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Control Visual basat en Llum Estructurada

Resum

El rerafons d’aquesta tesi es troba en la confluencia de la robotica i la visié per com-
putador. Avui dia els robots es troben cada cop més integrats en les nostres vides: des
de manipuladors articulats que desenvolupen tasques repetitives i pesades en la industria,
passant per a robots mobils o submarins utilitzats per a ’exploracié d’entorns desconeguts,
fins a robots humanoides o altres formes animals dedicats al lleure.

Tot robot, a diferencia d’'un automat convencional, ha de ser capa¢ de coneixer no
només el seu estat intern, perod també l'estat del seu entorn. Aquest coneixement 1’ha
d’ajudar a adaptar-se als canvis i reaccionar convenientment. Per tal d’obtenir informacié
de ’entorn existeixen diferents tipus de sensors. Molts d’aquests sensors intenten imitar els
sentits humans, des del tacte fins a la visid, el sentit més desenvolupat de 'home. La visid,
entre d’altres coses, ens permet reconeixer colors, formes, textures i obtenir informacié
de profunditat. Aquesta ultima és de gran importancia ja que ens permet moure’ns i
interaccionar facilment amb ’entorn tridimensional on vivim.

L’element que permet a ’home interactuar amb el seu entorn és la percepcié que li
proporciona una interpretacié global del que I'envolta. Una gran part d’aquest coneix-
ement ve proporcionat per la visid. Analogament, fer que un robot actuil gracies a la
informacié proveida per un sistema de visié per computador és una de les arees de recerca
més prometedores. En aquest sentit, una de les tecniques que ha pres més rellevancia
durant I'altima decada és I'anomenat ”control visual”, conegut en I'ambit cientific com
a ”visual servoing”. L’objectiu d’aquesta teécnica és controlar els moviments d’un robot
a partir de certs elements visuals extrets de les imatges proporcionades per una camera
acoblada al robot. Per fer-ho, el control visual modelitza la variacié dels elements visuals
deguda al moviment del robot. A partir d’aquesta relacid, es construeix un lla¢ de control
basat en reconeixer els mateixos elements visuals en cada imatge i moure el robot per tal
que arribi a un estat desitjat predefinit. Aquest estat ve caracteritzat pels elements visuals
tal com sén percebuts en aquesta posicio.

Un dels problemes del control visual és que no és aplicable quan 1'objecte observat
és poc texturat, té aspecte massa complex o quan les condicions d’il-luminacié sén poc
favorables. En aquests casos, no és possible d’extreure elements visuals de forma fiable ni
fer-ne el seguiment en la seqiiencia d’imatges percebuda pel robot en moviment. Aquesta
tesi proposa una solucié a aquest problema: la utilitzacié de la llum estructurada. La
utilitzacié d’un dispositiu capag¢ de projectar un patré de llum sobre I’escena és un recurs
ampliament utilitzat en visié per computador. La utilitzacié més corrent la trobem en el
camp de la visié 3D. En aquest cas s’utilitza una camera i un video-projector que projecta
un patré codificat. Si els dos dispositius es calibren, per tal d’obtenir la seva posicié
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relativa i els seus parametres intrinsecs, és possible de triangular punts 3D de l’escena
il-luminats pel patro.

El potencial de la combinacié de la llum estructurada amb el control visual és molt
gran. D’una banda, perque existeixen pocs treballs precedents en aquest camp, i de ’altra,
perque aquesta tesi presenta un estudi rigords on es demostren una serie d’aportacions.
Una de les avantatges de que el robot projecti un patré de llum codificada en ’area de
treball és que fer el seguiment d’elements visuals proporcionats pel patrd resulta fiable
i robust, independentment de l'aparenca de 'objecte. Aquests elements visuals poden
ser utilitzats en el llag de control visual. A més, ja que el disseny del patré de llum es
pot canviar, es poden escollir aquells elements visuals que siguin més robustos pel tipus
d’objecte, condicions d’il-luminacié, objectiu de la tasca, etc.

La tesi presenta, en primer lloc, ’estudi dels diferents patrons de llum estructurada
codificada existents en ’actualitat. L’estudi culmina amb una proposta de classificacio
consistent, i amb resultats experimentals comparatius de reconstruccié 3D de les tecniques
més representatives. A partir d’aquest estudi, s’han pogut identificar els avantatges i
inconvenients de les teécniques més utilitzades. Aix0 ha permes dissenyar un nou patréd
que millora les prestacions de tecniques existents similars.

En segon lloc, es presenta un primer pas per a la utilitzacié de patrons codificats per
al control visual de robots. S’ha escollit un dels patrons estudiats previament per tal de
posicionar la camera acoblada a un manipulador articulat per respecte a diferents objectes.
Cal remarcar que és la primera vegada que es realitza una tasca similar utilitzant elements
visuals proporcionats per una patré de llum codificada.

Finalment, s’ha abordat un dels objectius més ambiciosos d’aquesta tesi: demostrar
que una eleccié apropiada del patré de llum estructurada aconsegueix optimitzar la llei
de control visual. Per tal de fer-ho, s’ha escollit una tasca classica en control visual:
posicionar la camera del robot de manera que es col-loqui en paral-lel a un objecte pla. La
proposta consisteix en utilitzar un patré de llum projectat per punters laser acoblats a la
camera. La distribucié i orientacié dels lasers ha esta dissenyada per tal de proporcionar
un conjunt d’elements visuals que aconsegueixen:

e Obtenir una llei de control desacoblada: cada element visual controla un grau de
llibertat de la camera.

e Robustesa a errors de calibracio de la camera i els lasers.
e Optimitzar la trajectoria de la camera en ’espai.

e Realitzacié de la tasca de posicionament amb objectes que no contenen els seus
propis elements visuals.

Tots aquests els treballs desenvolupats han estat validats a través de resultats analitics,
de simulaci6 i experimentals.
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Chapter 1

Introduction

The confluence of robotics and artificial vision constitutes the framework of this thesis.
This chapter presents a general overview of the topics involved in the thesis as well as its
motivation and objectives. In addition, the outline of the the thesis is presented at the end
of the chapter.

1.1 Robots and visual perception

Nowadays two main concepts linked to the term “robot” prevail. One of them, which
can be considered as the most extended among people, conceives a robot as a human-
like machine which is able to think, sense, act and even feel as humans do. Therefore, a
robot is seen as an entity in which both the human anatomy an intelligence are modelled.
This definition can be extrapolated to other life forms. Such a romantic concept has
been strongly influenced for the vast literary work and filmography produced over the
last century. An alternative interpretation of the term robot, and the most realistic one,
arises from the scientific community. In this case a robot refers to any machine which is
able to fulfill a physical task autonomously or supervised by an operator [Schilling, 1990].
This concept, which probably deceives most science-fiction readers, better fits our current
limitations when trying to model and imitate human or animal gaits and, predominantly,
when modelling intelligent behaviours.

Surprisingly, the term ”"robot” was not initially adopted by a scientist but by the Czech
writer Karel Capek who first used this word in 1920 in his play "R.U.R.” (Rossum’s Uni-
versal Robots) [Capek, 1970]. In his native language, "robota” refers to a tedious labour.
This can be considered the main joint between the literary and the scientific concepts:
a robot is intended to perform hazardous, dangerous, heavy or repetitive tasks. Indeed,
it has been the main goal of the robots built since the second half of the twentieth cen-
tury: industrial robots used in manufacturing lines, automotive industry, mine finding,
land /underwater /space exploration, manipulation of radioactive materials, etc. In indus-
trial environments, the most typical configuration consists of articulated robots which
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attempt to mimic the human arm. Such structure provides an efficient solution for ap-
plications like assembling, loading, welding or painting. Nevertheless, other type of robot
taxonomies are widely used as wheeled and walking robots, which are more suitable for
certain applications like navigation, cleaning, transport or even entertainment.

Some authors consider the programmable automates the first generation of robots.
However, while programmable automates are only able to know their internal state, robots
have the possibility to interact and change its surrounding world by perceiving it and
adapting it to its changes. That is why different types of sensors are being increasingly
used in robotics such as: tactile sensors, force sensors, proximity sensors, ultrasonic sensors
and optical sensors. All these sensors allows a robot to obtain data describing the state
of the world analogously to the senses for humans.

Vision is the physical sense consisting of the ability to detect light and interpreting
the images formed in our brain in order to perceive and understand the environment.
Vision is the most important and developed human sense, which allows us to perceive
colour, texture, shape and depth. Analogously, computer vision is a subfield of artificial
intelligence that investigates how to make computer algorithms which are able to perceive
and understand the world through images. Roughly, computer vision tries to emulate
the visual perception of the human being from the first stage of light detection till the
complex task of understanding what is being perceived. In this case, light is detected by
cameras, while the high level tasks of image understanding are processed by using computer
algorithms. The goal of achieving a comprehensive perception of the world by computer
vision is still far from being attained. The main reason is that the way how the human
brain functions is still pretty unknown. Hence, the computer vision community is still
handling with low-level problems related to vision like colour and texture perception and
intermediate-level problems like motion detection, depth and shape acquisition and object
recognition. Another reason which makes hard to emulate the human perception is that
we, humans, take profit of our active perception capabilities in order to optimise perceptive
tasks. For example, we can converge or diverge the eyes, move the head, change our point
of view, etc. The use of these capabilities in order to optimise the perception tasks is
also an important research field in computer vision known as active vision [Aloimonos et

al., 1987].

Among the perception tasks, depth perception is a very important ability for moving in
and interacting with the three-dimensional world where we live. It is well known that the
human ability of perceiving depth is based on the binocular stereopsis formed by the eyes.
The slightly different position of the eyes on the head provokes that an object appears
in different horizontal positions in each image provided by each eye. This difference on
relative positions, known as disparity, gives a cue about the object’s depth. Computer
vision tries to copy human stereopsis by using two cameras as if they were two eyes in
what is called passive stereovision [Hartley and Zisserman, 2000]. An alternative consists
in using a single camera and moving it to different known positions for perceiving the scene
from multiple points of view. This approach is known as structure from motion [Huang
and Netravali, 1994]. Furthermore, disparity variations on a sequence of stereo images
can be used for rigid motion estimation [Armangué et al., 2003; Perez de la Blanca et
al., 2003].
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Stereovision is one of the most important topics in computer vision since it allows the
three dimensional position of an object point to be obtained from its projective points
in the image planes [Faugeras, 1993]. The most difficult problem in stereovision is the
determination of homologous points in two images, i.e. determining which pair of pro-
jective points represent the same three dimensional point. This problem is known as the
correspondence problem, which is the main limitation of stereovision since once it is solved
all has been already formalised [Faugeras, 1993]. Even if a set of geometrical constraints,
known as the epipolar geometry [Zhang, 1998], is able to simplify the correspondence prob-
lem, it is not a definitive solution. For example, the correspondence problem cannot be
solved when observing non-textured objects, when points only appear in one of the images
due to a surface occlusion, when points are multiply matched between the images or under
adverse lighting conditions.

A solution to the correspondence problem is provided by active stereovision. This
technique is called active not because it uses active vision but because it is based on
changing the lighting of the scene by projecting structured light on it. The use of structured
light solves the limitation of passive stereovision when observing non-textured objects.
The former structured light techniques were based on projecting simple primitives like a
single dot or a single line of light, usually provided by lasers. The advantage of projecting
such structured light primitives is that the correspondence problem of the illuminated
points in the images is directly solved. Nevertheless, the number of correspondences per
image is very small. In order to increase the number of correspondences, structured light
patterns were introduced like arrays of dots, stripes, grids or concentric circles. However,
with this solution the identification of different pattern regions in the images becomes
ambiguous so that the correspondence problem is not directly solved. This fact provoked
the emergence of coded structured light [Batlle et al., 1998]. In this case, the projected
patterns are coded so that each element of the pattern can be unambiguously identified
in the images. Therefore, the aim of coded structured light is to robustly obtain a large
set of correspondences per image independently of the appearance of the object being
illuminated and the ambient lighting conditions.

1.2 From sensing to acting: an approach based on

visual servoing and structured light

Humans interact with the environment thanks to a global interpretation of the world.
A great part of this knowledge is provided by vision. Similarly, making robots interact
with their environment by using computer vision perception remains as one of the most
exciting research subjects for the scientific community. Performing robotic tasks by using
a comprehensive interpretation of the environment, as humans can do, is not yet realistic.
Therefore, the tasks must be performed by using cues provided by lower levels of perception
like colour, texture and shape recognition and depth perception. Many approaches derived
from these types of visual perception have been applied in robotics during the last 20
years [DeSouza and Kak, 2002].
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One of the approaches that have obtained more relevance in the last years is known as
visual servoing or visual servo control [Hutchinson et al., 1996]. This type of approach is
based on executing robotic tasks by using a set of features provided by visual perception
known as wvisual features. Concretely, the goal of the task, or desired state, is defined with
the features as they are perceived in such state. Then, in any other state where the goal
is not attained, the current perceived features are compared to the desired ones and an
action suitable for converging to the desired state is generated. This process is made with
a control loop based on visual feedback, in order to adapt to changes in the environment
and to make more robust the execution of the task. In order to correctly generate the
action, visual servoing models the link between the variation of the visual features and
the robot kinematics. Typical applications of visual servoing are robot positioning with
respect to static objects or target tracking.

