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tThe simplex, the sample spa
e of 
ompositional data, 
an be stru
tured as a real Eu
lidean spa
e.This fa
t allows to work with the 
oeÆ
ients with respe
t to an orthonormal basis. Over these
oeÆ
ients we apply standard real analysis, in parti
ular, we de�ne two di�erent laws of probabilitythrough the density fun
tion and we study their main properties.1 Algebrai
 geometri
 stru
ture on SDAny ve
tor x = (x1; x2; : : : ; xD)0 representing proportions of some whole 
an be expressed as sub-je
t to the unit-sum 
onstraintPDi=1 xi = 1. Therefore, a suitable sample spa
e for 
ompositionaldata, 
onsisting of su
h ve
tors of proportions (
ompositions), 
an be taken to be the unit simplexde�ned as SD = f(x1; x2; : : : ; xD)0 : x1 > 0; x2 > 0; : : : ; xD > 0; DXi=1 xi = 1g:A real ve
tor spa
e stru
ture is indu
ed by the perturbation operation, de�ned for any two 
ompo-sitions x;x� 2 SD , as x � x� = C (x1x�1; x2x�2; : : : ; xDx�D)0, and the power transformation, de�nedfor any x 2 SD and � 2 R as � 
 x = C(x�1 ; x�2 ; : : : ; x�D)0. C(�) denotes the 
losure operation, atransformation from RD+ to SD that 
onverts ea
h ve
tor into its 
omposition.The Eu
lidean spa
e stru
ture is indu
ed by the inner produ
t de�ned by Ait
hison (2002) for anytwo 
ompositions x;x� 2 SD as hx;x�ia = 1DXi<j ln xixj ln x�ix�j : (1)The asso
iated norm is kxka =phx;xia and the asso
iated distan
e, whi
h we know as Ai
hisondistan
e, is da(x;x�) =vuut 1DXi<j  ln xixj � ln x�ix�j !2: (2)The distan
e (2) follows the standard properties of a distan
e. Given x;x�;x0 2 SD , and � 2 R,it is easy to prove that da(x;x�) = da(x0 �x;x0 �x�), and da(�
x; �
x�) = j�jda(x;x�). Thuswe say that the distan
e da is 
oherent or 
ompatible with the stru
ture of SD . Also, the distan
e(2) does not depend on the parti
ular order of the parts be
ause da(Px;Px�) = da(x;x�), forany permutation matrix P. These properties had been studied by Ait
hison (1992) and Mart��n-Fern�andez (2001); for a proof see Pawlowsky-Glahn and Egoz
ue (2002, p. 269).A D-part 
omposition is usually expressed in terms of the 
anoni
al basis of RD , using the sumand the s
alar produ
t operations. In fa
t, any x 2 SD 
an be written as x = (x1; x2; : : : ; xD)0 =x1(1; 0; : : : ; 0)0 + x2(0; 1; 0; : : : ; 0)0 + � � � + xD(0; : : : ; 0; 1)0. Note that the 
anoni
al basis of RDis not a basis on SD and this expression is not a linear 
ombination on SD with respe
t to itsve
tor spa
e stru
ture. But, given that SD is a ve
tor spa
e with dimension D�1, general algebratheory assures the existen
e of a basis. Before we introdu
e a basis of SD, note that the setB� = fw1;w2; : : : ;wDg, where wi = C(1; 1; : : : ; e; : : : ; 1)0 with the element e pla
ed in the i-throw, is a generating set of SD . Certainly, any 
omposition x 2 SD 
an be expressed as, forexample, x = (lnx1 
w1)� (lnx2 
w2)� � � � � (lnxD 
wD). Obviously there are more possibleexpressions as x = (ln(x1=g(x)) 
 w1) � (ln(x2=g(x)) 
 w2) � � � � � (ln(xD=g(x)) 
 wD), where



g(x) is the geometri
 mean of 
omposition x. Given x 2 SD , we say that one possible ve
tor of
oeÆ
ients with respe
t to the generating set B� is
lr(x) = �ln� x1g(x)� ; ln� x2g(x)� ; : : : ; ln� xDg(x)��0 : (3)We will use the notation 
lr(x) to emphasize the similarity with the ve
tor obtained applying the
entred logratio transformation to 
omposition x (Ait
hison, 1986, p. 94). Note that, like for the
entred logratio ve
tor, the sum of the 
omponents of the ve
tor 
lr(x) is equal to 0.As the dimension of SD is D � 1, we 
an eliminate any 
omposition of B� to obtain a basis ofSD . If we eliminate the last 
omposition wD we obtain the basis B = fw1;w2; : : : ;wD�1g andnow a 
omposition x has a unique expression as a linear 
ombination x = (ln(x1=xD) 
 w1) �(ln(x2=xD) 
 w2) � � � � � (ln(xD�1=xD) 
 wD�1). Thus we say that the 
oeÆ
ients of x withrespe
t to the B basis arealr(x) = �ln� x1xD� ; ln� x2xD� ; : : : ; ln�xD�1xD ��0 : (4)We will use the notation alr(x) to emphasize the similarity with the ve
tor obtained apply-ing the additive logratio transformation to a 
omposition x (Ait
hison, 1986, p. 113). We
an suppress any other 
omposition wi (i = 1; 2; : : : ; D � 1) of the set B� instead of wD, toobtain another basis. In this 
ase, the 
omponents of x with respe
t to this new basis are(ln(x1=xi); : : : ; ln(xi�1=xi); ln(xi+1=xi); : : : ; ln(xD=xi))0.The inner produ
t (1) and its asso
iated norm ensure the existen
e of an orthonormal basis. Withsimple algebrai
 operations we 
an 
he
k that the set fw1;w2; : : : ;wD�1g is not orthonormal.Using the Gram-S
hmidt method we 
an obtain from this basis an orthonormal basis denotedas fe1; e2; : : : ; eD�1g. A 
omposition x has a unique expression as a linear 
ombination x =(hx; e1ia 
 e1) � (hx; e2ia 
 e2) � : : : � (hx; eD�1ia 
 eD�1). Thus we say that the 
oeÆ
ients ofany 
omposition x 2 SD with respe
t to the orthonormal basis fe1; e2; : : : ; eD�1g are:ilr(x) = (hx; e1ia; hx; e2ia; : : : ; hx; eD�1ia)0: (5)We will use the notation ilr(x) to emphasize the similarity with the ve
tor obtained applying theisometri
 logratio transformation to 
omposition x (Egoz
ue et al., 2003, p. 294). As in real spa
e,there exist an in�nite number of orthonormal basis on SD. Ait
hison (1986, p. 92) provides therelationship between the alr and 
lr transformations. Later, Egoz
ue et al. (2003, p. 298) providethe relationship between the alr, 
lr and ilr transformations. Now they 
an be interpreted as a
hange of basis or of generating system that relates the 
oeÆ
ients alr(x); 
lr(x) and ilr(x). Theserelations are: alr(x) = FD�1;D
lr(x); 
lr(x) = F�D;D�1alr(x);
lr(x) = UD;D�1ilr(x); ilr(x) = U0D�1;D
lr(x);alr(x) = FD�1;DUD;D�1ilr(x); ilr(x) = U0D�1;DF�D;D�1alr(x); (6)where FD�1;D = [ID�1 : jD�1℄, with ID�1 representing the identity matrix of order D � 1 andjD�1 the 
olumn ve
tor of units; UD;D�1 is a D � (D � 1) matrix with the 
oeÆ
ients 
lr(ei)(i = 1; 2; : : : ; D � 1) as 
olumns; and F�D;D�1 is the Moore-Penrose generalized inverse of matrixFD�1;D given by F� = 1D 0BBBBB� D � 1 �1 � � � �1�1 D � 1 � � � �1... ... . . . ...�1 �1 � � � D � 1�1 �1 � � � �1
1CCCCCA :



