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1 Introduction 
 
As stated in Aitchison (1986), a proper study of relative variation in a compositional data set should be 
based on logratios, and dealing with logratios excludes dealing with zeros. Nevertheless, it is clear that 
zero observations might be present in real data sets, either because the corresponding part is completely 
absent –essential zeros– or because it is below detection limit –rounded zeros. Because the second kind of 
zeros is usually understood as “a trace too small to measure”, it seems reasonable to replace them by a 
suitable small value, and this has been the traditional approach. As stated, e.g. by Tauber (1999) and by 
Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2000), the principal problem in compositional 
data analysis is related to rounded zeros. One should be careful to use a replacement strategy that does not 
seriously distort the general structure of the data. In particular, the covariance structure of the involved 
parts –and thus the metric properties– should be preserved, as otherwise further analysis on sub-
populations could be misleading. Following this point of view, a non-parametric imputation method is 
introduced in Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2000). This method is analyzed 
in depth by Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003) where it is shown that the 
theoretical drawbacks of the additive zero replacement method proposed in Aitchison (1986) can be 
overcome using a new multiplicative approach on the non-zero parts of a composition. The new approach 
has reasonable properties from a compositional point of view. In particular, it is “natural” in the sense that 
it recovers the “true” composition if replacement values are identical to the missing values, and it is 
coherent with the basic operations on the simplex. This coherence implies that the covariance structure of 
subcompositions with no zeros is preserved. As a generalization of the multiplicative replacement, in the 
same paper a substitution method for missing values on compositional data sets is introduced.  
 
Among parametric techniques to treat the inference problem in presence of missing data (Allison, 2001; 
Little and Rubin, 2002; Schafer, 1997) we find several methods, but the EM algorithm (Dempster, Laird 
and Rubin, 1977), and its extensions, and the multiple imputation method (Rubin, 1987) represent the 
most based approaches and the actual state of the art. They all provide a set of flexible and reliable tools 
for inference in large classes of missing-data problems, and rely on fully parametric models for 
multivariate data, usually the normal distribution. Using the additive logratio transformation, Buccianti 
and Rosso (1999) describes from an empirical point of view the performances of the EM algorithm and of 
the Sandford’s method. This method was proposed in Sandford, Pierson and Crovelli (1993) as an 
extension of the EM algorithm to substitute censored data in a variable –data under the detection limit– by 
the mean value µmissing data in this variable. This mean value is deduced from 
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where n is the size of the sample with m recorded values. The mean value µwhole data set is the estimation of 
the mean value of the whole distribution produced by the EM algorithm.  
 
Gómez and Palarea (2003) review the most important features of the multiple imputation techniques and 
analyze the role of Markov Chain Monte Carlo (MCMC) simulation algorithms within this methodology 
applied to missing data in a real space. In the next section we describe briefly the multiple imputation 
method via MCMC. Next we present a numerical example in order to illustrate the performance of this 
method and of all above methods, to process rounded zeros of a compositional data set. The aim of this 
work is to do a first approach to the “zeros problem” using parametric tools. 



2 Multiple imputation via Markov Chain Monte Carlo simulation 
 
The goal of the MCMC method (Hastings, 1970) is to generate values of a random vector X with 
probability distribution )x(π , often multidimensional. With them we can calculate Monte Carlo 
approximations of any quantity expressed by an integral, generally with no analytical solution. In order to 
do this, an ergodic Markov chain with )x(π is generated as stationary distribution. Then, under mild 
conditions and after a large number of transitions of the chain, we obtain approximate samples from 

)x(π . In the missing data context, we use MCMC algorithms to generate values of the missing part of the 
problem. Namely, we use the Gibbs sampler in a particular form known as data augmentation algorithm 
(Tanner and Wong, 1987). Several recent references can be consulted for a detailed description of these 
algorithms, the theoretical background and practical aspects: Geyer (1992); Gilks, Richardson and 
Spiegelhalter (1996); Robert and Casella (1999), Tierney (1994) and others.  

