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Abstract

The algebraic-geometric structure of the simplex, known as Aitchison geometry, is used
to look at the Dirichlet family of distributions from a new perspective. A classical
Dirichlet density function is expressed with respect to the Lebesgue measure on real
space. We propose here to change this measure by the Aitchison measure on the
simplex, and study some properties and characteristic measures of the resulting density.
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1 Introduction

Given a measurable space, E, the Radon-Nikodym derivative of a probability, P , with respect to a
measure, λE , is a measurable and non-negative function, f , such that the probability of any event,
A, of the corresponding σ-algebra is

P (A) =

∫

A

f(x)dλE(x), (1)

for x ∈ E. We also call f density function with respect to the measure λE .

In general we work with real random vectors, i.e. E = R
D, and we use density functions with

respect to the Lebesgue measure, which is a natural measure in real space. The Lebesgue measure
allows to compute easily any probability using equation (1), because the integral is an ordinary
one. The Lebesgue measure plays a fundamental role in real analysis and is compatible with the
inner vector space structure of R

D.

Sometimes, like in the case of compositional data, we work with random vectors defined in a space
E different from real space, but with an Euclidean space structure. In those cases it might not
be suitable to apply the same methods and concepts used in real space, as they might lead to
inconsistent results, like the spurious correlation mentioned by Pearson (1897). The underlying
reason is that most methods have been developed for the real case, as they are based on the usual
Euclidean space structure of R

D. This problem can be circumvented defining a probability law
on E using a density function with respect to an appropriate measure, λE . If properly defined,
the measure λE in E will have comparable properties to the Lebesgue measure in real space,
and densities will show a nice behavior. But this has important consequences. For example, it
might be difficult to compute any moment, or to make effective the calculation of any probability,
because we have not an ordinary integral. Those difficulties can be solved working on coordinates
(Eaton, 1983) and, in particular, working on coordinates with respect to an orthonormal basis
(Pawlowsky-Glahn, 2003).

The principle of working on coordinates is based on the following facts. If E is an Euclidean vector
space with an internal operation, ⊕, an external operation, �, and an inner product, 〈, 〉E , then
the general theory of linear algebra proves the existence of a (non unique) orthonormal basis with
respect to which the coefficients or coordinates behave like usual elements in real space, satisfying
all the standard rules (sum, product, ordinary scalar product, . . . ). Properties that hold in the
space of coordinates transfer directly to the space E. This allows us to identify statistical analysis



in E with conventional statistical analysis on real coordinates. Furthermore, concepts like measure
or density function can be taken as defined on coordinates and, consequently, it is possible to work
with the Lebesgue measure and the classical density in real space.

This idea can be applied to the simplex. Do do so, in the following sections first the Aitchison
measure and space structure, as well as the expression of the coefficients of an arbitrary element
with respect to an orthonornal basis, are introduced. Then, the expression of the Dirichlet density
function with respect to this natural measure on the simplex is provided. Finally, this density is
compared with the classical Dirichlet density function with respect to the Lebesgue measure.

We have to insist on the fact that this approach implies using a measure which is different from the
usual Lebesgue measure. But the most important aspect is that it opens the door to alternative
statistical models depending not only on the assumed distribution, but also on the measure which
is considered as appropriate or natural for the studied phenomenon.

2 A relative measure on SD

In the 80’s, Aitchison (1982, 1986) showed that the standard operations we use in real space make
no sense from a compositional point of view, and introduced perturbation, ⊕, powering, � and a
distance, da. Later Billheimer et al. (2001) and Pawlowsky-Glahn and Egozcue (2001) introduced
independently an inner product, 〈, 〉a, which is compatible with these operations, and showed that
(SD ,⊕,�) has an Euclidean vector space structure of dimension D − 1. A proof can be found in
Pawlowsky-Glahn and Egozcue (2002). The resulting geometry is known as the Aitchison geometry
of the simplex.