Over the 
oeÆ
ients with respe
t to an orthonormal basis we 
an apply standard real analysis.Certainly, it is easy to see that the operations � and 
 are equivalent to the sum and the s
alarprodu
t of the respe
tive 
oeÆ
ients with respe
t to any basis (not ne
essarily orthonormal). Inthe parti
ular 
ase of 
oeÆ
ients with respe
t to an orthonormal basis, we 
an apply the standardinner produ
t and the Eu
lidean distan
e in RD�1 . We 
annot assure this properties for the
oeÆ
ients with respe
t to a generating set in general, but in the parti
ular 
ase of the 
oeÆ
ients(3), all properties are ful�lled.Following Ait
hison (1986), given a 
omposition x 2 SD we may wish to fo
us attention on therelative magnitude of a subset of 
omponents, so we need the de�nition of a sub
omposition. Asstated in Ait
hison (1986), the formation of a C-part sub
omposition, s, from aD-part 
omposition,x, 
an be a
hieved as s = C(Sx), where S is a C �D sele
tion matrix with C elements equal to1 (one in ea
h row and at most one in ea
h 
olumn) and the remaining elements equal to 0. Asub
omposition 
an be regarded as a 
omposition in a simplex of lower dimension.When we work with large dimensional 
ompositions, it may be of interest to amalgamate 
om-ponents to form a new 
omposition. An amalgamation is any 
omposition in a simplex of lowerdimension obtained from the sum of some groups of 
omponents of the original 
omposition.A random 
omposition x is a random ve
tor with SD as domain. Ait
hison (1997) uses thegeometri
 interpretation of the expe
ted value of a random ve
tor to de�ne the 
enter of a random
omposition as the 
omposition 
en(x) whi
h minimizes the expression E[d2a(x; 
en[x)℄℄. We obtain
en[x℄ = C(exp(E[lnx℄)) or equivalently 
en[x℄ = C(exp(E[ln(x=g(x))℄)) (Ait
hison, 1997, p. 10,Pawlowsky-Glahn and Egoz
ue, 2002, p. 270), who also in
lude the equalityalr(
en[x℄) = E[alr(x)℄: (7)Using (6) and (7), we 
an prove the equalities
lr(
en[x℄) = E[
lr(x)℄;ilr(
en[x℄) = E[ilr(x)℄ (8)This means that the 
oeÆ
ients of 
omposition 
en(x) with respe
t to the B basis, to the generat-ing set B� and to an orthonomal basis of SD are equal to the expe
ted value of the 
oeÆ
ients ofx with respe
t to the B basis, the generating set B� and an orthonormal basis of SD , respe
tively.Observe that we 
an 
ompute E[alr(x)℄;E[
lr(x)℄ and E[ilr(x)℄ applying the standard de�nition.Afterwards we 
an obtain the related 
omposition 
en(x) through the 
orresponding linear 
ombi-nation. This result 
on�rms that working with the 
oeÆ
ients with respe
t to a basis and applyingthe standard methodology is equivalent to work dire
tly with 
ompositions. In parti
ular, for the
enter of a random 
omposition, we 
an use the 
oeÆ
ients alr, 
lr or ilr without distin
tion. Moregenerally, Pawlowsky-Glahn and Egoz
ue (2001, p.388) prove the equality h(
en[x℄) = E[h(x)℄ forany isomorphism h.The varian
e of a real random ve
tor 
an be interpreted as the expe
ted value of the squaredEu
lidean distan
e around its expe
ted value. This interpretation is used by Pawlowsky-Glahnand Egoz
ue (2002, p. 264) to de�ne the metri
 varian
e of a random 
omposition x as Mvar[x℄ =E[d2a(x; 
en[x℄)℄. The 
oeÆ
ients with respe
t to an orthonormal basis and with respe
t to thegenerating set B� provide two equivalent expressions for the metri
 varian
e asMvar[x℄ = E[d2eu(ilr(x); ilr(
en[x℄))℄ = E[d2eu(
lr(x); 
lr(
en[x℄))℄:In this 
ase it is not possible to use the Eu
lidean distan
e between the alr 
oeÆ
ients be
ausethe basis B is not orthonormal. Consequently, the Ait
hison distan
e between x and 
en(x) isnot equal to the Eu
lidean distan
e between the respe
tive alr 
oeÆ
ients. Certainly, Pawlowsky-Glahn and Egoz
ue (2001) prove the equality Mvar[x℄ = E[d2eu(h(x);E[h(x)℄)℄ for any h isometrybut we know that the alr transformation is not an isometry.Ait
hison(1997, p. 13) de�nes the total variability as totvar(x) = tra
e(�) where � is the stan-dard 
ovarian
e matrix of 
oeÆ
ients (3). Later, Pawlowsky-Glahn and Egoz
ue (2002, p. 265)



obtain the equality Mvar[x℄ = totvar[x℄. Using equalities (6) we 
an prove that totvar(x) =tra
e(�) where � is the standard 
ovarian
e matrix of 
oeÆ
ients (5). As � = var(ilr(x)) =var(U0
lr(x)U) = U0var(
lr(x))U = U0�U, we obtain tra
e(�) = tra
e(U0�U) = tra
e(�UU0) =tra
e(�) be
ause matrix UU0 has the rows of � as eigenve
tors with eigenvalue 1. In this 
ase it isnot possible to use the 
ovarian
e matrix of 
oeÆ
ients (4) be
ause when we 
ompute a 
ovarian
ewe use impli
itly a distan
e and we know that the Ait
hison distan
e between two 
ompositions isnot equal to the Eu
lidean distan
e between the respe
tive alr 
oeÆ
ients.We know that SD � RD and 
onsequently we 
an apply the traditional approa
h to de�ne lawsof probability. The additive logisti
 normal distribution de�ned by Ait
hison and Shen (1980)and studied by Ait
hison (1986) and the additive logisti
 skew-normal distribution introdu
ed byMateu-Figueras et al. (1998) and studied in Mateu Figueras (2003) are two laws of probabilityde�ned through transformations from SD to the real spa
e. In the next se
tion, we 
onsider theEu
lidean spa
e stru
ture of SD and we de�ne a law of probability over the 
oeÆ
ients of therandom 
omposition with respe
t to an orthonormal basis. In parti
ular, we de�ne the normal andthe skew-normal distributions on SD .To state it 
learly: the essential di�eren
e between the traditional methodology and the approa
hwe are going to present is the measure assumed on SD . In the traditional approa
h the measureused is the usual Lebesgue measure on SD, whereas in our approa
h, the measure is the Lebesguemeasure on the 
oeÆ
ients with respe
t to an orthonormal basis on SD .2 Distributions on SD, some general aspe
tsGiven any measurable spa
e, the Radon-Nikodym derivative of a probability P with respe
t to ameasure � is a measurable and non-negative fun
tion f(�) su
h that the probability of any eventA of the 
orresponding �-algebra is P (A) = ZA f(x)d�(x):We also name f(�) as the density fun
tion of probability P with respe
t to the measure �. Whenwe work with random variables or random ve
tors in real spa
e, we use the density fun
tion withrespe
t to the Lebesgue measure and we 
all it \the density fun
tion of the random variable".We do not mention the measure be
ause it is understood that it is the Lebesgue measure. TheLebesgue measure has an important role in real analysis be
ause it is invariant under translations.On SD we 
an de�ne quite straightforwardly a law of probability through the density fun
tion withrespe
t to a measure � on SD . But we are interested in �nding a measure similar to the Lebesguemeasure in real spa
e. In parti
ular we look for a measure � invariant under the operation �, theinternal operation in SD . Taking into a