Recently (Schafer, 1997) the MCMC algorithm has been adapted to resolve an important practical 
problem of the multiple imputation method. That is, to impute missing values we need to simulate 
independent realizations of [ ]obsmiss XXP | , the posterior predictive distribution of the missing part of our 
sample under some complete-data model and a prior distribution for the vector θ  of parameters. We can 
write 

[ ] [ ] [ ] θθθ dXPXXPXXP obsobsmissobsmiss ∫= |,||    ,                                          (2) 

where Xmiss  and Xobs represent, respectively, the missing and observed part of our sample. In practical 
situations, especially in multidimensional contexts, to generate the imputed values by (2) is a complex 
question. Then, simulating MCMC samples of (2) using an adapted data augmentation algorithm, the task 
is acceptably solved for the majority of problems. 

In general, a multiple imputation technique can be synthesized as follows: 

(i) Firstly, each missing value is replaced by a set of k>1 simulated values. Then we have k 
“completed” data sets. 

(ii)  Next, we apply to each data set the statistical technique of our interest (linear regression, 
discriminant analysis, …) and we obtain k estimations of each quantity of interest. 

(iii)  Finally, using simple rules we combine the k estimations to obtain a unique global 
estimation.  

In the first phase, similarly that it happens in other parametric imputation techniques, we must assume a 
probability distribution model for our data. As is suggested in Schafer (1997), for a real variables the most 
usual and robust hypothesis assume normality of our data. In addition, it is crucial to establish the 
mechanism of missingness. In relation to this mechanism the missing data can be classified as: MAR 
(missing at random), MCAR (missing completely at random), and NMAR (not missing at random). In the 
first case, MAR, the probability that an observation is missing may depend on observed part of the data 
but not on missing part of the data. MCAR is a particular case of MAR because MCAR requires that the 
missing data values are a simp le random sample of all data values. Finally, NMAR consider that the 
probability that an observation is missing may depend on the unobserved part of the data. That is the 
mechanism of missingness is nonignorable. As is exposed in Schafer (1997), “models for nonignorable 
response appropriate for wide classes of data have not been proposed” and “construction and evaluation 
of general models for nonignorable nonresponse are an important area for future study”. In this paper we 
work assuming that our missing data are MAR. Only under MAR assumption the imputations generated 
by (2) are proper. Several simulation studies (e. g. Graham and Schafer, 1999; Collins, Schafer and Kam, 
2001) have showed the robustness of multiple imputation method across deviations from normality or 
MAR assumption. But it is clear that, as an open question, it appears the convenience to extend the 
analysis to NMAR and nonnormal situations. 

In front of the rest of imputation methods (simple substitution, EM algorithm, …), the multiple 
imputation incorporates the additional source of uncertainty associate to the presence of missing values as 



an observed variability in the k completed sets. Furthermore, is easy to show that in data sets with a 
moderate amount of missing values, a reduced number of different imputations (k=5) are enough to 
obtain efficient results. The estimations obtained from the k completed data sets are combined using 
simple rules proposed by Rubin (1987). These rules can be reported as follows: 

(i) Let be Q an unknown quantity of interest that we want to estimate applying some statistical 
technique (e.g. beta coefficient in linear regression model). Let be Q* its estimation and U 
the associated variance of the estimation. Then, after the simulation phase, we have k 
estimations Q*1, Q*2, …, Q*k and its variance-covariance matrix U1, U2, …, Uk.  

(ii) To obtain a unique estimation we use the following expressions   
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where Tk is called the variance-covariance matrix of the estimations. Here, the matrix kU , 
average of the variances U1, U2, …, Uk, is known as the variability within-imputations and Bk 
is known as the variability between-imputations. By this expressions the uncertainty due to 
missing data are incorporated to the estimation. 

 
Extensive studies incorporating new and more complex rules and analysing the asymptotic behaviour of 
the estimators can be found in Meng and Rubin (1992), Rubin (1987, 1996) or Robins and Wang (2000). 

