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The design of control, estimation or diagnosis algorithms most often assumes that all
available process variables represent the system state at the same instant of time. How-
ever, this is never true, because of the time misalignments. Time misalignment is the
unmatching of two signals due to a distortion in the time axis of one or both signals.
Potential sources of time misalignments are: different time response among sensors, data
communication problems, analog to digital conversion, sensor location, and so on. Fault
Detection and Diagnosis (FDD) deals with the timely detection, diagnosis and correction
of abnormal conditions of faults in a process. The methodology used in FDD is clearly
dependent on the process and the sort of available information and it is divided in two
categories: model-based techniques and non-model based techniques. This doctoral dis-
sertation deals with the study of time misalignments effects when performing FDD. Our
attention is focused on the analysis and design of FDD systems in case of data com-
munication problems, such as data dropout and time delays due to data transmission.
Techniques based on dynamic programming and optimisation are proposed to deal with
these problems. Numerical validation of the proposed methods is performed on differ-
ent dynamic systems: a control position for a DC motor, a the laboratory plant and an
electrical system problem known as voltage sag.
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de materia orgánica, nitrógeno y fósforo” (DPI2002-04579-C02-01) y DPI SECSE - “Su-
pervisión Experta de la Calidad de Servicio Eléctrico” (DPI2001-2198) dentro del CICYT
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programa del govern Espanyol i el fons FEDER.

A la Universitat de Girona i a l’empresa Sociedad de Explotación de Aguas Resid-
uales S.A. -SEARSA-, pel seu suport a través del Conveni de Cooperació Educativa núm.
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Chapter 1

Introduction

1.1 Motivation

Due to the growing complexity and spatial distribution of automated systems, commu-
nication networks have become the backbone of most control architecture. As systems
are required to be more scalable and flexible, they have additional sensors, actuators and
controllers, often referred to as field (intelligent) devices (Lee et al., 2001, Staroswiecki,
2005). Networked Control Systems (NCS) result from connecting these system compo-
nents via a communication network such as CAN (Controller Area Network), PROFIBUS
or Ethernet. Control over data networks has many advantages compared with traditional
control systems, such lower cost, greatly reduced wiring, weight and power, simpler instal-
lation and maintenance and higher reliability. However, the design of control, estimation
or diagnosis algorithms most often are affected by time misalignments. Time misalign-
ment is the unmatching of two signals due to a distortion (expansion or compression) in
the time axis of one or both signals. Time misalignment can be produced by: different
time response among sensors, analog to digital conversion, sensor location, data dropout,
limited bandwidth, time delay due to data transmission, asynchronous clock among net-
work nodes and other peculiarities of networks that could degrade the performances of the
closed-loop systems and even destabilize them. The aforementioned problems have been
intensively studied by the control community in the last several years (Zhang et al., 2001;
Walsh and Hong, 2001; Walsh et al., 2002; Zhivoglydov and Middleton, 2003; Savkin
and Petersen, 2003; Matveev and Savkin, 2003; Lian et al., 2003; Hu and Zhu, 2003; Ma
and Fang, 2005; Li and Fang, 2006), including: analysis of impact of network on control
performance, design of control algorithm taking into account the above factors and pro-
posal of new network protocol suitable for control. Nevertheless, only a few studies of the
impact of the communication network on the diagnosis of continuous systems have been
recently published (Zhang et al., 2004; Ding and Zhang, 2005; Fang et al., 2006). The
challenging problem that has motivated this thesis is the time misalignments effects when
performing Fault Detection and Diagnosis (FDD).
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20 1. Introduction

1.2 Objectives

In this thesis the problem of time misalignments when performing FDD is investigated.
The main objective of the thesis is to design techniques aiming at the minimisation of false
alarms caused by transmission delay and data dropout without increasing the number of
missed detection. The techniques rely on the explicit modelling of the communication
network. Techniques based on dynamic programming and optimisation are proposed to
deal with these problems. Numerical validation of the proposed methods is performed on
different dynamic systems: a control position for a DC motor, a the laboratory plant and
an electrical system problem known as voltage sag.

1.3 Thesis Outline

The contents of the thesis are as follows:

Chapter 2: Fault Detection and Diagnosis

This chapter introduces the terminology used in the field of fault detection and diagnosis.
An overview of various diagnostic methods from different perspectives is also provided.
The general formulation that is used in next chapters and a discussion about problems
in fault detection and diagnosis are also presented. More emphasis has been put on time
misalignments which is the challenging problem that has motivated this thesis.

Chapter 3: Time Misalignments in Supervisory Systems

The concept of time misalignments is defined in this chapter and potential sources of time
misalignments are presented. Different models of network delays are given. The problem
formulation of time misalignment and communication delays from model-based and non
model-based fault diagnosis perspectives are stated. The associated work done in both
directions is also presented.

Chapter 4: Delay Estimation for Residual Computation

In this chapter, a technique aiming to the minimization of the false alarms caused by
transmission delays without increasing the number of missed detection is proposed. The
technique relies on the explicit modelling of communication delays, and their most likely
estimation. Application on a control position for a DC motor is shown.

Chapter 5: Reduction of False Alarms in Fault Detection of Net-
worked Control Systems with Data Dropout

In this chapter, a technique aiming at the reduction of the false alarms caused by data
dropout without increasing the number of missed detection is proposed. Illustrative ex-
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ample on a laboratory plant is given.

Chapter 6: Dynamic Time Warping for Residual computation

This chapter proposes the use of Dynamic Time Warping (DTW) to reduce the effects
of time misalignment when residual computation is performed. The first section, Section
6.2, summarises the DTW algorithm. In Section 6.3, a modification of DTW in order
to be applied on-line is explained. In Section 6.4 the use of DTW for improving the
residual computation in the presence of time misalignment is formulated. Finally, Section
6.5 presents the applications in a laboratory plant of the University of Girona eXiT group.

Chapter 7: Time Misalignment Reduction in Symptom Based
Diagnosis

This chapter proposes the use of Dynamic Time Warping (DTW) for reducing the effects
of time misalignment when Case Based Reasoning (a symptom based diagnosis) is per-
formed. DTW is used as a similarity criteria to implement the retrieval task. An electrical
system problem, known as voltage sag, has been used to test the proposed method.

Chapter 8: Conclusions

In the last chapter conclusions are presented. Extensions and open problems are discussed.

Appendices

The thesis finishes with four appendices:

• A: Design of the analytical redundancy relation of a control position for a DC motor.

• B: Design of the analytical redundancy relations of the laboratory plant.

• C: Design of the analytical redundancy relations of the three tanks system.

• D: Temporal attributes of the voltage sags.
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Chapter 2

Fault Detection and Diagnosis

2.1 Introduction

Fault Detection and Diagnosis (FDD) deals with the timely detection, diagnosis and cor-
rection of abnormal conditions of faults in a process. Early detection and diagnosis can
help to avoid abnormal events progression and to reduce production loss. There is a wide
literature documentation on process fault diagnosis ranging from analytical methods to
artificial intelligence and statistical approaches. From a modelling perspective, there are
methods that require accurate process models, semi-quantitative models or qualitative
models. However, there are methods that do not assume any form of model information
and rely only on historic process data. Therefore, this chapter is mainly devoted to in-
troduce the terminology used in the field of fault detection and diagnosis, to provide an
overview of various diagnostic methods from different perspectives, to introduce the gen-
eral formulation that is used in next chapters and a discussion about drawbacks in fault
detection and diagnosis are also presented, doing more emphasis in time misalignments
which is the challenging problem that has motivated this thesis.

This chapter is organized as follows: Section 2.2 presents some terminologies and
definitions that are used in the FDD field. Model-based techniques are gathered in Section
2.3. In contrast, Section 2.4 explains the non model-based techniques. Problems in FDD
are mentioned in Section 2.5. Finally some concluding remarks are given in Section 2.6.

2.2 Terminology and definitions

The terminology used in the field of fault detection and diagnosis is not unique. Conse-
quently, the Safeprocess Technical Committee of IFAC (the International Federation of
Automatic Control) compiled a list of suggested definitions (Isermann and Ballé, 1997)
which is in accordance with the terminology used this thesis.
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About the states and the signals

• Fault : Unaccepted deviation of at least one characteristic property or parameter of
a system from its acceptable/usual/standard condition.

• Failure: inability of a system or a component to accomplish its function.

• False alarm: is an indication of a fault, when in actuality a fault has not occurred.

• Error : Deviation between a measured or computed value (of an output variable)
and the true, specified, or theoretically correct value.

• Disturbance: An unknown (and uncontrolled) input acting on a system.

• Missed detection: when there is not indication of a fault, though a fault has occurred.

• Perturbation: An input acting on a system, which results in a temporary departure
from the current estate.

• Residual : Fault information carrying signals, based on the deviation between mea-
surements and the model based computations.

• Symptoms : A change of an observable quantity from its normal behaviour.

About the functions

• Fault detection: Determination of faults present in a system at a particular time.

• Fault isolation: Determination of the type, location, and time of detection of a fault.
Follows fault detection.

• Fault diagnosis : Determination of the kind, size, location and time of occurrence of
a fault. Fault diagnosis includes fault detection, isolation and estimation.

• Monitoring : A continuous real-time task of determining the conditions of a phys-
ical system, by recording information, recognising and indicating anomalies in the
behaviour.

• Residual computation: residual value is computed from the known variable.

• Residual evaluation: the residual is evaluated in order to detect, isolate and identify
faults.

• Supervision: Monitoring of a physical system and taking appropriate actions to
maintain the operation in the presence of faults.



2.2. Terminology and definitions 25

About the models

• Qualitative model : A system model that describes the behaviour and relationships
among system variables and parameters in heuristic terms such as causalities of if
or then rules.

• Quantitative model : A system model that describes the behaviour and relationships
among system variables and parameters in analytical terms such as differential equa-
tions.

• Diagnostic model : A set of static and dynamic relationships which link specific input
variable -the symptoms- to specific output variables -the faults.

• Analytical redundancy : Use of two or more (but not necessary identical) ways to
determine a variable where one way uses a mathematical process model in analytical
form.

About the system properties and its measurements

• Reliability : Probability of a system to perform a required function under normal
conditions and during a given period of time.

• Safety : Ability of a system not to cause any danger to people or equipment or
environment.

2.2.1 Systems and controlled systems

A system is a set of interconnected components. Each of the components are chosen by
the system engineer for achieving some function of interest. A function describes what
the design engineer expects the components to perform. A given component performs
its task because it has been designed for exploiting some physical principle(s), which in
general are expressed by some relationship(s) between the evolution time of some system
variables. Such relationships are called constraints, and the evolution time of the variables
is called trajectory.

Some of the components may have been selected with the aim of controlling the pro-
cess, i.e, being able to choose, between all the possible system trajectories, the one which
will bring some expected result (achieve some given objective). Those components which
allow to impose, or to influence, the trajectory of a given variable are called actuators.
They establish some constraint between the variables of the process and some control
variable, which is called control signal.

Actuators may be driven by human operators or by control algorithms. In both cases,
closed loop control demands some information about the actual values of the system
variables to be known. Sensors are components which are designed to provide this infor-
mation. Thus a controlled systems is a set of interconnected components which include
process components, actuators, sensors and control algorithms.
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Figure 2.1: Time-dependency of faults: (a) abrupt; (b) incipient; (c) intermittent

2.2.2 Types of faults

The types of faults depend basically on the their location within the system, the number
of components that can be affected and their temporal evolution.

Taking into account the effects of the faults, there are classified as additive faults (those
which correspond to sensor and actuator faults) and multiplicative faults (or parametric):

• Additive process faults : These are unknown inputs acting on the plant, which are
normally zero and which, when present, can cause a change in the plant outputs
independent of the known inputs.

• Multiplicative process faults : These are changes (abrupt or gradual) in some plant
parameters. They may cause changes in the plant outputs which also depend on
the magnitude of the known inputs. Such faults describe the deterioration of the
plant equipments, such as contamination, clogging, or the partial or total loss of the
power.

The fault location can be distinguished in:

• Sensor faults : These are discrepancies between the measured and the actual values
of the individual plant variables.

• Actuator faults : These are discrepancies between the input command of an actuator
and its actual output.

• Plant faults :such faults change the dynamical properties of the system.

Regarding the time dependency of faults, they can be distinguished in Figure 2.1:

• Abrupt faults : These are faults that appear ”abruptly” in a time instant. For
example in a power supply break down.

• Incipient faults : These are faults that increase steadily and that are brought about
by wear.

• Intermittent faults : These are faults that do not appear continuously.For example
an intermittent electrical contact.
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2.2.3 Approaches for fault detection and diagnosis

The methodology used in fault detection and diagnosis is clearly dependent on the process
and the kind of available information. Existing approaches range from analytical methods
to artificial intelligence and statistical approaches. From a modelling perspective, there
are methods that require accurate process models, semi-quantitative models, or qualitative
models. On the other hand, there are methods that do not assume any form of model
information and rely only on historic process data. See (Venkatasubramanian et al., 2003)
for a good review of approaches for FDD. In this work we have divided the methods
within two categories: model-based techniques and non-model based techniques. They
are described in the following sections.

2.3 Model-Based Techniques

The model-based diagnosis (MBD) approach rests on the use of a explicit model of the
system to be diagnosed. The occurrence of a fault is captured by discrepancies between
the observed behaviour and the behaviour that is predicted by the model. A definitive
advantage of this approach is that it only requires knowledge about normal operation of
the system, following a consistency-based reasoning method.

Two distinct and parallel research communities have been using the MBD approach.
The fault detection and isolation (FDI) community has evolved in the automatic control
field from the seventies and uses techniques from control theory and statistical decision
theory. It has now reached a mature state and a number of very good surveys exist in this
field (Control-Eengineering-Practice, 1997; Frank, 1996; Gertler, 1991; Iserman, 1997;
Patton and Chen, 1991).

The diagnostic (DX) community emerged more recently, with foundations in the
fields of computer science and artificial intelligence (De Kleer et al., 1992; De Kleer and
Williams, 1987; Hamscher et al., 1992; Reiter, 1987). Although the foundations are sup-
ported by the same principles, each community has developed its own concepts, tools and
techniques guided by their different modeling backgrounds. The modeling formalisms call
indeed for very different technical fields; roughly speaking analytical models and linear
algebra on the one hand and symbolic and qualitative models with logic on the other hand.

Most of FDI methods rely on the concept of analytical redundancy (Chow and Willsky,
1984; Gertler, 1991), next subsections describe this concept and its use for fault detection
and isolation.

2.3.1 Analytical redundancy for fault detection and isolation

Consider the deterministic system modelled by

ẋ(t) = f(x(t), u(t), ϕ(t)) (2.1)

y(t) = g(x(t), u(t), ϕ(t)) (2.2)

where x(t) ∈ Rn, u(t) ∈ Rr, y(t) ∈ Rm and ϕ(t) ∈ Rq are respectively the state, input,
output and fault vector, and f and g are given smooth vector fields.
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The system normal operation on a time window [α, β[ is described by :

ϕ(t) = 0,∀t ∈ [α, β[ (2.3)

while the occurrence of a fault at time γ is associated with :

∃λ > γ : ϕ(t) 6= 0,∀t ∈ [γ, λ[ (2.4)

Analytical redundancy relations (ARR)

Analytical redundancy is based on successive derivations of the output signal (2.2) which,
together with the repeated use of (2.1) produce the system

ȳ(t) = G(x(t), ū(t), ϕ̄(t)) (2.5)

where ȳ(t) (and also ū(t) and ϕ̄(t) ) is the vector obtained by expanding y(t) with its
derivatives ẏ(t), ÿ(t), . . . up to the order j:

y(t) = g0(x(t), u(t), ϕ(t))

ẏ(t) = g1(x(t), ū
(1)(t), ϕ̄(1)(t))

...
...

...

ȳj(t) = gj(x(t), ū
(j)(t), ϕ̄(j)(t))

and G combines g0, g1, . . . , gj.

In a second step (2.5) is transformed into an equivalent system

ȳ(t) = G(x(t), ū(t), ȳ(t), ϕ̄(t)) ⇐⇒
{

G1(x(t), ū(t), ȳ(t), ϕ̄(t)) = 0
G2(ū(t), ȳ(t), ϕ̄(t)) = 0

(2.6)

where equations in subsystem G2 are the so-called analytic redundancy relations (ARR),
which are independent on the state. It can be shown that such ARR can always be found,
provided the output can be derivated up to an order large enough (Chen and Patton,
1999; Gertler, 1998; Blanke et al., 2003). The interest of these ARR is obviously that -
since the state has been eliminated - they depend only on the inputs, outputs, and faults,
thus providing a means to check whether the no-fault hypothesis is consistent with the
observed input - outputs.

Practical determination of analytical redundancy relations

From a practical point of view, obtaining the set of equations G2 in (2.6) from the original
set (2.5) makes use of a projection operator when system (2.1), (2.2) is linear (this is the
parity space technique, see e.g. (Chen and Patton, 1999; Blanke et al., 2003) and for more
general cases, it rests on elimination theory (see e.g. (Staroswiecki and Comtet-Varga,
2001) for the case where (2.1), (2.2) is polynomial).
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It is also worth to notice that ARR are not uniquely defined. Indeed, any (linear or
non-linear) combination of analytical redundancy relations is also an analytical redun-
dancy relation and this property can be exploited to improve fault isolation by expanding
signature matrices with these new ARRs. Signature matrix is introduced in next subsec-
tion devoted to Fault Isolation.

Computation and evaluation forms

Let the subsystem G2 be decomposed as

G2(ū(t), ȳ(t), ϕ̄(t)) = Gc (ū(t), ȳ(t))−Ge (ū(t), ȳ(t), ϕ̄(t))

where for all input/output pairs u(t), y(t) associated with system (2.1), (2.2)

Ge (ū(t), ȳ(t), 0) = 0 (2.7)

Then condition G2 = 0 can be written

r(t) , Gc (ū(t), ȳ(t)) (2.8)

r(t) = Ge (ū(t), ȳ(t), ϕ̄(t)) (2.9)

where r(t) is the residual vector, and (2.8), (2.9) are respectively its computation form
and evaluation form. The first one describes how the residual value is obtained from the
system inputs and outputs. The latter describes how the resulting value depends on faults.

According to (2.8) and (2.9), the fault detection and isolation procedure is decomposed
into two steps. The first one is residual computation where the residual value is computed
from the known variables, using the computation form (2.8). The second step is residual
evaluation, that includes fault detection and fault isolation.

Fault detection

Given a time window [α, β[ , the fault detection problem is defined as follows: given the
residual r(t), t ∈ [α, β[ select the most likely hypothesis between H0

system and H1
system

where

H0
system : ϕ(t) = 0,∀t ∈ [α, β[

H1
system : ∃ [γ, λ[ ⊆ [α, β[ : ϕ(t) 6= 0,∀t ∈ [γ, λ[

Using (2.7) and (2.9) the simplest implementation of a fault detection procedure is
obtained by checking the residual value against zero at each time t (by a slight abuse of
notation, the time intervals [α, β[ and [γ, λ[ are no longer mentioned):

[H0
system =⇒ r(t) = 0] ⇐⇒ [r(t) 6= 0 =⇒ H1

system] (2.10)

For the sake of simplicity, only perfect deterministic models have been considered
so far which results in (2.10) being indeed true. However, measurement noise, unknown
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Figure 2.2: a) Structured residuals and b) Fixed-direction residuals

inputs, model uncertainties, will result in residuals being never exactly zero even in normal
operation. This can be taken into account in a more realistic procedure which extends
(2.10) as follows

[H0
system =⇒ r(t) ∈ N (0)] ⇐⇒ [r(t) /∈ N (0) =⇒ H1

system] (2.11)

where N (0) is some neighborhood of zero. Note that false alarms - r(t) /∈ N (0) under
H0

system - and missed detections - r(t) ∈ N (0) under H1
system - are possible. The design of

a set N (0) that guarantees both a low false alarm and a low missed detection rate is the
central problem of statistical decision making (Basseville and Nikiforov, 1993; Brodsky
and Darkhovsky, 2000; Nikiforov et al., 1996).

Fault isolation

Faults should not only be detected, but also be isolated, namely the faulty components
should be determined. To facilitate de isolation, residual vector r(t) is usually enhanced,
in one of the following ways:

• Structured residuals (Figure 2.2a) . In response to a single fault, only a fault-specific
subset of residuals becomes nonzero.

• Fixed-direction residuals (Figure 2.2b). In response to a single fault, the residual
vector is confined to a fault specific straight line.

In FDI fault isolation is performed by means of an analysis of the fault signature ma-
trix. The fault signature matrix Σ contains the dependency of a certain fault (column
of the matrix) with each residual (row of the matrix). An element Σij of this matrix is
equal to 1 if the fault of the column j influences the residual of the row i, otherwise the
element is equal to 0.