ount the distan
e da, we 
on
lude that the Lebesguemeasure in real spa
e is not adequate in SD . Nevertheless, note that if � is not the usual Lebesguemeasure in real spa
e, we 
annot make e�e
tive the 
al
ulation of any integral.As we have seen in the previous se
tion, SD has a D�1 dimensional Eu
lidean spa
e stru
ture andwe 
ould apply the isomorphism between SD and RD�1 . We have only to identify ea
h elementof SD with its ve
tor of 
oeÆ
ients with respe
t to an orthonormal basis. In this 
ase we 
anintrodu
e the density fun
tion of the 
oeÆ
ients with respe
t to the Lebesgue measure and applyall the standard probability theory. This fun
tion allows us to 
ompute the probability of anyevent by means of an ordinate integral, i.e., if f�(�) is the density fun
tion of the 
oeÆ
ients withrespe
t to an orthonormal basis, we 
an 
ompute the probability of any event A � SD asP (A) = ZA� f�(v1; v2; : : : ; vD�1)dv1dv2 : : : dvD�1;where A� and (v1; v2; : : : ; vD�1) represent the 
oeÆ
ients with respe
t to the orthonormal basisthat 
hara
terize the set A and the 
omposition x.



We have to bear in mind that if we use this methodology to 
ompute any element of the supportspa
e, we will obtain the 
oeÆ
ients of this element with respe
t to the orthonormal basis used.Next, we 
ould obtain the 
orresponding 
omposition by means of a linear 
ombination. Mateu-Figueras and Pawlowsky-Glahn (2003) and Pawlowsky-Glahn et al. (2003) 
ompute, respe
tively,the expe
ted value of a normal model on R+ and the expe
ted value of a bivariate normal model onR2+ using the prin
iples of working on 
oeÆ
ients with respe
t to an orthonormal basis. In our 
aseit will be easy to 
ompute the expe
ted value of the 
oeÆ
ients of any random 
omposition x, i.e.E[ilr(x)℄. Interpreting them as 
oeÆ
ients of our basis of referen
e, we will obtain the 
ompositionthat we 
all expe
ted value and we denote as E[x℄ through a linear 
ombination.Now we introdu
e two laws of probability on SD indi
ating the expression of fun
tion f�. In both
ases, the families of distributions are 
losed by � and 
 operations and, moreover, the densitiessatisfy the equality f�x(x) = f�a�x(a� x); (9)where f�x and f�a�x represent the densities of random 
ompositions x and a�x respe
tively, with aa 
onstant 
omposition. This property has important 
onsequen
es in SD be
ause we often applythe 
entering operation (Mart��n-Fern�andez, 2001).We also 
ompute the expe
ted value and the 
ovarian
e matrix using the 
oeÆ
ients with respe
tto the orthonormal basis and the standard pro
edures in real spa
e. The obtained results are
oherent with the 
enter and the metri
 varian
e of a random 
omposition.3 The normal distribution on SD3.1 De�nition and propertiesDe�nition 1 Let be (
;F ; p) a probability spa
e. A random 
omposition x : 
 �! SD is saidto have a normal on SD distribution with parameters � and �, if the density fun
tion of the
oeÆ
ients with respe
t to an orthonormal basis of SD isf�x(x) = (2�)�(D�1)=2 j � j�1=2 exp ��12 (ilr(x) � �)0��1 (ilr(x)� �)� : (10)We use the notation x � NDS (�;�). The subs
ript S indi
ates that it is a model on the simplexand the supers
ript D indi
ates the number of parts of the 
omposition. We also use the notation �and � to indi
ate the expe
ted value and the 
ovarian
e matrix of the ve
tor of 
oeÆ
ients ilr(x).The density (10) 
orresponds to a density fun
tion of a normal random ve
tor in RD�1 . This isthe reason why we 
all it the normal on SD law. We want to insist that (10) is the density of the
oeÆ
ients of x with respe
t to an orthonormal basis on SD, and therefore it is a Radon-Nikodymderivative with respe
t to the Lebesgue measure in RD�1 , the spa
e of 
oeÆ
ients. This allows usto 
ompute the probability of any event A � SD with an ordinary integral asP (A) = ZA�(2�)�(D�1)=2 j � j�1=2 exp ��12 (ilr(x)� �)0� �1 (ilr(x)� �)� d�(ilr(x));where A� represents the 
oeÆ
ients of A with respe
t to the 
onsidered orthonomal basis, and �is the Lebesgue measure in RD�1 .One important aspe
t is that the normal on SD law is equivalent, on SD , in terms of probabilities,to the additive logisti
 normal law studied by Ait
hison (1986) and de�ned using transformationsfrom SD to real spa
e. Re
all that to de�ne the additive logisti
 normal model we 
onsiderxD = 1 � x1 � x2 � � � � � xD�1 and SD � RD . Its density fun
tion is the Radon-Nikodymderivative with respe
t to the Lebesgue measure in RD�1 and it is obtained using the additive