3 Case study 
 
The data set, provided by G. Bardossy from the Hungarian Academy of Sciences, and previously used in 
Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003), corresponds to the subcomposition 
[Al2O3,SiO2,Fe2O3,TiO2,H2O,Res6] of 332 samples from 34 core-boreholes in the Halimba bauxite 
deposit (Hungary). Let us call this data set X. The sixth part Res6 consists in a residual part of the 
composition, i.e., it is equal to (100-(Al2O3+…+H2O))%. A brief descriptive analysis of the data set give 
us that the smallest values appear in components SiO2, TiO2 and Res6, and that the larger variability 
appears in the second and sixth components, i.e. SiO2 and Res6. As is well known, the compositional 
variation array provides a useful descriptive summary of the pattern of variability of compositions. In this 
array we set out the logratio variance var[ln(Xk/Xj)]; (j=1,2,…,6; k=j,…,6) as an upper triangular array 
and we use the lower triangle to display in position (j,k) an estimate of the logratio expectation 
E[ln(Xk/Xj)];(j=1,2,…,6; k=1,…,j). The variation array of the Halimba data set X is given in Table 1. 
Observe that the sign of the logratio means corroborate that the parts SiO2, TiO2 and Res6 take smallest 
values. The larger values of logratio variance appear when SiO2 or Res6 are involved. In this table we 
have reported in black the values corresponding to the parts without values smaller than 0.01. Finally, we 
can compute the compositional geometric mean and the total variability of the data set X, 

respectively: ( )0.0166 0.1242, 0.0282, 0.2421, 0.0246, 0.5644,ˆ =ξ  and 9718.0)X(totvar = . 
 
Table 1. Variation array of Halimba data set: Uppertriangle var[ln(Xk/Xj)]; lower triangle E[ln(Xk/Xj)] 
(see text for more details). 

k 
j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 

Al2O3 0 0.8946 0.1288 0.1793  0.0885 0.6105 
SiO2 3.1314 0 0.9095 0.9703 0.8515 0.9321 

Fe2O3 0.8464 -2.2850 0 0.1915 0.1519 0.6194 
TiO2 2.9981 -0.1333 2.1516 0 0.2214 0.6603 
H2O 1.5140 -1.6174 0.6676 -1.4841 0 0.5566 
Res6 3.5284 0.3970 2.6819 0.5303 2.0144 0 

 
 



Following Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003), every observed value of X 
smaller than 0.01 is transformed to a zero value. We call X* the compositional data set resulting from this 
procedure. As a consequence, out of the 332x6 values in the data matrix X*, 128 are zero, distributed in 
105 compositions or rows. Note that this amount of zero values is reduced (less than 10%). Therefore, it 
seems reasonable to expect that imputation techniques give us suitable results. These zeros are mainly 
concentrated in the parts SiO2 and Res6. Only one zero appears in the fourth part TiO2. As can be deduced 
from Table 2, the parts Al2O3, Fe2O3  and H2O have no zeros in X*. 
 
Table 2. Pattern of existing missing values in data set X*. Letter “M” symbolizes that the variable 
contains missing value. 

Pattern of missing values 

Amount of obs. Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 Amount of observed obs. if...(a) 
227             227 
1       M     228 
34          M 261 
23   M      M 331 
47   M        274 

(a) Amount of observed obs. without missing values if the variables with missing values in this pattern are not 
considered. 

 
 
In our study we assume the zeros of X* to be non-essential zeros, i.e. rounded zeros. Before applying any 
multivariate method, the zeros have to be replaced. Our aim is to compare the performance of the 
different imputation techniques: non-parametric multiplicative replacement (proposed in Martín-
Fernández, Barceló-Vidal, and Pawlowsky-Glahn, 2003), EM algorithm, Sandford’s method, and MCMC 
multiple imputation (presented in Gómez and Palarea, 2003).  
 
