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Abstract

We propose to analyze shapes as “compositions” of distances in Aitchison geometry as
an alternate and complementary tool to classical shape analysis, especially when size
is non-informative.

Shapes are typically described by the location of user-chosen landmarks. However
the shape – considered as invariant under scaling, translation, mirroring and rotation
– does not uniquely define the location of landmarks. A simple approach is to use
distances of landmarks instead of the locations of landmarks them self. Distances are
positive numbers defined up to joint scaling, a mathematical structure quite similar to
compositions. The shape fixes only ratios of distances. Perturbations correspond to
relative changes of the size of subshapes and of aspect ratios. The power transform
increases the expression of the shape by increasing distance ratios. In analogy to the
subcompositional consistency, results should not depend too much on the choice of
distances, because different subsets of the pairwise distances of landmarks uniquely
define the shape.

Various compositional analysis tools can be applied to sets of distances directly or after
minor modifications concerning the singularity of the covariance matrix and yield re-
sults with direct interpretations in terms of shape changes. The remaining problem is
that not all sets of distances correspond to a valid shape. Nevertheless interpolated or
predicted shapes can be backtransformated by multidimensional scaling (when all pair-
wise distances are used) or free geodetic adjustment (when sufficiently many distances
are used).

Key words: Shapes, distances, compositions

1 Introduction

The statistical analysis of shapes is a great challenge. Shapes typically are expressed by the
positions xi of special locations i = 1, . . . , N on the shape typically called landmarks. However
although the position can be expressed in Euclidean coordinates, like with compositional data, the
resulting dataset can not be interpreted in a standard multivariate scale. Objects with translated,
rotated and scaled landmarks are called similar. If no scaling is necessary the objects are called
geometrically equivalent. In this article we will assume that two objects have the “same” shape, if
they are similar.

Thus the main problem is to replace the coordinates with something invariant under similarity
transforms. Different approaches have been proposed:

• Distances
A simple approach is to report distances between landmarks instead of coordinates.
This works for equivalent shapes only and introduces some arbitrariness by the choice of the
reported distances. Furthermore distances form strictly positive quantities and are therefore
difficult to handle statistically.
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Figure 1: Positions of Bookstein coordinates of landmarks of the skulls of male and female gorillas from the dataset
published in (Dryden& Mardia 1998). Landmark 1 corresponds to the tip of the nose and landmark 2 to the back
of the head.



• Bookstein coordinates
The idea is to fix two points and to move and scale each observed shape to fit at these to
points (Dryden & Mardia 1998).
Problems with Bookstein coordinates are the arbitrariness of choosing the two points.

• Procrustes coordinates
The idea is to translate, rotate and scale each configuration to fit to the first configuration
as good as possible in mean square error.
Again there is an arbitrary choice of the first configuration influencing the results.

2 Towards a compositional representation of shapes

2.1 Compositions of distances and angles

In my opinion a multivariate representation of shapes should have some nice properties. E.g. the
components should be easy to understand and invariant under equivalence of similarity transfor-
mations and it should uniquely define the shape. Candidates are:

• Distances between landmarks
For general Euclidean configuration in any dimension the shape is (up to mirror) uniquely
defined by all pairwise distances. The same is true for some subsets of distances. The
distances between the landmarks are invariant under equivalency transforms. A scaling of
the shape results in a similar scaling of all the distances. Thus scaled distances need to
be considered as equivalent and thus the distances form D =

(
N
2

)
-part compositions in the

equivalence class formulation of (Barceló-Vidal et al.(2001))

• Angles between lines connecting landmarks
In the same way angles between connecting lines determine the shape of all connecting trian-
gles, resultingly determine the relative length of all distances and thus specify the shape of
the object in all dimensions. The same is true for some subsets of angles. Since the sum of the
angles in each triangle are known to be 180o the sum of all the angles is known to be

(
N
3

)
180o.

Thus the angles form a D =
(
N
3

)
-part compositions in the sense of (Aitchison(1986)).

We will later see that the compositions of angles have some drawbacks, rendering them very specific
to special situations. The proposal of this paper is therefore to analyze shapes as compositions
of distances. We will justify this further by stating more properties and analyzing the resulting
geometry in more detail. Afterwards we will show how to use this approach in practice.

