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Abstract

The simplex, the sample space of compositional data, can be structured as a real Euclidean space.
This fact allows to work with the coefficients with respect to an orthonormal basis. Over these
coefficients we apply standard real analysis, in particular, we define two different laws of probability
through the density function and we study their main properties.

1 Algebraic geometric structure on S?

Any vector x = (z1,22,...,zp)’ representing proportions of some whole can be expressed as sub-
ject to the unit-sum constraint ZiD:1 z; = 1. Therefore, a suitable sample space for compositional
data, consisting of such vectors of proportions (compositions), can be taken to be the unit simplex

defined as

D
SP ={(z1,29,...,2p) 121 > 0,29 >0,...,2p >O;in =1}
i=1

A real vector space structure is induced by the perturbation operation, defined for any two compo-
sitions x,x* € SP, as x ® x* = C (z12}, 2275, ..., xpx},)’, and the power transformation, defined
for any x € S” and a € R as a ® x = C(z§,2%,...,2%)". C(-) denotes the closure operation, a
transformation from RY to S” that converts each vector into its composition.

The Euclidean space structure is induced by the inner product defined by Aitchison (2002) for any
two compositions x, x* € S” as

. 1 T, T}
<X’X>azﬁzlnx_jln§' (1)
i<j 7
The associated norm is ||x]|, = \/(x,x), and the associated distance, which we know as Aichison

distance, is

2
d,(x,x*) = %Z (ln%—ln%) . (2)
1<] J
The distance (2) follows the standard properties of a distance. Given x,x*,x’ € 8P, and a € R,
it is easy to prove that d,(x,x*) = do(x' @ x,x' ®x*), and d,(a ® x,a ® x*) = |a|d,(x,x*). Thus
we say that the distance d, is coherent or compatible with the structure of SP. Also, the distance
(2) does not depend on the particular order of the parts because d,(Px,Px*) = d,(x,x*), for
any permutation matrix P. These properties had been studied by Aitchison (1992) and Martin-

Fernandez (2001); for a proof see Pawlowsky-Glahn and Egozcue (2002, p. 269).

A D-part composition is usually expressed in terms of the canonical basis of R”, using the sum
and the scalar product operations. In fact, any x € S can be written as x = (21, 22,...,2p) =
z1(1,0,...,0) 4+ 22(0,1,0,...,0) + -+ + p(0,...,0,1)". Note that the canonical basis of RP
is not a basis on S” and this expression is not a linear combination on S with respect to its
vector space structure. But, given that S” is a vector space with dimension D — 1, general algebra
theory assures the existence of a basis. Before we introduce a basis of SP, note that the set
B* = {wi,ws,...,wp}, where w; = C(1,1,...,e,...,1) with the element e placed in the i-th
row, is a generating set of S”. Certainly, any composition x € S can be expressed as, for
example, x = (Inzy @ wq) & (Inzs @ wo) & -+ B (Inzp ® wp). Obviously there are more possible

expressions as x = (In(z1/g(x)) ® w1) ® (In(z2/g(x)) @ wa) @ -+ & (In(zp/g(x)) ® wp), where



g(x) is the geometric mean of composition x. Given x € S, we say that one possible vector of
coefficients with respect to the generating set B* is

clr(x) = (m (%) In (%) ..., In <%>)I (3)

We will use the notation clr(x) to emphasize the similarity with the vector obtained applying the
centred logratio transformation to composition x (Aitchison, 1986, p. 94). Note that, like for the
centred logratio vector, the sum of the components of the vector clr(x) is equal to 0.

As the dimension of S is D — 1, we can eliminate any composition of B* to obtain a basis of
SP. If we eliminate the last composition wp we obtain the basis B = {wy,wa,...,wp_1} and
now a composition x has a unique expression as a linear combination x = (In(zy/zp) ® w1) ®
(In(z2/zp) ® wa) ® -+ @ (In(xp_1/2p) ® wp_1). Thus we say that the coefficients of x with
respect to the B basis are

alr(x) = <ln <§—;> In (%) ... In (x;)Dl))I. (4)

We will use the notation alr(x) to emphasize the similarity with the vector obtained apply-
ing the additive logratio transformation to a composition x (Aitchison, 1986, p. 113). We
can suppress any other composition w; (i = 1,2,...,D — 1) of the set B* instead of wp, to
obtain another basis. In this case, the components of x with respect to this new basis are

(In(zy /i), ..., In(zi1 /2), In(ziq1 /i), ... In(zp /i) .

The inner product (1) and its associated norm ensure the existence of an orthonormal basis. With
simple algebraic operations we can check that the set {wy,wa,...,wp_1} is not orthonormal.
Using the Gram-Schmidt method we can obtain from this basis an orthonormal basis denoted
as {e1,ea,...,ep_1}. A composition x has a unique expression as a linear combination x =

((x,e1)a ®e1) ® ((X,e2) s Qe€) B ... B ((X,ep_1)s ® ep_1). Thus we say that the coefficients of
any composition x € SP with respect to the orthonormal basis {e;,es,...,ep 1} are:

ilr(x) = ((x,e1)a, (X,€2)0, ..., (X,ep_1)a). (5)

We will use the notation ilr(x) to emphasize the similarity with the vector obtained applying the
isometric logratio transformation to composition x (Egozcue et al., 2003, p. 294). As in real space,
there exist an infinite number of orthonormal basis on SP. Aitchison (1986, p. 92) provides the
relationship between the alr and clr transformations. Later, Egozcue et al. (2003, p. 298) provide
the relationship between the alr, clr and ilr transformations. Now they can be interpreted as a
change of basis or of generating system that relates the coefficients alr(x), clr(x) and ilr(x). These
relations are:

alr(x) = Fp_; pclr(x); clr(x) = Fp p_;alr(x);
clr(x) = Up, p_1ilr(x); ilr(x) = Up_; pelr(x); (6)
alr(x) = Fp_1,pUp, p1ilr(x); ilr(x) = Up_y pFp p_jalr(x),

where Fp_1 p = [Ip_1 : jp—1], with Ip_; representing the identity matrix of order D — 1 and
Jp—1 the column vector of units; Up p_1 is a D x (D — 1) matrix with the coefficients clr(e;)
(1t =1,2,...,D — 1) as columns; and F} p_1 is the Moore-Penrose generalized inverse of matrix
Fp_1,p given by
D-1 -1 ... -1
. -1 D-1 - -1
F* = D : : . :
-1 -1 - D-1
-1 -1 ... -1



Over the coefficients with respect to an orthonormal basis we can apply standard real analysis.
Certainly, it is easy to see that the operations @ and ® are equivalent to the sum and the scalar
product of the respective coefficients with respect to any basis (not necessarily orthonormal). In
the particular case of coefficients with respect to an orthonormal basis, we can apply the standard
inner product and the Euclidean distance in RP~!. We cannot assure this properties for the
coefficients with respect to a generating set in general, but in the particular case of the coefficients
(3), all properties are fulfilled.