Because we know in this case the original observations xi∈X, we perform this analysis using descriptive 
measures (boxplot, compositional geometric mean, total variability, and variation array) of the replaced 
compositions ri obtained from x* i∈X*. In addition, following Martín-Fernández, Barceló-Vidal, and 
Pawlowsky-Glahn (2003), we calculate the Aitchison’s distance da(xi,  ri), i=1,2,…,332 between the 
original composition xi ∈X and the replaced composition ri. As a first measure of distortion, we consider 
the mean of these distances squared 

332

)r,(xd
MSD ii

2
a∑= , 

and, as a second measure of distortion we consider the stress (standardized residual sum of squares) 
defined by  

( )

∑
∑

<

<

−
=

ji
ji

2
a

ji

2
jiajia

)x,(xd

)r,(rd)x,(xd
STRESS  

Note that in a different manner than in MSD, in STRESS we measure the distortion due to compositions 
where both have zero values, as well as the distortion due to compositions where only one of them has 
zero values. 
 
As it is well known (Aitchison, 1986; Buccianti and Rosso, 1999; Martín-Fernández, Barceló-Vidal, and 
Pawlowsky-Glahn, 2003) and it is confirmed here, when not suitable imputation technique is applied to 
compositional data the general structure of the data can be seriously distorted. Broadly speaking, it’s 
likely that the imputed values will be negatives and that the sum constraint will be not preserved. That’s 
happens, e.g. when one apply EM algorithm, Sandford’s method or MCMC multiple imputation to 
compositional data without previous logratio transformation. In this case, Martín-Fernández, Barceló-
Vidal, and Pawlowsky-Glahn (2003) show that the best results are obtained when the rounded zeros in X* 
are replaced by the “small” value δ=0.0065 using the multiplicative replacement. Table 3 shows 
descriptive measures of data set resulting from this replacement.  
 
 



 
Table 3. Descriptive measures of data set resulting from multiplicative replacement with 
δ=0.0065. (see text for more details). 

Compositional geometric mean:   (0.5645, 0.0246, 0.2421, 0.0281, 0.1242, 0.0164) 
Total variability:  0.9602 

Variation array 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.8829 0.1288 0.1864 0.0885 0.6166 
SiO2 3.1318 0 0.8984 0.9598 0.8397 0.9153 

Fe2O3 0.8464 -2.2853 0 0.1979 0.1519 0.6246 
TiO2 2.9990 -0.1327 2.1526 0 0.2273 0.6727 
H2O 1.5140 -1.6178 0.6676 -1.4850 0 0.5612 
Res6 3.5411 0.4093 2.6947 0.5421 2.0271 0 

MSD: 0.0328 
STRESS: 0.0210 

 
In Table 3 we can observe that the values of MSD and STRESS are reasonably close to zero. Thus we can 
conclude that the distortion of the data structure of X has not been large. The same conclusion is obtained 
when we compare the true values of the compositional geometric mean, total variability and the elements 
of the variation array with the values in Table 3. Note that the relative structure of the parts containing no 
zero values is preserved (black values in Table 3). 
 
To major description of the distortion we can analyze the percentiles of the differences between the true 
values of the data in X and the values of the data resulting from the multiplicative replacement. Figure 1 
shows these percentiles in the boxplot diagrams of the differences for each part. Remember that the zeros 
are concentrated in the parts SiO2, TiO2, and Res6. In this figure we can observe that the distortion is not 
large and is symmetric, i.e.  the true values have been replaced by larger or smaller values in 
approximately the same proportion. 
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Figure 1. Boxplot of the differences between observations of the data set X and observations of 
the data set resulting from multiplicative replacement with δ=0.0065. (Part Number: 1.Al2O3; 
2.SiO2; 3.Fe2O3; 4.TiO2; 5.H2O; 6.Res6). 

