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Chapter 1

Introduction

1.1 Describing the interest of this thesis

The human visual ability to perceive depth looks like a puzzle. We perceive
three-dimensional spatial information quickly and efficiently by using the
binocular stereopsis of our eyes and, what is more important, the learning
of the most common objects which we achieved through living. Nowadays,
modelling the behaviour of our brain is a fiction, that is why the huge problem
of 3D perception and further interpretation is split into a sequence of easier
problems. A lot of research is involved in robot vision in order to obtain
3D information of the surrounded scene. Most of this research is based on
modelling the stereopsis of humans by using two cameras as if they were two
eyes. This method is known as stereo vision and has been widely studied in
the past and is being studied at present, and a lot of work will be surely done
in the future. This fact allows us to affirm that this topic is one of the most
interesting ones in computer vision.

The stereo vision principle is based on obtaining the three dimensional
position of an object point from the position of its projective points in both
camera image planes. However, before inferring 3D information, the math-
ematical models of both cameras have to be known. This step is known as
camera calibration and will be broadly described in the following chapter.
Perhaps the most important problem in stereo vision is the determination of
the pair of homologue points in the two images, known as the correspondence
problem, and it is also one of the most difficult problems to be solved which
is currently investigated by a lot of researchers. The epipolar geometry al-
lows us to reduce the correspondence problem. An approach to the epipolar
geometry is described in chapter 3. Nevertheless, it does not solve it at all
as a lot of considerations have to be taken into account. As an exemple we

14



CHAPTER 1. INTRODUCTION 15

have to consider points without correspondence due to a surface occlusion or
simply due to a projection out of the camera scope.

The interest of this thesis is focused on structured light which has been
considered as one of the most frequently used techniques in order to reduce
the problems related to stereo vision. Structured light is based on the rela-
tionship between a projected light pattern its projection and an image sensor.
The deformations between the pattern projected into the scene and the one
captured by the camera, permits to obtain three dimensional information of
the illuminated scene. This technique has been widely used in such applica-
tions as: 3D object reconstruction, robot navigation, quality control, and so
on. Although the projection of regular patterns solve the problem of points
without match, it does not solve the problem of multiple matching, which
leads us to use hard computing algorithms in order to search the correct
matches.

In recent years, another structured light technique has increased in im-
portance. This technique is based on the codification of the light projected
on the scene in order to be used as a tool to obtain an unique match. Each
token of light projected on the scene carries a label indicating from which
position in the projector frame it comes. When the token is imaged by the
camera, we have to read the label (decode the pattern) in order to solve the
correspondence problem. The advantages and disadvantages of stereo vision
against structured light and a survey on coded structured light are related in
chapter 4. The work carried out in the frame of this thesis has permitted to
present a new coded structured light pattern which solves the correspondence
problem uniquely and robustly. Unique, as each token of light is coded by
a different word which removes the problem of multiple matching. Robust,
since the pattern has been coded using the position of each token of light
with respect to both co-ordinate axis X and Y. Algorithms and experimen-
tal results are included in the thesis. The reader can see examples of 3D
measurement of static objects, and the more complicated measurement of
moving objects. The technique can be used in both cases as the pattern is
coded by a single projection shot. Then it can be used in several applications
of robot vision.

Our interest is focused on the mathematical study of the camera and pat-
tern projector models. We are also interested in how these models can be
obtained by calibration, and how they can be used to obtained three dimen-
sional information from two correspondence points. Furthermore, we have
studied structured light and coded structured light, and we have presented a
new coded structured light pattern. However, in this thesis we started from
the assumption that the correspondence points could be well-segmented from
the captured image. Computer vision constitutes a huge problem and a lot
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of work is being done at all levels of human vision modelling, starting from
a) image acquisition; b) further image enhancement, filtering and processing,
c¢) image segmentation which involves thresholding, thinning, contour detec-
tion, texture and colour analysis, and so on. The interest of this thesis starts
in the next step, usually known as depth perception or 3D measurement. So,
we did not take into account the lower levels.

1.2 Schema of the thesis

This thesis is focused on the study of structured light and, in particular, on
how light can be coded in order to solve the correspondence problem. Fur-
thermore, a new coded structured light pattern is presented, which permits
a reconstruction of static and moving objects. The system can be used as a
sensor allowing us to measure 3D dynamic scenes.

In chapter 2 the reader is engaged in the study of camera and pattern
calibration. The chapter describes the intrinsic parameters which model
the optical characteristics and the internal geometry of the sensor, and the
extrinsic parameters which model the position and orientation of the sensor
with respect to a world co-ordinated system. Furthermore, two algorithms of
camera calibration are described in detail. The first one is based on a linear
calibration, that is without considering lens distortion. The second one is
based on a non-linear calibration of a whole camera model, including lens
distortion which leads to a function minimization by iteration. Finally, the
way how 3D information of an object point can be obtained knowing only
its two correspondence points is described.

Chapter 3 deals with the study of the fundamental matrix. The funda-
mental matrix is computed by the relationship between two pinhole models,
and includes the intrinsic parameters of both pinhole models and the relative
position and orientation from one to the other. This matrix has been widely
used in order to obtain the epipolar geometry of the system that simplifies
considerably the search of the correspondence points.

Chapter 4 is focused on the study of structured light. Structured light
reduces considerably the problem of matching, present in stereo vision sys-
tems. However, the projection of regular patterns does not solve the problem
of multiple matching. The correspondence problem can be solved by coding
the light projected on the scene. That is, each token of light projected on
the scene carries with it a label indicating where it comes from. When the
token is imaged by the camera we only have to read the label to solve the cor-
respondence problem. This chapter surveys the most interesting techniques
based on coded structured light projection.



CHAPTER 1. INTRODUCTION 17

Chapter 5 presents a new coded structured light pattern. The pattern
is uniquely coded and consequently it is more robust than periodical cod-
ing, and it is coded with respect to both co-ordinate axes. This double
coding has been demonstrated to be more accurate than single axe codifica-
tion. Calibration is explained and the intrinsic and extrinsic parameters are
shown. Furtermore, some experimental examples of 3D object measurement
are shown and discussed.

Finally, chapter 6 presents the conclusions of the thesis. Further work is
also included in some subjects where the research of this thesis can continue.



Chapter 2

Calibration

Inferring three dimensional information leads us to a previous step of system
calibration. This chapter describes the two majors matters of calibration.
First, how the model of a system is defined by a set of parameters in order to
approzimate the physical behaviour of the system to a geometrical one. Sec-
ondly, how these parameters are obtained by means of a calibration algorithm.
Finally, the chapter will describe how 3D reconstruction can be achieved by
means of the relationship between two calibrated models.

2.1 Considerations

Since our 3D imaging system is based on a camera sensor and a pattern
projector system, two different sets of parameters have to be computed by
calibration. Firstly, we have to define the model of a camera sensor and,
secondly, the model of the pattern projector system. However, note that,
both devices are defined using the same model. That is, the camera and
the projector pattern are based both on the pinhole principle. Then, the
whole chapter will be focused on the major effort of modelling and calibrat-
ing a camera. The reader might note that all the mathematical equations
introduced in this chapter are also used to model and calibrate the pattern
projector system.

2.2 Modelling a camera

Modelling a camera is based on the definition of the set of parameters that
approximate the behaviour of the physical sensor to a geometrical model,
known as the pinhole model [Faug 93] [Ayac 91b]. The geometrical model
of the pinhole consists of a plane II called the retinal plane in which the

18
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Retina plane

Focal plane

Retinal plane

Figure 2.1: The camera co-ordinate system with respect to a world co-
ordinate system.

image is formed through a perspective projection. A point C' is placed at
a fixed distance from the retinal plane. This point is known as the optical
centre (also focal point) and it is defined as the pinhole through where some
of the light beams reflected by the object pass, forming a perspective image
of the scene in the retinal plane. At this point, two considerations must be
taken into account. Of course, the optical centre can be placed in front of
or behind the camera (see figure 2.1). In the first case, a projective inverted
image of the scene is formed in the retinal plane. In the second one, a single
projective image is presented. This section describes the model of a camera
sensor with a back-placed optical centre. However, it will be shown that both
camera configurations are modelled by the same parameters but considering
a different sign of the focal distance.

There are two kinds of parameter sets which model the given camera as
a pinhole model [Beye 92] [Ito 91]. One is the intrinsic parameter set, as the
pinhole point, which models the internal geometry and optical characteris-
tics of the image sensor. The other is the extrinsic parameter set, which
models the position and orientation of the sensor with respect to the world
co-ordinate system.

The intrinsic parameter set contains: a) the focal distance f, which is
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the distance (in mm.) from the retinal plane II to the optical centre C; b)
the conversion parameters k, and k, which relate the horizontal and vertical
adjustment to go from the camera co-ordinate system (in mm.) located in
the retinal plane to the image co-ordinate system located in the image plane
and expressed in pixels; and c) the position (ug, vp) of the principal point
(also image centre) defined by the projection of the principal point C' on the
image plane, expressed in pixels.

The extrinsic parameters set defines the relation between the camera co-
ordinate system located on the retinal plane with respect to the world co-
ordinate system located at any point in the scene. This relationship is defined
by the position and the orientation of the camera co-ordinate system with
respect to the world co-ordinate system. The position is given by a 3x1
translation vector 7" and the orientation is given by the 3x3 rotation matrix
R.

Then, up to 11 parameters have to be used to model the camera sensor.
This section goes through each parameter in order to obtain the mathematical
equations which relate an object point with its projective point. Finally, this
linear relationship will be modelled by a 3x4 transformation matrix. However,
as a result of some types of imperfections in the design and assembly of the
lens composing the optical system, a linear relationship does not hold true.
These kinds of imperfections, known as lens distortion, will be discussed.
The non-linear mathematical relation between both points is also presented.

2.2.1 The Extrinsic Parameters

The surface points of the scene are referred to a world co-ordinate system,
with an origin O,,, and co-ordinate axis (X, Yi, Zy). Given an object point
P, this point is expressed with respect to O, that is with the co-ordinates
(P4, Pyy, Pz,). Consider a second co-ordinate system, with an origin C' =
O,, and co-ordinate axis (X, Y., Z.), placed in the optical centre of the
camera sensor as shown in figure 2.2.

This geometrical relationship permits to define which are the extrinsic
parameters of the model, as these parameters will determine the position
and orientation of the camera co-ordinate system with respect to the world
co-ordinate system. The position of the optical centre O, = C' with respect
to O, is given by the translation vector T shown in equation 2.1.

T=|ty (2.1)

The orientation of the co-ordinate axis of the camera with respect to the
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Figure 2.2: Geometric relatioship between the camera co-ordinate system

and the world co-ordinate system.

world co-ordinate system is given by a 3x3 rotation matrix R. The rotation
matrix can be obtained by the matrix product of three single axe rotations.
A rotation of ¢ degrees around an axe > will be expressed as Rot (s, ¢).
Then, three single axe rotations can be expressed as shown by the following

equations.
1 0 0
Rot(X,¢p,) = | 0 ch, —so,
_0 S¢x c¢w _
co, 0 s9,
Rot(Y,qﬁy) = 0 1 0
L _3¢y 0 C¢y i
_C¢z _8¢z 0_
Rot(Z,¢.) = | s¢. ch, 0
| 0 0 I

(2.2)

(2.3)

(2.4)

Where c¢ represents the cosinus of the ¢ angle, and s¢ represents the
sinus. In the following, two orientation representations are presented in

order to obtain the rotation matrix R.
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The RPY representation

R = RPY(¢,,¢,,¢,) = Rot(Z,¢,) - Rot(Y, $,) - Rot(X, ¢,) (2.5)

The Euler representation

R = Euler(¢,0,v) = Rot(Z, ¢) - Rot(Y,0) - Rot(Z, ) (2.6)

Both representations are possible. However, only the Euler representation
will be considered. Then the rotation matrix R is represented by the following
matrix.

R = Rot(Z,¢)- Rot(Y,0) - Rot(Z,v) =

copc) — spclhs)  —cpsy — spclc)p  spsh
cpc) + copclsyy  —spsi + copchep  —cpsh (2.7)
s0sy sfcy ct

In order to simplify the representation of the R matrix, it is more inter-
esting to represent the matrix with respect to its three orientation vector r;,
where each orientation vector is made by three components.

rx
R = Ty (28)
rz

Note that, rx, ry and rz represent the orientation of the three axis of the
camera co-ordinate system with respect to the world co-ordinate system. In
the figure 2.3, the relationship of the components of a vector (e.g. X ¢ camera
co-ordinate axe) with respect to the world co-ordinate axe (given by rx), is
shown. Note that any vector could be placed with the origin at the world
co-ordinate system without changing its representation, as all the vectors are
space-free elements.

Then, both co-ordinate systems are related by the following equation,

X, Xu
Y, | =R | Y, |+7T (2.9)
Z, Zs
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Figure 2.3: Relationship between the orientation vectors r; and the camera
co-ordinate frame. The figure shows only the relationship between the rx
vector and the X, axis.

so that, given an object point P, with the components(Px.,, Pyw, Pzw)
with respect to O,, one can compute its representation with respect to O,
with the components (Pxc, Pyc, Pz),

PXc PXw
Prve | =R | Py | +7T (2.10)
PZC PZw

Equation 2.10 is usually espressed by a single matrix relationship with
homgeneous co-ordinates, as shown by equation 2.11 (see also the figure

2.2),
{IHZK HW] (2.11)

_ R3x3 T3;c1
K = { o ] (2.12)

Summarising the section, six extrinsic parameters are obtained in order
to model the translation and orientation of the camera co-ordinate system
with respect to the world co-ordinate system. The six parameters are: the
three components of the translation vector 7' = (tx,ty,tz) and the three
angles (¢, 6,1) which define the rotation matrix R.
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Figure 2.4: Geometrical relationship between a 3D object point and its 2D
image projection.

2.2.2 The Intrinsic Parameters

At this point, the section will focus on the modelling of the intrinsic para-
meters of the camera sensor. That is, it will focus on the determination of
the parameters which model the internal geometry and optical characteris-
tics of the image sensor. The intrinsic camera model will relate a 3D object
point with respect to its observable 2D projection on the image plane. The
3D object point must be expressed with respect to the camera co-ordinate
system, and the 2D image point will be expressed with respect to the image
co-ordinate system, in pixels. The geometrical model that has to be defined
is illustrated in figure 2.4.

The modelling of the intrinsic parameters will be split in four steps:
Ideal projection. Models the projective relationship between a 3D
object point and its 2D imaged point.

Lens distortion. Takes into account the discrepancy between the
ideal 2D point and the observed 2D point.

Pizel adjustment. Transforms the 2D observed point from metric
co-ordinates to pixels.

Principal point. Gives the 2D observed point co-ordinates with
respect to the computer co-ordinate system.
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Figure 2.5: Obtaining the ideal projection from the perspective relation.

Each step is explained in detail hereafter.

Step 1. Modelling the ideal projection

Consider that any optical sensor can be modelled as a pinhole camera. Note
that the camera co-ordinate system has been located at the optical centre
C, with the Z, axe along the optical axis of the image sensor. Consider that
the image plane is located at a distance f from the optical centre C', and it
is parallel to the plane defined by the co-ordinate axis X. and Y,. Starting
from these assumptions, given an object point P referred to O, its ideal
projection P, on the image plane must lie on the line passing through the
object point P and the optical centre C'. In order to obtain the equations
which relate the 2D point P, with respect to P and f, the geometric law
of the perspective relation will be used [Kana 91] [Hara 93]. This relation is
shown in figure 2.5.
Then, the perspective relation is given by the following equations,

Xu o ]DXC

f Py,

Y., Py

— = = 2.13
f Py, (2:13)

So that,
P

X, = f=
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Py,
Y, = < 2.14
5 (2.19)
Which can be expressed in a matricial way applying,
s X, 100 Px.
sY, |=1010 Py, (2.15)
s 00 3 Py,

f
Summarising the step, a single intrinsic parameter has to be considered
in order to model the ideal projection. This parameter is the focal distance

f.

Step 2. Modelling the lens distortion

As a result of some types of imperfections in the design and assembly of the
lens composing the optical system, the linear relationship of the perspective
projection does not hold true [Weng 92]|. These imperfections imply that the
observed projection on the image plane differs from the ideal one defined in
the previous step [Gosh 89]. Then, another two equations which explicitly
take into account the positional error must be introduced, where (X,,Y,) is
the ideal projection and (X, Yy;) are the co-ordinates of the observed point
on the image plane.

X, = X,+D,
Y, = Y;+D, (2.16)

Lens distortion can be modelled by a radial and tangential approximation,
shown in figure 2.6.

Radial distortion: Radial distortion causes an inward or outward displace-
ment of a given image point from its ideal projection. This type of distortion
is mainly caused by flawed radial curvature of the lens. A negative radial
displacement of the image points is referred to as barrel distortion. It causes
outer points to crowd increasingly together and the scale to decrease. A
positive radial displacement is referred to as pincushion distortion. It causes
outer points to spread and the scale to increase. This type of distortion is
strictly symmetric about the optical axis. Figure 2.7 illustrates the effect of
radial distortion.

The displacement given by the radial distortion can be modelled by the
following equations, where r is the radial distance of the observed projection
from the projection of the focal point on the image plane (known as principal
point), and ki, ks, ... are the coefficients of the radial distortion.



CHAPTER 2. CALIBRATION 27

Y,
dr dt
ldel p p, Observed
projection Y position

dr: radial distortion
dt: tangential distortion

Figure 2.6: Radial and tangential distortion.

Figure 2.7: Effect of radial distortion. Solid lines: no distortion; dashed lines:
radial distortion (a: negative, b: positive).
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Figure 2.8: Effect of tangential distortion. Solid lines: no distortion; dashed
lines: tangential distortion.

D.’t = Xd(k'17’2 + k27“4 + )
D, = Yy(kir* + kor* + ...) (2.17)

o= X

Tangential distortion: Tangential distortion is introduced in order to
model the actual optical systems subjected to various degrees of decenter-
ing, that is, the optical centers of the lens elements are not strictly collinear.
These kinds of imperfections arise from imperfections in the lens design and
manufacturing as well as from camera assembly. The effect produced by
tangential distortion is shown in figure 2.8.

Tangential distortion is also modelled by another infinite serie [Weng 92].
However, most of the authors have affirmed that radial distortion is the most
important lens distortion and therefore, it is the only one that has to be
considered. Any more elaborate modelling would not only not give more
accurate results, but also would cause numerical instability in calibration
[Tsai 87].

This section takes only into account the first coefficient k; of radial dis-
tortion, that is the coefficient modelling the major contribution of radial dis-
tortion, which has been considered the widest used model of lens distortion.
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It seems that very little improvement is given modelling more coefficients.
Then, equations 2.17 are simplified, obtaining,

l);C = Xdk17“2
D, = Yikir? (2.18)

o= X

Summarising the step, a single parameter k; as the first coefficient of the
serie which models the radial distortion has to be considered.

Step 3. Modelling the pixel adjustment

This step of camera modelling is based on the transformation of the real
projection on the retinal plane from metric co-ordinates to the co-ordinates
of the computer buffer (image plane) in pixels. The relation of both planes is
shown in figure 2.9. Actually, this transformation is based on a simple scale
adjustment of both axes, shown in equation 2.19. Note that (X, Yy) is the
real projection with lens distortion in metric co-ordinates, and (X, Y}) is the
same point expressed in pixels.

X, = kX4
Y, = kY, (2.19)

Which can be modelled in a matricial way applying the following matricial

equation,
Xp | | ka O X
= Lo 220

Summarising the step, two corrected coefficients have to be modelled,
that is parameters k, and k,.

Step 4. Obtaining the principal point

The principal point (also image centre) is defined as a point (ug,vy) on the
image plane given by the intersection of the optical axis of the camera and the
image plane. That is, the principal point is the projection of the focal point
on the image plane which is given in pixels. The principal point is considered
as the origin of the retinal image plane (X,,Y.), and it has also been used
as the origin for modelling the lens distortion of the camera. However, the
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Figure 2.9: Transformation from metric co-ordinates of the retinal plane to
the pixel co-ordinates of the image plane.

origin of the co-ordinate system in the computer image plane is located at the
north-west corner of the image. Figure 2.10 illustrates this relation. Then, a
translation is needed in order to place the principal point from the corner of
the image to its real location on the image plane. This translation is given by
the values (ug, vg), with respect to each axe of the co-ordinate system. Note
also that the U axe and V' axe of the computer image plane are inverted from
the X, axe and the Y, axe of the retinal image plane.

Given a point (X,,Y),) expressed with respect to the camera co-ordinate
system, the same point will be expressed with respect to the computer image
co-ordinate system using the following equations. The resulting point repre-
sentation is called (Xj, Y;), which is the one observed by the user in pixels on
the image plane of the computer.

Xz' = —Xp+UO
Y, = —Y,+uw (2.21)

Which can be modelled in a matricial way applying the following equation,

X
Xi o —1 0 U p
HINEEIY o
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Figure 2.10: Transformation from the co-ordinate system of the camera image
plane to the co-ordinate system of the computer image buffer.

Summarising the step, the position of the principal point on the image
plane (ug, vo) has to be modelled.

2.2.3 Summary of Camera modelling

This section illustrates graphically the steps of camera modelling in order to
provide a brief summary for the reader. Two different camera models will
be given. Firstly, a camera model without lens distortion which allows us
to express the relation between the 3D object point and the 2D observed
projection using linear equations. Secondly, a camera model with radial lens
distortion, which will be modelled using non-linear equations. Note that the
3D object point is referred to a world co-ordinate system and the observed
2D point on the image plane of the computer is expressed in pixels.

The whole camera model without lens distortion

In order to express the relation between the metric 3D object point referred
to a world co-ordinate system and its observed 2D projection on the computer
image plane, expressed in pixels, the matricial equations will be expanded.
This relation is usually expressed as the product of two matrices. The first
matrix expresses the entire intrinsic parameters of the camera sensor, and the
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(X Yur Zyy) 3D object point with respect to world co-ordinate system

Affine transformation.
Modelled parameters: R, T

(X Yo Z¢) 3D object point with respect to camera co-ordinate system

Perspective transformation.
Modelled parameter: f

(X Y,) Ideal projection on the retinal plane

Pixel adjustment
Modelled parameters: k,,, k,

(X Yp) Redl projection on theimage plane

Adaptation to the computer image buffer
Modelled parameters: ug, v,

(X, Y;) Red projection on theimage plane

Figure 2.11: Modelling a camera without lens distortion.

second one the extrinsic parameters. So that, the intrinsic matrix is obtained
substituting 2.14 into 2.19, and the result into 2.21, obtaining the following

equation,

Px.

Xi = —k'ufP—)Z(C +UO
Py,

Y, = —kof =2+ 0 (2.23)
PZC

which can be expressed in a matricial way as,

s X1 oy 0 ug O ];XC
sYi |=| 0 a, vy O PYC (2.24)
s 0 0 10 Ze
1
where,
Oy = _.fk'u
aw = —Ffky (2.25)

Then, applying 2.11 in order to give the object point with respect to the
world co-ordinate system, the following matricial relation is obtained,
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(X Yur Zyy) 3D object point with respect to world co-ordinate system

Affine transformation.
Modelled parameters: R, T

(Xo Yo Z¢) 3D object point with respect to camera co-ordinate system

Perspective transformation.
Modelled parameter: f

(X Y,) Ideal projection on the retinal plane

Radial lens distortion.
Modelled parameter: k,

(Xg Yq) Redl projection on theretinal plane

Pixel adjustment
Modelled parameters: k,, k,

(XpYp ) Redl projection on theimage plane

Adaptation to the computer image buffer
Modelled parameters: ug, vy

Y (X, Y;) Redl projection on the image plane \

Figure 2.12: Modelling a camera with radial lens distortion.