It should be mentioned that not all compositions correspond to valid shapes. Simple restrictions
for the composition of distances dij = ‖xi − xj‖ are given by the triangular inequality

dij ≤ dik + dkj∀i, j, k

and by the constant sum constraint

αijk + αjki + αkij = 180o

for angles

αijk = acos
(xi − xj ,xk − xj)
‖xi − xj‖‖xk − xj‖

where acosx ∈ [0, π) by definition. The proposed transform is thus not bijective.



2.2 Selected distances and subcompositional dominance

The compositions of distances or angels are very high dimensional. The manifold dimension of
the configurations of N points with relative dimension d is d(N − 1) − 1

2d(d − 1). This is always
positive since relative dimension d implies that N > d. The dimension of the corresponding
compositional space of distances is D − 1 =

(
N
2

)
− 1 = N(N−1)

2 − 1 ≥ d(N − 1) − 1
2d(d − 1).

It is thus often sufficient to use only a subcomposition of distances. However than the analysis
depends on the chosen subcompositions and we are obliged to request that the analysis obeys
the rules of subcompositional dominance (Aitchison(1986)), saying that the information in any
chosen subcomposition should be visible as long as this subcomposition is part of the analyzed
composition. Correspondingly selecting a subcomposition for the analysis explicitly throws away
some information. It is easy to interpret which information is thrown away.

Example 1: We analyze the shape of crayfish. The crayfish can chance some of the distances by
motion of its limbs. We would like to ignore these motion and use only distances between rigidly
connected landmarks.

Example 2: We analyze the shape of gorilla skulls. We could find that the total length from the
back of the head to the tip of the nose might be important in itself or only measured by some
subdistances ”from the back to the base” - back length, ”from the back base to the front base” -
base length , ”from front base to the root of the nose” - position of nose, ”root of nose to tip of
nose” - length of the nose. Figure 2 shows four different possible minimal sets of distances defining
the shape of a Gorilla skull based on the landmarks given in (Dryden & Mardia 1998).

An analysis of the composition in a Aitchison geometry would guarantee that all these subcompo-
sitions are handle consistently according to the principle of subcompositional dominance.

2.3 Subshapes, subcompositions and perturbation

Subshapes can be seen as subsets of points and the corresponding subsets of distances between
these points. The subshape has the same shape if and only if the corresponding subcompositions
of distances are equivalent. If a part of an object consists of two subshapes (e.g. the left and right
scissor of the crayfish), there are three sets of distances in the part: Distances in the first subshape,
distances in the second subshape and distances between both subshapes. If now both subshapes
change their relative size but keep their inner shape, the resulting two subshape subcompositions
would stay the same. The subcomposition containing only the distances in the two shapes is
perturbed by a simple balance vector contrasting the two subshapes and the rest of the distances
change on a nonlinear curve due to a complex shape change of the whole part.

Directional size changes of parts are expressed by a perturbation. E.g. for uniaxial extension the
perturbing vector has high values in the for directions in the extension direction and gradually
decreasing values in the segments with increasing angle to the extension direction. Since segments
not parallel or perpendicular to the extension direction this angle changes during deformation.
Thus the perturbing vector will also slightly change during deformation. However this is only a
second order effect and important only with substantial changes of shape.

2.4 Singular compositions and singular shapes

A major difference between Aitchison geometry and Euclidean geometry is the handling of extremal
compositions. The effect of this should be studied for shapes. The first concern here is on small
subshapes (e.g. the nose of the gorilla) with small absolute variation. In case of classical shape
analysis, based on coordinates, these small variations are more or less ignored. However the
Aitchison distances in the subcompositions do not depend on the absolute size of the subshape,
but only on change relative to size. The Aitchison geometry consequently honors shape changes
in subshapes independent of the overall size of the subshape.



1 2

34
5

6

7 8

−0.4 0.0 0.2 0.4

−0
.4

0.
0

0.
2

0.
4

x

y 1 2

34
5

6

7 8

−0.4 0.0 0.2 0.4
−0

.4
0.

0
0.

2
0.

4

x

y

1 2

34
5

6

7 8

−0.4 0.0 0.2 0.4

−0
.4

0.
0

0.
2

0.
4

x

y 1 2

34
5

6

7 8

−0.4 0.0 0.2 0.4

−0
.4

0.
0

0.
2

0.
4

x

y

Figure 2: Four different minimal subsets of distances uniquely defining the shape.