logratio transformation. Given relations (6) it is also possible to obtain the density fun
tion usingthe isometri
 logratio transformation. Then, we obtain the probability of any event A � SD
omputing the standard integralP (A) = ZA D�1=2 �QDi=1 xi��1(2�)(D�1)=2 j � j1=2 exp ��12 (ilr(x) � �)0��1 (ilr(x) � �)� dx1dx2 � � � dxD�1; (11)where now the ve
tor ilr(x) denotes the isometri
 logratio transformation of 
omposition x (Egoz
ueet al., 2003). The parameters � and � are now the standard expe
ted value and the 
ovarian
ematrix of the ilr transformed ve
tor. Note that we use the same notation as in the normal on SD
ase, be
ause even though the interpretation is di�erent, the expression of the ve
tors ilr(x); � and ofthe matrix� are the same. Observe that the above density is obtained through the transformationte
hnique be
ause it 
ontains the term D�1=2(QDi=1 xi)�1, the ja
obian of the isometri
 logratiotransformation.Now it is important to 
orre
tly interpret the ve
tor ilr(x) as the isometri
 logratio ve
tor or asthe 
oeÆ
ients with respe
t to an orthonormal basis. To avoid possible 
onfusions we denote asv = (v1; v2; : : : ; vD�1)0 the 
oeÆ
ients with respe
t to an orthonormal basis of 
omposition x, andas ilr(x) its isometri
 logratio transformed ve
tor. Thus, given x � NDS (�;�) we 
an write theprobability of any event A � SD asP (A) = ZA�(2�)�(D�1)=2 j � j�1=2 exp��12 (v � �)0��1 (v � �)� dv1dv2 � � � dvD�1; (12)where A� represents the 
oeÆ
ients of A with respe
t to the 
hosen orthonormal basis.In both 
ases, expressions (11) and (12) are standard integrals of a real valued fun
tion andwe 
an apply all the standard pro
edures. In parti
ular we 
an apply the 
hange of variabletheorem. Then, we take the expression (12) and we apply the 
hange v = ilr(x), whose ja
obianis D�1=2(QDi=1 xi)�1. The 
hange of variable theorem assures the equalityP (A) = ZA�(2�)�(D�1)=2 j � j�1=2 exp ��12 (v � �)0��1 (v � �)� dv1dv2 � � � dvD�1= Zilr�1(A�) D�1=2 �QDi=1 xi��1(2�)(D�1)=2 j � j1=2 exp ��12 (ilr(x) � �)0��1 (ilr(x)� �)� dx1dx2 � � � dxD�1:The 
oeÆ
ients with respe
t to an orthonormal basis of any element of SD are equal to its iso-metri
 logratio transformation. Thus, the 
oeÆ
ients of A are also equal to its isometri
 logratiotransformed event, and 
onsequently ilr�1(A�) = A, where ilr�1 denotes the inverse transforma-tion. Observe that the probability of any event A � SD is the same using both models, the normalin SD and the logisti
 normal, and we say that the two laws are equivalent on SD in terms ofprobabilities. But without any doubt, the normal on SD and the additive logisti
 normal modelsare 
onsiderably di�erent, spe
ially from 
on
epts and properties that depend on the geometry ofthe spa
e.Now we provide some general properties of the normal in SD model that will help us to observethe di�eren
es from the additive logisti
 normal model. To be 
oherent with the rest of the work,we revert to using the notation ilr(x) to indi
ate the 
oeÆ
ients with respe
t to an orthonormalbasis of SD of 
omposition x.Property 1 Let be x a D-part random 
omposition with a NDS (�;�) distribution. Let be a 2 SDa ve
tor of 
onstants and b 2 R a s
alar. Then, the D-part 
omposition x� = a � (b 
 x) has aNDS (ilr(a) + b�; b2�) distribution.



Proof. The ilr 
oeÆ
ients of 
omposition x� are obtained from a linear transformation of theilr 
oeÆ
ients of 
omposition x be
ause ilr(x�) = ilr(a) + bilr(x). We 
an deal with the densityfun
tion of the ilr 
oeÆ
ients of x as a density fun
tion in real spa
e. As it is a 
lassi
al normaldensity in real spa
e, we use the linear transformation property to obtain the density fun
tion ofthe ilr(x�) ve
tor. Therefore x� � NDS (ilr(a) + b�; b2�).Observe that the resulting parameters are ilr(a)+b� and b2�. These values are the expe
ted valueand 
ovarian
e matrix of the ilr(x�) 
oeÆ
ients be
auseE[ilr(x�)℄ = E[ilr(a) + bilr(x)℄ = ilr(a) + bE[ilr(x)℄ = ilr(a) + b�;var[ilr(x�)℄ = var[ilr(a) + bilr(x)℄ = b2var[ilr(x)℄ = b2�:Property 2 Let be a random 
omposition x � NDS (�;�) and a 2 SD a ve
tor of 
onstants. Thenf�a�x(a�x) = f�x(x), where f�a�x and f�x represent the density fun
tion of random 
ompositions xand a� x respe
tively.Proof. Using Property 1 we have that a� x � NDS (ilr(a) + �;�). Therefore,f�a�x(a� x) = (2�)�(D�1)=2 j � j�1=2� exp ��12 (ilr(a� x)� (ilr(a) + �))0��1 (ilr(a � x)� (ilr(a) + �))�= (2�)�(D�1)=2 j � j�1=2� exp ��12 (ilr(a) + ilr(x) � (ilr(a) + �))0��1 (ilr(a) + ilr(x)� (ilr(a) + �))�= (2�)�(D�1)=2 j � j�1=2 exp��12 (ilr(x)� �)0��1 (ilr(x)� �)� = f�x(x);as indi
ated in (9).Note that Property 2 is not hold true for the additive logisti
 normal distribution.Property 3 Let be x a D-part random 
omposition with a NDS (�;�) distribution. Let be xP =Px the 
omposition x with the parts reordered by a permutation matrix P. Then xP has aNDS (�P ;�P ) distribution with�P = U0PU� and �P = (U0PU)�(U0PU)0;where U is a D � (D � 1) matrix with ve
tors 
lr(ei) (i = 1; 2; : : : ; D � 1) as 
olumns.Proof. To obtain the distribution of a random 
omposition xP in terms of the distribution of x,it is ne
essary to �nd a matrix relationship between the ilr 
oeÆ
ients of both 
ompositions xPand x. If we work with the 
lr 
oeÆ
ients, we have 
lr(xP ) = P
lr(x). Applying (6) we obtainilr(xP ) = (U0PU) ilr(x). As the ilr(x) ve
tor has a normal distribution, we 
an apply the 
hangeof variable theorem or the linear transformation property of the normal distribution in real spa
eto obtain a NDS (U0PU�; (U0PU)�(U0PU)0) distribution for the random 
omposition xP .Note that the parameters of the model agree with the expe
ted value and the 
ovarian
e matrixof the ilr(xP ) ve
tor.Property 4 Let be x a D-part random 
omposition with a NDS (�;�) distribution. Let be s =C(Sx) a C-part sub
omposition obtained from the C � D sele
tion matrix S. Then s has aNCS (�S ;�S) distribution, with�S = U�0SU� and �S = (U�0SU)�(U�0SU)0;