S Xi a, 0 u 0 ;11 ;12 :13 im ?X’w
sYi | =] 0 a, v9 0 s T Ty Y (2.26)
s 0 0 10 r3; T3z T33 it Pz,
0 0 0 1 1

The whole camera model with radial lens distortion

In this case, a linear relation does not hold true. Actually, the equations
introduced by the modelling of lens distortion does not permit the use of
matrices in order to express the 2D perspective point with respect to the 3D
object point. Thus, computing and arranging the equations presented in the
steps of camera modelling, the following relation is obtained.

PXc

fp- = Xat kir® Xy (2.27)
Zc
PYc 2
fP = Yy + kirYy (2.28)
Zc
where,
X, = (Xi — wo)
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Y. —
Y, = (__kvo) (2.29)
and,
PXc ?Xw
Pro | =[R T]| " (2.30)
Zw
PZC 1

Relation between back and front image plane

Some authors consider that the optical centre C' is modelled in front of the
image plane as shown in figure 2.13. The image plane is placed at a distance
— f of the optical centre, note also that both axes, U and V are inverted with
respect to X, and Y,.. All the mathematical equations introduced in order to
model a camera with the image plane in front of the optical centre are also
valid to model such camera configuration. However, a sign has changed both
as a result of the non-inversion of the U image co-ordinate axe with respect
to the X, retinal axe, and the negative position of the image plane along
the Z, axe. Computing, the same matrix relation shown in equation 2.26 is
valid, but,

ay, = —fky
a = fk, (2.31)

Then, placing the focal point behind or in front of the image plane will
only produce an inversion of the a, parameter.

2.3 Calibrating a camera

Calibration is based on obtaining the intrinsic and extrinsic parameters of the
camera model knowing the components of a set of 3D object points and its
2D projective points. In this section, two calibrating algorithms are shown.
First, a mehod based on matrix computation which permits to obtain the
camera parameters without considering lens distortion. Secondly, a more
generic method based on function minimisation which permits to obtain the
parameters of any camera model, even considering lens distortion.
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Figure 2.13: The geometric relation between a 3D object point and its 2D
projection when the optical centre is located in front of the image plane.

2.3.1 Calibrating the linear model

The linear calibration method is based on obtaining the intrinsic and extrinsic
parameters of a camera which has been modelled without considering lens
distortion [Tosc 87]. Then, the relation between a 3D object point and its 2D
projection is given by the transformation matrix of the equation 2.26. In this
case, calibration is reduced to the computation of this transformation matrix,
which is called A, and the further extraction of the camera parameters from
the obtained matrix [Bort 91] [Bras 95].

When computing the matrix product of equation 2.26, then the following
3x4 transformation matrix is obtained. The matrix can be expressed by three
orientation vectors A; and three translation components A;,.

QT+ Ugrs  auty + ugt, A Ay
A= QT + VoT'3 Oévty + Uotz = AQ A24 (232)
T3 t. Az Az
Note that,
SsU A1 A14 P
Sv = AQ A24 |: 1 :| (233)

S Az Asy



CHAPTER 2. CALIBRATION 36

where P = (Px., Py., Pz.)" is a 3D object point with respect to the world
co-ordinate system, expressed in mm., and (u,v) is its 2D projective point
on the image plane expressed in pixels.

Knowing that the orientation vectors r; are unitarian and orthogonal, and
knowing that the scalar product of two vectors is equal to the multiplication
of their norms with the cosinus of the angle between them, as

0109 = ||v1]] ||v2]| cos a (2.34)

where the norm of a vector is computed by the following equation.

o]l = (02 + 02 + v.5) " (2.35)

Furthermore, it can be affirmed that the orientation vectors keep the
following relation,

t . . .
rir; = 0 i # 7
t _ . .
rir; = 1 1=7
Then, the four intrinsic parameters of the camera (v, v, ug, vg), and

the six extrinsic parameters (ry,rs, 73, ty, ty, t,), can be obtained from 2.32,
as,

ug = A Al vy = Ag Al

o = (A S =) F oy = (Azdf — o)

ry = i (A1 —uoAs) t, = a—lu (A14 — upAsy) (2.36)
ry = - (Ay —woAs)  ty = - (A2s — voAza)

ry = As ty = Az

So, it has been proved that, given the transformation matrix A, which
relates the computer image co-ordinate system, with respect to the world
co-ordinate system, the intrinsic and extrinsic parameters can be obtained.
Then, we have to explain the method used to obtain the transformation
matrix A. 2.33 must be computed in order to express the relation by linear
equations,

A1P + A14 - U(Agp + A34) =0 (237)

and,

AQP + A24 - U(AgP + A34) =0 (238)

These equations may be arranged in the following way,
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Al A14 A3
u=Ltpy_ 3 py 2.39
Tl T A I (2:39)
and
podepyAu Mg (2.40)

A34 A34 A34

which can be related as a clear simplification by,

and

v = TgP + CQ - TQP’U (242)

Where, from the equations 2.36, 2.41 and 2.42, the following equations
are obtained,

T; T t
T, = in -+ iozu Cl = ug + iau
— I3
T =1 t (2.43)
T T
T3 = Pvo+ Foy Co=vo+ Fa

Where each T7, T5 and T3 are three vectors of three components. And C}
and Cy are two single values. So, we can define a new vector X, of eleven
components.

X=|T (2.44)

In order to infer the X vector, it is necessary to obtain a set of couples
of points. Each couple is composed by a metric 3D object point referred to
a world co-ordinate system, and its 2D projective point on the image plane,
expressed in pixels. The set of points has to be representative, i.e. must
present a discrepancy among the 3D object points along the three axis of the
world co-ordinate system, that is they have to be non-coplanar. It has been
demonstrated theorically that at least six non-coplanar points are needed
in order to infer X accurately. That’s because six points describes twelve
equations, and eleven equations is the minimum number of equations that
allow us to obtain the unknowns of X.



CHAPTER 2. CALIBRATION 38

Consider the set of point couples as S = U (P}, (u;,v;)). From the
relation introduced in equation 2.41 and 2.42, two new matrices Q and B
can be defined as,

B=QX (2.45)
then,
Q - 01m3 _Uz'P@‘t Pit 0 1 (246)
and,
U
B = v, (2.47)

Then, the X components can be determined using the following equation,

X =(Q'Q) ' QB (2.48)
To obtain the intrinsic and extrinsic parameters from the values of the X
components, we can use the orientation vector characteristics, of which it is

known that they are unitarian, i.e. their norm is equal to 1. Then, from 2.43
the extrinsic t,. parameter can be obtained. So that, if,

lrs]| =1 (2.49)
then,

1

b=
| T3]

and, the other parameters can be obtained using the relationship between
two orientation vectors in respect of the scalar and the vector product. So,
since it is known that,

vy = |ui]] oz cosa

vy Avy = |lvg]] ||z sin (2.50)

and
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o]l = (02 + 02 + 02) "
then,
riry = 0 i F£ g
rry =1 i=j
riAr; = 1 i #£j
riAr; = 0 1=

The intrinsic parameters can be obtained from,

T}
U = —
175
TyT:
v = —>
| T2l
o - ITATH
leey
o - 17T
T2l
and the extrinsic ones,
T T\ T
r = —|t| 2||t (Tl_ ! 22T2)
17T A T3 75|
|12 ( LT3 )
Te = T Tg——TQ
I3 A T3] 12"
1
rs =
1T
and
| 72]] ( Tszt)
ty, = ———— | C) —
I3 A T3] I T2
12| ( TzT?f)
t, = ———(Cy—
! 175 A T3] |15 I*
1

17|

39

(2.51)

(2.52)
(2.53)
(2.54)

(2.55)

(2.56)
(2.57)

(2.58)

(2.59)

(2.60)

(2.61)
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Note that we can extract the Euler rotation angles applying the equation
2.7 introduced in the section dedicated to the extrinsic parameters. Then
applying the following egalisation,

cpc) — spclsyy  —cpsy — spcbe)  spsh ri1 T2 T13
R = | copc) + copclsp —spsip + copclep —cpsh | = | rop rog Tos
sOsi) sfcy co 31 T3y T33

(2.62)

the ¢, 0 and 1 angles can be computed applying,

¢ = —arctan (T13> (2.63)
723
6 = arccos(rs3) (2.64)
Y = arctan (E) (2.65)
7’32

Algorithm of camera calibration

In the following, the whole algorithm used in the calibration of a linear
camera model is presented. The algorithm has been programmed using the
Matlab® environment.

clear all; close all;
ﬁd = fopen(’set_ of points.prn’,’r’);
= fscanf(fid,’%f’,[5,num_ of couples]);
fclose(ﬁd);
npoints = size(P,2);
P2D = P(1:2,:); P3D = P(3:5
xk = P3D(1,:); yk = P3D(2,:); zk = P3D(3,:);
uk = P2D(1,:); vk = P2D(2,:);

)

A=[;B=1[;
for i =1:npoints,
A = [A; xk(i) yk(i) zk(i) -uk(i)*xk(i) -uk(i)*yk(i) -uk(i)*zk(i) 00 0 1 0;
0 0 0 -vk(i)*xk(i) -vk(i)*yk(i) -vk(i)*zk(i) xk(i) yk(i) zk(i) 0 1]
B = [B ; uk(i); vk(i));
end
X = (inv(A™A))*A*B;
X1 = X(1:3,1); X2 = X(4:6,1)’; X3 = X(7:9,1)’;
C1 = X(10,1); C2 = X(11,1);
NormeX2 = (X2(1,1) * X2(1,1)) + (X2(1,2)*X2(1,2)) + (X2(1,3)*X2(1,3) );
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PV = cross(X1(1,:)",X2(1,:)");

X1TX2T = sum(PV(1)"2+PV(2)"2+PV(3)"2);

PV = cross(X2(1,:)",X3(1,:)");

X2TX3T = sum(PV(1)"2+PV(2)"2+PV(3)~2);

u0 = (X1 * X2’) / NormeX2; vO = (X2 * X3’) / NormeX2;

au = sqrt(X1TX2T) /NormeX2; av = sqrt(X2TX3T) /NormeX2;

rl = (sqrt(NormeX2)/sqrt(X1TX2T)) * (X1-((X1*X2’)/NormeX2)*X2);
r2 = (sqrt(NormeX2) /sqrt(X2TX3T)) * (X3-((X2*X3’) /NormeX2)*X2);
r3 = X2/sqrt(NormeX2);

tx = (sqrt(NormeX2)/sqrt(X1TX2T)) * (C1-((X1*X2")/NormeX2));

ty = (sqrt(NormeX2)/sqrt(X2TX3T)) * (C2-((X2*X3’)/NormeX2));

tz = 1/sqrt(NormeX2);

Tl=]au0u00;0avv00;0010;000 1];

T2 = [ rl tx; r2 ty; r3 tz; 0 0 0 1;

2.3.2 Calibrating the non-linear model

The non-linear calibration of a camera is based on the general principle of
function minimisation which has been widely used in order to obtain a solu-
tion of a non-linear function. Then, this principle can also be used to obtain
the intrinsic and extrinsic parameters of any camera model, even if lens dis-
tortion has been considered. The relation between the 3D object points and
its 2D projective point is a non-linear relation which points us to use an it-
erative method in order to reduce the discrepancy between the observed 2D
projection and the modelled one, iteration by iteration.

The Iterative Approximation Method

The Iterative Approximation Method is an ampliation to n unknowns of the
method of Newton-Raphson to obtain the roots of a function. It has been
widely used over the past decades and is the most widely used standard
optimisation technique. The unknown coefficients are first calculated using
an approximate initial guess of the camera parameter values. Then, the
function is evaluated and the ideal components are obtained. Differences
between the ideal and the real parameters are estimated as the error function.
The calibration procedure is the iterative optimisation of camera parameters
by minimising the error function.

Hereafter will follow a description of the method, and how it has been
oriented to the determination of the camera parameters. If the reader is inter-
ested in the mathematical principle of the method, he is invited to read books
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on Numerical Analysis [Stoe 80]. However, the general principle is the fol-
lowing: Consider a funtion G which depends on m unknowns {z1, o, ..., Tp, }.
Consider that we want to obtain the values of {z1, xs, ..., z,,, } Which solve the
equation G (21, x9, ..., Z;,) = 0 iterating from an initial solution quite close
to the right unknown values. Then, from a determined iteration we can
approximate the next unknowns from the last ones, using equation 2.69.

We know that a closer solution G(X}) of G(X) can be approximated
from G(Xj_1) by 2.66. We know also that the solution we want to find is
the vector X of unknowns which solve 2.67.

G(Xx) = 0 (2.67)
So,
G(Xp1) +J (Xp-1) AX =0 (2.68)

Then, 2.69 must be iterated until the obtained parameters are smaller
than a fixed value ¢, as shows 2.70.

AXy = —J (X 1) G(Xp-1) (2.69)
AXp < € (2.70)

To adapt equation 2.69 to the problem of minimising an equation G of m
unknowns {z1, xs, ..., Ty, },. We suppose having obtained n couples of points
S = U, (P!, (ui,v;)), where P; is a 3D object point and (u;,v;) is its pro-
jective point on the camera image plane. Then the vector of unknowns
{1, 9, ..., }, i.e. the camera parameters, can be obtained in the following
way.

Define G;(Xj_1) as the evaluation of function G using the unknowns
estimated in the k£ — 1 iteration and the point correspondence (P, (u;,v;)).
Define vector G(Xj 1) as it is related in equation 2.71.

G(Xpo1) = (G1(Xpo1), Go(Xi1), ooy Gr(Xi—1))f (2.71)

Then, we can define matrix J(G(X,_1)) as a matrix of partial differentials
of G(X) evaluated with the values of vector X in the iteration k—1, as shown
in 2.72,

J(G1(Xp-1))

JG(Xe ) = | T EX) (2.72)

J(Go(Xe )
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where,

0Gi(Ximr) 0GH(Xel)) — 0GH(Xio)
J(Gi(Xi_1)) = , e 2.73
(Gi( X)) ( 0xy 0xs 0L, ( )
and X is the vector of unknowns as shows 2.74.
X = (21,22, ..., Tpm) (2.74)
then,
AX = (Axy, Az, ..., Axy,) (2.75)
So, equation 2.68 can be expressed as 2.76.
Gl(kal) 221%21161; aGléf:fl) 6018(5::71) Afbl
Gao(X, 1) n %Tl’“‘l Axs 0,1
6Gn& _1) 6Gn& _1)
(2.76)

Then, we can solve each iteration arranging equation 2.76 in the form of
equation 2.69. We will iterate until AXy < e, then, we will have the vector
of unknowns which solve GG. So, if the equation G is the camera model which
permits to obtain a 2D projective point on the image plane from a given 3D
object point, the camera parameters of such a model can be computed.

Note that equation 2.69 must be solved using the pseudo-inverse matrix
as it does not have the same number of rows and columns, so equation 2.69
can be solved using equation 2.77.

AXy = — (JH(Xp 1) (Xp 1)) (X 1) G(Xp 1) (2.77)

The reader is referred to the next section for an introduction of the Mod-
ified Newton-Raphson Method, which imposes a reduction of the error at
each iteration.

The modified Newton-Raphson method

The Newton-Raphson theorem guarantees the convergence of a given function
to a local solution only if the starting solution Xj is chosen sufficiently close
to the desired solution. Then, the Newton-Raphson method may diverge
in some cases. The modified Newton Raphson Method guarantees always
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a reduction of the error in each iteration, i.e. a convergence of the method
[Stoe 80]. However, the reader should note that the method may converge
to an undesired solution, even having a large error.
From the equation 2.69 of the Newton-Raphson method, we know that
the error of each iteration should be computed using equation 2.78,
AXy = —J 7 (Xpo1) G(Xko) (2.78)

However, we have already said that equation 2.78 is not always satisfied,
i.e. the error does not reduce in each iteration, then, equation 2.79 is not
always satisfied.

AXk < AXk_l (279)

The modified Newton-Rapson method proposes to compute the error us-
ing the following equation,

AXyp = -2 (Xpo1) G(Xp—1) (2.80)
then,

Xp=Xp 1 — 27T (X 1) G(Xp 1) (2.81)

Consider the following substitution to simplify the computation:

dp = J7H (Xpo1) G(Xp-1) (2.82)

Then, the computation of the Modified Newton-Rapson method is re-
duced to compute the j variable, i.e. it is reduced to obtain the minimum
ponderation of the Jacobian matrix which reduces the error in each iteration,

j=min{i>0] ||G(Xy —27d)|| < |G(Xx)Il} (2.83)

Il = [ aim) o (2.84)

The Modified Newton-Raphsons algorithm is the following,

where,

1. Fix an initial solution Xj.
2. Iterate,
2.1. Compute G(X}) and J(X}).
2.2. Compute dj.
2.8. Tterate ¢ from 0 up to ||G(Xk — 27"dk)|| < |G(Xk)||-



CHAPTER 2. CALIBRATION 45

24 Compute AXk =271 (Xk—l) G(Xk_l)
2.5. Compute Xk = Xk,1 + A)(].C
3. until AX}, < ¢ is reached.

Algorithm of camera calibration

In the following, the entire algorithm used in the calibration of any camera
model is presented. The algorithm has been programmed using the Maple
V release 4® environment. The example sets forth the programming of a
camera model considering the first coefficient of lens distortion. The initial
solution could be obtained applying the method described in the section
which describes the calibration of a linear camera model and considering no
lens distortion, i.e. k; = 0. The focal distance has been fixed, otherwise
the system is unstable because several combinations of (f,k,,k,) can be
obtained without changing the (a,, a,) values. Actually, the algoritm can be
easily modified to obtain only the (a,, a,) parameters.

> with(linalg):

Dl i

> # Obtaining the camera model

> HHHHHHHHHHHFH I HHHFH A HH

> Rx:=array([[1,0,0,0],[0,cos(t1),sin(t1),0],[0,-sin(t1),cos(t1),0],[0,0,0,1]]);
> Ry:=array([[cos(t2),0,-sin(t2),0],(0,1,0,0],[sin(t2),0,cos(t2),0],]0,0,0,1]]);
> Rz:=array([[cos(t3),sin(t3),0,0],]-sin(t3),cos(t3),0,0],]0,0,1,0],]0,0,0,1]]);
> T:=array([[1,0,0,Tx],[0,1,0,Ty],[0,0,1,Tz],[0,0,0,1]});

> R:=multiply(multiply(Rz,Ry),Rx);

> AA:=multiply(T,R);

> Miarray([per] [yt bl [1]);

> G:=multiply(AA,M);

> X:=G[1,1]; Y:=G[2,1]; Z:=G[3,1];

> Xu:=X*f/Z;

> Yu:=Y*{/Z;

> Xd:=(uk-u0)/ku; Yd:=(vk-v0) /kv;

> Ui=Xu-Xd-k1*(Xd*Xd+Yd*Yd)*Xd;

> Vim Yu YA-KTF(XA*Xd+ Yd*Yd)*Yd;

D i i  a

> # Obtaining the partial derivative

D i i

> dUt1:=diff(U,t1); dVt1:=diff(V,t1);

> dUt2:=diff(U,t2); dVt2:=diff(V,t2);

> dUt3:=diff(U,t3); dVt3:=diff(V t3);
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> dUTx:=diff(U,Tx); dVTx:=diff(V,Tx);
> dUTy:=diff(U,Ty); dVTy:=diff(V,Ty);
> dUTz:=diff(U,Tz); dVTz=diff(V,Tz);
> dUf:=diff(U,f); dVE=diff(V f);

> dUku:=diff(U ku); dVku:=diff(V ku);
> dUkv:=diff(U kv); dVkv:=diff(V kv);
> dUu0:=diff(U,u0); dVu0:=diff(V,u0);
> dUv0:=diff(U,v0); dVv0:=diff(V,v0);
> dUk1:=diff(U,k1); dVk1:=diff(V k1);

Dol i ki

> # Reading the set of points couples

Dol i i

> # Reading the M Matrix from an ASCII file.

> readlib(readdata);

> Pp:=readdata(set_of couples,5);

> P2D:=matrix(rowdim(Pp),2,0):P3D:=matrix(rowdim(Pp),3,0):

> for i from 1 by 1 to rowdim(Pp) do

> P2D|[i,1]:=op(1,0p(i,Pp)): P2D[i,2]:=op(2,0p(i,Pp)):

> P3DJ[i,1]:=op(3,0p(i,Pp)): P3D[i,2]:=op(4,0p(i,Pp)): P3DIi,3]:=op(5,0p(i,Pp)):
> od:

> HHHHHAHAHAHFHHHHFH

> # Initial solution

> HHHHHHHHHHHHHHHHHAH
> PL:=3.141592654;

> vtl:=initial value t1;

> vt2:=initial value t2;

> vt3:=initial value t3;

> vIx:=initial_value Twx;

> vTy:=initial_value_Ty;

> vTz:=initial _value Tz;

> vul:=initial_value_u0;

> vv0:=initial _value_v0;

> vk1:=0;

> vau:=initial _value au;

> vav:=initial_value_ av;

> vfi=fixed value; vku:=vau/vf; vkv:=vav/vf;

> HHAHHHH AR H AT A AT HAA T
> # Minimizing by iterations

> HHHAHH A TR AT A AT AT
> VG:=vector(2*rowdim(Pp),0):

> J:=matrix(2*rowdim(Pp),11,0): VI:=vector(11,0):
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> for j from 1 by 1 while j <= 20 do

> for i from 1 by 1 while i <= rowdim(Pp) do

> vuk:=P2D[i,1]; vwk:=P2DIi,2];

> vxr:=P3D[i,1]; vyr:=P3D[i,2|; vzr:=P3D[i,3];

> VG[i*2-1]:=simplify (subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl=vkl,
uk=vuk, vk=vvk, U));

> VGIi*2]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, tl=vtl, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl1=vkl,
uk=vuk, vk=vvk, V));

> J[i*2-1,1]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vtl, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl=vkl,
uk=vuk, vk=vvk,dUt1)); J[i*2,1]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1,
t12=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0,
v0=vv0, kl=vkl, uk=vuk, vk=vvk, dVtl));

> J[i*2-1,2]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vtl, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl=vkl,
uk=vuk, vk=vvk,dUt2)); J[i*2,2]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1,
12=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0,
v0=vv0, kl=vkl,uk=vuk, vk=vvk, dVt2));

> J[i*2-1,3]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vtl, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl=vkl,
uk=vuk, vk=vvk,dUt3)); J[i*2,3]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vtl,
12=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0,
v0=vv0, kl=vkl,uk=vuk, vk=vvk,dVt3));

> J[i*2-1,4]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vtl, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl=vkl,
uk=vuk, vk=vvk,dUTx)); J[i*2,4]:=simplify (subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1,
12=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0,
v0=vv0, kl=vkl,uk=vuk, vk=vvk,dVTx));

> J[i*2-1,5]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vtl, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl=vkl,
uk=vuk, vk=vvk,dUTy)); J[i*2,5]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1,
12=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0,
v0=vv0, kl=vkl,uk=vuk, vk=vvk,dVTy));

> J[i*2-1,6]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vtl, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl=vkl,
uk=vuk, vk=vvk,dUTz)); J[i*2,6]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1,
12=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0,
v0=vv0, kl=vkl,uk=vuk, vk=vvk,dVTz));
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> J[i*2-1,7]:=simplify (subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1l, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl1=vkl,
uk=vuk, vk=vvk,dUku)); J[i*2,7]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vtl,
t12=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vul,
v0=vv0, kl=vkl,uk=vuk, vk=vvk,dVku));

> J[i*2-1,8]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vtl, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl=vkl,
uk=vuk, vk=vvk,dUkv)); J[i*2,8]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1,
t12=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vul,
v0=vv0, kl=vkl,uk=vuk, vk=vvk,dVkv));

> J[i*2-1,9]:=simplify (subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1l, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl=vkl,
uk=vuk, vk=vvk,dUu0)); J[i*2,9]:=simplify(subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1,
12=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vul,
v0=vv0, kl=vkl,uk=vuk, vk=vvk,dVu0));

> J[i*2-1,10]:=simplify (subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl=vkl,
uk=vuk, vk=vvk,dUv0)); J[i*2,10]:=simplify (subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1,
12=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0,
v0=vv0, kl=vkl,uk=vuk, vk=vvk,dVv0));

> J[i*2-1,11]:=simplify (subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1, t2=vt2, t3=vt3,
Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0, vO=vv0, kl=vkl,
uk=vuk, vk=vvk,dUk1)); J[i*2,11]:=simplify (subs(xr=vxr, yr=vyr, zr=vzr, t1=vt1,
t12=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku, kv=vkv, u0=vu0,
v0=vv0, kl=vkl,uk=vuk, vk=vvk,dVkl));

> od;

> VI :=evalm(-1.0 * multiply (multiply(inverse(multiply(transpose(J),J)), trans-
pose(J)),VG));

> vt1:=vt1+4+VI[1]; vt2:=vt24+VI|2]; vt3:=vt3+VI[3];

> vIxi=vTx+VI[4]; vTy:=vTy+VI[5]; vIz:=vTz+VI[6];

> vkw:=vku+VI[7]; vkv:=vkv+VI[8];

> vu0:=vu0+VI[9]; vv0:=vv0+VI[10];

> vkl:=vk1+VI[11];

> od;

2.4 3D Reconstruction

Since our 3D imaging system is based on a camera sensor and a pattern
projector system, two different sets of parameters have to be computed by
calibration. Once both systems have been calibrated, it is possible to obtain
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Projected Image X, Grabbed Image

Figure 2.14: The principle of triangulation used in order to obtain the 3D
scene information.

a 3D reconstruction of the measuring scene. So that, given the co-ordinates
of the projective point on the image plane P, and given the co-ordinates of
the 2D position from where this point has been projected on the scene P,
the 3D co-ordinates of the object point where the projecting point has been
reflected on the image sensor P, can be computed by triangulation. Figure
2.14 illustrates this principle.