One of the key points in visual servoing is the extraction of features from images,
which is a classic problem of computer vision. For example, if points [Feddema et al.,
1991], lines [Andreff et al., 2002] or regions [Chesi et al., 2000] are used as features, it is
necessary to extract the same elements in the image corresponding to the desired state
and the image of the current state. In the beginning, the problem was usually simplified
by positioning artificial landmarks in the scene. Nowadays more sophisticated computer
vision algorithms have been adopted in visual servoing in order to deal with objects with
complex textures or natural and unstructured scenes [Tahri and Chaumette, 2004; Collewet
et al., 2004]. Another key point in most visual servoing approaches is the need of matching
the visual features between images taken in different states or different points of view. We
remark that this problem has a great analogy with the correspondence problem related
to passive stereovision. Therefore, visual servoing is unable to deal with non-textured
objects, with objects for which extracting features is very complicated, or with adverse
lighting conditions.

Coded structured light appears as a potential solution to the problems of visual servo-
ing when dealing with non-textured or too complex objects. Furthermore, visual servoing
based on features extracted from structured light has not been deeply studied up to date.
Therefore, it seems very reasonably to study the potential contributions of a structured
light approach to visual servoing. In this field, there are open issues that must be inves-
tigated like how structured light can be used for enlarging the application field of visual
servoing and specially, how it can be used for optimising the link from sensing to acting
in order to obtain a robust control law.

1.3 Context and motivations

This thesis has been developed in the context of several research projects from the Catalan,
Spanish and French governments. The thesis has been funded by a fellowship from the
Ministry of Universities, Research and Information Society of the Catalan Government.

A part of the thesis has been made within the VICOROB group' of the University

!Computer Vision and Robotics Group. vicorob.udg.es
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of Girona, counting with a total of 26 members between researchers and PhD students.
The research areas of the group are underwater robotics and vision, mobile robotics, 3D
perception and image analysis. The research activities are currently supported by several
national projects and an European project, like the development of autonomous under-
water vehicles, monitoring the deep seafloor on the mid-Atlantic ridge or mammographic
image analysis based on content. The work specifically developed in this thesis has been
partially funded by the following Spanish projects:

e The MCYT? project TAP3 1999-0443-C05-01 from 31/12/99 until 31/12/02. The
aim of this project was the design, implementation and accuracy evaluation of mobile
robots fitted with distributed control, sensing and a communicating network. A
computer vision based system was developed for providing the robots the ability
of exploring an unknown environment and building a dynamic map. This project
took part of a bigger project coordinated by the Polytechnic University of Valencia
(UPV) and integrated both the Polytechnic University of Catalonia (UPC) and the
University of Girona (UdG).

e The MCYT project TIC* 2003-08106-C02-02 from 01/12/03 until 30/11/06. The
aim of the global project in which it is integrated is to design and develop FPGA-
based applications with fault tolerance applied to active vision-based surveillance
tasks in large surfaces like airports and train stations. Some of the tasks involved
are automatic detection of dangerous situations or suspicious behaviours, and people
tracking. The project is developed in collaboration with the UPV.

Some research areas in these projects were out of the field of the group. For example,
the first project required to develop robot navigation tasks like obstacle avoidance based
on computer vision while the second one requires to control a camera for surveillance ap-
plications. In both cases, active stereovision based on structured light was aimed to be
integrated in order to enlarge the application field to unstructured environments. Further-
more, the requirements of these and other tasks seemed to fit on the field of visual servoing,
which was not being studied in the VICOROB group. Then, the need of starting a col-
laboration with a first order research centre in this field arose. That was the origin of the
collaboration with the LAGADIC group (initially integrated in the VISTA group) at the
IRISA’® in Rennes, in France. This group takes part of the French institute INRIAS. The
main research axis of the LAGADIC group are visual servoing, image processing and 31D
localisation applied to robotics, animation and augmented reality. The first collaboration
consisted of a stay of 3 months between 2002 and 2003 where the fundamentals of visual
servoing were studied under the supervision of Dr. Francois Chaumette, director of the
group. At the end of the stay, a three-part collaboration between the VICOROB group,

ZMinisterio de Ciencia y Tecnologia
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the LAGADIC group and the CEMAGREF” of Rennes was planned for the following
years.

The CEMAGREF is formed by several research centres in France where one of the
research topics is the equipment engineering for the agrifood industry. PAIC & is one of
the research groups in Rennes. One of its projects, directed by Dr. Christophe Collewet,
is related to the traceability of meat products in an industrial chain by using vision and a
robot manipulator. Due to the difficulty for positioning the robot with respect to products
like pieces of pork, a solution based on combining structured lighting and visual servoing
had been suggested. Then, due to the common research points between the problem being
treated by the CEMAGREF and the research being developed at the VICOROB group,
a natural collaboration arose thanks to the mediation made by the LAGADIC group.

A joint thesis was signed between the University of Girona and the University of
Rennes. The aim of the thesis was directed to develop visual servoing approaches based
on the projection of structured light for enlarging the field of robotic applications in
unstructured or complex environments or adverse lighting conditions. A research project
has been funded by the CEMAGREF from 01/01/04 until 31/12/05 in order to finance part
of the research, technologic investments and conference attendance for dissemination of the
scientific results. The aim of the project is to design, implement and integrate structured
light sensors in a 6-degrees-of-freedom robotic cell for positioning tasks. Furthermore,
another objective is to study the contribution of structured light for obtaining a robust
control law in visual servoing.

Two times six months in Rennes were planned. The stays were supervised by Dr.
Joaquim Salvi (from VICOROB), Dr. Francois Chaumette (from LAGADIC) and directed
by Dr. Christophe Collewet (from CEMAGREF). The aim of these stays was to correctly
develop the thesis by taking profit of the deep knowledge on structured light from the
VICOROB group and the expertise on visual servoing of the LAGADIC and PAIC groups.

1.4 Objectives

The main objective of this thesis consists in developing techniques for visual control of
robots based on the use of structured light. This goal is motivated by the need of execut-
ing positioning tasks in robotics with respect to non-textured objects or those for which
extracting visual features is too complicated.

In visual servoing, the most typical configuration is based on attaching a camera to
the end-effector of a robot. Then, the goal consists in ”moving” the camera to a position
where a given desired image is attained. When no visual features can be easily extracted
from the images, the use of structured light can greatly simplify this problem.

In a first stage, it is necessary to study the large variety of patterns existing in struc-
tured light. The largest taxonomy of patterns appears in coded structured light. This
evolution of classic structured light is able to obtain unambiguous correspondences by

"French Institute of Agricultural and Environmental Engineering Research. www.cemagref.fr
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including a coding strategy on the projected patterns. A comprehensive knowledge on the
state of the art of these techniques is fundamental in order to distinguish which patterns
are suitable for being used in visual servoing applications.

The use of both structured light and coded structured light in a visual servoing frame-
work needs further investigation. There are very few works addressing this combination.
There is a lot of uncertainty on how these techniques can contribute to visual servoing.
First of all, it seems clear that projecting light patterns can introduce visual features
independently of the object appearance. A second more ambitious objective is to study
whether a specific design of the projected pattern can lead to the optimisation of the visual
based control law.

1.5 Thesis outline

At first a comprehensive study of coded structured light as a technique for solving the
correspondence problem is addressed in Chapter 2. Coded structured light is a superset of
techniques including the case of non-coded patterns like laser spots, planes, or grids. The
inclusion of a coding strategy in the patterns increases the number of correspondences and
removes ambiguities in their determination. A survey on the existing patterns is a key
issue in order to distinguish which ones are the most suitable for being used in a visual
servoing scheme and opens a new research area in this field. Another goal of this chapter
is to evaluate the performance of every pattern in terms of resolution, i.e. the number of
correspondences provided by the pattern, and their accuracy. This evaluation is made in a
shape acquisition framework for 3D object reconstruction, which is the typical application
of coded structured light. From the conclusions arising from the comparative results, we
have realised that some patterns intended to reconstruct moving objects suffer of low res-
olution or they provide low accuracy in the measurements. For this reason, in Chapter 3
a new pattern is proposed, contributing to the field of coded structured light. The new
pattern increases the resolution of the most usual type of one-shot techniques by obtain-
ing good accuracy in the 3D reconstructed points. The new pattern is experimentally
compared to similar existing patterns in order to validate the approach.

The use of visual servoing for robotics tasks by taking complex objects or objects
lacking of visual features into account is either a complex problem or an impossible issue.
The projection of coded light patterns on the scene for inserting visual features opens a new
research area that must be studied. An application showing the advantages and drawbacks
when using a coded light pattern for visually guiding a robot with classic visual servoing
is presented in Chapter 4. The work focuses on an eye-in-hand configuration where a LCD
projector is placed apart from the robot projecting a coded pattern on the working area.
Furthermore, a discussion about the 3D reconstruction capabilities of a coded structured
light setup in a visual servoing framework are also addressed.

The use of a deported structured light projector is suitable for certain applications,
predominantly in industrial environments. However, it can be unsatisfactory for other
applications when the whole working area cannot be covered by the field of view of the
projector, or in mobile robotics when the working area is not a specific place. A possible
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solution to these cases consists in attaching the structured light emitter to the robot and
the camera. Chapter 5 is devoted to design and implement a dedicated onboard structured
light sensor for robot guidance which allows the execution of a specific positioning task.
Furthermore, it is shown that a suitable design of the sensor leads to the optimisation of
the control loop in terms of decoupling, stability and camera trajectory. This part of the
work is supported by strong theoretical analysis and experimental results.

Finally, Chapter 6 presents the conclusions of the thesis, including a list of the related
publications and conference contributions. Further work derived from results and some
perspectives are also discussed.



Chapter 2

Solving the correspondence

problem with coded patterns

Projecting structured light patterns onto the environment is a largely used technique in
computer vision and robotics. The main advantage is that the projected visual features are
easily distinguished by a camera. In order to avoid ambiguities and reliably solving the
correspondence problem the patterns can be coded. Coded structured light is a technique
based on projecting a light pattern and imaging the illuminated scene from one or more
points of view. Since the pattern is coded, correspondences between image points and
points of the projected pattern can be easily found. This chapter presents an overview
of the existing techniques, as well as a new classification of patterns for structured light
sensors. We have implemented a set of representative techniques in this field and here
some comparative results are presented. The typical framework where coded light is used
1s in shape acquisition. Therefore, the techniques presented in this chapter are discussed
and compared taking into account their 3D reconstruction performance which is strongly
related to their performance on providing accurate correspondences.

2.1 Introduction to structured light

The term structured light is used to refer to a vision system taking profit of an active light
source which projects a light pattern onto the environment. The pattern is intended to
aid a computer vision task to be accomplished. The most typical application of structured
light belongs to the active stereovision field for obtaining range measurements. In this
case, the most typical configuration consists of a camera and a structured light emitter.
Among all the ranging techniques [Jarvis, 1993; Chen et al., 2000], stereovision is based on
imaging the scene from two or more points of view and then finding pixel correspondences
between the different images in order to triangulate the 3D position. Triangulation is
possible if cameras are previously calibrated [Faugeras, 1993; Salvi et al., 2002]. However,
difficulties in finding the correspondences arise, even when taking into account epipolar
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constraints [Armangué and Salvi, 2003; Zhang, 1998]. The projection of structured light
makes easier the correspondence problem either between multiple cameras or between a
camera and the light source.

The source of light is typically a laser emitter with diffracting lenses allowing simple
patterns to be projected like light spots, circles, lines and grids. Structured light can be
both projected in the range of the visible and the invisible spectrum [Fofi et al., 2004].

2.2 Typical application: shape acquisition

One of the fields of application of structured light is in robotics. In this case, structured
light is used in range sensing [Nevado et al., 2004; Matthies et al., 2002; Kondo and Tamaki,
2004; Sun et al., 2004; Sazbona et al., 2005], SLAM! [De la Escalera et al., 1996; Dubrawski
and Siemiatkowska, 1998; Neira et al., 1999; Kim and Cho, 2001; Surmann et al., 2003;
Jung et al., 2004], obstacle avoidance [Le Moigne and Waxman, 1988; Weckesser et al.,
1995; Haverinen and Roning, 1998; Joung and Cho, 1998] and other robotic applications
which will detailed in Chapter 4.

However, among all the applications of structured light the most typical one is 3D
reconstruction obtained by triangulation. Therefore, structured light is often used in a
shape acquisition system which is a topic with a large variety of applications. Some of
them are dense range sensing, industrial inspection, object recognition, 3D map building,
reverse engineering, fast prototyping and even preservation of cultural heritage [Levoy et
al., 2000] and animation [Zhang et al., 2004].

The main advantage of structured light in front of passive stereovision is that the search
of correspondences is greatly simplified since it must be done only for image regions where
the reflected pattern appears. Furthermore, structured light allows correspondences on
non-textured objects to be found. The first shape acquisition systems based on structured
light were laser scanners [Forest and Salvi, 2002]. These devices are typically based on
scanning the object with a laser plane and detecting the projected line in the camera
image for triangulating all the illuminated points. The advantage of these scanners is the
large resolution and accuracy obtained leading to high quality 3D surface reconstruction.
The main drawback is that they are limited to static objects and that a large number of
images must be acquired. Furthermore, in order to scan the object either the laser plane
must be rotated, or both the laser and the camera or the object must be moved at each
iteration. In the latter case, the displacement must be known so that free-moving objects
cannot be reconstructed. All these problems appear because in each acquired image only
few points can be triangulated, i.e the points belonging to the laser stripe. This limitation
can be minimised by projecting more complex patterns like a laser grid [Le Moigne and
Waxman, 1988]. However, a new problem arises: since the grid has a unique colour the
identification of every grid region in the image becomes ambiguous.