 
 
Following Aitchison (1986) if we transform the data set X* using the additive logratio transformation 
(alr) then we can consider parametric models for our transformed data since the transformed data belongs 
to a real space. Thus, we transform the data set X* and we assume the normal distribution for the alr-
transformed data, as a previous phase to applying a parametric technique of imputation. Here, the alr-
transformed values of zero are considered as missing values. This strategy, used for the same proposes in 
Buccianti and Rosso (1999), needs one part free of zero values in data set X* in order to use it as divisor 



of the alr-transformation. Remember that the parts Al2O3, Fe2O3, and H2O6 have not zero values. 
Therefore, as we can choose one of them as a divisor then we must analyze if the results are independent 
in relation to the selected divisor. As it is well known (Aitchison, 1986; Barceló -Vidal, Martín-Fernández 
and Pawlowsky-Glahn, 1999; Buccianti and Rosso, 1999) the choice of the part as the divisor is not 
important when we apply EM algorithm since this algorithm is invariant under the group of permutations 
of the parts of the compositions. Table 4 shows descriptive measures of data set resulting from this 
algorithm when we use the part Fe2O3 as divisor for the alr-transformation. Figure 2 shows the pattern of 
the differences between observations of the data set X and observations of the data set resulting from EM 
algorithm. These results have been obtained using the procedure integrated into the SPSS package 
(release 11.5 for Windows). 
 
 

Table 4. Descriptive measures of data set resulting from EM algorithm (see text for more details). 
Compositional geometric mean:  (0.5581, 0.0330, 0.2394, 0.0279, 0.1228, 0.0189) 
Total variability: 0.4477 

Variation array 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.5544 0.1288 0.1677 0.0885 0.4584 
SiO2 2.8293 0 0.5673 0.6235 0.5178 0.624 

Fe2O3 0.8464 -1.9828 0 0.1819 0.1519 0.4736 
TiO2 2.9946 0.1654 2.1482 0 0.2119 0.5159 
H2O 1.5140 -1.3152 0.6676 -1.4806 0 0.3954 
Res6 3.3851 0.5558 2.5386 0.3904 1.8711 0 

MSD: 0.4795 
STRESS: 0.2354 
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Figure 2. Boxplot of the differences between observations of the data set X and observations of 
the data set resulting from EM algorithm. (Part Number: 1.Al2O3; 2.SiO2; 3.Fe2O3; 4.TiO2; 
5.H2O; 6.Res6). 

 
Despite the relative structure of the parts containing no zero values are preserved (black values in Table 
4), we can observe in Table 4 that the values of MSD and STRESS are larger than the values in Table 3. 
Thus we can conclude that the distortion of the data structure of X has been larger than the distortion by 
the multiplicative replacement. This conclusion is confirmed when we compare the true values of the 
compositional geometric mean, total variability and the elements of the variation array (see Table 1) with 
the values in Table 4. Note that the values of var[ln(Xj/Xk)] (uppertriangle in variation matrix) give us 
underestimations of the true values. As can be deduced from Figure 2, the EM algorithm has mainly 
replaced the zero values by values, which are larger than the true values. Thus, we can confirm that the 
EM algorithm not takes into account that the zero values should be replaced by “small” values. 
 



When the Sandford’s method is applied to the alr-transformed data set, we observe that the resulting 
descriptive measures (MSD, STRESS, …) are different depending on the part selected as divisor in the 
alr-transformation. Certainly, as it is showed in Table 5, when we analyze the members of the expression 
(1) we confirm that the mean µwhole data set is invariant under the group of permutations of the parts since 
this mean is produced by the EM algorithm. Thus, we conclude that the differences must to be caused by 
the different values of the mean µobserved data (see Table 5).  
 

Table 5. Amount of observations without zero and with missing values depending on the selected 
divisor (Div.). Compositional geometric mean of the observed data and of the whole data set. 