As we have explained two different calibrating methods, that is the linear
and the non-linear one, we have also to explain two different methods of 3D
reconstruction as a result of the method of calibration used.

2.4.1 Reconstructing from linear calibration

Given the transformation matrix, which relates an object point with its pro-
jection on the captured image and on the projector image, respectively, and
the 2D co-ordinates of the two projections of the same 3D object point, the
co-ordinates of this object point can be determined.

Summarising the equations obtained in the calibration process.

T pyw
w1 p1 A111 A112 A113 A114 y
Pw
W17 p1 = Aror Ajog Ajos Ajoy Zp (2-85)
w
w1 Aizr Aiza Aiszs Aisg

1
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and,
T pw
WX p2 Agir Aog Asiz Aong yp
WX p2 = Ao Asgao A223 Agoy sz (2-86)
%) A231 A232 A233 A234 1w

Operating, and re-arranging the variables,

(Alll - A131$p1) Tpw + (Anz - A132$p1) Ypw + (A113 - A133$p1) Zpw
= Aisazp — Arg (2.87)
(A1o1 — Ai31Yp1) Tpw + (A122 — A132Yp1) Ypw + (Ar23 — A133Yp1) Zpw
= Aizayp — A1 (2.88)

and,

(A211 - A231$p2) Tpw + (A212 - A232$p2) Ypw + (A213 - A233$p2) Zpw
= Awazpr — Aoia (2.89)
(A221 - A23lyp2) Tpw + (A222 - A232?/p2) Ypw + (A223 - A233yp2) Zpw
= A234yp2 — Agos (2~90)

So, arranging the 2D point co-ordinates and the object point co-ordinates
in matricial form, the relation can be expressed as,

PN =F (2.91)
where, the matrices are,
A — A131$p1 Aqgo — A132$p1 Aqis — A133$p1
P— A1 — A131?/p1 Aqgg — A132yp1 Ajo3 — A1339p1 (2 92)
Aoy — A231$p2 Azpo — A232$p2 N A23333p2 ‘
Agor — A231yp2 Aggo — A232yp2 Az — A233yp2
Tprw
N=| Y (2.93)
Zpw
A134$p1 — Aja
F= Arzaypr — A1 (2.94)

A23433p2 — Aoy
A234yp2 — Ao
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Finally, the 3D object co-ordinates can be obtained by,
N = (P'P) 'P'F (2.95)

As the object co-ordinates depend on the correct association of the pro-
jected point (xp1,y,1) and the captured image (xp2,¥p2), any mistake in
the correspondence establishment leads to an error in the object point co-
ordinates determination.

Algorithm of linear 3D reconstruction

% clear all; clf; clg; close all;
% Camera calibrated by linear method
% cam__cal
% Al = T1*T2
% save Al.mat Al;
% Projector calibrated by linear method
% pro cal2
% A2 = T1*T2
% save A2.mat A2;
% 3D reconstruction from 2D projections
load Al.mat;
load A2.mat;
npoints = num_ of couples;
ﬁd = fopen(’set_of couples.prn’,’r’);
= fscanf(fid,’%d’,[4,npoints| );

fclose(ﬁd);
P1 = P(1:2;:);
P2 = P(3:4,:);

for i=1:npoints,
=[A1(1,1)-A1(3,1)*P1(1,i),A1(1,2)-A1(3,2)*P1(1,i),A1(1,3)-A1(3, 3)*P1(1 i);
A1(2,1)-A1(3,1)*P1(2,1),A1(2,2)-A1(3,2)*P1(2,i),A1(2,3)-A1(3,3
A2(1,1)-A2(3,1)*P2(1,1),A2(1,2)-A2(3,2)*P2(1,i),A2(1,3)-A2(3,3
A2(2,1)-A2(3,1)*P2(2,1),A2(2,2)-A2(3,2)*P2(2,i),A2(2,3)-A2(3,3
F=[A1(3,4)*P1(1,i)-A1(1,4); A1(3,4)*P1(2,1)-A1(2,4); A2(3,4)*P2(1,i)-A2(1,4);
A2(3,4)*P2(2,i)-A2(2,4)];
V(:,i) = inv(P"*P)*P*F;
end;
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2.4.2 Reconstructing from non-linear calibration

From the section dedicated to camera modelling with lens distortion, the
following relation has been obtained,

Px.
U = (f X ::)Q-%kﬂg)Q>

PZc
PYC 2
Vo= (fpE = Ya+ k'Y (2.96)
Zc
where,
Xi — U
x, - | = 0)
Y, —
and,
PXc ?Xw
Pro | =[R T]| " (2.98)
PZC fw

where R is obtained from 2.5 and 7 is the translation vector T' = (¢, t,, t,).

We have not taken into account the k, and k, sign as they depend on
the camera image plane or projector plane position. Actually, they can be
considered positive in modelling as they are further determined in calibration.

Consider that the following set of parameters S, and S, are determined
from the camera calibration and the projector calibration, respectively.

Sc = {¢;7 gbgcp (Zi? t;; t;; t; fca k'zcu chn u(c)a ’US, k;} (299)

S, = {qbg, o, L th 18 fP KD KD ug, vf, kf} (2.100)

Consider (X7,Y%) and (X7,Y/) the projection of the 3D object point

(Pxw, Pyw, Pzy) on the camera image plane and the projector frame, respec-

tively. Then, substituting the parameter values of the set from the generic
ones, the following equations are obtained.
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( U Xi=X{,Yi =Y ¢, = ¢, 0, = 9y, 0, = 95,
U = subs | t.=tg,t, =t t. =1, f = [ ku= ki, ky = ki,
ug = ug, vo = Vg, k1 = k{
(2.101)
( V, Xi = Xi,Yi =Y 0, = 95, 0 = ), b, = 95,
Ve = subs | tp =15, t, =t t. =1, f = [ ku= ki, ke = Ky,
ug = ug, vo = v§, k1 = k{
(2.102)
(U;Xzsz71/Z1/zp7¢ _¢57¢ _¢Z¢ (#zj
U = subs | t.=1th,t, =t t, =1, f= [P k=K k, = kI,
up = uh, vo Uo,k’l—k}p
(2.103)
V, X, = XY, = ngb—qbpgb = ¢, ¢, = &%,
VP = subs | to=8,t, =1t =1, f= fpk: kP k, = kP,
uo—uo,vo—vo,kl—kp
(2.104)

These four equations permit to obtain the (Pxu, Pyw, Pzy) unknowns
using a least squares relation similar to the one described in equation 2.95.

Algorithm of non-linear 3D reconstruction

> with(linalg):with(linalg,leastsqrs):
> HHHHHHHAHHHFHF A HHF A
> # Obtaining the equations.
> HHHHHAHAHHHFHFHAHAHHF A
> Rx:=array([[1,0,0,0],[0,cos(t1),sin(t1),0],[0,-sin(t1),cos(t1),0],[0,0,0,1]]);
> Ry:=array([[cos(t2),0,-sin(t2),0],(0,1,0,0],[sin(t2),0,cos(t2),0],]0,0,0,1]]);
> Rz:=array([[cos(t3),sin(t3),0,0],]-sin(t3),cos(t3),0,0],]0,0,1,0],]0,0,0,1]]);
> T:=array(][1,0,0,Tx],[0,1,0,Ty],[0,0,1,T%],[0,0,0,1]});
> R:=multiply(multiply(Rz,Ry),Rx);
> AA:=multiply(T,R);
> Miarray([pet] [yt bl [1]);
> G:=multiply(AA,M);
> X:=G[1,1]; Y:=G[2,1]; Z:=G[3,1];
> Xw:=X*f/Z;
> Yu:=Y*{/Z;
> Xd:=(uk-u0)/ku; Yd:=(vk-v0) /kv;
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> U:=Xu-Xd-k1*(Xd*Xd+Yd*Yd)*Xd;

> Vi=Yu-Yd-k1*(Xd*Xd+Yd*Yd)*Yd;

> UC:=subs(uk=uc,vk=vc,U);VC:=subs(uk=uc,vk=vc,V);

> UP:=subs(uk=up,vk=vp,U);VP:=subs(uk=up,vk=vp,V);

> # Camera model

> vtl:=valor tlc;

> vt2:=valor t2c;

> vtd:=valor _t3c;

> vI'x:=valor_txc;

> vy:=valor tyc;

> vIz:=valor tzc;

> vku:=valor kuc;

> vkv:=valor_kvc;

> vul:=valor_ulc;

> vv0:=valor v0c;

> vi:=valor vfc;

> vkl:=valor klc;

> UC:=subs(t1=vtl, t2=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku,
> kv=vkv, u0=vu0, v0=vv0, k1=vkl, UC);

> VC:=subs(tl=vt1, t2=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku,
> kv=vkv, u0=vu0, v0=vv0, kl=vkl, VC);

> # Projector model

> vtl:=valor tlp;

> vt2:=valor t2p;

> vtd:=valor t3p;

> vI'x:=valor txp;

> v Iy:=valor typ;

> vTz:=valor tzp;

> vku:=valor kup;

> vkv:=valor kvp;

> vuO:=valor u0p;

> vv(Q:=valor vO0p;

> vf:=valor vfp;

> vkl:=valor klp;

> UP:=subs(t1=vt1, t2=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku,
> kv=vkv, u0=vu0, v0=vv0, kl=vkl, UP);

> VP:=subs(t1=vt1, t2=vt2, t3=vt3, Tx=vTx, Ty=vTy, Tz=vTz, f=vf, ku=vku,
> kv=vkv, u0=vu0, v0=vv0, kl=vkl, VP);

> HHHHHHHAHHHFHFHHHAHHH A

> # 3D Reconstruction

> HHAAHH A TR AT H AT HAAA
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%)

> # Read set of couples 2D

> readlib(readdata);

> Pp:=readdata(set_of couples4);

> P2DC:=matrix(rowdim(Pp),2,0):P2DP:=matrix(rowdim(Pp),2,0):

> rowdim(Pp),3,0):

> for i from 1 by 1 to rowdim(Pp) do

> P2DC]i,1]:=op(1,0p(i,Pp)):P2DC[i,2]:=0p(2,0p(i,Pp)):

> P2DP|i,1]:=op(3,0p(i,Pp)):P2DP[i,2]:=op(4,0p(i,Pp)):

> od:

> P:=matrix(4,3,0): F:=matrix(4,1,0): P3DS:=matrix(rowdim(Pp),3,0):

> for i from 1 by 1 while i <= rowdim(Pp) do

> vuc:=P2DC]Ji,1]: vve:=P2DCJi,2]: vup:=P2DP|i,1]: vvp:=P2DP]i,2]:

> UCS:=subs(uc=vuc, vce=vve, UC):

> A:=convert(UCS,list):B:=convert(A[1],list):UCS:=BJ[2]+A[2] /B[1]*(1/B][3]):
> VCS:=subs(uc=vuc, ve=vve, VC):

> A:=convert(VCS,list):B:=convert(A[1] list): VCS:=B[2]+A[2]/B[1]*(1/B[3]):
> UPS:=subs(up=vup, vp=vvp, UP):

> A:=convert(UPS list):B:=convert(A[1],list): UPS:=BJ[2]+A[2] /B[1]*(1/B][3]):
> VPS:=subs(up=vup, vp=vvp, VP):

> A:=convert(VPS list):B:=convert(A[1],list): VPS:=B[2]+A[2] /B[1]*(1/B][3]):
> A:=convert(UCS,list):

> P[1,1] := convert(A[1],list)[1]:
> P[1,3] := convert(A[3] list)[1]:

> A:=convert(VCS,list):

> P[2,1] := convert(A[1],list)[1]:
> P[2,3] := convert(A[3] list)[1]:

> A:=convert(UPSlist):

> P[3,1] := convert(A[1] list)[1]:
> P[3,3] := convert(A[3] list)[1]:

> A:=convert(VPS,list):

> P[4,1] := convert(A[1],list)[1]:
> P[4,3] := convert(A[3] list)[1]:

P[1,2] := convert(A[2] list)[1]:
F[1,1]:= -A[4]:

P[2,2] := convert(A][2],list)[1]:
F[2,1]:= -A[4]:

P[3,2] := convert(A][2],list)[1]:
F[3,1]:= -A[4]:

P[4,2] := convert(A][2] list)[1]:
F[4,1]:= -A[4]:

> V:=multiply (multiply(inverse(multiply(transpose(P),P)) transpose(P)),F):
> P3DS|i,1]:=V[1,1]:P3DSi,2]:=V|[2,1]:P3DS i,3):=V|3,1]:

> od:

> # Reconstruction obtained in P3DS[i,1..3]



Chapter 3

The Epipolar Geometry

In this chapter we will provide a description of the epipolar geometry of a
stereoscopic system made by the relation between two pinhole models. We will
also explain how this geometry is modelled through the fundamental matriz
and a method to estimate this matriz. The epipolar geometry is a powerful
concept which has been widely used in order to reduce the correspondence
problem from a two-dimensional to a one-dimensional search.

3.1 The fundamental matrix

The epipolar geometry takes into account the relationship that exists between
two pinhole models placed in the space [Zhan 96¢|]. Basically, the epipolar
geometry models the behaviour of epipoles and epipolar lines. Furthermore,
the Fundamental matrix is defined by the relation of an image point on
an image plane and its epipolar line on the other plane [Luon 92]. In the
following, all these concepts are described in detail.

Consider a stereoscopic system made by the relation of two pinhole models
which project the same scene, as shown in figure 3.1. Each model has an
associated co-ordinate system X and X', located in their focal point C' and
(" respectively. The intersection of the line (C,C’) with each image plane,
I and I’ produces two epipoles, named e and €. Consider an image point
m on I, then, the epipolar geometry allows us to search its correspondence
point m’ on the epipolar line of m on I’ i.e. on the line I/, where it is defined
by the intersection of the plane I’ and the plane defined by the three points
C, C" and m. Note that we do not need any three dimensional information
from M to infer m/'.

Hereafter both co-ordinate systems X and X' are related. Consider that
X is fixed as the world co-ordinate system O. 3-D measures of a scene are

o6
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Figure 3.1: The epiplar geometry between two pinhole models.

always measured with respect to the world co-ordinate system. Then, the
second co-ordinate system X' is related to X by a 3x3 rotation matrix R
and a translation vector t.

X=0 X=[10]O (3.1)
X=[R t|]X X=[R t]O (3.2)

Given an object point M, it will be projected on both image planes
through the focal point. Each projected point can be defined with a matrix
which models the optical and internal geometry of the sensor, and a matrix
which places the sensor in the space. The reader is referred to chapter two to
understand what these two matrices look like. The product of both matrices
determines the projection of an object point on the image plane. Consider A
and A’ the intrinsic matrices, and B and B’ the extrinsic matrices, of sensors
I and I, respectively. Then the projections of M can be expressed as,

om — AB“”} (3.3)

(3.4)

sm' = A'B [ M ]
1
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As s and s’ are always constant values given by the homogeneous co-
ordinates, we can express the relation with M and both projections m and
m’ by 3.5 and 3.6.

m = PM (
m = P'M
where,
~ 1
P = -AB (3.7)
s
~ 1
P = QA’B’ (3.8)
and,
x
u
m=| v M = Z (3.9)
1 1

In the following, consider the single transformation matrix P. We can
give a geometrical interpretation of the rows of P expressed in equation 3.10,

- Qﬁ Q§ q14
P=|Q,|=|¢& qu (3.10)
Q5 @ g3

where each vector Q! represents a projective plane with a point equation
QiM = 0. As can be deduced from equation 3.3, 3.5, 3.7, QM = 0 corre-
sponds to points on the image plane such as s = 0, that is points at infinite.
That is why Q4M = 0 is the focal plane. The other two planes QM = 0
and QLM = 0 correspond to points on the image plane such as u = 0 and
v = 0 respectively. The intersection of these two planes is the line going
through the focal point C, and the origin of the co-ordinate system of the
camera image plane. Note that the projection ¢ of the focal point C' does
not correspond to the origin of the image co-ordinate system O;. In fact, it
is always located at a point (ug,vo) from O; (see chapter two to prove this
fact).

As it is shown in figure 3.2, the focal point of the camera is defined by
the intersection of the three planes Q'M = 0, i.e. of the planes Q' M = 0,
Q5M =0 and Q5M = 0. Then, it can be obtained from the equation 3.11.
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Focal Plane

Image Plane

Figure 3.2: Geometrical representations of the three line vectors of the matrix
P.

%o S G
Q4 Cy =10 P { 1 ] =0 (3.11)
& ]G] Lo
Let us express the 3x4 matrix P as described by formula 3.12,
P=[P p] (3.12)

where P is a 3x3 matrix and p is a 3x1 vector, both related by the following
equations,

P11 P12 P13 D14
P=| pan p2 pxs P= | Pu (3.13)
P31 P32 P33 D34

Then, equation 3.11 can be expressed as,

[P p][f]zo (3.14)

Operating, it is easy to obtain equation 3.15. The process is described in
the following equations:
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PC+p = 0
-PC = »p
~-P'PC = Pp
cC = -Pp (3.15)

The same relation is applied for obtaining the focal point of the other
camera using equation 3.16.

C'=-Pyp (3.16)

The reader must note that we have computed the focal point from a
matrix P defined up to a scale factor. But note that if P is replaced by AP,
then p is replaced by Ap and P~! by %P_l , resulting that point C' does not
change, as is required.

Let us explain how the epipolar line of a given image point can be com-
puted. In order to compute a line, we need two points. One is the epipole
which is given by the projection of the focal point of a camera on the image
plane of the other camera. The other image point is the projection of an
object point placed at the infinite.

The epipole e is given by the projection of C’ on I, and can be computed
from 3.5 and 3.15. The other epipole €’ is given by the projection of C on I’,
and can be computed from 3.6 and 3.16. Then, both epipoles are given by
3.17 and 3.18 respectively.

e = ﬁ{_P'llp'} (3.17)
¢ = P { _Pllp} (3.18)

The other point of interest is the projection of a point placed at the
infinite defined as M., . In fact, this point satisfies the equation 3.5, which
can be expressed as 3.20.

m = PM, (3.19)
M, = P'm (3.20)
Then, the other point which defines the epipolar line of m is the projection

of M, on I'; see figure 3.3, which can be computed through the equation
3.21,
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Figure 3.3: The relation of a 2D image point m in I and its epipolar line I/,
on I'.

ml, = PP m (3.21)

The reader is referred to section 2.2.4 to verify that m is not influenced

by the translation vector p, thus equation 3.21 can be simplified by equation
3.22.

ml,, =PP 'm (3.22)

Now we are able to define the epipolar line from both end points. Since
the epipolar line lies on an image plane, it can be represented from the cross-
product of both points, which allows us to compute the orthogonal vector of
the line. Then, the epipolar line I, will be defined from the cross-product
between ¢’ and m/, related in equation 3.23.

I,=¢ Anml (3.23)

Computing, we can express [/ by equation 3.25,

I, = ¢APPm (3.24)
U, = [€,PP'm (3.25)
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Let us justify how a cross-product between two vectors can be expressed
in a matricial way using the antisymmetric matrix. Consider two vectors p
and p’, then the cross-product p A p’ can be expressed as the product of the
antisymmetric matrix of p defined as [p|, by p/, as has been proved in 3.27.

p=(z y = )t p=(2 y 7 )t (3.26)
1 gk yz' — zy
Il = pANp =2 y 2 |=|z20'—22 | =
x/ y/ Z/ y _ y./L.
0 -z x
= z 0 -z y =[p),p (3.27)
-y x 0 Z'

At this point, the fundamental matrix can be computed as the relation
of the epipolar line I/, of an image point m and its correspondence point m'.
Given a correspondence point m/, of m, it must lie on line I/ . Then,

m' ' =0 (3.28)

since,

= [Ipll [[7'[l cos () (3.29)

In fact 3.28 expresses the product of two vectors. The first one is the
vector defined by the focal point C" and the correspondence point m’. The
second one, I'm is defined by the cross-product between vector C’e’ and vector
C'm/. If this product is equal to 0 , then the three vectors are co-planar.

Operating, 3.28 can be expressed as,

m '], PP tm =0 (3.30)

Then, we can define the fundamental matrix F, as the 3,3 matrix, which
relates the epipolar line I/, of an image point m and its correspondence point
m’ in the following way,

m' 'Fm = 0 (3.31)
F = [¢],PP! (3.32)

Without complexity the reader can understand that another fundamen-
tal matrix can be extracted from the relation of both cameras. F’ will be
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defined as the fundamental matrix which relates the epipolar line [,,; of an
object point m’ and its correspondence point m. F' is computed through the
following equations,

Ly e N My (3.33)
Ly = eNPP™'m/ (3.34)
Ly = le], PP"'m/ (3.35)
m'lyy = 0 (3.36)
m'le] PP 'm' = 0 (3.37)
m'F'm/ 0 (3.38)
F’ e], PP~ (3.39)
Where it can be proved that F' = F? | so,
m' 'Fm = 0 (3.40)
m'F'm’ = 0 (3.41)

The reader is referred to section 3.2.3 where it is set forth and proved
that F/ = F'.