In order to solve all these limitations coded structured light appeared as a flexible
alternative [Batlle et al., 1998; Salvi et al., 2004]. Coded structured light consists in using

!Simultaneous Localisation and Mapping
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a device that projects a light pattern onto the measuring surface (see Figure 2.1) instead
of using lasers. The most commonly used devices are LCD video-projectors, although
previously the most typical were slide projectors. Such devices project an image with
a certain structure so that a set of pixels are easily distinguishable by means of a local
coding strategy. Thus, locating such coded points in the camera image is solved directly
with no need for geometrical constraints. The projecting images are called patterns, since
they present a globally structured appearance. The simplest pattern is a black image with
an illuminated pixel. In this case, only one point can be reconstructed by triangulation by
using the pixel coordinates of the illuminated point in the pattern and the corresponding
coordinates in the camera image. Note that this case is equivalent to use a camera and a
laser pointer. In general, all the patterns available with laser technology can be reproduced
with a video-projector.

W)

Figure 2.1: Schema of a coded structured light system.

This chapter presents a comprehensive survey on coded structured light techniques
and proposes a new consistent classification. The chapter focuses on the different coding
strategies used in the bibliography and reproduces the experimental results of several
techniques in order to evaluate and compare their accuracy and analyse their applicability.
The comparison framework is a shape acquisition setup.

The chapter is structured as follows: firstly, the classification is presented in section 2.3.
Secondly, in section 2.4 techniques based on projecting multiple patterns are explained.
In section 2.5, techniques exploiting the spatial neighbourhood paradigm are presented.
Next, in section 2.6, coding strategies using direct codification are also explained. In
section 2.7, the experimental results obtained with a set of implemented techniques are
presented. Concluding, in section 2.8, a discussion about the advantages and drawbacks
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of every subgroup of techniques is included. In addition, general guidelines for choosing
the most suitable technique, given the specifications of an application, are proposed.

2.3 A classification of coding strategies for struc-

tured light patterns

A coded structured light system is based on the projection of a single pattern or a set
of patterns onto the measuring scene which is then viewed by a single camera or a set of
cameras. The patterns are specially designed so that codewords are assigned to a set of
pixels. Every coded pixel has its own codeword, so there is a direct mapping from the
codewords to the corresponding coordinates of the pixel in the pattern. The codewords
are simply numbers, which are mapped in the pattern by using grey levels, colour or
geometrical representations. The larger the number of points that must be coded, the
larger the codewords are and, therefore, the mapping of such codewords to a pattern is
more difficult. The aim of this work is to review the available strategies used to represent
such codewords.

Pattern projection techniques differ in the way in which every point in the pattern is
identified, i.e. what kind of codeword is used, and whether it encodes a single axis or two
spatial axis. In reality, it is only necessary to encode a single axis, since a 3D point can be
obtained by intersecting two lines (i.e. when both pattern axis are coded) or intersecting
one line (the one which contains a pixel of the camera image) with a plane (i.e. when a
single pattern axis is coded).

Table 1 shows pattern projection techniques classified according to their coding strat-
egy: time-multiplexing, neighbourhood codification and direct codification. The seven
columns on the right of the table indicate whether or not a given pattern is suitable for
measuring moving objects, the colour depth used and whether repeated codewords appear
(periodic codification) or not (absolute codification). Time-multiplexing techniques gen-
erate the codewords by projecting a sequence of patterns along time, so the structure of
every pattern can be very simple. Furthermore, in spite of increasing the pattern com-
plexity, neighbourhood codification represents the codewords in a unique pattern. Finally,
direct codification techniques define a codeword for every pixel, which is equal to its grey
level or colour.

In the following sections, each one of these three classifying groups are explained in
detail. Moreover, the different techniques proposed in the bibliography which belong to
each subgroup are introduced, and we will show the evolution from the simplest to the
most complex technique.

2.4 Time-multiplexing strategy

One of the most commonly used strategies is based on temporal coding. In this case,
a set of patterns are successively projected onto the measuring surface. The codeword
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Table 2.1: The proposed classification of coding strategies.

Time-multiplexing

Binary codes

AL
AN

Posdamer et al.
Inokuchi et al.

Minou et al.

Trobina

Valkenburg and Mclvor
Skocaj and Leonardis
Rocchini et al.

2 2 2 2 2 2

n-ary codes

Caspi et al.
Horn and Kiryati
Osawa et al.

Gray code + Phase shifting

Bergmann
Sansoni et al.
Wiora
Giihring

Hybrid methods

Kosuke Sato

Hall-Holt and Rusinkiewicz
Wang et al.

Guan et al.

< 2|l 2 2 22 2 2|2 2 2 2 2 2 2

< < < |2 2

22 2 2|2 2 2 22 2 2|2 2 2 2 2 2 2

Spatial Neighborhood

Non-formal codification

Maruyama and Abe
Durdle et al.

Tto and Ishii

Boyer and Kak
Chen et al.
Koninckx et al.

< <2 2 2 |2 <

De Bruijn sequences

Hiigli and Maitre

Monks et al.

Vuylsteke and Oosterlinck
Salvi et al.

Lavoie et al.

Zhang et al.

2 2 2 2 2|2 2 2

M-arrays

Morita et al.
Petriu et al.
Kiyasu et al.
Spoelder et al.
Griffin and Yee
Davies and Nixon
Morano et al.

< |2

R 2 2222 2|2 2 2 2 2 2|2 2

< 2 2 2 2 2

2 2 2

Direct coding

Grey levels

Carrihill and Hummel
Chazan and Kiryati
Hung

2 2 2

Colour

Tajima and Iwakawa
Smutny and Pajdla
Geng

Waust and Capson
Tatsuo Sato

< 2 < 2 (=2

2 2 2 2 2

< 2 2| 2L 22 2 2 2 2 2 2|22 2 2 2 22 2 2 2

Scene applicability

Static

Moving

Pixel depth

Binary

Grey levels

Colour

Coding strategy

Periodical

Absolute
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for a given pixel is usually formed by the sequence of illumination values for that pixel
across the projected patterns. Therefore, the codification is called temporal because the
bits of the codewords are multiplexed in time. This kind of pattern can achieve high
accuracy in the measurements. This is due to two factors: first, as multiple patterns are
projected, the codeword basis tends to be small (usually binary) and therefore a small
set of primitives is used, which are easily distinguishable among each other; secondly, a
coarse-to-fine paradigm is followed, as the position of a pixel is encoded more precisely
while the patterns are successively projected.

During the last twenty years several techniques based on time-multiplexing have ap-
peared. We have classified these techniques as follows: a) techniques based on binary
codes: a sequence of binary patterns is used in order to generate binary codewords; b)
techniques based on n-ary codes: a basis of n primitives is used to generate the codewords;
c¢) Gray code combined with phase shifting: the same pattern is projected several times,
shifting it in a certain direction in order to increase resolution; d) hybrid techniques: a
combination of time-multiplexing and neighbourhood strategies.

The following sections describe in detail the techniques which can be included in such
coding strategies.

2.4.1 Techniques based on binary codes

In these techniques only two illumination levels are commonly used, which are coded as 0
and 1. Every pixel of the pattern has its own codeword formed by the sequence of Os and
1s corresponding to its value in every projected pattern. Therefore, a codeword is obtained
only when the sequence is completed. An important characteristic of this technique is that
only one of the two pattern axis is encoded.

Posdamer and Altschuler [Posdamer and Altschuler, 1982] were the first to propose
the projection of a sequence of m patterns to encode 2™ stripes using a plain binary code.
Therefore, the codeword associated with each pixel is the sequence of Os and 1s obtained
from the m patterns, the first pattern being the one which contains the most significant
bit. In this case, 16 columns of the projector image are coded. The symbol 0 corresponds
to black intensity while 1 corresponds to full illuminated white. Therefore, the number
of stripes increases by a factor of two for each consecutive pattern. Every stripe of the
last pattern has its own binary codeword. The maximum number of patterns that can be
projected is the resolution in pixels of the projector device. However, reaching this value
is not recommended because the camera cannot always perceive such narrow stripes. It
should be noted that all pixels belonging to the same stripe in the highest frequency
pattern share the same codeword. Therefore, it is necessary to calculate either the centre
of every stripe or the edge between two consecutive stripes. The latter has been shown to
be the best choice. In Figure 2.2a a sequence of 4 patterns binary encoded are shown.

Inokuchi et al. [Inokuchi et al., 1984] improved the codification scheme of Posdamer
and Altschuler by introducing Gray code instead of plain binary. The advantages of Gray
code is that consecutive codewords have a Hamming distance of one, being more robust
against noise. In Figure 2.2b, the corresponding Gray coded patterns can be observed.
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Figure 2.2: Stripe patterns coded with binary codes and stripe edges detection: a) Patterns
coded with plain binary; b) Gray code patterns; ¢) Variant binary threshold of normal
stripe pattern; d) Variant binary threshold of both normal and inverse stripe patterns;
e) Stripe position by normal stripe pattern and binary threshold; f) Stripe position using
normal and inverse patterns.
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Minou et al. [Minou et al., 1981] designed another technique based on time coded
parallel stripes. The aim was to create a depth measurement system which was robust in
the presence of noise. For this purpose, the authors decided to use both binary code and
the Hamming error correcting code. The number of coded stripes was only 25, therefore,
the plain binary code had length 5 and the correcting code had length 9. It should be
noted that the number of coded stripes is very small due to the large amount of bits
needed to create a code with a Hamming distance of three, which then allows a single
error correction.

Trobina presented an error model of coded light range sensors based on Gray coded
patterns [Trobina, 1995]. The author demonstrated that the crucial step of these sensors
is the accurate location of every stripe in the image. In the finest pattern only half of all
the edges can be measured, while the other half can be found in the previous patterns.
By simple bifurcation of the images the stripes can be found. The binary threshold is
fixed for every pixel independently. It is necessary to acquire images of fully illuminated
scenes (white pattern) and non-illuminated scenes (black pattern). The variant threshold
is the mean between the grey level of such images as shown in Figure 2.2c. Hence, with
such bifurcation, the edges can be detected with pizel accuracy. However, the profile of
the transition between a white and a black stripe in the images is not a perfect step. It
is normally a non linear profile. Two ways of detecting the edges with sub-pizel accuracy
were proposed.

The first way of detecting stripe edges with sub-pixel accuracy is to find the zero-
crossings of the second derivative of the image, orthogonally to the stripes. The problem
with this approach is finding the optimal gradient filter size. An alternative way is to
project both normal and inverse stripe patterns, i.e. positive and negative patterns. Then,
by finding the intersection of both profiles, the stripe edge is located. Since the profiles are
non-linear functions, linear interpolation is used among the nearest sample points (grey
levels of nearby pixels). As shown in Figure 2.2f, by intersecting line AB with line EF,
the edge is located. As can be seen in Figure 2.2d, the intersection of both inverse and
normal profiles do not always coincide with the variant binary threshold, so this method
is more accurate. If projecting inverse patterns is not desired, the linearly interpolated
normal profile can be intersected with the variant threshold profile. This technique is
shown in Figure 2.2e, where the segment AB should be intersected with segment CD.
After experimental results, Trobina concluded that linear interpolation is more accurate
than 2nd derivative and the best results are obtained if both normal and inverse patterns
are projected.

Locating the stripes accurately when projecting Gray coded patterns was also the main
objective of the work presented by Valkenburg et al. [Valkenburg and Mclvor, 1998]. In
this case, every acquired image is divided into regions of 17x17 pixels. In every region,
a 2D third order polynomial is interpolated by means of least square fitting, obtaining a
facet that approximates all the stripes in the region of interest. The authors also made
experiments fitting sinusoidal functions in the regions, slightly improving the results.

Objects containing regions with different reflective properties are difficult to recon-
struct. When projecting patterns at low illumination intensities, the signal-to-noise ratio
of the system decreases and, therefore, depth from low reflective regions cannot be ob-
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tained. On the other hand, when projecting high illumination intensity patterns, depth
from regions with high reflectance cannot be recovered due to pixel saturation. So, most
binary coded techniques assume that the objects have uniform albedo, otherwise, the whole
surface cannot be reconstructed. Skocaj and Leonardis [Skocaj and Leonardis, 2000] pro-
posed a new strategy to overcome these limitations by increasing the number of projected
patterns. Projecting multiple images at different illumination intensities of a given stripe
pattern allows each view of such patterns to be combined into a single radiance map. A
radiance map contains for, each pixel, the relative reflective factor of the corresponding
surface points. In general, we have that

gar-l (2.1)

where g is the pixel value, r is the reflective of the corresponding surface point and [
is the illumination intensity incident to the surface point. If relative radiance values are
considered, then for every pixel i in the image j the relation expressed in eq. 2.2 exists.

