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Agräıments

Ja fa dies que esperava que arribés aquest moment. L’hora de donar punt i final a
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A qui també tinc moltes coses a agrair és a en Robert. Primer de tot, per la

seva gran ajuda durant la meva estada a Anglaterra. Si no fos per ell encara estaria

intentant fer-me entendre amb l’home dels bitllets. I com no, per la correcció de
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Chapter 1

Introduction

It is said that the most important things are those we can not see, but then why

do I like so much watching the moon? Why am I thrilled each time I read those

Neruda’s verses? Why did I wait all that night to see the sunrise? And, why can I

not stand to see her crying and I am happy only when I see her smiling? Actually,

it is difficult to imagine our world without seeing it, there are so many nice things

to see.

Among all the senses of perception that we possess, vision is undebatably the

most important. We are capable of extracting a wealth of information from an image,

which can range from finding objects while we are walking across a room to detect

abnormalities in a medical image. Moreover, things as simple as catching a ball

which is coming towards us requires to extract an incredible amount of information

in a small portion of time: we need to recognise the ball, track its movement, measure

its position and distance, estimate its trajectory... and it is only a child’s game! The

subconscious way that we often look, interpret and ultimately act upon what we

see, belies the real complexity and effectiveness of the Human Visual System. The

comparatively young science of Computer Vision tries to emulate the vision system

by means of an image capture equipment in place of our eyes, and computer and

algorithms in place of our brain. More formally, Computer Vision can be defined

as the process of extracting relevant information of the physical world from images

using a computer to obtain this information [125]. The final goal would be to develop

a system that could understand a picture in much the same way that a human

1
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(a) (b)

Figure 1.1: Image segmentation. The original images in column (a) are partitioned

into their meaningful regions, which are visually distinct and uniform, in the seg-

mented images (b).

observer can. Nevertheless, the great complexity of the Human Visual System makes

this aim to be regarded for the moment only as an utopian wish, and current systems

try to solve more basic and specific problems.

One of the basic abilities of the Human Visual System is the capability of group-

ing the image into a set of regions which contain pixels with some common char-

acteristic. This task is usually referred as segmenting the image. The common

characteristic used as basis for the segmentation can be a simple pixel property

such as grey level or colour. However, an image can also be segmented according

to a more complex non-local property such as texture. Some examples of image

segmentation are shown in Figure 1.1.
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1.1 Objectives

The goal of image segmentation is to detect and extract the regions which compose

an image. Note that contrary to the classification problem, recognition of these

regions is not required. In fact, although it is difficult to conceive, we can think

in image segmentation as the first look that we made at the world when we were

newborn. In other words, to look without higher knowledge about the objects that

we can see in the scene. Hence, it is not possible to identify the different objects,

simply because it is the first time that we see them. So, the answer of the image

segmentation process will be something as: “there are four regions in the image” and

an array of the size of the image where each pixel is labelled with the corresponding

region number.

Two of the basic approaches for image segmentation are region and boundary

based. The literature for the last 30 years is full of a large set of proposals which

attempt to segment the image based on one of these approaches. However, based on

the complementary nature of edge and region information, current trends on image

segmentation wage for the integration of both sources in order to obtain better

results and to solve the problems that both methods bear when are used separately.

There are also two basic properties that can be considered for grouping pixels and

define the concept of similarity that would form regions: colour and texture. The

importance of both features in order to define the visual perception is obvious in

images corresponding to natural scenes, which have considerable variety of colour

and texture. However, most of the literature deals with segmentation based on either

colour or texture, and few proposals consider both properties together. Fortunately,

this tendency seems to be changing in the actuality originated by the intuition that

using information provided by both features, one should be able to obtain more

robust and meaningful results.

Taking into account all these considerations we have defined the final objective

of this work as:

To propose an unsupervised image segmentation strategy which inte-

grates region and boundary information from colour and texture properties in

order to perform image segmentation.
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Along with this final objective, there are some points which need to be considered

in this work:

• Prior knowledge. There are two aspects to consider related to prior knowl-

edge that the system has before starting the image segmentation. First, to

what degree and in what form should higher level knowledge be incorporated

into the segmentation process, and secondly, the problem of parameter esti-

mation which is common to any model-based approach.

How the visual knowledge about what we know influence what we see? This is

a question closer to the realms of psychophysics. Our wish is to make minimal

assumptions and keep the segmentation process mostly at a low level. Hence,

parameter estimation will be also performed in situ.

• Unsupervision. The method should be completely unsupervised. That is,

the user will not be required to intervene in the course of the segmentation

process.

• Computational efficiency. Although the time is not a critical requirement

of this work, the algorithm should be computable and not make unreasonable

demands on CPU time.

• Extensibility. The proposed strategy should be easily extensible to perform

a generalised segmentation. An obvious extension is from regions of homoge-

neous gray level to regions of homogeneous texture. Moreover, our goal is to

propose a strategy capable to be extended to colour texture segmentation.

• Robustness. The method should show a robust behaviour and obtain correct

segmentation results in a large set of images. Besides, the algorithm will be

generally tested over natural images, which are specially rich in variety of

colour and texture.

1.2 Related Work

The work presented in this thesis is not a new subject within the Computer Vision

and Robotics group at the University of Girona, contrarily it can be regarded as a
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Figure 1.2: Scheme of the process to obtain the Circumscribed Contours. CP=Cross

points, EP=End points.

natural continuation of the work of Cuf́ı et al. [47, 48, 49], that can be considered

as basic reference for this work. Cuf́ı et al. proposed in 1998 a method to segment

natural images based on the obtention of a set of frontiers of the perceptively most

significant regions, named Circumscribed Contours of the image.

The method is based on the two most relevant properties presented by most

significant frontiers of a determined scene: 1) The contours must have an important

length within the global frame of the image. 2) These contours separate sufficiently

differentiated regions from the scene, considering basically chromatic, intensity and

textural characteristics.

A scheme of the segmentation method is shown in Figure 1.2. The method

is based on two basic modules which match with the definition of Circumscribed

Contours:

1. The extraction of frontier fragments which have an important length from the

information of the local contours obtained on the hue, intensity and satura-

tion components, and a posterior phase of restoration which concatenates the
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contours. They are the contours which are candidates to be Circumscribed

Contours of the image.

2. Study of the relevance of candidate contours considering if they separate (or

not) regions over which a set of textural characteristics are measured. The

candidate contours which have a high valour of relevance are finally considered

the Circumscribed Contours of the image.

1.3 Thesis Outline

The structure of this thesis is on the light of showing the methodology of work used

in order to carry out it. Thus, an introduction to basics of segmentation concludes

this chapter. Chapter 2 reviews different approaches which integrate region and

boundary information for image segmentation. Next, our strategy for unsupervised

image segmentation is proposed in Chapter 3, which is subsequently extended in

Chapter 4 to deal with the problem of texture segmentation and colour texture

segmentation. In Chapter 5 an evaluation and comparison of our proposal with

different algorithms is shown. Finally, the derived conclusions and future work are

discussed in Chapter 6.

Chapter 2

Main approaches for the integration of region and boundary information in image

segmentation are identified. Subsequently, a classification is proposed in which the

philosophy of these different strategies is clearly explained and the most relevant

proposals of segmentation algorithms are detailed. Finally, the characteristics of

these strategies, along with their weak points, are discussed and the lack of attention

that in general is given to the texture is noted.

The contributions of Chapter 2 are:

• The identification of the different strategies used in order to integrate region

and boundary information which results on a proposal of classification of these

approaches.
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• The assortment and grouping of the most relevant proposals of image segmen-

tation in their corresponding approach according to the underlying philosophy.

• The discussion of the aspects, positive and negative, which characterise the

different approaches and the note of a general lack of specific treatment of

textured images.

Chapter 3

A segmentation strategy which integrates region and boundary information and

uses three approaches identified in the previous chapter is proposed. The proposed

segmentation algorithm consists of two basic stages: initialisation and segmentation.

Thus, in the first stage, the main contours of the image are used to identify the

different regions present in the image and to adequately place a seed for each one in

order to statistically model the region. Then, the segmentation stage is performed

based on the active region model which allows us to take region and boundary

information into account in order to segment the whole image. With the aim of

imitating the Human Vision System, the method is implemented using a pyramidal

representation which allows us to refine the region boundaries from a coarse to a

fine resolution.

Summarising, the contributions of Chapter 3 are:

• The proposal of a segmentation strategy which unifies different approaches for

the integration of region and boundary information for image segmentation.

• A method, which based on boundary information, allows to adequately place

a seed for each region of the image in order to initialise the region models.

• The integration of region and boundary information in order to carry out the

image segmentation based on active regions.

• The implementation of the algorithm using a pyramidal representation which

ensures noise robustness as well as computation efficiency.

Chapter 4

The strategy for image segmentation proposed in Chapter 3, is adapted to solve
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the problem of texture segmentation. Chapter 4 is structured on two basic parts:

texture segmentation and colour texture segmentation. First, the proposed strategy

is extended to texture segmentation which involves some considerations as the region

modelling and the extraction of texture boundary information. In the second part,

a method to integrate colour and textural properties is proposed, which is based on

the use of texture descriptors and the estimation of colour behaviour. Hence, the

proposed strategy of segmentation is considered for the segmentation taking both

colour and textural properties into account.

The main contributions of this chapter are:

• The extension of the proposed strategy for image segmentation to unsupervised

texture segmentation.

• A proposal for the combination of texture features with the estimation of

colour properties in order to describe colour texture.

• The use of colour and texture properties together for the segmentation of

colour textured images using the proposed strategy.

Chapter 5

Our proposal of image segmentation strategy is objectively evaluated and then com-

pared with some other relevant algorithms corresponding to the different strategies

of region and boundary integration identified in Chapter 2. Moreover, an evaluation

of the segmentation results obtained on colour texture segmentation is performed.

Furthermore, results on a wide set of real images are shown and discussed.

Chapter 5 can be summarized on:

• The objective evaluation of results achieved by our proposal on image segmen-

tation.

• The comparison of our proposal with different algorithms which integrate re-

gion and boundary information for image segmentation.

• The objective evaluation of results obtained on colour texture segmentation.
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Chapter 6

Finally, relevant conclusions extracted from this work are given in Chapter 6 and

different future directions of this work are proposed.

1.4 Basics of Segmentation

Segmentation can be considered the first step and key issue in object recognition,

scene understanding and image understanding. Applications range from industrial

quality control to medicine, robot navigation, geophysical exploration, and military

applications. In all these areas, the quality of the final result depends largely on the

quality of the segmentation [143].

One way of defining image segmentation is as follows [91, 151]. Formally, a set

of regions {R1, R2, . . . , Rn} is a segmentation of the image R into n regions if:

1.
⋃n

i=1 Ri = R

2. Ri
⋂

Rk = ∅, i �= k

3. Ri is connected, i = 1, 2, . . . , n

4. There is a predicate P that measures region homogeneity,

(a) P (Ri) =TRUE, i = 1, 2, . . . , n

(b) P (Ri
⋃

Rk) =FALSE, i �= k and Ri adjacent to Rk

The above conditions can be summarized as follows: the first condition implies

that every image point must be in a region. This means that the segmentation

should not terminate until every point is processed. The second condition implies

that regions are non-intersecting, while the third condition determines regions are

composed by contiguous pixels. Finally, the fourth condition determines what kind

of properties the segmented regions should have, for example, uniform gray levels,

and express the maximality of each region in the segmentation.

During the past years, many image segmentation techniques have been developed

and different classification schemes for these techniques have been proposed [82, 143].
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We have adopted the classification proposed by Fu and Mui [67], in which segmen-

tation techniques are categorised into three classes: (1) Thresholding or clustering,

(2) region-based and (3) boundary-based.

1.4.1 Thresholding or Clustering Segmentation

1.4.1.1 Thresholding

The most basic segmentation procedure that may be carried out is thresholding of

an image (see [170]). This method consists on comparing the measure associated to

each pixel to one or some thresholds in order to determine the class which the pixel

belongs to. The attribute is generally the grey level, although colour or a simple

texture descriptor can also be used. Thresholds may be applied globally across

the image (static threshold) or may be applied locally so that the threshold varies

dynamically across the image.

Under controlled conditions, if the surface reflectance of the objects or regions

to be segmented are uniform and distinct from the background and the scene is

evenly illuminated then the resulting image will contain homogenous regions with

well defined boundaries that generally lead to a bimodal or multi-modal histogram.

Finding the modes determines the partitions of the space and hence the segmenta-

tion. Be an image composed by a bright object on a darker background, thus the

histogram is bimodal, similar to the example shown in Figure 1.3.a. The two peaks

correspond to the relatively large number of points inside and outside the object.

The dip between the peaks corresponds to the relatively few points around the edge

of the object. The threshold is then placed in the valley between both peaks, then

pixels with a grey level higher than the threshold t will be associated to the object,

while the remaining pixels to the background. Figure 1.3.b illustrates a multi-modal

histogram.

Nevertheless, in many cases the background level is not constant, and the contrast

of objects varies within the image. In such cases, a threshold that works well in one

area of the image might work poorly in other areas. Thus, it is convenient to use a

threshold that is slowly varying in function of position in the image [31]. A dynamic

threshold was proposed by Chow an Kaneko [40], which divides the image up into
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t t1 t2

(a) (b)

Figure 1.3: Histogram examples. (a) Bimodal histogram, (b) multi-modal his-

togram.

rectangular subimages and computes the threshold for each subimage. However, a

subimage can fail to have a threshold if its gray-level histogram is not bi-modal, and

then such sub-images receive interpolated thresholds from neighbouring subimages.

Finally, the entire picture is thresholded by using the separate thresholds for each

subimage.

The success of this approach hinges on whether suitable thresholds exist and

whether they may be inferred from the image histogram. Various methods have been

proposed for determining an appropriate threshold [104, 105, 210]. However, this is

only possible with a restricted set of images under the assumption of a controlled

environment i.e. industrial applications. As methods to tackle natural images, where

variation of illumination, noise and texture are present, they become inadequate.

1.4.1.2 Clustering

Clustering is a process whereby a data set is replaced by clusters, which are col-

lections of data points that “belong together”. It is natural to think of image

segmentation as clustering, grouping those pixels that have the same colour and/or

the same texture. Clustering methods [8, 97] can be divided into two basic types: hi-

erarchical and partitional clustering. Within each of the types there exists a wealth
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of subtypes and different algorithms for finding the clusters.

Hierarchical clustering proceeds successively by either merging smaller clusters

into larger ones (agglomerative algorithms), or by splitting larger clusters (divisive

algorithms). The clustering methods differ in the rule by which it is decided which

two small clusters are merged or which large cluster is split. The final result of the

algorithm is a tree of clusters called a dendogram, which shows how the clusters are

related. By cutting the dendogram at a desired level, a clustering of the data items

into disjoint groups is obtained.

On the other hand, partitional clustering attempts to directly decompose the

data set into a set of disjoint clusters. An objective function expresses how good a

representation is, and then the clustering algorithm tries to minimize this function

in order to obtain the best representation. The criterion function may emphasize the

local structure of the data, as by assigning clusters to peaks in the probability density

function, or the global structure. Typically the global criteria involves minimizing

a measure of dissimilarity for the samples within each cluster, while maximizing

the dissimilarity between different clusters. The most commonly used partitional

clustering method is the K-means algorithm [118], in which the criterion function is

the squared distance of the data items from their nearest cluster centroids.

Clustering methods, even as thresholding methods, are global and do not retain

positional information. The major drawback of this is that it is invariant to spa-

tial rearrangement of the pixels, which is an important aspect of what is meant by

segmentation. Resulting segments are not connected and can be widely scattered.

Some attempts have been made to introduce such information using pixels coor-

dinates as features. However, this approach tends to result in large regions being

broken up and the results so far are no better than those that do not use spatial

information [67]. The need to incorporate some form of spatial information into the

segmentation process, led to the development of methods where pixels are classified

using their context or neighbourhood.
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1.4.2 Region-based Segmentation

The region approach tries to isolate areas of images that are homogeneous according

to a given set of characteristics. We introduce in this section two classical region-

based methods: region growing and split-and-merge.

1.4.2.1 Region Growing

Region growing [2, 229] is one of the most simple and popular region-based segmen-

tation algorithms. It starts by choosing a (or some) starting point or seed pixel.

The most habitual way is to select these seeds by randomly choosing a set of pixels

in the image, or by following a priori set direction of scan of the image. However,

other techniques of selection based on boundary information will be discussed in

next section.

Then, the region grows by successively adding neighbouring pixels that are sim-

ilar, according to a certain homogeneity criterion, increasing step by step the size

of the region. This criterion can be, for example, to require that the variance of a

feature inside the region does not exceed a threshold, or that the difference between

the pixel and the average of the region is small. The growing process is continued

until a pixel not sufficiently similar to be aggregated is found. It means that the

pixel belongs to another object and the growing in this direction is finished. When

there is not any neighbouring pixel which is similar to the region, the segmentation

of the region is complete. Monitoring this procedure gives on the impression of re-

gions in the interior of objects growing until their boundaries correspond with the

edges of the object.

1.4.2.2 Split-and-Merge

As has been above defined, one of the basic properties of segmentation is the exis-

tence of a predicate P which measures the region homogeneity. If this predicate is

not satisfied for some region, it means that that region is inhomogeneous and should

be split into subregions. On the other hand, if the predicate is satisfied for the union

of two adjacent regions, then these regions are collectively homogeneous and should

be merged into a single region [11].
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(a) (b)

(c) (d)

Figure 1.4: Split-and-merge segmentation. (a) Original image, (b) initial split in

four squared blocks, (c) splitting of the image in homogenous blocks and (d) final

segmentation after the merging.

A way of working toward the satisfaction of these homogeneity criteria is the

split-and-merge algorithm [38, 69]. This technique consists, as their name denotes,

of two basic steps. First, the image is recursively split until all the regions verify a

homogeneity criterion. Next, in a second step, all adjacent regions are reassembled

of way that resulting regions satisfy the homogeneity criterion.

A quad-tree structure is often used to effect the step of splitting: it is based

on the recursive decomposition of the regions that does not verify the homogeneity

criterion into four squared subregions, starting from the whole image. Therefore, an

inverse pyramidal structure is builded. The merging step consists on merging the

adjacent blocks which represent homogeneous regions but have been divided by the

regular decomposition. The different steps are depicted in Figure 1.4.
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1.4.3 Boundary-based Segmentation

The last class of methods for image segmentation are related to the detection of

the luminance transitions between regions, i.e. the boundaries (lines or edges).

The fundamental importance of line and edge information in both biological and

Computer Vision systems has long been recognised. Indeed, the biological evidence

showing edge-detection playing a central role in the early stages of visual perception

in mammals (low level vision), such as the Human Visual System, has often been the

motivation for its adoption by researchers in image processing. Local features, such

as lines and edges, can describe the structure of a scene relatively independently on

the illumination. For example, a cartoon drawing consisting only of lines is often

enough for humans to interpret a scene.

Image segmentation techniques based on edge detection have long been in use,

since the early work of Roberts in 1965 [164]. Although a variety of methods of edge

detection have been suggested, there are two basic local approaches: first and second-

order differentiation. The bane of all these methods, however, is noise. Edges, by

definition, are spatially rapidly varying and hence have significant components at

high spatial frequencies. This is also, unfortunately, the characteristic of noise, and

therefore any gradient operator that responds well to the presence of an edge will

also respond well to the presence of noise or textures thus signalling false edges.

1.4.3.1 First order

In the first case, a gradient mask (Roberts [164] and Sobel [182] are well-known

examples) is convolved with the image to obtain the gradient vector ∇f associated

with each pixel. Edges are the places where the magnitude of the gradient vector

‖∇f‖ is a local maximum along the direction of the gradient vector φ(∇f). For

this purpose, the local value of the gradient magnitude must be compared with the

values of the gradient estimated along this orientation and at unit distance on either

side away from the pixel. After this process of non-maxima suppression takes place,

the values of the gradient vectors that remain are thresholded, and only pixels with

a gradient magnitude above that threshold are considered as edge pixels [153].

The Sobel operator introduced a weighting of local averages measures at both
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sides of the central pixel. Several works have looked for the optimisation of this

weighting factor. Canny [26] proposed the derivative-of-Gaussian filter as a near-

optimal filter with respect to three edge-finding criteria: (a) good localisation of the

edge, (b) one response to one edge and (c) high probability of detecting true edge

points and low probability of falsely detecting non-edge points. Deriche [55], based

on Canny’s criteria, implemented a filter with an impulse response similar to that

of the derivative of Gaussian, but which lends itself to direct implementation as a

recursive filter.

1.4.3.2 Second order

In the second-order derivative class, optimal edges (maxima of gradient magnitude)

are found by searching for places where the second derivative is zero. The isotropic

generalisation of the second derivative to two dimensions is the Laplacian [158].

However, when gradient operators are applied to an image, the zeros rarely fall

exactly on a pixel. It is possible to isolate these zeroes by finding zero crossings:

places where one pixel is positive and a neighbour is negative (or vice versa). Ideally,

edges should correspond to boundaries of homogeneous objects and object surfaces.

Having obtained an edge map, there is usually a second stage to boundary based

segmentation, which is to group the boundary elements to form lines or curves. This

is necessary because, excepting the simplest noise free images, the edge detection will

result in a set of fragmented edge elements. There are three main approaches to this

problem: local linking techniques [47], global methods, such as Hough Transform

(HT) methods [61], or combined approaches, such as the hierarchical HT and the

MFT based methods. The local linking methods use attributes of the edge elements,

such as magnitude, orientation and proximity, to grow the curves in the image. In

the HT methods, the edge elements are transformed to a parameter space, which

is a joint histogram of the parameters of the model of line or curve being detected.

The peaks in this histogram then indicate the presence and location of the lines or

curves being detected.
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Image Segmentation Integrating

Region and Boundary Information

Image segmentation has been, and still is, an important research area in Computer

Vision, and hundreds of segmentation algorithms have been proposed in the last

30 years. However, elementary segmentation techniques based on either boundary

or region information often fail to produce accurate segmentation results on their

own. In the last few years, there has therefore been a trend towards algorithms

that take advantage of their complementary nature. This chapter reviews various

segmentation proposals that integrate edge and region information and highlights

different strategies and methods for fusing such information.

2.1 Introduction

One of the first and most important operations in image analysis and Computer

Vision is segmentation [79, 167]. The aim of image segmentation is the domain-

independent partition of the image into a set of regions, which are visually distinct

and uniform with respect to certain properties, such as grey level, texture or colour.

The problem of segmentation has been, and still is, an important research field,

and many segmentation methods have been proposed in the literature (see the sur-

veys: [67, 82, 136, 143, 163, 230]). Many segmentation methods are based on two

17
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basic properties of pixels in relation to their local neighbourhood: similarity and

discontinuity. Pixel similarity gives rise to region-based methods, whereas pixel

discontinuity gives rise to boundary-based methods.

Unfortunately, both boundary-based and region-based techniques often fail to

produce accurate segmentation, although the cases where each method fails are

not necessarily identical. In boundary-based methods, if an image is noisy or if

its attributes differ by only a small amount between regions (and this occurs very

commonly in natural scenarios), edge detection may result in spurious and broken

edges. This is mainly due to the fact that they rely entirely on the local information

available in the image; very few pixels are used to detect the desired features. Edge

linking techniques can be employed to bridge short gaps in such a region boundary,

although this is generally considered a very difficult task. Region-based methods al-

ways provide closed contour regions and make use of relatively large neighbourhoods

in order to obtain sufficient information to decide whether or not a pixel should be

aggregated into a region. Consequently, the region approach tends to sacrifice reso-

lution and detail in the image to gain a sample large enough for the calculation of

useful statistics for local properties. This can result in segmentation errors at the

boundaries of the regions, and in a failure to distinguish regions that would be small

in comparison with the block size used. Furthermore reasonable initial seed points

and stopping criteria are often difficult to choose in the absence of a priori informa-

tion. Finally, as Salotti and Garbay [171] noted, both approaches sometimes suffer

from a lack of information due to the fact that they rely on the use of ill-defined

hard thresholds that may lead to wrong decisions.

It is often difficult to obtain satisfactory results when using only one of these

methods in the segmentation of complex pictures such as outdoor and natural im-

ages, which involve additional difficulties due to effects such as shading, highlights,

non-uniform illumination or texture. By using the complementary nature of edge-

based and region-based information, it is possible to reduce the problems that arise

in each individual method. The trend towards integrating several techniques seems

to be the best way forward. The difficulty lies in the fact that even though the

two approaches yield complementary information, they involve conflicting and in-

commensurate objectives. Thus, as previously observed by Pavlidis and Liow [152],

while integration has long been a desirable goal, achieving this is not an easy task.
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Figure 2.1: Schemes of region and boundary integration strategies according to the

timing of the integration: (a) Embedded integration; (b) Post-processing integration

In recent years, numerous techniques for integrating region and boundary in-

formation have been proposed. One of the main features of these proposals is the

timing of the integration: embedded in the region detection, or after both processes

are completed [65].

• Embedded integration can be described as integration through the definition

of new parameters or a new decision criterion for the segmentation. In the

most common strategy, the edge information is extracted first, and this in-

formation is then used within the segmentation algorithm, which is mainly

based on regions. A basic scheme of this method is shown in Figure 2.1.a.

The additional information contributed by edge detection can be used to de-

fine new parameters or new decision criteria. For example, edge information

can be used to define the seed points from which regions are grown. The aim

of this integration strategy is to use boundary information in order to avoid

many of the common problems of region-based techniques. However, as we

will mention later, there is a current trend which carries out the integration in

reverse; i.e. by using region information within the boundary finding process.

• Post-processing integration is performed after both boundary-based and region-

based techniques have been used to process the image. Edge and region

information are extracted independently as a preliminary step, as shown in
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Figure 2.1.b. An a posteriori fusion process then tries to exploit the dual in-

formation in order to modify, or refine, the initial segmentation obtained by a

single technique. The aim of this strategy is to improve the initial results and

to produce a more accurate segmentation.

Although many studies have been published on image segmentation, none of

them focuses specifically on the integration of region and boundary information,

which is the aim of this chapter, in which we will discuss the most significant seg-

mentation techniques developed in recent years. We give a description of several

key techniques that we have classified as embedded or post-processing. Among the

embedded methods, we distinguish between those that use boundary information

for seed placement purposes, and those that use this information to establish an

appropriate decision criterion. Among the post-processing methods, we distinguish

between three different approaches: over-segmentation, boundary refinement, and

selection-evaluation. We discuss each one of these techniques in depth, as well as

emphasizing aspects related to the implementation of the methods in some cases

(region-growing or split-and-merge), or the use of fuzzy logic, which has been con-

sidered in a number of proposals.

The chapter is structured as follows: the Introduction is concluded by related

work, Section 2.2 defines and classifies different approaches to the embedded inte-

gration, while Section 2.3 analyses proposals for the post-processing strategy. Sec-

tion 2.4 summarizes the advantages and disadvantages of the various approaches.

Finally, the results of our study are summarized in the Conclusions Section.

2.1.1 Related Work

A brief mention of the integration of region and boundary information for segmen-

tation can be found in the introductory sections of several papers. For instance,

Pavlidis and Liow [152] introduce some earlier papers that emphasise the integra-

tion of such information. In 1994, Falah et al. [65] identified two basic strategies

for achieving the integration of dual information, boundaries and regions. The first

strategy (post-processing) is described as the use of edge information to control or re-

fine a region segmentation process. The other alternative (embedded) is to integrate
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edge detection and region extraction within the same process. The classification

proposed by Falah, Bolon and Cocquerez has been adopted and discussed in this

thesis. LeMoigne and Tilton [112], considerinng data fusion in general, identified

two levels of fusion: pixel and symbol. A pixel-level integration between edges and

regions assumes that the decision regarding integration is made individually for each

pixel, while the symbol-level integration is performed on the basis of selected fea-

tures, thereby simplifying the problem. Furthermore, they discuss embedded and

post-processing strategies and present important arguments concerning the supposed

superiority of the post-processing strategy. They argue that a posteriori fusion pro-

vides a more general approach because, for the initial task, it can employ any type

of boundary and region segmentation. A different point of view of integration of

edge and region information for segmentation consists of using dynamic contours

(snakes). Chan et al. [34] review different approaches, pointing out that integration

is the way to decrease the limitations of traditional deformable contours.

2.2 Embedded integration

The embedded integration strategy usually consists of using previously extracted

edge information, within a region segmentation algorithm. It is well known that in

most of the region-based segmentation algorithms, the manner in which initial re-

gions are formed and their growing criteria are set a priori. Hence, the resulting seg-

mentation will inevitably depend on the choice of initial region growth points [104],

while the region’s shape will depend on the particular growth chosen [105]. Some

proposals try to use boundary information in order to avoid these problems. Ac-

cording to the way in which this information is used, it is possible to distinguish two

trends:

1. Control of Decision Criterion: edge information is included in the defini-

tion of the decision criterion which controls the growth of the region.

2. Seed Placement Guidance: edge information is used as a guide in order to

decide which is the most suitable position to place the seed (or seeds) for the

region-growing process.
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2.2.1 Control of Decision Criterion

The most common way of performing integration in the embedded strategy consists

of incorporating edge information into the growing criterion of a region-based seg-

mentation algorithm. The edge information is thus included in the definition of the

decision criterion that controls the growth of the region.

As we have seen in Section 1.4, region growing and split-and-merge are two

typical region-based segmentation algorithms. Although both share the essential

concept of homogeneity, the way the segmentation process is carried out is truly

different in terms of the decisions taken. For this reason, and in order to facili-

tate analysis of this approach, we shall discuss integration into these two types of

algorithms separately (see following Sections 2.2.1.1 and 2.2.1.2).

2.2.1.1 Integration in split-and-merge algorithms

The homogeneity criterion in split-and-merge algorithms is generally based on the

analysis of the chromatic features in the region. When the intensity of the region’s

pixels has a sufficiently small standard deviation, the region is considered homoge-

neous. Moreover, the integration of edge information allows a new criterion to be

defined: a region is considered homogeneous when it is totally free of contours. This

concept can then substitute or be added to the traditional homogeneity criterion.