3.2 Changing the co-ordinate system

In the following, we indicate which simplifications can be considered in the
definition of the fundamental matrix if we assume that we are using the
normalised camera model and, if the world reference co-ordinate system co-
incides with the co-ordinate system of one camera. As a first approach,
consider only the relation with both camera co-ordinate systems, without
taking into account the intrinsic matrices A or A’. This fact will simplify
the equations. However, the intrinsic matrices will be used later.

3.2.1 World co-ordinate system fixed at the second
camera, operating with respect to the first cam-
era.

Let us establish the world co-ordinate system W at the second camera, with

an origin C” and a co-ordinate system X’. Then, the co-ordinate system X
of the first camera can be related to the second one by a rotational and a
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Figure 3.4: Geometrical relation of both camera axes and a world co-ordinate
system. World co-ordinate system fixed at the first camera.

translational movement, which allow us to express the fundamental matrix
from both movements without considering the general P and P’ matrices.
Consider the geometrical relation shown in figure 3.4.
If the world co-ordinate system W is placed at C', with the same orienta-
tion of X, the transformation matrix of the first camera, already introduced
in the previous section, is given by,

P=[1 0] (3.42)

which allows us to define the second co-ordinate system X', by a matrix
defined by a rotation matrix R and a translation vector ¢,

(3.43)

P’ = PK™! K:[R t}

05 1
Then, the equation 3.43 can be obtained from figure 3.4 applying the
following relations,

ple = K 'plor (3.44)
Plplw = KPP plw (3.45)
P! = K'p! (3.46)
P = PK (3.47)
PK! = PKK! (3.48)
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P’ = PK! (3.49)

Operating the equation 3.43 we obtain the matrix P’ expressed in equa-
tion 3.50.

P'=[R' —R't] (3.50)
As,

gt _ [Re]7_ ([T e][R O]\ L
— Loyt T\l 1oy -

_[R 011[1 t}l_[Rt oHI —t}
04 1 05 1 0, 1|05 1

[ R' —Rtt]

— 3.51
o 1 (3:51)

Next, we will simplify the following equations which describe the epipoles,

e = ﬁ[ﬂ (3.52)
¢ - fa[(f ] (3.53)

We can relate the focal point C” with respect to X, as the point located
at a distance C'C’ from the origin C. Then, the epipole e can be simplified
in the following way,

ezf’{?}:f’[i}:t (3.54)

In the same way, using equation 3.50 and the fact that C' is the origin of
the world co-ordinate system, we obtain,

e':fﬂ{ﬂ:[m —Rtt}{(l)]:—Rtt (3.55)

The epipolar line [/, can be simplified by the following equation,
l.=[],PP 'm=—-RtAR'm (3.56)

as,
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PP '=RI=R (3.57)

then, from the features of the cross-product, we know that equation 3.56
can be expressed as,

I =-R'(tAm)=—R'[], m (3.58)

As F is always defined from a scale factor we can ignore the sign, then,

L. =R'[t],m (3.59)
And the other epipolar line [,,,; can be expressed by,

L =e APP™'m/ =t ARm/ = [t] Rm/ (3.60)

that is because P’=! = (RY)"' = R, as for any rotation matrix R it is
always true that R=! = R%.

Now, we want to consider the intrinsic matrices. Then, given an ideal
projection m and m’ in metric units, its real projection m and m’ in pixels,
are given by the following equations,

Ly VA Y @61
Then, we obtain the following equation,
m' "Fm =0 (3.62)
where,
F=A""R'[t], A" (3.63)

The following explains how we have obtained equation 3.63. We define
an essential matrix E which does not consider the intrinsic matrices like the
old fundamental matrix,

E=R'[t], (3.64)
then,

m' "Em =0 (3.65)

using the equations defined in 3.61 we obtain,

(A7) E (A *m) =0 (3.66)
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since we know that, (AB)" = B'A".
Then we can obtain equation 3.67 which is similar to 3.63 if we substitute
E by equation 3.64.

m 'A' "EA'm =0 (3.67)

The other fundamental matrix can be calculated in the same way, obtain-

ing,

m'F'm’ = (3.68)

where,

F'=A"[t, RA"! (3.69)
In the same way, we can prove how we have obtained equation 3.69 defin-
ing another essential matrix E’, as related in the following equation.

E =t R (3.70)

T

using 3.61 we obtain,

(A’ ') E' (A’ ') =0 (3.71)

which allows us to give the following equation, which is similar to 3.69 if
we substitute E’ by 3.70,

m'A TTE'A ' =0 (3.72)

3.2.2 World co-ordinate system fixed at the first cam-
era, operating with respect to the second cam-
era.

Some authors prefer to establish the world co-ordinate system at the first
camera. Then, the whole geometry is computed considering that we are
placed at the second co-ordinate system.

Let us establish the world co-ordinate system W at the first camera, with
an origin C' and a co-ordinate system X. Then, the co-ordinate system X'
of the second camera can be related with respect to the first one by a rota-
tion and a translation. This relation, as has been explained in the previous
section, allows us to express the fundamental matrix without considering the
general P and P’ matrices.

Consider the geometrical relation shown in figure 3.5.
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Figure 3.5: Geometrical relation of both camera axes and a world co-ordinate
system. World co-ordinate system fixed at the second camera.

Let us place the world co-ordinate system W at C’, with the same orien-
tation of the co-ordinate system X’. Then, the transformation matrix P’ of
the second camera is given by,

P'=[10] (3.73)

which allows us to define the first co-ordinate system X, by a matrix P
defined by a rotation matrix R and a translation vector ¢,

P_PK! K-—|B! (3.74)
05 1

Operating,
P=[R' -R'] (3.75)

Then, the two epipoles can be computed,

e = ﬁ{?]:[Rt%Wﬂ[?]:—Nt (3.76)
¢ = ﬁ[f}:J?[??}:[I(ﬂ[i}:t (3.77)

The epipolar line I/, can be simplified by the following equation,
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L, =[],PP'm=tARm=[t], Rm (3.78)
and the other epipolar line [, by,

L =e APP™'m/ = —RUYAR'm' = —R'[t], m =R'[t], m"  (3.79)

Considering the same mathematical procedure explained in equations
3.61-3.72 we can include the intrinsic matrices. Finally,a fundamental matrix
can be obtained from each epipolar line,

m' . = m '"Fm=0 (3.80)
F = A 'EA™! (3.81)
E = [t,R (3.82)
and,
Ml = m'Fm =0 (3.83)
F = A'EA' ! (3.84)
E = R'[t], (3.85)

3.2.3 Relation between both Fundamental Matrices

This section will prove that both fundamental matrices F and F’ are related
by a transpose, that is,

F = F (3.86)
F = F'! (3.87)

Firstly, we have to remember some useful features of the matricial algebra:

(AB)"' = B'A™!

(AB)! = BIA!

(A—l)t — (At)—le—t
[t = —[t,
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We will demonstrate the transpose relation between the fundamental ma-
trices of section 3.2.1. The reader may note that this demonstration also
verifies the fundamental matrices of section 3.2.2.

F = A 'R'[t],A ! (3.88)
F' = (AR, A YD = (R, A DA = (3.89)
= (t,A)'RA 1= —-A"'[f], RA’ 1= -F (3.90)

and,

F' = A7[t],RA ! (3.91)
F'' = (A, RA’ 1) = (1, RA’ A= (3.92)
= —(RA ) [,A ' =-A TR'[,AT"' =-F (3.93)

Since F and F’ are always defined from a scale factor, we have demon-
strated the relation, as the sign can be ignored.

3.2.4 Features of Points and Vectors

We have decided to relate both co-ordinate sytems by a rotation matrix R
and a translation vector t. The second system can be related from the first
by the following equation,

Miase = RMfiTst +1 (394)

Any image point m,, is defined as vector m from the focal point C' and
the point on the image plane m,. For a convenience, we have used m as a
point, although we have to bear in mind that it is actually a vector.

m = Cm,, (3.95)

At this point we have to remember two features :

1) Given a point C in the first image which has been fixed as the
origin of the co-ordinate system. Its correspondence point in the
second co-ordinate system is given only by the translation vector
t.
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0

Clast = RCfirst +t=R | 0| +t=t (396)
0

t = Clasthz'rst (397)

2) Given a vector v related from the first co-ordinate system, its
transformed vector from the second co-ordinate system is defined
only by the rotation matrix R, as a vector is only defined by
its orientation with respect to each axe, not with respect to its
position in the space.

Viast = vaz'rst +t= vaimt (398)

Both features have been broadly used in the previous sections in order to
deduce the fundamental matrix.

3.3 Determining the fundamental matrix

The problem to consider is the estimation of the fundamental matrix from
a set of image point correspondences {m;,m.}. We are not interested in
how the correspondences between two images can be established. However,
the reader must know that the fundamental matrix will be calculated from
these correspondences. The accuracy of the results will depend directly on
the accuracy of the technique used to estimate the matrix, and in a great
magnitude, it also depends on the technique used to determine the corre-
spondences between both images. The correspondences between two images
can be established using any of the techniques described in [Zhan 93b)].

In fact, the determination of the fundamental matrix is the problem of
solving equation 3.99. In other words, it is the problem of finding out the
coefficients of matrix F which solve the following equation,

! "Fim = 0 (3.99)

Several methods have been proposed in recent years. The reader is re-
ferred to [Luon 93b] to have an overview of the problems involved in de-
termining the fundamental matrix. Two methods have been studied, the
first one is based on the iterative technique of function minimisation pro-
posed by Newton-Raphson which has been introduced in chapter two, and
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therefore, not explained in this section. However, iterative methods usu-
ally spend a lot of computing time, contrary to non-iterative methods. So,
the widely known non-iterative Eight-Points Method [Zhan 96¢] which uses
eight or more matching points in order to obtain the Fundamental Matrix,
is presented and analysed in the following section.

3.3.1 The Eight-Points Method

This method does not addresses the obtention of the unknowns parameters of
the camera, but the obtaining of the coefficients of the fundamental matrix.
So, the method will allow us to compute the epipolar geometry, but, it does
not lead us to extract the camera parameters of the system.

In practice, more than eight points will be used to compute the fundamen-
tal matrix to assure an accurate result. The method is called the Eight-Points
Method because a minimum of eight points are needed to use this method,
as there are only eight unknowns to determine the matrix if we consider that
the matrix is defined up to a scale factor.

Equation 3.99 can be written in the following way.

Fy Fiy Fis X
2,y 1] | Fo Fay Fas | | i | =0 (3.100)
Fs F3p Fi 1

Operating, we obtain that,

U.f=0 (3.101)
where,
Up = (u1, s, ..., Uy )’ (3.102)
f = (Fu, iz, Fig, Foy, Fyy, Fas, iy, Fag, Fig)' (3.103)
and,

The solution of equation 3.101 is f = 0, which is not wanted. To avoid
this, we need to impose some constraints on the coeflicients of the Fundamen-
tal Matrix. However, several methods have been presented in recent years
[Luon 93b]. We explain the easiest one, that sets one of the coefficients of
F to a known value. Since the fundamental matrix is always defined from
a scale factor, we can set one of the coefficients of F to 1. This is one of
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the constraints often used in the calculation of the fundamental matrix. The
process of which is described in the following section. Note that equation
3.101 has a unique solution if Rank(U) < min {n, m}, then, another method
is also described which is based on achieving the singular values of U.

The eight-point method is a standard and it has been proved that is very
sensitive to noise and quite unstable. Consider the following improvement
proposed by some authors [Zhan 96¢] [Mohr 96]. A typical image co-ordinate
frame in a 512x512 image might be about 200. Some of the entries in a row
of u; are xz’' about 2002, others are x about 200 and the last entry is 1. So,
there is a variation in size of 200> among the entries of U,,, and some of 200"
in the entries of ULU,,. This means that U.U, is extremely ill-conditioned. A
simple solution to this is to normalise the pixels co-ordinates from [0,512] to
[—1, 1] before proceeding to the calculation of the fundamental matrix. This
provides a well-balanced matrix and much more stable and accurate results
for F.

Solving F from constraint F33 =1

If we impose that coefficient F33 = 1, then from equation 3.100 we can relate
equation 3.101 in the following manner,

Ul =1, (3.105)
where,
U = (uh, ..., ) (3.106)
f ' = (Flla F127 F137 F217 F227 F237 F317 F32)t (3107)
and,

Operating equation 3.105 we can obtain the following equation, which
allows us to obtain the 8 unknown coefficients of the fundamental matrix.

v-lu s = Ui, (3.109)
f' = -U,1, (3.110)
fo= — (U)o, (3.111)

The problem of this method is that we set a determined coefficient to
be known and equal to 1. If this coefficient is not equal to 0 no problems
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will be come up, but if this is not the case, then the result will be really ill-
conditioned. A solution is to try all nine possibilities fixing each F;; coefficient
of F' to 1 and retainig the best matrix. The best matrix will be the one which
reduces the distance of the correspondence points to their epipolar lines.

The following section describes a method which allows us to obtain the
9 unknowns of F without considering the assumption that a coefficient of F
has to be fixed.

Solving F from the eigen values.

Expressing the equation 3.101 in a matricial way,

U1 U2 ... Uim f1
Uz1 Uzm, f2 _ (3.112)
Upl Up2 ... Upm fm

Where U is a nxm known matrix and f is the vector to determine. In
fact, we know that from any nxm matrix,

VUn,m Rank(U) < min {n,m} (3.113)

that is, the rank of a matrix is the number of columns or rows linearly
independent. Consider that n > m as we will always have more equations
(correspondence points) than unknowns to determine.

VU, Rank(U) <m (3.114)

Then, from the matrix properties, we can determine f if Rank(U) < m,
ie,

Rank(U) = m = f=0 (3.115)
Rank(U) < m = f can be determined (3.116)

At this point, we can affirm that if equation 3.117 is satisfied, then the
equation 3.118 is also satisfied [Rote 95].

Uf = 0 (3.117)
UUf = 0 (3.118)

For each eigen value \g < A\; < A\g... < Ap of U'U we can obtain its eigen
vector vy, v1, 2...v, from the following equation,
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(MI-U'U)v; =0 (3.119)

where I is a m,m identity matrix. It is interesting to compute the nor-
malised eigen vector, so, we will calculate the following equation from each
vector.

1

If equation 3.116 is satisfied then the first eigen value must be equal to
0, i.e. Ao = 0. If we substitute it into 3.119 we obtain an equation equal to
3.118, then we are able to affirm that f is equal to the eigen vector associated
to the smallest eigen value of U'U.

Determination of the eigen values and the eigen vectors of a matrix

Theorem : Any nxn matrix A has a sequence of eigen values given by the
roots of the equation 3.121, where equation 3.121 can be calculated from
equation 3.122 known as the characteristic polynom of a matrix [Rote 95].

AN =0 (3.121)
A(N) = det(AI—-A) (3.122)

Equation 3.122 can be solved, from the rules of the determinants, using
3.123 we can obtain 3.124.

n

det(A) = ) (—1)"ay;det(Ay) (3.123)
j=1
AN = N4+, N4 N+ ag (3.124)

Then, the characteristic polynom of A be can expressed from its roots in
the following form given by equation 3.125.

AN = =20) A=A (A=) (3.125)

where,

Mo <A< Ao < A (3.126)

are known as the eigen values of A.
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At this point, the eigen vector associated at each eigen value can be
calculated by the following equation.

AI—A)v; =0 (3.127)

3.3.2 Conclusions

The eight-points method can be applied for obtaining the fundamental ma-
trix. Although the reader must realise that the intrinsic and extrinsic camera
parameters can be achieved from the transformation matrix, the process to
obtain them from the fundamental matrix is not so easy (the reader is ad-
dressed to chapter two to have a description of the transformation matrix of
a single camera). The problem is based on the fact that the parameters of
both cameras have been joined in a single 3x3 matrix, so we have 4 intrinsic
parameters for each camera and 6 extrinsic parameters, expressing the orien-
tation and translation of a camera from the other one, to determine. Then,
we will have 14 unknowns to be determined from only 12 equations. Some
authors, as [Luon 92] have considered that the stereo vision system is made
by two views taken from the same camera at two different positions, then the
intrinsic camera parameters can be determined from the Kruppa equations
as only 4 variables are required. When the intrinsic parameters are known,
the relative movement of a single camera, or the translation between two or
more cameras, can be calculated.

The fact that the methods proposed have always the constraint of using
a single camera, or more than one camera with some optical characteristics,
has made us decide to use the fundamental matrix only to obtain the epipo-
lar geometry of our stereo system made by a single camera and the light
projector. No parameters of the camera and the projector are obtained from
the fundamental matrix.

In order to test the equations, a stereoscopic system made by the relation-
ship between two pinhole models has been simulated. Both pinhole models
have been placed in a virtual 3D scenario. A set of 3D object points has
also been placed in there. Intrinsic parameters have been fixed. Then, 2D
correspondences on both image planes, of each 3D object point, have been
computed. The sequence of points is shown in the following matrix M, where
each row is obtained from the projection of a 3D point on both image planes,
that is from xp,, yp,, TPy, Yp,-



CHAPTER 3. THE EPIPOLAR GEOMETRY 7

134.25 117.00 117.08 102.29
138.50 123.00 105.76 114.75
140.62 126.00 100.06 121.01
159.75 117.00 136.79 104.77
155.50 123.00 121.21 114.94
132.12 133.87 91.55 130.75
142.75 13275 126.89 119.40
144.16 133.50 113.05 125.87
144.87 133.87 105.82 129.24
168.25 132.75 143.78 118.88
M= 132.83 136.50 101.98 130.28 (3.128)
136.37 136.12 97.06 132.78
151.25 137.25 133.84 123.51
149.83 136.50 118.53 128.45
149.12 136.12 110.29 131.12
134.25 153.00 122.90 141.61
138.50 147.00 109.77 141.08
140.62 144.00 103.12 140.81
159.75 153.00 141.38 137.17
155.50 147.00 124.60 137.98

Only these couples of 2D points have been used to obtain the fundamental
matrix F. The iterative Newton-Raphson method has been used, which
has been proved to be more accurate than the analytical methods we have
explained. The obtained matrix is the following,

—.03159226519 —.03124566660  4.537270990
F = | —.06217629449 .0006722417077 —2.109958851 (3.129)
14.44425460 15.62371607 —2312.072718

The epipolar geometry has been recovered. The following figures show the
epipolar lines and the correspondences points on both image planes. Note,
that all the correspondence points lie on the epipolar line defined by the
fundamental matrix and its point couple. No discrepancy is presented as the
system has been simulated and does not adjust to a real scenario.
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Camera 1 Camera 2

-100 -
-500 0 500 10.0500 0 500

Figure 3.6: An example of the epipolar geometry modelled by the funda-
mental matrix. Note the epipoles and the epipolar lines found. The area
delimited by the correspondence points, have been marked by a square.

Camera 1 Carmera 2

Figure 3.7: A zoom of the square areas of the previous images. Note that
the correspondence points lie always on the epipolar lines defined by their
couple points.
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3.3.3 The algoritm used to infer the fundamental ma-
trix

The algoritm has been programmed using the Maple V Release A® environ-
ment.
> with(linalg):
> HHHAHH A TR AT AT TR
> # Obtaining the fundamental matrix
Dl
> Rx:=array([[1,0,0],[0,cos(a),sin(a)],[0,-sin(a),cos(a)]]);
> Ry:=array([[cos(b),0.-sin(b)],[0,1,0],[sin(b),0,cos(b)]] );
> Rz:=array([[cos(c),sin(c),0],[-sin(c),cos(c),0],[0,0,1]]);
> T:=array([[0,-tz,ty],[tz,0,-tx],[-ty,tx,0]]); R:=multiply (Rx,multiply(Ry,Rz));
> Al:=array([[aul,0,u0l],[0,av1,v01],[0,0,1]]);
> A2:=array([[au2,0,u02],[0,av2,v02],[0,0,1]]);
> Ali:=inverse(Al); A2i:=inverse(A2); A2it:=transpose(A2i);
> Fl:=multiply (A2it,multiply (T ,multiply (R,A1i)));
> Fe=array([[f11,f12,£13] [£21,£22,£23],[£31,£32,£33]):
> m2:=vector([u2,v2,1]); ml:=vector([ul,v1,1]);
> m2t:=transpose(m2);
> G:=multiply(m2t,multiply(F,m1));
> HHAAHHH A TR A AT A A TR
> # Obtaining the partial derivatives
> HHAHHHH A HH AT A A AT HAAAH
> dGf11:=diff(G,f11); dGf12:=diff(G,{12);
> dGf13:=diff(G,f13); dGf21:=diff(G,21);
> dGf22:=diff(G,22); dGf23:=diff(G,23);
> dGf31:=diff(G,31); dGf32:=diff(G,{32);
>dGf33:=diff(G,£33);
> # Read the correspondence points
> readlib(readdata);
> Mp:=readdata(corr_5,6);
> M:=matrix(rowdim(Mp),4,0):
> for i from 1 by 1 to rowdim(Mp) do
> M[i,1]:=op(1,0p(i,Mp)) /op(3,0p(i,Mp))
> M[i,2]:=op(2,0p(i,Mp))/op(3,0p(i,Mp)):
(i,Mp))
(i,Mp))

J:==op(2,0p(i,Mp))/op(
> M[i,3]:=op(4,0p(i,Mp))/op(6,0p
> M[i,4]:=op(5,0p(i,Mp))/op(6,0p
> od:
> eval(M);

> # Initial values of the parameters
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> PL:=Pi;

> va:=0.1; vb:=0.7; vc:=0.2; vtx:=1000; vty:=-400; vtz:=230;

> vaul:=85; vav1:=90; vau2:=85; vav2:=90;

> vuol:=130; vvol:=135; vuo2:=130; vvo2:=135;

> vfl1l:=simplify(subs(a=va, b=vb, c=vc, tx=vtx, ty=vty, tz=vtz, aul=vaul,
avl=vavl, au2=vau2, av2=vav2, uol=vuol, vol=vvol, uo2=vuo2, vo2=vvo2,
FI[1,1]));

> vfl12:=simplify(subs(a=va, b=vb, c=vc, tx=vtx, ty=vty, tz=vtz, aul=vaul,
avl=vavl, au2=vau2, av2=vav2, uol=vuol, vol=vvol, uo2=vuo2, vo2=vvo2,
FI[1,2]));

> vf13:=simplify(subs(a=va, b=vb, c=vc, tx=vtx, ty=vty, tz=vtz, aul=vaul,
avl=vavl, au2=vau2, av2=vav2, uol=vuol, vol=vvol, uo2=vuo2, vo2=vvo2,
FI[L,3);

> vi21:=simplify(subs(a=va, b=vb, c=vc, tx=vtx, ty=vty, tz=vtz, aul=vaul,
avl=vavl, au2=vau2, av2=vav2, uol=vuol, vol=vvol, uo2=vuo2, vo2=vvo2,
FI[2,1]));

> vi22:=simplify(subs(a=va, b=vb, c=vc, tx=vtx, ty=vty, tz=vtz, aul=vaul,
avl=vavl, au2=vau2, av2=vav2, uol=vuol, vol=vvol, uo2=vuo2, vo2=vvo2,
FIR22)));

> vi23:=simplify(subs(a=va, b=vb, c=vc, tx=vtx, ty=vty, tz=vtz, aul=vaul,
avl=vavl, au2=vau2, av2=vav2, uol=vuol, vol=vvol, uo2=vuo2, vo2=vvo2,
FI[2,3]));