Tij = gi/l; (2.2)

The variation of the illumination in the scene should not affect the reflective value
of the surface point. However, the relationship is non-linear due to the distortions in-
troduced by both the projector and the camera. In order to eliminate this non-linearity,
an equation system is defined which considers all the pixels under different illumination
values. The overdetermined system is minimised by using least-squares. Then, the best
fitting reflectance value of every corresponding surface point is obtained. Hereafter, a
global radiance map can be defined containing the reflectance values relating to every
pixel of the image. Using this radiance map, the projected intensity /; can be inversely
recovered for every pixel value g;; and its associate reflectance value r;. The minimum
number of illumination intensities to be projected is two (binary). However, by projecting
more intensities, better results are obtained. In order to calculate the range image, the
sub-pixel localisation of the stripe edges proposed by Trobina [Trobina, 1995] was applied.
The contribution of this work was a simultaneous reconstruction of both high and low
reflective surfaces.

During the last few years, most of the work dealing with binary coded patterns has been
aimed at improving the sub-pixel localisation of stripe edges. Rocchini et al. [Rocchini et
al., 2001}, introduced a slight change in the typical Gray coded patterns in order to ease
the localisation of stripe transitions. For this purpose, they proposed encoding the stripes
with blue and red instead of black and white. Moreover, a green slit of a pixel width
was introduced between every stripe. Then, the stripe transitions of the higher resolution
pattern are reconstructed by locating the green slit with sub-pixel accuracy.

2.4.2 Techniques based on n-ary codes

The main drawback of the schemes based on binary codes is the large number of patterns
which need to be projected. However, the fact that only two intensities are projected
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eases the segmentation of the viewed patterns. There are some works which consider
the problem of reducing the number of patterns by means of increasing the number of
intensity levels used to encode the stripes. There now follows an explanation of the two
formal schemes of increasing the coding basis.

Caspi et al. [Caspi et al., 1998] proposed a multilevel Gray code based on colour. The
extension of the Gray code is based on an alphabet of n symbols, where every symbol is
associated to a certain RGB colour. This extended alphabet makes it possible to reduce
the number of patterns. For example, with binary Gray code, m patterns are necessary to
encode 2" stripes. With an n-Gray code, n™ stripes can be coded with the same number
of patterns.

This work was very important since it is the generalisation of the most widely used
coding strategy in the time-multiplexing paradigm. The n-ary code shares the same char-
acteristics of a binary Gray code by fixing a Hamming distance of one between consecutive
codewords. The work by Caspi et al. not only develops the mathematical basis for gener-
ating n-ary codes, but also analyses the illumination model of a structured light system.
This model takes into account the light spectrum of the LCD projector, the spectral re-
sponse of a 3-CCD camera and the surface reflectance. The whole model is presented in
eq. 2.3.
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where ¢ is the projection instruction for a given stripe, i.e. [0 0 0]7 represents black and
[255 255 2557 is white; P is the non-linear transformation from projection instruction
to actually projected intensities for every RGB channel; and A is the projector-camera
coupling matrix. Every element a;; of matrix A is the convolution of the camera spectral
response for channel i with the spectrum of the light projected in channel j. Matrix A
shows the crosstalk between colour channels. C is the vector containing the RGB camera
readings of a certain pixel. 60 is the camera readings corresponding to the scene under
ambient lighting. Finally, K is the surface reflectance matrix specific to every scene point
projected into a camera pixel. This matrix contains a reflectance constant for every RGB
channel.

The main benefit of this model is that it considers a constant reflectance for every
scene point in the three RGB channels. This is much more realistic than considering
colour neutrality of the scene, which is commonly assumed in most systems dealing with
colour coding schemes. In the case of colour neutrality, matrix K is the identity for every
pixel.

In order to calculate the different terms in eq. 2.3 it is necessary to fulfill a colourimetric
calibration. With this procedure, A and P are obtained. P is a non-linear function, but
invertible, so it can be implemented in three look up tables (one for every colour channel).
The colourimetric calibration is only necessary once. Then, matrix K is obtained by just
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taking a reference image under white illumination (c; = [255 255 255]7) and solving
eq. 2.3. Some approximations of the model can be done in order to avoid the whole
colourimetric procedure, as explained in [Zhang et al., 2002].

The illumination model proposed allows the projected colour to be estimated from
camera readings. This is very important when working with colour encoded stripes, since
correct identification of colours leads to correct codewords. Therefore, such a model can
be applied to any system dealing with colour.

Another important aspect of Caspi’s work is its adaptation to the environment. This
means that the system can be configured with different parameters. In this case, the
parameters are the number of patterns to be projected M, the number of colours used L,
and the noise immunity factor a. If M and L are chosen, then « is fixed. Otherwise, if «
and L are chosen, then M is fixed. The noise immunity factor a@ determines the distance
between adjacent consecutive codewords in every RGB channel. The higher « is, the more
robust is the colour identification and the higher the number of patterns M since less
colours can be used or fewer stripes need to be coded. After experiments, Caspi et al.
determined that the n-ary Gray codes achieve the accuracy and robustness of the binary
Gray code technique using fewer patterns.

Another technique that encodes adjacent stripes with n-ary codewords is the one pro-
posed by Horn and Kiryati [Horn and Kiryati, 1999]. The alphabet of the codes is based
on multiple grey levels instead of a binary alphabet. The aim of the work was to find
the smallest set of patterns that meet the accuracy requirements of a certain application
producing the best performance under certain noise conditions.

Given an alphabet of n symbols, a code is created so that consecutive codewords have
a Hamming distance of one. Every element of the alphabet is mapped to a certain grey
level. When expressing the differing elements of two consecutive codewords in terms of
the associated grey levels, the difference is constant for all pairs of consecutive codewords.
For example, if 256 grey levels are available, when using a binary Gray code the distance
of consecutive codewords in terms of the grey levels is 255 or 100%. By increasing the
basis of the code and maintaining the length, more codewords can be generated in spite of
decreasing the distance in terms of % of available grey levels between consecutive ones. The
authors proposed the use of space filling curves such as Hillbert or Peano curves [Sagan,
1994] for defining the code. Such curves represent a path in an n-dimensional space,
passing through a set of points so that consecutive points are joined by straight segments.
The distance between consecutive points is constant along all the curve. Like the system
proposed by Caspi et al., there are several parameters which can be tuned, so that L is
the number of stripes to encode; K the number of projecting patterns, and therefore the
length of the codewords; m the order of the curve used to place the codewords; and r the
desired distance between consecutive codewords (% of the total of grey levels), which is
proportional to the noise immunity factor of the system. The K parameter is also the
dimension of the space filling curve that will be used to generate the code. If parameters
K and m are fixed, then the larger the parameter r is, the more robust the resulting
codification is against noise, but the number of stripes, L, decreases. Therefore, there is
a trade off between noise immunity, number of patterns, distance between codewords and
number of encoded stripes. For a given r, if the number of stripes L must be increased it
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means that the length of the space filling curve must also grow. To achieve this, there are
two possible solutions: increasing the curve order, which has the problem of reducing the
distance between consecutive codewords (since the distance between consecutive points
of the curve also reduces); or increasing the dimension of the curve, i.e. increasing the
number of projecting patterns.

In Figure 2.3a, a 3D Hillbert curve of the 2nd order is shown. Every dimension of the
curve is associated with one of the patterns to be projected. The number of stripes to
encode has been fixed at L = 128, so a total number of 128 3D points have been placed
equidistantly along the curve. Consecutive points along the curve correspond to adjacent
stripes in the patterns. The value of every point component is the grey level associated
with the stripe in one of the patterns. Therefore, every point in the curve produces the
codeword of grey levels for the corresponding stripe. The number of grey levels used in
the example is 7. The extracted intensity profiles of every three patterns are shown in
Figure 2.3b, while the resulting patterns are shown in Figure 2.3c. Every intensity profile
is the projection of the points in the curve in one of the three axis: f1(x), f2(z) and f3(x)
are the intensity profiles of patterns 1, 2 and 3, respectively.
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Figure 2.3: Horn and Kiryati coding strategy: a) 3-D 2nd order Hillbert curve with 128
codewords placed on it; b) Intensity profiles of the patterns extracted from the Hillbert
curve; ¢) The resulting patterns.
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Horn and Kiryati tested their system with a 3D Hillbert 2nd order curve where 256
codewords were placed. Therefore, the number of patterns was 3 and the number of grey
levels 13. Such configuration produced better performances than a binary Gray coding
scheme based on the projection of 9 patterns (512 stripes encoded). The design of coded
patterns proposed by Horn and Kiryati produces more accurate results and reduces the
number of projecting patterns.

2.4.3 Combination of Gray code and Phase shifting

Patterns based on Gray code, as well as binary and n-ary codes, have the advantage
that the pixel codification is made punctually and no spatial neighbourhood has to be
considered in the codification. However, the discrete nature of such patterns limits the
range resolution. Furthermore, phase shifting methods exploit higher spatial resolution as
they project a periodic intensity pattern several times by shifting it in every projection.
The drawback of these methods is the periodic nature of the patterns, which introduces
ambiguity in the determination of the signal periods in the camera images. The integration
of Gray Code Methods (GCM) with Phase Shift Methods (PSM) brings together the
advantages of both strategies, i.e. the unambiguity and robust codification of pattern
stripes of GCM, plus the high resolution of PSM. The combination of both techniques
leads to highly accurate 3D reconstruction. However, the number of projecting patterns
increases considerably. We will now discuss some of the coded structured light systems
that use this approach.

In [Bergmann, 1995], Bergmann designed a technique where some Gray coded patterns
are projected in order to label the measuring surface regions where every period of a
sinusoidal intensity pattern will be projected. Therefore, the ambiguity problem between
signal periods is resolved. The sinusoidal patterns are represented by grey levels. A total
number of four Gray patterns are projected in order to label 16 different regions on the
measuring surface.Then, the periodic intensity pattern is projected four times by shifting
1/4 of the period, each time.For every given pixel (x,y) of the camera image, the phase
of the first periodic pattern projected to the corresponding surface point must be found.
For this purpose, a classic four-step phase shift is applied in eq. 2.4. Iy, Is, I3 and Iy
are the grey levels of pixel (z,y) from camera images corresponding to every one of the
4 projected shifted patterns. Once the phase of a given pixel is known, the period of the
sinus where the pixel lies is obtained with the Gray code labeling. Therefore, the pattern
stripe projected to a certain surface point can be precisely calculated.

¢(x,y) = arctan <Z : ﬁ) (2.4)

Sansoni et al. compared the accuracy of GCM and PSM separately [Sansoni et
al., 1997]. After experiments, they realised that both PSM and GCM obtain similar
precision in their measurements (about 0.18mm). However, the resolution of PSM showed
to be about 0.0lmm in front of the 0.22mm of GCM. However, PSM failed in the steep
slope changes at the measuring surface borders due to the occlusion of some periods of
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the PSM patterns. One interesting feature of the PSM patterns used by Sansoni et al.
is that they are discrete stripe patterns with rectangular profiles. The sinusoidal profile
is achieved by defocusing the LCD projector. When combining both methods, the mean
error of the measurements was about 40um with a standard deviation of £35um. Fur-
thermore, Georg Wiora discussed the suitability of using LCD projectors when applying
PSM alone or combined with GCM [Wiora, 2000]. He argued that such devices do not
have enough contrast and radiant flux for PSM patterns with large resolution.According
to the author, the best devices to use are special slide projectors, which allow 26000 black
and white stripes to be projected on a 13mm slide (for more details refer to the article).
Moreover, Wiora’s article discusses the problems of mechanical misalignment of slides for
these devices as well as problems of non-sinusoidal phase shift patterns.

Giihring proposed substituting the PSM for a new method called line shifting [Giihring,
2001], which was also combined with GCM. Giihring pointed out that Phase Shifting has
a series of drawbacks. For example, when reconstructing surfaces with non-uniform albedo
(with sharp changes from black to white) the phase cannot be determined precisely. More-
over, camera devices tend to integrate over a certain area so that pixel values are affected
by its neighbours. To avoid this problem, camera resolution must be sufficiently higher
than projector resolution. In order to avoid the problems of Phase Shifting, the author
proposed substituting the sinusoidal periodic profile of such methods by a multistripe pat-
tern, shifted several times. Giihring designed a 640 x 640 pattern for LCD projectors,
where every 6th column is white and the remaining ones are black. By consecutively
shifting the pattern 6 times, the whole resolution for every row of the pattern is covered.
While repeating the process with row-encoded patterns, the entire resolution of the pat-
tern is used. Since a multistripe pattern is also a periodic pattern (of discrete nature), the
projection of Gray code patterns are also required in order to solve the ambiguities that
arise.