Following Aitchison (1986), given a composition x € SP we may wish to focus attention on the
relative magnitude of a subset of components, so we need the definition of a subcomposition. As
stated in Aitchison (1986), the formation of a C-part subcomposition, s, from a D-part composition,
x, can be achieved as s = C(Sx), where S is a C' x D selection matrix with C' elements equal to
1 (one in each row and at most one in each column) and the remaining elements equal to 0. A
subcomposition can be regarded as a composition in a simplex of lower dimension.

When we work with large dimensional compositions, it may be of interest to amalgamate com-
ponents to form a new composition. An amalgamation is any composition in a simplex of lower
dimension obtained from the sum of some groups of components of the original composition.

A random composition x is a random vector with SP as domain. Aitchison (1997) uses the
geometric interpretation of the expected value of a random vector to define the center of a random
composition as the composition cen(x) which minimizes the expression E[d?(x, cen[x)]]. We obtain
cen[x] = C(exp(E[Inx])) or equivalently cen[x] = C(exp(E[In(x/g(x))])) (Aitchison, 1997, p. 10,
Pawlowsky-Glahn and Egozcue, 2002, p. 270), who also include the equality

alr(cen[x]) = E[alr(x)]. (7)
Using (6) and (7), we can prove the equalities

clr(cen[x]) = E[clr(x)],
ilr(cen[x]) = EJilr(x)] (8)

This means that the coefficients of composition cen(x) with respect to the B basis, to the generat-
ing set B* and to an orthonomal basis of SP are equal to the expected value of the coefficients of
X with respect to the B basis, the generating set B* and an orthonormal basis of S, respectively.
Observe that we can compute E[alr(x)], E[clr(x)] and Elilr(x)] applying the standard definition.
Afterwards we can obtain the related composition cen(x) through the corresponding linear combi-
nation. This result confirms that working with the coefficients with respect to a basis and applying
the standard methodology is equivalent to work directly with compositions. In particular, for the
center of a random composition, we can use the coefficients alr, clr or ilr without distinction. More
generally, Pawlowsky-Glahn and Egozcue (2001, p.388) prove the equality h(cen[x]) = E[h(x)] for

any isomorphism h.

The variance of a real random vector can be interpreted as the expected value of the squared
Euclidean distance around its expected value. This interpretation is used by Pawlowsky-Glahn
and Egozcue (2002, p. 264) to define the metric variance of a random composition x as Mvar[x] =
E[d2(x, cen[x])]. The coefficients with respect to an orthonormal basis and with respect to the
generating set B* provide two equivalent expressions for the metric variance as

Mvar[x] = E[d2,, (ilr(x), ilr(cen[x]))] = E[d?, (clr(x), clr(cen[x]))].

In this case it is not possible to use the Euclidean distance between the alr coefficients because
the basis B is not orthonormal. Consequently, the Aitchison distance between x and cen(x) is
not equal to the Euclidean distance between the respective alr coefficients. Certainly, Pawlowsky-
Glahn and Egozcue (2001) prove the equality Mvar[x] = E[d?,(h(x), E[h(x)])] for any h isometry
but we know that the alr transformation is not an isometry.

Aitchison (1997, p. 13) defines the total variability as totvar(x) = trace(I') where T' is the stan-
dard covariance matrix of coefficients (3). Later, Pawlowsky-Glahn and Egozcue (2002, p. 265)



obtain the equality Mvar[x] = totvar[x]. Using equalities (6) we can prove that totvar(x)
trace(Y) where Y is the standard covariance matrix of coefficients (5). As ¥ = var(ilr(x)) =
var(U'clr(x)U) = U'var(clr(x))U = U'T'U, we obtain trace(Y) = trace(U'T'U) = trace(TUU’) =
trace(T') because matrix UU’ has the rows of T' as eigenvectors with eigenvalue 1. In this case it is
not possible to use the covariance matrix of coefficients (4) because when we compute a covariance
we use implicitly a distance and we know that the Aitchison distance between two compositions is
not equal to the Euclidean distance between the respective alr coefficients.

We know that S” C RP and consequently we can apply the traditional approach to define laws
of probability. The additive logistic normal distribution defined by Aitchison and Shen (1980)
and studied by Aitchison (1986) and the additive logistic skew-normal distribution introduced by
Mateu-Figueras et al. (1998) and studied in Mateu Figueras (2003) are two laws of probability
defined through transformations from S” to the real space. In the next section, we consider the
Euclidean space structure of S” and we define a law of probability over the coefficients of the
random composition with respect to an orthonormal basis. In particular, we define the normal and
the skew-normal distributions on SP.

To state it clearly: the essential difference between the traditional methodology and the approach
we are going to present is the measure assumed on S”. In the traditional approach the measure
used is the usual Lebesgue measure on S”, whereas in our approach, the measure is the Lebesgue
measure on the coefficients with respect to an orthonormal basis on SP.

2 Distributions on S”, some general aspects

Given any measurable space, the Radon-Nikodym derivative of a probability P with respect to a
measure v is a measurable and non-negative function f(-) such that the probability of any event
A of the corresponding o-algebra is

P(A) = /A F)dv ().

We also name f(+) as the density function of probability P with respect to the measure v. When
we work with random variables or random vectors in real space, we use the density function with
respect to the Lebesgue measure and we call it “the density function of the random variable”.
We do not mention the measure because it is understood that it is the Lebesgue measure. The
Lebesgue measure has an important role in real analysis because it is invariant under translations.