Shapes correspond to extremal compositions of distances not modeled by the Aitchison simplex
if and only if a distance becomes zero, which corresponds to the two points being equal. As for
compositions, one can argue that in this case we look a qualitatively different shape.

Other extremal combinations of distances are given by the geometric constraint due to the tri-
angular inequality dij ≤ dik + djk. However the corresponding compositions are not considered
extremal, which is in perfect coherence with the fact that these triangles in the mid of a bending
path and are therefore not to be considered as extremal shapes.

2.5 Why are angular compositions not useful?

On the other hand angular compositions are extremal, when two segments originating from the
same landmark get collinear. However this can easily happen during a sign change of curvature
or even by change for connection lines of different subshapes. I therefore consider the angular
compositional geometry in general as invalid for shape analysis. It could be valid, when all the se-
lected segments have some physical meaning hindering them to be collinear. However perturbation
of angles seams to have no meaning. The ratio of two angles is a mathematically flaw quantity,
due to the circular geometry of angles. There is no easy effect of standard operations like local
size change, uniaxial extension or bending. A good hint that Aitchison geometry might be invalid
for compositions of angles is that there is no interpretation in terms of equivalence classes. We
therefore discourage to use compositions of angles as representation of shape.

3 Technical prerequirements

3.1 Standard tools from compositional data analysis

The central idea of this paper can therefore be formulated as follows: Analyze shapes S as compo-
sitions of all or some selected pairwise distances dij = ‖xi − xj‖ between the landmarks xi. The
analysis should be done in the Aitchison geometry (Aitchison(1986)) and following the principle of
coordinates (Pawlowsky-Glahn(2003)) based on the centered log ratio transform and the isomet-
ric log ratio transform. The whole theory of compositional data analysis such as more explicitly
cited and referenced in (Barceló-Vidal et al.(2001)) or (Boogaart&Tolosana-Delgado 2005) in this
Proceedings is taken as granted and not further described here.

Thus the shape is identified with a composition

(dk)k=1,...,D = (dikjk
)k=1,...,D = (‖xik

− xjk
‖)k=1,...,D

based on a chosen set of segments between landmarks:

S = {(ik, jk) : k = 1, . . . , D} ⊂ {(i, j) : i < j}

Based on our standard definitions (Boogaart&Tolosana-Delgado 2005) for compositions we define
for shapes:

clrS := clr(dk)k=1,...,D = (log dk −
1
|S|

∑
l

log dl)k=1,...,D

‖S‖ := ‖(dk)k=1,...,D‖A = ‖clrS‖
ilrS := ilr(dk)k=1,...,D = BclrS

(S, S̃) := (d, d̃)A = (clrS, clrS̃)



3.2 Inverse Transforms

For application of the working in coordinates principle we need an inverse for the clr and the
ilr-transforms. However not all compositions (e.g. a mean composition) correspond to a valid
shape. This is a typical problem for all scales not homomorphic to an Euclidean space. E.g. in
the statistics of directions (i.e. of unit vectors) the mean resulting direction is a vector of a norm
strictly smaller than 1. However we can identify a direction of the mean by the unit vector with
the smallest distance to the resulting mean.

A similar approach can be used here: A composition, which does not correspond to a valid shape,
could be represented by a shape fitting “as good as possible” to the given set of distances. For a full
set of distances such configuration could be calculated by multidimensional scaling (Cox(1994)).
For incomplete sets of distances a best fitting configuration can be calculated by free geodetic
adjustment(Caspary(1987)). Due to the relative geometry of the distances weighted adjustment
should be used. The errors in long distances should be downweighted by the length of the segment.
The adjustment must be a free adjustment since the configuration is determined only up to rotation
and translation. For this reason a starting configuration is needed in a free adjustment, from which
the final configuration inherits location and rotation. To ensure comparability the same starting
configuration should be used for all backtransforms. To avoid further dependence on the starting
configuration of the adjustment, the network of segments should be fully determine the shape and
the adjustment should be iterated until convergence.

3.3 Triangular plots of triangles

AB BC

CA

CA

B

C

A B

Figure 3: Illustration of the plot representing the triangle of possible compositions originating from the sides of a
triangle.

For the subcomposition of three segments making up a triangle, the triangular inequality limits the
possible values to the triangle given by the side mids of the triangle bounding the ternary diagram.
Triangular subshapes can therefore be plotted into a upside down triangular plot. The plot is



explained in Figure 3. The triangles in the corners correspond to triangles with two equivalent
points. The triangles on the sides of the triangle correspond to triangles with three collinear points.
This is illustrated in Figure 4.