As was explained above, the fault detection procedure is obtained by checking each
residual value ri(t) against zero at each time t. This procedure provides a set of fault
signatures of the system, s(t) = [s1(t), . . . , sn(t)], where:

si(t) =

{

0 if ri(t) ∈ Ni(0)
1 if ri(t) /∈ Ni(0)

(2.12)
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Then, the fault isolation consists on finding which fault signature of the fault signature
matrix is more similar to the signature s(t) found experimentally. In order to measure a
similarity between the two signatures, the Euclidean or the Hamming distances are usually
used. For instance, if the Hamming distance is used, the procedure of fault isolation gives
a distance vector for each fault signature d(t) = [d1(t), . . . , dn(t)], where:

dj(t) =
n

∑

i=1

(Σij ⊕ si(t)) (2.13)

and ⊕ is the logical operator XOR. The theoretical fault signature that produces the
smaller distance, indicates which fault is possibly affecting the system.

Example 1 (Fault signature)

Given a fault signature matrix:

Table 2.1: Fault signature matrix.

f1 f2 f3 f4 f5

ARR1 1 0 1 0 0
ARR2 0 1 0 1 0
ARR3 0 1 1 0 1

if in a given time instant the observed fault signature is s = [1, 0, 1], then the Hamming
distance vector will be d = [2, 1, 3, 0, 1]. This allow to deduce, from choosing that fault
that has the smallest theoretical signature distance to the observed fault, that the system
is affected by the fault f3.

For more details of structured residuals approach refer to (Chen and Patton, 1999;
Staroswiecki and Comtet-Varga, 2001; Gertler, 1998; Hamelin et al., 1994). Structured
residuals approach can be compared with the theory of logical diagnosis, as developed
in the DX community. Detailed comparison and equivalence proofs have been given in
(Cordier et al., 2004).

2.3.2 Fault detection and isolation techniques based on analyt-
ical models

The most used techniques for residual generations by means of analytical models are:
observers (Chen and Patton, 1999), parity relations (Gertler, 1991), parameter estimation
(Iserman, 1997) and structural analysis (Staroswiecki et al., 2000).

Observers

The basic idea of the observer or filter-based approaches is to estimate the states or
outputs of the system from the measurements by using either Luenberger’s observers in
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a deterministic setting (Beard, 1971; Frank, 1996) or Kalman’s filters in a stochastic case
(Willsky, 1976; Basseville, 1988). The flexibility in selecting observer gains has been
studied (Frank and Ding, 1997). The freedom in the design of the observer can be used
to enhance the residuals for isolation. The dynamics of the response can be controlled,
within certain limits, by placing the poles of the observer.

Parity (consistency) relations

Parity equations are rearranged and usually transformed variants of the input-output or
state-space models of the plant (Gertler, 1991; Gertler and Singer, 1990). The essence is
to check the parity (consistency) of the plant models with sensor outputs (measurements)
and known process inputs. The idea of this approach is to rearrange the model structure
to get the best fault isolation. Parity relations concepts were introduced by (Chow and
Willsky, 1984). Further developments have been made by (Gertler et al., 1990; Gertler
et al., 1995; Staroswiecki and Comtet-Varga, 2001) among others.

There is a fundamental equivalence between parity relations and observer based meth-
ods. Both techniques produce identical residuals if the generators have been designed for
the same specification (Frank, 1990; Gertler, 1991; Ding and Jeinsch, 1999).

Parameter estimation

The model-based FDI can also be achieved by means of using the system identification
techniques if the basic structure of the model is known (Isermann, 1984; Iserman, 1997).
This approach is based on the assumption that faults are reflected in the physical system
parameters such as friction, mass, resistance, etc. The basic idea is that the parameters of
the actual process are estimated on-line using well known parameter estimation methods
and the results are compared with the parameters obtained initially under the fault-free
case. Any discrepancy indicates a fault. The parameter estimation may be more reliable
than the analytical redundancy methods, but it is also more demanding in terms of on-line
computation and input excitation requirements.

A relationship has been found between parity relations and parameter estimation as
well (Delmaire et al., 1994a; Delmaire et al., 1994b; Gertler, 1995; Gertler, 2000).

Structural analysis

The structural analysis is the study of the properties which are independent of the ac-
tual values of the parameters. Only links between the variables and parameters which
result from the operating model are represented in this analysis. They are independent
of the form under which this operating model is expressed (quantitative or qualitative
data, analytical or non-analytical relations). The links are represented by graph on which
a structural analysis is performed. The main advantages of the structural analysis ap-
proach are: it determines the part(s) of the system on which some ARR can be generated,
and it is used to obtain the calculation sequences of the ARR.
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Figure 2.3: (a) Bipartite graph G = (E ∪ X,A′

) and complete matching of X into E
indicated by bold arcs. (b) RPG indicating that e5 is a redundant relation.

The structure of the system is obtained from a normal behavior model S = (E, V ), de-
fined by a set of m relations E in which a set of n variables V are involved. The structure
of a model can be represented by a structural matrix that crosses model relations in rows
and model variables in columns, or equivalently by the bipartite graph G = (E ∪X,A),
where A is a set of arcs such that a(i, j) ∈ A iff variable vj ∈ V appears in relation ei ∈ E.

The set of variables V can be partitioned as V = X∪O, where O is the set of observed
(measured) variables, and X is the set of unknown variables. Then, structural approach of
(Cassar and Staroswiecki, 1997) is based on determining a complete matching M between
E and X in the bipartite graph G. A matching on a graph G is a set of edges of G such
that no two of them share a vertex in common. A complete matching between E and X
in a bipartite graph G = (E ∪X ∪O,A), or equivalently in G = (E ∪X,A′

), where A
′

is
a subset of A, is one that saturates all of the vertices in E or X.

It corresponds to a selection of line-independent entries, i.e., not in the same row or
column, in the structural submatrix crossing E and X. If the relation ei is associated to
the variable xj by M , then ei can be interpreted as a mechanism for solving for xj. The
resolution process graph (RPG) is defined as the oriented graph obtained from G by ori-
enting the edges of A from xj toward ei if a(i, j) /∈M and from ei toward xj if a(i, j) ∈M .
It provides the orientation of calculability (or causal interpretation) associated to M . The
determination of M must account for the possibly restricted causal interpretation of some
relations, e.g., a given relation may not be invertible and, hence, can only be used in a
predefined direction. In practice, this is performed by orienting the corresponding edges
a priori.

In (Cassar and Staroswiecki, 1997), it is shown that this graph can be used to derive
the ARR. ARRs exist if and only if the number of relations card(E) is strictly greater
than the number of unknown variables card(X). In this case, the complete matching is
of X into E, and ARRs correspond to the relations that are not involved in the com-
plete matching and, consequently, are not needed to determine the values of the unknown
variables. These “extra-relations” appear as sink nodes of the RPG. ARRs of the form
r = 0, where r is the residual of the ARR, are obtained from the extra relations by replac-
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ing the unknown variables with their formal expression in terms of observable variables,
tracing back the analytical paths defined by the RPG. If card(E) = card(X), then there
are no ARRs, and the system is said to be nonmonitorable. The above is illustrated in
Figure 2.3 with a toy example of five relations e1 to e5 and four unknown variables x1 to x4.

Appendixes A,B and C present the application of the structural analysis of two differ-
ent systems that are going to be used in next chapters for FDI purpose. For more details
of structural analysis approach refer to (Blanke et al., 2003).

2.3.3 Fault diagnosis based on qualitative-model

In this techniques the knowledge is obtained from the structure and the behavior of the
process. Contrary to the analytical model, the qualitative models can be incomplete or
contain uncertainties. In the last years there has been an important growth of contribu-
tions coming from the Artificial Intelligence community (this community uses the acronym
DX for referring to model-based diagnosis), (Kuipers, 1994; Travé-Massuyès et al., 2001;
Puig et al., 2002). The soft-computing community has also contributed in this field, where
neural network (De la Fuente and Represa, 1997; Villegas and De la Fuente, 2006), fuzzy
logic (Sauter et al., 1994; Mendoça et al., 2008), genetic algorithms (Calado and Sà da
Costa, 1999) and multi-agent systems (Mendes et al., 2006; Sà da Costa et al., 2007) are
applied.

2.4 Non Model-Based Techniques

In non model based techniques, the previous experimental records are analyzed in order
to detect irregularities which would link the observed data (the symptoms) with the final
conclusions (the diagnosis). We have divided the non model-based techniques within two
categories: signal-based approaches and knowledge based approaches.

2.4.1 Signal-based approaches

Proper signals or symptoms are extracted from the system, which carry significant in-
formation about the fault of interest. The symptoms are used, directly or after proper
modifications, for fault diagnosis. Typical symptoms are: the magnitudes of the time
functions of measured signals, limit values, trends, statistical moments of amplitude dis-
tribution or envelope, spectral power densities or frequency spectral lines, correlations
coefficients, covariance and so on.

There are numerous approaches of signal-based methods; some of them are as follows:

Physical redundancy

In this approach, multiple sensors are installed to measure the same physical variable.
Any discrepancy among them indicates a sensor fault. Fault isolation is not possible
with only two parallel sensors. A voting scheme can be formed with three sensors, which
isolates the faulty sensor. Physical redundancy involves extra hardware cost and extra
weight, the latter representing a serious concern in aerospace applications.
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Special sensors and soft sensors

They may be installed explicitly for detection and diagnosis. These may be limit sensors
(measuring e.g. temperature or pressure), which perform limit checking in hardware (see
below). Other special sensors may measure some fault-indicating physical quantity, such
as sound, vibration, elongation, etc.

Limit checking

In this approach, which is widely used in practice, plant measurements are compared to
fixed thresholds; exceeding the limits indicates a fault situation. In many systems, there
are two levels of limits, the first serves as pre-warning, while the second level triggers
emergency actions.

Frequency analysis of plant measurements

Some plant measurements have a typical frequency spectrum under normal operating
condition; any deviation from this is an indication of an abnormality. Certain types of
faults may even have a characteristic signature in the spectrum that can be used for fault
isolation.

Statistical methods

Statistical Process Control (SPC) is the use of statistical techniques to analyze a process
or its outputs in order to take appropriate actions to ensure stable levels of quality within
the process. The statistical methods are intended to provide an early detection. The
calculation provides an early warning indicator of the effects on the process, allowing
for correction at the best possible moment. For example, an instrument is used to take
measurements on a certain quality variable. If the measurement is within the control
limits, it is assumed that the instrument is working appropriately. If the measurement
falls outside the control limits, the instrument is statically out of control. The majority
of our processes are multivariate in nature, then a Multivariate SPC (MSPC) are to be
used. Refer to (Basseville and Nikiforov, 1993) for more details on statistical methods.

2.4.2 Knowledge-based approaches

Fault diagnosis is a complex decision-making process which is a typical area of artificial
intelligence. The knowledge type that are used to link observations with solutions can
be classified into two forms: methods based on human experience and methods based on
sets of cases with known solutions as their primary knowledge source.

Methods based on (direct encoding of) human experience

In many domains human experts are quite successful in finding cost-effectively solution
to a diagnostic problem. However, such experts are usually rare and not always available.
Since the beginnings of knowledge-based systems it has been a primary goal to capture
their expertise in “expert systems”. The three main problems were (1) finding effective
representations of the knowledge being close to the mental models of the experts, (2)
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organizing the process of transferring the knowledge from the expert into the system and
(3) to process the encoded knowledge to infer the adequate solution.

During the last 30 years, a variety of knowledge representations and corresponding
problem solving methods with many variants have been developed, each with different
drawbacks as well as advantages and success-stories. The best process of knowledge
transfer is still controversial. While some argue for a knowledge engineer as mediator
between expert and system, others propagate knowledge acquisition tools enabling ex-
perts to self-enter their knowledge. The latter is usually much more cost effective, but
requires tailoring the knowledge representations and the acquisition tools to the demands
of the experts (Gappa et al. 1993). If experts switch between different methods, they
should be supported in reusing as much knowledge as possible (Puppe 1998). In this
section, we present a variety of representations for direct encoding of human expertise al-
lowing for rapid building of diagnostic systems (for more details, see (Puppe et al. 1996)).

• Decision trees, where the internal nodes correspond to questions, the links to answer
alternatives, and the leaves to solutions.

• Decision tables consisting of a set of categorical rules for inferring solutions from
observations.

• Heuristic classification using knowledge of the kind ”if<observations> then<solution>
with <evidence>”, the latter estimated by experts. Solutions are rated according
to their accumulated evidence.

• Set covering or abductive classification using knowledge of the kind ”if <solution>
then <observation> with <frequency>”, the latter estimated by experts. Solutions
are rated according how well they cover (explain) the observed symptoms.

Methods based on knowledge

A diagnostic case consists of a set of observations and the correct solution, e.g. a set of
attributes (A) and values (V) together with a solution (S), i.e. ((A1 V1) (A2 V2)... (An
Vn) S) or in vector representation with a fixed order of attributes: (V1 V2 ... Vn S). A
large set of cases with a standardized and detailed recording of observations represents a
valuable source of knowledge, which can be exploited with different techniques:

• Statistical/probabilistic classification (Bayes’ Theorem, Bayesian nets) using knowl-
edge about the a-priori probability of solutions P(S) and the conditional probability
P(O/S) of observation O if solution S is present, where the probabilities are calcu-
lated from a representative case base. (Pearl 1988; Russell and Norvig 1995, Part
V).

• Neural classification using a case base for adapting the weights of a neural net
capable of classifying new cases. Important net topologies with associated learning
algorithms for diagnostics are perceptrons, backpropagation nets and Kohonen nets,
(Kulikowski and Weiss, 1991).
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• Inductive reasoning techniques try to compile the cases into representations also
used by experts to represent their empirical knowledge (methods based on human
experience). Therefore, complement those techniques of knowledge acquisition. The
most popular learning methods are the ID3-family (Quinlan, 1997) and the star-
methods (Mitchel, 1997).

• Diagnosis using a case base together with knowledge about the domain encoded
in the definition of a vocabulary, a metric between cases to retrieve them and for
reuse or update them to infer a new diagnosis. In case-based reasoning methods
the objective is to reason based on experience. It requires a memory model for
representing, indexing and organizing past cases. When confronted with a new
case, indices are used to retrieve similar past cases from memory and to decide which
case is the closest one to the new case. When old cases do not perfectly match to
the system to be diagnosed, their solution must be adapted to infer an appropriate
diagnosis. The new diagnosed case can be added to the memory providing a learning
capability to the system.

2.5 Problems in Fault Detection and Diagnosis

2.5.1 Knowledge acquisition and representation

A perfect analytical model represents the deepest and most concise knowledge of the
process. However, analytical models are hardly available, in which case knowledge-based
models are a realistic alternative allowing one to exploit as much knowledge about the
process as available. An additional difficulty in knowledge-based methods is to translate
the numerical values (data coming from the process) to qualitative data (symbols) that
can be used with these techniques. Different techniques for converting numbers in symbols
have been developed (Dague, 1995; Colomer, 1998; Travé-Massuyès and Dague, 2003).

2.5.2 Measurement noise

Monitored plants are subjected to random noise. As unknown inputs, these noises affect
the residuals and interfere with the detection and isolation of faults. In general, this
situation requires a decision process which involves testing the residual against thresholds
or uncertainty regions. In many practical situations, only limited information is available
a priori concerning the noise and therefore the thresholds have to be chosen empirically.

If the statistical properties of the noise, together with the way it affects the plant
output are known, the fault detection problem can be formulated in the framework of
statistical decision making. Usually, it is reasonable to assume that the residuals are the
summation of two components, one caused by the noise (which is random with mean zero)
and other by the faults (which is deterministic but unknown). Hence, the residuals in
presence of a fault may be considered as random variables which mean is determined by
the fault. The fault detection problem is then posed as testing for a zero mean hypothesis
while the isolation problem becomes a decision among a set of alternative hypotheses.
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The design of residuals insensitive to noise and, at the same time, that guarantees
a low false alarm and a low missed detection rate is a challenging problem which has
motivated a huge number of works in the statistic field (Basseville and Nikiforov, 1993;
Nikiforov et al., 1996; Brodsky and Darkhovsky, 2000; Gertler, 1998).

2.5.3 Modelling uncertainties

As it has been mentioned above, there are techniques for fault diagnosis that use a model
of the system to be diagnosed. As well there are techniques that use a qualitative model
(from the AI community) or analytical model (from the FDI community). As these models
are an abstraction of the real system, it is common that they have errors or uncertainties.

In some cases, it is possible to have an accurate model of the system but it is too com-
plex and a simplified one is more appropriate for a task to be undertaken (fault diagnosis)
(Bonarini and Bontempi, 1994). This happens, for instance, when a non-linear system is
linearised around an operating point and, therefore, a linear model is used to represent
it. This happens, also, when a low order model is used to represent the behaviour of a
higher order system in a range of frequencies.

However, in many cases there are uncertainties or imprecisions that make it difficult, if
not impossible, to obtain accurate models. Some sources of this inaccuracy of the models
are: physical phenomena that are difficult to identify or predict; the parameters of the
system can change across time due to unknown, unpredictable or difficult phenomena;
the knowledge of the system is not complete because the real system can not be observed
or does not exit yet.

The effect of modeling uncertainties on the residuals was examined in (Gertler et al.,
1990; Gertler, 1998); where modeling uncertainties are considered as multiplicative distur-
bances. When uncertainties can not be represented with quantitative models, i.e. models
in which the parameters are real numbers, other kind of modeling is needed to consider
these uncertainties. Some types of modeling that can represent the uncertainty of the sys-
tems are qualitative reasoning (Kuipers, 1993; Kuipers, 2001), multimodeling (Bonarini
and Bontempi, 1994; Chittaro et al., 1993), interval models (also called semi-qualitative
or semi-quantitative modeling) (Armengol, 1999).

2.5.4 Time misalignments

Due to the growing complexity and spatial distribution of automated systems, commu-
nication networks have become the backbone of most control architecture. As systems
are required to be more scalable and flexible, they have additional sensors, actuators and
controllers, often referred to as field (intelligent) devices (Lee et al., 2001; Staroswiecki,
2005). Networked Control Systems result from connecting these system components via
a communication network such as CAN (Controller Area Network), PROFIBUS or Eth-
ernet.
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An increasing amount of research addresses the distributed control of inter-connected
dynamical processes : stability and control (Dong et al., 2004; Montestruque and Antsak-
lis, 2003; Montestruque and Antsaklis, 2004), decision, coordination and scheduling (Tip-
suwan and Chow, 2003; Walsh and Hong, 2001), diagnosis of discrete event systems (Nei-
diga and Lunze, 2005), and fault tolerance (Jalote, 1994; El-Farra et al., 2005; Patankar,
2004). However, only a few studies of the impact of the communication network on the
diagnosis of continuous systems have been recently published (Zhang et al., 2004; Ding
and Zhang, 2005; Fang et al., 2006).

In Model-based Fault Detection and Isolation (FDI), a set of residuals that should be
ideally zero in the fault-free case and different from zero in the faulty case, are designed
(Chen and Patton, 1999; Gertler, 1998; Blanke et al., 2003). However, in practice, residu-
als are different from zero, not only because of measurement noise, unknown inputs, and
modelling uncertainties but also because of transmission delays. Since no network can
communicate instantaneously, data which are used in the residual computation do not
represent the state of the system at the time of the computation. Instead, they represent
the state of the system at some (often unknown) time prior to the computation. More-
over, each variable being possibly transmitted under a different transmission delay, the
whole set of data that are used in the residual computation may even not be consistent
with the system state at any moment prior to the computation. Therefore, residuals that
should theoretically be zero in the non faulty case might create false alarms as the result
of transmission delays.

See for instance Figure 2.4 which represents a typical PROFIBUS network, composed
of several controllers, input/output cards and a computer acting as an OPC (OLE for
process control) server operating in an Ethernet network. An OPC-client computer per-
forms the monitoring and FDI tasks.

Profibus

-Analog I/O
-Discrete I/O

Controller II

Communication
delay

Communication
delay

-Profibus card
-Server (OPC)

-Client (OPC)
-SCADA
-FDI applic. Network

(Ethernet)

Controller IIIController I

Figure 2.4: Data network delays in control systems

PROFIBUS interface modules transmit signal values, coming from the I/O card and
controllers to the OPC server. The access to process data is performed by supervisory
applications also under a client-server strategy with this OPC-server. Network and bus
performances related to speed, availability of devices and parameter configuration of the
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field bus, location of sensors, conversion speed, sample or actualization rates and so on
are factors than can influence the computation of residuals in a real application. One of
the challenging problems that has motivated this work is the effect of transmission delays
in the computation and evaluation of analytical redundancy based residuals.