 Al2O3 (Div.) SiO2 Fe2O3 TiO2 H2O Res6 
Amount observ. (m) -- 262 332 331 332 275 
Amount miss. (n-m) -- 70 0 1 0 57 
Comp. geom. meanobs. data 0.55655 0.03483 0.23872 0.02786 0.12246 0.01958 
Comp. geom. meanwhole data 0.55805 0.03296 0.23937 0.02793 0.12279 0.01890 
 Al2O3 SiO2 Fe2O3(Div. ) TiO2 H2O Res6 
Amount observ. (m) 332 262 -- 331 332 275 
Amount miss. (n-m) 0 70 -- 1 0 57 
Comp. geom. meanobs. data 0.55643 0.03507 0.23868 0.02785 0.12243 0.01955 
Comp. geom. meanwhole data 0.55805 0.03296 0.23937 0.02793 0.12279 0.01890 
 Al2O3 SiO2 Fe2O3 TiO2 H2O (Div.) Res6 
Amount observ. (m) 332 262 332 331 -- 275 
Amount miss. (n-m) 0 70 0 1 -- 57 
Comp. geom. meanobs. data 0.55695 0.03431 0.23890 0.02788 0.12255 0.01941 
Comp. geom. meanwhole data 0.55805 0.03296 0.23937 0.02793 0.12279 0.01890 

 
 
A simple overview of the results in Table 5 show us that the µobserved data of variable ln(SiO2/Fe2O3), i.e. 
Ê[ln(SiO2/Fe2O3)] for the observed data (m=262; Table 5), takes the value −1,91783437. Nevertheless, if 
we consider the estimation Ê[ln(SiO2/Al2O3)] (m=262; Table 5) and the estimation Ê[ln(Fe2O3/Al2O3)] 
(m=332; Table 5) and we calculate the subtraction Ê[ln(SiO2/Al2O3)]−Ê[ln(Fe2O3/Al2O3)] we obtain the 
value −1,92469852. Analogously, we calculate Ê[ln(SiO2/H2O)]−Ê[ln(Fe2O3/H2O)] and obtain the value 
−1,94072832. The cause of this divergence lies in the different amount of observations that we use to 
calculate the estimation of the mean depending on the selected divisor (see Table 5). Thus, in order to 
eliminate the “divisor effect” we would have to estimate  µobserved data using the subset of observations 
without zero values in all parts. Obviously, this procedure will give us lower efficiency in the estimation. 
 
Table 6 shows descriptive measures of data set resulting from Sandford’s method for each selected 
divisor in the alr-transformation. Note that the divergences between the three cases are not so large 
and are mainly concentrated on the logratio variances (uppertriangle of the variation array). 
 
 

Table 6. Descriptive measures of data set resulting from Sandford’s method. 
 

Part as divisor in alr-transformation: Al2O3 
Compositional geometric mean:  (0.5580, 0.0330, 0.2394, 0.0279, 0.1228, 0.01899) 
Total variability: 0.4418 

Variation array 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.5510 0.1288 0.1677 0.0885 0.4527 
SiO2 2.8292 0 0.5631 0.6177 0.5154 0.6290 

Fe2O3 0.8464 -1.9827 0 0.1819 0.1519 0.4672 
TiO2 2.9946 0.1654 2.1482 0 0.2119 0.5063 
H2O 1.5140 -1.3152 0.6676 -1.4806 0 0.3926 
Res6 3.3851 0.5559 2.5386 0.3904 1.8711 0 

MSD: 0.4676 
STRESS: 0.2403 



Part as divisor in alr-transformation: Fe2O3 
Compositional geometric mean:  (0.5580, 0.0330, 0.2394, 0.0279, 0.1228, 0.01899) 
Total variability: 0.4432 

Variation array 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.5534 0.1288 0.1677 0.0885 0.4555 
SiO2 2.8292 0 0.5608 0.6188 0.5182 0.6302 

Fe2O3 0.8464 -1.9828 0 0.1819 0.1519 0.4645 
TiO2 2.9946 0.1654 2.1482 0 0.2119 0.5062 
H2O 1.5140 -1.3152 0.6676 -1.4806 0 0.396 
Res6 3.3851 0.5558 2.5386 0.3904 1.8711 0 