In 1989, Bonnin et al. [20] proposed a split-and-merge algorithm controlled by

edge detection. The criterion to decide the split of a region takes into account edge

and intensity characteristics. More specifically, if there is no edge point on the patch

and if the intensity homogeneity constraints are satisfied, then the region is stored;

otherwise, the patch is divided into four sub-patches, and the process is recursively

repeated. The homogeneity intensity criterion is rendered necessary because possible

failures of the edge detector. After the split phase, the contours are thinned and

chained into edges relative to the boundaries of the initial regions. Later, a final

merging process takes into account edge information in order to solve possible over-

segmentation problems. In this last step, two adjacent initial regions are merged

only if no edges are found on the common boundary. The general structure of their

method is depicted in Figure 2.2, where it can be observed that edge information
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Figure 2.2: Scheme of the segmentation technique proposed by Bonnin et al. The

edge information guides the split-and-merge procedure in both steps of the algo-

rithm: first to decide the split of a region, and finally in the merging phase to solve

the possible over-segmentation.

guides the split-and-merge procedure in both steps of the algorithm: first, to decide

the split of a region, and finally in the merging phase to solve the possible over-

segmentation.

The split-and-merge algorithm cooperating with an edge extractor was also pro-

posed in the work of Buvry et al. [24]. Their algorithm follows the basic idea

introduced by Bonnin, considering the edge segmentation in the step of merging.

However, a rule-based system was added in order to improve the initial segmenta-

tion. A scheme of the proposed algorithm is illustrated in Figure 2.3. They argued

that the split-and-merge segmentation algorithm creates many horizontal or verti-

cal boundaries without any physical meaning. In order to solve this problem the

authors define a rule-based system dealing with this type of boundary. Specifically,

the gradient mean of each boundary is used to decide if the boundary has really a

physical reality.

In 1997, Buvry et al. reviewed the work presented in [24] and proposed a new

hierarchical region detection algorithm for stereovision applications [23] taking the
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Figure 2.3: Segmentation technique proposed by Buvry et al. Edge information

is used to guide the split-and-merge region segmentation. Finally, a set of rules

improve the initial segmentation by removing boundaries without corresponding

edge information.

gradient image into account. The method yields a hierarchical coarse-to-fine seg-

mentation where each region is validated by exploiting the gradient information. At

each level of the segmentation process, a threshold is computed and the gradient

image is binarized according to this threshold. Each closed area is labelled by ap-

plying a classical colouring process and defines a new region. Edge information is

also used to determine if the split process is finished or if the next partition must

be computed. So, in order to do that, a gradient histogram of all pixels belonging

to the region is calculated and its characteristics (mean, maximum and entropy) are

analysed.

Healey [86] presented an algorithm for segmenting images of 3-D scenes, which

uses the absence of edge pixels in the region as a homogeneity criterion. Furthermore,

he considers the effects of edge detection mistakes (false positive and false negative)

on the segmentation algorithm, and gives evidence that false negatives have more

serious consequences, so the edge detector threshold should be set low enough to

minimize their occurrence.

A proposal of enriching the segmentation by irregular pyramidal structure by

using edge information can be found in the work of Bertolino and Montanvert [18].

In the proposed algorithm, a graph of adjacent regions is computed and modified



2.2 Embedded integration 25

according to the edge map obtained from the original image. Each graph-edge1 is

weighted with a pair of values (r,c), which represent the number of region elements,

and the contour elements in the common boundary of both regions respectively.

Then, the algorithm goes through the graph and at each graph-edge decides whether

to forbid or favour the fusion between adjacent regions.

The use of edge information in a split-and-merge algorithm may not only be

reduced to the decision criterion. In this sense, Gevers and Smeulders [75] presented,

in 1997, a new technique that extends the possibilities of this integration. Their

proposal uses edge information to decide how the partition of the region should be

made, or in other words, where to split the region. The idea is the adjustment of

this decision to boundary information and to split the region following the edges

contained in it. In reference to previous works, the authors affirmed that although

the quad-tree scheme is simple to implement and computationally efficient, its major

drawback is that the image tessellation process is unable to adapt the tessellation

grid to the underlying structure of the image. For this reason they proposed to

employ the incremental Delaunay triangulation allowing the formation of grid edges

of arbitrary orientation and position. The tessellation grid, defined by the Delaunay

triangulation, is adjusted to the semantics of the image data. In the splitting phase,

if a global similarity criterion is not satisfied, pixels lying on image boundaries are

determined using local difference measures and are used as new vertices to locally

refine the tessellation grid.

2.2.1.2 Integration in region growing algorithms

Region growing algorithms are based on the growth of a region whenever its interior

is homogeneous according to certain features, such as intensity, colour or texture.

This definition is broad enough to allow different variants to be analysed:

1. Region growing: this embraces the traditional implementation of region

growing based on the growth of a region by adding similar neighbours.

2. Watershed: a watershed algorithm effects the growth by simulating a flooding

process, which progressively covers the region.

1In order to avoid confusion, we have called graph-edge an edge that joins two nodes in a graph.
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3. Active region model: considered to be a fusion of region growing with the

techniques of active contour models.

2.2.1.2.1 Region growing

Region growing [2, 229] is one of the most simple and popular algorithms for

region-based segmentation. Typically, the first step is to choose a starting point or

seed pixel. The region then grows by adding neighbouring pixels that are similar,

according to a certain homogeneity criterion, increasing the size of the region step-

by-step. So, the homogeneity criterion has the function of determining whether or

not a pixel belongs to the growing region.

The decision to merge is generally based only on the contrast between the current

pixel and the region. However, it is not easy to decide when this difference is small (or

large) enough to make a decision. The edge map provides an additional criterion in

decisions. A scheme of this approach is shown in Figure 2.4. The technique consists

of determining whether or not the pixel under scrutiny is a contour pixel. Finding

a contour means that the growth process has reached the boundary of the region.

The pixel must therefore be discarded and the growth of the region finishes.

One of the first integrations of edge information into a region-growing algorithm

can be found in the work of Xiaohan et al. [217], where edge information is included

in the decision criterion, which consists of the weighted sum of the contrast between

the region and the pixel and the value of the modulus of the gradient of the pixel. The

proposed combination of region-growing and gradient information can be expressed

using the following formula

x(i, j) = |XN
a v − f(i, j)|

z(i, j) = (1 − φ)x(i, j) + φG(i, j)
(2.1)

where XN
a v is the average grey value of the region which is updated pixel by

pixel. The contrast of the current pixel with respect to the region is denoted by

x(i, j). Parameter φ controls the weight of gradient, G(i, j). Finally, the sum of the

local and the global contrast is the final homogeneity measure, z(i, j). Following

this expression the proposed algorithm can be described using only two steps:
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Figure 2.4: A scheme of the Control of Decision Criterion approach of the embedded

integration strategy. Edge information is used in the decisions taken concerning the

growth of the region.

Step 1 If z(i, j) is less than a given threshold β, then the current pixel is merged

into the region.

Step 2 else the local maximum of the gradients on a small neighbourhood of the

current pixel is searched along the direction of region growing. The procedure

stops at the pixel with the local gradient maximum.

The first step of the algorithm describes the growing of the region guided by the

proposed homogeneity criterion. The second one tries to avoid the typical error of

the region-based segmentation techniques; that is, the inaccuracy of the detected

boundaries, by putting the result of the segmentation in coincidence with the edge

map.

A similar integration proposal was suggested by Falah et al. [65] in 1994. In

this work the gradient information is included in the decision criterion to restrict

the growth of regions. At each iteration, only pixels having low gradient values

(below a certain threshold) are allowed to be aggregated to the growing region.

Another interesting aspect of this work is the choice of the seeds for the process of

region growing. This selection uses the redundancy between the results obtained
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by several region segmentations (with different thresholds and different directions of

image scanning), with the aim to place the seeds in a proper position in which they

have a high degree of certainty of belonging to an homogeneous region.

In 1992 Salotti and Garbay [171] developed a theoretical framework of an inte-

grated segmentation system. The core of the problem of traditional segmentation

methods, as denoted by the authors, relates to the autarchy of the methods and to

the schedule of conditions that are defined with a priori assumptions. In order to

solve this problem, major directives to control each decision are presented: to accu-

mulate local information before taking difficult decisions; to use processes exploiting

complementary information for a successful cooperation; to defer difficult decisions

until more information is made available; and finally, to enable easy context switches

to ensure an opportunistic cooperation. The main idea of these directives is that

each decision must be strongly controlled. This implies that a massive collabora-

tion must be carried out, and that the segmentation task should not be necessarily

achieved before the beginning of the high-level process. Finally, all these principles

are used in a segmentation system with a region-growing process as main module.

Pixels that seem difficult to classify because there is insufficient information for a

sure decision, are given to an edge detection unit that has to respond whether they

correspond to an edge, or not. The same directives were followed in an a posteriori

work of Bellet et al. [14] that presents an edge-following technique which uses region-

based information to compute adaptive thresholds. In such situations, where it is

difficult to follow the high gradient, complementary information is requested and

successfully obtained through the emergence of regions on both sides of the edge. A

child edge process is then created with a threshold adapted to lower gradient values.

Moreover, the authors introduce the adaptability of the aggregation criterion to the

region’s characteristics: several types of region are distinguished and defined. The

region-growing method dynamically identifies the type of the analysed region, and

a specific adapted criterion is used.

Another proposal for the integration of boundary information into the region-

growing process was presented by Gambotto in [73], where edge information was

used to stop the growing process. The algorithm starts with the gradient image and

an initial seed that must be located inside the region. Then, pixels that are adjacent

to the region are iteratively merged if they satisfy a similarity criterion. A second
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criterion is used to stop this growth. They assume that the gradient takes a high

value over a large part of the region boundary. Thus, growth termination is based

on the average gradient, F (n), computed over the region boundary following the

expression

F (n) =
∑

G(k, l)/P (n) (2.2)

where P (n) is the perimeter of the region R(n), and G(k, l) is the value of the

modulus of the gradient of pixels on the region boundary. The iterative growing

process is then continued until the maximum of the global contrast function, F ,

is detected. The authors point out that this cooperation between region growing

and contour detection is desirable because the assumption of homogeneous regions

is usually too restrictive. Using this approach, a wider class of regions can be

characterized compared to the use of smooth grey-level variations alone.

The role of fuzzy logic

The fuzzy rule-based homogeneity criterion offers several advantages compared

to ordinary feature aggregation methods and is worth mentioning. It does not take

long to develop because a set of tools and methodologies already exists, and it is

easy to modify or extend the system to meet the specific requirements of a certain

application. Furthermore, it does not require a full knowledge of the process and

can be understood intuitively because of its human-like semantics. It is also possible

to include such linguistic concepts as shape, size and colour, which are difficult to

handle using most other mathematical methods.

A key work in using fuzzy logic was by Steudel and Glesner [185], where the

segmentation is carried out on the basis of a region-growing algorithm that uses a

fuzzy rule-based system for the evaluation of the homogeneity criterion. The authors

affirmed that there are several negative points in just using the intensity difference

for segmentation:

• image over-segmentation

• annoying false contours

• contours that are not sufficiently smooth
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Therefore, new features are introduced into the rule-base of the fuzzy rule-based

system, which result in a better and more robust partitioning of the image while

maintaining a small and compact rule-base. The proposed homogeneity criterion is

composed of a set of four fuzzy rules. The main criterion is the difference between

the average intensity A of a region Rj and the pixel in under investigation. The

corresponding fuzzy rule is

R1: IF DIFFERENCE IS SMALL

THEN HOMOGENEOUS

ELSE NOT HOMOGENEOUS

Another quite important feature for the region segmentation is the gradient at

the position of the pixel to be merged. A new pixel may be merged into a region Rj

when the gradient at that location is low. On the other hand, when the gradient

is too high, the pixel definitely does not belong to the region and should not be

merged. In terms of a fuzzy rule

R2: IF GRADIENT IS LOW

THEN PROBABLY HOMOGENEOUS

ELSE NOT HOMOGENEOUS

With this rule, an adjacent pixel in satisfies the premise of rule R2 with a degree

of µLOW (GRADIENT (in)). The two remaining rules refer to the size and the

shape of regions, in order to avoid small regions, and to benefit compact regions

with smooth contours. A complete scheme of this proposal is shown in Figure 2.5.

Krishnan et al. [107] describe a boundary extraction algorithm based on the

integration of fuzzy rule-based region growing and fuzzy rule-based edge detection.

The properties of homogeneity and edge information of each candidate along the

search directions are evaluated and compared with the properties of the seed. Using

the fuzzy output values of the edge detection and a similarity measure between the

candidate pixel and the seed, the test for the boundary pixel can be determined.

This proposal was applied on colonoscopic images for the identification of closed-

boundaries of intestinal lumen, to facilitate diagnosis of colon abnormalities.
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Figure 2.5: Fuzzy segmentation technique by Steudel and Glesner. The method

is composed of a set of fuzzy rules related to the main properties of the regions:

intensity, gradient, shape and size. The united result of these rules indicates the

desirability of aggregating a new pixel to the region.

The role of fuzzy logic in segmentation techniques is becoming more impor-

tant [108, 154] and integration techniques are the main stream of this tendency.

This is mainly because these two methods (region and boundary based) are devel-

oped from complementary approaches and do not share a common measure. Hence,

fuzzy logic offers the possibility of solving this problem, as it is especially suited for

carrying out the fusion of diverse information [106, 129].

2.2.1.2.2 Watershed

Another algorithm based on the growth of the region from a seed pixel is the wa-

tershed transformation. Various definitions of watershed have been proposed in the

literature for both digital and continuous spaces [127, 201]. The typical watershed

algorithm simulates a flooding process. An image is identified with a topographical

surface in which the altitude of every point is generally equal to the gradient value

at the corresponding pixel. Holes are then pierced in all regional minima of the
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relief (connected plateaus of constant altitude from which it is impossible to reach a

location at lower altitude without having to climb). Sinking the whole surface slowly

into a lake, water springs through the holes and progressively immerses the adja-

cent walls. To prevent stream intermingling of water coming from different holes, a

constraint is set up at the meeting points. Once the relief is completely covered by

water, the set of obstacles depicts the watershed image [19].

Although watershed is usually considered as a region-based approach, De Smet

et al. [53] pointed out that the watershed transformation has proven to be a powerful

basic segmentation tool that holds the attributed properties of both edge detection

and region growing techniques.

Nevertheless, the performance of a watershed-based image segmentation method

depends largely on the algorithm used to compute the gradient. With a conven-

tional gradient operator, watershed transformation produces an over-segmented

result, with many irrelevant regions. A region merging algorithm must then be

employed to merge these irrelevant regions requiring a long computational time.

Hence, recent studies focus on improving the gradient image in order to perform the

watershed transformation. Wang [204] proposed a multi-scale gradient algorithm

based on morphological operators for watershed-based image segmentation, which

has the goal of increasing the gradient value for blurred edges above those caused

by noise and quantization error. Recently, Weickert [209] studied the use of par-

tial differential equations (PDEs) for preprocessing the image before segmentation.

These PDE-based regularization techniques lead to simplified images where noise

and unimportant fine-scale details are removed.

2.2.1.2.3 Active region model

Active contour models (ACMs) have emerged as an effective mechanism for seg-

menting and tracking object boundaries in images or image sequences. The im-

plementation of any ACM requires the minimization of a function that describes

the energy of the contour. This energy functional typically has two components:

internal energy, which applies shape constraints to the model, and external energy,

derived from the data to which the model is being applied. Since the original formu-

lation by Kass et al. [102], many variations and improvements have been suggested.
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However, ACMs in general are sensitive to initial conditions.

Recently, some algorithms which combine the techniques of ACMs and region

growing [6] have been developed. The external part of the ACM energy functional

is replaced by a term derived from local region information. Points on the contour

are allowed to expand or contract according to the match between local region in-

formation and a global model of the region derived from the initial configuration.

The resulting active region model (ARM) retains the desirable features of both tech-

niques. The regularity of the contour can be controlled by the shape constraints in

the energy functional. In addition, by examining local region information, bound-

ary points are able to traverse large homogeneous areas of the image, providing the

initial configuration with robustness. As shown in [32] this integration could be

considered as the incorporation of the region information into the boundary finding

process using an active contour model (a scheme of this co-operation is shown in

Figure 2.6).

The origin of region-based energy functionals can be found in global optimisa-

tion approaches based on energy functions. In these approaches to segmentation, an

energy functional includes the desired properties of the resulting segmentation, such

as smoothness within homogeneous regions and the preservation of boundaries be-

tween homogeneous regions. The minimum energy the functional can attain, given

the observation, is chosen as the solution. However, it is often difficult to find their

minima. Mumford and Shah [132, 133] and Shah et al. [176] propose a piecewise

constant energy, in which three terms are kept as small as possible: i) the differ-

ence between the image I and its simplified noiseless version J , ii) the gradient of

J where it is smooth and iii) the length of the curve where J has discontinuities.

This proposal has had a major influence on subsequent works on ARMs such as

the “region competition” algorithm of Zhu and Yuille [227], which incorporates a

statistical criterion into the ideas discussed by Mumford and Shah.

An exemplary work about these integration methods has been developed by

Ivins and Porrill [95, 96]. In their implementation of the active region (called the

“statistical snake”), the energy functional E is specified as

E =
α

2

∮
A

∣∣∣∣∣δuδλ
∣∣∣∣∣
2

dλ +
β

2

∮
A

∣∣∣∣∣δ
2u
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2
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∫

R

∫
G(I(x, y))dxdy (2.3)
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Figure 2.6: Embedded integration by the active region model. Edge detection by

the active contour model is influenced by the region information.

The first two terms in equation 2.3 correspond respectively to the tension and

stiffness energy of the contour model, and together comprise the internal energy.

The third term is the external energy derived from the image data. G is a goodness

functional that returns a measure of the likelihood that the pixel, indexed by x and

y in the image, is part of the region of interest. R is the interior of the contour, and

α, β and ρ are parameters used to weigh these three energy terms. Thus, as the

energy is minimized, the contour deforms to enclose as many pixels with positive

goodness as possible while excluding those with negative goodness. This seed region

serves two purposes: it is used as the initial configuration of the model, and also

to construct a statistical model of the attributes (e.g., intensity, colour, texture) of

the data comprising the region as a whole from which the goodness functional is

derived.

This implementation of the method has been a posteriori revised and modified

by Alexander and Buxton [6], in order to be an effective solution to the problem

of tracking the boundaries of country lanes in sequences of images from a camera

mounted on an autonomous vehicle. The “anticipating snake” of Ronfard [166] or

the most recent proposal by Chesnaud et al. [39] are other good examples of active

region models.

Moreover, there is a recent trend which combines the region information inside

the active contour and the boundary information on the contour to define the energy

functional. Hence, boundary and region information are cooperating in a coupled
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active contour model. The exemplary work on this approach is by Paragios and

Deriche [146], where the texture segmentation is obtained by unifying region and

boundary-based information as an improved Geodesic Active Contour Model (orig-

inally proposed by Caselles et al. [30]). Initially, an off-line step is performed that

creates multi-component probabilistic texture descriptors for the given set of tex-

ture patterns. The segmentation problem is then stated under an improved geodesic

active contour model that aims to find the minimal length geodesic curve that best

preserves high boundary probabilities, and creates regions that have maximum a

posteriori segmentation probability with respect to the associated texture hypothe-

sis. This proposal was used subsequently by the same authors to address the problem

of tracking several non-rigid objects over a sequence of frames acquired from a static

observer [147]. Moreover, its use has been analysed by Will et al. [213] to further

enhance the results of a proposed texture edge detector, which can generate precise

maps of highly significant edge-probabilities for the active region model to produce

satisfactory results.

Finally, we want to mention the work of Chakraborty et al. [32, 33], which

has undergone constant evolution in recent years, with the continuous flow of new

ideas and updating of the techniques used, opening up new ways to perform the

integration. In 1994, Chakraborty et al. [32], proposed a segmentation technique for

biomedical image analysis. The proposal uses a Fourier parameterisation to define

the dynamic contour. It expresses a curve in terms of an orthonormal basis, which

for most practical situations, is constrained to a limited number of harmonics. The

curve is thus represented by a set of corresponding Fourier coefficients

p = (a0, c0, a1, b1, c1, d1, ...) (2.4)

The objective function used is a function of conditional probability P (p|Ig, Ir),

or the probability of obtaining the p-contour given the region-classified image Ir and

the image of the scalar magnitude of the grey-level gradient Ig. The function is the

sum of three terms

M(p, Ig, Ir) = Mprior(p) + Mgradient(Ig, p) + Mregion(Ir, p) (2.5)
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The first (prior) term biases the boundary toward a particular distribution of

shapes generated from prior experience, while the second term in the equation

(Equation 2.6), Mgradient(Ig, p), depends on the coincidence of the parameterised

boundary, with the image edges appearing as coherent features in the scalar gradi-

ent of the grey levels,

Mgradient(Ig, p) =
∫

Cp

Ig[x(p, t), y(p, t)]dt (2.6)

such that the likelihood of p representing the true boundary is proportional to

the sum of the gradient values of all points in Cp.

Finally, term Mregion(Ir, p) (Equation 2.7) measures the goodness of match of the

contour with the perimeter of the segmented interior of the object. This method

rewards the boundary that contains as much of the inside region and as little of

the outside as possible. This function is evaluated by integrating over the area Ap

bounded by the contour p, as expressed in

Mregion(Ir, p) =
∫ ∫

Ap

Ir(x, y)dA (2.7)

where pixels inside and outside Ap are set equal to +1 and −1, respectively.

Given that area integral must be evaluated many times, Chakraborty et al. [32]

describe an alternative and faster integration method based on Green’s Theorem.

In their last proposal [33], they suggest a method for integrating region segmen-

tation and active contours using game theory in an effort to form a unified approach.

The novelty of the method is that this is a bi-directional framework, whereby the

results of both computational modules are improved through sharing mutual infor-

mation. Hence, both processes (edge and region detection) use the information from

the co-operative process and the integration carried out is embedded in both seg-

mentation techniques at the same time. The proposed algorithm consists of allowing

the region and boundary modules to assume the roles of individual players who are

trying to optimise their individual cost functions within a game-theory framework.

The flow of information is restricted to passing only the results of the decisions

among the modules. Thus, for any module, the results of the decisions of the other

modules are used as priors, and players try to minimize their cost functions at each
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Figure 2.7: Flow diagram for game-theoretic integration of region-based segmenta-

tion and boundary finding proposed by Chakraborty Duncan [33]. The outputs of

each of the modules feedback to each other after every decision-making step. The

algorithm stops when none of the modules can improve their positions unilaterally.

turn. The flow diagram for game-theoretic integration is shown in Figure 2.7. The

authors affirm that this makes it unnecessary to construct a giant objective function

and optimise all the parameters simultaneously.

2.2.2 Seed Placement Guidance

One of the aspects that has a major influence on the result of a region-based segmen-

tation is the placement of initial seed points. However, the typical region growing

algorithm chooses them randomly or by using a set a priori direction of the image

scan. In order to take a more reasonable decision, edge information can be used to

decide the best position to place the seed.

It is generally accepted that the growth of a region has to start from within that

region (see [16, 181]). The interior of the region is a representative zone and enables

a correct sample of the region’s characteristics to be obtained. The boundaries

between regions must be avoided when choosing the seeds because they are unstable

zones and not suitable for obtaining information about the region as a whole. This

approach therefore uses the edge information to place the seeds in the interior of the
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Figure 2.8: A scheme of the Seed Placement Guidance approach of the embedded in-

tegration strategy. Edge information enhances decisions regarding the most suitable

position for the starting seed point of the region detection.

regions. The seeds are launched in placements which are free of contours and, in

some proposals, as far as possible from them. A scheme of this integration strategy

is shown in Figure 2.8.

In 1992 Benois and Barba [16] presented a segmentation technique that combined

contour detection and a split-and-merge procedure of region growing. In this work,

the boundary information is used to choose the growing centres. More specifically,

the original idea of the method is the placement of the seeds on the skeleton of

non-closed regions obtained by edge detection. The technique starts with contour

detection and extraction, according to the algorithm proposed in [131], which finds

the most evident frontiers of homogeneous regions. The contours obtained as a result

of this overall procedure are of high quality, but not always closed. Subsequently,

a region-growing procedure is used to close these regions and obtain a more precise

segmentation. Hence, in order to obtain a uniformly spread speed of region growing

constrained by original contours, the growing centres should be chosen as far as

possible from these contours. In order to do so, the algorithm selects seed points on

the skeleton defined by the set of the original contours. The skeleton is computed by

the Rosenfeld method of local maxima distance. Finally the region-growing process
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is realized in the following steps: a splitting process that divides an initial image

into homogeneous rectangular blocks, and then a merging process, grouping these

blocks around growing centres to obtain final segments.

A similar work has been proposed recently by Sinclair [181] who presented an

interesting integration segmentation algorithm. First, the Voronoi image generated

from the edge image is used to derive the placement of the seeds. The intensity

at each point in a Voronoi image is the distance to the closest edge. Peaks in the

Voronoi image, reflecting the farthest points from the contours, are then used as

seed points for region growing. In the growth process, two criteria are used in order

to attach unassigned pixels: the difference in colour between the candidate pixel and

the boundary member pixel must be less than a set threshold, and the difference in

colour between the candidate and the mean colour of the region must be less than a

second, larger, threshold. In this sense, they take into account local and global region

information for the aggregation of a new pixel to a region. This could be especially

interesting for blurred regions. From another integration aspect, edges recovered

from the image act as hard barriers through which regions are not allowed to grow.

Figure 2.9 shows the images generated on the segmentation process, including the

Voronoi image, which guides the placement of the region-growing centres.

Edge information can also be used to establish a specific process growing order.

As is well known, one of the disadvantages of the region growing and merging pro-

cesses is their inherently sequential nature. Hence, the final segmentation results

depend on the order in which regions are grown or merged. Edge-based segmenta-

tion enables this order to be decided, in some cases by simulating the order in which

humans separate segments from each other in an image (from large to small) [129], or

in other proposals, by giving the same growing opportunities to all the regions [50].

Moghaddamzadeh and Bourbakis proposed in [129] an algorithm that uses edge

detection to guide initialisation of an a posteriori region-growing process. Actually,

this work is not specifically oriented to the placement of the seeds for the a posteriori

growing process, but is focussed on establishing a specific process growing order.

The objective of this proposal is to simulate the way by which we humans separate

segments from each other in an image; that is, from large to small. In order to

achieve this, an edge detection technique is applied to the image to separate large
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(a) (b)

(c) (d)

Figure 2.9: The Sinclair approach using the Voronoi image: (a) Original image;

(b) Edges extracted from the original colour image; (c) Voronoi image computed

from the edge image; (d) Final segmentation.

and crisp segments from the rest. The threshold in the edge detection algorithm is

set low enough to detect even the weakest edge pixels in order to separate regions

from each other. Next, obtained regions (considering a region as a place closed by

edges) are sequentially expanded, starting from the largest segment and finishing

with the smallest. Expanding a segment refers to merging adjacent pixels with the

segment, based on some given conditions. Two fuzzy techniques are then proposed

to expand the large segments and/or to find the smaller ones.

Another proposal which uses the edge information to initialise the seeds of a

posteriori region growing was presented by us in [50]. Just like the proposal of

Moghaddamzadeh and Bourbakis [129], our technique takes seed placement as well

as the region growing order into account. However, Moghaddamzadeh and Bourbakis

give priority to the largest regions, whereas we prefer a concurrent growing, giving

the same growing opportunities to all regions. The technique begins by detecting

the main contours of the image following the edge extraction algorithm discussed

in [48]. For each one of the extracted contours, the algorithm places a set of growing

centres at each side and along it. It is assumed that the whole set of seeds at one side
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of the contour belongs to the same region. Then, these seeds are used as samples of

the corresponding regions and analysed in the chromatic space in order to establish

appropriate criteria for the posterior growing processes. The aim is to know a

priori some characteristics of regions in order to adjust the homogeneity criterion to

the region’s characteristics. Finally, seeds simultaneously start a concurrent growth

using the criterion established for each region, which is based on a clustering analysis

and convex hull construction. This proposal is described in depth in Chapter 3.

2.3 Post-processing integration

In contrast to the literature analysed so far, which follows an embedded strategy,

post-processing strategies carry out a posteriori integration, i.e. after the segmenta-

tion of the image by region-based and boundary-based algorithms. Region and edge

information is extracted in a preliminary step, and then the two are integrated. Post-

processing integration is based on fusing results from single segmentation methods,

attempting to combine the region (generally with thick and inaccurate boundaries)

and the edge (generally with fine and sharp lines, but dislocated) maps with the

aim of providing an accurate and meaningful segmentation. We have identified

three different approaches to perform these tasks:

1. Over-segmentation: this approach consists on using a segmentation method

with specifically fixed parameters to obtain an over-segmented result. Addi-

tional information from other segmentation techniques is then used to elimi-

nate false boundaries that do not correspond to regions.

2. Boundary Refinement: this approach considers the region segmentation

result as an initial approach, with well-defined regions, but with inaccurate

boundaries. Information from edge detection is used to refine region bound-

aries and to obtain a more precise result.

3. Selection-Evaluation: in this approach, edge information is used to evaluate

the quality of different region-based segmentation results, with the aim of

choosing the best. This third set of techniques deals with the difficulty of

establishing adequate stopping criteria and thresholds in region segmentation.
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2.3.1 Over-segmentation

This approach emerged as a result of the difficulty in establishing an adequate

homogeneity criterion for region growing. As Pavlidis and Liow [152] suggested, the

major reason that region growing produces false boundaries is that the definition of

region uniformity is too strict, such as when they insist on approximately constant

brightness while in reality, brightness may vary linearly within a region. It is very

difficult to find uniformity criteria that exactly match these requirements and do not

generate false boundaries. They concluded that the results could be significantly

improved by checking all the region boundaries that qualify as edges rather than

attempting to fine-tune the uniformity criteria.

The over-segmentation method begins by obtaining an over-segmented result,

which is achieved by properly setting the parameters of the algorithm. This result is

then compared with the result from the dual approach: each boundary is checked to

find out if it is consistent in both results. When this correspondence does not exist,

the boundary is considered false and is removed. In the end, only real boundaries

are preserved. A basic scheme clarifying the ideas of this strategy is shown in

Figure 2.10.

The most common technique consists on obtaining the over-segmented result

using a region-based algorithm. Each initial boundary is checked by analysing its

coherence with the edge map, where real boundaries have high gradient values, while

false boundaries have low values. A first proposal can be found in the work of Monga

et al. [72, 216], where two adjacent regions are merged if the average gradient on

their boundary is lower than a fixed threshold.

In 1992, Kong and Kosko [106] included a fuzzy logic approach in the algorithm

proposed by Monga et al. As Monga et al. proposed, Kong and Kosko computed

gradient information which they refer to as high-frequency characteristics h, to elim-

inate false contours.

h =
|high frequency components along the boundary|

length of the boundary
(2.8)

For any boundary, if the high-frequency information h is small, the algorithm

concludes the boundary is a false contour and it can be eliminated.
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Figure 2.10: A scheme of the Over-segmentation approach to the post-processing

integration strategy. The parameters of the region detection method are set to

obtain an over-segmented result. Edge information is then used to eliminate false

boundaries. This scheme can also be used starting from an over-segmented edge-

based result, and using region information to distinguish between true and false

boundaries.