On 8P we can define quite straightforwardly a law of probability through the density function with
respect to a measure v on S”. But we are interested in finding a measure similar to the Lebesgue
measure in real space. In particular we look for a measure v invariant under the operation @, the
internal operation in S”. Taking into account the distance d,, we conclude that the Lebesgue
measure in real space is not adequate in S”. Nevertheless, note that if v is not the usual Lebesgue
measure in real space, we cannot make effective the calculation of any integral.

As we have seen in the previous section, S” has a D —1 dimensional Euclidean space structure and
we could apply the isomorphism between S” and RP~!'. We have only to identify each element
of SP with its vector of coefficients with respect to an orthonormal basis. In this case we can
introduce the density function of the coefficients with respect to the Lebesgue measure and apply
all the standard probability theory. This function allows us to compute the probability of any
event by means of an ordinate integral, i.e., if f*(-) is the density function of the coefficients with
respect to an orthonormal basis, we can compute the probability of any event A C SP as

P(A)Z M f*(’l)l,’l)g,...,’UD_l)d’Uld’Ug...dvD_l,

where A* and (vy,vs,...,vp_1) represent the coefficients with respect to the orthonormal basis
that characterize the set A and the composition x.



We have to bear in mind that if we use this methodology to compute any element of the support
space, we will obtain the coefficients of this element with respect to the orthonormal basis used.
Next, we could obtain the corresponding composition by means of a linear combination. Mateu-
Figueras and Pawlowsky-Glahn (2003) and Pawlowsky-Glahn et al. (2003) compute, respectively,
the expected value of a normal model on Rt and the expected value of a bivariate normal model on
R? using the principles of working on coefficients with respect to an orthonormal basis. In our case
it will be easy to compute the expected value of the coefficients of any random composition x, i.e.
E[ilr(x)]. Interpreting them as coefficients of our basis of reference, we will obtain the composition
that we call expected value and we denote as E[x] through a linear combination.

Now we introduce two laws of probability on S indicating the expression of function f*. In both
cases, the families of distributions are closed by & and ® operations and, moreover, the densities
satisfy the equality

fi(x) = faax(a®x), (9)

where fy and f3, represent the densities of random compositions x and a® x respectively, with a
a constant composition. This property has important consequences in S because we often apply
the centering operation (Martin-Ferndndez, 2001).

We also compute the expected value and the covariance matrix using the coefficients with respect
to the orthonormal basis and the standard procedures in real space. The obtained results are
coherent with the center and the metric variance of a random composition.

3 The normal distribution on S?

3.1 Definition and properties

Definition 1 Let be (Q, F,p) a probability space. A random composition x : @ — S is said
to have a normal on SP distribution with parameters £& and Y, if the density function of the
coefficients with respect to an orthonormal basis of S” is

Fax) = 2m) " PV |7 exp —% (ile(x) — €)' X (ilr(x) — €)| - (10)

We use the notation x ~ ./\/:g (&,7). The subscript S indicates that it is a model on the simplex
and the superscript D indicates the number of parts of the composition. We also use the notation &
and Y to indicate the expected value and the covariance matrix of the vector of coefficients ilr(x).

The density (10) corresponds to a density function of a normal random vector in RP~!. This is
the reason why we call it the normal on SP law. We want to insist that (10) is the density of the
coefficients of x with respect to an orthonormal basis on S”, and therefore it is a Radon-Nikodym
derivative with respect to the Lebesgue measure in RP~1, the space of coefficients. This allows us
to compute the probability of any event A C SP with an ordinary integral as

P(A) = /*(gw)*@*l)/? || 7/2 exp —% (ilr(x) — €)'~ (ile(x) — &) | dA(ilr(x)),

where A* represents the coefficients of A with respect to the considered orthonomal basis, and A
is the Lebesgue measure in RP~1,

One important aspect is that the normal on S law is equivalent, on S, in terms of probabilities,
to the additive logistic normal law studied by Aitchison (1986) and defined using transformations
from SP to real space. Recall that to define the additive logistic normal model we consider
zp = 1 -2y —axy — -+ —xp_; and SP c RP. Tts density function is the Radon-Nikodym
derivative with respect to the Lebesgue measure in RP~' and it is obtained using the additive



logratio transformation. Given relations (6) it is also possible to obtain the density function using
the isometric logratio transformation. Then, we obtain the probability of any event A C SP
computing the standard integral

D12 Hi,;l‘ri 1
P<A):A<2w><pgl>/a|r)|1/g exp [—§<ilr(x>—s>’r1(i1r<x>—s> derdes -+ dep_y, (1)

where now the vector ilr(x) denotes the isometric logratio transformation of composition x (Egozcue
et al., 2003). The parameters € and Y are now the standard expected value and the covariance
matrix of the ilr transformed vector. Note that we use the same notation as in the normal on S”
case, because even though the interpretation is different, the expression of the vectors ilr(x), & and of
the matrix Y are the same. Observe that the above density is obtained through the transformation
technique because it contains the term D’1/2(Hfi1 z;)~1, the jacobian of the isometric logratio

transformation.

Now it is important to correctly interpret the vector ilr(x) as the isometric logratio vector or as
the coefficients with respect to an orthonormal basis. To avoid possible confusions we denote as
v = (v1,v2,...,0p_1)" the coefficients with respect to an orthonormal basis of composition x, and
as ilr(x) its isometric logratio transformed vector. Thus, given x ~ NP (¢,Y) we can write the
probability of any event A C S as

PO = [ @m P T exp | <5 (v =€) T (v =€) duides - dopr. (12)

where A* represents the coefficients of A with respect to the chosen orthonormal basis.