MSD: 0.4685 
STRESS: 0.2393 

Part as divisor in alr-transformation: H2O 
Compositional geometric mean:  (0.5580, 0.0330, 0.2394, 0.0279, 0.1228, 0.01899) 
Total variability: 0.4412 

Variation array 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.5512 0.1288 0.1677 0.0885 0.4532 
SiO2 2.8292 0 0.5635 0.6182 0.5152 0.6230 

Fe2O3 0.8464 -1.9828 0 0.1819 0.1519 0.4678 
TiO2 2.9946 0.1654 2.1482 0 0.2119 0.5083 
H2O 1.5140 -1.3152 0.6676 -1.4806 0 0.3921 
Res6 3.3851 0.5559 2.5386 0.3904 1.8711 0 

MSD: 0.4695 
STRESS: 0.2403 
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Figure 3. Boxp lot of the differences between observations of the data set X and 
observations of the data set resulting from Sandford’s method (Part Number: 1.Al2O3; 
2.SiO2; 3.Fe2O3; 4.TiO2; 5.H2O; 6.Res6). 

 
As can be deduced from comparison of values in Table 4 and Table 6, and from comparison of Figure 2 
and Figure 3, the EM algorithm and the Sandford’s method give us very similar results. Note that e.g. the 
compositional geometric mean of the respectively resulting data sets is coincident. Thus, Sandford’s 



method has the same behaviour than the EM algorithm: it not takes into account that the zero values 
should to be replaced by “small” values.  
 
Finally, we apply the MCMC algorithm to perform multiple imputation of zeros values of data set X*. 
Obviously, as previous phase, we alr-transform our data and we consider the alr-transformed values of 
zeros as a missing values. Then, we must to decide which part is selected as divisor for the transformation 
and for each different divisor we will have to analyze the obtained res ults. In addition, following Gómez 
and Palarea (2003), because the low percentage of missing values in data set X* and the quick improve on 
efficiency with a few simulations, we decide to make 4 different imputations for each missing. In order to 
make comp arisons, we consider two possibilities: first, apply a simple rule exposed above in expression 
(3) to the descriptive measures; second, make the compositional geometric mean of the different 
imputation and calculate its descriptive measures. We know that this second possibility is not so efficient 
than the first one. Nevertheless, we present here its results to better illustrate the analysis. Moreover, in 
order to simplify the analysis, in the first strategy we consider the simple rule consisting on calculate the 
mean and the standard deviation of the set of 4 descriptive measures of different imputations. 
 
Table 7 shows the results produced following the first strategy, i.e. shows the mean and the standard 
deviation of the descriptive measures of data set resulting from multiple imputation with MCMC 
algorithm where the selected divisor in the alr-transformation is Fe2O3. We have observed that the 
resulting descriptive measures are different depending on the selected part as divisor. Further studies are 
necessary in order to establish if this dependence is due to the selected divisor or only it is an effect of the 
simulation process. Nevertheless, since the divergences between the three cases are not so large we have 
decided only report here the case when the part Fe2O3 is the divisor. Table 8 shows the results produced 
following the second strategy. A simple comparison of both tables with the true descriptive measures 
(Table 1) shows us that the first strategy is more efficient than the second since the first strategy give us 
better estimations and incorporates the variability of these estimations.  Figure 4 shows the pattern of the 
differences between observations of the data set X and observations of the data set resulting from the 
second strategy of the MCMC multiple imputation method when the part selected as divisor is Fe2O3. 
Figures corresponding to the others divisors are not reported here since them are very similar and not 
informative. Analogously, we have decided not report here the figures corresponding to the each multiple 
imputation because the pattern of all of them is very similar to the Figure 4. 

 
Table 7. Mean and standard deviation of descriptive measures of data set resulting from MCMC 
method following the first strategy when the selected divis or is Fe2O3 (see text for more details). 