Another interesting work was presented by Pavlidis and Liow in [152]. The

proposed algorithm shares the basic strategy of the previously described works,

but the authors include a criterion in the merging decision in order to eliminate

false boundaries that have resulted from the data structure used. Starting from an

over-segmented image, region boundaries are eliminated or modified on the basis

of criteria that integrate contrast with boundary smoothness, variation of the im-

age gradient along the boundary, and a final criterion that penalizes the presence

of artifacts related to the data structure used during the segmentation. For each

boundary, a merit function is computed of the form

f1(contrast) + βf2(segmentation artifacts) (2.9)
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where boundaries with low values of that sum are candidates for elimination.

Finally, the proposed algorithm ends up with a step of contour refinement using

snakes, which produces smoother contours. A similar proposal by Xuan et al. [218]

was successfully applied for magnetic resonance (MR) brain image segmentation in

1995.

Saber et al. [169] proposed a segmentation algorithm which uses a split-and-merge

process to carry out the fusion of spatial edge information and regions resulting from

adaptive Bayesian colour segmentation. The image is first segmented based on colour

information only. Next, spatial edge locations are determined using the magnitude

of the gradient of the three-channel image vector field, computed as described by

Lee and Cok in [111]. In order to enforce the consistency of the colour segmentation

map with colour edge locations, a split-and-merge procedure is proposed. In the first

step, colour segments that have at least one edge segment within their boundary will

be split into multiple regions. The splitting is accomplished by first thresholding the

gradient result, and then labelling all contiguous regions therein. Next, the merging

criterion favours the combination of two regions if there is no significant edge between

the region boundaries. A flowchart of the method is depicted in Figure 2.11.

The over-segmentation approach can also be applied by starting from an over-

segmented result obtained from a boundary-based approach [66, 155]. Region in-

formation then allows true and false contours to be distinguished. Boundaries are

checked by analysing the chromatic and textural characteristic on both sides of the

contour. A real boundary borders on two regions, so it has different characteristics

on each side. Following this strategy, Philipp and Zamperoni [155] proposed to start

with a high-resolution edge extractor, and then, according to the texture character-

istics of the extracted regions, to decide whether to suppress or prolong a region.

Derivative edge detectors, when employed at a high resolution, give long, rather

isolated and well-localized contours in non-textured areas and numerous, short and

close-spaced contours in textured areas. The former correspond to true edges in

the image, because they are well localized and thin, so they must be preserved, and

prolonged if possible. On the other hand, the latter must be suppressed if they are

inside a textured region, but preserved and prolonged if they represent a piece of

border. The criteria used in this algorithm is the distance between textures on either

side of the edge. To obtain texture information, two seeds are put on either side of
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Figure 2.11: Flowchart of the method proposed by Saber, Tekalp and Bozdagi.

First, an initial segmentation map is computed. Then, region labels are optimised

by split-and-merge procedures to enforce consistency with the edge map.

the edge and start a recursive growing until N representative pixels are gathered. If

the distance between textures is small, the edge is considered false and regions are

merged. Otherwise, the contour is preserved and prolonged in order to maximize

the distance on either side of the edge.

Fjørtoft et al. [66] presented in 1997 another technique based on over-segmentation

from edge detection, which was applied on SAR images. The authors discussed the

key role of the threshold value to extract the possible edges from an edge strength

map by thresholding. The chosen threshold is related to the probability of false

alarm, i.e., the probability of detecting an edge in a zone of constant reflectivity. In

order to detect all significant edges, a low threshold is set, accepting the detection of

numerous false edges as well. The over-segmentation result provides, as the authors

suggested, a good starting point for the merging process that eliminates false edges

by merging regions. The merging step uses a Likelihood Ratio (LR) criterion to

decide the homogeneity between adjacent regions and the consequent elimination of
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their boundary. That is LR is related to the probability that the two regions have

the same reflectivity.

2.3.2 Boundary Refinement

As we have already mentioned, region-based segmentation detects true regions very

well, although, as is well known, the resultant sensitivity to noise causes the bound-

ary of the extracted region to be highly irregular. This approach, which we refer to

as boundary refinement, considers region-based segmentation as an initial approxi-

mation to segmentation. Typically, a region-growing procedure is used to obtain an

initial estimate of a target region, which is then combined with salient edge infor-

mation to achieve a more accurate representation of the target boundary. As in the

over-segmentation proposals, edge information enables an initial result to be refined.

An interesting example of boundary refinement can be found in the work of Had-

don and Boyce [78], where they proposed a segmentation algorithm consisting of two

stages: after an initial region segmentation, a posterior refinement of the generated

regions is performed by means of a relaxation algorithm that uses the edge informa-

tion to ensure local labelling consistency. Nevertheless, the main characteristic of

this work is the postulate that a co-occurrence matrix may be employed as a feature

space, with clusters within the matrix being identified with the regions and bound-

aries of an image. This postulate is proven for nearest neighbour co-occurrence

matrices derived from images whose regions satisfy Gaussian statistics; regions yield

clusters on the main diagonal, and boundaries clusters off the main diagonal.

Chu and Aggarwal presented in [42] an algorithm which integrates multiple re-

gion segmentation and edge maps. The proposed algorithm allows multiple input

maps and applies user-selected weights on various information sources. The first

step consists of transforming all inputs to edge maps, then a maximum likelihood

estimator provides initial solutions of edge positions and strengths from multiple

inputs. An iterative procedure is then used to smooth the resultant edge patterns.

Finally, regions are merged to ensure that every region has the required properties.

The strength of this proposal is that the solution is a negotiated result of all input

maps rather than a selection of them. More recently, Nair and Aggarwal [135] have
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made their initial proposal more sophisticated by stating the boundary refinement

problem as a classification problem. Every point s on the region boundary must

find its new location as a selection from a set of candidate edge element locations

z=zj,j=0...n, where z0 = s.

Using the Bayes decision rule, the algorithm chooses zj as the new location if

p(s|zj) ≥ p(s|zk)P (zk) ∀k �= j, (2.10)

where p(s|zj) represents the conditional density function of s given zj, and P (zj)

is the a priori probability of z. The a priori probability of each candidate location

zj is estimated as the proximity of the salient edge segment to which zj belongs, to

the boundary of the target region. Finally, the proposed algorithm tries to restore

boundary segments by incorporating small parts of the target missed in the region

segmentation; i.e., for each edge pixel at the site of a break in the boundary, tries

to determine whether it is part of a salient edge. If it is, the complete edge segment

can be incorporated into the boundary. A scheme of this proposal is indicated in

Figure 2.12.

A recent proposal on the boundary refinement approach was put forward by

Sato et al. [173]. The objective of these authors was to obtain an accurate segmen-

tation of 3D medical images for clinical applications. The proposed technique takes

into account the gradients of the boundary and its neighbourhood and applies the

gradient magnitude, based on a Sobel operator, for boundary improvement. The

algorithm starts by successive steps of thresholding and ordinary region growing,

which obtains a first segmentation of the region of interest. The highest gradient

magnitude is expected at the boundary, so a growing process starts to find this

optimal boundary. For each voxel (3D pixel) at a boundary, neighbourhoods of the

voxel and outside the region are evaluated by calculating their gradient magnitudes.

If each of those voxels has a greater gradient magnitude than the boundary voxel, it

is assigned to the next boundary region. This process is repeated recursively until

no further boundary region can be created.
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Figure 2.12: The general flow of the target segmentation paradigm proposed by

Nair and Aggarwal [135]. Boundary refinement from edge information is stated as

a classification problem.

Nevertheless, we will consider two basic techniques used to refine the boundary

of the regions:

1. Multiresolution: this technique is based on analysis at different scales. A

coarse initial segmentation is refined by increasing the resolution.

2. Boundary refinement by snakes: this involves the integration of region

information with dynamic contours, particularly snakes. The region boundary

is refined by minimizing the energy function of the snake.

2.3.2.1 Multiresolution

The multiresolution approach is a promising strategy for boundary refining. The

image is analysed at different scales, using a pyramid or quad-tree structure. The

algorithm consists of an upward path which has the effect of smoothing or increasing

class resolution, at the expense of a reduction in spatial resolution, and a downward
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path which attempts to regain the lost spatial resolution, while preserving the newly

won class resolution. This multiresolution structure is then used, according to a

coarse-to-fine strategy which assumes the invariance of region properties over a range

of scales: those nodes in an estimate considered to be interior in a region are given

the same class as their “fathers” at lower resolution. Specifically, a boundary region

is defined at the coarsest level and then the candidate boundary is further refined

at successively finer levels. As a result, the boundaries of the full image size are

produced at the finest resolution. The scale-space model is also adopted by the

edge-focusing approach to edge detection [17], where the edges are detected at a

coarse scale and progressively refined through the examination of smaller scales.

Starting with an edge map at a heavily smoothed scale eliminates the influence of

noise on a gradient based detector. Good localisation is also achieved by propagating

edges from their initial rough location to their true location in the original unblurred

image.

A key work in multiresolution strategy was developed by Spann and Wilson.

Their strategy [183] employs a quad-tree method using classification at the top

level of the tree, followed by boundary refinement. A non-parametric clustering

algorithm [184] is used to perform classification at the top level, yielding to an

initial boundary, followed by downward boundary estimation to refine the result. A

generalisation of this work was applied to texture segmentation in [215].

In 2000, Hsu et al. [92] described a texture segmentation algorithm, which uses a

co-operative algorithm within the Multiresolution Fourier Transform (MFT) frame-

work. The magnitude spectrum of the MFT is employed as a feature space in which

the texture boundaries are detected by means of the combination of boundary in-

formation and region properties. This information is propagated down to the next

resolution in a multiresolution framework, whereby both the required boundary and

region information are used successively until the finest spatial resolution is reached.

2.3.2.2 Boundary refinement by snakes

The snake method is known to solve boundary refinement problems by locating

the object boundary from an initial plan. However, snakes do not try to solve the

entire problem of finding salient image contours. The high grey-level gradient of the
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Figure 2.13: A scheme of the Boundary Refinement approach of the post-processing

strategy. Information from edge detection is used to refine the inaccurate boundaries

obtained from the region detection. This process is generally carried out by placing

a snake over the region. The energy minimization process then permits a precise

boundary to be obtained.

image may be due to object boundaries as well as noise and object textures, and

the optimisation functions may therefore have many local optima. Consequently,

active contours are, in general, sensitive to initial conditions and they are only truly

effective when the initial position of the contour in the image is sufficiently close

to the real boundary. For this reason, active contours rely on other mechanisms to

place them somewhere near the desired contour. In early works on dynamic contours,

an expert was responsible for putting the snake close to an intended contour, and

minimizing its energy provided its final position.

However, region segmentation could be the solution to the problem of where

to initialize snakes. Proposals concerning integrated methods consist of using the

region segmentation result as the initial contour of the snake. Here, the segmentation

process is typically divided into two steps (see Figure 2.13). First, a region growing
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1. Getting a seed point

2. Region Growing by parameter

3. Detection of initial contour

1. Dynamic Contour Model

2. Extraction of boundary

Region Growing

Contour Modification

Figure 2.14: Block diagram of integration proposal using snakes. The region-based

segmentation result is used to initialize the position of the dynamic contour. Next,

energy minimization permits extraction of the accurate boundary of the target ob-

ject.

with a seed point in the target region is performed, and its corresponding output

is used for the initial contour of the dynamic contour model. Secondly, the initial

contour is modified on the basis of energy minimization.

In the work of Chan et al. [34], the greedy algorithm proposed by Williams and

Shah [214] is used to find the minimum energy contour. This algorithm searches for

the position of the minimum energy by adjusting each point on the contour during

iteration to a lower energy position amongst its eight local neighbours. The result,

although not always optimal, is comparable to that obtained by variational calculus

methods and dynamic programming. The advantage is that their method is faster.

Similar proposals can be found in the works of Vérard et al. [200] and Jang et

al. [99]. A basic scheme of these approaches is depicted in Figure 2.14. Curiously,

the results of all these techniques have been shown on Magnetic Resonance Imaging

(MRI) images, but this is not merely a coincidence. Accurate segmentation is critical

for diagnosis in medical images, but in MRI images, it is very difficult to extract

the contour that exactly matches the target region. Integrated methods seem to be

a valid solution for achieving an accurate and consistent detection.
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2.3.3 Selection-Evaluation

In the absence of object or scene models or ground truth data, it is critical to

have a criterion that enables the quality of a segmentation to be evaluated. Many

proposals have used edge information to define an evaluation function that evaluates

the quality of a region-based segmentation. The purpose is to achieve different

results by changing parameters and thresholds in a region segmentation algorithm,

and then to use the evaluation function to choose the best result. The basic scheme

of this approach is shown in Figure 2.15. This strategy provides a solution to

traditional problems in region segmentation, such as defining an adequate stopping

criterion or setting appropriate thresholds.

The evaluation function measures the quality of a region-based segmentation

according to its consistency with the edge map. The best region segmentation is the

one where the region boundaries correspond most closely to the contours.

Fua and Hanson [68] developed in 1987 a pioneering proposal in which high-

level domain knowledge and edge-based techniques were used to select the best

segmentation from a series of region-based segmented images. However, the majority

of methods based on the selection approach have been developed in the last five

years.

In 1995, Le Moigne and Tilton [112] proposed choosing a stopping criterion for a

region-growing procedure. This is adjusted locally to select the segmentation level

that provides the best local match between edge features and region segmentation

contours. Figure 2.16 shows a basic scheme of this proposal. Desired refined seg-

mentation is defined as the region segmentation with minimum length boundaries

including all edges extracted by the Canny edge detector [26] and for which all con-

tours include some edge pixels. The iteration of the region-growing process which

minimizes the “Hausdorff distance” is chosen as the best iteration. The “Hausdorff

distance” measures the distance between two binary images: the edge pixels ob-

tained through Canny, A, and the boundary of the regions obtained through the

region growing, B, and is computed as

H(A,B) =
1

2
[max

aεA
min
bεB

d(a, b) + max
bεB

min
aεA

d(a, b)] (2.11)
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Figure 2.15: A scheme of the Selection-Evaluation approach of the post-processing

integration strategy. The edge information is used to evaluate the quality of a

segmentation in order to choose the best segmentation from a set of region-based

results.

where d(a, b) is a point-to-point Euclidean distance. In summary, the distance is

computed by finding, for each edge pixel, the closest region boundary pixel, and re-

spectively for each region boundary pixel the closest edge pixel, and then computing

the maxima and minima expressed in the equation.

Hojjatoleslami and Kittler [89] presented a region-based segmentation which used

gradient information to specify the boundary of a region. The method starts with

a growing process which is stopped using the maximum possible size N of a region.

Then, a reserve check on the relevant measurements is applied to detect the region

boundary. Contrast and gradient are used as sequential discontinuity measurements

derived by the region-growing process whose locally highest values identify the ex-

ternal boundary and the highest gradient boundary of each region, respectively.

Contrast is defined as the difference between the average grey-level of the region

and the average of the current boundary, and is continuously calculated. The max-

imum contrast corresponds to the point where the process has started to grow into
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Figure 2.16: Outline of the edge/region integration algorithm proposed by Le Moigne

and Tilton [112]. Edge information is used to decide the best region-growing itera-

tion that provides the best local match edge features and region boundaries.

the background. Finally, the last maximum gradient measure, before the maximum

contrast point, specifies the best boundary for the region.

Siebert [179] developed an interesting, simple and faster integration technique,

where edge information is used to adjust the criterion function of a region-growing

segmentation. For each seed the algorithm creates a whole family of segmentation

results (with different criterion functions) and then, based on the local quality of the

region’s contour, selects the best one. To measure the segmentation quality, a metric

that evaluates the strength of a contour is proposed. The contour strength cs(R)

of a region R is defined as the contrast between both sides of the boundary. More

formally, the contour strength is expressed as the sum of the absolute differences

between each pixel on the contour of a region and the pixels in the 4-neighbourhood

of these contour points that are not part of the region. To calculate this parame-

ter it is necessary to process a contour-following task, as well as several differences

between integer numbers. As the authors remark, these operations are computation-

ally inexpensive. Furthermore, the authors suggest that slightly improved results at

higher computational costs can be expected if the contour strength is based on the

gradient at each contour pixel rather than on the intensity difference.

A similar methodology can be found in a recent work of Revol-Muller et al. [161],
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where they proposed a region-growing algorithm for the segmentation of three-

dimensional medical images. As in the work described previously, the method con-

sists of generating a region-growing sequence by increasing the criterion function

at each step. An evaluation function estimates the quality of each segmented re-

gion and permits determination of the optimal threshold. This method is illustrated

schematically in Figure 2.17. The authors proposed different parameters based either

on boundary or region criteria to be used as the evaluation function. Three choices

are proposed based on boundary criteria: 1) the sum of contrasts of all transition

couples (two neighbouring pixels located on either side of the boundary are called a

transition couple), normalized by the total number of transition couples; 2) the sum

of all standard deviations of members of the boundary and its neighbouring pixels

not belonging to the segmented region, normalized by the total number of pixels

belonging to the boundary; 3) the sum of transition levels of all transition couples

normalized by total number of transition couples. Three alternate choices based

on region criteria are proposed: 1) entropy, 2) inter-cluster variance and 3) inverse

distance between the grey-level function of the original image and the mean of the

region and its complement. Tests on 3D magnetic resonance images demonstrated

that the proposed algorithm achieves better results than manual thresholding.

More ideas about the integration of different methods can be found in the work

of Hibbard [88], where snakes are used to evaluate the quality of a segmentation

result. The proposal is based on an iteratively region growing approach, where at

each stage the region of interest grows following a deterministic criterion function

based on a hierarchical classifier operating on texture features. At each stage, the

optimal contour is determined using snakes. This optimal choice is the one that best

satisfies the three conditions of the objective function proposed by Chakraborty et

al. (see Section 2.3.2 and Equation 2.5). The function proposed by Chakraborty

is used in the method as a quality measure of the current segmentation and allows

choice of which is the best segmentation between the set of iterations of the growing

process. Finally, the resulting contour corresponds to the maximum over all of the

iteratively computed contours.
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Figure 2.17: Scheme of the method proposed by Revol-Muller et al [161]. A sequence

of segmented regions is obtained by increasing the homogeneity threshold. Then,

an evaluation function determines the optimal threshold automatically.

2.4 Summary

A review of various segmentation proposals integrating edge and region information

has been given, making special emphasis on different strategies and methods used

to fuse such information. The aim of this summary is to point out the features and

the essential differences of such approaches, as well as to discuss some questions that

perhaps have not been properly considered.

Table 2.1 summarizes different methods to perform edge and region integration.

The first column distinguishes the strategy according to the timing of the fusion:

embedded or post-processing. The second column names the approach. The next

two columns describe the problem that the approach tries to solve and a description

of the objective. Finally, the last column summarizes the procedure used to perform

the segmentation task.

As described in Section 2.1, embedded and post-processing integration use differ-

ent principles to perform the task of segmentation. Embedded integration is based
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on the design of a complex, or a superior, algorithm which uses region and edge in-

formation to avoid errors in segmentation. On the other hand, the post-processing

strategy accepts faults in the elemental segmentation algorithms, but an a posteriori

integration module tries to correct them. The key features which characterise and

contrast the two strategies are:

• single algorithm and avoidance of errors (embedded integration)

• multiple algorithms and correction of errors (post-processing integration).

These two essential characteristics lead to the fact that these strategies involve

notable differences. The first aspect to analyse is the complexity of both strategies.

Embedded integration produces, in general, a more complex algorithm as it attempts

not to commit errors or take wrong decisions. The post-processing strategy can be

regarded as the set of many simple algorithms working in parallel and producing

many wrong segmentation results. These errors are solved by a posteriori fusion

module that works on these results. Post-processing complexity is therefore lower

because the quantity of information to process decreases, as only the results are

taken into consideration.

Another aspect which is worth analysing is the independence of these integration

strategies with respect to their implementation in the segmentation algorithm. The

embedded strategy is strongly dependent, because it typically implies the design of

a new algorithm, which incorporates the integration. Hence, any change in the inte-

gration procedure will imply the modification of the algorithm. On the other hand,

the post-processing strategy involves a more general approach as it is independent

of the choice of algorithms for image segmentation. The fusion of the information

only takes the results of the segmentation algorithms into account, so the way they

are obtained is not important, and it is possible to use any established algorithms.

Some researchers, such as LeMoigne and Tilton [112], indicate that post-processing

integration can also be viewed in a general data management framework, where all

incoming data is processed on-line upon acquisition, producing basic features such

as edges and regions.

However, we need to point out that the post-processing strategy is not 100%

independent, and this, in fact, is its weak point. It is true that it is independent in
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terms of the chosen method, but obviously if the results achieved by these algorithms

are very poor, post-processing fails. It is undeniable that a posteriori fusion needs

to work on a relatively good set of segmentation results. Final segmentation will

therefore inevitably depend, to a greater or lesser extent, on the initial results of

the segmentation. An initial fault, e.g., the inappropriate selection of seeds in a

region-growing algorithm, will be carried over into the entire segmentation process.

A posteriori integration of edge information may not be able to overcome an error

of this magnitude.

2.4.1 Open questions

Having reviewed the different proposals, we think that some questions still deserve

special attention. First, there are important questions related to the evaluation of

the approaches and the difficulty that it implies. Secondly, there are certain tasks

which are included in many of the reviewed proposals, such as contour or texture

extraction, which are significant research topics by themselves.

• Evaluating the different approaches

Actually, it is not feasible to determine the best approach to segmentation

that integrates boundary and region information. There are several reasons

for this: the lack of a generally accepted and clear methodology for evaluating

segmentation algorithms [143]; the difficulty of obtaining and ground truthing

sufficient real imagery [202]; or the fact that different segmentation algorithms

differ in terms of the properties and objectives they try to satisfy and the

image domain in which they are working [82]. However, the most important

factor is probably the difficulty in implementing other people’s algorithms due

to the lack of necessary details [221]. Obviously, unless a given segmentation

algorithm is specifically implemented and tried out on the data to hand, it is

very difficult to evaluate from the published results how well it will work for

that data [67]. As Hoover et al. [90] indicated the comparative framework is

itself a research issue, and although positive steps have been taken, a guiding

philosophy for the design of such a framework is still lacking. All these points

will be further discussed in Chapter 5.
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• Tasks

Another thing to point out is the high number of very difficult tasks that

are integral parts of the approaches we have reviewed, for example edge map

extraction or thresholding, among others. For instance, a serious difficulty ap-

pears when, as is usual, the most significant edges in the image are required.

Extracting these is not an easy task and the process often includes many pa-

rameters: i.e. an adequate threshold that will result in a reliable binarization

and the subsequent edge map. In this sense, the embedded proposals that

directly use the gradient map as boundary information have an important

advantage. Another question to consider is the lack of attention that, in gen-

eral, the reviewed works devote to texture. Without this property, it is not

possible to distinguish whether a high-magnitude gradient corresponds to a

boundary between regions, or to a textured region. Regrettably, texture is

generally forgotten in the different proposals of embedded integration, with

specific exceptions which have been duly noted. As a consequence, the algo-

rithms are not adapted to segmenting heavily textured areas, resulting in an

over-segmentation of these regions. Segmentation techniques based on post-

processing integration also suffer some deficiencies. Those based on an over-

segmented image must solve a non-trivial problem: What should the threshold

be in order to obtain an over-segmented result? It is well known that images

have different characteristics, so this threshold cannot be a fixed value. An

adequate threshold for one image may not be effective for others, and this

may lead to an irrecoverable loss of boundaries. An initial mistake in such

algorithms could be a serious handicap for the a posteriori fusion, resulting in

an under-segmented result. Moreover, the authenticity of the initial contours

is generally checked under the assumption that real boundaries have high gra-

dients. However, this assumption is not an indispensable characteristic of real

boundaries and this leads to one of the most serious difficulties of the segmen-

tation task. As described in Section 2.3.2, the aim of the boundary refinement

approaches is to obtain reliable smooth boundaries. In order to achieve this,

cooperation between region-based segmentation and snakes, which is the most

common technique, is really a good choice. However, it should be also noted

that the aim of these algorithms is generally to segment not a whole image,



60 Chapter 2. Image Segmentation Integrating Region and Boundary Information

but individual objects from an image. Furthermore, these algorithms have a

deficiency that is shared with the third set of post-processing methods: their

exclusive attention to the boundary. Refining the result is reduced to the re-

gion boundary, so it is not possible to correct any other mistakes inside the

region. The same problem is found in the selection-evaluation approach, where

the quality measure of a segmentation based on boundary information is ex-

clusively based on the external boundary, and not on any inner contour lines

caused by holes. For this reason, regions extracted might contain holes that do

not show up. In short, all these weak points of the post-processing integration

reaffirm the previous assertion about the need for good initial segmentation

results and the inability of the post-processing strategy to correct some initial

mistakes.

2.5 Conclusions

In this chapter we have reviewed some key segmentation techniques that integrate

region and boundary information. Special emphasis has been placed on the strategy

used to carry out the integration process. A classification of cooperative segmenta-

tion techniques has been given and several algorithms described, pointing out their

specific features.

The lack of specific treatment of textured images has been noted, which is one of

the major problems of segmentation [54]. If an image mainly contains homogeneous

colour regions, traditional methods of segmentation working in colour spaces may

be sufficient to attain reasonable results. However, some real images “suffer” from

texture, for example, images depicting natural scenes, which have considerable vari-

ety of colour and texture. Texture, therefore, undoubtedly has a pivotal role to play

in image segmentation. However, there is now some new and promising research

into the integration of colour and texture in segmentation [28, 128, 150, 193, 198].

An attempt to integrate complementary information from the image may follow; it

seems reasonable to assume that a considerable improvement in segmentation will

result from the fusion of colour, texture and boundary information. Segmentation

techniques, in general, are still in need of considerable improvement. The techniques
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we have discussed still have some faults and there is, as yet, no perfect segmenta-

tion algorithm, something which is vital for the advancement of Computer Vision

and its applications. However, integration of region and boundary information has

brought improvements to previous results. Work in this field of research has gener-

ated numerous proposals in the last few years. This current interest encourages us

to predict that further work and improvement of segmentation will be focussed on

integrating algorithms and information.
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Table 2.1: Summary of approaches to image segmentation integrating region and

boundary information.
Integration Approach Problem to Solve Objective Procedure

Embedded Control of De-

cision Criterion

The shape of the ob-

tained region depends

on the growth criterion

chosen.

To include edge infor-

mation, with or with-

out colour information,

and to decide about the

homogeneity of a re-

gion.

A region is not homoge-

neous when there are edges

inside. For this reason, a

region cannot grow beyond

an edge.

Seed Place-

ment Guidance

The resulting region-

based segmentation in-

evitably depends on

the choice of the re-

gion’s initial growth

points.

Choosing reasonable

starting points for

region-based segmen-

tation.

Edge information is used to

choose a seed (or seeds) in-

side the region to start the

growth.

Post-

processing

Over-

Segmentation

Uniformity criteria are

too strict and generate

false boundaries in seg-

mentation.

To remove false bound-

aries that do not coin-

cide with additional in-

formation.

Thresholds are set to

obtain an initial over-

segmented result. Next,

boundaries that do not

exist (according to seg-

mentation from a com-

plementary approach) are

removed.

Boundary Re-

finement

Region-based segmen-

tation generates erro-

neous and highly irreg-

ular boundaries.

To refine the result

from region-based seg-

mentation using edge

information and obtain

a more accurate repre-

sentation.

A region-based segmenta-

tion is used to get an ini-

tial region estimate. Next,

the optimal boundary that

coincides with edges is

searched, generally using

either multiresolution anal-

ysis or snakes.

Selection-

Evaluation

No criterion exists to

evaluate the quality of

a segmentation.

To use edge informa-

tion to carry out this

evaluation in order to

choose the best seg-

mentation from a set of

results.

The quality of a region seg-

mentation is measured in

terms of how the boundary

corresponds with the edge

information.



Chapter 3

Unsupervised Image Segmentation

A strategy for unsupervised image segmentation which fuses region and boundary in-

formation is presented. The proposed approach takes advantage of the combination

of 3 different strategies: the guidance of seed placement, the control of decision cri-

terion, and the boundary refinement. The new algorithm uses boundary information

to initialize a set of active regions which compete for pixels in order to segment the

whole image. The method is designed considering a pyramidal representation which

ensures noise robustness as well as computation efficiency.

3.1 Introduction

In the previous chapter, the main strategies aiming to integrate region and boundary

information in the segmentation process have been presented. Note that, although

they have the common objective of improving the segmentation results using the

basic approaches independently (region or boundary based), they take different ways

to achieve this goal. Each one of these integration strategies attempt to solve a

different problem of the image segmentation, as is summarized in Table 2.1. For

example, the seed placement guidance strategy attempts to handle the choice of

the initial growth points by using the edge information to take this decision. On

the other hand, the boundary refinement strategy tries to improve the segmentation

obtained by a region-based algorithm refining the boundaries to achieve a more

accurate result.

63
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We consider that it could be greatly attractive to fuse different strategies to

perform the integration of region and boundary information. The fusion of several

approaches will allow to tackle an important number of issues and to exploit at

maximum the possibilities offered by each one. Hence, we propose an image seg-

mentation method which combines the guidance of seed placement, the control of

decision criterion and the boundary refinement approaches.

This chapter has been structured in the following blocks: the Introduction is con-

cluded by the description of our first approach to image segmentation. Subsequently,

Section 3.2 describes the philosophy of the new proposed segmentation strategy con-

sidering the grey level image. The adaption to colour image segmentation is then

explained in Section 3.3. Finally, some conclusions are given in Section 3.4.

3.1.1 A First Approach

In 2000 we proposed an algorithm which follows a guidance of seed placement strat-

egy to carry out the image segmentation. The edges of the image are used to

adequately place a set of seeds. More specifically, main contours (or circumscribed

contours) are detected and then seeds are situated on both sides and along the

contour, which separates two regions. Then, seeds start a concurrent region grow-

ing in order to segment the image. A basic scheme of this proposal is depicted in

Figure 3.1.

The algorithm provides two main advantages to start the region growing process:

• The starting seed points are placed inside the regions, far from the boundaries,

which permits avoiding unstable areas to begin the growing.

