.9095 0.9703 0.8515 0.9321 
Fe2O3 0.8464 -2.2850 0 0.1915 0.1519 0.6194 
TiO2 2.9981 -0.1333 2.1516 0 0.2214 0.6603 
H2O 1.5140 -1.6174 0.6676 -1.4841 0 0.5566 
Res6 3.5284 0.3970 2.6819 0.5303 2.0144 0 

 
Following Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003), every observed value of X 
smaller than 0.01 is transformed to a zero value. We call X* the compositional data set resulting from this 
procedure. As a consequence, out of the 332x6 values in the data matrix X*, 128 are zero, distributed in 
105 compositions or rows. Note that this amount of zero values is reduced (less than 10%). Therefore, it 
seems reasonable to expect that imputation techniques give us suitable results. These zeros are mainly 
concentrated in the parts SiO2 and Res6. Only one zero appears in the fourth part TiO2. As can be deduced 
from Table 2, the parts Al2O3, Fe2O3 and H2O have no zeros in X*. 
 



 
Table 2. Pattern of existing missing values in data set X*. Letter “M” symbolizes that the variable contains missing value. 

 

Pattern of missing values 

Amount of obs. Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 Amount of observed obs. if...(a) 
227         227 

1      M   228 
34       M 261 
23   M   M 331 
47   M    274 

 (a) Amount of observed obs. without missing values if the variables with missing values in this 
pattern are not considered. 

 
In our study we assume the zeros of X* to be non-essential zeros, i.e. rounded zeros. Before applying any 
multivariate method to the data set X*, the zeros have to be replaced. 
 
 
3.2 Zero replacement strategies 
 
Our aim is to compare the performance of the different imputation techniques: non-parametric 
multiplicative replacement, EM algorithm, Sandford’s method, MCMC multiple imputation (first 
approach in Martín, Palarea y Gómez, 2003), and the new EM-type algorithm proposed in this paper. 
 
Because we know in this case the original observations xi∈X, we perform this analysis using descriptive 
measures (boxplot, compositional geometric mean, total variability, and variation array) of the replaced 
compositions ri obtained from x*i∈X*. In addition, following Martín-Fernández, Barceló-Vidal, and 
Pawlowsky-Glahn (2003), we calculate the Aitchison’s distance da(xi, ri), i=1,2,…,332 between the 
original composition xi ∈X and the replaced composition ri. As a first measure of distortion, we consider 
the mean of these distances squared 
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and, as a second measure of distortion we consider the STRESS (standardized residual sum of squares) 
defined by 
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Note that in a different manner than in MSD, in STRESS we measure the distortion due to compositions 
where both have zero values, as well as the distortion due to compositions where only one of them has 
zero values. 
 
3.2.1 Multiplicative replacement 
 
Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003) show that the best results with 
multiplicative replacement are obtained when the rounded zeros in X* are replaced by the “small” value 
δ=0.0065 (65% of the detection limit). Table 3 shows descriptive measures of data set resulting from this 
replacement. 



 
Table 3. Descriptive measures of data set resulting from multiplicative replacement with δ=0.0065. (see text for more details). 

 
Compositional geometric mean:   (0.5645, 0.0246, 0.2421, 0.0281, 0.1242, 0.0164) 
Total variability:  0.9602 

Variation array 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.8829 0.1288 0.1864 0.0885 0.6166 
SiO2 3.1318 0 0.8984 0.9598 0.8397 0.9153 
Fe2O3 0.8464 -2.2853 0 0.1979 0.1519 0.6246 
TiO2 2.9990 -0.1327 2.1526 0 0.2273 0.6727 
H2O 1.5140 -1.6178 0.6676 -1.4850 0 0.5612 
Res6 3.5411 0.4093 2.6947 0.5421 2.0271 0 

MSD: 0.0328 
STRESS: 0.0210 

 
In Table 3 we can observe that the values of MSD and STRESS are reasonably close to zero. Thus we can 
conclude that the distortion of the data structure of X has not been large. The same conclusion is obtained 
when we compare the true values of the compositional geometric mean, total variability and the elements 
of the variation array with the values in Table 3. Note that the relative structure of the parts containing no 
zero values is preserved (black values in Table 3). 
 