A C

B
Figure 4: Illustration of the triangles represented by the different positions in the triangle of triangles.

3.4 Plotting perturbations

Not all compositions showing up during a shape analysis in this approach are really shapes. Many –
e.g. principle components or linear model coefficients – are differences of shapes or shape changes,
expressed by a composition to be used in a perturbation. To represent this compositions I invented
a new plot, which uses a shape with all the connecting lines as a start point but shortens or lengths
each segment around its midpoint according to its relative length in the perturbing composition.
An example can be seen in Figure 8 for the display of principle components. A color code can be
used to distinguish shortened and lengthened segments.



4 Multivariate analysis with compositions of distances

4.1 Mean shape

A big problem concerning shapes is the definition of a mean. The state of the art solution are mean
Bookstein coordinates. However these means depend on the two selected points. The compositional
approach offers an alternate solution by representing the mean by the mean of the corresponding
compositions. However this mean composition does in the most cases not correspond exactly to
a valid shape. However a corresponding optimal backtransform can be given by finding the best
fitting shape through the free geodetic adjustment described in section 3.2.

Figure 5 shows that the variation of the adjusted coordinates obtained by forward and backward
transform through the compositional approach, have a substantially smaller variation around the
mean coordinates, than the Bookstein coordinates around mean Bookstein coordinates.
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Figure 5: The mean shape of the gorilla skull is plotted in red and the dataset in black. The Bookstein coordinates
reveal a substantially larger relative variation around the mean.

4.2 Variation of shape

The variance is typically not an object in the space itself but a matrix. Therefore we can define
the variance of the shape as the variance of the corresponding composition,

varS = var clr S

and the metric variance of the shape as the metric variance of the corresponding composition:

mvarS = tr var clr S

A similarly important object is the variation matrix of the shape to be defined as:

variationS =
(

var log
dk

dl

)
kl

The variation matrix is a symmetric matrix and describes the variation of the ratio of lengths.
Thus a small entry in the variation matrix corresponds to proportional distances.



4.3 Clusters of shapes

The Aitchison distance, like all other typical metrics on the clr-transform of compositions, induces
a natural metric for shapes. This can be used for cluster analysis. To ignore specific aspects of the
shape one can easily remove the corresponding distances from S by selecting a subcomposition. A
simple application of this method is shown in Figure 6, which shows a separation of datasets of
male and female gorillas in four major clusters of which two are mainly male and two are mainly
female.

F9F22 M18F3F6F8F18 M12M9M25M26M27M1M6 M10M24 F13F11F4F15F30F10F20F14F7F24F26F17F27 F1F23F29F28M15F25F19F21F12F16F2F5M2M17 M11M23 M28M4M8 M3M19M7M29M13M20M14M5M22M16M21

0.0 0.2 0.4 0.6 0.8

C
luster D

endrogram

hclust (*, "com
plete")

dist(gordist)

Height

Figure 6: Dendrogram of a row mode cluster analysis of the gorilla dataset based on Aitchison distance and
complete linkage. Gorillas with an F label are female. Gorillas with an M label are male. Based on four clusters
male and female gorillas are nicely separated.

Discrimination analysis can be based on the clr transform. However one has to keep in mind that
the multivariate normal distribution is a not valid model here and therefore only nonparametric
discrimination analysis applies.



4.4 Finding undeformed subshapes by Q-mode cluster analysis

An other important question, when working with shapes, is the detection of undeformed subshapes.
This would imply a clustering of points belonging to subshapes. However a point can belong to
more than one subshape, e.g. when it is a link and even if a point behaves rigid in relation to
some other points it will have a set of varying distances. However segments between landmarks
can belong to one or zero rigid subshapes. Thus we could try to find cluster of segments with small
relative variation. The variation of the relative length of segments is described by the corresponding
entry of the variation matrix, which can serve as a distance of segments. Thus we propose to use
a Q-mode cluster analysis based on the variation matrix (or its element wise square root) as a
measure of distance. The results of such cluster Analysis is given in Figure 7.
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Figure 7: Dendrogram and clustering of the quantity mode cluster analysis based on variation as distance for the
female gorillas. This can be interpreted as follows: black: overall shape of the front skull is constant. blue: the
length of the nose varies, red: the height of the back skull and green: the length of the back skull vary.