• Seeds can be used as region samples to know a priori the characteristics of the

region placed at one side of the contour. This prior knowledge allows the ad-

justment of the region growing algorithm and the resolution of a very common

problem: the difficulty of establishing an adequate criterion of homogeneity.

Classical algorithms base their decision of merging a region with a pixel on a

homogeneity criterion, which usually takes some statistical parameters of the regions
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(a) (b)

(c) (d)

Figure 3.1: Scheme showing different phases of our first approach to image seg-

mentation. First, seeds are placed on each side of the contour. All the seeds on a

side belong to the same region and for each one a growing thread is launched in a

concurrent approach.

into consideration. However, this criterion may not be often applicable to highly

textured images or range images [2] because regions in such images usually have

very different homogeneity behaviours, as is depicted in Figure 3.2.

Our proposal for placing the seeds offers a useful chance to know the region’s

behaviour and establish an adequate and specific homogeneity criterion for each one

of the regions, which are the main contributions of this first proposal.

3.1.1.1 Outline of the First Proposal

The scheme of the proposed technique consists of four basic steps (see Figure 3.3).

The first concentrates on main contour extraction and focuses on detecting the
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(a)

(b)

Figure 3.2: Two chromatic feature spaces corresponding to the imaged objects

sky (a) and leaves (b), depicting different homogeneity behaviour.

boundaries between the different regions of the image and discarding the edges with

less relevance. The result is the extraction of the most relevant contours in the

image. Getting these contours has a high computational cost, nevertheless it is

essential for further processing. At the beginning of the second step, a number of

seeds are situated inside the supposed region and used as samples. The seeds are

then analysed using a hierarchical clustering algorithm with the aim of obtaining

the clusters they generate in the chromatic space. This knowledge is further used

in the third stage to construct the convex hull of each cluster. The convex hull

establishes the shape of each cluster and is the base for the homogeneity criterion.

The algorithm bases its decision to merge a pixel with the region on the relative

placement of the pixel (inside-outside) with respect to the convex hulls associated

with the samples of the region. Finally, in the fourth step, the seeds simultaneously

start a concurrent growth using the criterion established for each region. These four

stages of the algorithm are detailed next.

1. Main contour detection: the goal of the contour detection step is to obtain

a set of boundaries of the most significant regions perceived, referred to as

the Circumscribed Contours of the image. Contour detection and extraction

is performed according to the algorithm proposed in [48]. The method is
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Figure 3.3: Scheme with the basic steps of the proposed technique: 1) Main contour

detection, 2) Analysis of the seeds, 3) Adjustment of the homogeneity criterion and

4) Concurrent region growing.

based on the two most relevant properties presented by these Circumscribed

Contours. First, principal contours must have an important length within the

global frame of the image. Secondly, the regions separated by the contours

should present some appreciable differences related to their chromatic and

textural features. The result of this process is the capture of the most relevant

contours present in the image which authentically separate different regions.

An example of the resulting boundaries is illustrated in Figure 3.4.

2. Region Analysis: contours obtained in the previous step represent the bound-

aries between regions. Every contour theoretically separates two adjacent

meaningful regions in the image. The growing centres are chosen on each



68 Chapter 3. Unsupervised Image Segmentation

(a) (b)

Figure 3.4: Circumscribed contours of the image. (a) Original image, from which

the most relevant boundaries of the image are extracted. (b) The detected contours.

side and along the contour, as illustrated in Figure 3.5.a. Here, we assume

that seeds belonging to a determined side of the contour are associated to

the same region. These seeds are then used as samples of the corresponding

regions and analysed in the chromatic space. Figure 3.5.b shows a set of seed

points which represents the characteristics of the region located at one side of

the contour mapped into the RGB feature space. One essential characteris-

tic of the distribution is the number of clusters which fit the samples. Each

cluster has its own identity and must be considered individually. The region

analysis tries to determine the clustering in the region. A classic agglomerative

clustering algorithm is used with this objective [109]. Hierarchical clustering

constructs a hierarchical structure by iteratively merging clusters according to

certain dissimilarity measurements (more specifically the Euclidean distance)

starting from singleton elements until no further merging is possible.

The identification of the number of clusters is realised using the generated

clustering sequence. An intuitive approach is to search for clusters which have

a long lifetime [130], which is defined as the absolute value of the difference

between the proximity level which has been created and the proximity level

when it is absorbed into a large cluster. This analysis provides the number of

clusters and allows the identification of the seeds grouped in each one. This

information is essential for the next step in which the most convenient criterion
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Figure 3.5: (a) Two sets of seeds located on both sides of a contour, and (b) the

representation of one set in the chromatic space RGB.

of homogeneity for the region is fixed.

3. Adjustment of the homogeneity criterion: the convex hull is a well-

known concept in computational geometry. By definition, the convex hull of a

set of points S is given by the smallest convex set containing S. The convex hull

of a set of N points in three-dimensional space can be computed in optimal

time θ(NlogN) [157]. Each cluster of points is treated individually and a

convex hull is obtained for each one. This process defines the shape of each

cluster in the chromatic space. The decision of merging a pixel inside a region

is based on the relative placement of that pixel with respect to the convex

hulls associated with the region. If the pixel is inside any of the convex hulls,

it is merged into the region.

4. Concurrent growing: seeds simultaneously start a concurrent growth using

the criterion established for each region. Figure 3.6 shows the complete set of

processes involved in our proposal. Once the main process has detected the

whole set of contours, it then creates two threads associated with each contour.

These threads are dedicated to start a specific region analysis on each side of

the contour. Then, every thread launches a new set of threads which will

perform the region growing process. These last processes, associated with the

seeds, compete for the pixels of the image accessing in mutual exclusion. Fi-
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Figure 3.6: Scheme of the whole set of processes (threads) involved in the algorithm.

Each Si is the task engaged to perform a region growing process starting at the pixel

seed i.

nally, when all the processes have finished their growing, the algorithm begins

to merge with neighbouring regions.

3.1.1.2 Conclusions

The described technique was our first approach to image segmentation integrating

region and boundary information. The main contribution of this proposal was the

“intelligent” placement of the seeds from the edges of the image. This technique

allows us to select the most adequate placement of the starting seed points of the

later region growing process. Moreover, the region characteristics can be known a

priori in order to perform the image segmentation. Hence, we have proposed a new

homogeneity criterion for the region growing algorithm based on an initial analysis

of the seeds located on both sides of the contours. This criterion is adjusted to the

region’s characteristics and is based on clustering analysis and construction of the

convex hulls of the seeds in the chromatic space.
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Furthermore, to ensure an efficient and easy implementation, a standard for

distributed object oriented computing, CORBA [10], has been chosen. Following

this specification, a set of objects-software can be programmed in heterogeneous

programming languages executed at several workstations with different operating

systems which cooperate with each other in order to solve a specific problem by

using a common and simple mechanism.

The technique, as all first approaches, presented some weak points as the high

computational cost related to the extraction of Circumscribed Contours, or the lack

of texture information in the major steps of the segmentation procedure. Never-

theless, it showed that the proposed strategy of placing the seeds offered a useful

platform for the image segmentation procedure. The new segmentation strategy,

described in the next section, tries to correct the weakness of this first proposal and

exploits, at a major level, the possibilities opened by the seed placement strategy.

3.2 New Segmentation Strategy

In Chapter 2 a survey on image segmentation techniques which integrate region and

boundary information has been presented. This work has allowed us to review the

different algorithms which have been proposed to combine both information sources

and, especially, to identify the main strategies to perform the integration.

As it has been noted, the different integration strategies try to solve a different

and specific problem that appears when simple approaches (region or boundary-

based) are used separately. Hence, we consider that these strategies are perfectly

complementary and the cojoint use of them can improve the segmentation process.

The fusion of several approaches will allow us to tackle an important set of issues

and to exploit at maximum the possibilities offered by each one. In fact, the fusion

of different strategies can be found in some of the reviewed works. The algorithm

proposed by Xiaohan et al. [217], which includes edge information in the decision

criterion of a region growing algorithm, adds a second step to refine the segmented

boundary looking for the local gradient maximum. Similarly, the work of Pavlidis

and Liow [152] combines the over-segmentation strategy with a final step of boundary

refinement using snakes. Hibbard [88] proposes, in the framework of a selection-
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evaluation approach, the use of snakes to evaluate the quality of a segmentation

result.

In this section, we propose an image segmentation method which combines the

guidance of seed placement, the control of decision criterion and the boundary refine-

ment approaches. Roughly, the algorithm uses the boundary information in order

to place a set of starting seeds. Then, these seeds grow taking into account region

and boundary information together. Finally, the technique has been designed on

a pyramidal structure which allows to successively refine the segmentation result

following a multiresolution approach.

The strategy is composed of two basic stages. The first one is related to the

placement of a set of seeds from the boundary information. The second step is the

growing of these regions in order to segment the image, which is based on the active

region model. A scheme of the proposed method is depicted in Figure 3.7. The

method starts by extracting the main contours of the image, which allows: firstly,

to estimate the number of regions which are present in the image, and secondly, to

decide which is the most suitable position for placing the starting seed. Specifically,

the seed is placed in the interior of the region, far away from the boundaries. The

seed is then considered a sample of the region and allows to statistically model its

behaviour.

As stated before, the goal of image segmentation is to partition the image into

subregions with homogeneous properties in its interior and edges at their boundary.

Hence, with the aim of integrating both conditions in an optimal segmentation,

an energy function is defined taking both information sources into account. The

optimisation of the energy function is then performed based on the active region

model. A set of active regions compete for the pixels in order to segment the whole

image.

Finally, the method has been designed considering a pyramidal representation: a

first segmentation is obtained at coarse level, and boundaries are then successively

refined at finer resolutions. This structure improves the computation efficiency and

provides noise robustness, imitating the human vision when a person is slowly ap-

proaching a distant object, as will be discussed in Section 3.2.3.

The main contributions of our proposal of segmentation strategy are:
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Figure 3.7: Scheme of the proposed strategy. Boundary information allows to ini-

tialise a set of regions, which then compete for the pixels of the image ensuring the

homogeneity inside the region and the presence of edges at their boundaries.

• Unsupervised region initialisation: the seeds allow the initialisation of the sta-

tistical measurements which model the region and are automatically placed

from the boundary information. Hence, user intervention or a previous learn-

ing phase are not necessary.

• Integrated energy function: the energy function incorporates both the homo-

geneity criteria inside the region (region information) and the discontinuity

criteria at the contour (boundary information).

• Pyramidal structure: the method has been implemented on a pyramidal rep-

resentation which allows to successively refine the boundaries.

3.2.1 Initialisation

As has been noted in Chapter 2, the placement of initial seed points has a large

influence on the result of a region-based segmentation. Moreover, our goal is to

obtain a sample of each region in order to model its homogeneity behaviour. So,
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a seed large enough constituted by a set of region pixels is required in front of

traditional single seed pixel.

To correctly model the region, an initial seed has to be placed completely inside

the region. The “core” of the region is a representative area that enables us to

obtain a set of pixels belonging to the region. Considering these pixels as a sample

of the region, it is possible to know the region’s features and to statistically model

it. On the other hand, a seed placed on the boundary between regions is considered

as a bad seed because it will be constituted by a mixture of pixels belonging to dif-

ferent regions, and thus it is not adequate in order to model the region. Figure 3.8

illustrates as seed A is a good sample of the pixels belonging to region P , mean-

while the seed B is composed by some pixels belonging to region P and other ones

belonging to region Q. Obviously, the seed B is not representative neither region P

or region Q.

The guidance of seed placement strategy advocates for using the edge information

in order to decide the best position to place the seed. Boundaries allow us to extract

these positions in the “core” of the regions by looking for places far away from the

contours.

3.2.1.1 Contour Extraction

Gradient magnitude information can be easily obtained using a classical operator

such as Sobel. An example of gradient image is shown in Figure 3.9. However,

after this process, it is necessary to determine which pixels belong to the boundary

between regions. This operation is known as thresholding: a threshold determines

whether a pixel is a contour pixel or not. Only pixels with gradient magnitude higher

than the threshold of binarisation will be labelled as contour pixels. The resulting

contour image or edge map is a binary image, with 0 for non contour pixels and 1

for contour pixels.

The selection of an adequate level of threshold to decide the presence of edges is

always a difficult task. Hence, different alternatives have been considered:

1. Empirical threshold: one possible way of selecting the binarization thresh-

old is from the experimentation. Different images are tested in order to deter-
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Figure 3.8: Adequacy of the starting seed. Seed A is a good seed for region P since

it is exclusively composed by pixels belonging to the region. On the other hand,

seed B placed between regions P and Q is a bad seed because is a mixture of pixels

from both regions.

mine which is the best threshold of binarization. However, it is obvious that it

is impossible to find a threshold which is adequate for all the images when the

set of test images is large enough. Furthermore, the results are hardly trans-

portable to other kind of images not considered in the initial experimentation.

2. Hysteresis thresholding: the hysteresis thresholding [26] tries to reduce the

critical importance of a single level of threshold, so that edges which include

strong and weak gradients are not split up. This requires two thresholds; call

them T1 (low threshold) and T2 (high threshold), with T1 < T2. A contour

will satisfy the criteria:

(a) The contour must contain at least one pixel with gradient magnitude

higher than T2.

(b) All pixels of the contour must have gradient magnitude higher than T1.

Roughly, edges start from pixels with gradients of T2 or more; they then extend

over any connected pixels with gradients of T1 or more. In other words, for a



76 Chapter 3. Unsupervised Image Segmentation

(a) (b)

Figure 3.9: Gradient magnitude image. (a) Original image, (b) obtained gradient

magnitude using Sobel operator.

given pixel, if the gradient magnitude is below T1 it is unconditionally set to

zero (non-contour pixel). If the gradient is at least T2 the pixel is left alone.

If the gradient is between these two, then it is set to zero unless there is a path

from this pixel to a pixel with a gradient above T2; the path must be entirely

through pixels with gradients of at least T1.

Contours extracted using single and hysteresis thresholding are shown in Fig-

ure 3.10. The use of double threshold in the hysteresis thresholding scheme

improves the contour extraction results, considerably solving the problem of

broken and spurious edges. However, it is obvious that the set of the thresholds

level is still a difficult step and has an undeniable influence on the resulting

contour image.

Therefore, we have considered that it was necessary to work on the automatic

determination of the threshold level. We propose an algorithm to automati-

cally find the threshold based on a simple criterion of homogeneity of regions

which compose the image.

3. Automatic thresholding: Our goal in the contour extraction is to find

the boundaries of regions, which are different and homogeneous. Fixing our

attention in the homogeneity property that we demand to the regions it is

possible to redefine the concept of adequate threshold level as the level which
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(a) (b)

Figure 3.10: Contour image. (a) Contour image using a single threshold T=30,

(b) contour image using hysteresis thresholding T1=30, T2=100.

allows us to obtain an edge map where the contours enclose homogeneous

regions.

The algorithm starts using a very high threshold which results on an under-

segmented image with few regions. The homogeneity of these regions is then

tested. If all the regions found in the contour image are homogeneous the pro-

cess of contour extraction stops and the last threshold level is chosen as the

threshold of binarisation. On the other hand, if there is any region which is not

homogenous (because is the merging of two or more real regions) the thresh-

old level is reduced and the process starts again using this updated threshold.

A sequence of contour images obtained using this algorithm is shown in Fig-

ure 3.11. A first result with a single region covering all the image is obtained

with a high threshold (see Figure 3.11.a), and progressively the reduction of

the binarisation threshold allows to determine the regions. Figure 3.11.b allows

to distinguish the sky of the whole house, while next Figure 3.11.c permits to

close the roof. Finally, Figure 3.11.d shows a contour image in which all closed

regions are homogeneous. When the process is finished the selected threshold

is the highest which segments the image into homogeneous regions.

In order to validate the homogeneity of a region it is possible to use a simple

statistic descriptor as the variance of pixels belonging to the region. However,
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(a) (b) (c) (d)

Figure 3.11: Sequence of contour images in automatic threshold determination. The

threshold of contour binarization is reduced until all the regions in the contour image

are homogeneous. (a) T=150, (b) T=60, (c) T=35 and (d) T=25.

in next section we will assume that valour of region’s pixels are obtained from

a gaussian or normal distribution. Hence, it is more adequate to verify the

homogeneity of a region testing its normality.

There are large collections of tests for variate normality. Published approaches

include: goodness of fit tests based on the empirical distribution function [4],

skewness and kurtosis tests [100], and maximum likelihood estimation of the

transformation parameters [9]. Although there is not a general agreement of

the best way to test normality, many authors recommended using skewness

and kurtosis [115, 212]. Moreover, its simplicity makes them adequate for our

objectives.

• Skewness characterises the degree of asymmetry of a distribution around

its mean. Therefore, it measures how much the distribution is away from

symmetry. Positive skewness indicates a distribution with an asymmetric

tail extending towards more positive values. Negative skewness indicates

a distribution with an asymmetric tail extending towards more negative

values.

A measure of the symmetry is given by the difference: mean − mode,

which can be divided by a measure of dispersion, as the standard devia-

tion, to obtain a non-dimensional measuring:

skewness =
X̄ − mode

s
(3.1)
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where X̄ is the mean of the population and s is the standard deviation.

In order to avoid the use of the mode, we define the rth moment with

respect to the mean as:

mr =

N∑
j=1

(Xj − X)r

N
(3.2)

and non-dimensional moments as:

ar =
mr

sr
=

mr

(
√

m2)r
=

mr√
m2

r
(3.3)

an important measure of skewness is given by using the third moment

respect to the mean:

a3 =
m3

s3
=

m3

(
√

m2)3
=

m3√
m2

3
(3.4)

• Kurtosis characterizes the relative peakedness or flatness of a distribu-

tion compared to the normal distribution. Positive kurtosis indicates a

relatively peaked distribution. Negative kurtosis indicates a relatively flat

distribution. A measure of kurtosis uses the fourth moment with respect

to the mean (see Equation 3.3) and is given by

a4 =
m4

s4
=

m4

m2
2

(3.5)

For normal distributions a3 = 0 and a4 = 3, although kurtosis is often defined

as (a4 − 3) which is 0 for a normal. Tests of significance for skewness and

kurtosis test the obtained value against a null hypothesis of zero. When the

variable does not come from a normal distribution the hypothesis of normality

is rejected and the region is considered non homogeneous.

4. Adaptive automatic thresholding: There is another difficulty related to

the thresholding of the gradient image that has not been considered in the

above methods. Is a global and single threshold adequate for the whole image?

Obviously, features may vary along the image and the gradient at a boundary

between two regions can be significantly different to the gradient between other
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Figure 3.12: Sequence of contour images in automatic adaptive threshold determi-

nation. The threshold of contour binarisation is reduced in the zones where is still

necessary until all the regions in the contour image are homogeneous.

regions. Thus, it is more convenient to define an adaptive threshold, which is

updated according to the characteristics of the analyzed image region.

The above proposed automatic thresholding algorithm is modified in order

to adapt the level of thresholding to the region’s characteristics. The algo-

rithm starts again using a high threshold and the homogeneity of resulting

regions is tested. If a region is homogeneous it is stored, and the process of

contour extraction finishes for this region. On the other hand, if a region is

not homogenous the threshold is updated (reducing its level) and the process

is repeated. An example of the sequence of contour images obtained using

this algorithm is shown in Figure 3.12. As is stated in the images, with this

simple modification the apparition of noise inside the regions is reduced, and

the possible splitting of homogeneous regions into subregions is solved.

In summary, contour extraction allows the detection of boundaries between

regions. However, results sometimes present broken edges as often occurs with

boundary-based segmentation methods. Edge linking techniques can be employed

to bridge these gaps but this is generally considered a highly difficult task, and often

implies other not easy subtasks as contour thinning. Alternatively, a morphological

operation of closing can be used to close small gaps.

Nevertheless, the obtained contours, with their possible mistakes and limitations,

are sufficient for our goal of determining the approximate number of regions in the

image by considering that each region is totally closed by contour. The next step is

putting a set of seeds in the image.
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(a) (b)

Figure 3.13: Desired seed placement. (a) Mosaic image, (b) placement of seeds in

the core of regions.

3.2.1.2 Seed Placement

In order to determine the most adequate position to place the seed we will look for

the furthest place away from the region boundary, which will refer to as the “core”

of the region. Figure 3.13 illustrates the desired seed placement on a simple mosaic

image.

A simple way of finding the core of the region is to use the contour image and

look for the position which is furthest away from a contour. This technique was

used in the work of Shimbashi et al. [178] in order to determine the centre of an

initial circular snake which is placed inside the region. For each region’s pixel, the

distance to the closest contour pixel is measured. Therefore, the pixel with a larger

distance can be considered as the centre of the region. Note that a contour has to

be considered bordering all the image in order to avoid the seed placement at image

limits.

This method achieves a satisfactory identification of the core, as it is stated in

first row of Figure 3.14, but only when the contour image is perfect, which means

that it does not miss boundaries. In case of an error in the contour extraction,

this technique is too naive and can not solve these difficulties. The second row of

Figure 3.14 shows an example in which the technique fails. In this case, the contour
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(a) (b)

Figure 3.14: Seed placement from contour information. (a) Contour image,

(b) placement of seed from contour information.

between regions on the right hand side has been missed and the seed is placed on

the boundary between both regions.

The problem of wrong seed placement comes from an error in the contour extrac-

tion, which has been not able to detect all the boundaries of the image. However,

although the number of regions can not be correctly determined by the contour im-

age, it is possible to successfully place a seed for each identified region considering the

gradient image as source of information for the seed placement purpose. Although

a contour is missed in the contour image, it is reasonable to affirm that there are

high gradient values on the boundary between regions. These values might be lower

than binarisation threshold, but are higher than gradient magnitude inside the ho-

mogeneous region. Hence, the concept of centre of the region can be re-defined as

“the place which is far from high gradient values” or, in other words, the place with

lower potential. The scheme in Figure 3.15 shows the use of contour and potential

images in order to place the seeds. Contour information determines the number of

regions, while potential image is used to find the centre of these regions.
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Figure 3.15: Flow information for seed placement. Contour information provides the

number of regions, while the centre of these regions is determined from potential

image.

The algorithm consists of looking for each closed region, which is the place which

is furthest away from high gradient values. So, for each region’s pixel the influence

that gradient image makes over it, which is often referred to as edge potential (or

potential in short), is measured. Lets define the influence of a pixel i over another

pixel j by its gradient magnitude |∇(i)| inversely weighted by the distance which

separates both pixels:

influence(i, j) =
|∇(i)|

d(i, j) + 1
(3.6)

where d(i, j) is the Euclidean distance between spatial positions of pixels i and j, and

1 is added to the distance in order to avoid the division by zero when the influence

of a pixel over itself is measured. Then, closer pixels have a big influence, meanwhile

the possible influence is reduced when the distance to the pixel is increased.
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Hence, the potential of a pixel j is the maximum which is obtained when the

influence of all the pixels over it is measured:

potential(j) = max(influence(i, j)) ∀iεI (3.7)

where I is the image domain. Note that in order to improve the computational cost

of this measure, the influence over pixel j can be restricted only to pixels belonging

to the same closed region and its boundary. Taking into account that the boundary

is constituted by contour pixels, other pixels outside the region, and consequently

further from pixel j, rarely will have a bigger influence.

Finally, the core of the region will be the place which has a lower potential. An

example of seed placement obtained with this technique is shown in Figure 3.16.

Brighter intensities in the potential image, which indicate a higher potential, are

located at the boundaries between regions. Therefore, seeds are placed on darker

areas of each region, which correspond to the interior of the regions. An error in the

contour extraction involves missing one of the regions, but the use of the potential

image allows us to correctly place one seed for each closed region. Note that again

a high gradient has to be considered bordering all the image in order to avoid the

seed placement at image limits.

The result of this step is the placement of a starting seed for each region, that

allows us to know the region’s features in order to start the growing which will culmi-

nate with the segmentation of the whole image. Some examples of the unsupervised

seed placement provided by this technique are shown in Figure 3.17.

3.2.2 Active Region Segmentation

Active region model is considered the fusion of the active contour model and the

classical region growing. It is usually defined as the incorporation of region-based

information into the active contour model with the aim of finding a partition where

the interior and the exterior of the region preserve the desired image properties.

However, it also can be interpreted as the use of the typical energy function of ac-

tive contours as the decision criterion which guides the growing of a region growing

algorithm. From both points of view, this combination results on a considerable
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Figure 3.16: Seed placement from gradient information. The potential image allows

to determine the centre of identified regions.

extension retaining, as has been pointed in Chapter 2, desirable features of both

techniques. The regularity of the contour can be controlled by the shape constraints

in the energy functional. In addition, by examining local region information, bound-

ary points are able to traverse large homogeneous areas of the image, providing the

initial configuration with robustness.

Central to any active model is the minimization of a function that describes the

energy of the segmentation. Active region models include in their energy function

a term derived from local region information. Points on the contour are allowed to

expand or contract according to the match between local region information and a

global model of the region derived from the initial configuration. The underlying

idea is that the region moves through the image (shrinking or expanding) in order

to contain a single, whole region.

Most of the active region proposals can be categorised as region-based, such as
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Figure 3.17: Examples of seed placement.

the works of Zhu and Yuille [227], Chan and Vese [35] and Sumengen et al. [187].

The properties inside the region are taken into account to find a partition where

the interior of the regions is homogeneous. However, active regions are also a way

to combine region and boundary information. Then, discontinuity at boundaries

can be considered as well as the interior homogeneity. Approaches to this model,

called hybrid active regions by Sumengen et al. [187], are the works of Chakraborty

et al. [32], Paragios and Deriche [148, 149] or Ecabert and Thiran [62]. Figure 3.18

shows the information used on a classical active contour model, a region-based ac-

tive region and an hybrid active region. Active contour models make use only of

information along the boundary and require good initial estimates to yield correct

convergence. Region-based active regions test the properties inside the region, how-

ever it often generates irregular boundaries. The model of hybrid active regions, uses

both region and boundary information sources to perform the image segmentation.

First proposals of active regions can be found about mid nineties (see pioneering

works of Chakraborty and Duncan [32] or Ivins and Porrill [96]). However, their

relevance has been increasing in the last years and they have received high attention

from the scientific community (see recent works: [1, 35, 62, 148, 149, 172, 187, 220]).

An important question is: why this increasing interest for active region models? We

think that the strength of the active regions is to be based on an energy function

which, as the different proposals have demonstrated, are able to optimise. The use

of an energy function has a set of very attractive characteristics:
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(a) (b) (c)

Figure 3.18: Active models. Shadowed areas show the image domains taken into

account by (a) active contour, (b) region-based active region, and (c) hybrid active

region.

• Goal definition: the energy function allows to exactly define what are the

desired properties of the final segmentation.

• Integration: different concepts (region, boundary, shape, movement...) can be

easily included in the energy function with the aim of taking them into account

in order to segment the image.

• Extensibility: the model becomes very suitable to be extended by adding new

features (e.g. from colour to texture segmentation) or new concepts (e.g. from

segmentation to tracking).

Our proposal of hybrid active region uses these properties integrating region and

boundary information in order to define an optimal segmentation. The next subsec-

tion 3.2.2.1 details the extraction of region and boundary information, which will

be used in subsection 3.2.2.2 in order to define an energy function which describes

the quality of a segmentation taking region and boundary information into account.

Finally, the segmentation process is achieved by optimising this energy function to

find the best segmentation result, as is detailed in subsection 3.2.2.3. Furthermore,

the proposed strategy will be extended to texture segmentation, as we will discuss

in Chapter 4.
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3.2.2.1 Region and Boundary Information

As hypothesis, each region is modelled by a Gaussian distribution1, so the mean and

the standard deviation, which are initialized from the seeds, describe the homogene-

ity region behaviour. Hence, the probability of a pixel j of belonging to a region Ri

is

PR(j|(µi, σi)) =
1√
2πσi

exp{−(Ij − µi)
2

2σ2
i

} (3.8)

where Ij is the intensity of the pixel j, µi is the mean intensity of region Ri and

σi its standard deviation.

The region remaining to be segmented, which we will refer to as the background,

is composed of several objects. Therefore, it can not be modelled using a single

Gaussian distribution and, actually, it is not necessary to model it because our

goal is precisely that finally this region disappears, been gulped by the other grow-

ing regions. Thereby, the background is treated as a single region having uniform

probability distribution P0.

The information regarding to real boundaries of each region can be extracted

by employing an edge detector, thus by seeking for high gradient values. Given

the hypothesis that the image is composed of homogeneous regions, the probability

of a given pixel j being at the real boundary is measured by PB(j), which can be

considered as directly proportional to the value of the magnitude gradient of the

pixel.

3.2.2.2 Energy Function

The goal of image segmentation is to partition the image into subregions with ho-

mogeneous intensity (colour or texture) properties in its interior and a high dis-

continuity with neighbouring regions at its boundary. With the aim of integrating

both conditions in an optimal segmentation, the global energy is defined with two

basic terms. The boundary term measures the probability that boundary pixels are

1This will not always be true. In fact, in textured images region information often can not be

modelled as a Gaussian. Chapter 4 will further discuss this consideration.



3.2 New Segmentation Strategy 89

really edge pixels. The probability of a given pixel j being at the real boundary is

measured by PB(j). Meanwhile, the region term measures the homogeneity in the

interior of the regions by the probability that these pixels belong to each correspond-

ing region. As has been previously defined in Equation 3.8, PR(j|(µ, σ)) measures

the probability that a pixel j belongs to a region modelled by (µ, σ).

Some complementary definitions are required: let ρ(R) = {Ri : iε[0, N ]} be a

partition of the image into N + 1 non-overlapping regions, where R0 is the region

corresponding to the background region. Let ∂ρ(R) = {∂Ri : iε[1, N ]} be the region

boundaries of the partition ρ(R). The energy function is defined as

E(ρ(R)) = (1 − α)
N∑

i=1

− log PB(j : jε∂Ri)) + α
N∑

i=0

− log PR(j : jεRi|(µi, σi)) (3.9)

where α is a model parameter weighting the two terms: boundary probability and

region homogeneity.

3.2.2.3 Optimisation

The energy function includes the desired properties of the resulting segmentation

considering region and boundary information. Specifically, regions have to be uni-

form in their interior, while boundaries present a high contrast. The desired seg-

mentation is the one with uniform pixels found inside the region and a large edge

probability for pixels at the boundaries. Hence, if we consider both aspects in

Equation 3.9 the optimal segmentation will obtain the minimum energy when this

is measured by the energy function.