where U is a D�(D�1) matrix with the 
lr 
oeÆ
ients of an orthonormal basis of SD as 
olumns,and U� is a C � (C � 1) matrix with the 
lr 
oeÆ
ients of an orthonormal basis of SC as 
olumns.Proof. We know that the 
oeÆ
ients alr(s) and alr(x) are equal to the respe
tive alr trans-formed ve
tors. Ait
hison (1986, p. 119) proves that alr(s) = �FC�1;CSF�D;D�1� alr(x). Ap-plying (6) we obtain ilr(s) = �U�0F�C;C�1FC�1;CSF�D;D�1FD�1;DU� ilr(x). We 
an easily 
he
kthat matri
es F�C;C�1FC�1;C and F�D;D�1FD�1;D have the 
olumns of matri
es U� and U, re-spe
tively, as eigenve
tors with eigenvalue 1. Consequently we have U�0 �F�C;C�1FC�1;C� = U�0and �F�D;D�1FD�1;D�U = U, and the relationship between the ilr 
oeÆ
ients of sub
ompo-sition s and 
omposition x is ilr(s) = �U�0SU� ilr(x). Given the density of the ilr(x) ve
torand applying the 
hange of variable theorem or the linear transformation property of the nor-mal distribution in real spa
e, we obtain the density of the ilr(s) ve
tor, that 
orresponds to aNCS �U�0PU�; (U�0PU)�(U�0PU)0� density fun
tion.Observe that properties of the 
lassi
al normal distribution in real spa
e have allowed us to provethe 
loseness under perturbation, power transformation, permutation and sub
ompositions of thenormal on SD family. Nevertheless, given x � NDS (�;�), it has not seem possible up to now todes
ribe the distribution of any amalgamation in terms of the distribution x. In parti
ular, we havebeen unable to �nd a matrix relationship between the ilr 
oeÆ
ients of x and the 
orrespondingamalgamated 
omposition.Following the methodology stated by Pawlowsky-Glahn, Egoz
ue, and Burger (2003), we 
an de�nethe expe
ted value of a normal on SD distributed random 
omposition:Property 5 Let be x a D-part random 
omposition with a NDS (�;�) distribution and let be � =(�1; �2; : : : ; �D�1)0. Then E[x℄ = (�1
e1)�(�2
e2)� : : :�(�D�1
eD�1), where fe1; e2; : : : ; eD�1gis an orthonormal basis of SD .Proof. The expe
ted value of any random ve
tor is an element of the support spa
e. If we apply thestandard de�nition of the expe
ted value to the 
oeÆ
ients of 
omposition x with respe
t to theorthonormal basis fe1; e2; : : : ; eD�1g using density (10), we obtain the 
oeÆ
ients of 
ompositionE[x℄ with respe
t to the 
onsidered orthonormal basis. Applying standard integration methodswe have ilr(E[x℄) = �. Finally, we obtain the 
omposition E[x℄ through the linear 
ombination(�1 
 e1)� (�2 
 e2)� : : :� (�D�1 
 eD�1).Re
all that the ve
tor � denotes the expe
ted value of the ilr(x) ve
tor. Then we have thatilr(E[x℄) = E[ilr(x)℄. Also, equality (8) says that the ve
tor of 
oeÆ
ients with respe
t to theorthonormal basis of 
omposition 
en(x) is E[ilr(x)℄. Consequently we have that E[x℄ = 
en[x℄.In the additive logisti
 normal 
ase, we 
an 
ompute the expe
ted value using the standard pro-
edure. But, as Ait
hison (1986) adverts, the integral expressions are not redu
ible to any simpleform and it is ne
essari to apply Hermitian integration to obtain numeri
al results. But, 
ertainly,the expe
ted value is not equal to the 
omposition 
en(x) obtained in the normal in SD 
ase.Property 6 Let be x a D-part random 
omposition with a NDS (�;�) distribution. Then a dis-persion measure around the expe
ted value is Mvar[x℄ = tra
e(�).Proof. The metri
 varian
e is de�ned as Mvar[x℄ = E[d2a(x; 
en[x℄)℄. Given x � NDS (�;�) we knowfrom property 5 that 
en[x℄ = E[x℄. Then, the metri
 varian
e is a dispersion measure around theexpe
ted value Mvar[x℄ = E[d2a(x;E[x℄)℄. The distan
e da between two elements is equal to theEu
lidean distan
e deu between the 
orresponding 
oeÆ
ients with respe
t to an orthonormalbasis. Then, we 
an write Mvar[x℄ = E[d2eu(ilr(x);E[ilr(x)℄)℄. This value 
orresponds to the tra
eof matrix var(ilr(x)). Finally, using the 
ovarian
e matrix of a normal distribution in real spa
ewe obtain Mvar[x℄ = tra
e(�).



As Ait
hison (1986) averts, we 
annot interpret the 
rude 
ovarian
e or 
orrelations. Therefore, wealways 
ompute the 
ovarian
es and 
orrelations of the 
oeÆ
ients with respe
t to the orthonormalbasis. In the 
ase of the normal on SD model, the 
ovarian
es between 
omponents are equal tothe o�-diagonal elements of matrix �.3.2 Inferential aspe
tsGiven a 
ompositional data set X, the estimates of parameters � and � 
an be 
al
ulated throughthe sample mean and sample 
ovarian
e matrix of the ilr 
oeÆ
ients of the data set:�̂ = ilr(X) b� = var(ilr(X)):With these values we 
an obtain the estimates of E[x℄ and Mvar[x℄ asdE[x℄ = (�̂1 
 e1)� (�̂2 
 e2)� � � � � (�̂D�1 
 eD�1);\Mvar[X℄ = tra
e( b�):The estimators dE[x℄ and \Mvar[X℄ are 
onsistent and minimize the varian
e. This 
an be provedusing properties of estimators for the normal law in real spa
e.To validate the normal on SD law, we have only to apply a goodness-of-�t test for the multivariatenormal distribution to the 
oeÆ
ients with respe
t to an orthonormal basis of sample X. Unfortu-nately the most 
ommon tests of normality as the Anderson-Darling or the Kolmogorov-Smirnovtests are dependent on the orthonormal basis 
hosen. But in this parti
ular 
ase, we 
an repro-du
e the singular value de
omposition and a power-perturbation 
hara
terisation of 
ompositionalvariability of the random 
omposition as proposed by Ait
hison et al. (2003).3.3 Another parametrizationAit
hison (1986) introdu
es the additive logisti
 normal distribution using the additive logratiotransformation, but equivalent parametrizations using the 
entred logratio transformation (Ait
hi-son, 1986, p. 116) or the isometri
 logratio transformation (Mateu Figueras, 2003, p. 78) 
ould beobtained. The normal on SD law is de�ned using the ilr 
oeÆ
ients. Given the similarity amongthe alr, 
lr and ilr 
oeÆ
ients and the additive logratio, 
entred logratio and isometri
 logratiove
tors, it is natural to ask about the expression of the density fun
tion in terms of the alr or 
lr
oeÆ
ients. To avoid large expressions we will use v to denote the 
oeÆ
ients of 
omposition xwith respe
t to an orthonormal basis and y to denote the 
oeÆ
ients of x with respe
t to the Bbasis introdu
ed earlier in se
tion 1.Given a NDS (�;�) law, the probability of any event A � SD isP (A) = ZA�(2�)�(D�1)=2 j � j�1=2 exp ��12 (v � �)0��1 (v � �)� dv;where A� denotes the 
oeÆ
ients of A with respe
t to the orthonormal basis. Matrix FU is a
hange of basis matrix from the orthonormal basis to the B basis. Then, the transformationv = (FU)�1y makes e�e
tive this 
hange of basis and we obtainP (A) = ZFUA� (2�)�(D�1)=2j � j1=2 exp ��12 �(FU)�1y � ��0��1 �(FU)�1y � ��� 1jFUjdy= ZFUA� (2�)�(D�1)=2j � j1=2 jFUj exp ��12 (y �FU�)0 ((FU)�1)0��1(FU)�1 (y �FU�)� dy= ZFUA� (2�)�(D�1)=2j � j1=2 exp ��12 (y � �)0��1 (y � �)� dy;