Figure 2.5: Two sequences that represent the measurements given by two sensors that are
measuring the same process variable. A) erroneous comparison due to time misalignment;
B) intuitive alignment feature

The comparison and matching of temporal signals (process measurements) for per-
forming fault diagnosis can be also affected by the time misalignments within the mea-
surements. For instance, in data-driven methods, as case base reasoning (knowledge
based), a representative historical database of signals (cases) that have been previously
analysed and suitably annotated, are used to identify the root cause of a change (fault)
and develop an effective remedy (diagnosis). A difficult problem whit this method is to
locate an instance (case) in the historical database (case base) that be the most similar to
the specific data. Pattern classification or signal comparison is a popular method for find-
ing similar signals in historical data. The challenge in this approach results from the fact
that, because of the nature of industrial process, signals that result from two instances of
the same change are not exact replicates. In others words, there are deviations between
the two instances. The differences could be in the length (total time) of the two signals or
in the magnitudes or profiles of the variables. Therefore, direct comparison of two signals
would be incorrect, because there is no guarantee that the corresponding segments of the
signals are being compared.
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Figure 2.5A) depicts two sequences that represent the measurements given by two sen-
sors that are measuring the same process variable. Notice that while the sequences have
an overall similar shape, they are not aligned in the time axis. Therefore, the direct com-
parison (Euclidean distance) of the two sequences for diagnosis purpose can be affected by
the misalignment of the signals. Euclidean distance, which assumes the ith point on one
sequence is aligned with ith point on the other one, will produce a pessimistic dissimilarity
measure. The vertical lines denote the corresponding ith points that are being compared.

Figure 2.5B) shows the intuitive alignment when performing a nonlinear alignment for
the signal comparison; oblique doted lines denote the corresponding ith points that are be-
ing compared. Consequently, robust yet sensitive methods for comparing unsynchronized
signals are an active area of research.

2.6 Conclusions

The basic aim of this chapter is to give some definitions and terminologies used in the field
of fault detection and diagnosis and to review various approaches to fault diagnosis from
different perspectives. Towards that goal, we have classified the different methods into
two categories: (i) model-based methods (considering just analytical models); and (ii)
non model-based methods, subdivided in: signal-based approach and knowledge-based
approach.

We also present some problems that appear when performing fault diagnosis. Namely,
knowledge acquisition and representation, noise in the measurements, model uncertainties
and time misalignments.

The problem of time misalignments within the process variables has motivated this
thesis, therefore the next chapter is devoted to explain its causes and effects in fault
detection and diagnosis.
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Chapter 3

Time Misalignments in Supervisory
Systems

3.1 Introduction

The rapid development of communication technique promotes the widespread applications
of networks, due to their flexibility, easy maintenance and low cost, building complex
large-scale or teleautomatic systems. Instead to point-to-point connections, now sensors,
actuators, as well as control and supervision stations exchange information trough net-
works which may also be used to other aims.

In Model-based Fault Detection and Isolation (FDI), a set of residuals that should be
ideally zero in the fault-free case and different from zero, in the faulty case are designed.
However, in practice, residuals are different from zero, not only because of measurement
noise, unknown inputs, and modelling uncertainties but also because of transmission de-
lays. Since no network can communicate instantaneously, data which are used in the
residual computation do not represent the state of the system at the time of the com-
putation. Instead, they represent the state of the system at some time prior to the
computation. Moreover, each variable being possibly transmitted under a different trans-
mission delay, the whole set of data that are used in the residual computation may even
not be consistent with the system state at any moment prior to the computation. There-
fore, residuals that should theoretically be zero in the non faulty case might create false
alarms as the result of transmission delays.

Regarding the non model based techniques, that use the comparison and matching
of signals for performing fault diagnosis, they can be affected by the unmatching of the
signals due to a distortion in the time axis of one or both signals (time misalignments).
For instance, in data-driven methods, a representative historical database of signals that
have been previously analysed and suitably annotated, are used to identify the root cause
of a fault . A difficult problem whit this method is to locate an instance in the historical
database that be the most similar to the specific data. Pattern classification or signal com-
parison is a popular method for finding similar signals in historical data. The challenge
in this approach results from the fact that, because of the nature of industrial process,
signals that result from two instances of the same change are not exact replicates. In
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others words, there are deviations between the two instances. The differences could be in
the length of the two signals or in the magnitudes or profiles of the variables. Therefore,
direct comparison of two signals would be incorrect, because there is no guarantee that
the corresponding segments of the signals are being compared.

This chapter is devoted to formulate the problem of time misalignment and commu-
nication delays from FDI and non model based fault diagnosis perspectives. It also gives
the related work done in both direction. This chapter is organized as follows: Section 3.2
defines the concept of time misalignments and presents potential sources of time delays
that produce time misalignments. Different models of network delays are given in Section
3.3. In Section 3.4 the related work of FDI in networked control systems (NCS) is pre-
sented. The effects of time misalignments in model based and non model fault detection
and diagnosis are provided in Sections 3.5 and 3.6, respectively. Finally some concluding
remarks are given in Section 3.7.

3.2 Time Misalignments

A time-series (or time sequence) is often defined as a series of values of a variable taken in
successive periods of time. The instants in time at which the measurements are taken are
known as time points. The length between time points can vary or be constant (sampling
interval).

Time misalignment is the unmatching of two time-series due to a distortion (ex-
pansion or compression) in the time axis of one or both time-series. Figure 3.1 depicts
two similar time-series whit the same mean and variance; note that while the sequences
have an overall similar shape, they are not aligned in the time axis.

In process monitoring and fault diagnosis we deal with time-series (signals) generated
by measurements given by the sensors located at the monitored system, this time-series
are often affected by time misalignments. This time misalignments are caused by the
delays within each measure (sample) given by the sensors, (Llanos et al., 2005).

3.2.1 Causes of time misalignments

Potential sources of time delays, or asynchronous availability of data, that produce time
misalignments are:

Figure 3.1: 1) Two similar time-series with the same mean and variance, 2) a possible
feature alignment
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Different time response among sensors

For example, pH-meters, temperature sensors or flowmeters have different time constants.
This time delay is intrinsic to the measurement process.

Data communications

The delays on data communication system depend on the number of devices to be con-
nected, the data transmission rate, throughput and reliability. Depending on the tech-
nology the time delays can be predictable or unpredictable. For instance, in a Profibus
the major time delay is bounded from a parameter called (TTR) -Target Rotation Time-
(Vitturi, 2000). While for Ethernet the time delay is variable and cannot be predicted in
advance due the interaction of several protocols, collisions and the traffic congestion.

Analog to digital conversion

Converters speed is not a real limitation. Nevertheless, some multichannel devices with
a great number of multiplexed inputs could show significant limitations for applications
operating at high sample rates.

Synchronous availability of data in remote applications

In a clients/server communication strategy there is not a certainty that the server can
respond to synchronic petitions of clients with the same periodicity. In fact the server
serves the last stamped data. This can cause the reception of repetitive data in a short
period of time or misalignments in multiple-synchronous petitions.

Operative System (OS) latency

The minimum time needed for an operative system to serve interruption and to serve tasks
under time constraints can be also a limitation. This consideration can be important when
multiple devices (multiple OS) interoperating at the same time are coordinated to execute
sequential tasks.

Sensor location

The configuration of the process itself may also give rise to time delay. Figure 3.2 shows
one such example: the temperature of fluid in the tank is measured some distance along
an outlet pipe rather than in the tank itself. If the temperature of the tank is changing
a finite period of time will be required for fluid to be transported from the tank to the
sensor. This time delay is intrinsic to the measurements process.

Table 3.1 summarizes typical time delays, (Trevelyan, 2004).
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sensor

fluid in tank

d

Figure 3.2: Tank with and temperature sensor. The placement of the sensor will result in
an intrinsic time delay in measuring the tank fluid temperature, depending of the outflow
rate

Table 3.1: Typical time delays, (Trevelyan, 2004).

A/D Conversion 1 µs (1MHz sampling rate)
to 10 ms (1kHz sampling rate)

Memory access 0.1-10 µs (depending on
bus traffic, memory access delay

O.S. latency 5-50 µs (real time O.S.)
1-50 ms (Windows)

Commun. latency 1 ms (local LAN) to
(Ethernet) 1 s (between continents )
OPC server update 1 -2 s
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3.3 Modelling of Network Delays

Delays have different characteristics depending on the network hardware and software.
The network delay is typically varying due to varying network load, scheduling policies in
the network and the nodes, and due to network failures. (Nilsson, 1998) proposed three
models of the network delay:

• Constant delay,

• Random delay, which is independent from transfer to transfer

• Random delay with probability distributions governed by an underlying Markov
chain (Grinstead and Snell, 1997).

3.3.1 Network modelled as constant delay

The simplest model of the network delay is to model it as being constant for all trans-
fers in the communication network. This can be a good model even if the network has
varying delays, for instance, if the time scale in the process is much larger than the delay
introduced by the communication. In this case the mean value or maybe the worst case
delay can be used in the analysis. If this is not the case, wrong conclusions can be drawn
regarding system stability and performance.

One way to achieve constant delays is by introduction of timed buffers after each
transfer. By making these buffers longer than the worst case delay time the transfer time
can be viewed as being constant. This method was proposed in (Luck and Ray, 1990).

3.3.2 Network modelled as delays being independent

Network delays are usually random. The network delay can have several sources, for in-
stance: waiting for the network to become idle; if several messages are pending, the wait
can include transmission of the waiting messages; if transmission errors occur, a retrans-
mission can be needed; in some networks collisions can occur if two nodes try to send at
the same time, the resolution of this can include a random wait to avoid a collision at the
next try.

As the activities in the system usually are not synchronized with each other, the num-
ber of the above listed delay causes that will occur is random. To take the randomness of
the network delays into account in the model, the time delays can be modelled as being
taken from a probabilistic distribution. To keep the model simple to analyze one can
assume the transfer delay to be independent of previous delay times. In a real communi-
cation system the transfer time will, however, usually be correlated with the last transfer
delay. For example, the network load, which is one of the factors affecting the delay,
is typically varying with a slower time constant than the sampling period in a control
system, i.e., the time between two transfers.
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3.3.3 Network modelled using Markov chain

To model phenomena as network queues, and varying network loads, our network model
needs to have a memory, or a state. One way to model dependence between samples is by
letting the distribution of the network delays be governed by the state of an underlying
Markov chain. Effects such as varying network load can be modelled by making the
Markov chain do a transition every time a transfer is done in the communication network.
For more details of this model refer to (Nilsson, 1998).

3.3.4 Network model adopted in this thesis

Since in this thesis we are focused in studying the effects of communication delays when
fault detection and diagnosis is performed, the dependency between samples has not be
considered; therefore network is modelled as delay being independent.

The normal operation of the communication network on a given time window [α, β[
can be described by a very simple deterministic model. Namely the maximum delay ∆ is
assumed to be known:

[H0
network =⇒ ∀t ∈ [α, β[ : δ(t) ≤ ∆] (3.1)

⇐⇒
∃ [γ, λ[ ⊆ [α, β[ : δ(t) > ∆ =⇒ H1

network]

where δi ∈ R+ is the transmission delay which is time-dependent, generally is unknown
and it is taken from a probabilistic distribution such a uniform or Poisson distributions
(Johannessen, 2004).

3.4 Fault Diagnosis of Networked Control Systems

The purpose of this section is to present the related work of fault detection problem of
networked control systems. Attention is focused on fault detection systems in case of time
delays due to data transmission and in case of missing measurements due to data dropout.
For more details of main ideas and result on fault diagnosis of NCS refer to (Fang et al.,
2006; Fang et al., 2007).

3.4.1 Delays in networked control systems

Figure 3.3 depicts the block diagram of a networked control system and the delays that
affect the system. There are essentially three types of delays: communication delay
between the sensor and the controller, τ sc; communication delay between the controller
and the actuator, τ ca; and computational delay in the controller, τ c. τ c is typically
very short compared to τ sc and τ ca, therefore this delay is insignificant in many control
techniques and could be included in τ ca, (Nilsson, 1988). The sum of these three delays
is referred to as the control network-induced delay.
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Figure 3.3: Delays in NCS: communication delay between the sensor and the controller,
τ sc; communication delay between the controller and the actuator, τ ca; and computational
delay in the controller, τ c which could be included in τ ca, (Nilsson, 1988).

A Networked Control Systems can be modelled by:

ẋ(t) = f(x(t), u(t− τ ca), ϕ(t)) (3.2)

y(t) = g(x(t), u(t− τ ca), ϕ(t)) (3.3)

ŷ(t) , y(t− τ sc) (3.4)

where ŷ(t) is the most updated output received by the controller.

It is evident that the networked-induced delay in NCS could influence the performance
of traditional fault detection systems. For example, in (Ye et al., 2004; Ye et al., 2006) it
is shown that due to the influence of the network-induced delay, an observer based fault
detection system designed for a non-networked control system can’t fulfill the basic re-
quirement on residual generation anymore when it is used for a NCS, i.e., with the delay,
the residual signal of a traditional residual generator will not be able to be decoupled
from the control input any longer. (Sauter and Boukhbza, 2006) also studied the effect
of unknown networked induced delays on conventional observer based residual generator.
It is shown that the detection performances may be reduced due to the sensitivity of the
residuals to the delays.

The effect of communication delay depend upon the communication topology. In
distributed control systems the FDI unit can be located in different forms:

• located at the same node of the controller (Shanbin et al., 2006; Zhang and Ding,
2007). In this configuration the residual generator can directly obtain the control
input u(t) from the controller and it must get access to the measurement y(t) through
the network. Therefore residual will be affected just by the delay τ sc.

• the FDI unit can be implemented as an algorithm in one node of the network
(Llanos et al., 2007), see Figure 3.4. In this structure the residual computation can
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Figure 3.4: Structure adopted in this thesis: the FDI unit of the NCS is placed in a
remote node.

be affected by the communication delay between the sensor and the FDI node, δsfdi;
and the communication delay between the controller and the FDI node, δcfdi.

• and even, if we are dealing with large interconnected systems, the residual compu-
tation algorithm can be implemented following different architectures: centralized,
decentralized or autonomous distributed, (Sauter et al., 2006).

This thesis is focused on the fault detection and diagnosis of NCS with not only
network delays but also data dropout. In this thesis the FDI unit has been imple-
mented as an algorithm in one node of the network, see Figure 3.4. Section
3.5 presents in more details the problem formulation of communication delays in residual
computation under above mentioned implementation.

3.4.2 Related works in Fault Diagnosis of Networked Control
Systems

In most of the related works the NCS were modelled as different simplified time-delay
systems. Based on these models, many existed results, such as state observer and filtering
theory, developed originally for time-delay systems could be utilized for fault diagnosis of
NCS. Despite we do not use time-delay systems models in this thesis, related
works are here presented.

Approaches based on state estimation and observer theory of time-delay sys-
tems

In this approaches the NCS model given by equation (3.2 and (3.4) is modified in order
to take into account the delays in the state vector,x(t):



3.4. Fault Diagnosis of Networked Control Systems 51

ẋ(t) = f(x(t− νi), u(t− τ ca), ϕ(t)) (3.5)

y(t) = g(x(t− νi), u(t− τ ca), ϕ(t)) (3.6)

ŷ(t) , y(t− τ sc) (3.7)

where νi denotes time delays in the state.

The work by (Yang and Saif, 1998) is the first paper to deal with the fault detection
problem for time delay systems. A reduced-order unknown input observer was proposed
to detect and identify the actuator and sensor faults for a class of state-delayed dynamic
systems, in which the faults as well as other effects such as disturbances and higher-order
nonlinearities were considered as unknown inputs. With some assumptions on the struc-
ture of system and distribution matrices, the completely unknown input decoupling from
the residual is achieved.

In (Ding et al., 2002), a weighting transfer function matrix was first developed to
describe the desired behaviour of residual respect to fault, and the observer-based fault
detection filter for a class of linear systems with time-varying delays was designed in
such a way that the error between the generated residual and fault (or, more generally
weighted fault) is as small as possible in the sense of H∞ -norm. The designing of the
observer-based fault detection filter was then formulated into an H∞ - model matching
problem and, with the aid of an optimization tool, such as the linear matrix inequality
technique, the problem has been solved.

The work in (Zhong et al., 2005) dealt with the fault detection problem for linear sys-
tems with L2 -norm bounded unknown input and multiple constant time delays. Observer-
based fault detection filter has been developed such that a robustness/sensitivity based
performance index was minimized. The key idea of this study is the introduction of a
new fault detection filter as residual generator and the extension of an optimization fault
detection method for linear time invariant systems in (Ding et al., 2000) to the time-delay
systems. A sufficient condition to the solvability of fault detection filter has been derived
in terms of Riccati equation and a solution has been obtained by suitably choosing of a
filter gain matrix and post-filter.

In (Zhong et al., 2004), the above mentioned optimization fault detection approach of
(Ding et al., 2000) has been further modified to a class of neutral time-delay systems.

With a structure restriction on fault distribution, the work by (Jiang et al., 2002a;
Jiang et al., 2002b; Jiang et al., 2003) developed an adaptive observer to the fault iden-
tification for both linear systems with multiple state time delays and a class of nonlinear
systems

More recently, a new adaptive observer was proposed for the robust fault detection
and identification of uncertain linear time-invariant systems with multiple constant time-
delays in both states and outputs by (Jiang and Zhou, 2005).
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In (Zheng et al., 2003b) they regard NCS as a sampled-data control systems with
time-delays and set up its mathematical model. By constructing a memoryless reduced-
order fault observer (Trinh and Aldeen, 1997), they achieve the fault detection of NCS.
This observer-based fault detection approach for NCS is only serving as typical example.

With different assumptions and simplified systems models of NCS, variety existed
works related to state estimation and observer for time-delay system can be extended to
or used for NCS, and then for fault diagnosis algorithms for NCS were developed, such as
the results presented in (Xie et al., 2005; Zheng et al., 2003a; Zheng et al., 2004; Zheng
et al., 2005).

(Ding and Zhang, 2005) proposed an advanced observer-based scheme for the monitor-
ing of distributed networked control systems. They do not attack directly the problem of
delays but they consider that if the network load is minimised then the data transmission
delays are reduced. Consequently, they design a two-level monitoring system. For each
subsystem, a fault detection unit based on observer is embedded, which only makes use of
local control input and measured output signals. In the global level, a central monitoring
system is designed, which satisfies the required monitoring performance. Instead of col-
lecting measured output signals from all subsystems, the inputs to the central monitoring
system are the residual signals provided by the local fault detection units. In this way, a
quantization can be used for transmission of signals. A reduced data transmission is thus
achieved and the data transmission delays are expected to be smaller.

Approaches based on filtering

In this approaches the deterministic system model:

ẋ(t) = f(x(t), u(t), ϕ(t)) (3.8)

y(t) = g(x(t), u(t), ϕ(t)) (3.9)

is modified. (Ye et al., 2006) show that the unknown network-induced delay introduces
an unknown additive item h(t) into plant model:

ẋ(t) = f(x(t), u(t), h(t), ϕ(t)) (3.10)

y(t) = g(x(t), u(t), ϕ(t)) (3.11)

Therefore, when the network-induced delay is random, the unknown item h(t) can also
be regarded as a random disturbance. So a natural idea to reduce the influence of this
disturbance is low-pass filtering the residual signal of a traditional generator. However,
the idea could not be realized by only designing a traditional optimal residual genera-
tor first and then adding a low-pass filter to its output, because the optimization of the
traditional residual generator does not mean that the new system consisting of it and a
post-filter is still optimal. So they consider both parts of the new system (i.e. the residual
generator and the low-pass filter) when designing the fault detection system.
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A robust fault isolation filter for networked control systems with network-induced
delays and multiple faults has been designed in (Shanbin et al., 2006). Where the com-
munication delay between the sensor and the controller, τ sc

k and the communication delay
between the controller and the actuator, τ ca

k are lumped together as a single delay, which
is assumed to be random and governed by a Markov chain. Then, the effect of network-
induced delays introduced into the control loop is regarded as time-varying disturbance.
Based on this model, a fault isolation filter for fault detection of such networked control
systems is then parameterized in order to generate the residuals having directional prop-
erties in response to a particular fault and decoupling from the disturbance.

Based on the study on the frequency domain characteristics of parity space approach
(Ye et al., 2000; Zhang et al., 2006), a new fault detection approach based on parity
space and Stationary Wavelet Transform (SWT) was proposed (Ye et al., 2004), adding
SWT filters to an ordinary parity space based residual generator and considering both,
the residual generators and the filters, in optimal design.