The optimisation of the energy function is the process of looking for the parti-

tion of the image in which the minimum energy can be attained. In other words, it

tries to find the best segmentation according to the qualities defined by the energy

function. However, this process is a difficult task and algorithms do not find the

absolute minimum to this problem, neither theoretically nor practically, due to the

non-lineality of the problem and also the existence of local minima. Nevertheless,

as is denoted by Grau [77], it is not a too much worrying problem because there are

solutions which are not the absolute minimum but are sufficiently valid segmenta-
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tions. Usual implementation is based on a Lagrangian approach, although recently

there is an important work of energy functions-based frameworks which use level set

methods.

Level set-based approach [142] consists in formulating the problem of minimiz-

ing an energy in terms of front propagation. In this context the model is no longer

explicitly: it is viewed as a particular level set of a scalar function f defined on the

image space which evolves with the time. This level set propagates in the image

space with respect to two main constraints: (i) the propagation slows down in the

neighbourhood of high image gradients, (ii) the level set propagates faster in places

where its curvature is important (see [30] and [119] for details). These constraints are

expressed as differential equations involving f , and iteratively solving these equa-

tions makes the level set approach image components. With this formalism the

topological changes, such as splitting and merging, are automatically embedded in

the evolution of f and methods are more independent from initial conditions such

as the initial placement. However, the proposals made so far have important re-

strictions related to the necessity of a priori knowledge about the image. The works

of Chan and Vese [35] and Yezzi et al. [220] are constrained to bi-modal and three-

modal image segmentation, while the work of Samson et al. [172] is constrained to

supervised image classification with a predetermined number of regions. Even the

work of Paragios and Deriche, which is the most representative on active regions

based on level set methods, was initially proposed for supervised texture segmen-

tation [146, 149]. Although there is a posterior proposal on unsupervised image

segmentation [148], it is only considering the intensity image, in which is possible to

detect the number of regions and their properties analyzing the image histogram.

Due to the previous initialisation step, our necessities are different than the

above proposals. The initial configuration is solved by the placement of seeds inside

the regions. Therefore, complex operations such as the splitting of a region into

subregions are not necessary. On the other hand, we can not warrant that all

regions have been identified.

Taking these characteristics into account we have opted for using a region compe-

tition algorithm, which was proposed by Zhu and Yuille [227]. This approach solves

the problem of topological changes by introducing a merging step which allows to
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merge similar regions with common boundary. Moreover, a new seed can be placed

in the image when a region has been initially missed. Hence, possible mistakes on

the initialisation step can be easily solved. Nevertheless, this approach was initially

developed to exclusively consider region information, which implies the adaption of

the original algorithm to incorporate boundary information.

3.2.2.3.1 Region Competition

Regions start a concurrent growing that allows one to optimise the energy func-

tion by a greedy algorithm which takes into account the neighbouring pixels to the

current region boundaries ∂ρ(R) to determine the next movement. Pixels which are

neighbours of a region are candidates to be aggregated to the region in order to

carry out the growing.

In order to decide the aggregation of a pixel, the current energy (energy with the

current segmentation) and the new energy (energy obtained if the pixel was aggre-

gated to the region) need to be measured. Then, a region aggregates a neighbouring

pixel when this new classification diminishes the energy of the segmentation. An

example of this criterion is shown in Figure 3.19. The pixel j, which belongs to

region B, is neighbour of region A. Therefore, region A tries to aggregate the pixel

in order to continue its growing. Hence, the energy in the current state of segmen-

tation EB is compared with the energy obtained if region A aggregates this pixel,

called EA. If the new classification of pixel implies an optimisation of the energy

function EA < EB, the pixel j changes its classification and region A aggregates the

pixel.

The change a pixel aggregation causes on the energy is twofold:

• Region term: the region term is modified based on the similarity of pixel j to

the old region B and the new region A. Equation 3.8 gives us the probability

of the pixel of belonging to each region. Obviously, the energy decreases when

the pixel is more similar to the region which belongs to.

• Boundary term: the aggregation of a pixel affects the boundary term of the en-

ergy function as it modifies the boundary between implicated regions. Hence,

some pixels no longer are at boundary, while other ones become boundary
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Figure 3.19: Shadowed pixels are neighbours of region A. Pixel j, which at present

belongs to region B, is analysed to be aggregated by region A.

pixels. Figure 3.20 illustrates the change on boundary when a pixel is aggre-

gated to a new region. As is stated, boundary pixels before, Figure 3.20.a,

and after, Figure 3.20.b, the aggregation are different. Therefore, the prob-

ability of boundary of both sets of pixels need to be compared. The energy

of the segmentation is decreased when the current boundary pixels have more

probability to be real edge pixels.

Following this criterion, all regions begin to move and grow until an energy

minimum is reached. And, intuitively, adjacent regions compete for the ownership

of pixels along their boundaries, which gives to the algorithm its name of region

competition. However, we want to remark that it is not really a pure competition

for the pixels. In some way, we can say that regions “dialogue” about the most

convenient ownership of pixels, in which the convenience is measured by the energy

function. Furthermore, a region leaves a pixel free to be aggregated by another region

when this implies an improvement on the energy. So, it could be more adequate to

refer to it as region dialogue.

An example of the segmentation process with a sequence of the regions growing

is shown in Figure 3.21. From the starting seed, regions start a concurrent growing

which culminates with the segmentation of the whole image.

When the optimisation process finishes, if there is a background region R0 which
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Figure 3.20: Boundary modification. Shadowed pixels are boundary pixels in (a) ini-

tial segmentation, (b) new segmentation with the aggregation of pixel j to region A.

remains without being segmented, it means that no seed was representative of this

remaining region. To solve this a new seed is placed in the background and the

energy minimization starts again. The seed is placed at the position which is further

away from boundaries by using the method described in Section 3.2.1.2. This step

allows a correct segmentation when a region was missed in the previous stage of

initialisation. Furthermore, a final step merges adjacent regions if this causes the

energy to decrease. This action solves the opposite problem: when more than one

seed are placed on a single region due to the over-segmentation of the contour image.

3.2.3 Pyramidal Structure

Finally, our proposal has been designed following a multiresolution approach. When

a person sees distant objects, he has a coarse version of the image, in which objects

appear small and details are removed. Next, when the person is gradually ap-

proaching to the objects, the image perceived gains more details and objects are

progressively growing. If we focus on segmentation, small regions are coarsely iden-

tified in the far image. Subsequently, when we progressively approach to the object

the segmented region is refined by improving the accuracy of boundaries. With the

aim of imitating the human vision when a person is slowly approaching a distant
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Figure 3.21: Sequence of the region growing. Regions start to grow from starting

seeds, competing for the image in order to segment the whole image.

object a pyramidal structure is considered. More approaches to the Human Vision

System will be discussed in next Chapter 4 related to the perception of a texture

when is seen from a long distance.

A multiscale representation [215] is proposed which can be combined with the

active region segmentation. Specifically, a pyramid of images at different scales is

built upon the full resolution image. The pixels at coarser level are constituted by

the union of several pixels: specifically, the mean of four pixels gives the value of

the coarse pixel. Formally, the intensity of a pixel with coordinates (x, y) at level

l + 1 is given by
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Level: 1

Level: 0

Level: 2

Figure 3.22: Pyramidal structure. A structure of coarser images is built from the

original image.

I l+1
x,y =

∑1
i=0

∑1
j=0 I l

2x+i,2y+j

4
, with l = 0, 1, . . . L − 1 (3.10)

where L is the number of levels of the pyramid. The process is repeated by all

the pixels and the different resolution levels resulting in a pyramidal structure as is

depicted in Figure 3.22.

At the lowest resolution level, the seeds are placed from the boundary information

and start to compete for the image, obtaining a first segmentation result. Obviously,

the time of the segmentation is reduced due to the small size of the image. The

multiresolution structure is then used according to a coarse-to-fine strategy which

assumes the invariance of region properties over a range of scales. Specifically, a

boundary region is defined at coarsest level and then, at successive levels, the pixels

not classified as boundary, the core of the region, are used to initialise and model

the regions. A scheme is depicted in Figure 3.23. Further, segmentation by active

region is performed to refine the candidate boundary by a factor of two using the

multiresolution structure. As a result, the boundaries of the full image size are
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Level: l+1

Level: l
Boundary Region

Core Region

Figure 3.23: Pyramid of image resolutions. The segmentation results obtained at

level l + 1 are propagated to level l, where not boundary pixels are used to model

the region.

produced at the finest resolution.

The obtained boundaries at coarse level are not very precise due to the smoothing

operation. This problem is dealt with when we proceed from a lower resolution to a

higher resolution level. Simultaneously, at the low resolution level, we have obtained

a segmentation where the noise influence has been removed, and since this result is

used to initialise the operation at the next level, we do not meet noise problems.

Hence, the use of a multiresolution technique ensures noise robustness as well as

computation efficiency. Nevertheless, note that the use of this structure can imply

the loss of very small regions in the segmentation. These small regions can be

merged inside a bigger one in the low resolution image, and then these regions are

not identified by the segmentation process. Hence, the technique is more adequate

for segmentation when the objective is the identification of more relevant regions in

the image, and the loss of a small region can be considered as a lesser evil.

A sequence of segmentations obtained at different levels of the pyramid is shown

in Figure 3.24. Note that at coarse levels of the pyramid, pixels close to bound-

aries are often not segmented (remain classified as background). These pixels are

a mixture of pixels belonging to different regions at finer levels, and its valour is
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Figure 3.24: Sequence of segmentations by pyramidal structure. Coarse segmen-

tation is successively refined at next level of the pyramid until the full resolution

image.

then different to any of the adjacent regions. Therefore, they initially remain not

segmented, and are classified posteriorly at finer resolution levels.

3.3 Colour Image Segmentation

Human beings intuitively feel that colour is an important part of their visual ex-

perience, and is useful or even necessary for powerful visual processing in the real

world. It is plain that the human eye responds more quickly and accurately to what

is happening in a scene if it is in colour. Colour is helpful in making many objects

“stand out” when they would be subdued or even hidden in a grey-level image [52].

Furthermore, using chromatic information allows to tackle problems which are

difficult to solve on images for which only luminance is available. The importance of

colour in Computer Vision has been noted by different authors. Gershon [74] indi-

cates that several studies suggest that colour contributes to other visual processes,

and therefore can not be considered as a mechanism which merely adds beauty to

scenes, and moreover, it should be an integral part of any Computer Vision System.

While, Healey and Binford [87] showed that colour can play an important role in

both the classification and in the recognition of objects. Therefore, an appropriate
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use of colour, therefore, can significantly extend the capabilities of a vision system.

Considering colour as undoubtedly one of the most interesting characteristics

of the natural world, the difficulty relies on its treatment which can be performed

in many different ways. In many cases, the basic RGB components may provide

very valuable information about the environment. However, the perceptual models,

such as CIE (L,a,b) or HSI, are more intuitive and therefore enable the extraction

of characteristics according to the model of human perception. Furthermore, the

complexity of natural scenes emphasises the need of the system to select a good

colour space, which is of extreme importance to the segmentation tasks. Therefore,

it is necessary to formulate the following question: what is the best colour space to

be applied in order to segment an image representing an outdoor scene? As Batlle et

al. [12] noted, this question has neither a single, nor a perfect solution. The colour

space suitable for one segmentation algorithm is not suitable for others. Hence,

due to the lack of a consolidated colour space, we will deal the problem of colour

segmentation considering the general use of our strategy on any colour space. The

segmentation results obtained using different colour spaces will be further evaluated

in Chapter 5.

The adaption of the proposed strategy to colour image segmentation involves two

basic considerations: the extraction of boundary information over a colour image,

and the modelling of a region taking its colour properties into account.

3.3.1 Colour Contour Extraction

The detection of contours on colour images is specially interesting in scenes present-

ing clearly differentiable chromatic components. Moreover, in a wide set of cases the

use of colour allows to obtain a greater robustness compared to using monochromatic

images [47].

In the work of Carron and Lambert [27] the measure of the gradient on colour

images from the chromatic components of a HSI model variant is referred. The

authors consider that the information of contours on a colour image can be extracted

from the integration of the contours obtained over each chromatic component using a

classical operator as Sobel. There are two basic ways of performing the integration:
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1) considering that contours of all components contribute with the same degree

of information. 2) To consider that hue component provides the most relevant

information.

A proposal of integration can be found in the work of Huang et al. [94], in which

contours are obtained combining the information of gradients over RGB components.

The maximum valour of gradient magnitude over the chromatic components for each

one of the pixels is used as function of integration:

|∇(j)| = max(|∇R(j)|, |∇G(j)|, |∇B(j)|) (3.11)

where |∇R|,|∇G|,|∇B| are the gradient magnitude from RGB chromatic compo-

nents, and |∇| is the final gradient magnitude from the colour image.

We will adopt a similar function, which can be found in the work of Cuf́ı al. [49].

In their proposal, the gradient orientation is taken into account in order to define the

importance of each chromatic component. Specifically, the stability of the gradient

orientation around each pixel measures the importance of the chromatic component:

if the dispersion on the orientation is high, then the chromatic component loses

relevance. The function of integration is defined in the RGB space as:

|∇(j)| = max(γR|∇R(j)|, γG|∇G(j)|, γB|∇B(j)|) (3.12)

where factors γR,γG and γB weight the importance of gradient magnitude from

chromatic components. A scheme of the colour gradient extraction is depicted in

Figure 3.25.

3.3.2 Colour Region Information

Considering chromatic properties, each pixel of the image has habitually a three-

dimensional vector associated with it which describes the colour of the pixel. Hence,

the region modelling which has been previously performed on grey-level images using

a simple Gaussian distribution, is extended to model the colour of a region by using

a multivariate Gaussian distribution.

Specifically, each region is modelled by a three-variate Gaussian distribution, so
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Figure 3.25: The gradient images extracted on chromatic components are integrated

to obtain the colour gradient magnitude image.

the mean vector and the covariance matrix characterises the colour region behaviour.

Hence, the probability of a pixel j of belonging to a region Ri is given by

PR(j|Ri) =
1√

(2π)3|Σi|
exp{−1

2
(
−→
Ij −−→µi)

T Σ−1
i (

−→
Ij −−→µi)} (3.13)

where
−→
Ij is the pixel colour vector, −→µi is the colour mean vector of the region i

and Σi its covariance matrix.

3.4 Conclusions

A new strategy for image segmentation which integrates region and boundary in-

formation has been described. The algorithm uses boundary information in order
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to initialise, in an unsupervised way, a set of active regions, which later compete

for the pixels minimizing an energy function taking into account both region and

boundary information. The method has been implemented on a multiresolution

representation.

The algorithm has been directly adapted to perform colour segmentation assum-

ing multivariable Gaussian distributions to model each region. In this sense, future

extensions of this work are the adaption to texture segmentation as well as the in-

tegration of colour and texture cues. Both works will be presented in the following

chapter.
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Chapter 4

Unsupervised Texture

Segmentation

The proposed strategy of segmentation is extended to deal with texture segmentation

integrating region and boundary information. The method uses a coarse detection of

texture boundaries to initialise a set of active regions. Therefore, the initial unsuper-

vised texture segmentation problem is transformed to a supervised one, which allows

us to accurately extract region and boundary information. Moreover, a technique

for the integration of colour and texture properties is proposed, which allows to ex-

tend the strategy to colour texture segmentation. The method is designed considering

a pyramidal representation which ensures noise robustness as well as computation

efficiency.

4.1 Introduction

Texture is a fundamental characteristic of natural images that, in addition to colour,

plays an important role in human visual perception and provides information for

image understanding and scene interpretation.

The aim of texture segmentation, the problem considered in this chapter, is

the domain-independent partition of the image into a set of regions, which are

visually distinct and uniform with respect to textural properties. We focus on two

103
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basic approaches to perform the texture segmentation: region and boundary-based.

Region-based methods try to divide the image into a number of regions such that

each region has the same textural properties [98, 123]. Alternatively, this task is

viewed by boundary-based methods as the problem of accurately extracting the

borders between different texture regions in an image [103, 122].

With the aim of improving the segmentation process, a large number of new

algorithms which integrate region and boundary information have been proposed

over the past few years. However, as has been noted in Chapter 2, texture is gen-

erally forgotten as basic feature in most proposals, probably due to the difficulty of

obtaining accurate boundary information when texture, which is a non-local image

property, is considered. Nevertheless, there are some relevant exceptions and this

tendency seems to be changing in last years (see the works of Hibbard [88], Hsu et

al. [92], Paragios and Deriche [146, 149], Philipp and Zamperoni [155], and Wilson

and Spann [215]).

In this chapter we extend the strategy of image segmentation described in Chap-

ter 3, in order to perform texture segmentation integrating region and boundary

information. Furthermore, a technique for the combination of texture features with

the estimation of colour properties is proposed. Hence, the strategy of segmentation

is finally extended to colour texture segmentation.

This chapter is structured as follows: Section 4.2 describes the adaptation of

the proposed strategy to texture segmentation. The extension to colour texture

segmentation is explained in Section 4.3. Finally, Section 4.4 gives some conclusions.

4.2 Texture Segmentation

Textural properties of the image can be extracted using statistical features, spatial-

frequency models, stochastic models, etc. Surveys on existing texture analysis ap-

proaches may be found in [80, 160, 222], moreover for a short review on texture

extraction methods the reader is referred to Appendix A.

A texture operator describes the texture in an area of the image. Hence, using

a texture operator over the whole image generates a new texture feature image in
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Figure 4.1: Scheme of the proposed texture segmentation strategy. Texture features

describe the textural behaviour of the image. Coarse boundary information allows to

initialise a set of regions, which then compete for the pixels of the image ensuring the

homogeneity inside the region and the presence of texture edges at their boundaries.

which the texture of a neighbourhood around each pixel is described. Moreover, in

most cases a single operator does not provide enough information about texture,

and a set of operators need to be used. The result is a set of texture feature images,

which conjointly describe the texture around each pixel by a texture vector.

The set of texture feature images provides us with the source of information

needed to perform the texture segmentation. As is illustrated in Figure 4.1, the

extension of our proposal to texture segmentation is carried by considering this set

of images as the source of the segmentation strategy.

The method starts by extracting the main texture contours of the image from

the set of texture feature images. However, texture needs a window large enough

to be characterised, estimated correctly, and all common texture descriptors have a

significant spatial support, which is incompatible with a precise localisation of the

texture boundary [71]. Hence, the result of this contour extraction is inaccurate and

thick contours.
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However, this information is sufficient to perform the seed placement process,

that is, to place a seed inside each texture region. The seed is then considered as a

sample of the region and allows to statistically model its textural behaviour. Hence,

the knowledge of these regions transforms the initial unsupervised segmentation

problem to a supervised one, in which region information is defined, and accurate

texture boundaries are extracted to provide the boundary information.

In the framework of active region segmentation, described in Chapter 3, regions

compete for the pixels of the image optimising an energy function which takes both

region and boundary texture information into account. Finally, the method has

been implemented on a pyramidal representation which allows to successively refine

the obtained segmentation boundaries from a coarse to finer resolution.

4.2.1 Texture Initialisation

The initialisation step has the goal of placing a seed large enough inside each region in

order to statistically model the region’s textural behaviour. The strategy of putting

the seeds on the core of regions, which has been previously detailed in Chapter 3,

uses the gradient and contour information to decide which is the core of each region.

Hence, the adaption of the initialisation stage to texture segmentation only involves

the extraction of the gradient on a textured image.

4.2.1.1 Texture Contour Extraction

Boundary detection in texture segmentation schemes is not an easy task. All prob-

lems associated with simple grey-level edge detection (broad output at edges, false

edges, discontinuities, etc.) are magnified when it comes to textures [101].

The basic assumption in traditional edge detection approaches is that the inten-

sity variation is more or less constant within the region and takes a different value

at its boundary. These traditional methods of edge detection are not suitable for

detecting texture boundaries in an image. Consider a textured image as the exam-

ples in Figure 4.2.a. There are many intensity changes in each texture region, and

these intensity changes generate intensity edges, as is shown in Figure 4.2.b. These

intensity edges inside of the same texture region are called microedges. The major
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(a) (b)

Figure 4.2: Microedges inside a texture region. (a) Original textured image, (b) con-

tours obtained using a classical edge detection scheme.

difficulty is to distinguish between the texture boundaries which delimit different

textures and the microedges located within the same texture, which do not convey

much information and only add confusion [63].

This difficulty can be overcome by combining the traditional techniques of edge

detection with texture features. That is, in the intensity based edge detection op-

erator, the pixel grey levels are replaced by textural measures. As texture features

characterise the texture aspects of an image, we may assume that these features take

more or less a constant value within the same textured area, and take a different

value at texture boundaries. In this way, the traditional edge detection methods,

based on the magnitude of gradient or zero crossing of Laplacians, can be applied to

extracting the texture boundaries of images [85]. Note that a pre-smoothing process
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Figure 4.3: Texture gradient extraction scheme. Gradient magnitudes from each

texture feature are integrated to obtain the texture gradient image.

of the texture features images is often required in order to obtain constant values of

texture descriptors inside regions.

The problem of texture edge detection is considered as a classical edge detection

scheme in the multidimensional set of k texture features which are used to represent

the region characteristics [103]. Hence, a Sobel operator is individually applied to

each texture feature image. The gradient magnitudes of a pixel j from k texture

features are then integrated using the generalisation of Equation 3.12:

|∇(j)| = max(γi|∇i(j)|) ∀i, 1 ≤ i ≤ k (4.1)

where ∇i is the gradient obtained from texture feature ith. A scheme of the

texture gradient extraction procedure is depicted in Figure 4.3.
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(a) (b)

Figure 4.4: Seed placement from texture gradient information. (a) Texture contours

and (b) seeds placed inside the texture regions.

Nevertheless, as is well known, texture is an inherently non-local image property.

All common texture descriptors, therefore, have a significant spatial support which

renders classical edge detection schemes inadequate for the detection of texture

boundaries. Hence, the result provided by this simple method are inaccurate and

thick contours. However, this coarse information is enough to perform the seed

placement according to the algorithm described in Section 3.2.1.2, which allows to

place the seeds in the core of regions. Some examples of texture contours obtained

with this techniques, and the posterior seed placement are shown in Figure 4.4.
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4.2.2 Texture Region Information

Every pixel is described by a set of k texture features, which must be homogenous

inside a texture region. Hence, each region is modelled by a multivariate Gaus-

sian distribution, in which the mean vector and the covariance matrix describe the

textural behaviour of the region.

The probability of a pixel j characterised by the texture features −→xj of belonging

to a region Ri is

PR(j|Ri) =
1√

(2π)k|Σi|
exp{−1

2
(−→xj −−→µi)

T Σ−1
i (−→xj −−→µi)} (4.2)

where −→µi is the mean vector of the region i and Σi its covariance matrix.

4.2.3 Texture Boundary Information

A topic on texture segmentation where Computer Vision Systems typically do not

perform as well as a human observer is on accurately finding the location of the

boundaries between textures. It is well know that the extraction of boundary in-

formation for textured images is an even tougher task and, actually, little progress

have been achieved in texture boundary localisation [213].

Palmer and Petrou [144] proposed a method which uses edge characteristics be-

tween textured and non-textured regions to locate boundaries between them. The

view of edge pixels in the image is considered, where other edge pixels are obstruc-

tions. The field of view is expected to be large for edge pixels that happen to be

in open regions of the image and small for those in the middle of textured regions.

Therefore, microedges can be removed by thresholding the maximum free angle.

However, with this technique the boundary between two textured regions can not

be located.

A texture edge pixel can also be defined as a pixel with different textures on both

sides. In the proposal of Eom and Hashyap [63] this postulate is used to test that

edge pixels are really texture edge pixels. A strip is centred at the given potential

edge pixel and aligned with the estimated edge direction. If the pixel is a texture
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Figure 4.5: Localization of texture edges crucially depends on the observed patches

being sufficiently large.

edge, then the two regions of the strip, or either side of the candidate pixel, should

correspond to two different textures with different statistical properties. A random

field model for each different texture is used for hypothesis testing. Nevertheless,

the exact location of boundaries can not be extracted because potential edge pixels

close to a boundary separate two textures, one of them a mixture between both

texture regions and the result is a thick texture edge.

On the other hand, in most cases human performance in localising texture edges

is excellent, if (and only if) there is a larger patch of texture on each side available.

Figure 4.5 shows this characteristic of human vision. The texture boundary is easily

extracted in the original image with two textures. However, when the vision is

limited to a small window at the boundary, we are not able to accurately locate

the edge between both textures. Hence, as Will et al. [213] noted, texture model of

the adjacent textures are required to enable precise localisation. In other words, we

need to know the adjacent textures in order to extract their boundary.

We will adopt a solution similar to the proposal of Gagalowicz and Graffigne [71],

in which a clustering algorithm gives a rough approximation for the segmentation,

which is then used to know the adjacent textures. After that, each eventual bound-
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ary is refined looking for the position which delimits both textures. Specifically,

the sum of the distance computed between the texture models computed for the

texture field lying on the left of the boundary and the texture model of texture 1

and the distance between the texture model computed for the texture field lying

on the right of the texture and the texture model computed for texture 2 will be

minimum for the position of the real boundary (theoretically, it would even be zero

at this location).

In our strategy, the previous initialisation step of the regions model allows to

dispose of this required knowledge about texture regions. Hence, we can use the

boundary information in all the process of segmentation and not only in a post-

processing refining process. Moreover, we will adapt this philosophy to a probabilis-

tic approach to have the probability of a given pixel to be a texture boundary, as in

the work of Paragios and Deriche [146].

More formally, we shall consider that a pixel constitutes a boundary between two

adjacent regions, A and B, when the textural properties at both sides of the pixel

are different and fit with the models of both regions. Textural features are computed

at both sides (we will refer one side as m and its opposite as n) obtaining the feature

vectors −→xm and −→xn. Therefore, PR(−→xm|A) is the probability that the feature vector

obtained in the side m belongs to region A, while PR(−→xn|B) is the probability that

the side n corresponds to region B (as has been defined in Equation 4.2). Hence,

the probability that the considered pixel j is boundary between A and B is equal

to:

PB(j|A,B) = PR(−→xa|A) × PR(−→xb |B) (4.3)

which is maximum when j is exactly the edge between textures A and B because

the textures at both sides fit better with both models (theoretically, it would be 1).

Figure 4.6 illustrates the location of exact boundary. In the first case illustrated in

the image, side n does not correspond to texture model of region B because is a

mixture between both regions. Of similar way, side m does not fit with model of

region A in the third case. The probability of boundary is maximum in the second

case, where both sides fit with corresponding regions, and define the edge texture

between both regions.
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Figure 4.6: Texture boundary location. The probability of boundary is maximum

in case 2, when both sides of pixel fit with models of adjacent textures.

We consider four possible neighborhood partitions (the vertical, the horizontal

and two diagonals) as is shown in Figure 4.7. So, the corresponding probability of

a pixel j to be boundary is the maximum probability obtained on the four possible

partitions. Furthermore, in order to improve the computational cost of this operation

it is possible to consider only horizontal and vertical partitions as an approximation

to real measure of boundary probability.

4.2.4 Pyramidal Structure

With the idea of following the human visual system behaviour when a person is

approaching to an object, the pyramidal representation is adapted to texture seg-

mentation. Further, as has been discussed in Chapter 3, it provides noise robustness

and improves the computational cost. Two different alternatives have been consid-

ered to perform this adaption:

• A first possibility would be to use a pyramid of the original image at different
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Figure 4.7: Texture boundary information extraction. Four partitions are considered

to measure the boundary probability. The maximum probability obtained is the

probability to be boundary between both regions.

resolutions, and then extracting the texture features over these different resolu-

tions. However, although this method would provide more information about

the texture of regions, it would involve some problems related to the change

of resolution. Texture is basically a local area phenomenon that is sensitive

to the size of the area being observed [207]. Hence, the behaviour of texture

features varies with a change in resolution and it implies a big difficulty to

find texture operators adequate for each resolution. So, we have disesteemed

this option although we want to remark the possibilities that it offers.

• Another option, which has been finally chosen by us, consists on considering

a set of pyramids. For each texture feature, a pyramid is built upon the

texture feature obtained at full resolution of the image. The result is a set of

k pyramids as is illustrated in Figure 4.8.

Considering the texture features at highest level of the pyramid, the seeds are

placed and regions start the region competition obtaining a first segmentation. The
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Figure 4.8: Set of pyramidal structures from texture. A structure of coarser images

is built from each texture feature.

pyramidal structure is then used to successively refine the region boundaries until

the final segmentation is obtained using texture features from the original image.

4.3 Colour Texture Segmentation

Most of the literature deals with segmentation based on either colour or texture.

Although colour is an intrinsic attribute of an image and provides more information

than a single intensity value there has been few attempts to incorporate chromi-

nance information into textural features [57]. This extension to colour texture seg-

mentation was originated by the intuition that using information provided by both

features, one should be able to obtain more robust and meaningful results.

A rather limited number of systems use combined information of colour and

texture, and even when they do so, both aspects are mostly dealt with using sep-

arate methods [198]. Generally, two segmentations are computed for colour and

texture features independently, and obtained segmentations are then merged into

a single colour texture segmentation result. Figure 4.9 shows a scheme of the fu-
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Figure 4.9: Fusion of colour and texture segmentations. Colour and texture segmen-

tations are computed independently, and then the fusion of both results generates

the final colour texture segmentation.

sion of both segmentation results. The aim of this approach is to preserve the

strength of each modality: smooth regions and accurate boundaries using texture

and colour segmentation, respectively. The works of Chen et al. [37], Devaux et

al. [56], Dubuisson-Jolly and Gupta [60], and Manduchi [120] are examples of fusion

of colour and texture segmentations. The main drawback is related to the selection

rule for assigning the appropriate segmentation labels to the final segmentation re-

sult, where segmentation maps disagree with each other. A simple rule could be to

assume that there is a boundary in the final segmentation result everywhere where

a boundary appears in any of the individual segmentation results. However, this

technique is not useful because it results in over-segmentation [117].

It is only recently that attempts are being made to combine both aspects in a
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single method. Three alternatives to feature extraction for colour texture analysis

appear to be most often used and they consist of: (1) processing each colour band

separately by applying grey level texture analysis techniques, (2) deriving textural

information from luminance plane along with pure chrominance features, and (3) de-

riving textural information from chromatic bands extracting correlation information

across different bands.

• Processing each colour band separately by applying grey level tex-

ture analysis techniques:

This former approach represents a straightforward method of extending the

grey level algorithms to colour images. Caelli and Reye proposed a method [25]

in which they extract texture information from three spectral channels by using

three multiscale isotropic filters. Similarly, Tan and Kittler [189] extracts

features from three channels with a discrete cosine transform. A more recent

work of Thai and Healey [193] uses complex moments computed from the

output of a bank of Gabor filters to define a set of symmetry features which

explain colour texture.