In face of a compositional problem, we have to focus on the relative magnitudes of the parts of
compositions, that is, the sizes are irrelevant (Aitchison, 1997). This argument is used to define
operations, functions, or methods, on SD . The same argument can be used for the measure.
Pawlowsky-Glahn (2003) defines a measure on the simplex, denoted as λa and called Aitchison
measure. This measure is relative and compatible with the inner vector space structure of the
simplex. It is also absolutely continuous with respect to the Lebesgue measure, λ, on real space.
The relationship between them is given by the jacobian

λa

λ
=

1√
Dx1x2 · · ·xD

. (2)

A proper statistical analysis is expected to produce meaningful results. In this case, we would like
to have statistical techniques compatible with this measure; e.g. a measure of variability expressed
in terms of the natural measure of difference, a mean which minimizes in some sense the natural
variability of the data, or a density function with respect to this natural measure.

As mentioned, the simplex SD, with the operations ⊕ and � and the inner product 〈, 〉a, has
an Euclidean vector space structure of dimension D − 1. The general theory of linear algebra
guarantees the existence of a (non unique) orthonormal basis that we denote by {e1, e2, . . . , eD−1}.
The coefficients of any composition x ∈ SD with respect to this orthonormal basis are

ilr(x) = (〈x, e1〉a, 〈x, e2〉a, . . . , 〈x, eD−1〉a)′,

which is a D − 1 vector of real coordinates. We will use the notation ilr(x) to emphasize the
similarity with the vector obtained applying the isometric logratio transformation to composition
x, a transformation from SD to R

D−1 defined by Egozcue et al. (2003).

We can apply standard real analysis to the ilr coordinates. It is easy to see that operations ⊕ and
� are equivalent to the sum and the scalar product of the respective coordinates. We can apply
also the standard inner product, the ordinary Euclidean distance and the Lebesgue measure in
R

D−1 to the ilr coordinates .



We know that, like in every inner product space, the orthonormal basis is not unique. But in
this case it is not straightforward to determine which one is the most appropriate to solve a
specific problem. Nevertheless, the important point is that, once we have chosen an appropriate
orthonormal basis, all standard statistical methods can be applied to the coefficients, and results
can be transferred to the simplex preserving their properties.

3 The Dirichlet distribution

As stated in Aitchison(1986, p. 58), a random composition x ∈ SD is said to have a Dirichlet
distribution with parameter α = (α1, α2, . . . , αD) ∈ R

D
+ if its density function is

fx(x) =
Γ(α1 + · · · + αD)

Γ(α1) · · ·Γ(αD)
xα1−1

1 · · ·xαD−1
D

, (3)

where Γ is the Gamma function. Every Dirichlet random composition is formed from the closure of
D independent and equally scaled gamma distributed random variables. When D = 2 this density
is known as the Beta density.

If we remove the requirement of equal scale parameter of the gamma variables, we obtain a gen-
eralization of the Dirichlet distribution called the scaled Dirichlet distribution (Aitchison, 1986,
p.305). The expression of its density function is

fx(x) =
Γ(α1 + · · · + αD)

Γ(α1) · · ·Γ(αD)

βα1

1 xα1−1
1 · · ·βαD

D
xαD−1

D

(β1x1 + · · · + βDxD)α1+···+αD

, (4)

where α, β ∈ R
D
+ . Observe that when β is the vector of ones, then the Dirichlet distribution

(3) is obtained. Densities (3) and (4) are classical densities, that is, they are Radon-Nikodym
derivatives with respect to the Lebesgue measure in real space. Using (2) we can easily change the
measure and express both densities with respect to the measure λa. The resulting expressions of
the Dirichlet and scaled Dirichlet density functions are, respectively,

f∗
x
(x) =

Γ(α1 + · · · + αD)
√

D

Γ(α1) · · ·Γ(αD)
xα1

1 · · ·xαD

D
, (5)

f∗
x
(x) =

Γ(α1 + · · · + αD)
√

D

Γ(α1) · · ·Γ(αD)

βα1

1 xα1

1 · · ·βαD

D
xαD

D

(β1x1 + · · · + βDxD)α1+···+αD

. (6)

It is also possible to express densities (5) and (6) in terms of the coordinates with respect to an
orthonormal basis. This would be useful to compute the expected value of any moment. We do not
provide here the expression because it is quite long and complicated. Nevertheless, the important
thing is that we could do it, and we could use those densities as classical densities in real space.