To summarise, 32 patterns were projected onto the measuring surface: 9 vertical Gray
codes; 6 vertical multistripe patterns, each one shifted a column towards the right; 9
horizontal Gray coded patterns; 6 horizontal multistripe patterns each one shifted one
row downwards; 2 additional patterns for grey level normalisation (one fully illuminated
and the other with the lamp switched off). With regard to the Gray coded patterns, a
total number of n regions should be labelled, being n the number of lines projected in
every line shifting pattern. Therefore, every pattern area where a line is shifted has its
own label. For example, if patterns of 32 columns were projected, 6 lines would be shifted
and, therefore, 6 bands of 6 pixels width should be labelled by the Gray code. Therefore,
three patterns of Gray code should be projected. However, in the transitions of each
region, a decoding error implies a large measuring error of around one period. That is
why Gilihring decided to introduce an oversampling technique consisting in projecting an
additional Gray coded pattern. In this way, thinner bands of pixels are labelled, and more
robust decodification of the regions is obtained. The maximum error when calculating the
global position of an illuminated line due to transition of a Gray codeword was 2 pixels.
Without the redundancy introduced by this oversampling, the same error rose to 6 pixels.
In Figure 2.4a, the case of a row of a 32-pixel-wide pattern is shown, with the four patterns
of Gray code and the 6 patterns containing line shifting. As can be seen, every region
where a line is shifted contains three Gray codewords.
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As for the patterns containing line shifting, the peak position of every illuminated
line was intended to be located in the camera images with sub-pixel accuracy. Since the
intensity profile of such perceived lines presented a gaussian distribution, the peak detector
proposed by Blais and Rious [Trucco et al., 1998] was used. This detector applies a linear
derivative filter (higher order filters can be applied) at each pixel of every image row (when
treating vertical multistripe patterns). The result obtained for each row is a set of local
maxima and minima indicating the transitions from black to white regions and vice versa.
Afterwards, for each pair of consecutive maximum and minimum, the zerocrossing of the
linear interpolation between them is calculated and the sub-pixel position of the intensity
peak is obtained. The detection process of a peak for a certain image row is shown in
Figure 2.4b.

Giihring’s line shifting method had a similar or even better resolution than techniques
based on PSM and more accurate measurements. Note that this approach was inspired
by traditional laser scanner techniques, which have been shown as the most accurate 3D
profilers. The author developed a system set up based both on LCD and DMD projectors,
obtaining similar results with an average error of 30um and a maximum deviation of
0.281mm for both devices.

2.4.4 Hybrid methods

In the bibliography, there are some methods which are based on multiple pattern pro-
jection, so they use time-multiplexing, but also take into account spatial neighbourhood
information in the decoding process. For example, the idea of Kosuke Sato [Sato, 1996]
consisted of designing a certain binary pattern whose rows have a sharp impulse on its
auto-correlation function. The pattern is projected several times by shifting it horizontally
several times (the more times the pattern is shifted, the greater the resolution obtained).
For every projection, an image is grabbed, in which the maximum autocorrelation peak of
every row is computed. Then, as the phase shift of the corresponding projected pattern is
known, the pixels containing such peaks can be reconstructed by triangulation. According
to the author, this strategy achieves better accuracy than projecting and shifting a single
slit, since the peak of cross-correlation shows sharper impulse and can be located more
precisely.

Hall-Holt and Rusinkiewicz [Hall-Holt and Rusinkiewicz, 2001] divided four patterns
into a total of 111 vertical stripes that were painted in white and black. Codification
is located at the boundaries of each pair of stripes. The codeword of each boundary is
formed by 8 bits. Every pattern gives 2 of these bits, representing the value of the bounding
stripes. The most interesting aspect about this method is that it supports smooth moving
scenes, something unusual in the time-multiplexing paradigm. This capability is due to a
stage of boundary tracking along the patterns.
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Gray Code Sequence
01234567 8 91011121314 151817 181920212223 24 252627 282930 31
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Line-Shift-Sequence (Pattern Length: 6 Lines)
01234567 831011121314151617168192021222324 252627 28293031
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Figure 2.4: Line shifting technique: a) Gray code and line shifting patterns for 32-pixel-
wide patterns; b) Intensity profile of a camera illuminated line and the peak detection
with sub-pixel accuracy.
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2.5 Spatial neighbourhood

The techniques in this group tend to concentrate all the coding scheme in a unique pattern.
The codeword that labels a certain point of the pattern is obtained from a neighbourhood
of the points around it. However, the decoding stage becomes more difficult as the spatial
neighbourhood cannot always be identified and false correspondences can arise. Normally,
the visual features gathered in a neighbourhood are the intensity or colour of the pixels
or groups of adjacent pixels around it.

These spatial neighbourhood techniques can be classified as follows: a) strategies based
on non-formal codification: the neighbourhoods are generated intuitively; b) strategies
based on De Bruijn sequences: the neighbourhoods are defined using pseudorandom se-
quences; or ¢) strategies based on M-arrays: extension of the pseudorandom theory to the
2-D case.

In the following subsections some techniques from these three subgroups are sum-
marised.

2.5.1 Strategies based on non-formal codification

Some authors have proposed techniques based on patterns designed so that it is di-
vided into a certain number of regions, in which some information generates a different
codeword, without using any mathematical coding theory. For instance, Maruyama and
Abe [Maruyama and Abe, 1993] designed a binary pattern coded with vertical slits con-
taining randomly distributed cuts, see Figure 2.5. The system was designed for measuring
surfaces with smooth depth changes. The random cuts generate a set of linear segments
so that the position of a segment in the pattern is determined by its own length and the
lengths of the 6 adjacent segments. The decoding stage starts by matching every segment
of the pattern with the observed slits of equal length. Multiple matchings can be found
for every segment. In order to find out the correct matching, the lengths of the 6 adjacent
segments must be considered. Once all the perfect matchings have been found, a region
growing algorithm is applied in order to identify unmatched segments. The main drawback
of this technique is that segment lengths can vary depending on the distance between the
camera and the surface and the optics of both the camera and projector. All these factors
considerably limit the robustness and the reliability of the system.

Some years later, a periodic pattern composed of the horizontal slits encoded with three
grey levels was proposed by Durdle et al. [Durdle et al., 1998]. The pattern is formed by the
sequence BWGW BGW GBGW BGBW BGW , where B is a band of 4 black pixels, W is a
band of 4 white pixels and G is a band of 4 half bright pixels. This sequence is repeated in
the pattern until it covers all the vertical resolution. Due to the periodicity of the pattern,
discontinuities larger than the pattern period are not permitted. The decoding stage of
the system is composed of two steps: firstly, the starting point of every pattern period is
searched in the grabbed image for every column, by finding the correlation peaks between
the image column and a template of the projected period. Secondly, for every period,
another template matching is made in order to find the subsequences W BG, W BG and
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GW B. Repeating these processes for every image column, a large set of correspondences
is found.

Ito and Ishii presented a three-level checkerboard pattern [Ito and Ishii, 1995]. The
proposed pattern is a unique grid where each square is painted with one out of three
possible intensity levels. The intensity level of a cell is chosen so that it is different from
its four immediate neighbours. A node is defined as an intersection between four cells of
the checkerboard. The main code of a node is identified by the intensity levels of its four
adjacent cells. Since three intensity levels are used, the number of different main codes is
18 (3 x 2 x 2 x 2). The subcode of a node is defined as the clockwise combination of the
main codes of the four adjacent nodes. The subcode constitutes the codeword for every
edge intersection of the pattern. Therefore, in order to decode the position of an observed
node, it is necessary to analyse a spatial neighbourhood of 12 cells of the grid. Note also
that both spatial coordinates of the nodes are encoded. In order to get a robust coding
scheme, every possible subcode should appear only once in the pattern. However, Ito and
Ishii were not studying the automatic generation of such a pattern, so they decided to
allow repetitions of subcodes. The authors used epipolar restrictions between the camera
and the projector in order to differentiate between nodes which share the same subcode.

The technique proposed by Boyer and Kak [Boyer and Kak, 1987] uses a pattern formed
by vertical slits coded with the three basic colours (red, green and blue) and separated
by black bands. The sequence of coloured slits was designed so that if the pattern is
divided into subpatterns of a certain length, none is repeated. The most interesting thing
about this work is the decoding stage. Boyer and Kak realised that the morphology of
the measuring surface acts as a perturbation applied to the projected pattern (which acts
like a signal), so the received pattern can contain disorders or even deletions of the slits.
In order to match each received slit with the corresponding projected slit, a four-step
algorithm was designed called stripe indexing process.

The first step is called correlation. Each unique subpattern of the original pattern
is sliced along the received pattern to find all the positions where a perfect match takes
place. Secondly, a region growing process of the matched subpatterns is carried out and
tries to cover as many correspondences of slits as possible. This subprocess was called
crystal growing. Thirdly, a fitting process is applied in order to remove erroneous match-
ings. When two subpatterns overlap, the thinnest is cut so that the shared slits are only
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Figure 2.5: Pattern designed by Maruyama and Abe.
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associated with the largest one. Finally, the matched slits are indexed. The whole process
must be done for every epipolar line of the camera image. The authors did not take into
account the information obtained from the previous epipolar line in order to validate the
current one. The drawback of this method is the complex algorithms involved to recover
the pattern. Moreover, the crystal growing procedure does not always lead to the cor-
rect identification of the slits, so uncertainty should be considered. The advantage of the
method is the possibility of obtaining shape from moving objects. This work is of great
value, since it inspired a series of works which dealt with more evolved techniques the
problem of lost slits or disorders among slits.

Chen et al. presented a range sensor based on two cameras and an LCD projector [Chen
et al., 1997]. The latter projected a unique pattern in order to ease the search for cor-
respondences along pairs of epipolar lines. However, the technique can also be applied
when only one camera is used. The pattern consisted of a series of vertical coloured slits
separated by black bands. The slit colours were chosen using a trial and error algorithm in
order to find a sequence with low autocorrelation in the Hue component of the slits. The
decoding method proposed by Chen et al. was the most developed part of the system. The
decoding stage was divided into two parts: the intra-scanline search and the inter-scanline
consistency. Since Chen et al. used two cameras, all the points laying on a line in the first
image have their correspondences in a line of the second image. Both lines constitute a
pair of epipolar lines. The intra-scanline process tries to match every edge of every pair
of epipolar lines, in order to triangulate their 3D position at a later stage. Every epipolar
line contains a sequence of colours separated by black gaps corresponding to the projected
coloured slits that are visible from the point of view of the camera. Since the cameras in
this system have different points of view, for a given pair of epipolar lines, the observed
sequences of colours can differ. Therefore, usually one of the cameras perceives more slits
than the other one and, therefore, the number of edges differs. In order to match the
edges observed by both cameras dynamic programming was used. Dynamic programming
is capable of obtaining the optimal set of insertions, deletions and substitutions that must
be applied to the perceived sequence in order to obtain the original projected sequence.
Nevertheless, this algorithm is only robust against deletions and erroneous identification
of the colour of some slits, but does not ensure a good solution if disorders among slits
have occurred. Therefore, the measuring surface must be monotonic. Furthermore, in the
inter-scanline consistency stage, an attempt is made to match the edges that have not
been matched in the pair of images by using the information of adjacent epipolar lines.

The weak point of the work from Chen et al. is the lack of robustness of the pattern
used. Although the sequence of colours is generated accomplishing some constraints, it is
not optimal. Furthermore, the authors assumed that the observed slits cannot be reordered
with respect to the projected ones, but this is not always true.

2.5.2 Strategies based on De Bruijn sequences

The pattern projection techniques presented in the previous subsection were usually gen-
erated by brute-force algorithms in order to obtain some desirable characteristics. In this
subsection, a group of patterns encoded with a well-defined type of sequences called De
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Bruijn sequences is presented. First, a theoretical introduction into the field is given in
order to explain why these sequences are suitable for encoding patterns.

A De Bruijn sequence of order m over an alphabet of n symbols is a circular string
of length n™ that contains each substring of length m exactly once. Similarly, a pseu-
dorandom sequence or a m-sequence has a length of n™ — 1 because it does not contain
the substring formed by 0’s [MacWilliams and Sloane, 1976]. This sort of sequence can
be obtained by searching Fulerian circuits or Hamiltonian circuits over different kinds of
De Bruijn graphs [Fredricksen, 1982]. For example, in the graph shown in Figure 2.6a, all
the words of length m — 1 (with m equal to 4) are included in the vertices. An Eulerian
circuit is a path starting and ending in the same vertex and passing through all the edges
exactly once. Gathering the edge labels of such circuit, a De Bruijn sequence of order m
is obtained

1000010111101001 (2.5)

If a Hamiltonian circuit is searched over the same graph (a path which passes through
all the vertices only once and starts and ends in the same vertex), a De Bruijn sequence
of order m — 1 is obtained

00101110 (2.6)

An interesting property of a De Bruijn sequence is that it presents a flat autocorre-
lation function with a unique peak at moment 0. It can be shown that this is the best
autocorrelation function that can be achieved and this means that it is clearly uncorre-
lated. Pseudorandom sequences have been used to encode patterns based on column or
row lines and grid patterns. In the following paragraphs, some relevant works using De
Bruijn sequences to encode patterns are explained.

Hiigli et al. [Hiigli and Maitre, 1989] improved the pattern proposed by Boyer and
Kak [Boyer and Kak, 1987]. In this case, a pattern composed of horizontal coloured slits
was also projected. However, the sequence of colours was chosen using a pseudorandom
sequence. The authors studied sequences where two consecutive slits with the same colours
were not allowed. Therefore, the length of a sequence accomplishing this constraint is
Q(Q — 1)V~ where @ is the number of colours used and N the window size.