• Deriving textural information from luminance plane along with pure

chrominance features:

This second approach allows a clear separation between texture and colour

features. Nevertheless, the main difficulty is to define a way to correctly de-

scribe the colour of a textured region, which is not homogenous due to textural

behaviour. Tan and Kittler [190] derived six colour features from the colour

histogram of a textured image, which were grouped with eight Discrete Cosine

Transform (DCT) coefficients as texture features computed from the inten-

sity image for classification. Meanwhile, in the proposal of Rui et al. [168], a

simple texture feature as edge intensity and three chromatic HSV coordinates

are directly grouped into a single feature vector. Then, a C-means clustering

allows the segmentation of the image.

In the work of Carson et al. [15, 28] the colour/texture descriptor for a given

pixel consists of six values: three for colour and three for texture. In order to

decouple the colour and texture properties, the three colour components are
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found after a spatial averaging using a Gaussian function at a selected scale,

which allows the extraction of a homogeneous colour from textured regions.

However, this process of smoothing causes object boundaries to be blurred in

the colour-feature image, and a post-processing step is then needed in which

boundary pixels are reassigned to the most similar region according to the

original pixel colours.

• Deriving textural information from chromatic bands extracting cor-

relation information across different bands:

Finally, this last approach usually supposes the extension of major gray-level

texture analysis methods to colour. An exemplar work of this approach is

the Markov Random Field (MRF) model for colour textures proposed by Pan-

jwani and Healey [145]. The model makes use of the spatial interaction of RGB

pixels within each colour plane and the interaction between different colour

planes. Hence, a colour texture is described in terms of the statistical depen-

dence of the RGB vector measured at a pixel on the RGB values measured

at neighbouring pixels. This proposal was posteriorly used for a MRF-based

segmentation using a genetic algorithm [195].

Other proposals which extract texture information from chromatic bands con-

sidered together are the works of Hauta-Kasari et al. [83], Paschos [150], She

and Huang [177], and Van de Wouwer et al. [198]. The extension to colour tex-

ture of the well known co-occurrence matrix method has been investigated by

Hauta-Kasari et al. [83]. Paschos [150] proposes a method which uses the CIE

xy chromacity diagram of an image and a corresponding set of two-dimensional

and three-dimensional moments to characterise a given colour texture. She

and Huang [177] proposed a generalisation of the variation method for esti-

mating fractal dimension in the colour space using inter-colour volumes. In

the work of Van de Wouwer et al. [198] a set of wavelet correlation signatures

are defined which contain the energies of each colour plane, together with the

cross-correlation between different planes.

Despite all these examples, the total amount of work on colour texture analysis

is still not very extensive [198]. Nevertheless, experiments have demonstrated that
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the inclusion of colour can increase the segmentation/classification results without

significantly complicating the feature extraction algorithms [57, 116].

4.3.1 Proposal Outline

Texture segmentation approach described in Section 4.2 is directly applicable to the

first and third approach to colour texture analysis described above. In both cases

a set of texture features could be extracted, from independent bands or consider-

ing chromatic bands together, and would be used as source of the segmentation

method. Since at the the moment is still unclear what is the best method to com-

bine colour and texture, in this section we extend the strategy to perform colour

texture segmentation considering textural information from luminance plane along

with chromatic features. Hence, our proposal will also be able to deal with colour

texture segmentation considering the second approach to colour texture analysis.

Moreover, experimental results shown in Chapter 5 demonstrate the correctness of

the proposed method.

The proposed colour texture segmentation strategy follows the scheme for texture

segmentation (see Figure 4.1) but now involving the colour image in all the process.

The source of information is now the set of texture features along with the original

image which provides the colour information. Moreover, the inclusion of colour

information into our texture segmentation proposal involves two major issues:

• First, perceptual edges, which can be derived from colour or texture need to

be extracted in order to place a set of seeds.

• Then, colour and texture of regions need to be modelled in order to define the

region information and allow an accurate extraction of boundary information.

4.3.2 Colour Texture Initialisation: Perceptual Edges

Regions are characterised by colour and texture features. Hence, two regions con-

sisting of the same colour but different texture or the same texture but different

colours are two different colour textures, as well as the obvious case of two regions
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with different colour and texture. Boundaries between colour texture regions, which

are combination of colour edges and texture edges can be considered as perceptual

edges, because a human has the ability to detect the boundary between different

textures as well as colour edges [63].

Using an edge detection scheme over the set of texture features we are able to

detect the boundaries between regions which differ in texture, as has been described

in Section 4.2.1. However, we also need to extract the boundaries between regions

with different colour, although they share a same texture. This is a major difficulty

since the use of an edge detector over a colour image results on the detection of

colour boundaries, but also produces the apparition of microedges inside the same

texture.

In order to remove microedges generally the texture at both sides of the contour

is checked, and the edge is removed if it does not separate two different textures [48,

63, 155]. However, it implies that edges between regions with different colours but

a same texture are removed too.

Our proposal is inspired by the work of Mirmehdi and Petrou [128], which present

a method to segment a textured image based on how different textures can be

perceived as separate homogenous regions in the preattentive stage of vision. They

propose a mechanism of segmenting colour textures, by constructing a multiscale

tower of image versions based on perceptual considerations. The levels of the tower

are constructed by using blurring masks (see more details on such masks on the

work of Zhang and Wandell [223]), by assuming that the same colour-textured is

seen at different distances (1,2,3, . . . , metres). Hence, each coarser version of the

image imitates the blurred version the Human Vision System would have seen at

the corresponding distance. The analysis of the image starts at the coarsest level

and proceeds towards the finest level, just like it would have happened if a person

was slowly approaching a distant object.

The underlying philosophy of the work by Mirmehdi and Petrou is that when a

texture is seen from a long distance seems to be a homogenous region. Hence, we

will use this same approach to obtain an image in which colour of textures looks

homogenous, as we would look the texture from far away. In order to obtain this

image a smoothing process is progressively performed starting from the original im-
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Figure 4.10: Smoothing in colour textured images. From original textured image,

the image is progressively blurred until regions appear as homogeneous.

age. Each pixel carries the (blurred) information of several other pixels in the finer

resolution version. Hence, a large number of pixels are considered as we proceed to

compute the coarser images. The consequence is that textured regions become each

time more homogeneous, while texture is lost. At the end of this process the image

is composed by homogeneous colours, and hence, the application of an edge detector

allows one to obtain the colour edges, although the result is especially coarse due to

the smoothing process. Figure 4.10 shows the effect of smoothing two textured im-

ages; regions which were originally textured are appreciated as homogeneous colour

regions.

The edge detection is then performed over the smoothed colour image and the

set of texture features in order to extract all perceptual edges. As it has been

detailed in the extraction of texture contours, an edge detection scheme is applied

to a multidimensional set, which is now composed of a set of k texture features more

three chromatic bands.

4.3.3 Colour Texture Region Information

The smoothed version of the original image which has been used to extract the per-

ceptual edges (see previous Section 4.3.2) allows the perception of textured regions

as colour homogeneous. Nevertheless, boundaries in this image are blurred and
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accurate boundary information can not be extracted to perform the segmentation

process. Therefore, the final segmentation would require a post-processing step to

refine the boundaries using the colour information from the finer original image.

Taking these questions into account, we have opted to extract colour information

directly from the original image.

So far, features inside a region (intensity, colour or texture) have been homoge-

neous and it was possible to model them with a simple Gaussian. However, colour

in a textured region is by definition not homogenous. In fact, different authors ad-

vise about the risk of modelling colour in natural scenes, riches in texture, using a

Gaussian. Enforcing a Gaussian model over such data is doomed to fail (see works

of Roberts [165] and Manduchi [121]), and even the use of a robust approach with

contaminated Gaussian densities [228] cannot be satisfactory for such complex cases.

Figure 4.11 illustrates the behaviour of colour in textured regions. As is stated, the

chromatic bands of textured regions do not follow a Gaussian model. However, the

question is: what model does colour come from?

Colour in texture has a very variable behaviour between different regions of the

image (see Figure 4.11), thus colour in all regions can not be described by a single

model. Methods which implicitly assume the same shape (most often elliptical)

for all the clusters in the space, are not able to handle the complexity of the real

feature space as has been noticed in very recent works [41, 45]. Hence, the feature

space can be regarded as a sample drawn from an unknown probability distribution,

and representing this distribution with a parametric model will introduce severe

artifacts, since the shape of the delineated clusters is predefined [44].

Arbitrarily structured feature spaces can be analysed only by nonparametric

methods since these methods do not have embedded assumptions [45]. We focus

our attention on density estimation from a non-parametric approach. Suppose, that

we have a set of observed data points assumed to be a sample from an unknown

probability density function. Density estimation is the construction of an estimate

of the density function from the observed data. Therefore, using this statistical

technique, we are able to define a probability density function which describes the

behaviour of colour in texture.

To estimate the probability density, several non-parametric techniques are avail-
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Figure 4.11: Colour distribution in textured regions. Histograms show that colour

can not be modelled by a Gaussian distribution.

able: multivariate histogram, nearest neighbour and kernel estimation methods [70,

175, 180, 192]. For higher dimensional feature spaces, multivariate histograms are

less useful due to their exponentially growing number of bins with the space dimen-

sions, as well as due to the artifacts introduced by the quantisation. The nearest

neighbour method is prone to local noise and the obtained estimate is not a prob-

ability density, since it integrates to infinity. For low to medium data sizes, kernel

estimation is a good practical choice: it is simple, and for kernels obeying mild the

estimate is asymptotically unbiased, consistent in the mean-square sense, and uni-

formly consisted in probability. Therefore, we adopt the kernel estimation technique

to estimate the probability density function of colour.
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4.3.3.1 Kernel Density Estimation

Kernel density estimation is one of the most well known methods to estimate the

density function. Given n data points xi, i = 1, . . . , n in the d-dimensional space

Rd, the multivariate kernel density estimator with kernel K(x) and a symmetric

positive definite d × d bandwidth matrix H, computed in the point x is given by

f̂(x) =
1

n

n∑
i=1

KH(x − xi) (4.4)

where

KH(x) = |H|−1/2K(H−1/2x) (4.5)

The d-variate kernel K(x) is a bounded function with compact support satisfy-

ing [203]

∫
Rd K(x)dx = 1 lim

||x||→∞
||x||dK(x) = 0

∫
Rd xK(x)dx = 0

∫
Rd xxT K(x)dx = cKI

(4.6)

where cK is a constant. The multivariate kernel can be generated from a sym-

metric univariate kernel K1(x) in two different ways

KP (x) =
d∏

i=1
K1(xi) KS(x) = ak,dK1(||x||) (4.7)

where KP (x) is obtained from the product of the univariate kernels and KS(x)

from rotating K1(x) in Rd. We are interested only in a special class of radially

symmetric kernels satisfying

K(x) = ck,dk(||x||2) (4.8)

in which case it suffices to define the function k(x) called the profile or the kernel,

only for x ≥ 0. The normalization constant ck,d, which makes K(x) integrate to one,

is assumed strictly positive.
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Using a fully parameterised H increases the complexity of the estimation and, in

practice, the bandwidth matrix H is chosen either as diagonal H = diag[h2
1, . . . , h

2
d]

or proportional to the identity matrix H = h2I. The clear advantage of the latter

case is that only one bandwidth parameter h > 0 must be provided. However, the

metric of the feature space has to be Euclidean that imply that colour differences

of human perception can be expressed by Euclidean distance in the colour space.

In this sense the (L∗, a∗, b∗) and (L∗, u∗, v∗) colour spaces were especially designed

to match the sensitivity of human eyes with computer processing [194]. Therefore,

employing only one bandwidth parameter, the kernel density estimator becomes the

expression

f̂(x) =
1

nhd

n∑
i=1

KH(
x − xi

h
) (4.9)

The profile

kN(x) = exp(−1
2
x) x ≥ 0 (4.10)

yields the multivariate normal kernel

KN(x) = (2π)−d/2 exp(−1

2
||x||2) (4.11)

Considering colour pixels of a region as a sample from an unknown probability

density function, Equation 4.9 obtains the probability of a colour pixel belonging to

the region. Hence, the use of the kernel density estimator measures the probability of

a given pixel to belong to a region with textured behaviour taking colour properties

into account. The good performance of this technique in front of classical assumption

of Gaussian behaviour is illustrated in Figure 4.12, in which obtained segmentations

are compared. From these results, we show that the typical assumption of Gaussian

behaviour can not be adopted for colour in textured regions, and the use of the

kernel density estimator is more adequate to model the region’s colour.
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(a) (b)

Figure 4.12: Modelling of colour on a textured region. (a) Segmentation obtained

assuming Gaussian behaviour of colour, (b) segmentation using the kernel density

estimator on colour behaviour.

4.3.3.2 Colour Texture Integration

Although the good performance of colour segmentation using the kernel density

estimation, colour does not provide enough information to perform colour texture

analysis. In order to correctly describe the colour texture of a region, it is required

together with colour of pixels, to consider the relationships between them. This

necessity is illustrated in Figure 4.13, where different textures composed by similar

colours are shown. The first row shows two real textures which by visual inspection

are regarded as different textures although they have really similar colours. More-

over, the second row shows two synthetic textures composed by exactly the same

colour pixels but spatially disposed in a different way. We will extract the required
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Figure 4.13: Textures with same colour. Same colours with different spatial distri-

bution give place to really different textures.

information considering both chromatic properties and texture features from the

luminance plane at the same time.

The probability of a pixel j of belonging to a region Ri will be obtained by

combining the similarity of the colour pixel with the colour of the region, and the

similarity of the texture around the pixel with the texture of the region. The prob-

ability of a pixel to belong to a region considering colour properties PRcolour
is given

by the expression of the kernel density estimator (see Equation 4.9) on the three-

dimensional colour space. Meanwhile, the probability of a pixel of belonging to a

region considering textural properties PRtexture is given by the Equation 4.2. The

combination of both terms gives the equation

PR(j|Ri) = βPRcolour
(j|Ri) + (1 − β)PRtexture(j|Ri) (4.12)
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where β weights the relative importance of colour and texture terms to evaluate

the region information.

4.3.4 Colour Texture Boundary Information

In order to extract the boundary between two adjacent colour textures we will follow

the scheme detailed in Section 4.2.3. The approach defines the boundary between

two texture regions as the place where the texture at both sides is different and fits

with region’s models. The model is easily extended to colour texture re-defining the

boundary as the place where either colour or texture at both sides are different and

fit with region’s models.

Textural and colour features are computed at both sides (referred as m and its

opposite as n). However, the previously defined Equation 4.12 can not be used to

measure the similarity of these sides with corresponding region because they are

composed by a set of pixels, and we want to measure the similarity of a set of pixels

with the region’s model. A possible naive solution would be to take the colour

mean of pixels as a sample of the colour of a side, but the textured behaviour of

regions implies this value is not representative of colour in a zone. Figure 4.14

shows the possible distribution of colour pixels belonging to a textured region on

a chromatic space. This distribution is bi-modal, composed by two colour clusters

clearly separated and, as is shown in the Figure, the mean is not representative of

the colour in region.

Hence, we will measure the individual similarity of each pixel with respect to the

colour of region and then we will define a global similarity. Specifically, in order to

measure the similarity in terms of colour we use the mean of the probability of pixels

in m to belong to region A, which is given by the Equation 4.9, meanwhile the sim-

ilarity of the side considering the texture of the region is given by the Equation 4.2.

Then, the weighted sum of both measures obtains the fit between the side and the

region. Finally, the probability of a given pixel j to be boundary between regions

A and B is equal to the product of the probability of side m to belong to region A

and the probability of side n to belong to region B, which will be maximum when

j is exactly the edge between both colour textures.
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Figure 4.14: Using average colour as sample of a textured region. Scheme shows the

pixels of a textured region on chromatic space. Two clusters are clearly differentiated

and the mean is not representative of the region colour.

We consider four possible neighbourhood partitions (see Figure 4.7). So, the

corresponding probability of a pixel j to be boundary is the maximum probability

obtained on the four possible partitions.

4.3.5 Pyramidal Structure

The pyramidal representation for the colour texture segmentation is naturally ob-

tained by considering again a set of pyramids. For each texture feature obtained at

full resolution a pyramid is built, as well as from the original full resolution colour

image.

Then, the segmentation process starts at the highest level of the pyramid con-

sidering coarse colour and texture features. Successively, the segmentation result

is refined considering finer resolution levels until the final segmentation is obtained

using texture features from the original image as well as the full resolution colour

image, following the strategy proposed in Section 3.2.3.
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4.4 Conclusions

The strategy for image segmentation proposed in Chapter 3, has been adapted to

solve the problem of texture segmentation. The method uses a coarse detection of

texture contours to initialise a set of active regions. Therefore, the initial unsuper-

vised texture segmentation problem is transformed to a supervised one, which allows

us to define the region information and to accurately extract boundary information.

Then, in the framework of active region segmentation described in Chapter 3, re-

gions compete for the pixels optimising an energy function which takes both region

and boundary information into account. The method has been implemented on a

pyramidal representation which reduces the computational cost and assures noise

robustness.

Furthermore, a method for the integration of colour and textural properties has

been proposed, which is based on the estimation of the colour behaviour using

statistical techniques of kernel density estimator, and its combination with classical

texture descriptors. Hence, the proposed segmentation strategy is considered for the

segmentation taking into account colour and textural properties together.
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Experimental Results

Evaluation methods to quantify the quality of a segmentation are discussed. The

proposed segmentation strategy as well as the extension to colour texture segmenta-

tion are then evaluated. A set of mosaic images is used to quantitatively evaluate

the proposed strategy, which is then compared with several algorithms (A1-A7) which

integrate region and boundary information. Furthermore, segmentation is performed

on a number of real scenes which are subjectively assessed. Colour texture segmen-

tation is evaluated on a set of collages of real textures, in which the integration of

colour and texture is analysed and segmentations are compared with results of other

researchers. Finally, some results on real scenes riches on texture are shown.

5.1 Introduction

Over the last decades, many segmentation algorithms have been developed, with

the number growing steadily every year. In contrast, relatively little effort has

been spent in attempting to evaluate the effectiveness of such algorithms. In fact,

up to now there is no universally accepted method to quantify the quality of a

segmentation [143].

The main difficulty of evaluating image segmentation algorithms stems from the

ill defined nature of the problem. In his survey on evaluation methods for image

segmentation [224], Zhang proposes this definition of image segmentation:

131
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“Image segmentation consists of subdividing an image into its

constituent parts and extracting these parts of interest (ob-

jects).”

As is noted by Everingham et al. [64], this captures the procedural quality of

segmentation but leaves some questions to be answered, notably how to define “con-

stituent parts” and “parts of interest”, and how to assess the degree of success or

failure of an algorithm in the case that it does not perform optimally. This has led

some researchers [21] to argue that segmentation or grouping performance can be

evaluated only in the context of a task such as object recognition. They relate to

what subsequent stages of processing have to be applied to the segmentation results

in order to achieve the goal of the entire vision system. However, it is rarely feasible

to build entire systems in order to test different segmentation algorithms, because of

expense, and because the properties of the segmentation algorithm will often deter-

mine what form subsequent processing should take. Therefore, it is more interesting

to evaluate segmentation algorithms without implementation of subsequent process-

ing. Then, segmentations are evaluated purely and solely as segmentations [126].

A classification of evaluation methods into analytical, empirical goodness or em-

pirical discrepancy is proposed in [224].

• Analytical methods: these techniques attempt to characterise an algorithm

itself in terms of principles, requirements, complexity, etc. without reference to

a specific implementation of the algorithm or test data. For example, one can

define the time complexity of an algorithm or its response to a theoretical data

model. However, in general the lack of a general theory of image segmentation

limits these methods.

• Empirical goodness methods: algorithms are evaluated by computing a

goodness metric on the segmented image without a priori knowledge of the

desired segmentation result. For example Levine and Nazif [113] used a mea-

sure of intra-region grey-level uniformity as their goodness metric, assuming

that in a well-segmented image regions should have low variance of grey-level.

Similarly, Liu and Yang [114] proposed a function for the quantitative evalu-

ation of the performance of algorithms for the segmentation of colour images.
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The incorporated criteria are: (1) the regions must be uniform and homoge-

neous, (2) the region’s interiors must be simple, without too many small holes,

and (3) adjacent regions must present significantly different values for uniform

characteristics. This function was posteriorly modified by Borsotti et al. [22]

in order to penalise noisy segmentations featuring many small regions more

heavily.

The advantage of this group of methods is that they only require the definition

of a goodness metric by the user; that is, it does not require manually seg-

mented images to be supplied as ground truth data, and can be used in an on-

line manner so that the effectiveness of an algorithm can be monitored during

actual application. Nevertheless, the great disadvantage is that the goodness

metrics are at best heuristics, and may exhibit strong bias toward a particu-

lar algorithm. For example the intra-region grey-level uniformity metric will

cause any segmentation algorithm which forms regions of uniform texture to

be evaluated poorly. Hence, the definition of a goodness metric which quantify

the quality of a general segmentation is a really difficult objective.

• Empirical discrepancy methods: a third class of evaluation methods are

based on the calculation of a measure of discrepancy between the result and

the desired segmentation for the corresponding input image. In the case of

synthetic images, the correct segmentation can be obtained automatically from

the image generation procedure, while in the case of real images it must be

produced manually or semi-automatically by an experienced operator. Hence,

a human being is the ultimate judge to make an evaluation of the result [143],

which implies a factor of subjectivity. Analogous to the case of the empirical

goodness methods, a discrepancy measure must be explicitly defined, but this

is likely to be easier to do and exhibit less bias than the former methods

because of the availability of ground truth data.

Several discrepancy measures have been proposed. One of the earliest and most

intuitive measures [219] treats the segmentation task as a multi-class classi-

fication problem where each pixel has an associated correct class, and takes

measures of classification error from the pixel-wise class confusion matrix.

Other discrepancy measures calculate the distances between miss-segmented
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pixels and the nearest correctly segmented pixels [219]. Thus, introducing a

spatial component to the measure, or based on differences between feature val-

ues measured from regions of the correctly segmented and output images [226].

More examples of discrepancy measures can be found in the work of Huang

and Dom [93], who proposed a complete set of three performance evaluation

schemes: parameter-based, boundary-based and region-based to be used when

ground truth is available.

In contrast to these works, Everingham et al. [64] proposes not using a sin-

gle metric to capture an algorithm’s effectiveness. The authors argue that in

reality we expect that we always have to make a trade-off between different

properties of a segmentation algorithm, for example the quality of the seg-

mentation versus the execution time, or degree of over-segmentation versus

under-segmentation. Thus, their approach is based on defining a general com-

parison method incorporating multiple measures, rather than advocating the

use of a single particular measure.

The analysis of Zhang [224] suggests that empirical methods are to be preferred,

as there is still no general theory of image segmentation. Furthermore, in the absence

of a specific application requirement, we expect the segmentation of an image to

agree with that performed by own vision system [128]. Hence, we will evaluate our

proposal using an empirical discrepancy approach, comparing our results with the

correct segmentation or ground truth.

5.2 Evaluation Methodology

Although segmentation evaluation and segmentation comparison are closely related,

they are in fact distinct matters [225]. While segmentation evaluation is an intra-

technique process, segmentation comparison is an inter-technique process. The pur-

pose of evaluation for a specific algorithm is to quantitatively recognise its behaviour

in treating various images and/or to help appropriately setting its parameters re-

garding different applications to achieve the best performance of this algorithm. On

the other hand, the purpose of comparison for different algorithms is to rank their

performance and to provide guidelines in choosing suitable algorithms according to
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applications as well as to promote new developments by effectively taking the strong

points of several algorithms into account.

There are different parameters which are involved in our proposal which can

affect the segmentation results. Thus, we perform experiments on a number of

collage images to determine acceptable ranges of values for them. Furthermore,

obtained segmentations are compared to results using well-known proposals in the

literature.

In this stage, we have opted to use synthetic images. The wide range of numerous

and indeterminate characteristics of real images makes it very complicated to achieve

an accurate comparison of the experimental results. The segmentation by hand im-

plies a tedious and subjective task. Furthermore, a manually produced segmentation

of real world images will contain errors, witness the fact that for complex images

two manual segmentations will never be exactly the same [202]. Hence, the use of

carefully designed synthetic images appears to be a more suitable benchmark for an

objective and quantitative evaluation of different segmentation algorithms [225].

The segmentations are evaluated by comparing each result with its ground truth

and recording the error. Specifically, we use both region-based and boundary-based

performance evaluation schemes [93] to measure the quality of a segmentation:

• Region-based evaluation: the region-based scheme evaluates the segmen-

tation accuracy in the number of regions, locations and sizes. Let the seg-

mentation be S and the corresponding ground truth be GS. The goal is to

quantitatively describe the degree of mismatch between them, which can be

measured by the percentage of not-correctly segmented pixels considering the

segmentation as a multi-class classification problem. Note that due to the use

of synthetic images the correct classification is obvious.

More formally, measure is based on the concept of distance from one segmen-

tation S1 = {R1
1, R

2
1, . . . R

n
1} to another segmentation S2 = {R1

2, R
2
2, . . . R

m
2 },

denoted by D(S1, S2). First, the correspondence between the labels of both

segmentation results is established: each region Ri
2 from S2 is associated ex-

clusively with a region Rj
1 from S1 such that Ri

2 ∩ Rj
1 is maximal. Therefore,

the distance from S1 to S2 is defined as:
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D(S1, S2) =
∑

Ri
2εS2

∑
Rk

1 �=Rj
1,Rk

1∩Ri
2 �=∅ |Ri

2 ∩ Rk
1| (5.1)

where |.| denote the size of a set. Therefore, D(S1, S2) is the total area under

the intersections between all Ri
2εS2 and their non-maximal intersected regions

from S1. The error on segmentation based on normalised distance is defined as

p = D(S=⇒GS))
|S| , where |S| is the image size and 100× p gives us the percentage

of error. The smaller the degree of mismatch, the closer the percentage is to

zero.

• Boundary-based evaluation: the boundary-based scheme is intended to

evaluate segmentation quality in terms of the precision of the extracted region

boundaries. Let B represent the boundary point set derived from the segmen-

tation and GB the boundary ground truth. The distance from ground truth

to the estimated boundary is used to evaluate the segmentation. Define the

distance from an arbitrary point j in set B to GB as the minimum absolute

distance from j to all the points in GB, d(i, GB) = min{dE(i, j)},∀iεGB, where

dE denotes the Euclidean distance between points i and j. The discrepancy

between B and GB is measured by the mean distance from boundary pixels

in the ground truth image to boundary pixels in the segmented image. As a

rule, a near-zero mean indicates high quality of the segmentation.

Furthermore, in a second stage we have opted to evaluate our proposal on a set

of real images. Some authors indicate the use of real images in segmentation eval-

uation as an inevitable necessity. Real images provide useful results when realistic

characteristics arise. Moreover, as Hoover et al. [90] advise, work that stops short

of using real images inspires little confidence in its relevance. Hence, we extend the

test of our proposal to a number of real scenes, whose segmentations are subjectively

judged.
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5.3 Image Segmentation Experiments

5.3.1 Synthetic Images

The set of synthetic images generated to test the image segmentation strategy fol-

lows the methodology proposed by Zhang [225]. Different images of size 128 × 128

are designed which are composed by regions of uniform intensity. Next, to make

synthetic images more realistic, a 5×5 average low-pass filter is applied to produce a

smooth transition between the different regions. A zero-mean Gaussian white noise

is then added to simulate noise effect. The noise samples have been generated with

standard deviations of 1, 2 and 4. The set of synthetic images is shown in Figure 5.1.

Note that we have named each image with two numbers. The first one relates to the

original image, while the second describes the level of noise which has been added.

Hence, images I11, I12 and I13 are the result of adding a progressively higher level

of noise to the same original image.

5.3.1.1 Segmentation Evaluation

The relative weight of region and boundary information, as well as the number of

multiresolution levels, are two key parameters involved in our processing which can

affect the result of the segmentation. Hence, we will analyse the role they play in

the segmentation results.

In reference with the first parameter, α, it indicates the weight of region infor-

mation, while 1 − α is the weight given to the boundary information. In the range

between 0 and 1, seven different values have been considered. The evaluation of

segmentations results from a region-based scheme is shown in Table 5.1, in which

the percentage of error on the segmentation of test images is given. Moreover, the

mean, standard deviation and median of percentage error are given as descriptors

of the evaluation on the whole set of test images. A first aspect to note is the

exorbitant error obtained when the parameter α is set to zero and only boundary

information is considered in the segmentation process. Although the performance in

this case is really poor, this result is not surprising because it is due to the problems

of initialisation typical of active contour models, which we have wanted to show.
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I11 I12 I13

I21 I22 I23

I31 I32 I33

I41 I42 I43

(a) (b) (c)

Figure 5.1: Synthetic images set. From the original synthetic image, noise samples

are generated by adding zero-mean Gaussian white noise with (a) σ = 1, (b) σ = 2

and (c) σ = 4.
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Table 5.1: Region-based evaluation of region and boundary weighting.

α = 1.0 α = 0.8 α = 0.6 α = 0.5 α = 0.4 α = 0.2 α = 0.0

I11 3.131 3.003 2.557 2.173 1.855 1.624 94.501

I21 3.589 3.528 3.302 3.223 3.186 3.308 96.313

I31 2.655 2.515 2.490 2.441 2.448 2.795 92.621

I41 2.094 2.069 2.051 2.087 2.209 2.441 95.728

I12 2.759 2.594 2.386 2.234 2.222 2.704 94.678

I22 3.546 3.540 3.436 3.351 3.418 4.077 97.095

I32 3.052 2.954 2.997 3.052 3.113 3.833 92.902

I42 3.784 3.595 3.510 3.510 3.656 3.900 95.477

I13 3.058 2.899 2.979 3.119 3.186 4.358 93.677

I23 11.224 10.809 10.614 10.278 10.175 10.156 97.302

I33 4.810 5.042 4.675 4.901 5.194 6.104 92.688

I43 18.933 18.347 18.146 17.926 17.584 16.760 95.184

Mean 5.220 5.075 4.929 4.858 4.854 5.172 94.847

Std 4.935 4.779 4.746 4.679 4.585 4.270 1.636

Median 3.339 3.265 3.149 3.171 3.186 3.867 94.931

Obviously, without taking the information inside the region into account, our active

regions are not able to move to a distant boundary.