Fault detection of networked control systems with missing measurements

Another problem, close to data delays, also introduced by the networks is the data
dropout. (Zhang et al., 2004) studied the fault detection problem of networked con-
trol systems with missing measurements due to data dropout. First, in order to cope with
missing measurement, the structure of standard model-based residual generator is modi-
fied and dynamic network resource allocation is suggested. The dynamics of the residual
generator is shown to be characterised by a discrete-time Markovian jump linear system.
Then a residual evaluation scheme is developed aiming to reduce false alarm rate caused
by missing measurement. Further, they proposed a co-design approach of time-variant
residual generator and threshold to improve the dynamics and the sensitivity of the fault
detection system to the faults. Related to this work is also the work on filtering in case of
missing measurements. A detailed up-to-date summary of research in this direction could
be found in (Wang et al., 2003).

3.5 Time Misalignments in Residual Computation

3.5.1 Problem formulation

Consider the deterministic system modelled by

ẋ(t) = f(x(t), u(t), ϕ(t)) (3.12)

y(t) = g(x(t), u(t), ϕ(t)) (3.13)

where x(t) ∈ Rn, u(t) ∈ Rr, y(t) ∈ Rm and ϕ(t) ∈ Rq are respectively the state, input,
output and fault vector, and f and g are given smooth vector fields.
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Figure 3.5: Data decomposition in distributed system

Data decomposition in distributed systems

In distributed control systems, the residual computation form is implemented as an algo-
rithm in one node of the network. At each time t its input data are noted as

z(t) ,

(

ū(t)
ȳ(t)

)

where ȳ(t) (and also ū(t)) is the vector obtained by expanding y(t) with its derivatives
ẏ(t), ÿ(t), . . . up to some derivation order.

According to the overall system distributed architecture, z(t) is decomposed into a set
of subvectors zi(t), i ∈ I and the computation form of the residual vector writes

r(t) = Gc (zi(t), i ∈ I) (3.14)

The subvectors zi(t) are such that all variables in zi(t) are transmitted in one single
packet through the communication network. Note that this does not imply that all the
variables produced at a given node are transmitted in one single packet. As shown in
Figure 3.5

z(t) = (zT
1 (t), zT

2 (t), zT
3 (t))T

where z1 is produced and transmitted by node 1 (a smart sensor), while z2 ∪ z3 are
produced by node 2 (a local controller). The data are decomposed into packet z2 and
packet z3 for their transmission through the communication system.

As result, the residual vector (3.14) designed under the assumption of perfect commu-
nication might create false alarms due to transmission delays.
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The incidence of transmission delays

Due to the transmission delays the data zi(t) generated at the production nodes and
the data ẑi(t) available at the residual computation node must be distinguished. One
obviously has

ẑi(t) = zi(t− δi), i ∈ I (3.15)

where δi ∈ R+ is the transmission delay i.e. the data zi was produced at time t− δi, and
it was received only at time t. Transmission delays δi may be time-dependent and they
generally are unknown. The normal operation of the communication network on a given
time window [α, β[ can be described by a very simple deterministic model. Namely the
maximum delay ∆ is assumed to be known:

[H0
network =⇒ ∀i ∈ I,∀t ∈ [α, β[ : δi ≤ ∆] (3.16)

⇐⇒
[∃i ∈ I,∃ [γ, λ[ ⊆ [α, β[ : δi > ∆ =⇒ H1

network]

If communication delays are not taken into account residual computation can be per-
formed as

r(t) = Gc(ẑi(t), i ∈ I) (3.17)

but using data which are taken from the system at different time instants would ob-
viously result in false alarms.

Taking into account communication delays by using future values of the arguments,
as in (3.18), is obviously impossible.

r(t) = Gc(ẑi(t+ δi), i ∈ I) (3.18)

A possible solution for decreasing the false alarms rate due to communication delays
is by increasing the decision threshold, at the cost of reducing the sensitivity to faults.

Equation (3.18) has been used for considering the effect of communication delays in
residual generation. If the analysis of the residual generator want also to be considered,
equation (3.18) can be generated by any observer based residual generator which allows
to control the dynamic of the residual.

In this thesis, two techniques aiming at the minimization of the false alarms caused by
transmission delays without increasing the number of missed detection are proposed and
explained in Chapters 4 and 6, respectively. The first one relies on the explicit modelling
of communication delays and their most likely estimation, and the second one proposes
an optimal dynamic alignment of data in a time window (Dynamic Time Warping).
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3.6 Time Misalignments in Signal Based Fault Diag-

nosis

The time misalignments affect the non model based fault diagnosis particulary on the
techniques that use the comparison and matching of temporal signals for diagnosis pur-
pose.

3.6.1 Problem formulation

In non model based fault diagnosis the deterministic model given by equations (3.12) and
(3.13) can not be considered anymore because function f and g are unknown. The only
information we have from the process are the input u(t) and the output y(t) signals rep-
resented as time-series which are a rich source information that can be used for diagnosis
purpose.

Pattern classification or signal comparison (Colomer, 1998; Webb, 2002) is a popular
method for finding similar signals in historical data. The challenge in this approach re-
sults from the fact that, because of the nature of the industrial processes, signals that
result from the two instances of the same change are not exact replicates. In others words,
there are deviations between the the two instances. The differences could be in the length
(total time) of the two signals or in the magnitudes or profiles of the variables. Therefore,
direct comparison of two signals would be incorrect, because there is no guarantee that
the corresponding segments of the signal are being compared.

Most of algorithm that operate with time-series of data use the Euclidean distance
or some variation. However, Euclidean distance could produce an incorrect measure of
similarity because it is very sensitive to distortions in the time axis (time misalignments),
Figure (3.6) gives an example of time misalignments effects when comparing two time-
series. Therefore, robust yet sensitive methods for comparing unsynchrinised signals are
an active area of research.

3.6.2 Previous work in signal comparison for fault diagnosis

Due to significant advances in data collection and storage, vast amount of historical data
is becoming commonly available. This data is a rich source of information about the
process that can be used to improve plant operation. Multivariate statistics such as prin-
cipal components analysis (PCA) have been widely used for process data classification
and fault detection and diagnosis (Kano et al., 2001; Chen and Liao, 2002; Chiang and
Braatz, 2003). PCA reduces the dimensionality of data with minimum loss of informa-
tion by projecting high dimensional data onto uncorrelated vectors. The projections are
chosen so that the maximum amount of information, measured in terms of its variability,
is retained in the smallest number of dimensions.

(Krzanowski, 1979) defined the PCA similarity factor for measuring the similarity of
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Figure 3.6: Two unsynchronised signals. a) erroneous comparison due to time misalign-
ment; b) intuitive alignment feature

different groups of data. The PCA similarity factor compares the reduced subspaces:

SPCA =
1

k

k
∑

p=1

k
∑

q=1

cos2 θpq (3.19)

where θpq is the angle between the pth principal component of dataset S and the
qth principal component of dataset T . (Raich and Cinar, 1997) used the PCA similarity
factor for diagnosis process fault. (Singhal and Seborg, 2002) modified the PCA similarity
factor by weighing the principal components with the square root of their corresponding
eigenvalue, λ.

Sλ
PCA =

∑k
p=1

∑k
q=1 λ

S
pλ

T
q cos2 θpq
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S
pλ

T
p

(3.20)

A major limitation of the classical PCA-based approaches is that the PCA similarity
factor is only applicable for stationary signals. To extend them to nonstationary signals,
(Srinivasan et al., 2004) proposed a dynamic PCA-based similarity factor (Sλ

DPCA) that
accounts for the temporal evolution of the signal. The main advantage of the PCA-based
methods is their inherent ability to deal with multivariate signals and their low compu-
tational requirements. One strong assumption of PCA-based methods is that all batches
have equal duration and all are synchronized.

Another family of data-driven approaches use signal comparison in order to overcome
this. These approaches are based on the precept that the same types of faults show similar
features in the process signal. This assumption is satisfied by most common normal and
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faulty operating states in processes. By comparing the online signal with a database of
signals corresponding to the different fault classes, any fault in the process can be diag-
nosed. The challenge in these methods is that it is normal for two similar signals to be
slightly different or misaligned and not match each other perfectly. This synchronization
problem can be overcome using Dynamic Time Warping (DTW). In this thesis we pro-
posed a slight modification of DTW in order to adapt it for on-line application. Chapters
6 and 7 are devoted to explain the main particularities of the new algorithm, as well as
its application on a knowledge-based method for fault diagnosis, known as Case based
Reasoning.
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3.7 Conclusions

Control over data networks has many advantages compared with traditional control sys-
tems, such lower cost, greatly reduced wiring, weight and power, simpler installation and
maintenance and higher reliability. However, the data dropout, limited bandwidth, time
delay due to data transmission, asynchronous clock among network nodes and other pe-
culiarities of networks could degrade the performances of the closed-loop systems and
even destabilize them. Above problems have been intensively studied by the control
community in the last several years including: analysis of impact of network on control
performance, design of control algorithm taking into account the above factors and pro-
posal of new network protocol suitable for control. However only a few studies of the
impact of the communication network on the diagnosis of continuous systems have been
published. Namely, in model-based Fault Detection and Isolation (FDI) a set of residuals
is computed, that should be ideally zero in the fault-free case and different from zero, in
the faulty case. However, in practice, residuals are different from zero, not only because
of measurement noise, unknown inputs, and modelling uncertainties but also because of
transmission delays introduced by the communication networks.

Most of the related works attack the fault detection problem of NCS with random
time delay in two ways: extending or directly using the existed state estimation and ob-
server theory of time-delay system to develop dedicated fault detection method for NCS,
and developing fault diagnosis methods which are robust to an unknown item produced
by the network-induced random time-delay. In both cases a modification of the system
model in order to take into account the communication delays is introduced. This thesis
proposes a solution for tame-delays effect in NCS when performing FDI. The solution
doesn’t modify the system model and is based on the explicit modelling of communica-
tion delays and on their best-case estimation. The technique is explained in next Chapter.

Concerning the FDI with data dropout, this thesis proposes a technique for false
alarms reduction due to data dropout, the solution is based on the residual behaviour
and the communication status. The technique is explained in Chapter 5.

Regarding the signal-based fault diagnosis, there are several techniques for comparing
time-series for fault diagnosis purpose, however most of them do not explicitly consider
the problem of time-misalignments. A method known as dynamic time warping (DTW)
allows a nonlinear alignment within two signals. A shortcoming of this method is its
expensive computational cost (in both time and memory) which make it normally useful
only for off-line applications. This has motivated a slight modification of DTW in order
to adapt it for on-line application. Chapters 6 and 7 are devoted to explain details about
DTW, the main particularities of the new algorithm, as well as its application on Case
based Reasoning.
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Chapter 4

Delay Estimation for Residual
Computation

4.1 Introduction

As has been seen en previous chapter residuals that should theoretically be zero in the non
faulty case might create false alarms as the result of transmission delays. The false alarms
rate can be decreased by increasing the decision threshold, at the cost of reducing the
sensitivity to faults. In this chapter, a technique aiming at the minimization of the false
alarms caused by transmission delays without increasing the number of missed detection
is proposed. It relies on the explicit modelling of communication delays, and their most
likely estimation (Llanos et al., 2006; Llanos et al., 2007).

The chapter is organized as follows: Section 4.2 presents the influence of transmission
delays. The decision procedure under unknown transmission delays is analysed in Section
4.3. An optimization technique for the estimation of unknown delays is described in
Section 4.4. Illustrative examples are shown in Section 4.4.1 and 4.5. Finally some
concluding remarks are given in Section 4.6.

4.2 Influence of communications delays in residual

computation

As was stated in section 3.5.1, in distributed control systems, the residual computation
form is implemented as an algorithm in one node of the network.

If communication delays are not taken into account residual computation can be per-
formed as

r(t) = Gc(ẑi(t), i ∈ I) (4.1)

where ẑi(t) is the data available at the residual computation node. Using data which
are taken from the system at different time instants would obviously result in false alarms.

61
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Taking into account communication delays by using future values of the arguments,
as in (4.2), is obviously impossible.

r(t) = Gc(ẑi(t+ δi), i ∈ I) (4.2)

Finally, the only possibility to obtain a feasible algorithm is to ’synchronize’ the data
by using a delay τ as follows :

ρ(t) = Gc(ẑi(t− τ + δi), i ∈ I) (4.3)

where ρ(t) is the residual available at the residual computation node. Note that at a time
t one in fact computes the value that the residual had at time t− τ

ρ(t) = r(t− τ) (4.4)

The delay τ must obviously satisfy

τ ≥ max
i∈I

δi (4.5)

4.3 The decision procedure under unknown trans-

mission delays

When the vector of transmission delays

δ = (δi, i ∈ I)
is perfectly known, the decision procedure:

[H0
system =⇒ r(t) ∈ N (0)] ⇐⇒ [r(t) /∈ N (0) =⇒ H1

system] (4.6)

where N (0) is some neighborhood of zero, can be directly run by choosing

τ = ‖δ‖∞
from (4.4) it follows that

[H0
system =⇒ ρ(t) ∈ N (0)] ⇐⇒ [ρ(t) /∈ N (0) =⇒ H1

system] (4.7)

however when ρ(t) /∈ N (0) the fault detection process is delayed by τ .

When transmission delays are unknown, the decision has to be taken in the presence
of the so-called nuisance parameters δ. From (3.16) and (4.7) the following decision logic
is true

[H0
system ∧H0

network] =⇒ ∃δ : [(‖δ‖∞ ≤ ∆) ∧ (ρ(t) ∈ N (0))] ⇐⇒
∀δ : [(‖δ‖∞ > ∆) ∨ (ρ(t) /∈ N (0))] =⇒ [H1

system ∨H1
network] (4.8)

This decision logic expresses that the non existence of a vector of transmission delays,
δ such that (1) ‖δ‖∞ ≤ ∆ and (2) the residual lies inside N (0) evidences that the system,
the network, or both do not operate properly. Even though both faults in the network
and in the system can be detected, they cannot be isolated from each other in the absence
of extra information.
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4.4 Estimating the transmission delays

Let the system fault detection neighborhood N (0) be defined by

N (0) = {ρ : J (ρ) ≤ σ}
where ∀ρ 6= 0, J (ρ) > 0, J (0) = 0, for example J (ρ) = ρTQρ with Q > 0 and σ > 0

is a given decision threshold. Checking the property H0
system ∧ H0

network can be done by
solving the following optimization problem

δ̆ = arg min
‖δ‖∞≤∆

J(ρ(t)) (4.9)

where ρ(t) = Gc(ẑ(t−τ+δ)). Let τ̆ =
∥

∥

∥δ̆
∥

∥

∥

∞
, ρ̆(t) = Gc(ẑ(t−τ̆+δ̆)) and J̆(t) = J(ρ̆(t)),

then the following interpretation holds :

(1) δ̆ is the ”most likely” vector of admissible delays in the sense that the function
J̆(t) associated with the delayed residual ρ̆(t) is minimum

(2) This residual may or may not be compatible with the hypothesis that the system
operates in a nominal way, and therefore the decision logic (4.8) becomes:

J̆(t) > σ =⇒ H1
system

Finally it should be noted that the estimation of δ̆ by (4.9) implements a sufficient
condition-based decision logic. Indeed, if the minimal value J̆(t) associated with δ̆ does
not satisfy J̆(t) ≤ σ then no other estimation will do. However, the set
{δ : [‖δ(t)‖∞ ≤ ∆] ∧ [ρ(t) ∈ N (0)]} may contain more than one element.

4.4.1 Searching for a minimum

The cost function J(ρ(t)) = J [Gc(ẑ(t− τ + δ))] is in general a nonlinear function of the
adjustable parameters δ, and its minimum can be found using well known iterative search
methods (Reklaitis et al., 1983). However, since the problem is to be solved in real time,
it is of interest to study the conditions under which the estimation δ̆ can be found quickly
and accurately. Note that even when a dynamic feedback control loop is involved, the on-
line search for a minimum, being a part of the Fault Detection and Isolation algorithm, can
be run at a much lower frequency than the one associated with the control computation,
for systems where faults are not critical (should faults be critical, it can be assumed that
the network would have been designed so as to make transmission delays negligible).

Persistent excitation condition

Assuming that all functions involved are differentiable, the solution of the optimization
problem (4.9) satisfies the necessary condition :

∂J(ρ(t))

∂δi
+ µi = 0, i ∈ I (4.10)
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where µi is the Khün and Tücker parameter associated with the inequality constraint
δi ≤ τ . This system can be solved for δ̆ if its Jacobian is not too ill conditioned in a
neighborhood of the optimum. From

∂J(ρ(t))

∂δi
=

[

dẑi

dδi
(t− τ + δi)

]T [

dρ(t)

dẑi

]

dJ(ρ(t))

dρ

it is seen that there are some system trajectories that produce a rank defective Ja-
cobian, namely when zi(t) is constant for some i ∈ I. Therefore for delay estimation, it
is necessary that a persistent excitation condition be satisfied, such that no transmitted
packet of variables is constant over time.

When the persistent excitation condition is not satisfied, the previous estimated value
of the delay can be used to compute ρ(t).

Illustrative example 1

Let

r(t) = y1(t)−
1

2
y2(t)−

1

2
y3(t) (4.11)

be the residual computation form associated with three sensors y1(t), y2(t) and y3(t)
that measure the same variable x(t), but are located in three different nodes. The data
available at the residual computation node are ŷi(t), i = 1, 2, 3, and the actually computed
residual is

ρ(t) = ŷ1(t− τ + δ1)−
1

2
ŷ2(t− τ + δ2)−

1

2
ŷ3(t− τ + δ3)

where δi are the delays through the network and τ is their maximum value (4.5).

Simulations have been performed with x(t) = sin(wt) as the unknown variable evolu-
tion, and with the following transmission model : under H0

network, the transmission delays
are uniformly distributed with a maximal value of ∆ = 5s.

Under H0
system ∧H0

network one obviously obtains ρ (t) = 0 when δi are replaced by their

actual values. These values being unknown, the vector of admissible delays δ̌ is estimated,
by solving the optimization problem

min ρ2(t), under the constraint δi ∈ [0, 5] s (4.12)

Matlab has been used for simulation and optimisation. The function fmincon has been
used for delays estimation. This function uses a sequential quadratic programming (SQP)
method (Reklaitis et al., 1983), and it is suitable for finding a minimum of a constrained
nonlinear multivariable function. Initial condition, δ(0), for the algorithm has been fixed
to zero.



4.4. Estimating the transmission delays 65

In order to study the benefits of delay estimation to optimize residual computation,
neither unknown inputs (noise or disturbances) nor uncertainties have been considered.
The analysis has been focused on the performance of the method to reduce false alarms
in the absence of faults. Figure 4.1 depicts the residual computed without and with the
delay estimation in a fault free situation (r(t) above and ρ(t) below). The value of w was
0.05rad.s−1. It is well known that false alarms can always be avoided (e.g. by never firing
any alarm). This can be seen on the figure, which shows that false alarms are avoided in
both cases, but at the cost of one order of magnitude on the decision threshold ( ±0.19
instead of ±0.02), which means worse performances when faults will be present (larger
missed detection rate, bigger size for faults to be detectable).

It is worth noting that, at particular (periodical) times the residual ρ(t) has significant
deviations with respect to zero. Those times correspond with the maximal and minimal
values of the sinusoidal signal x(t). Indeed, in those cases the small variability of the
signals does no guarantee the fulfillment of the persistent excitation condition. Never-
theless, even in that situation the residual ρ(t) is one order of magnitude smaller than r(t).

The error distributions between actual and estimated delays are depicted in the three
histograms of Figure 4.1. The errors are close to zero, which means a good estimation.
For the first delay δ1, there are less negative errors than for the other delays, this is due
to the fact that δ1 is associated with the largest term in the residual. Consequently, the
use of gradient methods in the optimization procedure forces a faster adjustment. It is
important to remark that the uncertainty reflected in the comparison does not affect the
computation of the residual ρ(t) and it is just relevant when the persistent excitation
condition is not fulfilled.

Local minima

The search for a minimum is started out from an initial guess on the parameters δ(0)

and in general it will converge towards a local minimum. Starting with zero at the very
beginning and taking the last estimate of the transmissions delays as the initial guess for
the next estimation seems to be a good approach when the exploitation conditions of the
network do not change at a faster rate than the rate at which residuals are computed.
Converging towards a local minimum is a source of false alarms, since the estimation δ̆ may
lead to ρ̆(t) /∈ N (0) while the global minimum, say δ∗, would have provided ρ∗(t) ∈ N (0).
In special cases, such as linear systems and convex cost functions, global minima will
be found, but in more general cases, algorithms which avoid getting trapped in a local
minimum are to be used (Goldberg, 1989).