where � = FU� and � = FU�(FU)0. Using (6) it is easy to see that � = E[y℄, � = var[y℄ andj � j1=2 jFUj =j � j1=2. Observe that FUA� represents the 
oeÆ
ients of the event A with respe
tto the B basis.In 
on
lusion, the normal on SD law using alr(x), � and � parametrization 
an be obtained. Butre
all that the basis B is not orthonormal, and therefore the Eu
lidean distan
e between two alr
oeÆ
ients is not equal to the Ait
hison distan
e between the 
orresponding 
ompositions. Thus,it will have no sense to use the density of the alr 
oeÆ
ients in the pro
edures that use distan
esor s
alar produ
ts.In a similar way, we 
ould work with the density of the 
lr 
oeÆ
ients. Even though the Eu
lideandistan
e between two 
lr 
oeÆ
ients is equal to the Ait
hison distan
e between the 
orrespond-ing 
ompositions, we have an additional diÆ
ulty: the density fun
tion of 
lr(x) 
oeÆ
ients isdegenerate.4 The skew-normal distribution on SD4.1 De�nition and propertiesDe�nition 2 Let be (
;F ; p) a probability spa
e. A random 
omposition x : 
 �! SD is said tohave a skew-normal on SD distribution with parameters �, � and % (APPENDIX), if the densityfun
tion of the 
oeÆ
ients with respe
t to an orthonormal basis of SD isf�x(x) = 2(2�)�(D�1)=2 j � j�1=2 exp ��12 (ilr(x)� �)0��1 (ilr(x) � �)� (13)�� �%0��1(ilr(x)� �)� ;where � is the N (0; 1) distribution fun
tion and � is the square root of diag(�), where diag(�)stands for the matrix obtained putting to zero all the o�-diagonal elements of �.We use the notation x � SNDS (�;�;%). The subs
ript S indi
ates that it is a model on thesimplex and the supers
ript D indi
ates the number of parts of the 
omposition. As in the normalon SD 
ase, we use the notation � and � to represent the parameters of the model, but in this
ase neither � nor � denote the expe
ted value and 
ovarian
e matrix of the ilr(x) ve
tor.The density (13) 
orresponds to a density fun
tion of a skew-normal random ve
tor in RD�1 . Thisis the reason why we 
all it the skew-normal on SD law. We want to insist that (13) is the densityof the 
oeÆ
ients of x with respe
t to an orthonormal basis on SD, and therefore it is a Radon-Nikodym derivative with respe
t to the Lebesgue measure in RD�1 , the 
oeÆ
ients spa
e. Thisallows us to 
ompute the probability of any event A � SD with an ordinary integral asP (A) = ZA� 2(2�)�(D�1)=2 j � j�1=2 exp [M℄ � �%0��1(ilr(x)� �)� d�(ilr(x));with M = �12 (ilr(x) � �)0��1 (ilr(x)� �) ;where A� represents the 
oeÆ
ients of the event A with respe
t to the 
onsidered orthonomal basis,and � is the Lebesgue measure in RD�1 .Like for the normal on SD law, whi
h is equivalent, on SD, in terms of probabilities, to the additivelogisti
 normal law, we 
an prove that the skew-normal on SD law is equivalent, on SD and in termsof probabilities, to the additive logisti
 skew-normal law studied in Mateu Figueras (2003). Tode�ne the additive logisti
 skew-normal distribution we 
onsider xD = 1�x1�x2�� � ��xD�1 andSD � RD . Its density fun
tion is the Radon-Nikodym derivative of the probability with respe
t



to the Lebesgue measure in RD�1 , and it is obtained using the additive logratio transformation.In Mateu Figueras (2003, p. 96) the density fun
tion using the isometri
 logratio transformationis provided, and 
onsequently the probability of any event A � SD isP (A) = ZA 2D�1=2 �QDi=1 xi��1(2�)(D�1)=2 j � j1=2 exp [M℄ � �%0��1(ilr(x)� �)� dx1dx2 � � � dxD�1; (14)with M = �12 (ilr(x) � �)0��1 (ilr(x)� �) ;where now the ve
tor ilr(x) denotes the isometri
 logratio transformation of x. Observe that theabove density fun
tion is obtained through the transformation te
hnique be
ause it 
ontains theterm D�1=2(QDi=1 xi)�1, the ja
obian of the isometri
 logratio transformation. We also use thenotation �, � and % for the parameters of the model, but in this 
ase neither � nor � 
orrespondto the expe
ted value and the 
ovarian
e matrix of the isometri
 logratio transformed ve
tor.Now it is important to 
orre
tly interpret the ilr(x) ve
tor as the isometri
 logratio ve
tor or as theve
tor of 
oeÆ
ients with respe
t to an orthonormal basis, both denoted as ilr(x). Therefore, toavoid possible 
onfusions, we denote as v = (v1; v2; : : : ; vD�1)0 the 
oeÆ
ients with respe
t to anorthonormal basis of 
omposition x, and as ilr(x) its isometri
 logratio transformed ve
tor. Thus,given x � SNDS (�;�;%), we 
an write the probability of any event A � SD asP (A) = ZA� 2(2�)�(D�1)=2 j � j�1=2 exp [M�℄ � �%0��1(v � �)� dv1dv2 � � � dvD�1; (15)with M� = �12 (v � �)0��1 (v � �) ;where A� represents the 
oeÆ
ients of A with respe
t to the 
hosen orthonormal basis.In both 
ases, the expressions (14) and (15) are standard integrals of a real valued fun
tion and we
an apply all the standard pro
edures. In parti
ular we 
an apply the 
hange of variable theoremin expression (15) and, taking v = ilr(x), whose ja
obian is D�1=2(QDi=1 xi)�1, we obtain theequalityP (A) = ZA� 2(2�)�(D�1)=2 j � j�1=2 exp [M�℄ � �%0��1(v � �)� dv1dv2 � � � dvD�1= Zilr�1(A�) 2D�1=2 �QDi=1 xi��1(2�)(D�1)=2 j � j1=2 exp [M℄ � �%0��1(ilr(x) � �)� dx1dx2 � � � dxD�1;where M� = �12 (v � �)0��1 (v � �) ;M = �12 (ilr(x) � �)0��1 (ilr(x) � �) :The se
ond term of this equality agrees with (14) be
ause ilr�1(A�) = A. Observe that theprobability of any event A � SD is the same using both models. In these 
ases we say that bothmodels are equivalent on SD in terms of probabilities. But the skew-normal on SD and the additivelogisti
 skew-normal models present essential di�eren
es. The two density fun
tions will di�er andsome properties that depend on the spa
e stru
ture also di�er.Next, we study the prin
ipal properties of the skew-normal on SD model. To be 
oherent with therest of our work, we revert to using the notation ilr(x) to indi
ate the 
oeÆ
ients with respe
t toan orthonormal basis of SD of 
omposition x.