Considering the other six parameter values the first conclusion can be extracted

is that our proposal is not too sensitive to this parameter, since not big differences

in the performance by using different values can be found. Nevertheless, the best

results are obtained in the range from α = 0.6 to α = 0.4 in which the error of

segmentation is about 3% − 4%. In other words, the algorithm segments correctly

the 96% − 97% of pixels in the image. Finally, test images have been ordered by

their level of noise in order to evaluate the influence of the gaussian white noise

over the performance of our proposal. As is stated, the error is lightly increasing

according a major level of noise is present in the image.

Table 5.2 shows the evaluation of segmentations results by considering the qual-

ity of boundaries obtained. As has been described above, the mean distance from

obtained boundary to real boundary is used to evaluate the segmentation in a
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Table 5.2: Boundary-based evaluation of region and boundary weighting.

α = 1.0 α = 0.8 α = 0.6 α = 0.5 α = 0.4 α = 0.2 α = 0.0

I11 0.578 0.511 0.429 0.343 0.258 0.178 32.719

I21 0.427 0.401 0.395 0.375 0.375 0.429 12.708

I31 0.397 0.309 0.304 0.266 0.240 0.239 23.261

I41 0.271 0.272 0.249 0.236 0.229 0.189 29.507

I12 0.540 0.529 0.495 0.468 0.464 0.413 31.937

I22 0.575 0.570 0.580 0.583 0.583 0.593 14.506

I32 0.516 0.481 0.459 0.450 0.431 0.415 24.882

I42 0.587 0.571 0.558 0.552 0.555 0.515 30.176

I13 0.734 0.731 0.744 0.731 0.748 0.696 30.708

I23 0.828 0.820 0.820 0.805 0.790 0.767 13.607

I33 0.829 0.790 0.813 0.823 0.783 0.749 25.175

I43 1.034 1.049 0.966 0.982 1.068 0.968 29.284

Mean 0.610 0.586 0.568 0.551 0.544 0.513 24.873

Std 0.213 0.226 0.224 0.239 0.262 0.250 7.383

Median 0.577 0.550 0.527 0.510 0.510 0.472 27.230

boundary-based scheme. A first conclusion that can be drawn from these results

is that the inclusion of boundary information allows the obtention of more accurate

boundaries, since the worst results correspond to exclusively using region informa-

tion (α = 1.0). Moreover, the quality of boundary improves when more weight is

given to the boundary information. Furthermore, note that the quality of these re-

sults can be qualified as notable (a priori to the comparison with other algorithms),

with mean distances considerably minor than 1, which means that the majority of

boundaries are exactly extracted. Finally, a last consideration is the influence of

noise in the results. Obviously, a major level of noise implies a major difficulty to

extract the boundaries, which is revealed by a bigger error. Moreover, this influence

is considerable stronger when boundary information has a larger weight in the seg-

mentation. The reason is that local gradient is used to extract boundary information

which is specially sensitive to noise.

Taking the quality of segmentation for both evaluation schemes into account, the
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best results are obtained by setting the parameter α to 0.4. Next aspect to evaluate is

the use of a pyramidal structure to perform the segmentation process. Hence, we test

our algorithm using pyramidal structures with different number of levels (L), and

the results are compared to the results which are achieved without using this coarse-

to-fine strategy. The evaluation by measuring the error in classification of pixels is

shown in Table 5.3. First column shows the results achieved not using the pyramidal

structure, while successive columns evaluate the results using higher pyramids. The

use of a multiresolution approach allows to considerably reduce the computational

cost since a smaller number of pixels are analysed in the segmentation. Furthermore,

as is stated in Table 5.3, the results from a region-based evaluation are improved

due to the smoothing effect of the pyramid which reduces the presence of noise in

the treated image. With this technique, the mean error is reduced and large errors

on images with a high noise level are avoided. This fact is revealed by the important

decreasing of the standard deviation, which means that error is more similar on the

whole set of images in contrast to the big differences related to the different levels

of noise which appear when the multiresolution approach is not used. In this sense,

note that the use of the pyramidal structure is specially useful on noisier images.

From another point of view, the multiresolution strategy has to be evaluated

according to the accuracy of boundaries obtained. Table 5.4 shows the boundary-

based evaluation of segmentation results. The quality of boundaries is similar to the

segmentation without considering the pyramidal structure (first column), although it

is true that in some images the boundary is slightly worse. However, this worsening

is unremarkable in front of the benefit in computational time and noise removing

which implies the multiresolution strategy. Hence, the use of a pyramidal structure

on our segmentation proposal has to be considered very useful.

5.3.1.2 Segmentation Comparison

The comparison of different segmentation algorithms is difficult, basically because of

the difficulty of implementing other author’s algorithms due to the lack of necessary

details [221]. However, we consider very interesting to compare our proposal with

other techniques in order to evaluate the performance of our strategy. Hence, we

have implemented seven algorithms (A1-A7) which are representative of the different
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Table 5.3: Region-based evaluation of multiresolution levels.

L=0 L=1 L=2 L=3

I11 1.855 0.214 0.348 0.330

I21 3.186 2.240 2.228 2.222

I31 2.448 2.344 2.332 2.313

I41 2.209 2.100 2.155 2.161

I12 3.186 1.056 0.995 1.031

I22 3.418 2.533 2.478 2.478

I32 3.113 2.826 2.753 2.734

I42 3.656 2.734 2.783 2.771

I13 3.186 1.642 1.910 1.929

I23 10.175 3.113 3.015 3.021

I33 5.194 4.834 4.913 4.797

I43 17.584 4.053 3.632 3.613

Mean 4.854 2.474 2.462 2.450

Std 4.585 1.232 1.166 1.141

Median 3.186 2.438 2.405 2.396

strategies of integration identified in Chapter 2. Lets give a brief description of these

algorithms:

• Algorithm A1 (Control of decision criterion in split-and-merge):

A1 is an algorithm based on the ideas of Bonnin and his colleagues who pro-

posed in [20] a region extraction method based on a split-and-merge algorithm

controlled by edge detection. The criterion to decide the split of a region takes

edge and intensity characteristics into account. More specifically, if there is

no edge point on the patch and if the intensity homogeneity constraints are

satisfied, then the region is stored; otherwise, the patch is divided into four sub-

patches, and the process is recursively repeated. Next, a final merging process

uses edge information in order to solve possible over-segmentation problems.

In this last step, two adjacent initial regions are merged only if there are no

edges on the common boundary.
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Table 5.4: Boundary-based evaluation of multiresolution levels.

L=0 L=1 L=2 L=3

I11 0.258 0.121 0.160 0.156

I21 0.375 0.575 0.575 0.575

I31 0.240 0.311 0.312 0.308

I41 0.229 0.260 0.289 0.294

I12 0.464 0.485 0.474 0.480

I22 0.583 0.596 0.591 0.591

I32 0.431 0.445 0.450 0.443

I42 0.555 0.547 0.547 0.547

I13 0.748 0.704 0.760 0.777

I23 0.790 0.790 0.786 0.786

I33 0.783 0.785 0.807 0.792

I43 1.068 0.814 0.816 0.828

Mean 0.544 0.536 0.547 0.548

Std 0.262 0.223 0.220 0.222

Median 0.510 0.561 0.561 0.561

• Algorithm A2 (Control of decision criterion in region growing):

The algorithm implemented A2, is based on the work of Xiaohan et al. [217],

who proposed a homogeneity criterion for a region growing algorithm consist-

ing of the weighted sum of the contrast between the region and the pixel, and

the value of the modulus of the gradient of the pixel. A low value of this

function indicates the convenience of aggregating the pixel to the region.

• Algorithm A3 (Guidance of seed placement):

The algorithm proposed by Sinclair [181] has been taken as the basic reference

for the implementation of A3. In this proposal, the Voronoi image is used to

derive the placement of the seeds. The intensity at each point in a Voronoi

image is the distance to the closest edge. The peaks in the Voronoi image,

reflecting the farthest points from the contours, are then used as seed points

for region growing. Nevertheless, A3 avoids the necessity of extracting the

edge image, generating the Voronoi image directly from the gradient image.
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• Algorithm A4 (Over-segmentation):

The implemented algorithm A4 follows the most habitual technique of over-

segmentation approach, which consists of obtaining the over-segmented result

using a region-based algorithm. Every initial boundary is then checked by

analysing its coherence with the edge map, where real boundaries must have

high gradient values, while low values correspond to false contours. Concretely,

A4 is based on the work of Gagalowicz and Monga [72, 216], where two adjacent

regions are merged if the average gradient on their boundary is lower than a

fixed threshold.

• Algorithm A5 (Multiresolution):

The A5 algorithm is based on the work of Spann and Wilson [215], where

the strategy uses a quadtree method using classification at the top level of

the tree, followed by boundary refinement. In our implementation, a region

growing algorithm is used to perform classification at the top level, yielding

an initial boundary, followed by downward boundary estimation to refine the

result.

• Algorithm A6 (Boundary refinement by snakes):

The A6 algorithm is implemented following the ideas of Chan et al. [34] related

to the refinement of boundaries using snakes. An active contour is placed at

the boundary of the regions obtained using a region growing algorithm in order

to refine it. Specifically, a greedy algorithm is used to find the minimum energy

contour. This algorithm searches for the position of the minimum energy by

adjusting each point on the contour during iteration to a lower energy position

amongst its eight local neighbours.

• Algorithm A7 (Selection-Evaluation):

The A7 algorithm is based on the work of Siebert [179] where edge information

is used to adjust the criterion function of a region-growing segmentation. For

each seed, A7 creates a whole family of segmentation results (with different

criterion functions) and then, based on the local quality of the region’s con-

tour, picks the best one. The contrast between both sides of the boundary

is proposed as a measure of contour strength to evaluate the segmentation

quality. More formally, the contour strength is expressed as the sum of the
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absolute differences between each pixel on the contour of a region and the

pixels in the 4-neighbourhood of these contour points which are not part of

the region. However, Siebert suggests that slightly improved results at higher

computational costs can be expected if the contour strength is based on the

gradient at each contour pixel rather than on the intensity difference. Hence,

this second option has been the solution adopted in the A7 implementation.

The set of test images (see Figure 5.1) have been then segmented using these 7

algorithms of integration, and the quantitative evaluation of these results is shown

in Tables 5.5 and 5.6. Moreover, last column of these tables shows the results ob-

tained by our proposal considering a pyramidal structure with L = 2. It should be

noted that the results corresponding to algorithms A1-A7 have been obtained by

fine-tuning the parameters of algorithms independently for each image. From these

results, and focusing on the 7 implemented algorithms, some observations can be

noted about the different strategies of integration. The best segmentation consid-

ering the region-based evaluation is achieved by the algorithm A1, which is based

on the inclusion of edge information into a split-and-merge algorithm. The good

performance of this algorithm is related to the nature of the decision criterion of the

split-and-merge, which analyses the homogeneity of a whole region in front of the re-

gion growing algorithm, which is based on the local decision of aggregation of a pixel

to the region. Hence, the split-and-merge becomes more robust to the presence of

noise, always taking into account that parameters have been conveniently set. Nev-

ertheless, the A1 algorithm obtains, at the same time, the worst performance when

is evaluated by a boundary-based scheme. As is well known, the quad-tree struc-

ture used to effect the step of splitting involves the obtention of squared boundaries

which imply a non accurate extraction of regions boundary. It is significative the

perfect segmentation obtained on images I11, I12 and I13, which are composed by

four squared regions, while coarse boundaries are detected in other test images with

different region shapes. Moreover, these three perfect segmentations provoke the

mean error at boundary to be relatively small, but the high standard deviation and

median values show the real problems of this algorithm to extract boundaries.

Taking the region-based evaluation into account, the A5 algorithm (multiresolu-

tion approach) also obtains relevant results, primarily due to the shown robustness
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Table 5.5: Region-based evaluation of integration strategies.

A1 A2 A3 A4 A5 A6 A7 Proposal

I11 0.000 2.838 1.697 4.083 2.435 2.698 1.910 0.348

I21 3.558 2.936 2.295 2.631 2.423 3.955 2.374 2.228

I31 6.421 10.150 6.390 9.778 6.409 9.869 9.869 2.332

I41 3.473 3.345 3.143 3.394 2.832 3.406 3.101 2.155

I12 0.000 12.982 6.525 15.570 1.715 11.597 11.481 0.995

I22 3.180 4.413 2.795 4.224 2.850 3.217 3.735 2.478

I32 6.903 26.794 17.987 27.625 6.995 22.211 22.083 2.753

I42 3.156 8.820 5.542 8.075 3.198 8.221 8.209 2.783

I13 0.000 18.634 26.605 - 5.957 32.654 32.629 1.910

I23 3.821 18.207 8.691 14.441 8.185 12.976 12.994 3.015

I33 20.514 - 37.769 - 13.068 37.225 38.806 4.913

I43 4.767 - 19.348 33.282 7.739 25.787 - 3.632

Mean 4.649 10.912 11.566 12.310 5.317 14.485 13.381 2.462

Std 5.497 8.183 11.452 10.647 3.371 12.081 12.597 1.166

Median 3.516 9.485 6.458 8.926 4.578 10.733 9.869 2.405

to noise. As is stated in Table 5.5, the increasing of noise obviously provokes a

larger error in segmentation, but this worsening in the quality of segmentation is

not so remarkable compared to other strategies as is stated by the minor deviation

in error values. Hence, the use of a pyramidal representation to carry out a coarse

to finer segmentation is shown to be a good way to obtain robustness to noise and,

in addition, reduce the computational cost. In a similar way to the previously com-

mented A1 algorithm, the evaluation from a boundary-based scheme shows that

multiresolution approach does not extract accurate boundaries. However, this fact

was predictable since edge information is not used in the implemented algorithm

and the decision criterion of aggregation is only based on region information.

We also want to remark the results obtained by the A3 algorithm, which uses the

edge information to adequately place seeds of a region growing algorithm. Those

results, from a region-based evaluation, are always superior to the segmentation us-

ing the A6 algorithm, which is based on the refinement of an initial segmentation
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obtained by a classical region growing algorithm. Hence, it demonstrates the im-

portance of the placement of initial seeds in region growing algorithms and how this

strongly affects the final segmentation result. Remaining integration approaches

show good results when the presence of noise is minimal, but have shown to be

specially sensitive to noise, generating over-segmented results when the magnitude

of noise is increased. For those cases, evaluation measures could not be obtained

and were left blank in Tables 5.5 and 5.6, and, not surprisingly, it correspond to

images with significant amount of noise.

On the other hand, considering the boundary-based evaluation of the segmen-

tation results, we have to remark the quality of boundaries after the refinement by

snakes which is carried out in the algorithm A6. Results confirm the observation

made in Chapter 2, in which the cooperation between region-based segmentation

and snakes was pointed out as a good choice to obtain reliable smooth boundaries.

Interesting results are also obtained by A2, A4 and A7 algorithms, which uses edge

information to extract precise boundaries. Specifically, A2 algorithm uses the edge

information in the decision criterion of a region growing algorithm, which allows

to accurately stop the region growth when the border with an adjacent region is

reached. The merging of regions carried out in A4 algorithm (over-segmentation ap-

proach), eliminates false boundaries between regions based on the gradient measured

over them. The result is that remaining regions have high gradient at boundaries,

which coincide with real boundaries of the image. Finally, A7 algorithm selects, from

a set of region-based segmentations, the result which better fit the edge map. From

these results, it is stated as the use of edge information to adjust the region bound-

aries to places with high discontinuity allows the detection of accurate boundaries

in the segmentation.

Summarizing, it is difficult to ensure the superiority of one integration strategy

over the other ones, because the satisfactory detection of homogenous regions and

the extraction of precise boundaries seem to be contradictory aims. However, we

can stress the robustness of the multiresolution approach which has shown to be able

to get correct segmentation results with an important independence to noise and to

its parameters. Moreover, on the other hand, the use of snakes has demonstrated

to be a valid solution when accurate boundaries are required.
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Table 5.6: Boundary-based evaluation of integration strategies.

A1 A2 A3 A4 A5 A6 A7 Proposal

I11 0.000 0.683 0.567 0.643 0.682 0.621 0.608 0.160

I21 0.744 0.459 0.444 0.595 0.454 0.451 0.444 0.575

I31 1.094 1.058 1.684 0.747 1.016 0.569 0.748 0.312

I41 0.921 0.559 0.820 0.504 0.895 0.784 0.640 0.289

I12 0.000 0.782 0.680 0.691 0.669 0.654 0.659 0.474

I22 0.955 0.536 0.512 0.507 0.521 0.603 0.548 0.591

I32 1.066 1.146 0.842 1.026 1.054 0.657 0.697 0.450

I42 0.944 0.758 1.389 1.344 1.360 1.284 1.344 0.547

I13 0.000 0.744 1.361 - 0.766 0.777 0.787 0.760

I23 1.196 0.889 1.143 0.937 0.644 0.943 1.160 0.786

I33 1.963 - 0.701 - 1.339 0.698 0.698 0.807

I43 0.991 - 1.331 1.250 1.411 1.330 - 0.816

Mean 0.823 0.761 0.956 0.824 0.901 0.781 0.758 0.547

Std 0.578 0.222 0.409 0.301 0.334 0.275 0.265 0.220

Median 0.950 0.751 0.831 0.719 0.831 0.678 0.697 0.561

Comparison of results obtained by these 7 algorithms with those by using our seg-

mentation strategy, shown in last column of Tables 5.5 and 5.6, are clearly favourable

to our proposal. Accurate boundaries in the segmentation are achieved, and the tech-

nique is considerably robust to noise, specially when the pyramidal representation

is used. Nevertheless, without undervaluing the results of our proposal, the sim-

plicity of implemented algorithms has to be considered and compared to the major

complexity of our proposal. Hence, the main conclusion that can be extracted from

these trial experiments is that our fusion proposal of different strategies allows to

improve results obtained by using them separately. Furthermore, it is necessary not

to forget the importance that must be given to the initial statistical modelling of

regions, the concurrent region growing or the energy function minimization by the

region competition algorithm.



5.3 Image Segmentation Experiments 149

5.3.2 Real Images

The convenience of our strategy for the segmentation of real colour images has been

tested selecting a number of well-known standard test images from USC-SIPI image

database (University of Southern California-Signal and Image Processing Institute)

(http://sipi.usc.edu/services/database/) and the Berkeley Image Segmenta-

tion Benchmark (University of California) [126].

Firstly, in order to evaluate the evolution of our work we want to show some

results which were obtained by using the method proposed by us in 2000 [50]. The

technique was our first approach to image segmentation and the basis of some basic

ideas of the work described in this thesis. The obtained results encouraged us to

continue the work, although the method had some deficiencies basically related

to the segmentation of textured regions. Some segmentation results are shown in

Figure 5.2. As derived from these results, it is clear that the technique allows the

identification of regions but the problem of over-segmentation is present in regions

with a textured behaviour. The comparison of these segmentations with the results

shown in Figure 5.5 obtained by using our final proposal allows to corroborate the

improvement and evolution of our work in these years.

The first experiment of our final proposal shows the segmentations obtained

by our strategy with different colour spaces. Specifically, we have tested the per-

formance using RGB, HLS and (L∗, u∗, v∗) colour spaces. Figure 5.3 shows the

segmentations obtained with a typical natural image containing a tree considering

these colour spaces. First row shows the original image, and the second row shows

the segmentations in which each segmented region is painted with a different colour.

Finally, in order to obtain a better evaluation of these results, the third row shows

the borders of segmented regions over the original image. Although there are some

differences between these results, meaningful regions are identified in all three colour

spaces, and is not possible to stress the supremacy of any colour space over rest.

Therefore, our results confirm the lack of a consolidated colour space for image seg-

mentation noted by Batlle et al. [12]. We have chosen the RGB colour space in the

segmentation of remaining test images.

Figures 5.4 and 5.5 show some segmentation results. First of all, we want to

remark that these are considered by us as very satisfactory, since the most relevant
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Figure 5.2: Colour segmentation results by our first approach to image segmentation.

regions of the images are correctly identified. Nevertheless, there are some small

mistakes that we want to point out. In the first row of Figure 5.4 the segmentation

of an image with a house is shown, in which some errors are made in the segmen-

tation of regions corresponding to windows due to the effect of shadows. Similarly,

some problems of over-segmentation can be observed in the last segmentation of

Figure 5.5, in which the man’s shirt is over-segmented in several regions due to the

light and shadows which imply the apparition of different blue tonalities. On the

other hand, some problems of missed small regions can also be stated. The segmen-

tation shown in second row of Figure 5.4, corresponding to a natural scene with a

lake, misses some little houses which are placed in the depth of the image. However,

note that these houses have a very similar colour to the field and, moreover, the

use of the multiresolution strategy can imply the loss of such small regions. In that

sense, the first row in Figure 5.5 shows the segmentation of a bear next to a river,

in which the snout is confused with the background composed by gray stones.

In addition to outdoor scene analysis, other Computer Vision applications re-

quire the use of segmentation techniques. A clear example of these are medical and

underwater image analysis, which correspond to basic lines of research in the Com-

puter Vision and Robotics Group. In recent years, the medical community turned

to Computer Vision as a discipline to meet their increasing needs. Those are mainly

related to the emerging novel digital imaging modalities and to the increased work-

load experienced medical professionals suffer recently. Therefore, Computer Vision

systems have been incorporated in tasks such as image acquisition and management,

and, more importantly, in computer aided diagnosis. In this last application field,

image segmentation plays a very important role as one of the first steps to provide
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RGB HLS L∗u∗v∗

Figure 5.3: Colour segmentation results on different colour spaces.

an accurate diagnosis. In that sense image segmentation can be used to detect re-

gions describing different tissue characteristics or abnormal areas related to a given

pathology. This is illustrated in the top row in Figure 5.6, which shows an example of

image segmentation applied to a medical image. In this case a Magnetic Resonance

Image (MRI) of a woman’s breast in which it is clear that segmentation achieves a

good differentiation of breast tissue types (darker areas refer to parenchymal tissue

and lighter areas to fatty tissue).

With respect to underwater applications, two underwater platforms have been

developed by the Computer Vision and Robotics group of the University of Girona
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(a) (b) (c)

Figure 5.4: Colour segmentation results on real images. (a) Original image, (b) seg-

mentation result, (c) borders of segmented regions.
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(a) (b) (c)

Figure 5.5: Colour segmentation results on real images. (a) Original image, (b) seg-

mentation result, (c) borders of segmented regions.
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(a) (b) (c)

Figure 5.6: Application of colour segmentation to medical and underwater images.

(a) Original image, (b) segmentation result, (c) borders of segmented regions.

(UdG) to test different control and sensing strategies. The first underwater pro-

totype was constructed in cooperation with the Polytechnical University of Cat-

alonia (UPC), with the aim of developing a remotely-operated underwater robot

(GARBI) [7], equipped with two arms to carry out simple manipulation tasks. The

second project represents our first attempt to build a fully autonomous underwater

vehicle. This is a joint project involving three universities: UdG, UPC and UIB

(University of the Balear Islands). The main goal consists of building an AUV pro-

totype called URIS which will be able to execute simple missions such as exploring

an area while gathering information. A detailed description of these vehicles can be

found in [162]. Computer vision, and specifically the segmentation, can play a basic

role in the autonomy of the vehicle providing useful information from the environ-

ment, which will help its application to the observation of dams and collector walls,

rescue tasks, inspection of ship bottoms, and so on.
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5.4 Colour Texture Segmentation Experiments

The first consideration to make in order to evaluate the colour texture segmentation

by using our proposal is related to the texture features used to characterise and de-

scribe the regions of the image. Various researchers have attempted to describe and

segment images using statistical features, fractal, stochastic and spatial-frequency

models, etc. These techniques have been largely compared (see the comparative

works of Clausi and Ed Jernigan [43], Conners and Harlow [46], Du Buf et al. [59],

Ojala et al. [140], and Weszka et al. [211]). Nevertheless, the results of comparing

the relative merits of the different types of features have been inconclusive and a

clear winner can not be decided for all cases [159]. For the experimental trials shown

in this section we used the co-occurrence matrices proposed by Haralick et al. [81],

considering a window of size 7×7 centred at the analysed pixel as is described in [59].

Two of the most typical features, contrast and homogeneity, are computed for dis-

tance one and for 0◦, 45◦, 90◦ and 135◦ orientations to constitute a 8-dimensional

feature vector.

5.4.1 Synthetic Images

In order to evaluate the proposed colour texture segmentation technique, we created

nine mosaic images by assembling four subimages of size 128× 128 of textures from

the VisTex natural scene collection by MIT (http://www-white.media.mit.edu/

/vismod/imagery/VisionTexture/vistex.html), which we have called M1 to M9.

Furthermore, we added three mosaics M10, M11 and M12, provided by Dubuisson-

Jolly and Gupta which were used to evaluate their proposal on colour texture seg-

mentation described in [60]. Mosaic M10 contains (clockwise from the top left

corner) water, red crop (observed using an infrared camera), green crop, and light

green crop; M11 contains cage, wall, forest, town; finally M12 contains bushes, for-

est, long grass, grass. The whole set of texture mosaic images is shown in Figure 5.7.

These images were processed by our segmentation algorithm using various set

of parameter values. We considered the weight of colour and texture information

(parameter β), as well as the relative relevance of region and boundary information

in the segmentation process (parameter α), ranging both from 1 to 0. Nevertheless,
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M1 M2 M3

M4 M5 M6

M7 M8 M9

M10 M11 M12

Figure 5.7: Set of mosaic colour texture images.
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the most interesting results were obtained considering parameter β ranging from 1.0

to 0.4, while parameter α takes values 1.0, 0.75 and 0.5, on a pyramidal structure

with L = 2. Table 5.7 and Table 5.8 show the summarized results of these parameter

settings, using the mean, standard deviation and median as descriptors of results

obtained over the whole set of mosaic images. As has been described above in

Section 5.2, segmentations are evaluated from a region-based scheme by measuring

the percentage of not-correctly segmented pixels considering the segmentation as a

multi-class classification problem (see Table 5.7). On the other hand, the quality of

the extracted region boundaries is evaluated by the distance from ground truth to

the estimated boundary (see Table 5.8).

Main conclusions that can be extracted from the analysis of these summarized

results are:

• Use of texture features is a necessity. As has been theoretically stated in

Chapter 4, using colour as single source of information is not enough for the

segmentation of textures. First, the segmentation when colour is used alone

(β = 1.0) tends to produce noisy segmentations, with several pixels remaining

as background inside the regions. Furthermore, when adjacent textures have

a very similar colour, the colour property is not capable of distinguishing

between them. Hence, big errors are produced at boundaries between these

textures. These errors are revealed in the region-based evaluation shown in

Table 5.7, in which the mean error is significantly larger than the median and

the standard deviation is specially high when colour has a strong importance

(β = 1.0 and β = 0.8). It means that the error, although small for most of

the cases, is very big for some images. Mosaic M11 is the most representative

example of this problem since it is composed by two couples of textures with

almost the same colour, which can not be correctly distinguished using only

colour. Figure 5.8 shows segmentation results obtained over the mosaic image

M11 with α = 0.75 considering colour alone (β = 1.0) and taking colour and

texture properties into account with β = 0.6. As is stated in the Figure, the

inclusion of texture information allows to correctly segment regions although

they have similar colour. These problems imply that the worst performance is

obtained when using colour alone.
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Table 5.7: Region-based evaluation of colour texture segmentation over mosaic im-

ages.

α = 1.0 α = 0.75 α = 0.5

Mean Std Median Mean Std Median Mean Std Median

β = 1.0 9.505 8.877 6.688 8.442 6.852 6.856 9.167 9.207 6.473

β = 0.8 3.457 3.630 2.465 4.443 5.270 2.286 3.986 4.631 2.801

β = 0.6 2.679 2.772 1.931 2.218 1.711 2.081 2.375 1.495 2.538

β = 0.4 3.676 2.124 4.178 3.527 2.182 3.614 3.486 2.111 3.591

• Texture features must be used as complement of colour. Texture

features, as has been stated above, are strictly necessary for colour texture

segmentation. Nevertheless, simple texture features, as has been used in these

experiments, show an irregular behaviour which makes it difficult to obtain a

segmentation from them. Moreover, due to their spatial support, the segmen-

tation at boundaries is always more difficult than considering colour properties.

As is stated in Table 5.7, the performance of our algorithm decreases when

texture is considered with major importance than colour (β = 0.4), meanwhile

error at boundaries is increased (see Table 5.8). Therefore, texture features

must play a complementary role in our colour texture segmentation algorithm,

with the aim of avoiding the problems when colour is used alone.

• The importance of boundary information is increased when the

weight of texture features is increased. When texture features have

a strong influence on the segmentation (β = 0.4) the use of boundary infor-

mation allows to significantly reduce the errors at boundaries as is stated in

Table 5.8. Meanwhile, this improvement in the segmented boundaries is not

so clear when colour is the principal source of information. Reasons can be

found in the nature of both properties. Segmentation using texture features

is specially difficult at boundaries where the texture description assigned to

pixels comes from a mixture of adjacent textures pixels. The boundary in-

formation allows then to reduce these problems and obtain a more accurate
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Table 5.8: Boundary-based evaluation of colour texture segmentation over mosaic

images.

α = 1.0 α = 0.75 α = 0.5

Mean Std Median Mean Std Median Mean Std Median

β = 1.0 3.277 5.479 0.553 2.036 3.444 0.787 1.958 2.772 0.856

β = 0.8 0.680 0.706 0.475 0.796 0.801 0.497 0.707 0.677 0.482

β = 0.6 0.923 1.060 0.559 0.841 0.940 0.592 0.931 1.048 0.550

β = 0.4 1.930 1.618 1.317 1.701 1.310 1.428 1.437 1.138 1.270

segmentation. On the other hand, colour is an obvious local property and

errors at boundaries tend to be small. Moreover, mosaic images have been

designed without a transition at boundary. Therefore, using the local colour

of pixels is possible to extract the border between adjacent textures (excepting

the commented problems with similar colour textures) and the use of boundary

information is not so necessary.

• Best results have been obtained with β = 0.6 and α = 0.75. From these

experiments, we consider that the best results are obtained by weighting the

colour with 0.6 and texture features with 0.4. Moreover, region information

is weighted with 0.75 and boundary information with 0.25. This setting gives

the best performance considering a compromise between region and boundary-

based quality measures. Moreover, we have considered it to be adequate for

the selection of parameters with a minor mean and standard deviation of error

with the aim of choosing the most robust configuration although the median

value is not the best. In other words, we have looked for a setting which avoids

large errors in the segmentation of any image, although other configurations

can specifically give better results in the remaining images. Table 5.9 shows

the evaluation of segmentation obtained over each individual image using this

parameters setting.