> vi31:=simplify(subs(a=va, b=vb, c=vc, tx=vtx, ty=vty, tz=vtz, aul=vaul,
avl=vavl, au2=vau2, av2=vav2, uol=vuol, vol=vvol, uo2=vuo2, vo2=vvo2,
FI[3,1)));

> vi32:=simplify(subs(a=va, b=vb, c=vc, tx=vtx, ty=vty, tz=vtz, aul=vaul,
avl=vavl, au2=vau2, av2=vav2, uol=vuol, vol=vvol, uo2=vuo2, vo2=vvo2,
FI[3.2));

> vi33:=simplify(subs(a=va, b=vb, c=vc, tx=vtx, ty=vty, tz=vtz, aul=vaul,
avl=vavl, au2=vau2, av2=vav2, uol=vuol, vol=vvol, uo2=vuo2, vo2=vvo2,
FI[3,3]));

> HHHHHAHAHHHFHFH A A F AT

> # Calibrating by the Modified Newton Raphson

Dl (i i

> VG:=vector(rowdim(M),0); J:=matrix(rowdim(M),9,0);

> dk:=vector(9,0); VG2:=vector(rowdim(M),0);

> JT:=matrix(9,rowdim(M),0); JTJ:=matrix(9,9,0);

> 1JTJ:=matrix(9,9,0); IJTJJT:=matrix(9,rowdim(M),0);

> CV:=matrix(30,10,0);

> for k from 1 by 1 to 15 do

> for i from 1 by 1 to rowdim(M) do
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> vul:=M[i,1]: vvl:=M[i,2]: vu2:=M[i,3]: vv2:=M][i4]:

> VGli]:=simplify (subs(ul=vul, vl=vvl, u2=vu2, v2=vv2,f11=vf11, f12=vf12,
f13=vE13, £21=vf21, £22=v22, {23=vi23, f31=vE31, £32=v£32, £33=vf33, Q)):

> J[i,1):=simplify(subs(ul=vul, vl=vvl, u2=vu2, v2=vv2,fl1=vfll, f12=vf12,
f13=vfl3, 21=vf21, £22=vf22, 23=vf23, f31=vf31, £32=v{32, £33=v{33, dGf11)):

> J[i,2]:=simplify(subs(ul=vul, vl=vvl, u2=vu2, v2=vv2,fl1=vfll, f12=vfl12,
f13=vfl3, 21=vf21, £22=vf22, £23=vf23, f31=vf31, £32=v{32, £33=v33, dGf12)):

> J[i,3|:=simplify(subs(ul=vul, vl=vvl, u2=vu2, v2=vv2,fl1=vfll, f12=vf12,
F13=vf13, f21=vf21, £22=v22, £23=vi23, f31=vE31, £32=vf32, £33=v(33, dGFL3)):

> J[i,4]:=simplify(subs(ul=vul, vl=vvl, u2=vu2, v2=vv2fl1=vfll, f12=vfl12,
f13=vfl3, 21=vf21, £22=vf22, 23=vf23, f31=vf31, £32=v{32, £33=v33, dGf21)):

> J[i,5):=simplify(subs(ul=vul, vl=vvl, u2=vu2, v2=vv2,fl1=vfll, f12=vfl12,
F13=vE13, f21=vf21, £22=v22, £23=vi23, f31=vE31, £32=vf32, £33=v(33, dG22)):

> J[i,6):=simplify(subs(ul=vul, vl=vvl, u2=vu2, v2=vv2,fl1=vfll, f12=vf12,
f13=vfl3, 21=vf21, £22=vf22, £23=vf23, f31=vf31, £32=v{32, £33=v33, dGF23)):

> J[i,7]:=simplify(subs(ul=vul, vl=vvl, u2=vu2, v2=vv2fl1=vfll, f12=vfl12,
f13=vfl3, 21=vf21, £22=vf22, 23=vf23, f31=vf31, £32=v{32, £33=v33, dGf31)):

> J[i,8]:=simplify(subs(ul=vul, vl=vvl, u2=vu2, v2=vv2,fl1=vfll, f12=vf12,
F13=vf13, f21=vf21, £22=v22, f23=vi23, f31=vE31, £32=vf32, £33=vf33, dG£32)):

> J[i,9):=simplify (subs(ul=vul, vl=vvl, u2=vu2, v2=vv2,fl1=vfll, f12=vf12,
f13=vfl3, 21=vf21, f22=vf22, 23=vf23, f31=vf31, £32=v{32, 33=v33, AC33)):

> od;

> #|f(xk)]

> nVGk:= multiply(transpose(VG),VG);

> # dk

> JT := transpose(J): JTJ := multiply(JT,J):

> 1JTJ:=inverse(JTJ): IJTJJT:=multiply (1JTJ,JT):

> dk:=evalm(multiply (IJTJJT,VG)):

> # xk

> xk:=vector([vfll,vf12,vf13,vf21,vf22 v{23,v{31,vf32,v{33]);

> # buscant j

> j:=0: acabar:=0:

> for j from 0 by 1 while acabar < 1 do

> xk2:=evalm(xk - 27 (-j)*dk);

> # [f(xk - 27 () *dK)|

> for i from 1 by 1 while i <= rowdim(M) do

> vul:=M[i,1]: vvl:=M[i,2]: vu2:=M[i,3]: vv2:=M][i4]:

> VG2[i]:=simplify (subs(ul=vul, vl=vvl, u2=vu2, v2=vv2, f11=xk2[1], f12=xk2[2],
£13=xk2[3], £21=xk2[4], £22=xk2[5], £23=xk2[6], £31=xk2[7], £32=xk2[8], £33=xk2[9],
G)):

> od:



CHAPTER 3. THE EPIPOLAR GEOMETRY

> nVG2k:=multiply(transpose(VG2),VG2);
> #|f(xk-27(-)*dk)| < |f(xk)]

> if nVG2k < nVGk then acabar:=1 fi;

> od:

> # xk+1

> ji=j-1;

> xk2:=evalm(xk - 27 (-j)*dk);

> vfll:=xk2[1]: vf12:=xk2[2]: vf13:=xk2[3]: v{21:=xk2[4]: v{22:=xk2[5]:

> vi23:=xk2[6]: vi31:=xk2[7]: vi32:=xk2[8]: v{33:=xk2[9]:
> CV[k,1]:=vfll; CV[k,2]:=vf12; CV[k,3]:=v{13; CV[k,4]:=v{21;
> CV[k,5]:=vf22; CV[k,6]:=v{23; CV[k,7]:=vi31; CV[k,8]:=v{32;
> CV[k,9):=vE33; CV[k,10):=nVGKk;

> if nVGk < 107(-10) then break; fi;

> od:

> CV(1);

> # The matrix F is obtained in vector CV(1).
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3.3.4 The algorithm used to obtain the epipolar lines

from F

The algoritm has been programmed using the Matlab® environment.
clear all; close all;
% Generation of the correspondence points
% modelling Camera 1. Origin of O world co-ordinate system
Al = sym(’[aul 0 uol 0;0 avl vol 0;0 0 1 0;0 0 0 1]);
aul = 85; avl = 90; uol = 130; vol = 135;

AART1 = Al,;

ART1(1,:) = eval(AART1(1,:));
ART1(2,:) = eval(AART1(2,:));
ART1(3,:) = eval(AART1(3,:));

ART1(4,:) = eval(AART1(4,:));

% modelling Camera 2. Moved from O.

Rx = sym(’[1 0 0 0; 0 cos(a) sin(a) 0;0 -sin(a) cos(a) 0;0 0 0 1]’);
Ry = sym(’[cos(b) 0 -sin(b) 0; 0 1 0 0;sin(b) 0 cos(b) 0;0 0 0 1)’);
Rz = sym(’[cos(c) sin(c) 0 0;-sin(c) cos(c) 00; 00 1 0;0 00 1));

R2 = symmul(Rx,symmul(Ry,Rz));

T2 =sym(’[1 00 tx;010ty;001tz000 1));

RT2 = symmul(T2,R2);

A2 = sym(’[au2 0 uo2 0;0 av2 vo2 0;0 0 1 0;0 0 0 1]);

AART?2 = symmul(A2,RT2);
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a=0.1;b=0.7c=0.2

tx = 1000; ty = -400; tz = 230;

au2 = 85; av2 = 90; uo2 = 130; vo2 = 135;
ART2(1,:) = eval(AART2(1,:));

ART2(2,:) = eval(AART2(2;:));

ART2(3,:) = eval(AART2(3,:));

ART2(4,:) = eval(AART2(4,:));

% Generating the 3D world point vector

V(:,1) = [100;-400;2000;1]; V(:,2) = [300;-400;3000;1];
V(:,3) = [500;-400;4000;1]; V(:,4) = [700;-400;2000;1];
V(:,5) = [900;-400;3000;1]; V(:,6) = [100;-50;4000;1];
V(:,7) = [300;-50;2000;1]; V(:,8) = [500;-50;3000;1];
V(:,9) = [700;-50;4000;1]; V(:,10) = [900;-50;2000;1];
V(:,11) = [100;50;3000;1]; V(:,12) = [300;50;4000;1];
V(:,13) = [500;50;2000;1]; V(:,14) = [700;50;3000;1];
V(:,15) = [900;50;4000;1]; V(:,16) = [100;400;2000;1];
V(:,17) = [300;400;3000;1]; V(:,18) = [500;400;4000;1];
V(:,19) = [700;400;2000;1]; V(:,20) = [900;400;3000;1];
% Obtening the 2D points in both image planes.

for i=1:20,

P1(:,i) = ART1I*V(:,i);

P1(1,i) = P1(1,1)/P1(3,i);

P1(2,i) = P1(2,i)/P1(3,i);

P1(3,i) = P1(3,i)/P1(3,i);

P2(:,i) = ART2*V(:,i);

P2(1,i) = P2(1,i)/P2(3,);

P2(2,i) = P2(2,i)/P2(3,);

P2(3,i) = P2(3,1)/P2(3,1);

% Fundamental Matrix given by Maple.
= [-.03159226519 -.03124566660 4.537270990; -.06217629449 .0006722417077

-2.109958851; 14.44425460 15.62371607 -2312.072718];

% Epipolar Geometry of Camera 2.

figure(1);

hold on;

axis([-512,512,-100,512));

title(’Camera 2’);

for i=1:20,

Im2(1:3,1)=F*P1(1:3,);

plot(P2(1,i),P2(2,i),'g™");
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plot([-512;512] , [(-512 * Im2(1,i) 4+ lm2(3,i)) / (-(Im2(2,i)) , (512 * Im2(1,i) +
m2(3,1)) / (1m2(2,)] ):

end;

70O 0On;

% Epipolar Geometry of Camera 1.

figure(2);

hold on;

axis([-512,512,-100,512));

title(’Camera 17);

for i=1:20,

Im1(1:3,1)=F"*P2(1:3,);

plot(P1(1,i),P1(2,i),’g*");

plot([-512;512] , [(-512 * Im1(1,i) 4+ lm1(3,i)) / (-lm1(2,i)) , (512 * lm1(1,i) +
Imi(3,0)) / (Im1(2)] ):

end;

ZOOMm on;



Chapter 4

Structured Light

Stereovision is an attractive and widely used method, but, it is rather limited
to build 3D surface maps, due to the correspondence problem. The corre-
spondence problem can be reduced using a method based on the structured
light concept, projecting a given pattern on the measuring surfaces. How-
ever, some relations between the projected pattern and the reflected one must
be solved. This relationship can be directly found codifying the projected light,
so that, each imaged region of the projected pattern provides the needed infor-
mation to solve the correspondence problem. This chapter will analyse stereo
vision problems going through structured light. Furthermore, coded structured
light is presented, and a survey of the most important techniques is related.

4.1 Introduction

When 3D information of a given surface is needed, we have to choose between
a passive method and an active one [Ahle 89]. The most widely known pas-
sive method is stereovision [Barn 82] which can be achieved in two different
ways. In the first way, an optical sensor is moved to known relative positions
in the scene. In the second way, two or more optical sensors are previously
fixed in known positions [Ayac 91]. The surface to be measured is projected
on the image plane of each sensor through each focal point. As described in
chapter 2, 3D co-ordinates of the object point can be obtained by trigonom-
etry [Hara 93] [Hall 82] [Faug 93] from the known projections of an object
point and, furthermore, from the relationship between the optical sensors.
But we have to know, with correctness, for each object point, its projections
on the optical sensor image planes. In fact, in order to obtain the 3D co-
ordinates of a given point from n given projections (one from each sensor),
these projections must necessarily come from the same object point. This
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problem is known as the correspondence problem.

There are some essential problems in stereo vision which difficult to solve
the correspondence problem between both image planes [Zhan 93b]. Some
authors consider to solve the problem of matching from singular points, i.e.
finding points in both image planes with similar neighbourhood character-
istics, classifying them as corners and vertexes. Since both 2D images are
projections of the same scene, images taken from different positions may be
quite different one from the other. Consequently, this hypothesis is rather
poor and becomes even poorer if we take into account that the precision of
the 3D measurement depends on the distance between both cameras. The
precision of the measurement improves increasing this distance. However,
when one increases the distance between both cameras, the projective im-
ages of the 3D scenes become more different, constraining considerably their
match using similarity. Of course, we must also consider that in the same
3D scene more than one object with approximately the same shape and size
could be presented. In this case, it becomes rather difficult to match the
images from the mere concept of singular points. However, some geometri-
cal constraints can be used to reduce the problem of matching. One of the
most popular constraints is known as the epipolar constraint imposed by the
geometrical relationship between both cameras ([Faug 93], p 169), shown in
figure 4.1. The epipolar relation is defined as follows. The intersection of
the line (C7, Cy) which each image plane, 71 and 7, produces two epipoles,
named E; and F,. Consider an image point P; on 7y, the epipolar geometry
allows us to search its correspondence point P, on the epipolar line of P, on
T, i.e. on the line e,;, where e, is defined by the intersection of the plane
w9 and the plane defined by the three points C;, C5 and P;. Note that we
do not need any three dimensional information from P,, to infer P.

The epipolar constraint allows us to reduce the searching of the corre-
spondence from the two-dimensional space of the image plane into the one-
dimensional one of the epipolar line. However, we must be aware that some
points in an image plane might not have a correspondence on the other one
due to a surface occlusion or simply because it has been projected out of the
scope of the camera, see figure 4.2. Even, imaged points may not lie on the
epipolar lines in the same order (see figure 4.3 and 4.4). Note that we are
unable to know a priory whether a point has a correspondence or not, which
difficults enormously the matching and imposes the use of a posterior step
to remove false matchings mostly by using a region growing algorithm.

At this point another constraint which arises from the structure of the
objects of the scene, can be used. It could be assumed that the scene surfaces
depth-vary smoothly almost everywhere. This constraint is known as the
disparity gradient. Although this constraint can be used to reduce false
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Figure 4.1: The epipolar geometry as a tool to reduce the correspondence
problem.

Figure 4.2: An example of a point without correspondence due to a surface
occlusion of P,,.
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Figure 4.3: An example of correspondence points imaged in the same order
from the epipoles.

Figure 4.4: An example of correspondence points imaged in a different order
from the epipoles.
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matches obtained from the geometrical properties of the epipolar line, the
reader must know that it can not be used at depth discontinuities. Note
that depth discontinuities mainly produce the edges and vertexes that will
be used as tokens to the matching process. We must also note that almost
all stereo vision systems restrict the obtaining of 3D information from the
vertexes and corners of the objects. Hence, the disparity gradient could not
be used except if we obtain 3D information following the edges, fact that
hardly complicates the matching process increasing the computing time.

It is known that the correspondence problem can be alleviated leaving
off stereo vision, and going to an active method [Jarv 83] [Jarv 93] [Brad 88]
[Rock 75] [Besl 88]. One of the most widely used active methods is based
on structured light projection [Will 71]. Here, the second stereo camera is
replaced by a light source, which projects a known pattern of light on the
measuring scene. The first stereo camera images the illuminated scene and,
analysing the deformations of the imaged pattern with respect to the pro-
jected one, the desired 3D information can be obtained. Of course, depending
on the chosen pattern, some correspondences between the projected pattern
and the imaged one, should be solved. Most of the proposed structured light
techniques are based on the projection of regular patterns on the measur-
ing scene. If a single light dot or a slit line is projected on the scene, then,
there is no correspondence problem to be solved, but whole the scene has
to be scanned to obtain the 3D map. Shirai et al., in 1971, proposed a
slit line projection to recognise polihedric objects [Shir 71b]. In 1973, Agin
et al. generalised this idea to recognise curvilinear objects [Agin 73]. Two
years later, with the goal to recognise either polihedric or curvilinear objects,
Popplestone et al. proposed a more general system [Popp 75]. In 1986, Ya-
mamoto et al.[Yama 86] proposed a half plane illumination system instead
of a slit line. In fact, binarising an image of a scene illuminated by a half
plane pattern could be compared to the boundary edge detection between
the illuminated and the obscured area. Recently, some systems to obtain 3D
maps of a scene have been presented. The most common systems are similar
to the high-speed method presented by Ozeki et al.[Ozek 86], and the video
rate method presented by Yokoyama et al.[Yoko 94]. There are also some
authors, as Sato et al. [Sato 82], who use a method based on the projection
of two slit lines with different orientation and position in the 3D co-ordinates
system. In a similar way, Kemmotsu and Kanade [Kemm 94] [Kemm 95
chose to project three lines on the measuring scene.

In order to improve the accuracy of the system, an alternative way is to
project a grid of dots or lines on the scene to cover the entire scope of the
camera. Asada et al. proposed to use a pattern made by a set of vertical,
parallel and equidistant, stripe lines [Asad 85] [Asad 86] [Asad 88]. Wang
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et al., have extended Asada’s idea with the sequential projection of two or-
thogonal stripe patterns [Wang 87| [Wang 89] [Wang 91]|. Furthermore, in
order to obtain 3D surface properties, Gu et al. [Hu 86] [Hu 89], Stockman
et al. [Stoc 86] and Shrikhande et al. [Shri 89] have proposed the widely
known method based on the projection of a grid. Other authors also use
the information given by an intensity image to obtain, with a better accu-
racy, the boundary edges of the scene [Ikeu 91] [Wang 92| [Hu 89b] [Vemu 86
[Hosh 90]. Then, an easier correspondence problem has to be solved: for each
point of the imaged pattern, the corresponding point of the projected pattern
has to be identified. All these methods allow us to obtain 3D information
from the geometric constraint propagation, especially from the epipolar con-
straint, and some of them are rather limited to measure surfaces with depth
discontinuities.

In recent years, a new structured light technique has increased in im-
portance. This technique is based on an unique codification of each token
of light projected on the scene. When the token is imaged by the camera,
this codification allows us to obtain the correspondence i.e. to know where
it comes from. Then, 3D measurements are directly obtained as we do not
have to use hard computational geometric constraints. This technique is
basically known as coded structured light. Several coded structured light
techniques have been proposed in the last years, which have been discussed
and compared in the following survey.

4.2 A Survey: Coded Structured Light

Coded structured light is a technique based on the projection of light patterns
on the measuring scene. The projected patterns are conveniently coded in
order to solve the correspondence problem. Fach token of light is projected
on the scene carrying a label which indicates where it comes from. When
the token is imaged by the camera, we have to read this label to obtain an
unique match.

As it can be deduced from the section dedicated to 3D reconstruction
in chapter 2 (see also figure 2.14), we can use four equations in order to
calculate the three unknowns that determine the co-ordinates of the object
point P,. In fact, one of the four equations is linearly dependent on the
other ones, so, with the aim to determine the three unknowns, only three
of the four equations have to be used. As an image of the scene has to be
captured to deduce depth scene information, the image point co-ordinates
(p2,Yp2) are known, as it is the projection of the object point with co-
ordinates (Zpw, Ypw, Zpw)- Lhen, only one equation of the two, which relates
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the 3D object point with respect to the 2D projected token on the projector
frame, has to be used. That is because with only one equation, there is
sufficient information to deduce the 3D object points co-ordinates. Therefore,
only one of the two co-ordinates (x,1,y,1) of the projected point has to be
known. If the x co-ordinate z,; is known, then the pattern is called a column
coded pattern. Otherwise, if it is y,1 the only known co-ordinate, then the
pattern is called a row coded pattern. This idea allows the projected pattern
to be coded just along one component co-ordinate, so the captured light, at
the point (x,2,y,2) on the image plane, carries information from row x,;, or
column ¥, from which it has been emitted. Obviously, a pattern based on
both axes codification is more robust and the results of the 3D measuring
points more accurate than single axe codification.

The survey done allowed us to classify the different techniques coding the
projected pattern, into three classifications.

Looking only at the temporal dependence, patterns can be classified into:

Static: The pattern is limited to static scenes with motionless
objects. This is always due to the necessity to project a set of
different patterns to obtain, in a coded way, the label for each
column (or row) of the pattern. Any movement inside the scene
between two pattern projection frames always produces a corre-
spondence error.

Dynamic: The pattern is not limited to static scenes. Then, if
the scene objects can move, the column or row of the projector
image has to be coded with a single pattern projection.

Looking only at the light projected, patterns can be classified into:

Binary: Any of the (z,1,y,1) points of the pattern can only
have one of two possible values, which are coded with 0 and 1
respectively. This binary value normally represents opacity and
transparency, i.e. projected light absence or presence on the ob-
ject.

Grey level: Each pattern point can have an associated grey
value, which represents the transparency (or opacity) level of the
point against the projected light. Since the information is coded
as a grey light level, normally two steps are necessary in order to
find out 3D information. Firstly, we have to obtain an image of
the scene illuminated with the same light intensity for each point
(without coding). Secondly, we must obtain the reference light
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needed to cancel the surface reflection effect, which depends on
the kind of surfaces where the light is reflected. This limitation
means that the pattern has to be also classified as a static pattern.

Colour: Each pattern point has to be associated with a hue
value. In order to use the colour constancy property, the hue
values used have to be quite different from each other. The main
goal is to get an efficient and accurate segmentation. Since the
system projects colour on the scene, its use is limited to a neu-
tral colour scene, as highly saturated colour objects can produce
loosing of pattern regions in the segmentation step and posterior
decodification. Even pale coloured objects may produce a colour
frequency shifting as a result of the intrinsic colour of the mea-
suring objects. Obviously, the discrepancy suffered by the colour
captured by the camera with respect to the one projected by the
pattern, rather complicates the segmentation step.

Furthermore, another classification can be proposed, which classifies the
patterns from its surface depth discontinuities dependence. Then, looking at
this dependence, the patterns can be classified as:

Periodical: The codification is periodically repeated along the
pattern. Normally, this technique is used to reduce the number of
bits that code the pattern, but produce a limitation of the depth
discontinuity which can not be larger than half of the period
length.

Absolute: Each column or row of the projected pattern has a
unique codification. So, it does not have any depth discontinuity
dependence.

Hereafter follows a survey of the coded patterns presented in recent years,
analysing for each one its advantages and disadvantages.

4.2.1 Posdamer-Altschuler

Altschuler et al. [Alts 81] [Alts 87] and Posdamer et al. [Posd 82] proposed
a static binary codification of a striped pattern. The same principle is also
proposed by Mundy and Porter [Mund 87] and Minou et al. [Mino 81]. The
system, shown in figure 4.5, is based on the utilisation of a pattern structured
as a dot matrix of nxn binary light beams. Each n; column of the pattern can
be independently controlled, so it can be lighted or obscured. Then, several
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Figure 4.5: The temporary codification.

masks can be used to allow coding any pattern dot, in a temporal way, as
a sequential projection of different patterns, as shown in figure 4.6. The
number of patterns to be projected is determined by the number of columns
to be coded.