Property 7 Let be x a D-part random 
omposition with a SNDS (�;�;%) distribution. Let bea 2 SD a ve
tor of 
onstants and b 2 R a s
alar. Then, the D-part 
omposition x� = a � (b
 x)has a SNDS (ilr(a) + b�; b2�;%) distribution.Proof. The ilr 
oeÆ
ients of 
omposition x� are obtained from a linear transformation of the ilr
oeÆ
ients of 
omposition x be
ause ilr(x�) = ilr(a)+bilr(x). We deal with the density fun
tion ofthe ilr(x) 
oeÆ
ients as a density fun
tion in real spa
e. As this density is a 
lassi
al skew-normaldensity, we use the linear transformation property (APPENDIX) to obtain the density fun
tion ofthe ilr(x�) 
oeÆ
ients. Therefore x� � SNDS (ilr(a) + b�; b2�;%).Property 8 Let be a random 
omposition x � SNDS (�;�;%) and a 2 SD a ve
tor of 
onstants.Then f�a�x(a� x) = f�x(x), where f�a�x and f�x represent the density fun
tions of random 
ompo-sitions x and a� x respe
tively.Proof. Using Property 7 we have that a� x � SNDS (ilr(a) + �;�;%). Therefore,f�a�x(a� x) = 2(2�)�(D�1)=2 j � j�1=2� exp ��12 (ilr(a� x)� (ilr(a) + �))0��1 (ilr(a � x)� (ilr(a) + �))��� �%0��1(ilr(a� x)� (ilr(a) + �))�= 2(2�)�(D�1)=2 j � j�1=2� exp ��12 (ilr(a) + ilr(x) � (ilr(a) + �))0��1 (ilr(a) + ilr(x)� (ilr(a) + �))��� �%0��1(ilr(a) + ilr(x)� (ilr(a) + �))�= 2(2�)�(D�1)=2 j � j�1=2 exp ��12 (ilr(x)� �)0��1 (ilr(x) � �)��� �%0��1(ilr(x)� �)� = f�x(x);as was indi
ated in (9).Note that Property 8 is not hold true for the additive logisti
 skew-normal distribution.Property 9 Let be x a D-part random 
omposition with a SNDS (�;�;%) distribution. Let bexP = Px the 
omposition x with the parts reordered by a permutation matrix P. Then xP has aSNDS (�P ;�P ;%P ) distribution with�P = U0PU�; �P = (U0PU)�(U0PU)0; %P = �P��1P B0%q1 + %0(��1���1 �B��1P B0)% ;where U is a D � (D � 1) matrix with ve
tors 
lr(ei) (i = 1; 2; : : : ; D � 1) as 
olumns, B =��1�(U0P0U), and � and �P are the square roots of diag(�) and diag(�P ), respe
tively.Proof. In property 3 we have seen that ilr(xP ) = (U0PU) ilr(x). Applying the 
hange of variabletheorem or the linear transformation property of the skew-normal distribution in real spa
e, weobtain a SNDS (�P ;�P ;%P ) distribution for the random 
omposition xP .Property 10 Let be x a D-part random 
omposition with a SNDS (�;�;%) distribution. Let bes = C(Sx) a C-part sub
omposition obtained from the C �D sele
tion matrix S. Then s has aSNCS (�S ;�S ;%S) distribution, with�S = U�0SU�; �S = (U�0SU)�(U�0SU)0; %S = �S��1S B0%q1 + %0(��1���1 �B��1S B0)% ;



where U is a D�(D�1) matrix with the 
lr 
oeÆ
ients of an orthonormal basis of SD as 
olumns,U� is a C � (C � 1) matrix with the 
lr 
oeÆ
ients of an orthonormal basis of SC as 
olumns,B = ��1�(U0S0U�), and � and �S are the square roots of diag(�) and diag(�S), respe
tively.Proof. In property 4 we have seen that ilr(s) = �U�0SU� ilr(x). Given the density of the ilr(x)
oeÆ
ients and applying the 
hange of variable theorem or the linear transformation property ofthe skew-normal distribution in real spa
e, we obtain the density of the ilr(s) 
oeÆ
ients that
orresponds to a SNCS (�S ;�S ;%S) density fun
tion.We have seen that the skew-normal on SD family is 
losed under perturbation, power transforma-tion, permutation and sub
ompositions. Again, given x � SNDS (�;�;%), it has not been possibleup to now to des
ribe the distribution of any amalgamation in terms of the distribution of xbe
ause we have not a matri
ial relationship between both 
ompositions.We 
an also 
ompute the expe
ted value of a skew-normal in SD distributed random 
omposition.Property 11 Let be x a D-part 
omposition with a SNDS (�;�;%) distribution. Then, E[x℄ =(�1 
 e1)� (�2 
 e2)� : : :� (�D�1 
 eD�1), with fe1; e2; : : : ; eD�1g an orthonormal basis of SDand � = �+ �Æp2=�, where Æ is a parameter related with % following the equality (17), and � isthe square root of diag(�).Proof. The expe
ted value of any random 
omposition is an element of the support spa
e. Fromthe 
oeÆ
ients of x with respe
t to the orthonormal basis fe1; e2; : : : ; eD�1g and from the density(13), we obtain the 
oeÆ
ients of the ve
tor E[x℄ with respe
t to the same orthonormal basis.Using the expe
ted value of the skew-normal distribution in real spa
e we have that E[ilr(x)℄ =� + �Æp2=� denoted as �. Finally, we obtain 
omposition E[x℄ through the linear 
ombination(�1 
 e1)� (�2 
 e2)� : : :� (�D�1 
 eD�1).In this 
ase we have obtained E[ilr(x)℄ = �. Using (8) we also 
on
lude that ilr(
en[x℄) = �and 
onsequently we have 
en[x℄ = E[x℄ = (�1 
 e1) � (�2 
 e2) � : : : � (�D�1 
 eD�1). This isan essential di�eren
e between the skew-normal on SD law and the additive logisti
 skew-normallaw. As it is observed in Mateu Figueras (2003), we have not the equality between 
en[x℄ and theexpe
ted value of an additive logisti
 skew-normal model.Property 12 Let be x a D-part random 
omposition with a SNDS (�;�;%) distribution. A dis-persion measure around the expe
ted value is Mvar[x℄ = tra
e ��� (2=�)�ÆÆ0��, where � is thesquare root of diag(�), and Æ is the parameter related with % following the equality (17).Proof. The metri
 varian
e is de�ned as Mvar[x℄ = E[d2a(x; 
en[x℄)℄. We know from Prop-erty 11 that 
en[x℄ = E[x℄. Then the metri
 varian
e is a dispersion measure around the ex-pe
ted value Mvar[x℄ = E[d2a(x;E[x℄)℄. The distan
e da between two 
ompositions is equal tothe Eu
lidean distan
e deu between the 
orresponding ilr 
oeÆ
ients. Therefore, we 
an writeMvar[x℄ = E[d2eu(ilr(x);E[ilr(x)℄)℄. This value 
orresponds to the tra
e of matrix var(ilr(x)). Fi-nally, using the 
ovarian
e matrix of a skew-normal distribution in real spa
e we obtain Mvar[x℄ =tra
e(�� (2=�)�ÆÆ0�).4.2 Inferential aspe
tsGiven a 
ompositional data set X, the estimates of parameters �, � and % 
an be 
al
ulatedapplying the maximum likelihood pro
edure to the ilr 
oeÆ
ients of the data set. These estimates
annot be expressed in analyti
 terms and we have to use numeri
al methods to 
ompute anapproximation from the sample.