However the interpretation might be somehow different from a classical cluster analysis. The cluster
analysis tries to completely split the dataset in clusters. However in case of rigid subshapes not all
distances will belong to a rigid subshape since many will connect landmarks from different rigid
subshapes. These distances should not belong to any cluster and join lately. Only the clusters
formed early at small distances can be interpreted rigid, especially, when they form cliques of
landmarks. The joining distance has direct interpretation in terms of how rigid the subshapes are,
since the have an interpretation in the variation of the log of the ratio.

4.5 Subcompositional balances

If rigid subshapes have been identified, we can try to analyses their relative behavior. Compo-
sitional balances, as introduced in (Egozcue, J.J. and V. Pawlowsky-Glahn (2005)), between the
distances of different subshapes can be used to describe the relative size change of the subshapes.
Balances of the connecting segments of subshapes and inner segments of the subshapes can describe
changes in relative distance of the subshapes. Balances between upper and lower connecting lines
can describe changes in relative rotation of the subshapes.



4.6 Principle component analysis for shapes

Principle component analysis based on Bookstein coordinates is a well known technique for shapes.
However as illustrated in Figure 5 the compositional approach induces a different variation structure
than the Bookstein coordinates. A more detailed view would reveal that the Bookstein variation is
related to compositional variation somehow like the alr-variance to the ilr-variance. Which means
that there is an artefact in the variation induced by the selected fixed landmarks, which looks like
a nonorthogonal transformation. However principle components are totally based on the notion of
orthogonality, which therefore really matters.

Accordingly the principle component based on the compositional approach, honoring all natural
orthogonality and symmetry relations, can be seen as more well founded. The resulting principle
components have to be interpreted in terms of perturbation and can therefore be plotted as the
corresponding shape of the mean shape perturbed by the components or directly as a perturbation
based on the mean shape as described in section 3.4. Biplot, screeplot and the first two principle
components are plotted in Figure 8.

5 Conclusions

Based on the principle of working in coordinates the compositional approach to shape analysis
provides new tools with direct application. The whole approach is not as straight forward as with
the simplex, since the corresponding mappings go into a manifold and not into a full vector space.
However combining the approach with approaches for statistics on manifolds allow interesting
applications.
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Appendix

Here is the R-code to generate the plots:

library(shapes)
library(compositions)
data(gorf.dat)
data(gorm.dat)

di <- matrix(c(1,6, 1,5, 5,6, 6,7, 5,7, 4,5, 4,7, 7,8,
4,8, 3,4, 3,8, 3,2, 2,8),byrow=T,ncol=2)

row.names(di) <- paste(di[,1],di[,2],sep="")

fulldi <- diag(1:8);
fulldi <- cbind(c(row(fulldi)),c(col(fulldi)));
fulldi <- fulldi[fulldi[,1]<fulldi[,2],];
row.names(fulldi) <- paste(fulldi[,1],fulldi[,2],sep="")

todists <- function(X,di) {
if( length(dim(X))<3 )
dim(X) <- c(dim(X),1)

erg <- t(apply(X,3,function(x) {
sqrt(c((x[di[,1],]-x[di[,2],])^2 %*% rep(1,ncol(x))))

}))
colnames(erg) <- row.names(di)
erg

}

plotCS <- function(X,...,di=NULL,which=1:d,xlim=range(X),
ylim=range(X),pch=paste(1:k),add=FALSE,col=par("col")) {

if( length(dim(X)) == 2 )
dim(X) <- c(dim(X),1)

n <- dim(X)[3]
d <- dim(X)[2]
k <- dim(X)[1]
par(pty="s")
if( add )
points(matrix(c(aperm(X,c(1,3,2))[,,which,drop=FALSE]),

ncol=2),pch=gsi.getmod(pch,rep(1:k,n)),...,col=col)
else
plot(matrix(c(aperm(X,c(1,3,2))[,,which,drop=FALSE]),

ncol=2),pch=gsi.getmod(pch,rep(1:k,n)),...,
xlim=xlim,ylim=ylim,col=col)

if( ! is.null(di))
segments(c(X[di[,1],which[1],]),

c(X[di[,1],which[2],]),
c(X[di[,2],which[1],]),
c(X[di[,2],which[2],]),col=col)