Monks et al. [Monks and Carter, 1993] designed a pattern based on horizontal coloured
stripes in order to reconstruct dynamic scenes. A total number of 6 colours were used to
paint the slits, separated by black bands. The colouring of the slits was chosen so that
every subsequence of three colours appeared only once. Therefore, a De Bruijn sequence
of order three based on an alphabet of six symbols was used. The given sequence was
taken from the article published by Hiigli and Maitre [Hiigli and Maitre, 1989).

In this technique, the camera image is thresholded in the HSV colour space, using
the Hue component to distinguish among the six colours used, i.e. red, green, blue,
yellow, magenta and cyan, which are equally spaced with respect to this component. In
the decoding stage, Monks et al. faced the problem of loss of slits for every column of
the camera image. Due to surface discontinuities, some of the slits were not observed
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Figure 2.6: De Bruijn codification strategy: a) Example of a De Bruijn graph to construct
De Bruijn sequences; b) primitives proposed by Vuylsteke and Ooesterlick to represent

the binary values; ¢) the resulting pattern using the primitives.
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by the camera. To recover the position in the pattern of a given slit is necessary to
correctly identify the colours of the slit itself and the slits above and below it. The
authors decided to build a graph for the whole camera image, where every node represents
an image edge between a coloured slit and the black band above it. In every node, the
colour of the corresponding slit is stored. Two nodes are connected if the corresponding
slits are consecutive in an image column and the distance between them is not very long
(otherwise, an occlusion had occurred and some slits may have been deleted). Every
column in the image produces a new path in the graph. All the nodes of the graph
corresponding to a set of at least three consecutive slits are shared for all those image
columns which detected the same subsequence. These nodes are shared since their position
in the pattern is directly found thanks to the window property of the De Bruijn sequence.
For all the other slits detected in an image column, a new node is inserted in the graph. A
minimum-cost, matching algorithm is used to match the original projected sequence and
the graph. The match algorithm minimises a cost function based on the costs associated
with a node insertion and deletion and the cost of replacing the colour of a node. The
system was applied to speech recognition, projecting the pattern to the speakers’s face
and reconstructing the mouth pose in order to recover the pronounced letters. The work
by Monks et al. has a robust decoding stage, which can be applied to other systems based
on De Bruijn sequences.

Vuylsteke and Oosterlinck [Vuylsteke and Oosterlinck, 1990] presented a binary en-
coded pattern by means of De Bruijn sequences. A total number of 63 columns were
encoded in a unique pattern, so the system is suitable for moving scenes. The pattern
structure is a checkerboard where the column of every grid point is encoded. The encoding
system is based on two binary pseudorandom sequences of order 6 and length 63, shown
in eq. 2.7

{c} = 111111000001000011000101001111010001110010010110111011001101010

[0} = {erar) .

where {b;} is the same sequence ¢ shifted by ¢ = 17 positions. Both sequences have a
window property of length 6. When combined in a bitmap, as shown in eq. 2.8 for every
row, the obtained code assignment has the window property of 2 x 3. Every element of
the sequences represents the individual representation of each grid point of the pattern.

co by ca b3 ca bs ce by cs by
bo C1 b2 C3 b4 Cy b@ Cr bg Cg ... (2 . 8)
Co b1 Co bg Cq b5 Cg b7 Cg bg

In fact, since only column codification is desired, the windows in eq. 2.9 should produce
the same codeword.
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[ bs ¢4 bs ] [ cg by cs ] (2.9)
cg by cs bs ca bs

In order to do this, the binary codewords are generated by reading first the elements
of ¢, and then the elements of bg. In the example given, the codeword for both windows
would be ((c3,cq,¢5), (b3, bs,b5)). To be able to distinguish among elements of ¢ and
elements of by, it is necessary to chose different representations in the pattern. For this
purpose, every grid point is marked with a bright or a dark spot representing the binary
states 1 and 0. Then, the four neighbouring squares of the grid point in the checkerboard
are painted depending on whether the corresponding sequence element belongs to ¢ or to
br. Both representations are shown in Figure 2.6b. The binary states for sequence ¢ are

labelled 0+ and 1+, while the ones for sequence by are 0— and 1—. The whole pattern
representation is shown in Figure 2.6c¢.

The segmentation of the pattern in the camera images is easily done as only two
intensity levels are used and also there is symmetry around every grid point. The decoding
stage consists in recovering every 2 x 3 window and obtaining its codeword, which leads to
the column position in the pattern. According to the authors, using rectangular windows
is more robust than using single row windows, as the neighbourhood involved is more
compacted and less sensitive to surface discontinuities. Pajdla reimplemented the whole
method, improving the calibration process [Pajdla, 1995].

Later, Salvi et al. proposed a pattern consisting of a grid of thin vertical and horizontal
slits [Salvi et al., 1998]. The authors argued that grid coding is a better solution because
the grid points can be easily segmented. Furthermore, the neighbourhood around a grid
point can be found by just tracking the edges of the grid. The pattern was designed as
a 29 x 29 grid using three different colours for horizontal slits and three more colours for
vertical slits. The colour assignment was made by using the same De Bruijn sequence
of order 3 (size of window property) for both rows and columns of the grid. The grid
intersection points are reconstructed after decoding their position in the pattern using the
window property. Some years later, Petriu et al. [Petriu et al., 2000] proposed a similar
pattern of 15 x 15 grid points. However, they did not propose reconstructing the grid
crossing points, but reconstructing the four corner points of every intersection. Therefore,
the resolution of the system is larger. The only requirement is to increase the thickness of
the slits, so that the four corners of a crossing do not fall in the same pixel of the image.
Moreover, Lavoie et al. [Lavoie et al., 1999] proposed a similar pattern to the one proposed
by Salvi et al. A pseudorandom sequence of 3rd order based on 5 colours was used,
obtaining a sequence of length 124 where every subsequence of length 3 is unique. Both
vertical and horizontal slits of the grid are coded with the same pseudorandom sequence.
The most interesting aspect of the technique proposed by Lavoie et al. is that they do
not reconstruct the crossing points, but rather, the curves. For this purpose, non uniform
rational Bézier splines (NURBS) were used. The NURBS have some nice properties under
affine transformations as they are invariant under scaling, rotation, translation, shear and
parallel and perspective projection. Once the grid is segmented in the camera image, the
recovered grid points are used as control points to interpolate 2D NURBS in the image
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for both rows and columns of the grid. Due to the projection invariance property of a
NURBS curve, a reverse projection transform can be performed in order to obtain the 3D
NURBS that fit the measuring surface.

Recently, Zhang et al. [Zhang et al., 2002] developed a technique based on De Bruijn
codification that achieves excellent performance. The proposed pattern consisted of 125
vertical slits coloured by using a De Bruijn sequence of 3rd order and 5 colours. Zhang
et al. studied the problems that occlusions and discontinuities in the measuring surface
can produce when observing the projected pattern. As other authors had previously
pointed out, they agreed that deletions and disorders among the slits may appear in the
observed sequence. In order to match the observed sequence with the projected one,
dynamic programming was adopted as in the work by Chen et al. However, Zhang et
al. pointed out that simple dynamic programming is only successful when the measuring
surface is monotonic, i.e. disorders among slits cannot appear. In order to eliminate
such a limitation, they invented the multi-pass dynamic programming. Zhang et al. also
extended their technique to the time-multiplexing paradigm by projecting the pattern
several times by shifting it consecutively and locating the slits with sub-pixel accuracy in
each iteration. Therefore, the total resolution is increased.

2.5.3 Strategies based on M-arrays

There is a set of authors who have adopted the theory of perfect maps in order to encode
a unique pattern, taking advantage of the interesting mathematical properties of these
matrices. In the following paragraphs we give an introduction to this mathematical theory.

Let M be a matrix of dimensions r X v where each element is taken from an alphabet
of k symbols. If M has the window property, i.e. each different submatrix of dimensions
n X m appears exactly once, then M is a perfect map. If M contains all submatrices of
n x m except the one filled by 0’s, then M is called an M-array or Pseudorandom array.
For more information see [MacWilliams and Sloane, 1976] and [Etzion, 1988]. This kind
of array has been widely used in pattern codification because the window property allows
every different submatrix to be associated with an absolute position in the array.

M-arrays can be constructed by folding a pseudorandom sequence. In order to create
an M-array of dimensions n; X ns, a pseudorandom sequence of length n = 2F%2 — 1 ig
required, where n = nj-ng, ny = 2k1 _ 1 and ny = n/ny. The resulting array has a window
property of k1 X ko. The procedure is as follows: the first element of the sequence is placed
in the north-west vertex of the array. Successive elements of the sequence are written in
the array following the main diagonal and continuing from the opposite side whenever an
edge is reached. For example, given the binary pseudorandom sequence of the 4th order
000100110101111 whose length is n = 15, good parameters for constructing an M-array
are n; = 22 — 1 =3 and ny = 15/3 = 5. Then, an M-array of 3 x 5 with window property
2 x 2 is obtained. It must be noted that M-arrays also share the circular property of the
pseudorandom sequences, so it is necessary to complete the array by adding to the right
the firsts ko — 1 columns and the firsts k1 — 1 rows below it. The complete array is shown
in eq. 2.10
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011110
001100

(2.10)
0100710
011110

The main differences between the techniques included in this group is the way in which
the elements of the array are represented in the pattern. Some authors prefer to define
the pattern as an array of coloured spots, where each colour represents one of the symbols
of the coding alphabet. Other authors prefer to define different shapes for each symbol.
When perceiving the projected pattern, an algorithm to recover the maximum number of
visible windows must be fulfilled. This is the crucial step of these systems. Since spatial
neighbourhood is used, not all the pattern will be visible from the camera’s point of view,
due to shadows and occlusions. The robustness of these methods depends on the correct
decodification of the visible parts, taking advantage of the properties of the M-arrays.

Using arrays to codify a pattern means that a bidimensional coding scheme is being
used, because every point of the pattern has a different codeword which encodes both
vertical and horizontal coordinates. Since the codification is concentrated in one pattern,
these techniques are suitable for measuring dynamic scenes. However, some authors prefer
to project additional patterns in order to ease the segmentation part of the system or to
carry out an intensity or colour normalisation. In this case, the system is limited to static
scenes. In any case, the number of projected patterns is always lower when compared to
time-multiplexing methods. In the following paragraphs, the existing patterns based on
M-arrays are addressed and the most relevant are briefed.

A binary M-array of 24 x 24 was proposed in 1988 by Morita et al. [Morita et al., 1988].
This array has the window property of 3 x 4. The M-array representation is made by
painting black dots on a white background, for the array elements corresponding to symbol
1. Two patterns are projected on the measuring surface: the first one contains all the
possible black dots in order to locate their centres in the camera image. The second
pattern is the M-array representation. Therefore, the method is restricted to static scenes.
However, it can be adapted to moving scenes by only projecting the M-array pattern and
making the segmentation and decoding algorithm more robust.

Petriu et al. [Petriu et al., 1992] used an M-array to encode a grid pattern where each
cross-point represents an element of the M-array. The binary state of every cross-point
is represented with the presence or absence of a square painted on it. The system was
intended for object recognition, based on a database containing previously reconstructed
surfaces.

Some years later, Kiyasu presented an interesting study [Kiyasu et al., 1995]. The
aim of the work was to obtain the shape of specular polyhedrons, i.e. objects composed
of flat surfaces with high reflectance. Normally, most coded structured light systems are
not intended to reconstruct specular surfaces but lambertian ones. A binary M-array
represented with a grid of 18 x 18 circular spots with a window property of 4 x 2 was used.

Spoelder et al. began to develop a prototype to measure the shape of the cornea [Spoelder



34 Chapter 2. Solving the correspondence problem with coded patterns

et al., 2000], by means of projecting a binary M-array of 65 x 63 elements. Cyan and yel-
low were used to encode the binary values of the M-array. The structure of the designed
pattern is a checkerboard, where the white squares are used to place the elements of the
M-array. In Figure 2.7a a portion of the pattern can be observed. The black squares
were introduced in order to ease the pattern segmentation in the camera images. Due
to the complex reflectance characteristics of the cornea, the recovered pattern from the
camera images has a lot of data loss. This required the design of a complex segmentation
algorithm, which we will now summarise. Firstly, the cross-points of the checkerboard are
located by mask filtering. Secondly, every detected cross-point is labelled by observing
the colours of the adjacent non-black squares and using the window property. Then, a
graph is constructed by linking the neighbours. This step leads to a series of disconnected
subpatterns that must be matched to the original projected pattern. Each subpattern
is positioned on the projected pattern in the position where the minimum Hamming dis-
tance is achieved. The elements which do not fit in the original pattern are intended to
be corrected.

One of the most famous works of this group is due to Griffin et al. [Griffin et al., 1992].
The authors defined a systematic process for constructing a maximum size array of n x m
based on an alphabet of b symbols with certain restrictions: every element of the array
has a unique codeword formed by its own value and the values corresponding to its four
neighbours (north, south, east and west). As can be seen, such an array is a special case
of perfect maps, since it has window property of 3 x 3, but not all the possible windows
appear. Some authors call these arrays perfect submaps. The construction process of such
matrices is as follows: first, let Vhm be the sequence based on alphabet b containing all
the possible triplets of symbols (a De Bruijn sequence). Let Vum be the vector made by
the sequence of all the pairs of symbols of alphabet . Consequently, the first row of the
matrix is fo; = Vhm,.