False alarm vs missed detection

Given certain threshold values, statistical hypothesis theory can be applied to predict the
false alarm and missed detection rates based on the statistics of the data. Increasing the
threshold (shifting the vertical line to the right in Figure 4.2a) decreases the false alarm
rate but increases de missed detection rate. Attempts to lower the false alarm rate are
usually accompanied with an increase in the missed detection rate, with the only ways
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Figure 4.1: Residual in fault free situation and comparison of actual and estimated delays

to get around this tradeoff being to collect more data, or to reduce the normal process
variability (e.g., through installation of sensors of higher precision). The value of the type
I error (false alarms), also called the level of significance λ, specifies the degree of tradeoff
between the false alarm rate (Type I error) and the missed detection rate (Type II error)
when deciding the presence of faults in the system.

The proposed optimisation technique aims to minimise the false alarm rate caused by
transmission delays without increasing the missed detection rate. Figure 4.2b) shows the
intuitive idea.

Illustrative example 2

Continuing with example 1, table 4.1 gathers the decision thresholds that must be se-
lected in order to avoid false alarms, for increasing values of w. It is seen that the larger w,
the larger the threshold. Fixing the bandwidth of the communication channel and increas-
ing the frequency of the signal to be transmitted decreases the quality of the transmission.
It can be noted that by choosing larger thresholds to avoid false alarms, one can expect
the missed detection rate during faulty situations to be deteriorated, as can be seen below.

Table 4.2 and table 4.3 present the missed detection rate associated with different
additive faults (bias values of 0.05, 0.1, 0.15 and 0.2) on residuals r(t) and ρ(t) of example
1. And different signal dynamics (w values of 0.05, 0.11, 0.15, 0.21 and 0.31rad.s−1). Note
that in spite of the improvement associated with the estimation of the transmission delays,



4.4. Estimating the transmission delays 67

False
Alarms

Missed
detections

FaultOK

False
Alarms

Missed
detections

FaultOK

b)

a)
Threshold

Figure 4.2: a)Level of significance, missed detections ( Type II error) and false alarms
(Type I error). b)False minimisation without increasing the missed detections.
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missed detections are still possible when using residual ρ (t), but they are much less than
the missed detections associated with residual r(t). In other words, the minimum size of
detectable faults can be reduced using the residual ρ(t) instead of residual r(t) without
increasing the false alarms rate.

4.5 Application to a control position of a DC motor.

Figure A.1 depicts the schematic diagram of a control position for a DC motor. The
aim of this system is to control the position c(t) of the mechanical load according to the
reference position u(t). This system has been taken from (Ogata, 1997).

The transfer function in open loop is:

C(s)

Ev(s)
=

Km

s(Tms+ 1)
(4.13)

where, C(s) = L[c(t)] and Ev(s) = L[ev(t)], ev(t) is the error between the output and
the input positions. Km and Tm are known parameters of the system.

Let

r(t) = Tm
d2c(t)

dt2
+
dc(t)

dt
−Kmev(t) (4.14)

be the residual computation form associated with the system, where c(t) and ev(t) are
assumed to be produced in two different nodes of a distributed system, see Figure 4.4.
The design of this residual is explained in more details in Appendix A.

The data available at the residual computation node are êv(t) and ĉ(t), and the actually
computed residual is

ρ(t) = Tm
d2c(t− τ + δ1)

dt2
+
dc(t− τ + δ1)

dt
−Kmev(t− τ + δ2) (4.15)

where δi are the delays through the network and τ is their maximum value (4.5).

Simulations have been performed with Km = 5.5s−1 and Tm = 0.13s. u(t) has been
modelled as an unit step signal and c(t) as its response.

In order to study the benefits of delay estimation to optimize residual computation,
neither unknown inputs (noise or disturbances) nor uncertainties have been considered.

Table 4.1: Decision thresholds for r(t) and ρ(t).

w1 w2 w3 w4 w5 w6

0.05rad/s 0.11rad/s 0.15rad/s 0.21rad/s 0.26rad/s 0.31rad/s
r(t) ±0.02 ±0.04 ±0.06 ±0.08 ±0.1 ±0.13
ρ(t) ±5 × 10−4 ±0.001 ±0.002 ±0.003 ±0.004 ±0.005
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Table 4.2: Missed detection rate for r(t).

bias w1 w2 w3 w4 w5 w6

value 0.05rad/s 0.11rad/s 0.15rad/s 0.21rad/s 0.26rad/s 0.31rad/s
0.05 17% 98% 93% 100% 100% 100%
0.1 0% 26% 66% 96% 96% 100%
0.15 0% 3% 17% 68% 80% 91
0.2 0% 0% 2% 23% 56% 86%

Table 4.3: Missed detection rate for ρ(t).

bias w1 w2 w3 w4 w5 w6

value 0.05rad/s 0.11rad/s 0.15rad/s 0.21rad/s 0.26rad/s 0.31rad/s
0.05 0% 0% 0% 3% 0% 10%
0.1 0% 0% 0% 0% 4% 0%
0.15 0% 0% 0% 0% 0% 0%
0.2 0% 0% 0% 0% 0% 0%

The analysis has been focused on the performance of the method to reduce false alarms
in the absence of system faults and to reduce the missed detection rates in presence of a
sensor fault.

4.5.1 Considering delays in one signal

Let’s consider that delays are introduced only for the signal c(t), with the transmission
model H0

network ⇐⇒ δ1, where δ1 is uniformly distributed in the interval [0, 0.1] s.

Under H0
system ∧ H0

network one obviously obtains ρ (t) = 0 when δ1 is replaced by its

actual value. When this value is unknown, the admissible delay δ̆ is estimated, by solving
the optimization problem

min ρ2(t), under the constraint δ1 ∈ [0, 0.1] s (4.16)

Matlab has been used for simulation and optimisation. The function fminbnd has
been used for delays estimation. The algorithm is based on the golden section search
and parabolic interpolation (Reklaitis et al., 1983). This function finds the minimum of

u

Figure 4.3: Schematic diagram of a control position for a DC motor.
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Figure 4.4: Block diagram of the system.
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Figure 4.5: Residual in fault free situation and comparison of actual and estimated delays

a function within a fixed interval, the interval fixed for simulation was [0, 0.1].

Fault free situation

Figure 4.5 depicts the residual computed without and with the delay estimation in a fault
free situation (r(t) above and ρ(t) below). Notice that during the transient response,
defined by the interval [0, 1.03]s, the residuals are more sensitive to the actual delays than
during the steady-state time window. It is well known that false alarms can always be
avoided (e.g. by never firing any alarm). This can be seen on Figure 4.5, which shows
that false alarms are avoided in both cases, but at the cost of four orders of magnitude on
the decision threshold (±10 instead of ±1.5x10−3). This means worse performances when
faults will be present (larger missed detection rate, bigger size for faults to be detectable).
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The error distribution between actual and estimated delays is depicted in the his-
togram shown on Figure 4.5. The error is close to zero, which means a good estimation.
The error increases during the steady-state time window because the excitation condition
is not fulfilled, nevertheless it does not affect the computation of the residual ρ(t) as can
be seen on the figure.

Figure 4.6 depicts the quadratic cost function J(ρ(t)) to be minimized at one time
instant, in that case the actual delay was 0.304s, the dot on the figure is the minimum of
the cost function and therefore the estimated delay.

Faulty system situation

Figure 4.7, represents residuals r(t) and ρ(t) in the presence of an additive fault introduced
on the sensor e(t) as a constant 0.2 bias during the time window [0.3, 0.6]s. The effect of
this fault on residual r(t) is not large enough to overpass the thresholds, causing missed
detections during all the fault instants. On the other hand, the lower figure depicts how
ρ(t) allows a proper detection. The error between actual and estimated delays increases
significantly during the fault instants, but it does not affect the detection of the fault.

4.5.2 Considering delays in two signals

Let δ1 and δ2 be uniformly distributed in the interval [0, 0.1] s.

Under H0
system ∧H0

network one obviously obtains ρ (t) = 0 when δi are replaced by their

actual values. When these values are unknown, the admissible delays δ̆i are estimated, by
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Figure 4.7: Residual in faulty situation and comparison of actual and estimated delays

solving the optimization problem

min ρ2(t), under the constraint δi ∈ [0, 0.1] s (4.17)

Matlab has been used for simulation and optimisation. The function fmincon has
been used for delays estimation. This function uses a sequential quadratic programming
method (Reklaitis et al., 1983), and it is suitable for finding a minimum of a constrained
nonlinear multivariable function. Initial condition, δ0, for the algorithm has been fixed at
zero.

Fault free situation

Figure 4.8 depicts the residual computed without and with the delay estimation in a fault
free situation (r(t) above and ρ(t) below).

The comparisons of actual (δ1 and δ2) and estimated (δ̆1 and δ̆2) delays, and their
distributions, are depicted in Figure 4.8. Due to the lack of a time reference it seems that
estimations are not well achieved. In order to introduce a time reference, the estimation
error is computed as the difference between the comparisons of the actual and estimated
delays, see Figure 4.8. The estimation error is close to zero and it increases during the
steady-state time window because the excitation condition is not fulfilled, nevertheless it
does not affect the computation of the residual ρ(t) as can be seen in Figure 4.8.

Figure 4.9 depicts the quadratic cost function J(ρ(t)) to be minimized at one time
instant, in that case the actual delays were δ1 = 0.044s and δ2 = 0.055s, the dot on the
figure is the minimum of the cost function J(ρ(t)) = 1.92x10−9.
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Figure 4.8: Residual in fault free situation, comparisons of the actual and estimated delays
and the estimation error.
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Figure 4.10: Residual in faulty situation, comparisons of the actual and estimated delays
and the estimation error.

Faulty system situation

Figure 4.10, represents residuals r(t) and ρ(t) in the presence of an additive fault intro-
duced on the sensor e(t) as a constant 0.2 bias during the time window [0.3, 0.6]s. The
effect of this fault on residual r(t) is not large enough to overpass the thresholds, causing
missed detections during almost all the fault instants. On the other hand, the lower figure
depicts how ρ(t) allows a proper detection. The estimation error increases significantly
during the fault instants, but it does not affect the detection of the fault.
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4.6 Conclusions

In model-based Fault Detection and Isolation a set of residuals is computed, that should
be ideally zero in the fault-free case and different from zero, in the faulty case. However,
in practice, residuals are different from zero, not only because of faults but because of
measurement noise, unknown inputs modelling uncertainties and transmission delays in
distributed systems. Using these residuals will produce false alarms and missed detections.

In this chapter it is shown that when transmission delays are known, it is possible
to take them into account in the residual computation, thus introducing a delayed but
otherwise unchanged decision and avoiding false alarms due to delays. However, when
delays are unknown it is necessary to estimate them in order to compensate for their effect
in the decision procedure. In this case, based on a very rough model of the delays, the
chapter proposes to address the problem as an optimization problem. A search algorithm
is used for the delay estimation by minimizing the residual under the constraints given by
the transmission model. When the persistent excitation condition is fulfilled, the delays
estimation can be carried out giving reliable results and avoiding false alarms.

The efficiency of the proposed approach is applied on a control position for a DC
motor.
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Chapter 5

Reduction of False Alarms in Fault
Detection of Networked Control
Systems with Data Dropout

5.1 Introduction

In NCS the availability of data is affected by different casuistics depending on network
operation (traffic, polling strategies, hubs and switches delays, etc.) resulting in data
dropout at a specific node where they are analysed. Thus, the residual computation may
be inconsistent with the system state at the computation instant. Therefore, residuals
that should theoretically be zero during the normal operation conditions could generate
false alarms as the result of missing data or dropouts. This effect can be observed as
an increase of false alarm ratios. A common solution in such situations is to increase
the decision threshold according to the variability of the residual observed during data
dropout. The cost of this action is a reduction of the sensitivity to faults and consequently
an increase of missed detections.

In this Chapter, a formulation of how residual must be computed with available data
is proposed. The aim is to reduce the false alarm ratio caused by data dropout without
increasing the number of missed detections.

The chapter is organized as follows: Section 5.2 presents the influence of data dropout
in residual computation. A technique for false alarms reduction due to data dropout is
described in Section 5.3. An illustrative example in a laboratory plant is shown in Section
5.4. Finally some concluding remarks are given in Section 5.5.
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5. Reduction of False Alarms in Fault Detection of Networked Control

Systems with Data Dropout

5.2 The influence of data dropout in residual compu-

tation

Consider the discrete time deterministic system modelled by

x(k + 1) = f(x(k), u(k), ϕ(k)) (5.1)

y(k) = g(x(k), u(k), ϕ(k)) (5.2)

where x(k) ∈ Rn, u(k) ∈ Rr, y(k) ∈ Rm and ϕ(k) ∈ Rq are respectively the state,
control, output and fault vector, and f and g are given smooth vector fields.

Due to delays and possible dropout zi(k), generated at the production nodes, and ẑi(k)
data available at the residual computation node are distinguished and their dependence
with the network communication status represented by:

ẑi(k) =

{

zi(k) if ψi(k) = 0
ẑi(k − 1) if ψi(k) = 1

(5.3)

where ψi(k) is a stochastic variable which represents the data communication status.
ψi(k) = 0 means that data at time k arrives correctly and therefore we are dealing with
updated values zi(k), while ψi(k) = 1 means that data has not properly arrived and
therefore the computation node only can use previous existent data ẑi(k − 1).

In general ψi(k) should be modeled by means of probability distribution Pi. Hence,
the normal operation of the communication network on a given time window [α, β[ can
be described as a discrete deterministic model:

[H0
network =⇒ ∀i ∈ I,∀k ∈ [α, β[ : ψi(k) ∼ Pi] (5.4)

⇐⇒
[∃i ∈ I,∃ [γ, λ[ ⊆ [α, β[ : ψi(k) � Pi =⇒ H1

network]

where H0
network represents the normal operation of the network in terms of Pi and

H1
network is the hypothesis for anomalous behaviour.

5.3 Feasible residual computation

Residual computation computed as:

r(k) = Gc (zi(k), i ∈ I) (5.5)

can only be computed in case of availability zi(k)∀i ∈ I. Instead of this, only a residual
r̂(k) can be computed with available data ẑi(k), at instant k:

r̂(k) = Gc (ẑi(k), i ∈ I) (5.6)
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and that will be the correct residual at k only if ψi(k) = 0 ∀i ∈ I:

r̂(k)

{

= r(k) if ∀i ∈ I ψi(k) = 0
6= r(k) if ∃i ∈ I ψi(k) 6= 0

(5.7)

In case of missing data, the only residual we can compute is with available data. Thus,
under that circumstances we can use the last available residual, ρ(k):

ρ(k) =

{

r(k) if ∀i ∈ I ψi(k) = 0
ρ(k − 1) if ∃i ∈ I ψi(k) 6= 0

(5.8)

This feasible algorithm allows to compute the residual ρ(k) equal to the residual r(k)
only if at the instant k all the measurements zi(k) are available. In case of missing data,
some zi(k) will not be available and, then, the only possibility is to compute the residual
ρ(k) as the residual computed at the previous instant ρ(k − 1). That is, the available
residual ρ(k) will be equal to the residual computed at the last instant in which all the
measurements were available.

ρ(k) = r(k − τ) if ∀i ∈ I ψi(k − k′

) = 0,
τ = min(k

′

) : ψi(k − k′

) = 0
(5.9)

where τ is the number of consecutive instants in which data missing occurs. If at the
instant k − τ the data communication status ψi(k − τ) = 0 ∀i ∈ I, then

ρ(k) = r(k − τ) = Gc(zi(k − τ)) = r̂(k − τ) (5.10)

It is worth to notice that the goal is to compute the correct residual in presence of
missing data instead of minimising its value as has been developed in Chapter 4.

5.3.1 The decision procedure under missing data

When the vector of data communication status

ψ(k) = (ψi(k), i ∈ I)
is perfectly known, the decision procedure:

[H0
system =⇒ (ρ(k) = r(k − τ)) ∈ N (0)] ⇐⇒

[(ρ(k) = r(k − τ)) /∈ N (0) =⇒ H1
system] (5.11)

can be directly run by choosing

τ = min(k
′

) : ψi(k − k
′

) = 0 (5.12)

however when ρ(k) /∈ N (0) the fault detection process is delayed by τ .
When ψ(k) is unknown, the decision has to be done taking into account its behavior

model. Therefore, from (5.4) and (5.11) the following decision logic is true:

[H0
system ∧H0

network] =⇒ ∃τ : [(ψ(k − τ) = 0) ∧
(ψ(k) ∼ P) ∧ ((ρ(k) = r(k − τ)) ∈ N (0))] ⇐⇒

∀τ : [(ψ(k − τ) 6= 0) ∨ (ψ(k) � P) ∨
((ρ(k) = r(k − τ)) /∈ N (0))] =⇒ [H1

system ∨H1
network]

(5.13)
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This decision logic expresses that the non existence of a τ such that (1) there is not
missing data (ψ(k− τ) = 0), (2) the network is in normal operation ψ(k) ∼ P and (3) the
residual (ρ(k) = r(k−τ)) lies inside N (0) evidences that the system, the network, or both
do not operate properly. Even though both faults in the network and in the system can
be detected, they cannot be isolated from each other in the absence of extra information.

Estimating the communication status

As we are dealing with raw data ẑi, the only thing we can do is to use them in order to
determine the value of the communication status, ψ(k). Techniques such as Data Recon-
ciliation (Maquin and Ragot, 1991; Chouaib, 2004) and Sensor Fusion algorithms (Z. Bak
et al., 1998; Blanke, 2005) have been used in order to deal with delayed measurements;
but this techniques use the mathematical model of the system to get their purpose. Since
the idea is to measure the communication status as soon as possible, using mathematical
model of the system may increase the computation time to carry out this task and there-
fore on the fault detection procedure.

The next simple and feasible algorithm is proposed for measuring the communication
status, ψ(k):

ψ(k) =

{

0 if ∀i ∈ I ẑi(k)− ẑi(k − 1) 6= 0
1 if ∃i ∈ I ẑi(k)− ẑi(k − 1) = 0

(5.14)

The algorithm is based on the comparison of the available data, zi(k), with its value
on the previous time instant zi(k − 1). If all the comparison are different to zero, it is
assumed that there is not a data dropout. But if there is one comparison equal to zero,
therefore it is assumed that there has been a data dropout.

It should be emphasized that the decision rule 5.14 obviously does not take into account
the fact that constant data during steady state operation are not associated with data
dropout. However, this does not affect the computation of the residual ρ(k) as it will be
appreciated in the illustrative example.

5.4 Illustrative example: Fault detection in a NCS

laboratory plant

5.4.1 Description of the system

The proposed approach has been used on a level control laboratory plant instrumented
with a networked control and supervisory system. In this plant (See Figure 5.1) a pump
sends liquid from one tank to another one that is placed in a higher level. Water returns
to the first tank by the effect of gravity. A PID control maintains the level in the higher
tank by governing the pump.

The system has been instrumented with sensors (flow-meter and level sensor connected
to a SIEMENS ET200U module) and a PID controller (BÜRKET 1100) accessible both
via PROFIBUS as independent nodes. A FDI (Fault Detection and Isolation) module
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Pomp

Sensor level

Water level

PID

Control signal

Flow-meter

Figure 5.1: Laboratory plant

has been implemented in a SCADA (Supervisory Control and Data Acquisition) system
running in a computer accessing data from an OPC server connected to the PROFIBUS
in a master/slave scheme as depicted in Figure 6.3. Supervisory system can be either
in the local computer, directly connected to the PROFIBUS, or in a remote computer
connected to the OPC server via ethernet.

The FDI system has been designed based on Analytical Redundancy Relations ex-
tracted from the following model of the system:

c1 : Qi = u.Q̄i (5.15)

c2 : Qo = K.
√
h (5.16)

d3 : ḣ =
d

dt
h (5.17)

c4 : ḣ =
1

A
(Qi −Qo) (5.18)

m1 : h = hm1
(5.19)

m2 : Qi = Qi,m2
(5.20)

where Qi, h and u are monitored process variables that represent the input flow, the
level of the higher tank and the control signal, respectively. Qo is the output flow of the
higher tank. Q̄i is a parametrization of the pump. A and K are known parameters relative
to tanks surface and pressure in the pipes. And m1 and m2 are additional measurement
constraints given the a flow-meter and sensor of level.

Applying the structural analysis technique (Blanke et al., 2003) the following compu-
tational forms for the residuals in discrete time are obtained (See details in Appendix B):
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Network

I/O Module

•SCADA
•FDI

PID Controller

Sensor level Flow-meter

Figure 5.2: Process communication

r1(k) = Qi(k)−K
√

h(k)− A(h(k)− h(k − 1)) = 0 (5.21)

r2(k) = u(k).Q̄i −Qi(k) = 0 (5.22)

Since the data available at the residual computation node are identified by û(k),ĥ(k)
and Q̂i(k), the previous equations can be rewritten to show the equations for the vector
of available residual at the computation node when affected by the data dropout, ρ(k):

ρ1(k) = Q̂i(k)−K
√

ĥ(k)− A(ĥ(k)− ĥ(k − 1)) = 0 (5.23)

ρ2(k) = û(k).Q̄i − Q̂i(k) = 0 (5.24)

Remember that although equation forms are the same, meaning is different. r(k) and
ρ(k) only coincide if data available at instant k corresponds exactly with measurements
at this instant.