In both cases, expressions (11) and (12) are standard integrals of a real valued function and
we can apply all the standard procedures. In particular we can apply the change of variable
theorem. Then, we take the expression (12) and we apply the change v = ilr(x), whose jacobian
is D-Y/2([T2, ;) *. The change of variable theorem assures the equality

P(A) = /*(QW)_(D_l)/Q 1Y =172 exp {_% (vog&)' T (v g)} dvidvs -+ dvp 1

—1

D71/2 (Hizl mz) 1 ) i

- /1 “1asy 2m)(P=D2 X 12 exp | =5 (ilr(x) — €)' Y7 (ilr(x) — &)| de1dzy - -dzp_1.
1r *

The coefficients with respect to an orthonormal basis of any element of S” are equal to its iso-
metric logratio transformation. Thus, the coefficients of A are also equal to its isometric logratio
transformed event, and consequently ilrfl(A*) = A, where ilr ! denotes the inverse transforma-
tion. Observe that the probability of any event A C SP is the same using both models, the normal
in SP and the logistic normal, and we say that the two laws are equivalent on S” in terms of
probabilities. But without any doubt, the normal on S” and the additive logistic normal models
are considerably different, specially from concepts and properties that depend on the geometry of
the space.

Now we provide some general properties of the normal in S” model that will help us to observe
the differences from the additive logistic normal model. To be coherent with the rest of the work,
we revert to using the notation ilr(x) to indicate the coefficients with respect to an orthonormal
basis of S” of composition x.

Property 1 Let be x a D-part random composition with a NP (&, ) distribution. Let be a € SP
a vector of constants and b € R a scalar. Then, the D-part composition x* = a @ (b ® x) has a
NP (ilr(a) + b¢, b Y) distribution.



Proof. The ilr coefficients of composition x* are obtained from a linear transformation of the
ilr coefficients of composition x because ilr(x*) = ilr(a) + bilr(x). We can deal with the density
function of the ilr coefficients of x as a density function in real space. As it is a classical normal
density in real space, we use the linear transformation property to obtain the density function of
the ilr(x*) vector. Therefore x* ~ NP (ilr(a) + b¢, b>Y).

Observe that the resulting parameters are ilr(a) + b€ and b2 Y. These values are the expected value
and covariance matrix of the ilr(x*) coefficients because
E[ilr(x*)] = Elilr(a) + bilr(x)] = ilr(a) + bE[ilr(x)] = ilr(a) + b€,
var[ilr(x*)] = var[ilr(a) + bilr(x)] = b*var[ilr(x)] = b* Y.
Property 2 Let be a random composition x ~ Ng(&, TY) and a € SP a vector of constants. Then

anx(@®X) = fX(x), where fX,  and f represent the density function of random compositions x
and a @ x respectively.

Proof. Using Property 1 we have that a & x ~ N2 (ilr(a) + &, Y). Therefore,
fiox(@®x) = (2m)~ (P72 71/
1
X exp [—5 (ilr(a @ x) — (ilr(a) + €)' Y~ (ilr(a @ x) — (ilr(a) + {))j|

— (271_)—(D—1)/2 | T ‘—1/2

X exp [—% (ilr(a) 4 ilr(x) — (ilr(a) + €)' ¥ (ilr(a) + ilr(x) — (ilr(a) + 5))}

X

1
= )P T [ exp [ () - € () - )] = £,
as indicated in (9).
Note that Property 2 is not hold true for the additive logistic normal distribution.

Property 3 Let be x a D-part random composition with a N2 (&, Y) distribution. Let be xp =
Px the composition x with the parts reordered by a permutation matrix P. Then xp has a
NP (&p, X p) distribution with

¢&p =U'PUE and Yp=(UPU)Y(U'PU),
where U is a D x (D — 1) matrix with vectors clr(e;) (i =1,2,...,D — 1) as columns.

Proof. To obtain the distribution of a random composition xp in terms of the distribution of x,
it is necessary to find a matrix relationship between the ilr coefficients of both compositions xp
and x. If we work with the clr coefficients, we have clr(xp) = Pclr(x). Applying (6) we obtain
ilr(xp) = (U'PU)ilr(x). As the ilr(x) vector has a normal distribution, we can apply the change
of variable theorem or the linear transformation property of the normal distribution in real space
to obtain a NP (U'PUE, (U'PU)Y (U'PU)’) distribution for the random composition xp.

Note that the parameters of the model agree with the expected value and the covariance matrix
of the ilr(xp) vector.

Property 4 Let be x a D-part random composition with a ./\/SD (&,7Y) distribution. Let be s =
C(Sx) a C-part subcomposition obtained from the C' x D selection matrix S. Then s has a
N§ (€4, Y s) distribution, with

£€,=U*SU¢ and Ys=(U*SU)Y(U*'SU),



where U is a D x (D — 1) matrix with the clr coefficients of an orthonormal basis of S as columns,
and U* is a C x (C' — 1) matrix with the clr coefficients of an orthonormal basis of S as columns.

Proof. We know that the coefficients alr(s) and alr(x) are equal to the respective alr trans-
formed vectors. Aitchison (1986, p. 119) proves that alr(s) = (Fo_1,cSF} p_y) alr(x). Ap-
plying (6) we obtain ilr(s) = (U*'F§ o 1Fo1,¢SF) p_Fp_1,pU)ilr(x). We can easily check
that matrices ¥, o Fc_1,¢c and F, , Fp_1,p have the columns of matrices U* and U, re-
spectively, as eigenvectors with eigenvalue 1. Consequently we have U*’ ( *O,O—lFC*LO) = U
and (F}, p 1Fp_1,0) U = U, and the relationship between the ilr coefficients of subcompo-
sition s and composition x is ilr(s) = (U*'SU)ilr(x). Given the density of the ilr(x) vector
and applying the change of variable theorem or the linear transformation property of the nor-

mal distribution in real space, we obtain the density of the ilr(s) vector, that corresponds to a
N§ (U*'PU&,(U*'PU)T(U*'PU)’) density function.

Observe that properties of the classical normal distribution in real space have allowed us to prove
the closeness under perturbation, power transformation, permutation and subcompositions of the
normal on SP family. Nevertheless, given x ~ ./\/:5 (&,7), it has not seem possible up to now to
describe the distribution of any amalgamation in terms of the distribution x. In particular, we have
been unable to find a matrix relationship between the ilr coefficients of x and the corresponding
amalgamated composition.