The rest of the matrix elements are calculated using eq. 2.11. The row index is indicated
with 4 and varies from 0 to the length of Vhm, while j is the column index varying from
0 to Vum length.

fij = 1+ ((fi—1j + Vvm;) mod b) (2.11)

For example, if an alphabet b = {1,2,3} is taken, then the following vectors are obtained

Vhm = (33132131123122121113323222333)

(2.12)
Vom = (3121132233)

Then, applying the algorithm the matrix shown in Figure 2.7b is generated.

For their experiments, Griffin and Yee generated an array of 18 x 66 using the alphabet
of four symbols {1,2,3,4}. In order to project this array, two strategies were adopted.
The first consisted of representing each alphabet element with a different colour. Then the
projected pattern was defined as an array of coloured dots. The second approach consisted
of defining a set of shape primitives for every element of the alphabet. An example of such
primitives is shown in Figure 2.7b. Then the background of the pattern is painted black
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Figure 2.7: M-array based patterns examples: a) Binary M-array located in a checkerboard
(the 0 and 1 symbols are replaced by two different filling colours); b) Example of M-array
based on 3 symbols proposed by Griffin et al. Three shape primitives were proposed to

represent the symbols of the alphabet {1,2,3}; ¢) Morano et al. algorithm to generate
M-arrays with coloured spots representation.
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and white forming a grid of 18 x 66 with one of the primitives at every crossing point. The
representation of a window of 3 x 3 of the M-array is shown in Figure 2.7b. This second
representation of the M-array is much more robust in the presence of coloured objects.
Some years later, Hsieh presented an analytical method for decoding the position of a
given codeword of Griffin’s array [Hsieh, 2001], using just simple arithmetic operations
with the elements of the window and decoding the pattern quickly.

Davies and Nixon [Davies and Nixon, 1998] proposed a unique pattern of coloured
spots for obtaining shapes from dynamic scenes. Specifically, the system was applied for
automatic speech identification by projecting the pattern onto the speakers’ face at video
rate. The spots are coded by following Griffin’s method. Cyan, yellow and magenta
colours were chosen to paint the spots, which are placed hexagonally in the pattern. In
this technique a segmentation algorithm is applied for obtaining the image coordinates
of the visible dots. First, an edge detector filter is used in order to find the contours of
the perceived ellipses corresponding to the projected circular dots. For every epipolar line
in the camera image, all the ellipses nearly positioned onto the line are searched. Then
accurate positions of the ellipses are found using an adapted formulation of the Hough
Transform. When all possible ellipses have been located, the decoding process using the
window property leads to correspondences between the camera image and the projected
pattern.

One of the most interesting techniques from this group was given by Morano et
al. [Morano et al., 1998]. The authors proposed an algorithm for constructing an M-array,
fixing the length of the alphabet, the window property size, the dimensions of the array
and the Hamming distance between every window. Previously all the methods worked
with a Hamming distance of one, which did not allow error correction. In fact, the arrays
used by Morano et al. are simply perfect submaps since not all the possible windows are
included.

The algorithm used to generate an array with fixed properties is based on a brute-
force approach. For example, when constructing an M-array based on three colours with
window property of 3 x 3 the following steps are taken: first, a subarray of 3 x 3 is
chosen randomly and is placed in the north-west vertex of the M-array that is being built.
Then consecutive random columns of 1 x 3 are added to the right of this initial subarray,
maintaining the integrity of the window property of the array and the Hamming distance
between windows. Afterwards, rows of 3 x 1 are added beneath the initial subarray in a
similar way. Then, both horizontal and vertical processes are repeated by incrementing
the starting coordinates by one, until the whole array is filled. Whenever the process
reaches a state where no possible elements can be placed, while accomplishing the global
window property, the array is cleared and the algorithm starts again with another initial
subarray. The basic steps of the algorithm are represented in Figure 2.7c. The study of the
performance of this algorithm showed that using M-arrays of 45 x 45 pixels with window
property of 3 x 3 using 3 or more colours, fixed Hamming distances between windows from
the typical 1 up to 4 can be generated. Moreover, in most cases, multiple solutions can

be found.

Once the generated pattern is projected onto the measuring surface, it must be re-
covered and the dots must be well labelled in order to find correspondences between the
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camera and the projector. As every dot is contained in 9 windows, the authors applied a
voting algorithm where every window proposes a codeword of length 9 (which indicates
its position in the pattern) for every one of its elements. Then every observed dot has
up to 9 codewords proposed by every window to which it belongs. The codeword with
the maximum number of votes is the more reliable, so it is used to label the dot. The
results showed that when using a Hamming distance of 3 instead of 1, the number of dot
mislabelings decreases, due to the possibility of correcting one error per window.

Another interesting contribution made by Morano et al. was to note that a system
based on M-arrays can also be used when colour cannot be projected (because the scene is
too colourful or because a colour camera is not available). If N colours are used to encode
the M-array, loga(IN) + 1 patterns can be projected, encoding every colour with a binary
codeword. The system becomes more robust since only two intensity levels are used but
it is limited to static scenes.

2.6 Direct codification

There are certain ways of creating a pattern so that every pixel can be labelled by the
information represented on it. Therefore, the entire codeword for a given point is contained
in a unique pixel. In order to achieve this, it is necessary to use either a large range of
colour values or introduce periodicity.In theory, a high resolution of 3D information can
be obtained. However, the sensitivity to noise is very high because the ”distance” between
”codewords”, i.e. the colours used, is nearly zero. Moreover, the perceived colours depend
not only on the projected colours, but also on the intrinsic colour of the measuring surface.
This means, in most cases, that one or more reference images must be taken. Therefore,
these techniques are not typically suitable for dynamic scenes. Direct codification is usually
constrained to neutral colour or pale objects. For this reason, it is necessary to perceive
and identify the whole spectrum of colours, which requires a ”tuning” stage that is not
always easy to achieve (depending on the devices used).

We shall now discuss two groups of methods using direct codification: a) codification
based on grey levels: a spectrum of grey levels is used to encode the points of the pattern;
b) codification based on colour: these techniques take advantage of a large spectrum of
colours.

2.6.1 Codification based on grey levels

Carrihill and Hummel [Carrihill and Hummel, 1985] developed a system called intensity
ratio depth sensor. It consists of a linear wedge spread along vertical columns containing
a scale of grey levels. A ratio is calculated between every pixel of the perceived wedge and
the same pixel value under constant illumination. This ratio is related to the column of
the pattern that has been projected in the pixel. Since two patterns must be projected
dynamic scenes are not considered. The authors used a slide projector and a monochrome
camera with 8 bits of intensity per pixel. The authors aimed to tune the setup so that the
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relationship between the ratio and the image column number was nearly linear. However,
Carrihill and Hummel achieved poor accuracy in their measurements, with a mean error
of about 1 ¢m. This was due to the high sensitivity to noise and non-linearities of the
projector device.

Figure 2.8: Pattern proposed by Carrihill and Hummel

Miyasaka et al. [Miyasaka et al., 2000] reproduced the intensity ratio depth sensor by
using an LCD projector and a 3CCD camera. With this setup, more accurate results were
obtained. The authors took into account that the reflectance of the surface points is not
constant for all the light frequencies and each RGB channel of the camera was treated
independently. Furthermore, only a narrower band of light frequencies was considered.

Chazan and Kiryati [Chazan and Kiryati, 1995] carried out experiments using an ex-
tension of the Carrihil and Hummel method called pyramidal intensity-ratio depth sensor,
also known as the sawtooth sensor. The motivation behind this new approach was the
high sensitivity to noise of the original method. As a wide intensity spectrum is projected
in only one shot, the camera must be able to perceive such a spectrum nearly linearly,
which is very difficult to achieve using an LCD projector. The new method consisted of
consecutively projecting the linear wedge by increasing its period. Therefore, the first pat-
tern is a simple-period wedge from black to white. The second contains two linear wedges,
the third contains four wedges and so on. At the end, the last pattern contains 2™ linear
wedges. Since every period is a linear wedge from black to white, the last pattern uses
less grey levels in each period. This means that adjacent grey levels in the last pattern
are less similar and easily distinguishable. However, since periodicity is present, the grey
level of a certain pixel in the last perceived pattern is not enough to decode its position.
To resolve the ambiguity the previously viewed patterns are used. This strategy is quite
similar to the time-multiplexing techniques, but in this case, the exact codewords are not
recovered. Moreover, since the sharp transitions between periods can lead to high errors,
every periodic pattern is projected twice, shifting it by half a period. Then when reading
grey levels close to a period transition (black or white), the corresponding shifted pattern
is used to avoid the period transition. For every projected pattern an image of the scene is
grabbed. Then an intensity ratio is calculated for every image with respect to a constant
light image. The sawtooth sensor is more accurate than the classic Intensity Ratio Depth
Sensor. Experiments made by the authors over distances of about 80 ¢m show that the
typical errors of 1 ¢m of the Intensity Ratio Depth Sensor can be reduced to 1 mm with
the Pyramidal Intensity Ratio Depth Sensor. However, the number of patterns increases
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substantially.

Prior to Chazan and Kiryati’s work, Hung proposed a grey level sinusoidal pattern
[Hung, 1993]. The author pointed out that the period of the observed pattern increases
proportionally with the distance between the projector and the object, and therefore, the
frequency decreases. The idea was to estimate the instant frequency in every pixel of the
camera image and then depth can be calculated for every pixel.

The system was tested with synthetic images with gaussian noise. Although the results
were good, real experiments should be completed taking into consideration the non-linear
behaviour of the devices. Furthermore, since the pattern is periodic, ambiguity problems
can arise.

2.6.2 Codification based on colour

The methods belonging to this group use the same principle as the ones discussed in
subsection 2.6.1. However, colour is used to encode pixels instead of using grey levels.
For instance, Tajima and Iwakawa [Tajima and Iwakawa, 1990] presented the rainbow
pattern. A large set of vertical narrow slits were encoded with different wavelengths, so
that a large sampling of the spectrum from red to blue was projected. In order to project
this spectrum, a nematic liquid crystal was used to diffract white light. The images were
grabbed by a monochromatic camera with 11 bits of intensity depth. Two images of the
scene were taken through two different colour filters. By calculating the ratio between
both images an index for every pixel is obtained that does not depend on illumination,
nor on the scene colour. Geng [Geng, 1996] improved on this approach by using a CCD
camera and a linear variable wavelength filter in front of it. Hence, only a single image of
the measuring surface had to be captured from the scene.

Sato presented the multispectral pattern projection range finder [Sato, 1999]. In this
work, the author discussed the complicated optical system required for the rainbow range
finder of Tajima. Sato proposed a new technique that only needs an LCD projector and
a CCD camera. Moreover, the new technique could eliminate the colour of the measuring
surface, so the results were not affected by the spectral reflectance of the surface. The
technique consisted of projecting a periodic rainbow pattern 3 times, shifting the hue phase
1/3 of its period in every projection. An extra image was synthesised by a certain linear
combination of the three grabbed images. Afterwards, Sato demonstrated that the Hue
value of every pixel of the synthesised image is equal to the projected Hue value in the
first pattern. Therefore, correspondences between synthesised image pixels and projected
rainbow columns can be done. In order to get a good resolution, the pattern had to be
periodic, so the identification of the periods is a key point in the decoding stage.

Wust and Capson presented a technique based on a three-step phase shifting [Wust
and Capson, 1991]. However, instead of projecting three times a periodic pattern shifted
in every projection, a single pattern was used. The pattern was designed with three
overlapping sinusoids shifted between them, in order to encode the columns of every row.
The first sinusoid is represented with red, the second is shifted 90° and is represented with
green, and the third, which is shifted 90° with respect to the green one, is represented
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with blue. Then, once the pattern is projected and an image is grabbed, the phase shift
can be calculated for every pixel using the following equation

I, —1
®(z,y) = arctan <Ir Ig> (2.13)
g — 1b

®(xz,y) is the phase in a given pixel where the intensities of the red, green and blue are
denoted as I, I, and I respectively. The technique of Wust and Capson requires only
a unique pattern, so moving surfaces can be measured. However, the surface must be
predominantly colour neutral and must not contain large discontinuities.

2.7 Experimental results

We implemented a set of 7 representative techniques taken from the proposed classification
groups. All the techniques have been tested under the same conditions in order to evaluate
their advantages and constraints. A shape acquisition framework as the typical application
of coded structured light has been used. This enables us to test the different techniques
in terms of number of correspondences and how accurately they are found.

A low-cost structured light system was used. It is composed of an LCD video-projector
(Mitsubishi XL1U) working at 1024 x 768 pixels, a camera (Sony 3CCD) and a frame
grabber (Matrox Meteor-1I) digitising images at 768 x 576 pixels and 3 x 8 bits per pixel.
A standard PC was used for implementing the algorithms. For the mathematical details
concerning the calibration of cameras we refer to the comparative review presented by
Salvi et al. [Salvi et al., 2002]. This review concludes that non-linear models which take
into account the radial distortion introduced by the lenses are enough to obtain high
accuracy. In our case, an adaptation of the Faugeras calibration method which includes
radial distortion has been used [Faugeras, 1993].