Blocking light beams, a pattern image sequence can be projected which
projects a sequence of 0 and 1 for each beam. Then, each position of the
measuring surface is temporally and sequentially illuminated for the different
values of the same dot beam, which produces a code that can distinguish one
dot from its neighbours.

In fact, the system works as follows. Firstly, an entire dot illuminated
pattern is projected on the scene. The camera images all the dots reflected
from the surfaces of the scene, and stores their positions in a data base. In
the following steps, each coded pattern is projected and the system can ask
for the light information in the stored positions. When all the patterns have
been projected, each stored point has a code which allows us to determine
from which beam column it has been projected.

The system proposed by Posdamer et al. and Altschuler et al. is limited
to static scenes as it has to capture an image from each projected pattern.
But, as proposed by Altschuler et al. [Alts 81], the system can be improved
to be used in dynamic scenes. In this case, all the patterns are projected with
a different frequency wave and n cameras are used, one for each projected
pattern. Each camera should have an optical filter, as each camera will image
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Figure 4.6: Coding a nxn matrix of laser beam dots.

only one pattern frequency. Then, all the patterns can be projected at the
same time. The cameras should be located as close as possible. Even so, we
could also find that some points can not be decoded as they are not imaged
from all the cameras.

The idea, proposed by Posdamer and Altschuler, has been widely studied.
Basically, the codification and the speed measurement have been improved.
For example, Inokuchi et al. [Inok 84] in 1984 proposed changing the binary
codification, shown in figure 4.7, to a Gray one, shown in figure 4.8, which is
more error robust.

Later, in 1986, Sato et al. [Sato 86], and in 1987, Sato and Inokuchi
[Sato 87], proposed to use a liquid crystal device, already studied by Inokuchi
et al. [Inok 72] in 1972, which permits a larger number of columns to be
projected with a high accuracy. The system also improves the coding speed,
against the use of a slide projector, since the LCD can be electronically
controlled.

If an object has a high textural contrast or any high reflected surface
regions, then, some pattern segmentation errors can be produced. Normally,
this problem can be solved capturing the first image without pattern projec-
tion (or with the same light projection for each dot) to obtain a reference
light intensity. This intensity gives a dynamic threshold for each pixel. Sato
et al. [Sato 86], in 1986, and Sato and Inokuchi [Sato 87], in 1987, proposed
a complementary method of segmentation based on the projection for each
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Figure 4.7: 8 bits temporally binary coded pattern projection.
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Figure 4.8: 8 bits temporally Gray coded pattern projection.
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Figure 4.9: The Cubiscope system.

coded pattern, of its positive and negative representation. Then, comparing
the intensity image with both representations, a better segmentation of the
projected pattern can be obtained.

The problem of a light projector is sometimes a result of heat irradiation
onto the scene, and of its big size and weight. In 1995, Hattori et al. [Hatt 95|
proposed to replace the light projector with a semi-conductor laser, that gives
a high power illumination with low heat irradiation. The proposed system,
named Cubiscope, is shown in figure 4.9 and is composed by a CCD camera,
a semi-conductor laser and a scanned mirror, synchronously controlled. The
main goal of this system is to obtain scene images based on the temporary
codification proposed by Posdamer et al. and Altschuler et al.

In 1995, the same temporary codification described by Posdamer et al.
and Altschuler et al. in 1982 is again proposed by Miiller [Mull 95]. In
1996, Sato [Sato 96] proposed a new moving modulated pattern light and
spatio-temporal image processing.

4.2.2 Carrihill-Hummel

The system proposed by Carrihill et al. [Carr 85], in 1985, is based on
getting 3D information of any scene from two frame images. The first image
is captured with a constant illumination projection on the scene. A linear
wedge filter is used to project on the scene a pattern brightly illuminated on
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Figure 4.10: The pattern proposed by Carrihill et al.

one side, and half brightly on the other, in order to snap the second image.
This pattern is shown in figure 4.10.

For the first projection, it is supposed that the illumination intensity
is constant along the z-axis and the y-axis of the projector. For the second
projection, illumination has to be a constant along the y-axis. Then, for each
captured pixel, the intensity subtraction of the two images, can be calculated.
This difference allows to obtain the column of the projector from which the
dot has been emitted.

Using a difference ratio for each pixel makes it easier to cancel possible
surface reflections or highlights since an illumination ratio change is always
produced by a change in the projected illumination.

Using electro-optics filters, the system can provide 3D information at high
speed, but, like systems that project more than one image, it is limited to
static scenes. Obviously, any moving object in two consecutive frames would
produce a correspondence error.

Carrihill et al. affirm that the system provides an accurate measurement
with pixels of 8 bits depth (bits per pixel). The test has been limited to 12
bits depth, although Carrihill et al. affirm that there is a good correlation
between the sensor perception and reality.

In order to improve the accuracy measurement without increasing the bit
depth of the captured image, a new method based on a sawtooth pattern
could be proposed. Two sawtooth patterns of different period length are
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Figure 4.11: The use of the period length to improve the resolution of the
measurement without increasing the number of bits depth of the captured
image. Obviously, period patterns are limited to measure only surfaces with
a depth discontinuity smaller than its period length.

shown in figure 4.11. Obviously, the maximum surface depth discontinuity
to be measured is limited to the chosen period.

In 1993, Hung [Hung 93] proposed a grey level sinusoidal pattern. The
period of the captured pattern depends on the depth of the surface where
it is reflected. Hung proposed to triangulate from the column phase of the
imaged point. For each pixel, this phase can be approximately obtained
from the light intensity. However, it seems that a robust 3D reconstruction
could be obtained projecting first a constant illuminated pattern as propose
Carrihil el al. This method, as the sawtooth one, also suffers the limitation
of a periodical codification.

4.2.3 Boyer-Kak

In 1987, Boyer and Kak [Boye 87] proposed to illuminate the scene using a
single pattern projection. The pattern is coded by vertical coloured slits.
The correspondence problem, i.e. given an imaged slit, to obtain from which
projector slit it has been emitted, can be solved as the slit codification used
to build the pattern, is known. Obviously, as with any other system that
projects colour, its use is limited to predominantly colour neutral surfaces,
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Figure 4.12: An example of the correspondence problem that has to be solved
between projected and imaged slits.

as highly saturated hues could produce slit identification errors.

Figure 4.12 shows only a stripe pattern projection up to which the match-
ing problem can be complicated between projected and imaged slits. Note
that, slits projected out of the scope of the camera or reflected on occluded
surfaces can not be imaged. Also, the slits imaged by the camera can be
obtained in a different order.

Boyer et al. proposed to codify the pattern using the three basic colour
components: red, green and blue. The pattern will be made by a sequence
of vertical slits coloured with any of the three basic components. See figure
4.13. The slit can also be white. Optionally, between each slit, a black gap
can be placed, this gap can be used as a slit separator. Note that, white can
be easily obtained and identified as the colour which has approximately the
same red, green and blue intensity values.

If it is supposed that the pattern is made by n vertical slits, Boyer et
al. proposed to divide this pattern in m subpatterns, each one made by k
vertical slits, as n = m - k. In order to code the m patterns in a unique way,
k is a value as large as necessary. As each subpattern is emitted without any
beginning and ending code, multiple matchings can be obtained in reception.
Actually, we do not know where a subpattern ends and the next begins,
and moreover, the slits have been re-ordered as a function of the measured
surface discontinuities. An example of the pattern deformation can be shown
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Figure 4.13: A detail of the pattern proposed by Boyer.

in figure 4.14, where a 72 slit pattern was emitted and a 50 slit one has been
received.

For colour slit detection, Boyer et al. proposed a hardware that detects
red, green and blue peaks in the RGB signal given by the camera. Thus,
the specific hardware can obtain the index and position of each peak in real-
time. In fact, the index can have a proper value for each different colour (for
example, the 1, 2 and 3 index values can be associated with red, green and
blue colours respectively). Consequently, the position can be obtained from
the camera synchronism. Obviously, CAG feature allows the equalisation of
the RGB signals.

In order to obtain the subpatterns from the index and position provided
by the hardware, a software algorithm is used. In the first step, all the
possible matchings between the emitted and received subpatterns are found.
In the second one, a region growing algorithm is used to remove all the
erroneous matchings. In the third one, for each subpattern not matched,
a heuristic algorithm is used to find its better matching. When the third
step is completed, a data base, which associates captured and projected
subpatterns, has been obtained. Finally, a triangulation process provides the
3D scene information they were looking for.

Monks et al. [Monk 92] [Monk 93] assert that the matching process pro-
posed by Boyer is not optimal, because if the matches for the first vertical slit
contain errors, these will be propagated through the rest of the data. Monks
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Figure 4.14: A possible relation between a projected pattern and the captured
one.

et al. have developed a new technique that eliminates this problem and has
the advantage of being non-iterative, encoding the topology of the entire set
of stripes as a directed acyclic graph [Bras 90].

As we said before, the pattern proposed by Boyer et al., is limited to mea-
sure predominantly neutral colour surfaces, as highly saturated hues could
produce slit identification errors. Even so, it is specially recommended in
dynamic environments since only one projection is needed.

4.2.4 Le Moigne-Waxman

There are a lot of different patterns that can be generated based on the grid
pattern concept. Some examples can be shown in figure 4.15. When a grid
pattern is considered, the number of crossing points to be projected has to
be chosen, but the line thickness has also to be chosen, since it depends
directly on the smoothness of the imaged surface texture. A very thick line
will give a low resolution, and, with a very thin one, we will obtain a lot
of discontinuities, which will complicate the matching process. Obviously,
the thickness of the line has to be chosen knowing the kind of scenes to be
measured.

Note that the patterns shown in figure 4.15 are not coded. Le Moigne
and Waxman [Moig 84] [Moig 85] [Moig 88] proposed to add dots on the grid,
which can be used as landmarks to initiate the decodification or labelling of
the projected pattern. In figure 4.16 some grid patterns coded with dots are
shown.
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Figure 4.15: Some not coded grid patterns. The pattern resolution is given
by the number of crossing points and the line thickness.
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Figure 4.16: Grid patterns partially coded by the position of some dots,
which are used as landmarks to initiate the labelling process.
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The configuration used for the system locates the projector at a fixed
distance from the camera, along the y-axis. This means that vertical lines
are imaged nearly without deformation, keeping its natural parallelism and
continuity, so they will be easily detectable. A square neighbourhood op-
erator is computed in each imaged pixel to reduce the albedo or highlight
effect. The system uses the known location of the vertical lines as guides to
search the dots and horizontal line intersections. Then, the horizontal lines
are explored to join their discontinuities. Note that, if a lot of discontinu-
ities are found, it is due to the fact that the chosen line thickness is too
thin. Finally, for each landmark dot, two different edge labelling processes,
using a greedy algorithm, are used. One process starts its labelling from the
right side, and the other from the left side of the landmark. So, six different
labellings are obtained from three landmark dot patterns. Then, a merging
algorithm is used to label the whole pattern. Initially, only two labelled edges
are considered. Then, they try to label the not labelled edges with a local
interpolation.

Although the labelling algorithm looks like rather complicated, horizontal
lines can be highly broken due to depth discontinuities of the measuring
surfaces, and they can also disappear partially. So, easily matching errors
could be obtained using a simpler labelling process.

The pattern proposed by Le Moigne et al. is specially indicated to work
in dynamic environments, as a single projection is needed to obtain 3D infor-
mation of the scene. But it is true that the resolution given by the pattern is
rather limited, basically for two reasons: firstly, vertical lines do not give any
depth information since they are only used as searching guides. And finally,
the matching process may be rather slow in density grids, so, dynamic high
resolution is not permitted. But the utilisation of the proposed pattern as a
vision sensor for mobile robot navigation in structured indoor environments
is highly recommended. In such environments, the surfaces do not usually
have high contrast textures, which can deform the pattern, and the scene is
quite regular, and small differences do not give interesting information.

4.2.5 Morita-Yakima-Sakata

In 1988 Morita et al. [Mori 88] proposed a binary pattern of light dots as
an M-array. The M-array has the already defined coding window property,
as any subpattern into a window exists only once and at one place within a
period (for more information see the Vuylsteke-Oosterlinck method).

To simplify the correspondence problem, Morita et al. placed the camera
and projector so that the A, and A, distances between them are zero, as
shown in figure 4.17. Then, the dot identification process is quite simplified,
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Figure 4.17: The system configuration proposed by Morita et al. with the
dot disorders that can be obtained.

as the dot position on the image plane can only move horizontally.

In fact, an M-array pattern is made by a set of circular bright, or dark,
dots, represented by the binary number 0, or 1, respectively. From the M-
array property, the indices of all the elements of the observed pattern can be
uniquely determined relative to the projected pattern if no pattern disorders
exist. However, for complex surfaces the following disorders can be obtained:

1.- Missing dots: If two or more objects are measured, a dot projection
can be reflected on an occluded surface, and, it can not reach the image
plane. An example can be seen in figure 4.17 where the points from #2 to
#4 are projected on the back surface of the object #3.

2.- Dot displacement: If the depth distance between two objects is differ-
ent, the reflected dots will be imaged with a horizontal displacement between
them. As can be seen in figure 4.17, the dots reflected on object 2 move right
by one dot on the image plane.

3.- Dot permutation: If an object is placed in front of another, the pro-
jected dots can swap positions. As shown in figure 4.17, the projected dots
form #6 to #8 reach the image plane in the position of #2 to #4, as they
have been occluded by object 3.

In order to obtain the image co-ordinates of each dot, this method has
to project a whole illuminated dot matrix. Then, a binary (bright and dark)
dot matrix is projected, so that each window, with a fixed size, determines
the column index from which the imaged point has been projected, see figure
4.18.

The proposed system is quite simple, so that 3D information can be
obtained without a lot of computational cost. However, the system is limited
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Figure 4.18: An example of the two patterns projected on the measuring
scene by Morita.

to static scenes because it needs two projections. As the system projects
isolated light dots, not a lot of textural information can be obtained, and, if
the dot size is reduced to get more resolution, then, high contrast textural
surfaces could modify the dot shape, making its localisation difficult.

Recently, in 1996, Lavoie et al. [Lavo 96] has proposed a binary grid
pattern with a pseudo-random dot codification at each grid vertex. The dots
are binary coded, that is they can be illuminated or obscured, as the M-array
proposed by Morita.

4.2.6 Vuylsteke-Oosterlinck

A model with a dynamic pattern, column coded, is proposed [Vuyl 90]. The
basic structure of the pattern is like a regular chess-board, alternating bright
and dark squares. Then, the pattern is modulated overlapping a bright
or dark spot at every square vertex (figure 4.19), so that, any square of
the regular chess-board pattern carries an additional information bit, that
together with the neighbouring bits, will be used to code each column.

In order to identify each dot of the coded pattern, they are represented in
binary. The dot gets the ”1” value if it comes from a bright dot. Otherwise,
it takes the 70" value, associated with dark. Additionally, the chess-board
allows finding out naturally if the coded dot comes from a bright or dark
square, represented by the symbols — and + respectively. Then, four different
combinations, shown in figure 4.20, can be obtained.

Following the chess-board, the code assignment is based on two binary
sequences, represented by ¢, and by of 63 bits length. The dots of all the k
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Figure 4.19: A detail of the pattern proposed by Vuylsteke et al.

Figure 4.20: The pattern is made by four different combinations. The top
left square is represented by the symbols - and +, which represent a bright
or dark square respectively. The binary numbers 0 and 1 are used to code
the dot at the square vertex, which can also be dark or bright respectively.



CHAPTER 4. STRUCTURED LIGHT 107

Gb cbgbcb ¢bcybyc,bsc,cs
by ¢ byc b, &b ¢ by G by byCby, by
G b clbc b b G bycyby,c,bisc, cs
by e b b e bc bygbyc, b,cyb,bys

Figure 4.21: The code assignment determines that any 2x3 window can iden-
tify the column index Each window is made by a triplet of ¢; values and
another triplet of b;. In the example, for the two windows, the column is
given by the same sequence order ((cs, ¢4, cs5), (b3, ba, bs)).

column which corresponds to a + square type are assigned the binary value
¢k, while those of the — type are assigned the value b;. A 6 bits length code
is needed to code the 63 different columns of the pattern. Then, any window
of 2x3 squares allows coding any column index. In fact, any window with 6
squares size can be used, but obviously, a compact window is less affected by
surface discontinuities that an elongated one. This is the main reason why a
2x3 window has been chosen instead of a 1x6.

Each 2x3 window has a triplet of ¢, codes and another of by, easily dif-
ferentiable. The sorting of these codes gives a 6 bits length number which
codifies a column index of the pattern. An example for the column k£ = 3 is
shown in figure 4.21, where the code number, which represents column 3, is
given by the sequence: ((cs, ¢y, ¢5), (b3, ba, bs)).

The code assignment can not be chosen independently due the fact that
the identification windows overlap. Then a kind of recursive code generation
sequence, with an initial birth polynomy, has been used, which allows the
obtaining of a desired length period repetition to code in a unique way all
the columns of the pattern.

The pattern presented has basically two limitations. The first one is based
on the difficulty to measure high textural surfaces, which produce partial lost
of regions of the pattern. And the second one is associated with the surface
orientation. If these are not perpendicular to the optical axis of the projector,
a deformation of the projected pattern is presented, which from a determined
angle orientation, does not allow the identification of the pattern. However,
the pattern is well-recommended to measure dynamic surfaces where only
one projection is permitted.

In 1995, Pajdla [Pajd 95b] has reimplemented the same pattern, explain-
ing the calibration process. Pajdla has proposed, as an improvement, to use
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Figure 4.22: The principle of diffracting white light in order to obtain a
rainbow pattern.

a hexagonal codification instead of a square one. In this case, the windows
size is reduced and as a result, the number of not indexed columns due to
depth discontinuities is decreased. However, the identification step is more
complicated.

4.2.7 Tajima-Iwakawa

The system proposed by Tajima [Taji 90] in 1990 is based on the vertical slit
coding technique, where each slit is emitted with a different wavelength. The
projected pattern is like a rainbow pattern, as the whole colour spectrum,
from blue up to red, is projected. This can be obtained diffracting white
light as shown in figure 4.22. The proposed pattern is shown in figure 4.23.

Depth can be obtained using the triangulation principle, but first the slit
angle (the xp; co-ordinate) which has produced the colour pixel imaged on
the image plane, has to be known. In fact, the slit emission angle can also
be determined knowing the slit wavelength.

The objects illuminated by the rainbow pattern are imaged with a single
monochromatic camera instead of a colour camera. Two different colour
filters placed in front of the camera are used, and two images of the scene are
captured. For the same point, the intensity relation between the two images
does not depend on the illumination, nor on the colour object. Tajima et al.
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Figure 4.23: The rainbow range pattern projected by Tajima et al. made by
a set, of vertical slits which use all the colour spectrum from blue up to red.

have proved that this intensity relation depends directly on the wavelength
slit (N).

As the system needs two frames for each measurement, it is limited to
static scenes, but obviously the system can measure dynamic scenes using
a colour camera. In 1996, Geng [Geng 96|, seemingly without knowing the
work already done by Tajima et al., proposed the same rainbow pattern
in order to obtain 3D information from the measuring surface. However,
the initial idea proposed by Tajima et al. was improved by Geng using a
CCD colour camera and using a Linear Variable Wavelength Filter (LVWEF).
Tajima’s idea improved by Geng can be shown in figure 4.24.

In this case, the projector emits a white light plane, which, using a cylin-
drical lens, generates a continuous fan of planes. From the natural design of
the LVWF, a continuous colour spectrum is obtained, so there are not two
light planes projected on the scene with the same wavelength. Obviously,
the system resolution depends on the camera features to distinguish among
different colours, or different wavelengths.

Recently, Smutny and Pajdla [Smut 96] have reimplemented the system
proposed by Tajima et al. With regard to the limitations of the rainbow pat-
tern, they said that the surface can have any colour, but has to be opaque.
Obviously, no other wavelength not coming from the projector, can be emit-
ted on the scene. The scene has to be light controlled and the measuring
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Figure 4.24: The system proposed by Geng.
objects can not be fluorescent, nor phosphorescent.

4.2.8 Wust-Capson

In 1991, Wust and Capson [Wust 91] proposed the projection of a sinusoidal
intensity pattern on the measuring surfaces. The proposed pattern is made
by the overlapping of three sinusoids, of n periods along the x-axis. Each
sinusoid is associated with each primary colour (red, green and blue). The
greens sinusoid is shifted 90° with respect to the red, and the blue is shifted
90° with respect to the green, as shown in figure 4.25. The pattern is column
coded, so all the rows are identical, resulting a colour vertical fringe pattern,
as shown in figure 4.26.

Instead of obtaining the column index by decoding the imaged pattern,
Waust and Capson proposed to obtain the depth directly from the wave phase
shifting. This technique is widely used in Moire methods to measure contin-
uous surfaces [Reid 86].

Some limitations can be observed in the method. The scene has to be
predominantly colour neutral, in spite of colour projection. As the pattern is
made by periodical fringes, it is limited to measure surfaces without discon-
tinuities larger than a fringe period. According to Wust and Capson, camera
response depends on the frequency of the emitted fringes, and the histogram
equalisation used to compensate for the non-linear intensity response also
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Figure 4.25: The principle of overlaping three sinusoidal intensity patterns.

Figure 4.26: The periodical pattern proposed by Wust and Capson, made by
the sinusoidal overlapping of the three primary colour components.



CHAPTER 4. STRUCTURED LIGHT 112

113(2|11(1]|2

2121213713 Coded Order:
11313111112 ( \Mjfvvlj—l \Nl—lj Vvij+1vvi+lj)
11112]13(2]|2

3(2|2]11|3|1 Coded Word = 33212
211111323

Figure 4.27: Dot codification example using its four neighbours and a basis
equal to 3, i.e. only three different symbols can be used.

produces some measuring errors. Improving these aspects the system can
obtain a better resolution and robustness.

4.2.9 Griffin-Narasimhan-Yee

Griffin et al. [Grif 92], in 1992, have carried out a mathematical study about
which should be the largest size allowed for a coded matrix dot pattern. It
is supposed that: 1.- A dot position is coded with information emitted by
itself and the information of its four neighbours (North, South, East and
West). 2.- There can not be two different dot positions with the same code.
3.- The information is determined using a fixed basis, which determines the
symbols used to code the matrix. 4.- The biggest matrix, which gives a better
resolution, is desired.

If a basis equal to 3 is done, a possible dot codification is shown in figure
4.27.

Griffin et al. proved that, given a basis b, the largest matrix ( the biggest
nxm matrix) can be obtained from its largest horizontal vector (Vhm), and
its largest vertical vector (Vom). Vhm is a vector composed by the sequence
of all the triplets of numbers that can be build without repetition using a
b basis. Vum is a vector made by the sequence of all the pairs of numbers
that can be obtained without repetition. Then, the first row of the matrix is
given directly by Vhm,

Joi = Vhm, (4.1)

and, the other matrix elements can be determined applying the equation
4.2 where i is the row index and varies from 0 to the VhAm length, and j is
the column index and varies from 0 to the Vvm length.
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fis =14 ((fie1; + Vvm;) mod b) (4.2)

For example, if a basis equal to 3 is supposed, then its largest vectors are:

Vhm = (33132131123122121113323222333) (4.3)
Vum = (3121132233) (4.4)

So, the obtained matrix is,

33132131123122121113323222333
33132131123122121113323222333
11213212231233232221321333111
33132131123122121113213222333
11213212231233232221321333111
22321323312311313332132111222
22321323312311313332132111222
11213212231233232221321333111
33132131123122121113323222333
33132131123122121113323222333
33132131123122121113323222333

After the coded matrix is found out, a different projection can be asso-
ciated for each value, that is, for each number which belongs to the interval
{1,b}. For example, a coloured dot pattern can be obtained if the red, green
and blue colours are associated to the 1, 2 and 3 numbers respectively, ob-
taining a pattern like the one shown in figure 4.28.