5.4.2 Dropout communication model

For testing purposes the whole supervisory system (SCADA and FDI) has been imple-
mented in the same computer and a simple module has been added to simulate com-
munication delays and dropout in the reception of data for FDI purposes. This allows
modelling random network delays of a variety of communication systems and improve the
repeatability of results for research purposes. For this example random network delays
have been modelled by a Poisson process and it has been considered that a data dropout
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occurs when delays exceed a predefined threshold. The Poisson distribution, (5.25), is
representative of random network delays introduced by queuing at routers and frame col-
lision on the ethernet networks and the propagation time delays from the PROFIBUS
network (Tipsuwan and Chow, 2003). Since the residual is computed periodically at a
fixed sample time, the dropout threshold has been fixed to be equal to this sample time.
This simple model is enough to demonstrate the benefits of the proposed approach.

P(λ, θ) = λθ e
−λ

θ!
(5.25)

Thus, data dropout is modelled by a Poisson distribution (5.25) expressing the prob-
ability of occurring a number of data dropouts, θ, in a fixed period of time (time window
needed for residual computation) when these events occur with a known intensity or av-
erage rate represented by the mean delay, λ, and under the assumption of independence
among the occurrence of these dropouts. The value of λ used in the experiments has been
estimated from the real system as 0.7. This is an average representative value obtained
with normal traffic load and forcing the cycling service in the PROFIBUS network to 1
second. The same sampling time has been used for the residual computation.

5.4.3 Normal Operation

Several scenarios have been analysed to show the benefits of maintaining the last com-
puted residual when data dropout occurs instead of using delayed data. The first scenario
represents the normal operation conditions. In the second one data dropout is introduced
to the level sensor and its influence in fault detection is evaluated. Finally the presence
of dropouts in two sensors has been considered. Performance has been measured in terms
of false alarms ratios and missed detections.

During normal operation conditions false alarms occurs in transients provoked by
sudden set point variations (step at t=40 s) due to the presence of time shifted variables
involved in the residuals. Figure 5.3 depicts the classical residuals r1 and r2, the tank level
ĥ and the input flow Q̂ during normal situation. Decision thresholds have been determined
in this scenario as x̄ ± 3σ, where x̄ is the mean and σ is the standard deviation. These
fixed values have been used in the next scenarios.

Data dropout in one sensor measurement

Figure 5.4 represents the classical residuals, (r1 and r2), affected by data dropout on the
level sensor without faults. The vertical dotted lines, between the thresholds, represent
the time instances when the data are dropped out. The ratio of false alarms, FART (%),
has increased during the transient and it has been calculated following the expression:

FART (%) =
FAT

TotalT
× 100 (5.26)

where TotalT is the number of evaluations of the residual performed during a time
window T = [Tini, Tend] and FAT is the number of these evaluations resulting in false
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Figure 5.3: Residuals r1 and r2, tank level and input flow during normal situation.

FART FART

r1 22.5% ρ1 4%
r2 12.5% ρ2 2.5%

Table 5.1: False Alarm Ratio in T = [40, 80]s, when dropout occurs in one sensor

alarm. In the example the time window has been fixed to T = [40, 80] s. In order to
consider only the transient behaviour of the system, resulting for r1, the residual affected
by the level sensor, a FART = 20%. However, when the available residual (ρ1) is used
with the same decision thresholds (See Figure 5.5), the false alarm ratio evaluated in the
same time window is reduced to 7.5%.

Usually there exist a trade off between false alarms and missed detections. Missed
detection ratio, MDRT (%), can be computed analogously to equation (5.26) by simply
substituting the number of false alarms by the number of missed detection in the evalua-
tion time window. This aspect has been analysed during the presence of an additive fault
in the flow-meter (a bias of 2.3% from nominal value) has been introduced during the time
window T = [66, 99] s.) as it can be observed in Figure 5.6. False alarms produced by the
data dropout during the transient, induced by the set point change, avoids the perfect
detection of the fault when it appears. Instead of this, when the available residuals (ρ1

and ρ2) (Figure 5.7) are used, false alarms provoked by dropouts are eliminated at same
time that the missed detection ratio maintains practically the same value close to zero.
In fact, additive faults in sensors are not affected by system dynamics and consequently
only small variations on its detection has to be observed in both residuals.

Data dropout in two sensor measurements

In order to test the performance of the proposed method in presence of a bigger number
of dropouts, this effect has been simulated in two sensors simultaneously: level and flow
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Figure 5.4: Residuals r1 and r2 affected by data dropout on the sensor level.
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Figure 5.5: Residuals ρ1 and ρ2 in presence of data dropout on the sensor level.
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Figure 5.6: Residuals r1 and r2 affected by data dropout on the sensor level and a fault
on the flow-meter.
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Figure 5.7: Residuals ρ1 and ρ2 during data dropout on the sensor level and a fault on
the flow-meter
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Figure 5.8: Residuals r1 and r2 in presence of fault in the flow-meter and data dropout
in two sensors.

sensors. A similar effect could be obtained if the λ parameter, in the Poisson distribution,
had been increased. The performance of the use of the available residual instead of the
classical one has been tested in presence and absence of fault in the flow-meter.

Figures 5.8 and 5.9 show the respective behaviours of residuals ri and ρi in the faulty
situation when measurements from both sensors are affected by data dropouts. The effect
of an increase of data dropout is evident in both figures. Evaluation the False alarm ratio
in the same time window, T = [40, 80]s, this increase can be quantified and compared
with respect the previous scenario where only one sensor was affected by data dropout.
Also the benefits of using only available residuals for the detection instead of classical
ones is evident from the ratios in table 5.2.

FART FART

r1 27.5% ρ1 0%
r2 15% ρ2 0%

Table 5.2: False Alarm Ratio evaluated in T = [40, 80]s, when dropout occurs in two
sensors

Similarly to the previous situation the number of missed detection is not affected by
these dropouts.
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Figure 5.9: Residuals ρ1 and rρ2 in presence of fault in the flow-meter and data dropout
in two sensors.
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Figure 5.10: FART (%) and the MDRT (%) of residuals r1(t) and ρ1(t) versus the dropout
rate.

Figure 5.10 depicts the False Alarm Ratio and the Missed Detection Ratio versus the
dropout rate, (FART (%) above and MDRT (%) below). Dropout rate is obtained by
means of the variation of the parameter λ in the Poisson distribution. The value of λ
used in the previous experiments, with normal traffic load, has been estimated from the
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real system as 0.7, therefore the variation of this parameter has been done within the
interval [0, 3]. The FART (%) of residuals r1(t) and ρ1(t), painted in Figure 5.10 in red
and blue respectively, have been computed under normal operation conditions and data
dropouts on the sensor level. The MDRT (%) of residuals r1(t) and ρ1(t), painted in red
and blue respectively, have been computed under the presence of an additive fault in the
flow-meter (a bias of 2.3% from nominal value) and data dropouts on the sensor level.

Notice that residual r1 is very sensitive to the augment of data dropout, false alarms
and missed detection increase considerably as data dropout augment. While the residual
ρ1 evidences a high efficiency because it allows to reduce the false alarms without a con-
siderable increasing of missed detections.
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Figure 5.11: Relation between false alarms and missed detections as the λ parameter is
varied.

Figure 5.11 depicts the relation between false alarms and missed detections as the λ
parameter of the Poisson distribution is varied. In the figure, the asterisks and the green
circles represent the result with residuals r1 and ρ1, respectively. Notice that most of
the green points are located around the top left cite of the figure which means few false
alarms and few missed detection, while several asterisks evidence more false alarms and
more missed detection than the green points.
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5.5 Conclusions

A simple modification for residual computation has been proposed in this chapter in
order to reduce the effect of missing values at the time of residual computation. This
dropout is the consequence of different delays in the reception of data when working with
networked systems. The most evident effect of data droput in the fault detection system
is the increase of false alarm ratios. A simple formulation has been proposed to solve this
problem based on the computation of the residual with the available data at each time
instant instead of using the classical formulation. Principal benefit is the drastic reduction
of false alarm ratio avoiding the classical trade off with missed detection. The efficiency of
the proposed approach is illustrated on a laboratory plant, where the false alarms during
the transient time window were reduced without increasing the missed detections under
different conditions of data dropout.



Chapter 6

Dynamic Time Warping for Residual
Computation

6.1 Introduction

There are numerous studies applied to time series that have been carried out in order
to compare and classify similar patterns by means of a similarity measure. Most algo-
rithms that operate with data time series use the Euclidean distance or some variant.
However, Euclidean distance could produce an incorrect similarity measure because it is
very sensitive to time misalignment. Dynamic Time Warping (DTW) tries to solve this
inconvenient. It uses dynamic programming (Sakoe and Chiba, 1978; Silverman and Mor-
gan, 1990) to align time series with a given template so that the total distance measure
is minimized.

In distributed control systems, the residual computation form is implemented as an
algorithm in one node of the network. As has been studied in previous chapters, residual
computation may be affected by time misalignment caused by communication delays or
even by modelling errors, this will often generate false alarms. Indeed, even under normal
operation, the time misalignment associated with the variables that appear in the com-
putation form produce discrepancies of the residuals from zero.

During faulty situation the system model is affected, producing a discrepancy of the
residual to zero because the consistency between the measurements and system model
is not fulfilled. However, when the discrepancy is produced by communication delays
it could be compensated by means of the correct alignment between the measurements.
This chapter proposes the use of DTW for reduce the effects of time misalignment when
residual computation is performed, (Llanos et al., 2004a; Gamero et al., 2004).

This chapter is organized as follows: Section 6.2 summarises the DTW algorithm.
In Section 6.3, a modification of DTW in order to be applied on-lie is explained. In
Section 6.4 the use of DTW for improving the residual computation in presence of time
misalignment is formulated. Section 6.5 presents the applications in a laboratory plant.
Finally some concluding remarks are given in Section 6.6.

91



92 6. Dynamic Time Warping for Residual Computation

6.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is a technique that finds the optimal alignment between
two time-series if one time-series may be “warped” non-linearly by stretching or shrinking
it along its time axis. This warping between two time-series can then be used to find
corresponding regions between the two time-series or to determine the similarity between
the two time-series.

Let S and Q denote two time-sampled signals

S = [s1, s2, . . . , sn−1, sn] (6.1)

Q = [q1, q2, . . . , qm−1, qm] (6.2)

a m-by-n grid can be developed, as illustrated in Table 6.1. Each grid element, (i, j),
represents an alignment between points si and qj. A warping path W is a sequence of
grid elements that define as alignment between S and Q.

Table 6.1: A warping path in a m-by-n grid.

H
H

H
H

H
H

S1

Q1 m

w1

w2 w3

. .
.

. . .
.

n . wp

W = (i1, j1), (i2, j2), . . . , (ip, jp) (6.3)

max(n,m) ≤ p < m+ n− 1 (6.4)

, where (ik, jk) corresponds to the kth grid element in the warping path. For example,
(i3, j3) in Table 6.1 represents the grid element (2, 3), which implies that s2 is aligned
with q3. For practical reasons, several types of constraints, which concern the warping
path, are introduced in prevalent research works (Sankoff and Kruskal, 1983; Rabiner and
Juang, 1993; Berndt and Clifford, 1994):

• End point constraints: the warping path should start at (1, 1) and end at (n,m).

• Monotonicity and Continuity: given two grid elements in a warping path, (ik, jk)
and (ik+1, jk+1), then 1 ≥ ik+1 − ik ≥ 0 and 1 ≥ jk+1 − jk ≥ 0. This restricts the
allowable transitions of a node to adjacent elements, which located at either east,
south, or south-east with respect to Table 6.1.
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• Global Path Constraint: the global path constraint defines the region of grid
elements that are searched for optimal warping path. The warping path is limited
within the warping (Berndt and Clifford, 1994), which is known as Sakoe-Chiba
Band. For example, the grey are in the Table 6.2 refers to such a band. The
constraint can be defined as follows:

∀(ik, jk) ∈ W, ik − r ≤ jk ≤ ik + r, (6.5)

where r is the width of the warping window. For example, in Table 6.2, r = 2.

Table 6.2: The warping path is restricted in the grey area (the warping window).

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
s1 ↖ . .
s2 . ← . .
s3 . . ↖ . .
s4 . . ← . .
s5 . . ↖ . .
s6 . . ↖ ← .
s7 . . . ↑ .
s8 . . ↑ . .
s9 . . ↖ .
s10 . . ↖

After aligning the sequences S and Q, their similarity can be measured by the cu-
mulative distance of the warping path between them. Each element in the warping path
is associated with the distance, i.e. d(ik, jk) = |sik − qjk

|. The cumulative distance of a
warping path e.g. W = (i1, j1), (i2, j2), . . . , (ip, jp), is defined as follows:

Dc =

p
∑

k=1

d(ik, jk) (6.6)

There are possibility many warping paths. Among all the potential warping paths, an
optima warping path can be chosen such that its cumulative distance, Dc, is minimum.
The corresponding distance is defined as the time warping distance, Dtw.

Dtw(S,Q) = min
∀W

Dc(W ) (6.7)

As there are many warping paths, searching through all of them is computational ex-
pensive. Therefore, dynamic programming approach (Rabiner and Juang, 1993; Yi et al.,
1998) is proposed to find the optimal warping path. The approach is based on the follow-
ing recurrence formula that defines the cumulative distance, γ(i, j), for each grid element.

γ(i, j) = d(i, j) + min γ(i− 1, j), γ(i, j − 1), γ(i− 1, j − 1) (6.8)
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Illustrative example

Consider two sequences:

S = [2, 5, 2, 5, 2, 1] (6.9)

Q = [0, 3, 6, 0, 6, 0] (6.10)

Table 6.3: A cumulative distance matrix for sequences Q and S.

H
H

H
H

H
H

S
Q

0 3 6 0 6 0

2 2 3 7 9 13 15
5 7 4 4 9 10 15
2 9 5 8 6 10 12
5 14 7 6 11 7 12
2 16 8 10 8 11 9
1 17 10 13 9 13 10

by applying the dynamic programming algorithm, we can construct a cumulative dis-
tance matrix as shown in Table 6.3. Each value in the cell represents the cumulative
distance of that cell. The cumulative distance of a cell is the sum of the distance asso-
ciated with it and the minimum of the cumulative distances of its neighboring cells. For
example:

γ(5, 3) = d(4, 3) + min γ(3, 3), γ(4, 2), γ(3, 2) = 6 (6.11)

After filling up the table, the optimal warping path can be found by tracing backward
from the lower right corner, (6, 6), towards the upper left corner, (1, 1). At each cell, we
can choose the previous neighboring cell with minimum cumulative distance.

In the literature review on DTW applications for fault diagnosis we can mention the
work done by (Kassidas et al., 1998a) where they used DTW to synchronise batch tra-
jectories by combining it with multiway principal component analysis/partial lest squares
(PCA/PLS). In (Kassidas et al., 1998b) they reported its use for fault detection and diag-
nosis in continuous chemical process, and (Nomikos and MacGregor, 1994) have reported
its use for batch process monitoring.(Li et al., 2004) combined DTW with wavelet decom-
position for synchronising batch trajectories. The original signals were decomposed into
approximations and details at different scales and matched at each scale separately, using
DTW. The matched signals were used, rather that the reconstructed signals, to obtain
the syncronised signal.

In situations with differences in the magnitude of the two signals, DTW would try to
solve the variability in the the Y -axis by warping the X-axis and, thus, result in inap-
propriate warping. To overcome this limitation, (Colomer et al., 2002) combined DTW
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with qualitative representation of signals. Each signal was first decomposed into episodes,
which provided a higher-level representation of the signal. DTW was then used to find
the optimal match between the episodes of the two signals, and tested for diagnosis of
faults in a level control system.

(Srinivasan et al., 2004) proposed an alternative approach that constraints the search
for the corresponding points of the two signals, based on landmarks in the signal that are
derived from the perspectives of the operators. This constraints were used with DTW.

Above approaches are normally used for off-line applications due to computational
expensive cost (in both time an memory) of DTW algorithm. In this thesis we propose a
slight modification of DTW in order to adapt it for on-line application. Next section is
devoted to explain the main particularities of the new algorithm.

6.3 On-line Dynamic Time Warping

Since DTW is a good method to compensate temporal distortions due to communica-
tion delays, this thesis proposes a modification of the algorithm in order to adapt it for
on-line application. The new algorithm takes advantage of the warping window in or-
der to use it as a sliding window. As main particularities, the two sequences have got
the same length and the new algorithm returns a distance value at every sample time.
So, it is necessary to obtain a finite sequence from original data to calculate new distances.

The algorithm starts at time t = 2 calculating the cumulative distance, γ(i, j) for each
grid element of the squared matrix. Later on, the matrix grows up and only cumulative
distances for new cells in the matrix are calculated. Next, the matrix reaches a maximum
value established according to the warping window width, r, and it becomes a sliding win-
dow. At each sample time oldest cells in the matrix are deleted and cumulative distances
are calculated for empty cells corresponding to the new sample (figure 6.1). A new path
must be found for each window and the distance value is obtained calculating the total
distance according to this new path.
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Figure 6.1: On-line DTW.

Illustrative example

Continuing with the example of the previous section 6.2, let’s apply DTWon−line to
sequences S and Q, with the width of the warping windows r = 2. Table 6.4 shows the
cumulative distance at sample time t = 3, that is when the matrix reaches a maximum
value established according to the warping window width, r = 2, and it becomes a sliding
window.

Table 6.5 shows the cumulative distance matrix at sample time t = 4, grids colored
in red denotes cumulative distances computed previously and which not have to be com-
puted again, oldest cells (computed at t = 1) are not taken into account and cumulative
distances are calculated just for the new values.

Table 6.4: A cumulative distance matrix for sequences Q and S at the sample time t = 3.

H
H

H
H

H
H

S
Q

0 3 6

2 2 3 7
5 7 4 4
2 9 5 8



6.3. On-line Dynamic Time Warping 97

Table 6.5: Cumulative distance values of the sliding window for sequences Q and S at
time t = 4.

H
H

H
H

H
H

S
Q

3 6 0

5 4 4 9
2 5 8 6
5 7 6 11

Tables 6.6 and 6.7 show the cumulative distance values of the sliding windows at time
t = 5 and t = 6, respectively.

Table 6.6: Cumulative distance values of the sliding window for sequences Q and S at
time t = 5.

H
H

H
H

H
H

S
Q

6 0 6

2 8 6 10
5 6 11 7
2 10 8 11

Table 6.7: Cumulative distance values of the sliding window for sequences Q and S at
time t = 6.

H
H

H
H

H
H

S
Q

0 6 0

5 11 7 12
2 8 11 9
1 9 13 10

Notice that the cumulative distance γ(6, 6) = 10 is the same distance value as ap-
plying traditional DTW algorithm. Nevertheless, both methods can not be compared
because DTW needs all the sequences S and Q to find an alignment between them, while
DTWon−line uses subsequences of S and Q to find an alignment within the warping win-
dow. In any case this fact is a way to confirm that the optimization is going in the right
direction.
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6.4 Dynamic Time Warping for improving Residual

Computation in presence of time misalignments

As was stated in section 3.5.1, in distributed control systems, the residual computation
form is implemented as an algorithm in one node of the network.

r(t) = Gc(ẑi(t), i ∈ I) (6.12)

where ẑi(t) is the data available at the residual computation node. Equation (6.12)
can be transformed into an equivalent system:

r(t) = Gc(ẑi(t)) = Ga(ẑi(t))−Gb(ẑi(t)) (6.13)

and since DTWon−line can be applied to a couple of signals a new residual ρ(t) less
sensitive to time misalignments may be computed as follows:

ρ(t) = DTWon-line[Ga(ẑi(t)), Gb(ẑi(t))] (6.14)

A particular case of this solution is the residual computation from observer based tech-
nique, where the system output is compared to estimated output. In this case Ga = y(t)
and Gb = y∗(t), where y(t) and y∗(t) are the real and the estimated output of the system,
respectively.