}

plotCSC <- function(X,delta,...,di=NULL,which=1:d,
xlim=range(X),ylim=range(X),pch=1:k,
add=FALSE,col=par("col"),sim=1.0) {



if( length(dim(X)) == 2 )
dim(X) <- c(dim(X),1)

n <- dim(X)[3]
d <- dim(X)[2]
k <- dim(X)[1]
par(pty="s")
if( add )
points(matrix(c(aperm(X,c(1,3,2))[,,which,drop=FALSE]),ncol=2),

pch=gsi.getmod(pch,rep(1:k,n)),...,col=col)
else
plot(matrix(c(aperm(X,c(1,3,2))[,,which,drop=FALSE]),ncol=2),

pch=gsi.getmod(pch,rep(1:k,n)),...,xlim=xlim,ylim=ylim,col=col)
if( ! is.null(di))
segmentsC(c(X[di[,1],which[1],]),

c(X[di[,1],which[2],]),
c(X[di[,2],which[1],]),
c(X[di[,2],which[2],]),delta=c(clo(delta,total=length(delta))),
sim=sim)

}

segmentsC <- function(x0,y0,x1,y1,...,delta,sim=1.1) {
xr <- (x1-x0)/2
yr <- (y1-y0)/2
xm <- (x0+x1)/2
ym <- (y0+y1)/2

segments(xm-delta*xr,ym-delta*yr,xm+delta*xr,ym+delta*yr,
...,col=ifelse(abs(log(delta))>log(sim),
ifelse(delta>1,"red","blue"),"black"))

}

eBe.new <- function(d,x,...,idx=cbind(...)) {
erg <- rep(0,prod(d))
erg[1+ c((idx-1) %*% cumprod(c(1,d[-length(d)])))] <- x
dim(erg) <- d
erg

}

eBe <- function(x,...,idx=cbind(...)) {
d <- dim(X)
X[1+c((idx-1) %*% cumprod(c(1,d[-length(d)])))]

}

"eBe<-" <- function(x,...,idx=cbind(...),value) {
d <- dim(X)
X[1+c((idx-1) %*% cumprod(c(1,d[-length(d)])))]<-value
X

}

ginv <- function(M,eps=1E-8) {
s <- svd(M)
s$v %*% gsi.diagGenerate(ifelse(abs(s$d)>eps*s$d[1],1/s$d,0)) %*% t(s$u)

}



adjustDists <- function(X,dists,di,alpha=1,eps=1E-8,maxiter=100,verbouse=FALSE,premul=TRUE) {
dists <- unclass(dists)
if( length(dim(dists)) == 2 )
return( structure(c(apply(dists,1,

function(x) adjustDists(X,x,di,alpha=alpha,eps=eps,
maxiter=maxiter,verbouse=verbouse,
premul=TRUE))),dim=c(dim(X),nrow(dists))))

n <- max(di)
m <- length(dists)
if( premul ) {
h <- rmult(X[di[,2],]-X[di[,1],])
d <- norm(h)
X <- X * mean(dists)/mean(d)

}
for( i in 1:maxiter ) {
h <- rmult(X[di[,2],]-X[di[,1],])
D <- normalize(h)
d <- norm(h)
A <- do.call("cbind",lapply(1:ncol(X),

function(i) eBe.new(c(m,n),D[,i],1:m,di[,2])-
eBe.new(c(m,n),D[,i],1:m,di[,1])))

W <- diag(1/unclass(dists))
verb <- ginv(W %*% A) %*% (W %*% (unclass(dists)-d))
if( verbouse ) cat(norm(dists-d),"\n")
X <- X + structure(alpha*verb,dim=dim(X))
if( norm(verb) < eps* mean(dists) )
break

if( i==maxiter )
warning("Maximum number of iterations reached")

}
X

}

triangleplots <- function(X,dits,...,tri=TRUE,main=NULL) {
if(length(dim(dits))>1 ) {
apply(dits,1,function(d) {triangleplots(X,d,...,tri=tri,main=main)})
return(NULL);

}
plot(acomp(X,parts=dits),...)
if( !is.null(main) ) title(main=main)
if(tri) lines(rcomp(cbind(c(1,1,0),c(0,1,1),c(1,0,1))))

}
par(mfrow=c(3,3))
triangleplots(adists,dits)
# triangleplots(adists,dits,center=T,tri=FALSE)
triangleplots(adists,dits,center=T,scale=TRUE,tri=FALSE,main="centered+scaled")