To major description of the distortion we can analyze the percentiles of the differences between the true 
values of the data in X and the values of the data resulting from the multiplicative replacement. Figure 1 
shows these percentiles in the boxplot diagrams of the differences for each part. Remember that the zeros 
are concentrated in the parts SiO2, TiO2, and Res6. In this figure we can observe that the distortion is not 
large and is symmetric, i.e. the true values have been replaced by larger or smaller values in 
approximately the same proportion. 
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Figure 1. Boxplot of the differences between observations of the data set X and observations of the data set 
resulting from multiplicative replacement with δ=0.0065. (Part Number: 1.Al2O3; 2.SiO2; 3.Fe2O3; 4.TiO2; 
5.H2O; 6.Res6). 

 
3.2.2 The common EM algorithm and the Sandford’s method 
 
The common EM algorithm and, its extension, the Sandford’s method are applied to the alr-transformated 
data set. Then we return to the simplex. This strategy, used for the same proposes in Buccianti and Rosso 
(1999), needs one part free of zero values in data set X* in order to use it as divisor of the alr-



transformation. Remember that the parts Al2O3, Fe2O3, and H2O6 have not zero values. Therefore, as we 
can choose one of them as a divisor then we must analyze if the results are independent in relation to the 
selected divisor. As it is well known (Aitchison, 1986; Barceló-Vidal, Martín-Fernández and Pawlowsky-
Glahn, 1999; Buccianti and Rosso, 1999) the choice of the part as the divisor is not important when we 
apply EM algorithm since this algorithm is invariant under the group of permutations of the parts of the 
compositions. Table 4 shows descriptive measures of data set resulting from this algorithm when we use 
the part Fe2O3 as divisor for the alr-transformation. Figure 2 shows the pattern of the differences between 
observations of the data set X and observations of the data set resulting from EM algorithm. 
 

Table 4. Descriptive measures of data set resulting from EM algorithm (see text for more details). 
 

Compositional geometric mean:  (0.5581, 0.0330, 0.2394, 0.0279, 0.1228, 0.0189) 
Total variability: 0.4477 

Variation array 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.5544 0.1288 0.1677 0.0885 0.4584 
SiO2 2.8293 0 0.5673 0.6235 0.5178 0.624 
Fe2O3 0.8464 -1.9828 0 0.1819 0.1519 0.4736 
TiO2 2.9946 0.1654 2.1482 0 0.2119 0.5159 
H2O 1.5140 -1.3152 0.6676 -1.4806 0 0.3954 
Res6 3.3851 0.5558 2.5386 0.3904 1.8711 0 

MSD: 0.4795 
STRESS: 0.2354 
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Figure 2. Boxplot of the differences between observations of the data set X and observations of the data set 
resulting from EM algorithm. (Part Number: 1.Al2O3; 2.SiO2; 3.Fe2O3; 4.TiO2; 5.H2O; 6.Res6). 

 
Despite the relative structure of the parts containing no zero values are preserved (black values in Table 
4), we can observe in Table 4 that the values of MSD and STRESS are larger than the values in Table 3. 
Thus we can conclude that the distortion of the data structure of X has been larger than the distortion by 
the multiplicative replacement. This conclusion is confirmed when we compare the true values of the 
compositional geometric mean, total variability and the elements of the variation array (see Table 1) with 
the values in Table 4. Note that the values of var[ln(Xj/Xk)] (uppertriangle in variation matrix) give us 
underestimations of the true values. As can be deduced from Figure 2, the EM algorithm has mainly 
replaced the zero values by values that are larger than the true values. Thus, we can confirm that the EM 
algorithm not takes into account that the zero values should be replaced by “small” values. 
 