Illustrative example

Let’s consider a residual:

r(t) = aẑ1 −
√

ẑ2 + bẑ2 + e
√

ẑ1 (6.15)

separating variables z1 and z2 allows to transform residual r(t) into an equivalent
system:

r(t) = Ga(ẑ1)−Gb(ẑ2) (6.16)

where,

Ga(ẑ1) = aẑ1 + e
√

ẑ1 (6.17)

Gb(ẑ2) =
√

ẑ2 − bẑ2 (6.18)

therefore an optimal residual can be computed using DTWon−line

ρ(t) = DTWon-line[Ga(ẑ1), Gb(ẑ2)] (6.19)

Remark 1

DTWon−line can be applied just when an equivalent system, (6.13), can be found. But this
is not always possible because sometimes the variables cannot be separated independently,
as happens to the follow residual:

r(t) = aẑ1 −
√

ẑ2 − ẑ1 + bẑ2 + e
√

ẑ1ẑ2 (6.20)
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Remark 2

Note that missed detections can still occur if a wrong alignment of Ga(ẑi) and Gb(ẑi)
when a fault is present could conceal its presence in the residual. Nevertheless, this not
necessarily implies a higher missed detection rate. Since it only will occur when the
variation in ẑi provoked by a fault coincide with previous values of ẑi. Assuming an
additive model for the fault trace in ẑi described by ẑi = ẑio + ẑif , being ẑio the normal
expected value and ẑif representing the fault, missed detection can appear in presence of
short faults in specific instants, t, in which the following condition will be satisfied:

ẑif (t) = −dẑio(t)

dt

1

δi
δi ≤ ∆ (6.21)

where, δi is the transmission delay and ∆ is its maximum value which is assumed to be
known. Thus, equation 6.21 can be used to provide information of minimum size of fault
to be detected according to dynamics of measured variables and behavior of the network
in terms of maximum delay. Moreover, missed detections are intrinsic to the selection of
a neighborhood, N (0), instead of the equality in the evaluation of the residual.

6.5 Illustrative example: Fault detection in a NCS

laboratory plant

6.5.1 Description of the system

The proposed approach has been used on a level control laboratory plant instrumented
with a networked control and supervisory system. In this plant (See Figure 6.2) a pump
sends liquid from one tank to another one that is placed in a higher level. Water returns
to the first tank by the effect of gravity. A PID control maintains the level in the higher
tank by governing the pump.

Figure 6.2: Laboratory plant
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The system has been instrumented with sensors (flow-meter and level sensor connected
to a SIEMENS ET200U module) and a PID controller (BÜRKET 1100) accessible both
via PROFIBUS as independent nodes. A FDI (Fault Detection and Isolation) module
has been implemented in a SCADA (Supervisory Control and Data Acquisition) system
running in a computer accessing data from an OPC server connected to the PROFIBUS
in a master/slave scheme as depicted in Figure 6.3. The time server update cycle (Time
Rotation Time) is 137ms.

Network

I/O Module

•SCADA
•FDI

PID Controller

Sensor level Flow-meter

Figure 6.3: Process communication

The availability of data in the OPC-client computer has been tested under different
conditions of refreshing time (Sample time) and number of devices.

Figure 6.4a) represents the histograms of delays of the monitored process variables
with a sample time of 100ms. Delays were calculated as the difference between times-
tamps labelled by the OPC server. Samples located close to zero denotes repeated data,
which means that the server did not have time to update the value. Samples around
100ms represent data arriving on time and samples on the right of the histogram indicate
delayed data.

While for histogram of figure 6.4b), delays are insignificant compared to the sample
time (1000ms). In that situation is guaranteed that the refreshing time in the OPC-client
computer will coincide with OPC server updates.

It can be concluded that sample time and timestamp not are always coincident and
obviously delays and misalignments increase as sample time decreases nearly to the target
rotation time. In order to emphasize this source of errors residual computation has been
evaluated under these circumstances.
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Figure 6.4: Histograms of delays of the monitored process variables a)Ts=100ms
b)Ts=1000ms.

6.5.2 Results

Applying the structural analysis technique (Blanke et al., 2003) the following computa-
tional forms for the residuals (See details in Appendix C):

r1 = QP − k1

√

h3 − 13− k2

√

h3 − 7, 5− Aḣ3 (6.22)

r2 = k1

√

h3 − 13 + k2

√

h3 − 7, 5− k3

√

h2 − Aḣ2 (6.23)

r3 = u(t).Q̄P −QP (6.24)

where QP , h2 and h3 are the monitored process variables that represent the input flow
into the tank 3, the level of thank 2 and the level of tank 3, respectively; all the monitored
process variables are affected by the communication delays. A is the cross section area of
the tanks and k1, k2 and k3 are known parameters.

Residuals must be evaluated at anytime with values of process variables acquired at
the same time. Typically a sampling time is defined to evaluate periodically the consis-
tency of data coming from process. This periodicity also facilitates the computation of
derivatives involved in the relations, i.e. r2. Derivative calculation is done by subtracting
the output value at the previous time step from the current value, and dividing by the
sample time.

In order to see how misalignments affect residual r2, a sample rate of 100ms has been
fixed as a periodic interval to compute the redundancy equations. Decision thresholds
have been determined as x̄± 3σ , where x̄ is the mean and σ is the standard deviation.
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Figure 6.5: a) r2 and b) ρ2 using DTWon−line.

Figure 6.5a) depicts the implementation of r2 and it can be seen some values that
cross the thresholds, which might lead to false alarms.

In order to apply DTWon−line, r2 has to separate in two signals:

Ga(h3) = k1

√

h3 − 13 + k2

√

h3 − 7, 5 (6.25)

Gb(h2) = k3

√

h2 − Aḣ2 (6.26)

using DTWon−line the r2 can be computed as follows:

ρ2 = DTWon−line(Ga(h3), Gb(h2)) (6.27)

Figure 6.5b) shows how DTWon−line reduces the number of false alarms. The warping
window size has been configured in 40 samples.

6.5.3 Time consuming

Table 6.8 resumes the time consuming comparison of two sequences using DTW and
DTWon−line. Algorithms implementation were done in a 2.4 GHz Pentium 4 with 512 MB
of RAM. The computation of the cumulative distance matrix is the most consuming time
factor of both methods, however since DTWon−line uses previously calculated it is faster
than DTW.
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Table 6.8: Time consuming comparison between DTW and DTWon−line

Method Warping window Cumulative distance Path
width time consuming time consuming

DTW 40 1.1 s 1 ms
DTWon−line 40 20 ms 1 ms

6.6 Conclusions

In this chapter, an approach based on classic DTW was developed to be used online in
order to obtain residuals from a laboratory plant. This approach is specially suitable for
those errors related with time distortions. Therefore, it will be useful for distributed sys-
tems with communication delays and for hybrid systems with on/off sensors or actuators
causing misalignments between real and simulated signals.

The results show a hight robustness for on-line DTW. In fact, the results obtained
evidenced less false alarms using on-line DTW than a normal implementation.

As restrictions, the new approach continues using dynamic programming and it could
be computationally expensive depending on considerations as number of variables, warp-
ing window width, sample time or computer effort.
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Chapter 7

Time Misalignment Reduction in
Symptom Based Diagnosis

7.1 Introduction

In non model based fault diagnosis the deterministic model given by analytical equations
are not available anymore. The only information we have from the process are the input
u(t) and the output y(t) signals represented as a time-series which are a rich source in-
formation that can be used for diagnosis purpose.

A symptom is a subjective evidence of a fault that indicates the existence of a fault,
then symptom based method allows a forward reasoning from fault to possible faults.
This method can be performed with different techniques: fault trees, heuristics (rules),
knowledge about process history (cases), statistical knowledge (belief networks), classifi-
cation (neural network), expert systems, Case Based Reasoning.

Case Based Reasoning (CBR) is a problem solving methodology based on the reuse of
previous experiences. The basic idea is focused on the hypothesis that ”similar problems
have similar solutions” (Wilke and Bergmann, 1998). CBR methodology proposes a four-
step cycle (Retrieve, Reuse, Revise and Retain) also known as the 4R-cycle. It basically
consists in Retaining experiences as cases for a further Reuse (submitted to a Revision
procedure). Cases are registers containing a description of a problem ”symptoms” and
its solution ”diagnostic”. The aim is to reuse these cases for solving new problems by
analogy. In presence of a new problem, the basic procedure consists of Retrieving ana-
logue cases, according to their description (attributes defining symptoms), and reusing
their solutions (diagnostic).

When cases are represented by time series, searching within a time series database for
those series that are similar to a given query sequence is very important during the Re-
trieve step. Time misalignments may produce erroneous results when this task is carried
out.

In this chapter Dynamic Time Warping (DTW) is proposed as a similarity criteria to
implement the retrieval task, with the aim to reducing the influence of time-misalignments.

105
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An electrical system problem, known as voltage sag, has been used to test the proposed
method, (Llanos et al., 2003a; Meléndez et al., 2004a; Llanos et al., 2004b).

The chapter is organized as follows: Section 7.2 presents the methods of Case Based
Reasoning (CBR). The efect of time misalignments while performing the Retrieving task
is analysed in Section 7.3. Proposed solution using DTW is described in Section 7.5. The
Illustrative example is shown in Section 7.6. Finally some concluding remarks are given
in Section 7.7.

7.2 Case Based Reasoning

Case Based Reasoning is an approach to problem solving that is able to use specific
knowledge of previous experiences (López and Plaza, 1997). A new problem is solved by
matching it with a similar past situation. If the problem is solved, this new situation will
be retained in order to solve other new ones. In the case of diagnosis, solving the problem
means that the CBRsystem proposes a solution that is satisfactory enough to identify the
new fault.

Many authors have discussed about, the appropriate situations where CBR offers
advantages. In (Main et al., 2001) many of these advantages were summarized and the
order in which they appear here is not indicative of their level of importance:

• Reduction of the knowledge acquisition task: by eliminating the extraction of model
or set of rules as is necessary in model/based reasoning.

• To avoid repeating mistakes made in the past: system can use the information about
what caused faults in the past to predict any faults in the future.

• Graceful degradation of performance: some model based systems cannot even at-
tempt to solve a problem on the boundaries of its knowledge or scope, or when
there is missing or incomplete data. In contrast case based systems can often have
a reasonably successful attempt at solving these types of problem.

• To be able to reason in domains that have not been fully understood, defined or
modelled: CBR can deal with only a set of cases from the domain.

• To be able to make predictions: the reasoner may be able to predict the success of
the suggested solution to a current problem. This may be done by referring to the
stored solutions and to the differences between the previous and current solution
context.

• To learn over time: if cases are tested in the real world an level of success deter-
mined, there cases can be added into the case base to reason with it in future.

• To reason in a domain with small body of knowledge: a case based reasoner can
start with a few known cases and incrementally increase its knowledge as cases are
added to it.
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• To reason with incomplete or imprecise data and concepts: as cases are retrieved not
just when identical to the current query case but also when they are within some
measure of similarity, incompleteness and imprecision can be deal with. While
these factors may cause a slight degradation in performance due to the current and
retrieved having increased disparity, reasoning can still continue.

• Avoid repeating all the steps that need to be taken to arrive at a solution: by reusing
a previous solution, the steps taken to reach the retrieved solution can be reused
themselves.

• Provide a means of explanation: by explaining how a previous case was successful
in a situation, using the similarities between the cases and the reasoning involved
in adaptation a CBR systems can explain its solution to a user

• Can be used in different ways: CBR can be used for many purposes as for creating
a plan, making a diagnosis, arguing a point of view, etc.

• Reflects human reasoning: humans can understand a CBR system’s reasoning and
explanations and are able to be convinced of the validity of the solutions they are
receiving.

7.3 CBR cycle

(Aamodt and Plaza, 1994) have described CBR as a cyclical process comprising the four
REs. It basically consists in Retaining experiences as cases for a further Reuse. Cases
are registers containing a description of a problem and its solution. The aim is to reuse
these cases for solving new problems by analogy. In presence of a new problem, the basic
procedure consists of Retrieving analogue cases and reusing their solutions. Reuse im-
plies an adaptation procedure of the retrieved solutions that is finished with a Revision.
After validation, the cycle is completed by Retaining the solved situation (problem + new
solution). In practice it is often confused the separation between reuse and revise and it
is common to merge both in one operation named adaptation. The procedures involved
in CBR can be represented by a schematic cycle, see Figure 7.1.

Cases are stored according to a suitable structure, named case memory, into case bases
where indexing mechanisms are used for an efficient retrieval. CBR foundations and a
detailed description of this methodology based on the 4R are wider described in (Aamodt
and Plaza, 1994; Langseth et al., 1999). Next the four stages depicted in Figure 7.1 are
described.

7.3.1 Retrieval

The Retrieval of cases is closely related and dependent on the indexing methods used.
In general, several techniques are currently used: nearest-neighbor retrieval, inductive
retrieval, knowledge guided approaches and validated retrieval.
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Figure 7.1: Cases and CBR cycle: Retrieve, Reuse, Retain and Revise.

• The most commonly used criteria for case retrieval are based on the concept of
distance. They are used to obtain the k-nearest neighbors of a case, CA, from a
case base containing cases, designed by CB, the indices A and B in the notation can
be interpreted as Actual case and any case from the case-Base. The following is a
general expression used for distance calculation between cases. They are supposed to
be composed by a set of N attributes xi which similarity is measured by a function,
sim():

sim(CA, CB) =
N

∑

1

f(wi) · sim(xA
i , x

A
i ) (7.1)

Thus, a distance (or similarity) between two cases is obtained from the weighted
distances between symptoms composing the two cases to be compared. Each symp-
tom is weighted, wi, according to its importance with respect to others in the case.
The influence of wi in the distance criteria can be applied with a multiplier effect
or using a normalized function f(wi).

• An alternative retrieval technique used by many CBR tools involves a procedure
called induction. Induction is a technique developed by machine learning re-
searchers to extract rules or construct decision tree from past data. In CBR systems,
the case-base is analyzed by an induction algorithm to produce a decision tree that
classifies (or indexes) the cases. The most widely used induction algorithm in CBR
tools is called ID3 (Quinlan, 1986).

• Knowledge guided approaches: knowledge guided approaches to retrieval use
domain knowledge to determine the features of case which are important for that
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case in particular to be retrieved in future. In some situations different features of
each case will have been important for the success level of that case.

• Validated retrieval (Simoudis, 1992), consists of two phases, firstly the retrieval
of all cases that appear to be relevant to a problem, based on the main features
of query case. The second phase involves deriving more discriminating features
from the group of retrieved cases to determine whether they (cases) are valid in the
current situation. The advantage of this method is that inexpensive methods can
be used in the second phase as they are applied to only a subset of the case-base.

7.3.2 Reuse

Once a matching case is retrieved, a CBR system will attempt to Reuse the solution
suggested by the retrieved case. In many circumstances the solution may be sufficient.
However, in other instances the solution from the retrieved case may be close to the
required solution, but no close enough. The CBR system must then adapt the solution
stored in the retrieved case to the needs of current case. Adaptation looks for prominent
differences between the retrieved case and the current case and then applies rules that take
those differences into account when suggesting a final solution. There are two principal
methods to reuse (or adapt) past cases (Allemang, 1994):

• Transformational reuse: which consists of reusing past solutions. The retrieved
case solution is not the solution adopted for the new problem, rather there is a
transformation function that generates the new solution from past cases.

• Derivational reuse: this consists of reusing the procedure followed to deduce
the past solutions. In this approach, the retrieved case must contain information
about the method used for solving the retrieved problem, including a justification
of the operations used, their subgoals, alternatives generated, failed search paths,
etc. Derivational reuse reruns the retrieved method with the new case details and
replays the old plan into the new context.

7.3.3 Revise

In this phase the proposed solution is analyzed to assess its accuracy. The proposed so-
lution (generated in Reuse) is evaluated, and if the solution is successful, the CBR can
learn from it as will be shown in the next phase (case Retention); if the solution is not
successful it can be repaired using domain specific knowledge. Evaluating a solution is
normally done by applying the solution to a real world problem. Under some circum-
stances, the solution can be evaluated using a simulation. If the proposed solution needs
to be repaired, it is necessary to identify the errors in the solution and to generate an
explanation for them, using techniques that allows to repair errors.

7.3.4 Retain

The power of CBR is based on the richness of the case-base; therefore it is important to
retain new cases and its solution. In this phase of the CBR cycle it is determined what
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can be learned and retained from a problem solving episode. The learning algorithm
must take into account the outcome of the previous phase of the CBR cycle. The main
sub-tasks of this step are:

• Selecting which information must be retained

• Establishing how this information must be saved

• Establishing how to index the new problem solving episode (case) for future re-
trievals

• Determining how to integrate the new case in the memory structure

7.4 Effects of time misalignment in case retrieval

7.4.1 Cases represented as time-series and experience

The conceptual definition of cases, considered in CBR, allows performing an association
between two complementary views of process behaviour. One of them is provided by
acquisition systems as flows of data that are systematically collected and stored. The
other view is the human perception of process behaviour enhanced by the expertise and
experience. They are two different views of the same reality (Langseth et al., 1999), the
process, which must be combined in order to improve the global knowledge of process
needed in assessment tasks. According to this premise, cases are conceived as knowledge
containers that perform the association between both: C = [S(t), D]: where S(t) repre-
sents symptoms that characterise the situations under study and D reflects the operator
experience (diagnosis, hypothesis, etc). Symptoms are representations of acquired signals
obtained directly from data or after an abstraction procedure. The expert view encap-
sulated in D represents the evaluation (diagnosis) of the given situation, a set of actions
to perform under determined situation or similar information needed to preserve process
under normal operation conditions or for warning operator in posterior similar situations.

In this Chapter symptoms are represented as time-series obtained directly from the
system output y(t) during a time window [ti, tf [. Therefore a case is defined as:

C = [y(t), D] (7.2)

7.4.2 Time misalignment in case retrieval

As was introduced above in subsection 7.3.1, the most commonly used criteria for case
retrieval are based on the concept of distance. Most of algorithm that operate with
time-series of data use the Euclidean distance or some variation. However, Euclidean
distance could produce an incorrect measure of similarity because it is very sensitive to
distortions in the time axis (time misalignments). Therefore, robust yet sensitive methods
for comparing unsynchronized signals are an active area of research.
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7.5 Dynamic time warping for case retrieval

Since Dynamic Time Warping is a good method to compensate temporal distortions on
the time axis, in this chapter it is proposed to use it as a distance criteria for case retrieval.
Therefore applying DTW to (7.1), produces the similarity function:

sim(CA, CB) = DTW(yA(t), yB(t)) (7.3)

Thus, a distance (or similarity) between two cases (CA, CB) is obtained from DTW
between theirs corresponding symptoms (yA, yB). Once a matching case is retrieved, a
CBR system will attempt to Reuse the solution (D) suggested by the retrieved case.

7.6 Application in an Electrical System: diagnosis of

voltage sags in a 25kV substation

Electrical energy is supplied in form of a three-phase voltage of sinusoidal nature. There
are four parameters that characterise the voltage wave, allowing measuring its degree of
quality. These parameters are: frequency, amplitude, shape and symmetry. Electrical
power stations produce a sine wave of 50 or 60 practically perfect cycles per second.

However, during the energy transport and distribution from the generation substa-
tion to the final customer, these parameters can suffer alterations which affect the wave
quality. These alterations could have their origin in the electrical facility (as a result of
breaker switching, failures, and so on), in natural phenomena, operation of loads (recti-
fying bridges, arc furnaces, and so on), or others. This alteration of the sinusoidal wave
is usually transmitted to the electrical system (Bollen, 2000).

7.6.1 Voltage sag definition

An alteration defined in power systems is known as voltage sag. Standard definition
(Bollen, 2000) of sags is based on the minimum rms value obtained during the event and
its duration is the time interval between the instant when rms voltage crosses the voltage
sag threshold (usually 90% of normal voltage) and the instant when it returns to normal
level. A three-phase unbalanced voltage sag is shown in Fig. 7.2.

7.6.2 Cases represented by voltage magnitude and location

In order to establish a similarity criteria among the voltage sags, a technique proposed
in (Bollen, 2000) to characterise them has been used. This technique allows a characteri-
sation through a one complex voltage. The method is based on the decomposition of the
voltage phasors in symmetrical components (Grainger and Stevenson, 1998). The three
(complex) phase voltages in an unbalanced (not all three phases have the same magnitude
or 120o between them) system can be completely described through three component volt-

ages, known as symmetrical components. Positive-sequence voltage ~V1, negative-sequence
voltage ~V2 and zero-sequence voltage ~V0 are calculated from the complex phase voltages
as follows:
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Figure 7.2: a)Example of a three-phase voltage sag b) rms voltage
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The characteristic voltage, ~V , indicates the severity of the sag, it is obtained from:

~V = ~V1 − ~V2

′

(7.5)

The voltage magnitude is a time-series defined as the absolute value of the character-
istic voltage:

V =| ~V | (7.6)

Voltage sag magnitude, V , is used as symptom on the case representation. The
evaluation (diagnosis) of the given situation is represented by the electrical location of the
fault, L, namely distribution or transmission. Therefore a case may be represented
by the double:

S = (V (t), L) (7.7)

7.6.3 Dynamic Time Warping for voltage sag retrieval

Given two sags SA and SB described by their characteristic voltage VA and VB, respec-
tively, the idea is to use DTW as a metric to define similarities between them:

sim(SA, SB) = DTW (VA(t), VB(t)) (7.8)
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a)

b)

Figure 7.3: Voltage sag classification: a)Distribution b)Transmission.