Compositional geometric mean:  (0.5580, 0.0330, 0.2394, 0.0279, 0.1228, 0.0189) 
Total variability: mean: 0.5235; st.dev. 0.0144 

Variation array (mean) 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.6111 0.1288 0.1679 0.0885 0.4826 
SiO2 2.8272 0 0.6240 0.6750 0.5783 0.6965 

Fe2O3 0.8464 -1.9807 0 0.1821 0.1519 0.4989 
TiO2 2.9945 0.1673 2.1481 0 0.2120 0.5368 
H2O 1.5140 -1.3131 0.6676 -1.4805 0 0.4227 
Res6 3.3877 0.5605 2.5412 0.3932 1.8737 0 

Variation array (st.dev.) 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.0118 0 0.0002 0 0.0053 
SiO2 0.0136 0 0.0079 0.0108 0.0126 0.0173 

Fe2O3 0 0.0137 0 0.0002 0 0.0059 
TiO2 0.0004 0.0133 0.0004 0 0.0001 0.0072 
H2O 0 0.0137 0 0.0004 0 0.0052 
Res6 0.0084 0.0127 0.0084 0.0081 0.0084 0 

MSD: mean 0.5450; st.dev. 0.0428 
STRESS: mean 0.2109; st.dev. 0.0070 



 
 

Table 8. Descriptive measures of data set resulting from MCMC method following the second 
strategy when the selected divisor is Fe2O3 (see text for more details). 

Compositional geometric mean:  (0.5580, 0.0330, 0.2394, 0.0279, 0.1228, 0.0189) 
Total variability: 0.4655 

Variation array 
k 

j Al2O3 SiO2 Fe2O3 TiO2 H2O Res6 
Al2O3 0 0.5664 0.1288 0.1677 0.0885 0.4655 
SiO2 2.8272 0 0.5803 0.6348 0.5310 0.6427 

Fe2O3 0.8464 -1.9807 0 0.1820 0.1519 0.4825 
TiO2 2.9945 0.1673 2.1481 0 0.2118 0.5215 
H2O 1.5140 -1.3132 0.6676 -1.4805 0 0.4031 
Res6 3.3877 0.5605 2.5412 0.3932 1.8737 0 

MSD: 0.4870 
STRESS: 0.2243 

 
 
A simple comparison of the values in Table 7 and Table 8 with the true values of the descriptive measures 
of data set X (Table 1), confirm us that we obtain better estimations when the simple rule is applied. 
Nevertheless, note that this better behaviour is mainly in relation of the variability measures, since the 
measures corresponding to the compositional geometric mean and corresponding to the estimations 
Ê[ln(Xj/Xk)] the results are coincident. The MCMC multiple imputation shows a similar behaviour to the 
rest of parametric methods of imputation, in the sense that this algorithm not takes into account that the 
missing values should be replaced by “small” values. This pattern is showed in Figure 4. 
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Figure 4. Boxplot of the differences between observations of the data set X and observations of 
the data set res ulting from MCMC method following the second strategy (Part Number: 1.Al2O3; 
2.SiO2; 3.Fe2O3; 4.TiO2; 5.H2O; 6.Res6). 

 

4 Conclusions 
 
In this work, it is shown that multiple imputation via MCMC is a suitable tool to replace rounded zeros in 
compositional data sets. In a different way that EM algorithm or that Sandford’s method, the MCMC 
multiple imputation algorithms incorporates information about the variability of the estimations due to 
missing part. This information is very useful in order to analyze the efficiency of these estimations. All 
methods analyzed in this work are coherent with the basic operations on the simplex. This coherence 



implies that the covariance structure of subcompositions with no zeros is preserved. Nevertheless, in 
contrary to the non-parametric multiplicative replacement, all the parametric methods not take into 
account in its procedure that the rounded zeros should be replaced by “small” values. Future studies will 
turn our effort to introduce this restriction in MCMC multiple imputation and incorporate the more 
appropriate, in this context, NMAR assumption.  
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