The Sandford’s method substitute censored data in a variable –data under the detection limit– by the 
mean value µmissing data in this variable. This mean value is deduced from 
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where n is the size of the sample with m recorded values. The mean value µwhole data set is the estimation of 
the mean value of the whole distribution produced by the EM algorithm. 
 
When the Sandford’s method is applied to the alr-transformed data set, we observe that the resulting 
descriptive measures (MSD, STRESS, …) are different depending on the part selected as divisor in the 
alr-transformation. As is showed in Martín, Palarea y Gómez (2003), the differences are caused by the 
different values of the mean µobserved data. 
 
Table 5 shows descriptive measures of data set resulting from Sandford’s method using Al2O3 as divisor 
in the alr-transformation. Note that the divergences between each selected divisor are not so large and are 
mainly concentrated on the logratio variances (uppertriangle of the variation array). 
 

Table 5. Descriptive measures of data set resulting from Sandford’s method (alr divisor: Al2O3). 
 

Compositional geometric mean:  (0.5580, 0.0330, 0.2394, 0.0279, 0.1228, 0.01899) 
Total variability: 0.4418 

Variation array 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.5510 0.1288 0.1677 0.0885 0.4527 
SiO2 2.8292 0 0.5631 0.6177 0.5154 0.6290 
Fe2O3 0.8464 -1.9827 0 0.1819 0.1519 0.4672 
TiO2 2.9946 0.1654 2.1482 0 0.2119 0.5063 
H2O 1.5140 -1.3152 0.6676 -1.4806 0 0.3926 
Res6 3.3851 0.5559 2.5386 0.3904 1.8711 0 

MSD: 0.4676 
STRESS: 0.2403 
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Figure 3. Boxplot of the differences between observations of the data set X and observations of the data set 
resulting from Sandford’s method (Part Number: 1.Al2O3; 2.SiO2; 3.Fe2O3; 4.TiO2; 5.H2O; 6.Res6). 

 
As can be deduced from comparison of values in Table 4 and Table 5, and from comparison of Figure 2 
and Figure 3, the EM algorithm and the Sandford’s method give us very similar results. Note that e.g. the 
compositional geometric mean of the respectively resulting data sets is coincident. Thus, Sandford’s 



method has the same behaviour than the EM algorithm: it not takes into account that the zero values 
should to be replaced by “small” values. 
 
3.2.3 MCMC multiple imputation 
  
The multiple imputation method generates, for each missing value, k simulated values obtained from the 
posterior predictive distribution of the missing part of the data set given the observed part. To simulate 
the k values in multivariate spaces, MCMC algorithms are needed (for more details see e.g. Schafer, 
1997; Martín, Palarea y Gómez, 2003). Next, from each of the k “completed” data sets, we obtain k 
estimations of each quantity of interest. Finally, we combine the k estimations to obtain a unique global 
estimation and its combined variance using simple rules (Rubin, 1987) that can be reported as follows: 

(i) Let be Q an unknown quantity of interest that we want to estimate. Let be Q̂  its point 

estimator and U the associated variance of Q̂ . Then, after the simulation and estimation 

phase, we have k estimations }Q̂,,Q̂{ k1 K  and its estimated variances { }k1 U,,U K .  

(ii) The unique estimation ( kQ ) and its variance ( kT ) are obtained by:   
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In the same way as with the EM algorithm, we alr-transform our data set X*, and we apply MCMC for 
imputing the missing values in the real space, and we return to the simplex by the inverse transformation. 
We must assume a probability distribution model for our transformed data. As is suggested in Schafer 
(1997), for a real variables the most usual and robust hypothesis assume normality of our data. 
Additionally, we assume that our missing data are MAR. Only under MAR assumption the imputations 
generated by the posterior predictive distribution are proper. Several simulation studies (Collins, Schafer 
and Kam, 2001; Schafer and Graham, 2002; Palarea, Gómez and Martín, 2004) have showed the 
robustness of multiple imputation method across deviations from normality or from MAR assumption. 
Nevertheless, it is clear that the rounded compositional zeros are a NMAR situation. 
 