Results of the three last mosaic images (M10, M11 and M12) can be compared

to the segmentation results shown in the work of Dubuisson-Jolly and Gupta [60].

Their proposal is a supervised segmentation algorithm based on the fusion of colour

and texture segmentations obtained independently. Firstly, a number of training
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(a) (b) (c)

Figure 5.8: Segmentation of colour textures with similar colour. Using only colour

property is not possible to correctly segment adjacent textures with similar colour.

(a) Original image, (b) segmentation result using colour alone, (c) segmentation

result using colour and texture together.

polygons are manually defined by the user in order to model the different regions

using a multivariate Gaussian distribution. Next, independent colour and texture

segmentations are obtained by using the maximum likelihood classification technique

which assigns each pixel to the most probable region. Specifically, multiresolution

simultaneous autoregressive models proposed by Mao and Jain [124] are used to

compute the texture features, while different colour spaces are tested. Finally, both

segmentations are fused based on the confidence of the classifier in reaching a par-

ticular decision. In other words, the final classification of each pixel is based on the

decision (from colour or texture) which has obtained a higher confidence.

In the work of Dubuisson-Jolly and Gupta [60] the error is measured by the

percentage of pixels that are classified as unknown and the percentage of wrongly

classified pixels among the remaining pixels that were classified. The technique

achieves percentages of 0.9%, 0.6% and 1.5% of non-classified pixels, and an error

among classified pixels of 0.1%, 7.6% and 3% in M10, M11 and M12 mosaic images.

Taking into account that in our evaluation both cases are considered as segmentation

errors, we combine these measures to make the results comparable for both works.

The resulting percentage of error is of 1%, 8.245% and 4.545%, meanwhile our

strategy has obtained errors of 0.095%, 3.550% and 1.955%. Therefore these results

have to be considered very positive. Segmentation results of these mosaics are shown
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Table 5.9: Region-based and boundary-based evaluation for the best results of colour

texture segmentation over mosaic images (β = 0.6 and α = 0.75).

Region-based Boundary-based

M1 2.207 0.352

M2 0.280 0.145

M3 0.731 0.237

M4 2.375 0.588

M5 1.663 0.786

M6 2.352 0.341

M7 1.451 0.596

M8 6.344 1.774

M9 3.609 3.430

M10 0.095 0.028

M11 3.550 0.962

M12 1.955 0.852

Mean 2.218 0.841

Std 1.711 0.940

Median 2.081 0.592

in Figure 5.9.

Moreover, note that best results could be obtained considering other parameter

settings, while the results of Dubuisson-Jolly and Gupta’s work are related to the

best segmentation quality measures from a set of experiments with different colour

spaces, texture window sizes and multiresolution levels. Reasons of the superior

performance of our technique could be related to the not inclusion of neighbourhood

information during the segmentation process in the Dubuisson-Jolly and Gupta’s

proposal, as well as the use of a Gaussian distribution to model the colour in front

of our choice for kernel density estimation techniques.
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(a) (b) (c)

Figure 5.9: Colour texture mosaics segmentation results. (a) Original image, (b) seg-

mentation result, (c) borders of segmented regions.

5.4.2 Real Images

The performance of our proposal for colour texture segmentation has been finally

tested over a set of real images, which have been generally extracted from the test

images used in works of Zhu et al. [227], including their more recent proposal [196,

197], Paragios and Deriche [146, 149], and Mirmehdi and Petrou [128]. Figure 5.10
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(a) (b) (c)

Figure 5.10: Texture segmentation results obtained by Zhu et al. and Paragios and

Deriche’s works. (a) Original image, (b) segmentation results obtained by proposal

of Zhu et al. [227], (c) segmentation results obtained by proposal of Paragios and

Deriche [146, 149].

shows some results obtained on works of Zhu and Yuille [227] and Paragios and

Deriche [146, 149]. Natural scenes with animals predominates among these images,

since nature is the most complex and riche source of colours and textures (see

Figure 5.11). Furthermore, we have opted to select images with a relatively small

number of regions and in which human segmentation from different persons could

present small divergences. This does not mean that these images are easy to segment,

in fact texture segmentation is never an easy task, and the evaluation can be more

“objective” according to the similar segmentation different humans would obtain.

Some colour texture segmentation results obtained using our proposal are shown

in Figure 5.11. Meaningful regions in images are successfully detected and the useful-

ness of our proposal for colour texture segmentation is demonstrated. Furthermore,

we want to emphasize some aspects of the shown results that are considered by us

as very positive. Second row in Figure 5.11 shows the segmentation of a monkey

among some leaves. The monkey is correctly segmented and, moreover, although
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the animal is absolutely black several parts of its skin are identified due to their

different textural properties. Similar situations occur with other images in which

animals are present. In the image with a leopard, region at neck which is not com-

posed by typical spots of the animal, is detected and the same occurs with the lizard

image in which the body of the animal, neck and belly are segmented as different

regions. It is true that in these cases many of human would group all these regions

to compose a single region related to the whole animal body. Nevertheless, this

process of assembling is more related to the knowledge that we have about animals

that to the basic process of segmentation. Hence, we believe that the segmenta-

tion performed by our proposal is correct as it distinguishes regions with different

colour texture. The task of region grouping, if necessary, should be carried out by

a posterior process which uses higher-level knowledge.

The correctness of boundaries obtained in these segmentations is also shown by

the sketch of detected borders over original images. As has been pointed out in

Chapter 4, texture segmentation is specially difficult at boundaries and great errors

are often produced at them. Hence, we want to note the accuracy of segmentations

considering not only the correct detection of regions, but also the precise localisation

of boundaries between adjacent textures.
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(a) (b) (c)

Figure 5.11: Colour texture segmentation results on real images. (a) Original image,

(b) segmentation result, (c) borders of segmented regions.
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Chapter 6

Conclusions

Conclusions extracted from this work are presented. Moreover, the possible further

work is analysed considering the different directions that this research line could

advance to. Finally, publications which are directly related to this thesis work are

listed.

6.1 Contributions

In this document we have presented an unsupervised image segmentation strategy

which integrates region and boundary information from colour and texture proper-

ties in order to perform the image segmentation. The main contributions of this

thesis work are:

1. Review on image segmentation integrating region and boundary in-

formation. An exhaustive analysis of image segmentation techniques which

integrate region and boundary information has been carried out. Main strate-

gies to perform the integration have been identified and a classification of

these approaches has been proposed. Thus, the most relevant proposals are

assorted and grouped in their corresponding approach. Moreover, character-

istics of these strategies as well as the general lack of attention that is given

to the texture has been noted. The discussion of these aspects has been the

origin of all the work evolved in this thesis, giving rise to two basic conclu-

167
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sions: first, the possibility of fusing several approaches to the integration of

both information sources, and second, the necessity of a specific treatment for

textured images.

2. Image segmentation strategy. An unsupervised segmentation strategy

which integrates region and boundary information and incorporates different

approaches identified in the previous review have been proposed. Specifi-

cally, the proposed image segmentation method combines the guidance of seed

placement, the control of decision criterion and the boundary refinement ap-

proaches. The method is composed by two basic stages: initialisation and

segmentation. In the first stage, the main contours of the image are used to

identify the different regions present in the image and to adequately place a

seed for each one which allows to statistically model the region. Then, the seg-

mentation stage is performed based on the active region model which allows

us to take region and boundary information into account in order to segment

the whole image. Furthermore, with the aim of imitating the Human Vision

System when a person is slowly approaching to a distant object, a pyramidal

structure is considered. Hence, the method has been designed on a pyramidal

representation which allows us to refine the region boundaries from a coarse

to a fine resolution, and ensuring noise robustness as well as computation

efficiency.

3. Texture segmentation. The strategy for image segmentation has been ex-

tended to the problem of unsupervised texture segmentation, which involves

the region modelling considering a set of texture descriptors and the extraction

of texture boundary information.

4. Colour texture segmentation. A technique for the combination of colour

and textural properties has been proposed. The colour behaviour is described

by using non-parametric techniques of density estimation, and is then inte-

grated with typical texture descriptors. Hence, proposed strategy of segmen-

tation is considered for the segmentation taking both colour and textural prop-

erties into account.
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5. Comparison of integration strategies. Our proposal of image segmenta-

tion strategy has been objectively evaluated and then compared with different

algorithms corresponding to the identified strategies of region and boundary

integration.

6.2 Future work

The design of an image segmentation system involves the consideration of a wide

set of questions. In addition to the different solutions which have been adopted

and described in this thesis, a lot of ideas have been proposed, discussed and finally

rejected along this thesis work. On the other hand, other questions have remained

as undeveloped ideas, which need to be further analysed and worked in depth, and

we suggest them as future work.

In order to conveniently organise these ideas of future, we have divided them

into two basic blocks. The first one is composed of some possible improvements

which can be analysed in order to refine the proposed segmentation strategy. The

second block suggests some ideas of further work to be considered as future lines of

research.

Further work on the proposed segmentation strategy

• Dynamic behaviour of the region-boundary weighting. Region and

boundary information are combined together in the energy function using a

weighted sum. Therefore, a weighting parameter indicates the relative rele-

vance of both terms along the segmentation process. Although the experimen-

tal results have shown that the proposed algorithm is quite robust to changes

of this parameter it is obvious that the final segmentation result depends on

this value. The dynamic adaption of the weight of region and boundary infor-

mation to the characteristics of the image would solve this problem and has

to be analysed.

• Improvement of the computational cost of the optimisation process.

The cost of the optimisation process which looks for the partition of the image
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which best fits with the desired properties of the final segmentation largely de-

pends on the size of the input data. In other words, the cost is higher at higher

resolutions of the image. The pyramidal representation which has been used

in this work allows to considerably reduce the cost of the algorithm. However,

it would be interesting to study the modification of the model to dynamically

adapt its resolution depending on its position in the image. When the active

region is inside a region the optimisation could be coarse (the active region

moves quickly), while a finer optimisation is needed close to the boundaries

(the active regions moves slowly looking for the best segmentation). With

this technique, the complexity of the model would be made significantly more

independent on the image resolution.

• Methods for density estimation. Although the kernel estimation is prob-

ably the most popular non-parametric method of density estimation, other

several nonparametric techniques are available in the literature: multivariate

histogram, the nearest neighbour method, the variable kernel method, etc...

These techniques should be tested in order to compare its performance.

• Texture features. As has been denoted, there are different texture analysis

techniques which allow the extraction of texture information from an image,

and the results of comparing the different types of features have been non-

conclusive and it is not clear which method is the best. Hence, other texture

features should be considered and compared in the integration with colour

properties. Furthermore, techniques which extract textural information from

chromatic bands together should be analysed in order to test its performance

to describe colour texture.

• Automatic determination of smoothing level for colour textures. In

order to perceive textures as regions with homogeneous colour, of similar way

as we would see them if we were far away, an iterative process of smoothing is

performed. Therefore, starting from the original image it is blurred until, at

the end of this process, the image is composed by homogenous colours. The

number of smoothing operations has been experimentally fixed in this work.

Hence, the automatic determination of the smoothing level should be studied

in order to stop this process when the image looks homogeneous and additional
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smoothing is not required and moreover should be avoided.

• Adaptation to smooth transitions. Properties of a region can be not

always strictly homogeneous in the whole region. Besides, smooth transitions

inside a same region imply changes in its colour and/or texture, which is then

not uniform in all the region. The adaption of the region model to these

changes should be studied in order to adjust the model to the current region’s

area.

Further work on research line

• Use of Artificial Intelligence techniques in the optimisation process.

The region competition algorithm which has been used and lightly adapted

to our necessities tries to find the best segmentation optimising an energy

function. Although its performance has been demonstrated, it presents some

limitations: for example, it allows to merge two adjacent regions into a single

one, but it is not possible to split a region into two or more parts. Moreover,

the solution is not guaranteed to be optimal. Precisely, the most recent work

of Tu et al. [196, 197] has been focused to solve these problems dealing the seg-

mentation as a problem of search space using artificial intelligence techniques.

A lot of techniques have been proposed in the field of the Artificial Intelligence

with the aim of optimising a function and we think that their application to

image segmentation is an interesting idea which can apport new possibilities.

• Returning multiple solutions. Traditionally, the goal of image segmenta-

tion has been to produce a single partition of an image. However, it is gen-

erally accepted the complexity inherent to segmentation that, in addition, is

basic as prerequisite of high-level vision algorithms such as object description,

recognition or scene analysis. An alternative is allowing that the segmenta-

tion process returns a set of possible solutions to the segmentation problem,

along with a associated probability for each segmentation as in the work of

Nickels and Hutchinson [137]. Thus, it is possible, for example, to enumerate

the most probable segmentations, which provides more information than the

typical approach, in which only a single segmentation is given. Furthermore,
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this set of results can be passed to higher-level algorithms, which taking their

goals and knowledge into account, are more able to interpret the segmentation

results.

• Extension to tracking. Tracking can be defined as the following of an object,

which is moving, along a sequence of images. The segmentation framework

proposed in this thesis can be extended to deal with the tracking problem

incorporating motion as new information source to guide the optimisation

process. Then, the active region would be initialised from the segmentation

of previous image and taking region, boundary and motion information into

account, the optimisation process would allow to follow the movement of the

region along the sequence of images.

• Imitation of the Human Vision System. The aim of most of the Com-

puter Vision Systems is to mimic the extraordinary behaviour of the human

vision, although obviously, they are still far away from this goal so far. In this

thesis we have adopted some solutions which are close to the human behaviour,

more concretely related to the perception of colour objects when a person is

slowly approaching to them. Furthermore, we think that this subject could

be exploited in major depth considering the perception of colour and texture

at different distances, which can provide more and useful information for the

segmentation process.

• Adaption to supervised image segmentation. Although recent image

segmentation algorithms provide excellent results, it is obvious that the seg-

mentation of an image without any a priori knowledge is a really difficult task

which sometimes fails to capture some meaningful parts. Moreover, evidence

from human vision indicates that high-level knowledge play a crucial role in the

ability to segment images in a meaningful manner suggesting that the incor-

poration of such methods would help to improve the results of computer vision

segmentation algorithms. Hence, a logical extension of this thesis is to consider

the image segmentation problem using a supervised approach. Thus, the sys-

tem could incorporate a previous stage in which it would be taught about the

objects which can be present in the image. Furthermore, this knowledge would

permit to select, a priori to the segmentation, the best features (colour and
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texture), which allow to characterise and discriminate the different objects, by

using techniques of feature selection.

• Applications: image retrieval, medical applications, underwater im-

age analysis... Finally, the proposed segmentation strategy can be used in

different Computer Vision applications. Image segmentation is incorporated

as a basic step on recent image retrieval systems in order to automatically

describe the content of an image taking the meaningful regions of the image

and their spatial relationships into account. The segmentation has the same

relevant role in several medical applications in which the location and/or iden-

tification of regions of interest is required. Furthermore, its incorporation in

mobile robots, as for example underwater vehicles, can be very useful in order

to improve its autonomy and applications.
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Spain, May 2001.
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Appendix A

Texture Features

Some of the most popular texture extraction methods based on a statistical approach

are reviewed in this appendix. An introduction to the different techniques is given.

Moreover, some results which have been obtained for our implementations are shown.

Finally, conclusions derived from other authors’s comparative studies are contrasted

and discussed.

A.1 Introduction

Before either texture segmentation or classification can take place, some homogene-

ity or similarity criterion must be defined. These criteria are normally specified

in terms of a set of feature measures, which each provide a quantitative measure

of a certain texture characteristic. Haralick provided the classic survey of texture

measures [80]. In this work, a number of texture extraction methods are listed and

divided into two basic types: structural and statistical. This same basic classifi-

cation has been posteriorly adopted by other authors (see works of Al-Janobi [5],

Grau [77], Van Gool et al. [199], Wechsler [208]).

In the structural methods, texture is considered as the repetition of some basic

primitive patterns with a certain rules of placement, which are formally defined

by grammars of various types. Nevertheless, since natural textures are not very

regular, the structural techniques are not very popular at this moment [206]. On the

177
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other hand, statistical methods are based on the characterisation of the stochastic

properties of the spatial distribution of grey levels in the image.

We focus next brief survey on statistical methods. However, we do not provide

an exhaustive analysis of all texture measures, rather some of the most popular

techniques are reviewed.

A.2 Laws’s Texture Energy Filters

With the main desire to produce a computationally efficient method, Laws developed

a coherent set of texture energy masks [110]. All the masks were derived form three

simple one-dimensional non-recursive filters, which may be convolved with each other

to give a variety of one and two-dimensional filters. The characterisation is carried

out in two steps: firstly, the image is convolved with the set of masks of small size;

secondly, statistics are created from previous convolutions.

Texture energy masks were designed to act as filters of comparison (matched fil-

ters) for specific kind of variations almost-periodic which are often found in textured

images. Typically, these masks have size 7 × 7 or smaller, and try to be sensitive

to structures such as edges, waves and spots. Laws found the most useful to be a

set of seven bandpass and highpass directional filters, implemented as 5 × 5 masks.

Four of these masks with the best discrimination power for mosaic used by Laws are

shown in Figure A.1.

In a second step, with the convolution results a set of statistics are measured,

which consist of a moving window calculation of variance of larger size. Specifically,

Laws used 15 × 15 windows, as a compromise between classification accuracy and

computational cost. Furthermore, considering computational cost Laws proposed

three alternatives to the calculation of standard deviation: a weighing with absolute

values of the convolution (ABSAVE), with positive values (POSAVE) and with

negative values (NEGAVE). ABSAVE, which for areas with mean equal to zero can

be considered as a fast approximation to standard deviation, gave the best results.

Some examples of texture features obtained using the texture energy masks are

shown in Figure A.2. In this the method has been applied over the mosaic image

M2 (see Figure 5.7), which will be used as original image in next examples to show
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Figure A.1: Texture energy masks by Laws.

the performance of reviewed techniques.

A.3 Co-occurrence matrix

Grey-level co-occurrence matrices (GLCM) are essentially two-dimensional histograms

of the occurrence of pairs of grey-levels for a given displacement vector. Formally,

the co-occurrence of grey levels can be specified as a matrix of relative frequencies

Pij, in which two pixels separated by a distance d are in the image, one with gray

level i and the other with gray level j. Such GLCM depend on the angular rela-

tionship between neighbouring pixels as well as on the distance between them. By

using a distance of one pixel and angles quantized to 45◦ intervals, four matrices of

horizontal, first diagonal, vertical, and second diagonal (0◦, 45◦, 90◦, 135◦) are used.

The GLCM are not generally used as features, rather a large number of textural

features derived from the matrix have been proposed starting with the original

fourteen features described by Haralick et al. [81]. Moreover, many researchers

have used Haralick’s co-occurrence based features [46, 59, 211]. The most popular

features include Contrast, Homogeneity, Correlation, Inverse Difference Moment,
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(a) (b) (c)

Figure A.2: Texture features obtained by using texture energy masks proposed by

Laws. (a) ABSAVE of mask L5S5, (b) POSAVE of mask E5S5, (c) NEGAVE of

mask R5R5.

and Entropy, with small displacement vectors. Some examples of feature extraction

are shown in Figure A.3.

The main drawback of this technique is the dependence of parameters used. The

number of matrices in order to obtain good texture features is related to the angle

and distance used, and this number can be potentially enormous. In that sense,

Zucker [231] used a χ2 test of independence for co-occurrence feature selection based

on the assumption that the pairs of pixels would be independent of one another if

the distance vector did not coincide with the structure of the texture.

A.4 Random Fields Models

A number of random field models have been used for modelling and synthesis of

texture. If a model is shown to be capable of representing and synthesising a range

of textures, then its parameters may provide a suitable feature set for classification

and/or segmentation of the textures. Popular random field models include fractals,

autoregressive models and Markov random fields. An extensive review of these

approaches may be found in [3, 160].

We focus this review on Markov Random Fields (MRF), which are a two-dimensional

generalisation of Markov chains defined in terms of conditional properties. The con-
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(a) (b) (c)

Figure A.3: Texture features obtained by using the co-occurrence matrix. (a) Ho-

mogeneity in a window 7× 7 with distance 1 and angle 0◦, (b) contrast in a window

7 × 7 with distance 1 and angle 0◦, (c) contrast in a window 7 × 7 with distance 1

and angle 90◦.

ditional probabilities are the same throughout the chain (or field) and are dependent

only on a variable’s neighbourhood. The size and form of the neighbourhoods are

defined by the order of the model. Figure A.4 shows the first, second, third, and

fourth order neighbourhoods of the pixel j. The first order neighbourhood consists

of the variables labelled with a “1”, the second order consists of all “1”s and “2”s,

and so on.

4 3 4

4 2 1 2 4

3 1 j 1 3

4 2 1 2 4

4 3 4

Figure A.4: Markov random field neighbourhoods.

A very popular model is the Gaussian Markov Random Field (GMRF), in which

grey levels of a texture are assumed to follow a Gaussian distribution. whose mean is

lineal combination of neighbouring grey levels and its variance is a proper constant

of the texture [174]. Let the neighbourhood be defined by the set N where each

element is a pixel location relative to the current pixel s = (i, j) e.g (0, 1) indicates
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Figure A.5: Texture features obtained by using the Gaussian Markov Random Field

model. Estimated coefficients of the model are used as texture features.

image pixel (i, j + 1). Pixels in the image are then assumed to be related by

I(s) =
∑
rεN

θrI(s + r) + e(s) (A.1)

The model parameters can be obtained by estimating coefficients θr over each

valid position in the image using a Least Square method as is detailed in the work

of Chellappa and Chaterjee [36]. Figure A.5 shows some coefficients estimated con-

sidering a second order model.

A.5 Frequency Domain Methods

Some authors argue that many naturally occurring textures exhibit a combination

of regularity, such as approximate periodicity and variation, which is hard to model

using straightforward repetition or traditional statistical techniques. Hence, features

related to the local spectrum have been proposed in the literature and used for the

purpose of texture classification and/or segmentation.

In most of these studies the relation to the local spectrum is established through

features which are obtained by filtering with a set of two-dimensional Gabor filters to

highlight sections of two-dimensional spectra. Such a filter is linear and local, and

is characterised by a preferred orientation and preferred spatial frequency, which

cover appropriately the spatial frequency domain. Roughly speaking, it acts as
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ϕoN

ϕo1

ϕo2

σϕ

Figure A.6: A set of polar-separable Gabor filters covers the spectral halfplane like

a rosette.

a local band-pass filter with certain optimal joint localisation properties in both

the spatial domain and the spatial frequency domain [51]. The output is a set of

images (one for each filter) that retain spatial information, and can therefore be

used for segmentation purposes. Furthermore, Gabor filters are popular because

the Human Vision System is also thought to employ similar banks of directional

bandpass filters [98].

A set of polar-separable Gaussian filers can be defined, which subdivides the

spatial-spectral half plane into M frequency and N orientation bands:

Gm,n(f, ϕ) = exp

(−(f − fom)2

2σ2
fm

)
× exp

(−(ϕ − ϕon)2

2σ2
ϕ

)
(A.2)

with 1 ≤ m ≤ M and 1 ≤ n ≤ N . This decomposition results in a rosette like

filter configuration, see Figure A.5, if the frequency bands are organized in octave

steps.

In general, methods use the amplitude as source to extract texture features from a

Gabor filter’s approach. Moreover, despite of the recognized importance of the phase

information in human perception (see works of Openheim and Lim [141] and Behar

et al. [13]) the role that the local phase spectrum can play in texture analysis has

not been considered enough. In that sense, Du Buf and Heitktamper [58] proposed
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(a) (b) (c)

Figure A.7: Texture features obtained by using Gabor filters. (a) Square output

value with filter 5/4, (b) complexity of the output value with filter 5/2, (c) density

of zero points with filter 5/1.

a set of direct features of a phase image, such as the densities of isolated zero points,

discontinuities and zero contours. Figure A.7 shows some results of texture feature

extraction from amplitude and phase information. Let us use the notation 3/2, for

example, to indicate the Gabor filter used: m=3 and n=2. More details of these

experimental trials can be found in [134].

A.6 Perceptive Texture Features

Tamura et al. [188] proposed in 1978 a set of 6 features of texture which correspond to

the human perception. These six parameters are: thickness, contrast, directionality,

straightness, regularity and roughness. The aim was to define a set of features closely

related to the way we human perceive the texture.

Grau et al. [29, 76] developed an image segmentation system which uses a set

of perceptive texture features. As is stated by the author, the perceptible nature

of the texture parameters allow one to compute their value with masks created in

a perceptible manner too. These masks are local boolean expressions (template

matching maks) which are applied over each pixel in the image. Moreover, due

to the masks, there is a predisposition for a hardware implementation to find the

texture parameters. The definition of the parameters are as follows:
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(a) (b) (c)

Figure A.8: Perceptive texture features obtained by using the proposal of Grau [76].

(a) Abruptness, (b) discontinuity, (c) straightness.

1. Straightness. This parameter indicates the straight line density over a region,

and it is derived from the linear regression model.

2. Blurriness. The blurriness is a visual effect where a progressive and slow gray

level increasing or decreasing along an image area is noticed.

3. Abruptness. This parameter indicates sudden changes in the directionality of

the texture.

4. Granularity. This value will indicates how many elements in the image are

isolated or non-concatenated.

5. Discontinuity. This parameter measures the density of cut edges in the image.

The size of the masks used to calculate the parameters is 4-by-4 elements. A

bigger size will generate a large amount of masks for each parameter and the cost

in time will be excessive. A smaller size of the masks is contradictory with the

own definition of the parameters. Some examples of features extracted with this

technique are shown in Figure A.8. The value of each pixel is related to the density

of the measured perceptive texture feature on a neighbourhood of 7 × 7.
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A.7 Texture Spectrum

The Texture Spectrum (TS) has been introduced and described in detail by Wang

and He [205]. The basic concept is that a texture image can be decomposed into

a set of essential small units called texture units. A texture unit is represented by

eight elements, each of which has one of three possible values (0, 1, 2) obtained from

a neighbourhood of 3 × 3.

Given a neighbourhood of 3 × 3 pixels denoted by a set containing nine ele-

ments: V = V0, V 1, . . . , V8, where V0 represents the intensity value of the central

pixel and V 1, . . . , V8 are the intensity values of the neighbouring pixels. Then the

corresponding texture unit can be represented as a set containing the elements,

TU = {E1, E2, . . . , E8}. The following formula can be used to determine the ele-

ments, Ei of the texture unit:

Ei =




0 if Vi < V0

1 if Vi = V0 for i = 1, 2, . . . , 8

2 if Vi > V0

(A.3)

and the element Ei occupies the same position as the pixel i. As each elements

of texture unit has one of three values, the combination of all eight elements results

in 38 = 6561 possible texture units in total. These texture units are labelled by

using the formula

NTU =
8∑

i=1

Ei3
i−1 (A.4)

where NTU is the texture unit number.

From this work, a bi-level version has been proposed by Ojala et al. [139, 140],

which is referred to as local binary patterns (LBP). The original 3×3 neighbourhood

(Figure A.9.a) is thresholded by the value of the central pixel. The values of the

pixels in the thresholded neighbourhood (Figure A.9.b) are then multiplied by the

binomial weights given to the corresponding pixels (Figure A.9.c) and obtained

values (Figure A.9.d) are summed for the LBP number of this texture unit. By

definition, LBP describes the spatial structure of the local texture, but it does not
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address the contrast of the texture. For this purpose authors combine LBP with a

simple contrast measure C, which is the difference between the average gray level

of those pixels which have value 1 and those which have value 0.

6 5 2

7 6 1

9 3 7

1 0 0

1 0

1 0 1

1 2 4

8 16

32 64 128

1 0 0

8 0

32 0 128

(a) (b)

(c) (d)

LBP = 1+8+32+128 = 169

C = (6+7+9+7)/4 – (5+2+1+3)/4 = 169

Figure A.9: Computation of local binary pattern (LBP) and contrast measure C.

Some results of texture feature extraction using the proposal of Ojala et al. [139,

140] are shown in Figure A.10.

A.8 Comparative Studies

In addition to the proposal of different techniques, researchers have also attempted

to carry out comparative studies to evaluate the performance of textural features.

Weszka et al. [211] compared features derived from GLCMs on terrain images

and found that the co-occurrence features obtained the best result. Moreover, a the-

oretical comparison of four types of texture measures that Weszka et al. investigated

was reported by Conners and Harlow [46]. They measured the amount of texture-

context information contained in the intermediate matrices of each algorithm, and

their conclusions were similar to those obtained by Weszka et al. The ability of seven

types of feature measure (computed in a 7 × 7 mask) to segment a set of synthetic
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(a) (b)

Figure A.10: Texture features by using the proposal of Ojala et al. [139, 140].

(a) LBP number, (b) contrast.

test textures was tested by Du Buf et al. [59]. They concluded that co-occurrence

and Laws gave among the best results. Similarly, Ohanian and Dubes [138] com-

pared and evaluated textural features derived from GLCMs, discrete MRFs, Gabor

multi-channel filters, and fractal geometry and found that the co-occurrence fea-

tures performed best followed by the fractal features. Work o Strand and Taxt [186]

compared co-occurrence based features to filtering features, and former technique

was found better.

On the other hand, He and Wang [84] compared the features derived from the

TS with the features from the GLCM on airborne synthetic aperture radar (SAR)

images and found that the features from TS showed better discriminating power than

the co-occurrence features. However, Ojala et al. [140] compared a range of texture

methods using nearest neighbour classifiers including grey level difference method,

Law’s measures, center-symmetric covariance measures and LBP applying them to

Brodatz images. The best performance was achieved for the grey level difference

method. In 1998, Tang [191] demonstrated that textural features extracted from

run-length matrices performed comparably well with the co-occurrence features and

better than the wavelet features.

Focusing on frequency domain methods, Pichler et al [156] compared wavelet

transforms with adaptive Gabor filtering feature extraction and reported superior

result using Gabor technique, although its higher computational cost was also stated.
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A classification and comparison of different techniques used to produce texture fea-

tures using Gabor filters is presented in the work of Clausi and Ed Jernigan [43].

Overall, using the Gabor filter magnitude response given a frequency bandwidth of

one octave and orientation bandwidth of 30◦ augmented by a measure of the texture

complexity generated preferred results.

Summarizing, the results of comparing the relative merits of the different types

of features have been nonconclusive and a clear winner has not emerged in all

cases [159]. Comparative works result in different, and sometimes contradictory,

conclusions. The reason can be found in the use of different test images and evalu-

ation methods, as well as some aspects related to code implementation.
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Robòtica i Percepció, pages 197–210, 1996.
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