7.6.4 Results

Spanish Electrical Facility (Endesa Distribution SL) has provided voltage sags in a 25kV
distribution substation. 550 voltage sags were recorded and chosen to apply this method.
500 sags (of the recorded ones) were used for the creation of the case-base, they were sep-
arated in two groups according to the location of the fault (transmission/distribution):
360 voltages sags (72%) caused by fault in transmission systems and 140 voltage sags
(28%) caused by faults in distribution systems. The 50 remaining voltages sags were used
as new cases to be diagnosed.

Figure 7.3a) and 7.3b) show, respectively, the typical voltage sag wave forms accord-
ing to the location of the fault, transmission or distribution. The rms voltage of the
characteristic voltage sag is depicted on the right side of the figures. The rms voltage of
the three phases are depicted on the left side of the figures. The rms voltage of the three
phases were used in order to obtain the so called temporal attributes, (Llanos et al., 2003b;
Mora et al., 2003a), temporal attributes are quantitative values such as magnitude, peaks,
slopes and voltage sag duration. Temporal attributes are described in details in Appendix
D.

In order to compare the results of DTW, two more distances criteria were also applied.
One based on Euclidean distance, which also uses the time-series representation of the
characteristic voltage, V (t). And the other criteria was the Manhattan distance which is
applied to the so called temporal attributes.

DTW is the less sensitive distance approach to the time misalignment. Table 7.1
shows the diagnostic error after applying the three above distance approaches to the 50
new cases.
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Table 7.1: Diagnostic error using Euclidean, Manhattan and DTW distances

Euclidean Manhattan DTW
Diagnostic error 22% 16% 8%

Figure 7.4: Two similar characteristic voltage sags. a) The Euclidean distance, b) DTW.

Figure 7.4a) shows the intuitive alignment produced by Euclidean distance. Both
shapes have the same magnitude but they have been moved on the y-axes in order to
show the alignment allowed by the two methods. The lines between the shapes show the
point that is been compared in each waveform. Euclidean distance produces a pessimistic
result of similarity since the signals are not aligned in time. While, Figure 7.4b) shows
how DTW finds an alignment that allows a correct measure of similarity.

Figure 7.5 shows a new case that have not been well diagnosed using DTW. The wave-
form is more similar to a transmission voltage sag than a distribution one, but DTW gives
a contrary result. It is because in this method magnitude is more relevant than voltage
duration time.

The crucial observation is that the algorithm may try to explain variability in the
Y-axis by warping the X-axis. This can lead to unintuitive alignments where a single
point on one time series maps onto a large subsection of another time series.

The weakness of DTW is in the features it considers. It only considers a data points
Y-axis value. For example if we consider two data points (xi and yj) which have identical
values, but (xi) is part of a rising trend and (yj) is part of a falling trend. DTW considers
a mapping between these two points ideal, although intuitively we would prefer not to
map a rising trend to a falling trend.

To prevent this problem, in (Keogh and Pazzani, 2001), a modification of DTW that
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Figure 7.5: A wrong diagnosis of a new voltage sag.

does not consider the Y-values of the data points, but rather considers the higher level fea-
ture of ”shape”, was proposed. Information about shape by considering the first derivative
of the sequences is obtained; this algorithm was called Derivative Dynamic Time Warping
(DDTW).

As before we construct an n-by-m matrix where the (ith, jth) element of the matrix
contains the distance d(xi, yj) between the two points xi and yj. With DDTW the distance
measure d(xi, yj) is not Euclidean but rather the square of the difference of the estimated
derivatives of xi and yj. While there exist sophisticated methods for estimating deriva-
tives, particularly if one knows something about the underlying model generating the
data, we use the following estimate for simplicity and generality:

Dx[x] =
(xi − xi−1) + ((xi+1 − xi11)/2)

2
(7.9)

This estimate is simply the average of the slope of the line through the point in ques-
tion and its left neighbor, and the slope of the line through the left neighbor and the right
neighbor. According to (Keogh and Pazzani, 2001), empirically this estimate is more
robust to outliers than any estimate considering only two data points. Note the estimate
is not defined for the first and last elements of the sequence. Instead we use the estimates
of the second and penultimate elements respectively.
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7.7 Conclusions

This chapter proposes the use of Dynamic Time Warping (DTW) for reducing the effects
of time misalignment when Case Based Reasoning (a symptom based diagnosis) is per-
formed. DTW is used as a similarity criteria to implement the retrieval task.

An electrical system problem, known as voltage sag, has been used to test the pro-
posed method.

In order to compare the results of DTW, two more distances criteria were also applied.
One based on Euclidean distance, which also uses the time-series representation of the
characteristic voltage. And the other criteria was the Manhattan distance which has been
applied to the temporal attributes. Results shows that DTW is the less sensitive distance
approach to the time misalignment.



Chapter 8

Conclusions and Future Work

In the following paragraphs, the main aspects of the contributions of the present thesis
are considered:

• Fault Detection and Diagnosis (FDD) deal with the timely detection, diagnosis and
correction of abnormal conditions of fault in a process. To accomplish these tasks,
all the process knowledge (structure, dynamic and static equations, parameters,
heuristic knowledge, etc) and measured data from the process variables, have to be
used. But these two sources of information carried several problems such as knowl-
edge acquisition and representation, measurement noise, modelling uncertainties,
time misalignment between measured data, among others. This thesis is focused on
the study of time misalignments effects when performing FDD.

• As networks continue to built out, and network technology becomes cheaper and
more reliable than traditional fixed point-to-point wiring connections, more and
more control systems have operated and will operate over networks. In this case,
the sensor, the actuator, diagnostic, command and coordination signals are all trav-
elling over common networks. Feedback control systems with at least one loop closed
through data networks are called distributed control systems (DCS). In distributed
control systems, the residual computation form is implemented as an algorithm in
one node of the network. In the literature review of FDI in DCS it is proposed the
modification of the system model in order to deal with communication delays and
data dropout. This thesis proposed a solution for time-delays and data dropout ef-
fects in DCS when performing FDI, the solution does not modify the system model.
Our firsts studies of time misalignment are published in (Llanos et al., 2005; Llanos
et al., 2004a).

• In this thesis it is shown that when transmission delays are known, it is possible
to take them into account in the residual computation, thus introducing a delayed
but otherwise unchanged decision and avoiding false alarms due to delays. However,
when delays are unknown it is necessary to estimate them in order to compensate for
their effect in the decision procedure. In this case, based on a very rough model of

117
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the delays, the problem is addressed as an optimization problem. A search algorithm
is used for the delay estimation by minimizing the residual under the constraints
given by the transmission model. When the persistent excitation condition is ful-
filled, the delays estimation can be carried out giving reliable results and avoiding
false alarms. The efficiency of the proposed approach has been applied on a control
position for a DC motor. Results are published in (Llanos et al., 2007; Llanos et al.,
2006).

• A simple formulation has been proposed to solve the problem of data dropout when
performing FDI. It is based on the computation of the residual with the available
data at each time instant instead of using the classical formulation. The principal
benefit is the drastic reduction of false alarm ratio avoiding the classical trade off
with missed detection. The efficiency of the proposed approach is illustrated on
a laboratory plant, where the false alarms during the transient time window were
reduced without increasing the missed detections under different conditions of data
dropout.

• Another solution to the problem of time misalignment has been proposed. It is
based on the Dynamic Rime Warping (DTW) algorithm. DTW is a technique that
finds the optimal alignment between two signals. DTW is computationally expen-
sive (in both time an memory) because it uses dynamic programming, therefore it
is normally used for off-line applications. In this thesis we proposed a slight mod-
ification of DTW in order to adapt it for on-line application. The results show a
hight robustness for on-line DTW. In fact, the results obtained evidenced less false
alarms using on-line DTW than a normal implementation. Results are published in
Gamero et al., 2004; Llanos et al., 2004b).

• The non model based techniques, that use the comparison and matching of signals
for performing fault diagnosis, can also be affected by time misalignments because
most of the algorithms, that operate with time-series of data, use the Euclidean
distance or some variation. Euclidean distance could produce an incorrect measure
of similarity because it is very sensitive to distortions in the time axis. This thesis
proposed the use of DTW for reducing the effects of time misalignment when Case
Based Reasoning (a symptom based diagnosis) is performed. DTW is used as a
similarity criteria to implement the retrieval task. An electrical system problem,
known as voltage sag, has been used to test the proposed method. In order to
compare the results of DTW, two more distances criteria were also applied: One
based on the Euclidean distance, which also uses the time-series representation and
the Manhattan criterion. The results show that DTW is the least sensitive distance
approach to the time misalignment. Results are published in (Meléndez et al., 2004a;
Llanos et al., 2004b; Llanos et al., 2003a; Llanos et al., 2003b; Mora et al., 2003a;
Mora et al., 2003c; Meléndez et al., 2003; Mora et al., 2003b).
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Some research topics that can be studied in the future are discussed as follows:

• In order to consider the dynamic of the residual generator, any observer based resid-
ual generator could be used when analyzing the impact of network delay in residual
generation.

• In this thesis the network communication model was modelled by a very simple
deterministic model. It will be interesting to model phenomena as network queues,
varying network loads, measurement noise and others peculiarities of networks that
could degrade the performance of the fault diagnosis system.

• In this thesis the effects of time misalignments when performing fault isolation has
not been analyzed. It would be interesting to analyze what happens to the signa-
ture matrix and even if its possible to design structured residuals sensitives to the
network communication problems.

• The on line DTW approach continues using dynamic programming and it could
be computationally expensive depending on considerations such as the number of
variables, warping window width, sample time or computer effort. Future work can
be done in order in to introduce restrictions that would allow reducing the effects
of the above mentioned considerations.

• Another weakness of DTW is in the features it considers. DTW only takes into
account a data points Y-axis value. In order to deal with this situation, in (Keogh
and Pazzani, 2001), a modification of DTW that does not consider the Y-values
of the data points, but rather considers the higher level feature of “shape”, was
proposed. This algorithm was called Derivative Dynamic Time Warping (DDTW).
The next step should be to adapt DDTW in order be used on-line.
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Appendix A

Design of the analytical redundancy
relation of a control position for a
DC motor

From Figure A.1 the following equations can be written based on Newton’s law combined
with Kirchhoff’s law:

Raia(t) +K3
dc(t)

dt
= K0K1e(t) (A.1)

D
d2c(t)

d2t
+ b0

dc(t)

dt
= K2ia(t) (A.2)

where,K0, K1, K2, K3, b0, D and Ra are known parameters and, e(t) and c(t), are mea-
surements available from the process.

u

Figure A.1: Schematic diagram of a control position for a DC motor.
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A. Design of the analytical redundancy relation of a control position for a

DC motor

Table A.1: Incidence matrix.

↗ ia e c ċ c̈

c1 1 1 1

c2 1© 1

d3 1©
d4 1©
m1 1©
m2 1©

Next equations describe the operation mode of the system:

c1 : e(t) =
Raia(t) +K3

dc(t)
dt

K0K1

(A.3)

c2 : ia(t) =
D d2c(t)

d2t
+ b0

dc(t)
dt

K2

(A.4)

d3 : ċ(t) =
dc(t)

dt
(A.5)

d4 : c̈(t) =
d2c(t)

d2t
(A.6)

m1 : c(t) = cm1
(A.7)

m2 : e(t) = em2
(A.8)

Redundancy relations have been obtained from the following matching Table A.1 using
the ranking algorithm described in (Blanke et al., 2003). The corresponding oriented
graph is shown in figure C.1.

Simplifying the operation model equations using the matched variables results in the

c

Zeroc1

d3

m2c2
•
c

••
c

d4

ia

e
m1

Figure A.2: Oriented structure graph of the system
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following redundancy relation:

r(t) = D
d2c(t)

dt2
+B

dc(t)

dt
−Ke(t) (A.9)

whit,

B = b0 +
K2K3

Ra

(A.10)

K = K0K1K2 (A.11)
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Appendix B

Design of the analytical redundancy
relations of the laboratory plant

Next equations describe the model of the laboratory plant, see Figure B.2:

c1 : Qi = u.Q̄i (B.1)

c2 : Qo = K.
√
h (B.2)

d3 : ḣ =
d

dt
h (B.3)

c4 : ḣ =
1

A
(Qi −Qo) (B.4)

m1 : h = hm1
(B.5)

m2 : Qi = Qi,m2
(B.6)

where h, Qi and Qo are the level, the input and the output flow to the higher tank,
respectively. u is the control signal and Q̄i is a parametrization of the pump. A and
K are known parameters. m1 and m2 are additional measurement constraints given by
the flow-meter and the level sensor. Redundancy relations have been obtained from the
following matching table (Table B.1) where the ’1’ indicates the presence of the variable
(columns) in the equation (rows). The ranking algorithm described in (Blanke et al.,
2003) has been used to obtain the ’zero ’ or redundancy equations. Circles indicate the
selected variables in the iterative ranking procedure. The corresponding oriented graph
(Figure B.1) shows how equation c1 and c4 are the basis for the two ARR.

Simplifying the operation model equations using the matched variables results in the
following residuals:

r1 = Qi −K
√
h− Aḣ = 0 (B.7)

r2 = u.Q̄i −Qi = 0 (B.8)

After a simple discretisation (unitary sample time) of variables and derivatives the
computation equation of residuals are the following:

r1(k) = Qi(k)−K
√

h(k)− A(h(k)− h(k − 1)) = 0 (B.9)
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Table B.1: Incidence matrix.

↗ Qi Qo h ḣ
c1 1
c2 1© 1
d3 1 1©
c4 1 1 1
m1 1©
m2 1©

c1

Qi

Qo
h

h

u

Zero
c4 c2

d3

m1

m2 Zero

Figure B.1: Oriented structure graph of the system.

r2(k) = u(k).Q̄i −Qi(k) = 0 (B.10)

TANK

Driver

TANK

PID controller

Pump

Level Sensor 

Flow-meter

Figure B.2: Image of the laboratory plant.



Appendix C

Design of the analytical redundancy
relations of the three tanks system

Next equations describe the model of the laboratory plant, see Figure C.2. Valves V9 and
V10 are located 13cm and 7.5cm, respectively, from the bottom of thanks. Depending
on the water levels there exist several different operation modes for the system. As a
practical example, level in TANK 3 has been maintained in 20cm and TANK 2 in 7cm.
Next equations describe the operation mode for the system:

c1 : QL = 0 (C.1)

c2 : QP = u(t).Q̄P (C.2)

c3 : ḣ3 =
1

A
(QP −QL −Q32) (C.3)

d4 : ḣ3 =
d

dt
h3 (C.4)

c5 : Q32 = k1

√

|h3 − 13|+ k2

√

|h3 − 7, 5| (C.5)

d6 : ḣ2 =
d

dt
h2 (C.6)

c7 : ḣ2 =
1

A
(Q32 −QN) (C.7)

c8 : QN = k3

√

h2 (C.8)

m1 : h3 = h3,m1
(C.9)

m2 : h2 = h2,m2
(C.10)

m3 : QP = QP,m3
(C.11)

where Q32 is the flow between tanks, QN is the output flow of the TANK 2, Qp is the
input flow into TANK 3 and QL appears when a leakage in TANK 3 occurs. A, k1, k2

and k3 are known parameters. m1, m2 and m3 are additional measurement constraints.
Redundancy relations have been obtained from the following matching table (table

C.1) using the ranking algorithm described in (Blanke et al., 2003). The corresponding
oriented graph is shown in figure C.1.

Simplifying the operation model equations using the matched variables results in the
following redundancy relations:
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c2

QP

QL
h3

3h

Q32

2h

u

QN

h2

Zero

Zero

c3 c1

d4
c5

d6

c8

m1

m2
c7

m3 Zero

Figure C.1: Oriented structure graph of the three tanks system.

Table C.1: Incidence matrix.

↗ QL QP ḣ3 h3 Q32 ḣ2 h2 QN

c1 1©
c2 1
c3 1 1 1 1
d4 1© 1
c5 1 1©
d6 1© 1
c7 1 1 1
c8 1 1©
m1 1©
m2 1©
m3 1©
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Tank 1 Tank 2 Tank 3

Valves 9 
and 10

Figure C.2: Image of the laboratory plant.

QP −Q32 − Aḣ3 = 0 (C.12)

Q32 −QN − Aḣ2 = 0 (C.13)

u(t).Q̄P −QP = 0 (C.14)

replacing equations (C.5), (C.8) and (C.11) in equations (C.12), (C.13) and (C.14),
the analytical redundancy relations are expressed as follows:

ARR 1:
QP,m3

− k1

√

h3 − 13− k2

√

h3 − 7, 5− Aḣ3 = 0 (C.15)

ARR 2:
k1

√

h3 − 13 + k2

√

h3 − 7, 5− k3

√

h2 − Aḣ2 = 0 (C.16)

ARR 3:
u(t).Q̄P −QP,m3

= 0 (C.17)
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Appendix D

Temporal attributes of the voltage
sags

Voltage sags have been characterised by using temporal attributes. Temporal attributes
are obtained from measurements of the duration and magnitude of the voltage sags. The
attributes have been divided in three-phase and single-phase temporal attributes and they
are described as follows:

Three-phase Temporal Attributes

Three-phase temporal attributes are depicted in Fig. D.1.

Three-phase sag magnitude: Defined as the maximum reduction of voltage of three-
phase power system during the sag.

Three-phase sag duration: Defined, as the maximum time during the rms voltage in a
three-phase power system, is lower to 0.9 p.u.

Single-phase Temporal Attributes

Single-phase temporal attributes are depicted in Fig. D.2.

Single-phase sag magnitude (h): Maximum voltage reduction in every single phase of
the power system.

Single-phase sag duration: Maximum time during the rms voltage is lower to 0.9 p.u.
in every single phase of the power system.

Voltage fall slope: Slope at the beginning of the sag until a steady state is reached
within a 2% band.

Voltage recovery slope: Slope in the end of the sag until a steady state is reached
within a 2% band.
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Time

0.9

1.0

Phase A

Vrms

[p.u.]

Three phase

sag

magnitude

Phase B

Phase C

Three phase sag

duration

Figure D.1: Three-phase voltage sags attributes.
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Figure D.2: Single-phase voltage sags attributes.
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Manhattan distance for voltage sags comparison

Manhattan distance has been used to compare similarities between two sags SA and SB,
where sag S, is defined by the vector of n attributes (Xi, with i=1..n). Thus, the distance
between two sags SA and SB) can be computed as a weighted addition of local distances,
defined by equation(D.1), between normalised attributes.

DIST (SA, SB) =
∑

i=1

Widist(XA
i , X

B
i ) (D.1)

with,

dist(XA
i , X

B
i ) = |XA

i −XB
i | (D.2)

Normalisation is performed according to the range of each attribute (Xi min - Xi

max). The following expression has been used with this purpose:

0 <
Xi −Ximin

Ximax−Ximin
< 1 (D.3)

Voltage sag magnitude and voltage sag duration have been normalised according to the
categories and typical characteristics of power system electromagnetic phenomena(IEEE
Std 1159-1995), where voltages sag (included in short duration variations category) is
defined with a typical duration of (0.5-30 cycles) and typical voltage magnitude of (0.1-
0.9 p.u.).

Table D.1: Reference values for temporal attributes normalisation.

Three-phase temporal attributes Single-phase temporal attributes
Magnitude Duration Magnitude Duration Fall slope Recovery slope
0.1-0.9 pu 0.5-30 cycles * * * *

* : those values have been selected from the maxim and minimum of real measures.
And Wi has been used to weight the importance of each attribute in the global expression.

Figure D.3 shows an application developed with Microsoft Office Access. This ap-
plication allows to record information as temporal and phasorial attributes, voltage and
current r.m.s. waveforms, and information relates to the voltage sag location and system
configuration. This application was used for the automatic management of voltage sags
(Meléndez et al., 2004b) and also for classification of sags using fussy tool, for more details
refers to (Mora et al., 2003c; Meléndez et al., 2003; Mora et al., 2003b).
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Figure D.3: Developed Tool for voltage sags registration
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Mendes, M., Calado, J., and Sà da Costa, J. (2006). Fault diagnosis system based in
agents. pages 427–432. IFAC Safeprocess 2006.
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