The estimated values �̂; b� and %̂ allow us to 
ompute the estimates of the expe
ted value andmetri
 varian
e of 
omposition x:dE[x℄ = (�̂1 
 e1)� (�̂2 
 e2)� � � � � (�̂D�1 
 eD�1);\Mvar[X℄ = tra
e�b�� 2� b�bÆbÆ0b�� ;where �̂ = �̂ + �̂Æ̂p2=� and �̂ is the square root of diag( b�).The normal model in SD is a parti
ular 
ase of the skew-normal model in SD be
ause it 
orrespondsto the 
ase % = 0. Thus, to de
ide if a skew-normal on SD model is better than a normal on SDmodel, it suÆ
es to test the null hypothesis H0 : % = 0 versus the hypothesis H1 : % 6= 0 applyinga likelihood ratio test to the ilr 
oeÆ
ients of the sample.To validate the distributional assumption of skew-normality in SD , we have only to apply somegoodness-of-�t tests of multivariate skew-normal distribution to the ilr 
oeÆ
ients of the sampledata set. Mateu-Figueras et al. (2003) and Dalla-Valle (2001) have re
ently developed some testsfor the skew-normal distribution. Unfortunately, these tests are dependent on the orthonormalbasis 
hosen.4.3 Another parametrizationWe have de�ned the skew-normal on SD law using the ilr 
oeÆ
ients of 
omposition x. Neverthelesswe 
an obtain the expression of the density fun
tion using the alr 
oeÆ
ients. To avoid largeexpressions we denote as v and y the 
oeÆ
ients of 
omposition x with respe
t to an orthonormalbasis and to the B basis introdu
ed in se
tion 1 respe
tively.In terms of the v 
oeÆ
ients, the probability of any event A � SD isP (A) = ZA� 2(2�)�(D�1)=2 j � j�1=2 exp ��12 (v � �)0��1 (v � �)�� �%0��1(v � �)� dv;where A� represents the 
oeÆ
ients of A with respe
t to the orthonormal basis. Matrix FU isa 
hange of basis matrix from the orthonormal basis to the B basis. Then, the transformationv = (FU)�1y makes e�e
tive this 
hange of basis and we obtainP (A) = ZFUA� 2(2�)�(D�1)=2j � j1=2 exp [M℄ � �%0��1((FU)�1y � �)� 1jFUjdy;= ZFUA� 2(2�)�(D�1)=2j � j1=2 jFUj exp [M�℄ � �%0��1(FU)�1(y �FU�)� dy;= ZFUA� 2(2�)�(D�1)=2j � j1=2 exp ��12 (y � �)0��1 (y � �)�� ��0!�1(y � �)� dy;with M = �12 �(FU)�1y � ��0��1 �(FU)�1y � �� ;M� = �12 (y � (FU)�)0 ((FU)�1)0��1(FU)�1 (y � (FU)�) ;where � = FU�, � = (FU)�(FU)0, � = !((FU)�1)0��1%, and ! is the square root of diag(�).Observe that FUA� represents the 
oeÆ
ients of A with respe
t to the B basis. In this 
ase neither� nor � represent the expe
ted value and the 
ovarian
e matrix of the 
oeÆ
ients y.In 
on
lusion, an equivalent expression of the the skew-normal on SD law using alr(x), �, �and � parametrization 
an be obtained and used in pra
ti
e. But re
all that the basis B is not



orthonormal, and therefore the Eu
lidean distan
e between two alr 
oeÆ
ients is not equal to theAit
hison distan
e between the 
orresponding 
ompositions. Thus, it will have no sense to use thedensity of the alr 
oeÆ
ients in the pro
edures that use distan
es or s
alar produ
ts.We 
ould also de�ne the skew-normal on SD law using the 
oeÆ
ients with respe
t to the generatingset B� but we will obtain a degenerate density fun
tion. At the moment we have not the de�nitionof the degenerate skew-normal model in real spa
e.5 Con
lusionsThe ve
tor spa
e stru
ture of the simplex allows us to de�ne parametri
 models instead of usingtransformations to real spa
e keeping the usual Lebesgue measure. We have de�ned the normalmodel on SD and the skew-normal model on SD through their density over the 
oeÆ
ients withrespe
t to an orthonormal basis. In terms of probabilities of subsets of SD , the normal on SD andthe skew-normal on SD laws are identi
al to the additive logisti
 normal and the additive logisti
skew-normal distribution. Nevertheless their density fun
tions and some properties are di�erent.For example, for the models de�ned on SD using the 
oeÆ
ients, the expe
ted value is equal to the
enter of the random 
omposition. An additional reason, to prove properties using the 
oeÆ
ientswith respe
t to an orthonormal basis, is that we 
an apply standard real analysis to them.A
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al Geology vol. 34 (no. 3), pp. 259{274.APPENDIX. The skew-normal distributionThe multivariate skew-normal distribution was studied in detail by Azzalini and Capitanio (1999).A

ording to them, a D-variate random ve
tor y is said to have a multivariate skew-normal dis-tribution if it is 
ontinuous with density fun
tion2(2�)�D=2 j � j�1=2 exp��12 (v � �)0��1 (v � �)��(%0��1(y � �)); (16)where � is the N (0; 1) distribution fun
tion and � is the square root of diag(�). The % parameteris a D-variate ve
tor whi
h regulates the shape of the distribution and indi
ates the dire
tion ofmaximum skewness. When % = 0 the random ve
tor y redu
es to a ND(�;�) distributed ve
tor.We will use the notation y � SND(�;�;%) to symbolize a random ve
tor with a density fun
tiongiven by (16).We know that ea
h 
omponent of y is univariate skew-normal distributed. Its marginal skewnessindex 
an be 
omputed using the parameter % and it varies only in the interval (�0:995;+0:995).In the multivariate 
ase, we 
an also 
onsider a multivariate index of skewness. This multivariateindex is also bounded a

ording to the s
alar 
ase. Consequently the skew-normal family allowsdensities with a moderate skewness.



Given y � SND(�;�;%), the expe
ted value is E(y) = � + �Æp2=� and the 
ovarian
e matrix isvar(y) =�� (2=�)�ÆÆ0�, where Æ is a D-variate ve
tor related to % parameter asÆ = 1p1 + %0��1���1%��1���1%: (17)Azzalini and Capitanio (1999) provide a wide range of properties for the multivariate skew-normaldistribution, most of them similar to the properties of the multivariate normal distribution.Linear transformation property. If y � SND(�;�;%) and A is a D�H matrix of 
onstants,then y� = A0y � SNH(��;��;%�), with�� = A0�; �� = A0�A; %� = ��(��)�1B0%p1 + %0(��1���1 �B(��)�1B0)% ;where B = ��1�A and � and �� are, respe
tively, the square root of diag(�) and diag(��). Inparti
ular, if A is a non singular and square matrix, then %� = ��A�1��1%.Given a sample, to �nd the estimates �̂; �̂ and %̂ of the parameters �;� and %, we apply themaximum likelihood pro
edure. But the estimates 
annot be expressed in analyti
 terms and wehave to use numeri
al methods (e.g. Newton-Raphson or the generalized gradient method) to
ompute an approximation from a sample. There are however some problems. In the univariate
ase, for example, there is always an in
e
tion point at % = 0 of the pro�le log-likelihood andthe shape of this fun
tion 
ould be problemati
 and slows the 
onvergen
e down. Azzalini andCapitanio (1999, p. 591) suggest to substitute the parameter % by a new parameter � = ��1% inthe likelihood fun
tion. Then the parameters � and � appear well separated in two fa
tors in theloglikelihood fun
tion and we 
an exploit the fa
torization property whi
h makes the 
omputationof estimates easier. Initial estimates of the parameters ne
essary to start the iterative numeri
alpro
edure 
an be 
al
ulated from the sample by the method of moments, using the relations ofthe mean ve
tor, 
ovarian
e matrix and the skewness ve
tor with the parameters �;� and %(respe
tively �).But there are still 
ases where the behaviour of the maximum likelihood estimates appears unsat-isfa
tory be
ause, with nothing pathologi
al in the data pattern, the shape parameter tends to itsmaximum value. In these 
ases we have to adopt a temporary solution suggested by Azzalini andCapitanio (1999, p. 591): when the maximum of % o

urs on the frontier, re-start the maximiza-tion pro
edure and stop it when it rea
hes a loglikelihood value not signi�
antly lower than themaximum.