4 Comparison

The objective of this section is to compare both approaches and to see some first consequences
of changing the measure. We start with a graphical comparison when D = 2. In Figure 1(a) we
represent densities with respect to the Lebesgue measure. In Figure 1(b) we represent densities
with respect to the λa measure. Obviously we observe differences. Using the density with respect
to λa there is always a mode. This is not the case using the classical beta densities, because for
α = (1, 1) a constant density function is obtained, and for α = (0.5, 0.4) it is a density with vertical
asymptotes at 0 and 1.

In Figure 2 the isodensity contour plots of a Dirichlet density with D = 3 in the ternary diagram
are represented. In both cases the red curves represent the highest values and the blue ones the
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Figure 1: Beta density curves with respect to (a) the Lebesgue measure λ and (b) the Aitchison measure λa with
parameters α = (2, 5) (——); α = (1, 1) (——) and α = (0.5, 0.4) (——).

lowest. Important differences can be observed. Using the classical approach (the density with
respect to the Lebesgue measure Fig.2(a)) we observe that the density increases when we tend
to the boundary of the ternary diagram. Using the proposed approach (Fig.2(b)) we obtain the
opposite behavior.
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Figure 2: Isodensity contour plots of a Dirichlet density with parameter α = (0.9, 0.9, 0.9) with respect to (a) the
Lebesgue measure λ and (b) the Aitchison measure λa .

Differences can also be found in the properties and characteristic measures. The mode of a Dirichlet
density with respect to the Lebesgue measure is

modeR(x) =

(

α1 − 1

α0 − D
,

α2 − 1

α0 − D
, . . . ,

αD − 1

α0 − D

)

,

whereas the mode of a Dirichlet density with respect to the natural measure on the simplex is

modeS(x) =

(

α1

α0
,
α2

α0
, . . . ,

αD

α0

)

,

where α0 = α1 + α2 + · · · + αD in both cases.

The expected value is also different. Using the classical approach ER(x) is computed using the



standard definition, i.e.

ER(x) =

(

α1

α0
,
α2

α0
, . . . ,

αD

α0

)

.

There are some difficulties to compute the expected value using the density with respect to the
λa measure. One easy way to obtain it is expressing the Dirichlet density function in terms of
the coordinates with respect to an orthonormal basis, and then using the standard definition of
the expected value applied to the ilr(x) vector. The result are the coordinates with respect to the
same orthonormal basis of the composition ES(x). Then, using a linear combination we obtain the
expected composition as

ES(x) = C
(

eΨ(α1), eΨ(α2), . . . , eΨ(αD)
)

,

where Ψ represents the Digamma function. The differences between ER(x) and ES(x) are obvious.
In particular, observe that ER(x) is equal to the modeS(x).

There are also some coincidences, because both densities assign exactly the same probability to
any subset of SD, as both models define the same law of probability over SD .

Another coincidence is that, using both approaches, the class of scaled Dirichlet distributions is
closed under perturbation. If x has a scaled Dirichlet distribution with parameters α and β,
and p is a constant composition, then the random composition x∗ = p ⊕ x has a scaled Dirichlet
distribution with parameters α and p−1β. As a consequence we have that any random composition
x∗ scaled Dirichlet distributed with parameters α and β can be obtained as x∗ = β−1 ⊕ x where
x has a Dirichlet distribution with parameter α.

Related to this last property there is another difference: using only the densities with respect to
the λa measure we have the equality

f∗
p⊕x

(p ⊕ x) = f∗
x
(x).

This equality means that the Dirichlet density with respect to the Aitchison measure on the simplex
is invariant under the internal operation. Consequently we can interpret the scaled Dirichlet as
the result of applying a perturbation to a Dirichlet density. This is not correct using the classical
approach. Observe that this equality has important consequences, because when working with
compositional data often the centering operation (Mart́ın-Fernández et al., 1999) is applied, which
is a perturbation using the inverse of the center of the data set. One interesting aspect is that the
mode and the expected composition of a scaled Dirichlet can be simply obtained as the perturbed
mode and expected composition of a Dirichlet.

5 Conclusion

The Dirichlet and scaled Dirichlet density functions can be expressed with respect to the Aitchison
measure on the simplex. In terms of probabilities of subsets of SD , the laws of probability are
identical to the classical Dirichlet and scaled Dirichlet density functions, but their properties and
characteristic measures are different. More research is necessary to study the consequences of these
differences.
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