# figure Cluster Analysis

gordist <- acomp(rbind(todists(gorf.dat,fulldi),todists(gorm.dat,fulldi)))
row.names(gordist) <- c(paste(rep("F",30),1:30,sep=""),

paste(rep("M",29),1:29,sep=""))
hc <- hclust(dist(gordist),method="complete")



plot(hc)
dev.copy2eps(file="GorDendro.eps",horizontal=FALSE) # Fig

# figures dedro,p10,p11
fulldists <- acomp(todists(gorf.dat,di=fulldi))
meanfullcfg <- adjustDists(tt[,,1],mean(fulldists),premul=TRUE,di=fulldi)
x11(width=8,height=4)
par(mfrow=c(1,2))
plot(hc<-hclust(as.dist(variation(fulldists))))

plotCS(meanfullcfg,di=fulldi,col=cutree(hc,4),lwd=2,
main="4 clusters",xlab="x",ylab="y");

plotCS(meanfullcfg,di=cbind(1,6),col=4,add=TRUE,lwd=2)
dev.copy2eps(file="qclust.eps",horizontal=FALSE)
dev.off()

# Figure Comparison of variation

gor.dat <- c(gorf.dat,gorm.dat)
dim(gor.dat) <- c(8,2,59)

gor.bmsp <- bookstein2d(gor.dat)$mshape
gor.book <- bookstein2d(gor.dat)$bshpv

par(cex=2)
par(mfrow=c(1,1))
plotCS(gor.book,xlab="x",ylab="y")
dev.copy2eps(file="Gorilla.eps",horizontal=FALSE)

par(mfrow=c(2,2))

di2 <- matrix(c(1,6, 1,5, 1,7, 6,7, 5,7, 4,5, 5,8, 7,8,
4,8, 3,4, 4,2, 3,2, 2,8),byrow=T,ncol=2)

di3 <- matrix(c(1,6, 6,7, 7,8, 8,2, 2,3, 3,4, 4,5, 5,1, 1,7,
1,8, 1,2, 1,3, 1,4 ),byrow=T,ncol=2)

di4 <- matrix(c(1,6, 6,7, 7,8, 8,2, 2,3, 3,4, 4,5, 5,1, 4,1,
4,6, 4,7, 4,8, 4,2 ),byrow=T,ncol=2)

plotCS(gor.bmsp,di=di,xlab="x",ylab="y")
plotCS(gor.bmsp,di=di2,xlab="x",ylab="y")
plotCS(gor.bmsp,di=di3,xlab="x",ylab="y")
plotCS(gor.bmsp,di=di4,xlab="x",ylab="y")

dev.copy2eps(file="GorConnect.eps",horizontal=FALSE)

x11(width=8,height=4)

par(mfrow=c(1,2))
par(cex=1)



plotCS(adjustDists(gor.book[,,1],acomp(todists(gor.book,di=fulldi)),
di=fulldi,premul=TRUE),xlab="x",ylab="y",main="Adjusted coordinates")

plotCS(adjustDists(gor.book[,,1],mean(acomp(todists(gor.book,
di=fulldi))),di=fulldi,premul=TRUE),xlab="x",ylab="y",add=T,col="red")

par(cex=1)
plotCS(gor.book,xlab="x",ylab="y",main="Bookstein coordinates")
plotCS(gor.bmsp,xlab="x",ylab="y",col="red",add=TRUE)
dev.copy2eps(file="Gorilla1.eps",horizontal=FALSE)
dev.off()

# figure Principle component Analysis
par(mfrow=c(2,2))
adists <- acomp(todists(gor.book,di=di))
row.names(adists) <- c(paste(rep("F",30),1:30,sep=""),paste(rep("M",29),1:29,sep=""))
pr <- princomp(adists)

pr
plot(pr,main="screeplot")
plot(pr,type="biplot",main="biplot")
#plot(pr,type="loadings" )
barplot(pr$Loadings*2,main="compositional loadings")
k<-1;plotCSC(adjustDists(tt[,,1],mean(adists),di,premul=TRUE),

di=di,delta=pr$sdev[k]*2*pr$Loadings[k,],
sim=1.1,pch=paste(1:8),xlab="x",ylab="y",
main="Effect of first component")

dev.copy2eps(file="GoriPrinc.eps",horizontal=FALSE)