Following the methodology stated by Pawlowsky-Glahn, Egozcue, and Burger (2003), we can define
the expected value of a normal on S” distributed random composition:

Property 5 Let be x a D-part random composition with a AP (&, ) distribution and let be & =

(51,52,. .. ,gD_l)l. Then E[X] = (51 ®e1)®(§2®e2)®. --®(€D—1®GD—1); Where {el,eg,. .. ,eD_l}
is an orthonormal basis of SP.

Proof. The expected value of any random vector is an element of the support space. If we apply the
standard definition of the expected value to the coefficients of composition x with respect to the
orthonormal basis {e;,es,...,ep_1} using density (10), we obtain the coefficients of composition
E[x] with respect to the considered orthonormal basis. Applying standard integration methods
we have ilr(E[x]) = €. Finally, we obtain the composition E[x] through the linear combination
Ei®e)®(L2®e)®...d (Ep—1 ®ep_1).

Recall that the vector € denotes the expected value of the ilr(x) vector. Then we have that
ilr(E[x]) = E[ilr(x)]. Also, equality (8) says that the vector of coefficients with respect to the
orthonormal basis of composition cen(x) is E[ilr(x)]. Consequently we have that E[x] = cen[x].

In the additive logistic normal case, we can compute the expected value using the standard pro-
cedure. But, as Aitchison (1986) adverts, the integral expressions are not reducible to any simple
form and it is necessari to apply Hermitian integration to obtain numerical results. But, certainly,
the expected value is not equal to the composition cen(x) obtained in the normal in SP case.

Property 6 Let be x a D-part random composition with a N2 (¢, Y) distribution. Then a dis-
persion measure around the expected value is Mvar[x] = trace(Y).

Proof. The metric variance is defined as Mvar[x] = E[d2 (x, cen[x])]. Given x ~ N2 (&, Y) we know
from property 5 that cen[x] = E[x]. Then, the metric variance is a dispersion measure around the
expected value Mvar[x] = E[d2(x, E[x])]. The distance d, between two elements is equal to the
Euclidean distance d., between the corresponding coefficients with respect to an orthonormal
basis. Then, we can write Mvar[x] = E[d?,, (ilr(x), E[ilr(x)])]. This value corresponds to the trace
of matrix var(ilr(x)). Finally, using the covariance matrix of a normal distribution in real space
we obtain Mvar[x] = trace(Y).



As Aitchison (1986) averts, we cannot interpret the crude covariance or correlations. Therefore, we
always compute the covariances and correlations of the coefficients with respect to the orthonormal
basis. In the case of the normal on S model, the covariances between components are equal to
the off-diagonal elements of matrix Y.

3.2 Inferential aspects

Given a compositional data set X, the estimates of parameters & and Y can be calculated through
the sample mean and sample covariance matrix of the ilr coefficients of the data set:

E=ir(X) Y =var(ilr(X)).
With these values we can obtain the estimates of E[x] and Mvar[x] as
Ex]=( @e)@ (b oe)® @ (Ept @epi),
M;Lr\[X] = trace(Y).

The estimators E[x] and Mvar[X] are consistent and minimize the variance. This can be proved
using properties of estimators for the normal law in real space.

To validate the normal on S law, we have only to apply a goodness-of-fit test for the multivariate
normal distribution to the coefficients with respect to an orthonormal basis of sample X. Unfortu-
nately the most common tests of normality as the Anderson-Darling or the Kolmogorov-Smirnov
tests are dependent on the orthonormal basis chosen. But in this particular case, we can repro-
duce the singular value decomposition and a power-perturbation characterisation of compositional
variability of the random composition as proposed by Aitchison et al. (2003).

3.3 Another parametrization

Aitchison (1986) introduces the additive logistic normal distribution using the additive logratio
transformation, but equivalent parametrizations using the centred logratio transformation (Aitchi-
son, 1986, p. 116) or the isometric logratio transformation (Mateu Figueras, 2003, p. 78) could be
obtained. The normal on S” law is defined using the ilr coefficients. Given the similarity among
the alr, clr and ilr coefficients and the additive logratio, centred logratio and isometric logratio
vectors, it is natural to ask about the expression of the density function in terms of the alr or clr
coefficients. To avoid large expressions we will use v to denote the coefficients of composition x
with respect to an orthonormal basis and y to denote the coefficients of x with respect to the B
basis introduced earlier in section 1.

Given a NP (&, ) law, the probability of any event A C SP is
P = [ @Rt [ e [ (v -/ (v - )]

where A* denotes the coefficients of A with respect to the orthonormal basis. Matrix FU is a
change of basis matrix from the orthonormal basis to the B basis. Then, the transformation
v = (FU) !y makes effective this change of basis and we obtain

o-(D-1/2 T . B
Py = [ e [ (PO - ) T (PO Yy - )| gy

—(p-1/2
= /FUA* (2;)1/7% exp —% (y - FU¢)' (FU)~"YY '(FU) ' (y - Fug)} dy

(271_)—(D—1)/2 1 -
= - R — > _
/FUA* | 3 [1/2 P | 2 vy =n (v =] dy,



where p = FUE and ¥ = FUY (FU)'. Using (6) it is easy to see that p = E[y], ¥ = var[y] and
| Y [Y/2 |[FU| =| X |'/2. Observe that FUA* represents the coefficients of the event A with respect
to the B basis.

In conclusion, the normal on S law using alr(x), g and ¥ parametrization can be obtained. But
recall that the basis B is not orthonormal, and therefore the Euclidean distance between two alr
coefficients is not equal to the Aitchison distance between the corresponding compositions. Thus,
it will have no sense to use the density of the alr coefficients in the procedures that use distances
or scalar products.

In a similar way, we could work with the density of the clr coefficients. Even though the Euclidean
distance between two clr coefficients is equal to the Aitchison distance between the correspond-
ing compositions, we have an additional difficulty: the density function of clr(x) coefficients is
degenerate.

4 The skew-normal distribution on S”

4.1 Definition and properties

Definition 2 Let be (2, F,p) a probability space. A random composition x : @ — SP is said to
have a skew-normal on S” distribution with parameters &, T and g (APPENDIX), if the density
function of the coefficients with respect to an orthonormal basis of SP is

Felx) =202m) " P72 | |72 exp —% (ilr(x) — €)' X (ilr(x) - €) (13)

x ® [g’vil(ilr(x) — £)] ,

where @ is the N(0,1) distribution function and v is the square root of diag(Y), where diag(Y)
stands for the matrix obtained putting to zero all the off-diagonal elements of Y.