Because of the low percentage of missing values in data set X*, four or five different imputations for each 
missing are sufficient to achieve an optimal degree of efficiency for the estimation (Rubin, 1987). In this 
work we decide to take k=5. Concerning the variances of the estimation, for the compositional geometric 
mean we calculate the estimated variances Ui from the clr-variance, that is, an usual estimated variance of 
the mean of the clr-transformed data. In order to simplify the analysis and illustrate the performance of 
multiple imputation, we measure the variability of the total variability and the variation array global 
estimations by its variances between the k imputed data sets, that is, considering only (1+1/k)Bk the 
second factor of Tk. More research is needed in order to establish a method for calculating the estimated 
variances Ui for these statistics.  
 
We have observed that the resulting descriptive measures are different depending on the selected part as 
divisor. Further studies are necessary in order to establish if this dependence is due to the selected divisor 
or only it is an effect of the simulation process. Nevertheless, since the divergences between the three 
cases are not so large we have decided only report here the case when the selected divisor in the alr-
transformation is Fe2O3. 



 
Table 6. Descriptive measures of data set resulting from MCMC multiple imputation when the selected divisor in the alr-
transformation is Fe2O3 (see text for more details). 
 

Compositional geometric mean [std. error]:  
(0.5578[0.0085], 0.0333[0.0297], 0.2393[0.0098], 0.0279[0.0130], 0.1227[0.0062], 0.0189[0.0218]) 
Total variability: 0.5097 (std. dev.: 0.0077) 

Variation array (std. dev.) 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 

Al2O3 0 0.6017 
(0.0062) 0.1288 0.1681 

(0.0008) 0.0885 0.4771 
(0.0076) 

SiO2 
2.8175 

(0.0155) 0 0.6112 
(0.0036) 

0.6638 
(0.0059) 

0.5702 
(0.0058) 

0.6903 
(0.0151) 

Fe2O3 0.8464 -1.9711 
(0.0155) 0 0.1824 

(0.0009) 0.1519 0.4913 
(0.0056) 

TiO2 
2.9942 

(0.0006) 
0.1767 

(0.0161) 
2.1477 

(0.0006) 0 0.2121 
(0.0006) 

0.5319 
(0.0074) 

H2O 1.5140 -1.3035 
(0.0155) 0.6676 -1.4802 

(0.0006) 0 0.4168 
(0.0076) 

Res6 
3.3835 

(0.0059) 
0.5660 

(0.0166) 
2.5370 

(0.0059) 
0.3893 

(0.0060) 
1.8695 

(0.0059) 0 

MSDa: 0.5319 
STRESSb: 0.1981 

(a) As Aitchison’s distance da(xi, ri) between the original composition xi ∈X and the replaced composition ri we 
have used the mean distance between each one of the imputed matrices and the original matrix.  
(b) As Aitchison’s distance da(ri, rj) between the replaced compositions ri we have used the mean distance matrix 
from the five imputed matrices. 

 
Figure 4 shows the pattern of the differences between observations of the data set X and the mean values 
of the observations across the five imputed data sets resulting from MCMC multiple imputation method 
when the part selected as divisor is Fe2O3. Figures corresponding to the others divisors are not reported 
here since them are very similar and not informative. Analogously, we have decided not report here the 
figures corresponding to each of the five imputed data sets because the pattern of all of them is very 
similar to the Figure 4. 
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Figure 4. Boxplot of the differences between observations of the data set X and observations of the data set resulting from 
MCMC method (Part Number: 1.Al2O3; 2.SiO2; 3.Fe2O3; 4.TiO2; 5.H2O; 6.Res6). 