The resolution of the pattern can be increased by simply increasing the
basis value. Depending on the colour discriminating capability of the sys-
tem employed to visualise the scene, almost any degree of resolution can be
obtained.

In many applications, the scene is not built by colour neutral surfaces. A
simple reason could be that the imaging system used is only able to capture
monochromatic images. Then, monochromatic light has to be projected on
the scene. In this case, each number of the dot matrix can be changed to
geometric form. An example is shown in figure 4.29.

The method proposed by Griffin et al. is the unique method studied by
which, from the decodification of the pattern captured by the camera, for each
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Figure 4.28: A possible coded dot matrix, obtained by the method proposed
by Griffin et al. A basis equal to 3 has been supposed and to each symbol a
coloured dot has been associated.

Figure 4.29: A possible geometric association of a matrix dot coded using a
basis equal to 5.
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Figure 4.30: The pattern proposed by Maruyama et al. made by the projec-
tion of multiple slits with random cuts.

image point (2, Yp2), the projector position point (z,1, yp1) from which it has
been emitted, can be known. Asshown in the mathematical section dedicated
to surface measuring, it is not necessary to know both projector co-ordinates.
Then, the pattern can be obviously simplified to obtain a single row coded
or column coded pattern, but we could possibly obtain a pattern which uses
the windows proposed by Vuylsteke et al. [Vuyl 90|, or the coloured slits
proposed by Boyer and Kak [Boye 87].

In 1996, Davies et al. [Davi 96] re-implemented the coloured dot projec-
tion system proposed by Griffin et al. However, as an improvement, Davies
proposes the use of a specially developed formulation of the Hough Transform
in order to extract the imaged dots of the projected pattern.

4.2.10 Maruyama-Abe

The method described by Maruyama et al. [Maru 93], in 1993, is based on
the projection of multiple vertical slits. The slits are coded from the position
of some random cuts, as shown in figure 4.30.

All the random cuts are placed to obtain short lines, satisfying the condi-
tion that its length is in the interval [Lq — D, Ly + D], where Ly is a standard
length and D is given by a random number.

Segment matching is performed only based on the correspondence of the
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Figure 4.31: A multiple matching example. In this case the end points of two
short lines, s’ and s” of the pattern, match the end points of a line projected
on the image plane, along its epipolar lines.

short line end points along the epipolar lines. As the cuts are randomly
distributed, more than one pattern line can be matched with a given image
segment. An example of multiple matching is shown in figure 4.31. Then,
the imaged segments are classified into three groups: 1.- Segments with no
competitors, as they have only one matching. 2.- Segments that can be
simply identified using adjacency relations between itself and its neighbours.
In this case, the matching can not be done due to the noise on the image or
due to a surface depth discontinuity, which has changed the line length. 3.-
Otherwise.

Maruyama et al. consider that the epipolar lines can always be horizon-
tally computed, so that only the z-axis has to be examined to find out all
the lines on the pattern which match with the imaged segment. This is not
always true, as epipolar lines depend on the projector position and orienta-
tion, with respect to the camera axis, and Maruyama et al. do not impose
any restriction. But, it is true that the image can always be transformed to
get horizontal epipolar lines, as they said in their work.

In order to remove erroneous matching, the information of neighbour
segments is taken up. Finally, with the aim to obtain the correspondence of
all the segments from groups 2 and 3, a region growing algorithm matching
from adjacency constraints is used.

To improve the system, we could think of using a pattern with an intel-
ligent cut distribution which matches the same imaged segment, along its
epipolar lines (in order to not obtain more than one matching). So, a bijec-
tion between captured image and projected pattern is determined. But, as
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Maruyama et al. said, if the adjacency constraints are used, the matching
can be done using a region growing algorithm. However, surface depth dis-
continuity or noise problems in the image could provide segments which do
not have a matching line. In this case, a region growing algorithm has to be
used to match them.

The method is suitable for measuring 3D objects with relatively smooth
surfaces. For objects with a lot of discontinuities and with highly textured
surfaces, the method will have some difficulties. Obviously, line discontinu-
ities produced in the captured segments complicate the matching process.
However, the pattern is perfectly used to measure dynamic scenes, as only
one projection is required.

4.2.11 Ito-Ishii

In 1995, Ito and Ishii [Ito 95| proposed a three-level checkerboard pattern.
Each 2D pattern point or node has a square form and it is surrounded by
four projected squares which can be coded using only three different grey
levels. The grey levels used are: obscured (intensity = 255), half illumi-
nated (intensity = 128) and illuminated (intensity = 0), which have been
coded as 2,1 and 0 respectively. Ito et al. defined a subcode of a node as
the clockwise combination of the codes of the four adjacent nodes. See figure
4.32. They assert that the quantity of codes is large enough to avoid false
matchings between two spatially coded patterns. Although pattern genera-
tion without repeated appearance of the same feature code values is a further
research subject, it is not a problem because the epipolar constraint elim-
inates confusion. Ito et al. affirm that the method provides high spatial
resolution and makes it possible to take highly accurate measurements of
stable and moving objects. Indeed, a unique pattern projection is needed to
infer 3D scene information. However, it seems that the measuring of highly
saturated surfaces may complicate the segmentation of the pattern, as it
could be difficult to distinguish the three different grey levels.

4.2.12 Chen-Hung-Chiang-Wu

In 1997, Chen et al. [Chen 97] proposed the projection of a pattern made
by coloured stripes. The approach is most similar to the one proposed by
Boyer et al. [Boye 87]. However, Chen proposed to code each slit indepen-
dently from the others. Firstly, Chen generates a sequence of coloured slits
C1,C5,C5, ..., C,. Then, in order to increase the intensity variation between
adjacent slits, a black slit B is inserted between them, obtaining the sequence
(Cy,B,Cy, B, Cs, ..., B,C,). Each slit is code without repetition varying its
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Figure 4.32: Spatial main codes specifying nodes F,, P;, P, P; and
P, are (2101),(1012),(1020),(1012) and (0212). The subcode of Fp is
(1012,1020,1012,0212).

HSI representation. The intensity value are randomly generated in the range
[Imin, Imaz)- It has been fixed greater than I,,,;, to ensure an easily edge ex-
traction, and smaller than I,,,, in order that the hue value carries sufficient
color informaton. Note that high intensity values reduce the coloured infor-
mation going to white. Actually, the hue value is the most important and is
generated applying equation 4.5,

Ho = Hzm
Hi+1 == (HZ+H]mp) mod 3600 (45)

where, Chen et al. proposed to fix H;,; = 0and Hj,,, = 140. The two val-
ues have been found by experimentation testing all the possible combinations
and selecting the best set of parameters. Furthermore, in order to fix the satu-
ration value for each slit, all the colours HI of the set C' = {C}, Cy, Cs, ..., C,, }
have been transformed to the RGB representation. The largest saturation
value which satisfies that (I;, H;, S) is valid in the RG B space, is then selected
as the saturation of C;.

However, the major contribution of Chen et al. is the proposal of using
the coloured pattern only to solve the correspondence problem between two
imaging sensors. It is known that, if a single camera is used, it is necesary to
find colour correspondence between the projected pattern and the grabbed
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one. In general, due to different reflection properties of 3D surfaces, the
colour recorded by the camera is different from the one projected by the
light, which difficults to solve the correspondence. Chen et al. proposed
to use two imaging sensors as a stereo vision system, the pattern of light
is projected on the scene and captured at the same time by both cameras.
The colour information of the imaged slits is only used in order to solve the
correspondence problem between both imaging sensors.

This approach has the advantage that the projector does not need to be
calibrated. However, one of the major constraints is that both cameras have
to be synchronised in imaging. Furthermore, the position of the cameras
in the scene and the optical behaviour of them, may give a different imaged
colour between both cameras which rather constraints the principle proposed
by Chen et al.

4.3 Summary

In order to provide an easier overview of the techniques presented, we sum-
marise them in the following chronological list, relating also the authors who
used or improved the techniques lately.

1982 Posdamer - Altschuler. A temporal space-encoded pro-
jected beam system [Alts 81] [Alts 87] [Posd 82].

Also proposed by: Mundy and Porter [Mund 87] and Minou et
al. [Mino 81].

Lately used: Inokuchi et al.[Inok 84] in 1984, Sato et al.[Sato 86]
[Sato 87] in 1986 and 1987, Hattori et al.[Hatt 95] and Miiller
[Mull 95] in 1995.

1985 Carrihill - Hummel. An intensity ratio pattern projec-
tion [Carr 85].

Lately used: Hung [Hung 93] in 1993.

1987 Boyer - Kak. A stripped pattern coded by coloured slits
[Boye 87].

Lately used: Monks et al. [Monk 92] [Monk 93] in 1992 and 1993.

1988 Le Moigne - Waxman. A grid pattern with some land-
mark dots [Moig 84] [Moig 85] [Moig 88].

1988 Morita - Yakima - Sakata. An M-array pattern projec-
tion system [Mori 88].
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Lately used: Lavoie [Lavo 96] in 1996.

1990 Vuylsteke - Oosterlinck. A single binary-encoded chess
board pattern [Vuyl 90].

Lately used: Pajdla [Pajd 95b] in 1995.
1990 Tajima - Iwakawa. A rainbow pattern [Taji 90].

Lately used: Geng [Geng 96] and Smutny et al. [Smut 96] in
1996.

1991 Wust - Capson. A colour sinusoidal pattern [Wust 91].

1992 Griffin - Narasimhan - Yee. A mathematical study
about encoded patterns [Grif 92].

Lately used: Davies et al. [Davi 96] in 1996.

1993 Maruyama - Abe. A multiple slits with random cuts
pattern projection [Maru 93].

1995 Ito - Ishii. A Three-Level Checkerboard Pattern. [Ito 95].

1997 Chen-Hung-Chiang-Wu. A uniquely encoded coloured
striped pattern [Chen 97].



Chapter 5

A New Coded Pattern
Projection

This chapter presents a new robust coded pattern projection. 3D measurement
1s based on the projection of a coloured grid pattern on the scene. The pattern
15 coloured-coded in order to solve the correspondence problem by a single shot
and without using geometrical constraints. The technique proposed permits a
rapid and robust 3D scene measurement of dynamic scenes. The chapter also
explains the calibration method we have used and shows some experimental
results of 3D measurement.

5.1 Introduction

Our aim is to present a new approach in order to solve the correspondence
problem in the measurement of 3D data in dynamic (i.e. moving) scenes. It
is known that range information can be obtained by triangulation using a
system based on two cameras. However, two problems are presented. Firstly,
the problem of measuring mostly continuous surfaces, where few matching
points are presented, and even the problem of measuring high textured sur-
faces, where it becomes nearly impossible to solve the matching (see the
previous chapter for a detailed explanation). Secondly, the problem of syn-
chronising both cameras to snap the moving image at the same time. We
propose a new coded structured light technique to solve the correspondence
problem using a single camera. The technique is based on obtaining 3D scene
information from a single pattern shot projection, then it could be used to
measure static and dynamic objects. We have taken into account that the
projecting pattern must be segmented in an easy and robust way, allowing
us to solve the correspondence problem efficiently without high computing

121
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requirements.

5.2 Pattern Design

The pattern is composed by the single projection of a grid made by n x n
orthogonal slits. The slits are coded in such a way that each slit with its
two neighbours appears only once in the whole pattern. Vertical slits are
coded using different colour primitives from the horizontal ones. This fact
permits to segment the vertical slits and the horizontal ones separately, fact
that reduces considerably the computing time. Obviously, vertical slits are
column coded (X axe), and the horizontal ones are row coded (Y axe). This
codification allows us to code: a) each slit on a single axe, and b) each crossing
point on both axes. It is known that, with the goal to obtain a more robust
codification, the projection of slits is more interesting than the projection of
dots. Each imaged cross-point can be decoded obtaining the (X,Y) position
from where it comes, and the imaged slit segments can be decoded knowing
whether it is vertical or horizontal, and, what is more interesting, knowing
one of its two co-ordinates.

The codification used allows us to place the pattern projection system in
any orientation with respect to the camera. It is known that a column coded
pattern has to be placed with an horizontal displacement from the camera.
Note that row coded patterns have to be placed with a vertical displacement.
In our case, we do not have to take care of the location of the camera and
the projector to ensure a determined axe displacement. A schematic draft of
the measuring system is shown in figure 5.1.

5.2.1 Colour Assignment

In this section we describe the algorithm used in order to assign colour prim-
itives to a sequence of slits. We have used a codification similar to the one
used by Griffin et al. [Grif 92]. Our interest is that each slit with its two
neighbours exists only once in the whole sequence, such a grouping is called
triplet. Firstly, we have to define the set of colour primitives we have in
order to colour each slit. If P is the set of primitives, P = {1,2,...,p}, and
for instance, 1 = red, 2 = green, 3 = blue, etc., then, we have to define the
number of slits of the sequence to be coded. And S is the sequence of slits
S = (s1, 2, ..., 8n). However, if the number p of primitives has been fixed,
we have to know the maximum sequence of triplets given by p primitives in
order to know whether the whole sequence S can or can not be coloured.
And the maximum sequence of P is defined as V' = (v, vg, ..., Up,).
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Figure 5.1: Schema of the 3D measuring system based on coded grid pattern
projection.

Let us examine the problem more in detail. Given a set of colour primi-
tives P, we wish to build a sequence of colours so that each triplet of adjacent
colours in the sequence is different from all the other triplets in order to ob-
tain a unique codification. Since there is an overlap of the triplets in the
sequence, the triplets are dependent. The algorithm which allows us to ob-
tain the sequence must take these requisites into account.

The problem can be solved using the graph theory. Given a p basis we can
obtain a set nodes, where each node is defined by a triplet of three elements
of P. As we have to look after the order and only three elements can be
presented in the node, we will obtain V R} = p* nodes. A node is defined by
a triplet ijk | ijk € P. At this point, we can construct the graph. Each ijk
node will have p inputs and p outputs, except the nodes where i = j = k
which will have p— 1 inputs and p— 1 outputs. Then, the problem is reduced
to construct the sequence of triplets by visiting all the nodes of the graph
only once. Note that we can go from node N = ijk to node N’ =i'j'k’ only
if j =4 and k = §'.

Let us illustrate the problem using an example. Consider p = 2, which
gives VRS = 23 = 8 nodes, that is (111), (112), (121), (122), (211), (212),
(221), (222). The following figure 5.2 shows the relation among the nodes.

Then, the algorithm to be used is reduced to visit all the nodes of the
graph only once. We can start at any node. If we consider as starting
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Figure 5.2: The graph obtained from p = 2.

node N = (111), we obtain the path { (111), (112), (122), (222), (221),
(212), (121), (211) }, which gives the maximum sequence of primitives V' =
(1,1,1,2,2,2,1,2,1,1). The problem can be solved by a simple algorithm
based on the backtracking principle [Bras 90]. However, Griffin et al. studied
the problem in detail and they proposed an iterative algorithm, which is the
following,

V= {ppl,p(p— 1)1, ..p11,
(p—1)pl,.., (p— 1)11,
2p1,...,211,1},
{pp2,p(p — 1)2, ..., p22, (5.1)
(p—1)p2,..,(p—1)22,

g eeey

3p2, ...,322,2}

{pp(p—1),p(p—1)(p—1),p — 1},
{ppp}.

As an example of a coloured codification we have computed V' varying p.
Consider the following outputs: for p = 1 then V' = {111}; for p = 2 then
V ={221, 211, 1, 222}; for p = 3 then V = {331, 321, 311, 231, 221, 211,
1, 332, 322, 2, 333} and p = 4 then V = {441, 431, 421, 411, 341, 331, 321,
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311, 241, 231, 221, 211, 1, 442, 432, 422, 342, 332, 322, 2, 443, 433, 3, 444 }.
Removing the commas from V' .forms a sequence of colour primitives. The
following algorithm allows us to obtain the triplets given by equation 5.1, we
have only to fix p.

c=1;
for(k=1;k<=p-1;k++)
{
for(j=p;j>=k+1;j-)
for(i=p;i>=k;i-)
{
V]c++]=j; Vic++|=i; V[c++]|=k;
}
V]c++]=k;
}
V]c++|=p;V]c++]|=p;V[c++]|=p;

As an example of coloured codification we have made a pattern using 6
colours. What is important is that we must choose well-spaced colours in
the HSI cone, as they will be the best segmented ones. That is why we have
decided to colour horizontal slits in red, green and blue ; and the vertical
slits in magenta, cyan and yellow. The slit sequence is obtained by applying
equation 5.1 using a p basis equal to 3, that is P = {1,2,3}. Then, the
primitives have been substituted by 1 = red, 2 = green and 3 = blue to
code horizontal slits; and 1 = magenta, 2 = cyan and 3 = yellow to code
the vertical ones. This codification gives us a unique encoded grid of 29 x 29
orthogonal slits. The slits are constantly spaced in a 512 x 512 image with a
pixel depth of 8 bits, like the one shown in figure 5.3.

The resolution of the pattern may be increased by just changing the p
basis, i.e. using more colour primitives. We can even increase the resolution
reducing the spacing between slits, producing also a reduction of the area
illuminated in the scene. The size of the image can also be changed producing
patterns such as 128 x 128 pixels, 256 x 256 pixels, 512 x 512 pixels, or even
not square matrix such as 433 x 584. So, we can take advantadge varying the
distance among slits or incerasing the size of the image in any axe. Even the
wideness in pixels of the slits is an important constraint in order to measure
the scene accurately without obtaining a lot of discontinuities.

As an example, we have decided to project a 512 x 512 image, with a
pattern of 29 x 29 slits made using a p basis p = 3, and a constant spacing
between segments of 16 pixels in both directions. Finally, the whole pattern
is centred in the image, that is with a space from each side of 32 pixels.
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Figure 5.3: The coloured pattern.

In the aim of testing the proposed pattern, a lab scenario has been set (see
figure 5.4). The system is composed by a RGB camera, a computer and an
electronic slide projector. In figure 5.4, the camera calibrating pattern is also
shown. A 512 x 512 pixel resolution RGB image is made by the computer.
The image is projected on the measuring scene using the electronic slide
projector which takes the image from the VGA computer output.

5.3 System Calibration

The calibration method is based on obtaining the intrinsic and extrinsic
parameters of the camera model and the projecting system model knowing
the co-ordinates of the 3D object points. In fact, the problem is reduced
to the computation of the equations which model the relation between the
3D object points (X, Yy, Z,,) and their 2D observable correspondence point
(X, Y;). Camera and projector devices are modelled using the same equations
as both have the same geometrical behaviour. Then, we will describe the
calibration algorithm without taking into account if it is used to calibrate
the camera sensor or the projector system. However, the section will further
explain how we have calibrated the camera and the projector separately.
Note that both have used the same algorithm of calibration.
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Figure 5.4: The scenario of the 3D measuring system.

5.3.1 Describing the calibration algorithm

The linear relation between a 3D object point and its 2D projection is mod-
elled by a 3z4 transformation matrix. This matrix contains the 6 extrinsic
parameters defined by the three rotation angles («a, 3,7), expressed as a 33
rotation matrix R, and the translation vector T' = (tx,ty,tz); and the 4
intrinsic parameters defined by the projection of the optical centre in the
image plane (ug,vo) and the perspective parameters (o, o, (the reader is
referred to chapter two for a detailed explanation). However, as a result of
some types of imperfections in the design and assembly of the lens compos-
ing the optical system, a linear relation does not hold true. These kinds
of imperfections, known as lens distortion, can be modelled by a radial and
tangential approximation. Radial distortion causes an inward or outward
displacement of a given image point from its ideal location, and it has been
demonstrated to be quite important in camera modelling (see chapter 2 for
a detailed explanation). Radial lens distortion can be approximated by non-
linear equations governed by the first coefficient k;. The relation between
a 3D object point and its observable projective point is then modelled by
the following equations 5.2 and 5.3 (the reader should compare them with
equation 2.27 - 2.30, note that we do not have to take care of the sign of the
parameters as they will be inferred in calibration).

U = Xy— Xg—kir*’Xy;=0 (5.2)
V = Y, ~ Y, —kr?Y; =0 (5.3)

where,
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X, S
Y. |=[R T]]| )* (5.4)
Zw
Ze
1
and,
X,
X, = f=£ :
u f Z. (5.5)
Y,
Y, = f= :
u f 7. (5.6)
X; —
X, = (Xi — up) (5.7)
ke
}/Z._
Y, = (i — v) - o) (5.8)
r? = Xi+Y] (5.9)

Let us consider equation 5.2 and 5.3 as a function G = {GU, GV} which
depends on 11 unknowns. These 11 unknowns are arranged in a vector
called X, that is X = {w0,ul,...,ul0}, for instance, we have fixed X as
vector X = {a, B,7,tx,ty,tz, ky, ky, uo, vo, k1}. We have not included the
focal distance f as an unknown parameter, due to the following relationship,

a, = f ke (5.10)
aw = fky (5.11)

Note that infinite combinations of (f, k., k,) parameters can be obtained
without changing the (a,,a,) values. That is why we have to fix one of the
three parameters, otherwise it becomes unstable as the system has infinite
solutions. Thus we have decided to fix the focal distance f as a constant.

The obtaining of the X vector is the main objective of the calibrating
method. As a result of the inclusion of the lens distortion in the camera
model, G has become a non-linear equation. That is why we have to use an
iterative calibrating method to minimise GG in order to obtain X.

We want to calculate the values of X which solve the equation G(X) =
0 iterating from an initial solution X,. The initial solution is computed
using the linear method of Toscani explained in chapter 2, assuming no lens
distortion (k; = 0). In order to calculate the model including lens distortion
we have used the widely known Newton-Raphson iterative method of function
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minimisation, also explained in chapter 2. Then, from a determined iteration
k, we can approximate the next values of X from the last ones, using equation
5.12. Note that the solution we want to find is vector X of the unknowns
which solves 5.13.

G(Xy) = 0

(5.12)
(5.13)

Then equation 5.14 is derived, which may be solved from the least-squares
method expressed in equation 5.15.

AXy = —J N Xe1)G(Xpr)
AXy = — (J(Xp )T (Xe 1)) X 1)G(Xp 1)

(5.14)
(5.15)

If we consider that n different correspondence matchings are obtained,
then G(Xj 1) is an 2 * n-dimensional vector. J(Xj 1) is an (2 * n)zll ma-
trix in which each column is a partial derivative of G with respect to each
unknown, and each row and evaluation of these derivatives from each corre-
spondence couple of points. AXy is a 11-dimensional vector which contains
the estimated error of the 11 unknown parameters to be determined. Fol-
lowing, each component of equation 5.15 is expressed in more detail.