We use the notation x ~ 3/\/3(5,1‘, 0). The subscript S indicates that it is a model on the
simplex and the superscript D indicates the number of parts of the composition. As in the normal
on SP case, we use the notation & and Y to represent the parameters of the model, but in this
case neither € nor Y denote the expected value and covariance matrix of the ilr(x) vector.

The density (13) corresponds to a density function of a skew-normal random vector in RP~!. This
is the reason why we call it the skew-normal on SP law. We want to insist that (13) is the density
of the coefficients of x with respect to an orthonormal basis on S, and therefore it is a Radon-
Nikodym derivative with respect to the Lebesgue measure in RP~! the coefficients space. This
allows us to compute the probability of any event A C SP with an ordinary integral as

P(A) = / 2(2m) P2 | ¥ 712 exp [M] @ [@'v ! (ilr(x) — £)] dA(ilr(x)),
with .
M=-5 (ile(x) — €)' X (ilr(x) — &),

where A* represents the coefficients of the event A with respect to the considered orthonomal basis,
and ) is the Lebesgue measure in RP~1.

Like for the normal on S law, which is equivalent, on S”, in terms of probabilities, to the additive
logistic normal law, we can prove that the skew-normal on S law is equivalent, on S” and in terms
of probabilities, to the additive logistic skew-normal law studied in Mateu Figueras (2003). To
define the additive logistic skew-normal distribution we consider zp = 1—x1 —25—---—zp_1 and
SP c RP. Its density function is the Radon-Nikodym derivative of the probability with respect



to the Lebesgue measure in RP~! and it is obtained using the additive logratio transformation.
In Mateu Figueras (2003, p. 96) the density function using the isometric logratio transformation
is provided, and consequently the probability of any event A C S is

9D—1/2 Hfil z; -1
P(4) :/A (%)(D_(w ¥ )1/2 exp [M] @ [o'v~!(ile(x) — €)] dvidas - drp_1,  (14)
with .

M = - (ilr(x) — €)' Y (ilr(x) — &),

where now the vector ilr(x) denotes the isometric logratio transformation of x. Observe that the
above density function is obtained through the transformation technique because it contains the
term D='/2([T2, 2;)~", the jacobian of the isometric logratio transformation. We also use the
notation &, Y and g for the parameters of the model, but in this case neither £ nor Y correspond
to the expected value and the covariance matrix of the isometric logratio transformed vector.

Now it is important to correctly interpret the ilr(x) vector as the isometric logratio vector or as the
vector of coefficients with respect to an orthonormal basis, both denoted as ilr(x). Therefore, to
avoid possible confusions, we denote as v = (v1,vs,...,up_1)" the coefficients with respect to an

orthonormal basis of composition x, and as ilr(x) its isometric logratio transformed vector. Thus,
given x ~ 3N§ (€, ), we can write the probability of any event A C SP as

P(A) = / 2(2m)" P12 | ¥ |71/2 exp [M*] @ [@'v ' (v — )] dvidvs - -dvp_1,  (15)

with 1
M =2 (v-8) T (v -8,

where A* represents the coefficients of A with respect to the chosen orthonormal basis.

In both cases, the expressions (14) and (15) are standard integrals of a real valued function and we

can apply all the standard procedures. In particular we can apply the change of variable theorem

in expression (15) and, taking v = ilr(x), whose jacobian is D_l/Q(HlD:1 x;)7', we obtain the

equality

P(A) = / 2(2m)~P=V/2 | ¥ |71/2 exp [M*] @ [o'v ™" (v — )] dvidvs - - - dvp 4

-1

exp [M] @ [o'v™ ! (ilr(x) — €)] dzidas - - - dwp_1,

_ D
L[ ()
CSilrasy (2m)PED2 Y (12

where
M= v T (v -8,

M = — 2 (ilr(x) = €)' T~ (ile(x) = &)

[\

The second term of this equality agrees with (14) because ilr™'(A*) = A. Observe that the
probability of any event A C S is the same using both models. In these cases we say that both
models are equivalent on S” in terms of probabilities. But the skew-normal on S” and the additive
logistic skew-normal models present essential differences. The two density functions will differ and
some properties that depend on the space structure also differ.

Next, we study the principal properties of the skew-normal on S” model. To be coherent with the
rest of our work, we revert to using the notation ilr(x) to indicate the coefficients with respect to
an orthonormal basis of S of composition x.



Property 7 Let be x a D-part random composition with a SN'Y (€, Y, @) distribution. Let be
a € SP a vector of constants and b € R a scalar. Then, the D-part composition x* = a @ (b ® x)
has a SN (ilr(a) + b€, b>Y, @) distribution.

Proof. The ilr coefficients of composition x* are obtained from a linear transformation of the ilr
coefficients of composition x because ilr(x*) = ilr(a) + bilr(x). We deal with the density function of
the ilr(x) coefficients as a density function in real space. As this density is a classical skew-normal
density, we use the linear transformation property (APPENDIX) to obtain the density function of
the ilr(x*) coefficients. Therefore x* ~ SN'E (ilr(a) 4 b€, b>Y, @).

Property 8 Let be a random composition x ~ SN?(&, T, o) and a € SP a vector of constants.
Then f3,,(a ®x) = fx(x), where f,, and f{ represent the density functions of random compo-
sitions x and a @ x respectively.

Proof. Using Property 7 we have that a & x ~ SN'Z (ilr(a) 4+ £, Y, @). Therefore,

Frox(a®x) = 2(2n) (P02 x|/

l\:JI»—\

(ilr(a — (ilr(a) 4+ €)' Y7 (ilr(a ® x) — (ilr(a) + {))j|

x @ [o'v™!(ilr(a ® x) — (ilr(a) + £))]
:2(27‘() (D— 1/2‘—1-‘ 1/2

(ilr(a) + ilr(x) — (ilr(a) + &))" T~ (ilr(a) + ilr(x) — (ilr(a) + 5))}
x @ [o'v™!(ilr(a) +ilr(x) — (ilr(a) + £))]
=2027)~ P12 | |72 exp _% (ilr(x) — €)' ¥ ! (ilr(x) — g)}

x @ ['v™ (ilr(x) — &)] = fx(x),

as was indicated in (9).