 
In addition to the problems related to compute the variability associated with the global estimators, the 
MCMC multiple imputation shows a similar behaviour to the rest of parametric methods of imputation in 
the sense that this strategy not takes into account that the missing values should be replaced by “small” 
values. This pattern is showed in Figure 4.  



 
3.2.4 Modified EM algorithm for rounded compositional zeros 
 
In this subsection the new algorithm introduced in section 2 is applied. We state that the resulting 
descriptive measures are slightly different depending on the selected part as divisor in the alr-
transformation of X*. For comparison purposes, as in previous sections, we decide to use Fe2O3 as 
divisor. Nevertheless, it is important to remark that for the other divisors the produced results are not 
equal but their differences are of order up to 10-3 for the geometric mean, of order up to 10-1 for the total 
variability and the variation array, and of order 10-2 for the MSD and STRESS.  
 
Table 7 shows the resulting descriptive measures. The method has a reasonable behaviour: the log-ratio 
variances are overestimated; the MSD and STRESS measures take values closer to zero than the other 
parametric methods; and the relative structure of the parts containing no zero values is preserved (black 
values in Table 7). 
 

Table 7. Descriptive measures of data set resulting from modified EM algorithm when the selected divisor is Fe2O3 (see 
text for more details). 

 
Compositional geometric mean:  (0.5650, 0.0236, 0.2424, 0.0282, 0.1243, 0.0164) 
Total variability: 1.0507 

Variation array 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.9504 0.1288 0.1779 0.0885 0.6115 
SiO2 3.1747 0 0.9668 1.0255 0.9072 0.9581 
Fe2O3 0.8464 -2.3283 0 0.1903 0.1519 0.6200 
TiO2 2.9978 -0.1769 2.1514 0 0.2203 0.6657 
H2O 1.5140 -1.6607 0.6676 -1.4838 0 0.5551 
Res6 3.5373 0.3626 2.6909 0.5395 2.0233 0 

MSD: 0.0395 
STRESS: 0.0259 

 
In Figure 5 one can observe that this method takes into account that the rounded zeros must be replaced 
by “small” values. Some of these “small” values are greater than the true value and other “small” values 
are lower. The complete effect is symmetric boxplots around the zero value. The other parametric 
methods (common EM, Sandford’s, and MCMC) have not this suitable behaviour.  
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Figure 5. Boxplot of the differences between observations of the data set X and observations of the data set resulting from  
modified EM algorithm (Part Number: 1.Al2O3; 2.SiO2; 3.Fe2O3; 4.TiO2; 5.H2O; 6.Res6). 

 
Results from modified EM algorithm (Table 7, Fig. 5) are similar to the results produced by the 
multiplicative method (Table 3; Fig. 1). Note that in this example the amount of rounded zeros is small. 



We have stated that if the detection limit is increased from 0.01% to 0.02% the modified EM algorithm 
produces better results than the multiplicative replacement. This fact suggests that for those compositional 
data sets with a large amount of rounded zeros it could be preferable to applying the modified EM 
algorithm than the multiplicative replacement. Nevertheless, further studies are needed in order to analyze 
this aspect. 
 
4 Conclusions 
 
In this work we have presented and compared the main parametric strategies for the rounded 
compositional zeros. All methods analyzed are coherent with the basic operations on the simplex. This 
coherence implies that the covariance structure of subcompositions with no zeros is preserved. 
Nevertheless, EM algorithm and multiple imputation method, in its standard formulation, not take into 
account that the rounded zeros should be replaced by “small” values, and this is an important deficiency.  
 
As alternative we have introduced a modification of the EM algorithm applied in combination to the 
additive log-ratio transformation. This method takes into account that the imputed value must be lower 
than the detection limit of the part. Moreover, reasonable estimations and minimum distortion is 
produced. Also, this method improves its behaviour, in relation to the multiplicative replacement, in 
presence of large amount of null values. 
 
These good features indicate that further research is needed in order to: complete and extend the multiple 
imputation method; complete and extend the modified EM algorithm. 
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