GUy(Xk-1)
GVo(Xk-1)
GU@(chfl)
G(Xp_1) = 5.16
( k 1) GV; (inl) ( )
GU,(Xk-1)
GV (Xk-1)
0GUY(Xg—1) OGUo(Xk—1) O0GQUy(Xk—1) OGUe(Xg—1) OGUy(Xk—1)
Oa a3 ay Ot x Ok1
OGVo(Xg—1) OGVo(Xp—1) OGVo(Xp_1) OGVo(Xk—1)
oo op oy Ok
OGU(Xy 1) OGU(Xy 1)
J(kal) - 50‘/1?31(1&—1) 5GVz’8(IE%k—1)
oo 8/€1
OGU(Xp_1) OGU, (Xp_1)

o
OG Vi (Xg_1)

Oa

Ok
OG Vi (Xg_1)

Ok
(5.17)
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Equation 5.15 is computed by the iterative algorithm. After each itera-
tion, the error found in each parameter is added to its value obtaining the new
value for the next iteration. We must iterate until equation 5.18 is reached.

AXy < e (5.18)

5.3.2 Calibrating the camera and the projector model

In order to calibrate the system we only have to put the camera and the pro-
jector in the scenario taking into account that the camera can snap properly
the scene illuminated by the projector. When the camera and the projector
have been correctly placed and their lens have been properly focused, the
calibration process starts. Firstly, we have to fix a 3D world reference co-
ordinate system, then, we have to place a 3D known surface in the scene,
usually two orthogonal planes (the so-called calibrating pattern). The planes
of the calibrating pattern have to be orthogonals in order to obtain compo-
nents of the 3D object points with respect to the three axes. This principle
is one of the most commonly used in order to calibrate the system properly.
See also figure 5.4 to view the space relation between the camera, the pro-
jector and the calibrating pattern. In order to simplify the measurement of
the 3D object points with respect to the 3D world co-ordinate system we
have placed it in the lower corner of the calibrating pattern as shown in the
following schema 5.5.

Camera Calibration

In order to calibrate the camera sensor we have to fix a set of 3D object
points on the surface defined by the calibrating pattern. We have decided
to use a pattern made by equidistants black squares, which has been used
by several authors, for instance [Faug 93]. Each square has a size of 30 mm.
x 30 mm. and the distance between squares is 20 mm. in both directions.
Each square defines four vertexes, that is four 3D object points. As our
pattern is made by 2 planes with 20 squares for plane, we obtained a total
of 160 object points, which is enough to calibrate the system. In order to
simplify the measurement of the 3D object points we have moved the world
co-ordinate system as shown in the following schema 5.6, showing also the
position of the squares in the pattern. Figure 5.7 presents the real calibrating
pattern used to calibrate the camera.

Once the 3D calibrating pattern has been fixed in the scene, we have to
grab its image. The position of each square vertex in the 2D image has been
hand-segmented in order to obtain its position accurately in the image plane.



CHAPTER 5. A NEW CODED PATTERN PROJECTION 131

A ZW
Calibratingpm/x
3D object
—— [ _  points

Q,

X AM\ YW

V co-ordinate system. \

Figure 5.5: Schema of the calibrating pattern and its position and orientation
with respect to the world co-ordinate system.
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Figure 5.6: Schema of the pattern used in order to calibrate the camera.
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Figure 5.7: The calibrating pattern of squares.

Then, the association of the 2D object points and the 3D object points is
obtained directly, defining a matrix P of 160 rows and 5 columns (the three
co-ordinates of the 3D object point and the two co-ordinates of its imaged
point). Figure 5.8 shows the image of the calibrating pattern captured by
the camera sensor.

Figure 5.9 shows the position of the square vertexes detected in the image
plane (image points), and figure 5.10 shows the position of the square vertexes
measured with respect to the world co-ordinate system (object points).

The P matrix is the input of the calibrating algorithm defined in the
previous section. We have computed intrinsic and extrinsic parameters using
the method proposed by Toscani, explained in the linear calibration section
of chapter 2. However, the maximum discrepancy between the modelled
projections and the observable points is rather large as it is around 2.8 pix-
els. The main problem is due to the fact that Toscani does not take into
account lens deformation and that it is a non-iterative method. Then an it-
erative algorithm is quite interesting to decrease this discrepancy, readjusting
the intrinsic and extrinsic parameters of the system. We used the iterative
method without modelling the lens deformation and obtained a maximum er-
ror around 1.2 pixels, which improves considerably Toscani’s method. Then,
the lens deformation was modelled. The iterative algorithm starts from the
parameters obtained by Toscani and a null radial distortion. The initial so-
lution was compared with the final parameters. The maximum discrepancy
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Figure 5.8: The image of the calibrating pattern grabbed by the camera.
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Figure 5.9: Position of the 2D image points of the camera.
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Figure 5.10: Position of the 3D object points of the camera.

between the modelled projections and the observable points with the ob-
tained parameters was around 0.0053 pixels. The experiments proved that
once the number of iterations exceeds 20, the accuracy of the system does
not improve substantially. The following table 5.1 shows the initial solution
and the resulting intrinsic and extrinsic parameters obtained by the iterative
algorithm. However, in table 5.1 we have shown only the most significative
decimals, in the model we have used until the 10" decimal.

Projector Calibration

The calibration of the pattern light projector is similar to the calibration of
the camera sensor. However, the obtaining of the matrix P differs a little. Of
course, the measurement of the 2D image point is direct as we know how the
coloured grid pattern has been constructed. The pattern is projected on the
calibrating surface. We have placed two sheets of paper with a milimetrical
grid on the calibrating surface (see figure 5.11).

This metric grid allows us to obtain the 3D position of the object points.
We have used as object points all the crossing points of the coloured grid. In
order to obtain the crossing points we have measured both 3D ending point
positions of each slit, obtaining the equation of the slit in the space. Then,
analysing each slit with the others, we obtain all the crossing points of each
slit, and with this, the set of 3D object points. Associating each 2D object
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Table 5.1: Intrinsic and extrinsic parameters of the camera sensor.

Xo X1 X5 X1o X15 Xa0
a | 1.6605 1.7292 1.7294 1.7294 1.7294 1.7294
6 1-1.2051 | -1.2537 | -1.2537 | -1.2537 | -1.2537 | -1.2537
v 1-3.0980 | -3.0326 | -3.0325 | -3.0325| -3.0325| -3.0325
tx 19.7 -84.5 -84.9 -84.9 -84.9 -84.9
ty 144.9 106.4 106.3 106.3 106.3 106.3
ty; | 1829.4 2414.9 2430.6 2432.1 2432.1 2432.1
f 10 10 10 10 10 10
k., | 316.05 418.07 420.81 421.06 421.07 421.07
k, | 332.57 439.28 442.16 442.42 442.43 442 .43
ug | 223.43 404.47 405.13 405.19 405.19 405.19
vo | 227.25 297.56 297.78 297.80 297.80 297.80
k1 0 | -0.03399 | -0.03496 | -0.03505 | -0.03505 | -0.03505

Figure 5.11: The metric grid used in projector calibration.
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Figure 5.12: Position of the 2D crossing points of the projected pattern.

point with its 3D object point, we have obtained a matrix P of 783 rows and
5 columns. The following figures 5.12 and 5.13 show the 2D image points
and the 3D objects points respectively. Note that we did not use the two
last horizontal slits because they have been projected out of the metric grid,
thus, the 783 crossing points have been obtained by crossing 29 vertical slits
by 27 horitzontal slits.

Taking into account the same considerations already described in the
previous section on camera calibration and using the same iterative algorithm
of non-linear calibration with the 783x5 P matrix, we have obtained the set
of intrinsic and extrinsic parameters which model the projector system. The
following table shows the initial solution obtained also by the linear method
proposed by Toscani, and the parameters obtained iterating the non-linear
model. We have also used 20 iterations in order to minimise the function.

5.4 Accuracy of the method

In order to compare 3D geometric information inferred by the proposed coded
structured light system and the real 3D information of the scene, we have
projected the coloured pattern on the calibrating plane. The calibrating
plane has a dimensions of 230 mm. with respect to each axe X,, Y, and
Zy. Several object points have been placed on the calibrating plane surface.
We have measured the 3D real point, and we have inferred the 3D object
point from both projective 2D points. The (X, Y, Z) error measured is
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Figure 5.13: Position of the 3D crossing points of the projected pattern.

Table 5.2: Intrinsic and extrinsic parameters of the pattern projector.

Xo X1 X5 X10 X5 X0

o | 1.8091 1.7001 1.7507 1.7511 1.7511 1.7511
G |-0.7090 | -0.6994 | -0.7041 | -0.7042 | -0.7042 | -0.7042
v 1-2.9961 | -3.0648 | -3.0326 | -3.0324 | -3.0324 | -3.0324
tx -79.8 -42.7 -61.6 -61.8 -61.8 -61.8
ty -82.7 49.9 -13.7 -14.3 -14.3 -14.3
ty; | 1772.1 1892.3 1911.4 1910.8 1910.8 1910.8
7 10 10 10 10 10 10
k, | 251.93 269.80 272.88 272.80 272.80 272.80
k, | 261.31 279.77 282.74 282.66 282.66 282.66
ug | 376.22 323.72 350.45 350.82 350.82 350.82
vo | 560.45 365.65 459.30 460.09 460.09 460.09
ky 0 | -0.00308 | -0.00312 | -0.00309 | -0.00309 | -0.00309
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Table 5.3: A sample of the analysed object points.

Ue Ve Up Vp Ty Y Zp Tm Um Zm
210 69 144 96 102 0 229 101.99 1.21 228.39
530 344 416 320 0 159 92 0.78 159.62 91.31
430 78 352 96 0 93 230 1.15 94.43 229.84
202 466 160 416 90 0 22 89.02 -0.09 21.72

the discrepancy between real co-ordinates and the inferred ones. We have
measured the error in approximately 100 points. Table 5.3 shows a sample of
4 object points with their 2D projections on the camera image plane (u., v.)
and in the pattern frame (u,,v,), their real 3D co-ordinates (z.,y., z-) and
the 3D co-ordinates obtained by our method (%, Ym, 2m)-

The average values of the error deviate 0.728 mm.(0.31 %) from the X,
axe, 0.624 mm. (0.27 %) from the Y,, axe, and 0.465 mm.(0.20 %) from the
Z,, axe. However, the maximum error deviate 1.15 mm. (0.5 %) from the
Xy axe, 1.43 mm. (0.62 %) from the Y,, axe and 0.68 mm. (0.29 %) from
the Z,, axe. The results are quite interesting if we take into account that the
deviation degree is highly influenced by the segmentation process, i.e by the
image noise and the problem of grabbing the projected lines of the pattern
with different thickness due to different depth projections.

5.5 Measuring three-dimensional objects

Once the camera and the projector have been calibrated, the system is al-
lowed to reconstruct 3D information of an object point from its projective 2D
points. The algorithm of reconstruction from non-linear calibration explained
in section 2.4.2 has been used. Obviously, if the position and orientation of
the camera or the projector in the space is modified, then, the system has to
be re-calibrated, as the intrinsic and extrinsic parameters have changed.
The RGB camera snaps an image of the pattern projected on the scene
that we want to measure. A RGB-PAL 768 x 576 x 24 bit image is grabbed.
The image is captured by a Matrox Comet acquisition card into the mem-
ory of a PC Pentium. At this point straight lines are explored in order
to detect cross-points. Cross-points are the tokens used as image points to
obtain 3D information of the captured scene. The cross-points have been
hand-segmented. Using the coloured codification of the slits which form the
cross-point in the image plane, the matching, i.e. the determination of the
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Figure 5.14: A scene composed by three geometric objects. a) The real scene
(not used to infer 3D information); b) The scene illuminated by the coloured
pattern.

position of the same point in the projector image plane, is carried out. Then,
3D object point co-ordinates are obtained from both 2D positions of their
projective points in the image plane and in the projected pattern, respec-
tively.

In the following, two examples of 3D measurement of static objects is
shown and discussed. As examples we have chosen the measurement of a
scene made by three geometrical objects, and the measurement of a face
mask. Furthermore, two examples of dynamic scene measurement are shown.
Both examples are based on the measurement of a human hand. In the first
example, range information of the palm of the hand is obtained. The second
example illustrates the obtaining of the range information from the back of
the same hand after a movement.

5.5.1 Example : Measuring geometrical objects

The first example is composed by a scene with three geometric and achro-
matic objects illuminated by the coloured pattern, as shown in figure 5.13.
Figure 5.14 shows the measured correspondence points in the projector and
camera frame, and figure 5.15 shows the 3D reconstruction.

5.5.2 Example : Measuring a face mask

The second example is based on the 3D reconstruction of a face mask, see
figure 5.16. Figure 5.17 shows the measured correspondence points in both
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Figure 5.15: The matching obtained. a) The Matching points from the 576
X 768 camera image plane, b) The Matching points from the 512 x 512
projected pattern frame.
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Figure 5.16: The reconstruction of the 3D objects. a) A perspective view
from the right side. b) A top view.
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Figure 5.17: A scene composed by a face mask. a) The real scene (not used
to infer 3D information); b) The scene illuminated by the coloured pattern.

frames and figure 5.18 the 3D reconstruction.

5.5.3 Example : Measuring the palm of a hand

The third example is based on the 3D reconstruction of a human palm, see
figure 5.19. Figure 5.20 shows the measured correspondence points in both
frames and figure 5.21 the 3D reconstruction. In this case, we have reduced
the distances among slits in order to increase the resolution of the system,
then, we have projected the same coloured grid pattern made in a 256 x 256
image.

5.5.4 Example : Measuring the back of a hand

The fourth example is based on the 3D reconstruction of a human back
hand, see figure 5.22. Figure 5.23 shows the measured correspondence points
in both frames and figure 5.24 the 3D reconstruction. In this case, we have
also reduced the distances among slits in order to increase the resolution of
the system, then, we have projected the same coloured grid pattern made in
a 256 x 256 image.
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Figure 5.18: The matching obtained. a) The Matching points from the 576
x 768 camera image plane, b) The Matching points from the 512 x 512
projected pattern frame.
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Figure 5.19: The reconstruction of the face mask.
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Figure 5.20: An illuminated human palm.

Figure 5.21: The matching obtained. a) The matching points from the
576x768 camera image plane. b) The matching points from the 256x256
projector pattern frame.
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Figure 5.22: Reconstruction of the human palm.

Figure 5.23: An illuminated back hand.
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Figure 5.24: The matching obtained. a) The matching points from the
576x768 camera image plane. b) The matching points from the 256x256
projector pattern frame.
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Figure 5.25: Reconstruction of the human back hand.



Chapter 6

Conclusions

This chapter presents the conclusions of this work. Further work is also
analysed considering some ways through which the research can continue.
Finally, the chapter lists the articles directly related with the thesis, and other
research contributions that have been published.

6.1 Conclusions

As conclusions of the work done in this thesis, it can be affirmed that:

The problem of camera calibration has been described in detail, analysing
the contribution of each intrinsic and extrinsic parameter in the whole camera
model. Two models have been discussed, the linear model without consid-
ering the lens distortion, and the non-linear model which takes into account
the lens distortion. The process used to calibrate the camera has also been
analysed. With respect hereto, we have described the Toscani method of lin-
ear camera calibration, and the iterative method of Newton-Raphson which
has been used in non-linear camera calibration.

The problem involved with stereo vision systems of solving the match-
ing between two correspondence points has also been described. We have
analysed the correspondence problem and one of the most powerful tools
that are used in the scientific community to reduce it. In fact, the epipolar
geometry has been described in detail, and we have presented the equations
which permit to reduce the two-dimensional search of the matching point to
a one-dimensional one.

It has been demonstrated that an easy way to solve the correspondence
problem, is substituting a camera by a pattern projector which is known as
a structured light system. Structured light can solve the problem of points
without match, but it can not solve the problem of multiple matching. Then,

146
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we have presented coded structured light which has been used in order to
solve completely the correspondence problem. A survey of the most inter-
esting techniques which are based on coded pattern projection has been pre-
sented and each technique has been analysed and discussed in detail.

Furthermore, we have presented a new coded structured light pattern,
which can be used in order to solve the correspondence problem in 3D surface
measurement. Most of the techniques presented in the survey are based on
single axe codification. The proposed pattern is coded with respect to both
axes, which has been demonstrated to obtain more accurate results. 3D
information is obtained by a single pattern shot. This principle allows the
system to be used in the measurement of moving objects, which is another big
challenge in coded structured light. The pattern design has been explained.
The system is made by grid pattern projection based on coloured coded slits.
The principle of codification is based on the mathematical study proposed
by Griffin et al. [Grif 92]. However, we are only interested in the maximal
sequence of triplets that can be obtained from a determined number of colour
primitives. Vertical and horizontal slits are coloured using three different
colours, obtaining a unique-encoded grid pattern of 29 x 29 orthogonal slits.
Then, a unique match is obtained between the grabbed pattern and the
projected one, solving the correspondence problem.

The whole system made by an imaging sensor and the pattern projector
has been calibrated using a non-linear calibration algorithm, taking into ac-
count lens distortion. Finally, four examples of 3D object measurement are
shown. We have tested the system measuring two static scenes: one scene
consisting of geometric objects and another one consisting of a face mask.
Furthermore, we have tested the system measuring two dynamic scenes con-
sisting of a human hand.

The projection of coloured patterns may not be used in the measurement
of coloured surfaces. However, using our pattern, the measurement of low
saturated or pale surfaces is allowed. As we project a reduced number of
well-defined colours, small colour discrepancies between the projected colour
and the captured one are permitted.

The proposed measuring system can be used in several applications of
3D object measurement. For instance, it can be used in the measurement of
objects which move due to the displacement of a conveyor as an industrial
application. Although the same problem can also be solved using a single
laser slit projection, our system can measure the object without scanning,
which may reduce the computing time.

The pattern can also be used as a system which takes range information
of the surrounded scene of a mobile robot. In such a way, the resolution of
the pattern may vary dynamically in order to grab always the best image,
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which can be done re-programming the digital projector and, what is more
important, without re-calibrating the system. Of course, we have to adjust
the number of slits as a result of the complexity of the scene and the permitted
computing time. However, one of the big challenges is to self-calibrate the
measuring system in order to grab always a focused image of the scene.
This is a hard problem which involves one of the most interesting topics
in computer vision and it has been proposed as a further research in the
following section.

6.2 Further Work

The work presented in this thesis has two main subjects of further research:

Firstly, we have not studied the behaviour of the coloured grid pattern
when it is projected on a scene made by coloured objects. Obviously, a
frequency shifting is suffered by the colour captured by the camera with re-
spect to the colour projected by the pattern due to the intrinsic colour of
the measuring objects. If the pattern colours are well chosen, this discrep-
ancy may allow us to obtain the intrinsic colour of the scene objects. Then,
the proposed system could be used to obtain 3D information and coloured
information of any scene by a single pattern shot projection.

Secondly, we are also interested in the possibility of using coded structured
light techniques to measure a wide range of depth distances, which is essential
in order to use the proposed pattern in mobile robot navigation. Such large
range of depths forces us to self-calibrate the system dynamically, that is,
without human interaction, which means that the co-ordinates of the 3D
object points are unknown in calibration. In this case, we are thinking of
using a stereo vision system based on two cameras and a pattern projector
in order to obtain 3D information without a calibration of the projector but
a self-calibration of both cameras. It is known that a pattern projector can
not be self-calibrated as it does not fulfil the principle of static 3D objects
points while the system is calibrated. Then, the projecting pattern can be
used as a simple tool which permits to solve the matching, along the epipolar
lines of both cameras, by colour comparing between both imaged scenes.

6.3 Publications related with the thesis

The publications obtained from the work of this thesis are the following:

1. J. Salvi and J. Batlle. Contribution of the Mobile Navigation in Struc-
tured Indoor Environments using Laser Beam Patterns. Int. Symp. on
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Lasers, Optics, and Vision for Productivity in Manufacturing I. SPIE
- The International Society for Optical Engineering, EUROPTO ’96,
Vol. 2785, Besangon (France), June 1996.

. E. Mouaddib, J. Salvi and J. Batlle. A Survey: Coded Structured
Light. Research Report No. LSA / CSL / 96, Laboratoire des Systemes

Automatiques, Universite de Picardie - Jules Verne, Amiens (France),
July 1996.

. E. Mouaddib, J. Batlle and J. Salvi. Recent Progress in Structured
Light in order to Solve the Correspondence Problem in StereoVision.
IEEE Int. Conf. on Robotics and Automation, ICRA ’97, Vol. I, pp
130-136. Albuquerque (USA), April 1997.

. J. Salvi, E. Mouaddib and J. Batlle. An Overview on Self-Calibration:
Application to Coded Pattern Projection. Research Report No. LSA
/ OCC / 97, Laboratoire des Systemes Automatiques, Universite de
Picardie - Jules Verne, Amiens (France), April 1997.

. J. Salvi, E. Mouaddib and J. Batlle. An Overview of the Advan-
tages and Constraints of Coded Pattern Projection Techniques for Au-
tonomous Navigation. IEEE Int. Conf. on Intelligent Robots and
Systems, TROS 97, Vol. III, pp 1264-1271. Grenoble (France), Sep-
tember 1997.

. J. Batlle, E. Mouaddib and J. Salvi. A Survey: Recent Progress in
Coded Structured Light as a Technique to Solve the Correspondence

Problem. Int. Journal of Pattern Recognition, PR. Pergamon Press,
Oxford. Accepted to be published.

. J. Batlle, J. Salvi and E. Mouaddib. Unique-Encoded Coloured Grid
Pattern Projection for Dynamic Measurement of Moving Scenes. IEEE
Int. Conf. on Robotics and Automation, ICRA ’98. Leuven (Bel-
gium), May 1998. Submitted.

. J. Salvi, J. Batlle and E. Mouaddib. A Robust-Coded Pattern Pro-
jection for Dynamic 3D Scene Measurement. Int. Journal of Pattern
Recognition Letters, PRL. Elsevier Science, The Netherlands. Sent in
September 1997. Submitted.

6.4 Other Research Contributions

Following, a list of other research contributions of the author is related.
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1. J. Salvi, LI. Pacheco and R. Garcia-Campos. A Mobile Robot for
Research Experimentation. In Proc. World Automation Congress,
Robotics and Manufacturing Vol. 6, pp 745-750. Montpellier (France),
May 1996.

2. J. Forest, R. Garcia-Campos and J. Salvi. Position, Orientation Detec-
tion and Control of Mobile Robots through Real Time Processing. In
Proc. World Automation Congress, Robotic and Manufacturing Sys-
tems Vol. 3, pp 307-312. Monpellier (France), May 1996.

3. J. Salvi. Co-Chair of the ThRS8 - "Experimental Robot Design’ Session.
ISRAM Sixth International Symposium on Robotics and Manufactur-
ing. World Automation Congress. Montpellier (France), May 1996.

4. R. Garcfa-Campos, J. Salvi, L.Pacheco” Una Plataforma para la Exper-
imentacién”, SAAEI - Seminario Anual de Automaética y Electrénica
Industrial Vol. I, pp 467-470. Zaragoza (Spain), September 1996.

5. J. Salvi, P. Ridao and J. Batlle. Accurate Measurement of Mechanical
Deviation using Laser Beams and Computer Vision. 30th. Int. Symp.
on Automotive Technology and Automation. Vol. Laser Applications
in the Automative Industries, pp 415-422. Florence (Italy), June 1997.

6. J. Batlle, P. Ridao and J. Salvi. Integration of a Teleoperated Robotic
Arm with Vision Systems using CORBA Compatible Software. 30th.
Int. Symp. on Automotive Technology and Automation. Vol. Ro-
botics, Motion and Machine Vision in the Automative Industries, pp
371-378. Florence (Italy), June 1997.
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