)
Xexp[

l\:JI»—\

xexp[

Note that Property 8 is not hold true for the additive logistic skew-normal distribution.

Property 9 Let be x a D-part random composition with a SN?(&, Y, o) distribution. Let be
xp = Px the composition x with the parts reordered by a permutation matrix P. Then xp has a
SNE(&p, Yp, 0p) distribution with

’Up'rlng'Q

=U'PU¢, Yp = (UPU)Y(UPU), gp=
\/1 + o' (v=1Tv=! - BY;'B')g

where U is a D x (D — 1) matrix with vectors clr(e;) (i = 1,2,...,D — 1) as columns, B =
v~ !IY(U'P'U), and v and vp are the square roots of diag(Y) and diag(Y p), respectively.

Proof. In property 3 we have seen that ilr(xp) = (U'PU)ilr(x). Applying the change of variable
theorem or the linear transformation property of the skew-normal distribution in real space, we
obtain a SN (¢p, X p, 0p) distribution for the random composition xp.

Property 10 Let be x a D-part random composition with a SNE (&,7, o) distribution. Let be
s = C(Sx) a C-part subcomposition obtained from the C' x D selection matrix S. Then s has a
SNS (€5, Y5, 05) distribution, with

’UsTng’Q
\/1 +o'(v-1Tv! - BY3!'B)p

£, = UY'SU¢E, YTs = (UYSU)Y(U*'SU), o4




where U is a D x (D — 1) matrix with the clr coefficients of an orthonormal basis of S as columns,
U* is a C x (C — 1) matrix with the clr coefficients of an orthonormal basis of S as columns,
B = v 'Y (U'S'U*), and v and vg are the square roots of diag(Y) and diag(Ys), respectively.

Proof. In property 4 we have seen that ilr(s) = (U*'SU)ilr(x). Given the density of the ilr(x)
coefficients and applying the change of variable theorem or the linear transformation property of
the skew-normal distribution in real space, we obtain the density of the ilr(s) coefficients that
corresponds to a SN (€5, Ts, 0g) density function.

We have seen that the skew-normal on S” family is closed under perturbation, power transforma-
tion, permutation and subcompositions. Again, given x ~ 3/\/};(5, Y, 9), it has not been possible
up to now to describe the distribution of any amalgamation in terms of the distribution of x
because we have not a matricial relationship between both compositions.

We can also compute the expected value of a skew-normal in S distributed random composition.

Property 11 Let be x a D-part composition with a SNQ(&, Y, o) distribution. Then, E[x] =
(Broe)E(frRe)d...0(Bp 1 ®ep_1), with {ej1,es,...,ep 1} an orthonormal basis of SP
and B = & +vd/2/7, where ¢ is a parameter related with g following the equality (17), and v is
the square root of diag(Y).

Proof. The expected value of any random composition is an element of the support space. From
the coeflicients of x with respect to the orthonormal basis {e1,es,...,ep_1} and from the density
(13), we obtain the coefficients of the vector E[x] with respect to the same orthonormal basis.
Using the expected value of the skew-normal distribution in real space we have that E[ilr(x)] =
& + vd/2/7 denoted as B. Finally, we obtain composition E[x]| through the linear combination

Broe)d(fa®e)d...0(fp-1®ep_1).

In this case we have obtained Eilr(x)] = 8. Using (8) we also conclude that ilr(cen[x]) = B
and consequently we have cen[x] = E[x] = (/1 ® e1) ® (2 ®e2) ®...d (fp-1 ® ep—1). This is
an essential difference between the skew-normal on S” law and the additive logistic skew-normal
law. As it is observed in Mateu Figueras (2003), we have not the equality between cen[x] and the
expected value of an additive logistic skew-normal model.

Property 12 Let be x a D-part random composition with a S./\/'g (&,7, o) distribution. A dis-
persion measure around the expected value is Mvar[x] = trace (Y — (2/7)vdd'v), where v is the
square root of diag(Y'), and 4 is the parameter related with g following the equality (17).

Proof. The metric variance is defined as Mvar[x] = E[d2(x,cen[x])]. We know from Prop-
erty 11 that cen[x] = E[x]. Then the metric variance is a dispersion measure around the ex-
pected value Mvar[x] = E[d?(x, E[x])]. The distance d, between two compositions is equal to

the Euclidean distance d., between the corresponding ilr coefficients. Therefore, we can write
Mvar[x] = E[d?,(ilr(x), E[ilr(x)])]. This value corresponds to the trace of matrix var(ilr(x)). Fi-
nally, using the covariance matrix of a skew-normal distribution in real space we obtain Mvar[x] =
trace(Y — (2/7)vdd'v).

4.2 Inferential aspects

Given a compositional data set X, the estimates of parameters &, Y and @ can be calculated
applying the maximum likelihood procedure to the ilr coefficients of the data set. These estimates
cannot be expressed in analytic terms and we have to use numerical methods to compute an
approximation from the sample.



The estimated values é‘, Y and o allow us to compute the estimates of the expected value and
metric variance of composition x:

—

Elx] = (81 @e1) @ (fo®e) @ @ (Bp1 @ep_1),

J— P PSR
Mvar[X] = trace <T - —1155’0) ,
m

where 8 = € + ©6+/2/7 and o is the square root of diag('f).

The normal model in SP is a particular case of the skew-normal model in S” because it corresponds
to the case ¢ = 0. Thus, to decide if a skew-normal on S” model is better than a normal on S”
model, it suffices to test the null hypothesis Hy : ¢ = 0 versus the hypothesis H; : g # 0 applying
a likelihood ratio test to the ilr coefficients of the sample.

To validate the distributional assumption of skew-normality in S”, we have only to apply some
goodness-of-fit tests of multivariate skew-normal distribution to the ilr coefficients of the sample
data set. Mateu-Figueras et al. (2003) and Dalla-Valle (2001) have recently developed some tests
for the skew-normal distribution. Unfortunately, these tests are dependent on the orthonormal
basis chosen.

4.3 Another parametrization

We have defined the skew-normal on S? law using the ilr coefficients of composition x. Nevertheless
we can obtain the expression of the density function using the alr coefficients. To avoid large
expressions we denote as v and y the coefficients of composition x with respect to an orthonormal
basis and to the B basis introduced in section 1 respectively.

In terms of the v coefficients, the probability of any event A C SP is
1
PUA) = [ 20m PR T [ exp |- (v - €)X (v - 9| @ g0 (v - ] dv,

where A* represents the coefficients of A with respect to the orthonormal basis. Matrix FU is
a change of basis matrix from the orthonormal basis to the B basis. Then, the transformation
v = (FU) "'y makes effective this change of basis and we obtain

2(27r)—(D—1)/2

Py = [ e MI® [0 (FU) !y - €)]

|FU|dy,

2271 —(D-1)/2 . ~ B
N /FUA* I(T)”W exp [M"] @ [o'v™! (FU) ™' (y - FU¢)] dy,

2(27)~(P-1)/2 1 3 3
=/FUA 20m 0 e |y — =y — )] @ [ v — )] dy.

Bl 2
with
M = _% ((FU)*ly — E), Y! ((FU)’ly - 5) )
M = —L(y - (FU)) (FU)) T (FO) (y = (FUJE).

where p = FU¢, ¥ = (FU)Y(FU)', a = w((FU)"!)'v~!p, and w is the square root of diag(X).
Observe that FUA* represents the coefficients of A with respect to the B basis. In this case neither
p nor X represent the expected value and the covariance matrix of the coefficients y.

In conclusion, an equivalent expression of the the skew-normal on 8P law using alr(x), p, X
and a parametrization can be obtained and used in practice. But recall that the basis B is not



orthonormal, and therefore the Euclidean distance between two alr coefficients is not equal to the
Aitchison distance between the corresponding compositions. Thus, it will have no sense to use the
density of the alr coefficients in the procedures that use distances or scalar products.

We could also define the skew-normal on S” law using the coefficients with respect to the generating
set B* but we will obtain a degenerate density function. At the moment we have not the definition
of the degenerate skew-normal model in real space.

5 Conclusions

The vector space structure of the simplex allows us to define parametric models instead of using
transformations to real space keeping the usual Lebesgue measure. We have defined the normal
model on SP and the skew-normal model on SP through their density over the coefficients with
respect to an orthonormal basis. In terms of probabilities of subsets of S”, the normal on S and
the skew-normal on SP laws are identical to the additive logistic normal and the additive logistic
skew-normal distribution. Nevertheless their density functions and some properties are different.
For example, for the models defined on S using the coefficients, the expected value is equal to the
center of the random composition. An additional reason, to prove properties using the coefficients
with respect to an orthonormal basis, is that we can apply standard real analysis to them.
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APPENDIX. The skew-normal distribution

The multivariate skew-normal distribution was studied in detail by Azzalini and Capitanio (1999).
According to them, a D-variate random vector y is said to have a multivariate skew-normal dis-
tribution if it is continuous with density function

20m) P [T | exp |5 (v &) T (v =€) Blow (v~ £), (16)

where ® is the A'(0, 1) distribution function and v is the square root of diag(Y'). The @ parameter
is a D-variate vector which regulates the shape of the distribution and indicates the direction of
maximum skewness. When @ = 0 the random vector y reduces to a NP (¢, ) distributed vector.
We will use the notation y ~ SAP (&,7, ) to symbolize a random vector with a density function
given by (16).

We know that each component of y is univariate skew-normal distributed. Its marginal skewness
index can be computed using the parameter @ and it varies only in the interval (—0.995, +0.995).
In the multivariate case, we can also consider a multivariate index of skewness. This multivariate
index is also bounded according to the scalar case. Consequently the skew-normal family allows
densities with a moderate skewness.



Given y ~ SNP (£, 0), the expected value is E(y) = & + vd/2/m and the covariance matrix is
var(y) = Y — (2/7)vdéd' v, where § is a D-variate vector related to g parameter as

1

0=
V14 ov 1Tv 1o

v ITv o (17)

Azzalini and Capitanio (1999) provide a wide range of properties for the multivariate skew-normal
distribution, most of them similar to the properties of the multivariate normal distribution.

Linear transformation property. If y ~ SAP (&,7,p0) and A is a D x H matrix of constants,
then y* = A'y ~ SN (¢*, X*, 0*), with
v*(Y")"'Blo

= A'g, T = A'TA, * = ;
¢ ¢ @ V140 (w1 Yv-1 —B(Y*)"1B')po

where B = v YA and v and v* are, respectively, the square root of diag(Y) and diag(Y™*). In
particular, if A is a non singular and square matrix, then ¢* = v*A " lv 1.

Given a sample, to find the estimates é,Y and o of the parameters £, Y and @, we apply the
maximum likelihood procedure. But the estimates cannot be expressed in analytic terms and we
have to use numerical methods (e.g. Newton-Raphson or the generalized gradient method) to
compute an approximation from a sample. There are however some problems. In the univariate
case, for example, there is always an inflection point at ¢ = 0 of the profile log-likelihood and
the shape of this function could be problematic and slows the convergence down. Azzalini and
Capitanio (1999, p. 591) suggest to substitute the parameter @ by a new parameter 3 = v !g in
the likelihood function. Then the parameters Y and 8 appear well separated in two factors in the
loglikelihood function and we can exploit the factorization property which makes the computation
of estimates easier. Initial estimates of the parameters necessary to start the iterative numerical
procedure can be calculated from the sample by the method of moments, using the relations of
the mean vector, covariance matrix and the skewness vector with the parameters &, T and g
(respectively 3).

But there are still cases where the behaviour of the maximum likelihood estimates appears unsat-
isfactory because, with nothing pathological in the data pattern, the shape parameter tends to its
maximum value. In these cases we have to adopt a temporary solution suggested by Azzalini and
Capitanio (1999, p. 591): when the maximum of g occurs on the frontier, re-start the maximiza-
tion procedure and stop it when it reaches a loglikelihood value not significantly lower than the
maximum.