Some calibration methods use a set of coplanar 3D points [Batista et al., 1999] while
others use a set of non-coplanar points, which is our case. Our calibration procedure
requires a set of non-coplanar 3D points and its corresponding 2D projections. To obtain
the sample points, we used two orthogonal white panels each one containing 20 black
squares, placed about 1 meter in front of the camera. The world frame is positioned at the
intersection of both panels as shown in Figure 2.9. Then, the camera captures an image
and the 2D corners are detected with sub-pixel accuracy by means of image processing.
Finally, 2D and 3D points are used to iterate the calibration algorithm to convergence.

The LCD projector can be modelled as an inverse camera, so that the same camera
model remains valid. In order to calibrate the projector, we assume that the camera has
been previously calibrated and that the calibrating panels remain in the same position.
The projector is placed aside the camera so that the angle between the optical axis of
both devices is about 15 degrees. A white grid pattern is projected onto both panels. We
chose the grid cross-points of the pattern as 2D points. Then, it is necessary to capture
an image with the camera. The grid cross-points can be detected with sub-pixel accuracy.
Afterwards, since the camera is already calibrated, the 3D points can be reconstructed,
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Figure 2.9: Geometric calibration setup.

taking into account certain geometrical constraints. Remember that the grid is projected
onto the calibration panels and the world frame is positioned on the bottom angle of both
panels, as shown in Figure 2.9. Then, the left panel lies on the plane Y = 0, while the
equation of the plane containing the right panel is X = 0. In this way, the 3D points,
corresponding to the grid cross-points projected onto the panels, can be triangulated by
intersecting the camera rays with the equation of these planes. Then, the set of 2D and
3D points obtained with this procedure are used to calibrate the projector’s model.

The implemented techniques are listed below and are represented in Figure 2.10.

e Time-multiplexing:
— Posdamer: stripe patterns encoded with Gray code of 7 bits so that 128 stripes
are encoded [Posdamer and Altschuler, 1982].

— Giihring: the line shifting technique using 6 Gray coded patterns and 21 slits
shifted 6 times [Giihring, 2001].

— Horn: three patterns encoding 64 stripes by using 4 grey levels [Horn and
Kiryati, 1999].
e Spatial neighbourhood:
— De Bruijn: a pattern with 64 vertical slits encoded with a De Bruijn sequence
of 3rd order and 4 colours.

— Salvi: a grid pattern of 29 x 29 slits encoded with a De Bruijn sequence of 3rd
order and 3 colours [Salvi et al., 1998].

— Morano: pattern consisting of colour dots encoded with an M-array of 45 x 45
elements and 3 colours [Morano et al., 1998].
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e Direct codification:

— Sato: the three periodic patterns proposed by Sato [Sato, 1999] were employed.

Some images showing the compared patterns illuminating one of the test objects are
presented in Figure 2.11.

The performance of the techniques was evaluated by means of quantitative and quali-
tative tests. In the following subsections the experiments and their results are presented.

2.7.1 Quantitative evaluation

A white plain (flat surface) at a distance of about 120cm to the camera was reconstructed
30 times using all the implemented techniques. A multiple regression was applied in order
to obtain the equation of the 3D plane for every technique and for every reconstruction.
The same experiment was repeated by bringing the plain closer to the camera by about
40mm. Then the average and the standard deviation of the distance between both plains
was calculated for every technique. The results of the experiment are shown in table 2.
The table includes the standard deviation, in um, of the average distance between both
parallel plains, the average number of 3D points that were reconstructed, the % of image
pixels inside a region of 515 x 226 pixels that were decoded, and the total number of
projected patterns for every technique (including white and black patterns for intensity
normalisation when needed).

Table 2.2: Quantitative results. The headings are: author’s name of the technique; stan-
dard deviation of the reconstructing error; average number of 3D points; % of pixels from
images that have been reconstructed in average; number of projected patterns.

Technique Stdev (um) 3D Points Resolution % patterns

Posdamer 37.6 25213 21.67 9
Horn 9.6 12988 11.17 5
Giihring 4.9 27214 23.38 14
De Bruijn 13.1 13899 11.94 1
Salvi 72.3 372 0.32 1
Morano 23.6 926 0.80 1
Sato 11.9 10204 8.77 3

2.7.2 Qualitative evaluation

In order to evaluate the performance of the techniques, it is also useful to observe the
reconstruction of certain surfaces and analyse them from a qualitative point of view. For
this purpose, two surfaces were reconstructed.
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Figure 2.10: Patterns corresponding to the implemented techniques: a) Posdamer; b)
Horn and Kiryati; ¢) Giihring; d) De Bruijn; e) Salvi; f) Morano; g) Sato.
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Figure 2.11: Some of the patterns illuminating a horse statue (the techniques consisting
of a sequence only one of the patterns is shown): a) Posdamer; b) Horn and Kiryati; c)
Giihring; d) De Bruijn; e) Salvi; f) Morano; g) Sato.
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The first surface was a statue of a white horse of dimensions 21 x 15 x 10 ¢m. The
statue and the reconstructions obtained are shown in Figure 2.12. The reconstructions
are presented both as clouds of points and rendered surfaces. Techniques with higher
resolution (time-multiplexing techniques and De Bruijn patterns based on a single axis
codification) enable details of the horse’s profile to be distinguished, while other techniques
with lower resolution (mainly based on spatial neighbourhood) obtain basically the global
profile.

The second test consisted of reconstructing a human hand. This surface is useful for
evaluating the performance of the techniques when the surface violates monotonicity, i.e. it
contains discontinuities. In this case, the discontinuities are produced by the gaps between
the fingers. Results are shown in Figure 2.12. Techniques based on time-multiplexing
are not affected since for recovering the codewords of a pixel, it is only necessary to
gather its value along the projected patterns. Techniques based on spatial neighbourhood
using a single axis codification (De Bruijn) suffer large amounts of data loss as the local
smoothness assumption of the measuring surface is violated. Nevertheless, techniques that
encode both pattern axis (Morano and Salvi) can identify some regions near discontinuities
due to the propagation of codewords among adjacent points. Direct coding techniques
should be robust against discontinuities if no periodicity is used in the patterns. Since the
technique proposed by Sato exploits periodicity, it fails when reconstructing the fingers.
Furthermore, periodicity is required for such techniques in order to reduce the number of
colours in the pattern as it is very difficult to correctly differentiate among the emitted
colours if a large spectrum is used.

The experiments that have been carried out allow comparison of the different groups
of techniques classified. It has been shown that techniques based on time-multiplexing
achieve the most accurate results. Moreover, line-shifting combined with Gray Code
permits exploitation of the whole theoretical resolution of patterns. The results also
demonstrate that locating the pattern stripes with sub-pixel accuracy (in the case of
Gilihring [Giihring, 2001] and Horn [Horn and Kiryati, 1999] implementations), leads
to better results than using pixel accuracy (in the case of Posdamer [Posdamer and
Altschuler, 1982] current implementation). Techniques based on spatial neighbourhood
have also obtained satisfactory results. For example, the pattern consisting of vertical slits
coded with a De Bruijn sequence has obtained very accurate measurements as the slits
are also detected with sub-pixel accuracy. However, it has failed when measuring discon-
tinuities. Such problems could be partially solved by using dynamic programming [Zhang
et al., 2002]. Furthermore, techniques based on both axis codification, i.e. the grid by
Salvi et al. [Salvi et al., 1998] and the array of dots by Morano et al. [Morano et al., 1998],
are more robust against discontinuities as redundancy in the coding strategy permits ex-
tension of decoded regions to contiguous non-decoded regions. Finally, the direct coded
pattern presented by Sato [Sato, 1999] has obtained very accurate results (also locating the
stripes with sub-pixel accuracy) and robustness against colourful surfaces. However, this
technique has the problem of stripe decodification among the pattern due to its periodic
structure when a surface containing discontinuities is measured. Such problems could be
overcome by projecting some Gray patterns to remove the ambiguity between periods.
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Figure 2.12: Reconstruction results for every one of the implemented techniques. From
up to down: Posdamer, Giihring, Horn, De Bruijn, Salvi, Morano and Sato. At left,
the cloud of points corresponding to the horse statue reconstruction. In the middle, the
corresponding rendered surface from another view point. At right, the cloud of points
from reconstruction of a human hand.
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2.8 Conclusions

We have presented a comprehensive survey of coded structured light techniques. A new
classification of the reviewed techniques has been proposed from the point of view of the
coding strategies used to generate the projected patterns.

Time-multiplexing was the first paradigm of coded structured light used to obtain
3D data from an unknown surface. The advantages of these techniques are the easy
implementation, the high spatial resolution and the accurate 3D measurements that can
be achieved. The main drawback is their inapplicability to moving surfaces since multiple
patterns must be projected. Techniques based on projecting stripe patterns encoded with
Gray code can obtain very good accuracy, but maximum resolution cannot be achieved.
In order to obtain maximum resolution, a technique based on a combination of Gray
code and Phase shifting must be used. In this subgroup, the technique proposed by
Giihring [Githring, 2001] must be highlighted. Its drawback however, is the large number
of projecting patterns (32 patterns when using maximum resolution). If maximum spatial
resolution is not the principal aim of the application, but rather the minimisation of the
number of projecting patterns, a technique based on n-ary codes is appropriate. Such
methods obtain an accuracy equal to or even better than a Gray code approach, reducing
exponentially the number of projecting patterns. For example, a Gray code technique
based on the projection of 8 patterns can encode 256 stripes, while an n-ary technique
only requires 3 patterns and 13 grey levels or colours to obtain such resolution, for n = 13.
However, the system using n-ary codes must be calibrated in order to correctly differentiate
among the set of grey levels or colours used. If a good calibration cannot be achieved,
then it is recommended to reduce the number of grey levels or colours by projecting more
patterns.

Spatial neighbourhood coding is the second big group of coded structured light tech-
niques. The advantage compared with time-multiplexing is that such strategy permits,
in most cases, moving surfaces to be measured. However, since the codification must be
condensed in a unique pattern, the spatial resolution is lower. Moreover, local smoothness
of the measuring surface is assumed in order to correctly decode the pixel neighbourhoods.
Since this local smoothness is not always accomplished, errors in the decoding stage can
arise producing false correspondences. In order to minimise such errors, the algorithms of
the decoding stage must be more robust, resulting in an increase in the overall complexity
of the technique. Techniques which define the neighbourhoods empirically usually present
pattern periodicity or repetition of neighbourhoods, which is not recommended. Such
problems have been eliminated by strategies based on De Bruijn sequences and M-arrays.

Techniques based on a unique pattern coded using a De Bruijn sequence have a trade
off between the length of the sequence, i.e. the resolution of the system, the number of
colours involved and the size of the window property. Most of these methods use either
horizontal or vertical windows with a limited size in order to preserve the local smoothness
assumption of the measuring surface. If the window size is not too big (in our opinion a
good limit is about 10% of the sequence length), more than two colours must be used with
the aim of preserving a good resolution. The number of colours used increases the noise
sensitivity when measuring colourful scenes. Using up to 6 colours is not very problematic.
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With 5 colours and a window size of 3, a resolution of 125 slits per pattern (similar to a
Gray code system based on 7 patterns) can easily be achieved with a robust decoding stage.
The most complete technique that can be found in the bibliography is the one proposed by
Zhang et al. [Zhang et al., 2002]. This technique takes into account that disorders between
elements of the sequence can occur when projecting the pattern. The solution proposed is
based on multi-pass dynamic programming, which seems the most robust way to recover
the original sequence. Furthermore, techniques based on M-arrays are more difficult to
generate. However, since every coded point has both row and column codewords, a higher
degree of redundancy is included. In order to take advantage of this redundancy, an
additional step must be programmed in the decoding stage for validating the codeword of
every coded point. Similar trade offs to the ones involved when using De Bruijn sequences
also appear with M-arrays-based patterns. The segmentation complexity of the observed
patterns in such techniques must also be addressed. The most typical representations of
an M-array in a pattern are the grid representation and the array of dots. In our opinion,
the grid representation can be segmented more easily by edge detection. The encoded
points are the intersection of edges, so they can be found very accurately. In addition,
when projecting dots, their mass centres must be located. So that it is important to detect
when a dot appears partially occluded, since its mass centre will be incorrect. Moreover,
the grid techniques allow adjacent cross-points to be located by tracking the edges, while
with the dot representation, some sort of euclidian distance must be used to locate the
neighbours of a given dot.

It should be noted that a technique based on spatial neighbourhood can always be
translated to a time-multiplexed technique by expressing the colours in binary intensity
levels distributed over a sequence of patterns.

Direct coding techniques are useful for achieving large spatial resolution and few pro-
jecting patterns. However, these techniques present a lot of drawbacks. Firstly, the limited
bandwidth of LCD projectors provokes integration of intensities over adjacent pixels. Sec-
ondly, variations of light intensities due to the different colours and depths of the measuring
surface. Finally, the error quantisation introduced by the camera, which is very sensitive
to noise. Therefore, the correct identification of every projected intensity or colour is not
easy to achieve. In most cases, the use of such techniques requires a device that projects
a unique wavelength for every grey level or colour. Therefore, LCD projectors are not
suitable for such a purpose. Some authors use non-standard optical devices to decompose
white light, producing monochromatic light planes. Furthermore, since a large spectrum
of wavelengths are used, cameras with large depth-per-pixel must be considered (about 11
bits per pixel) for accurate quantisation. It should be noted that most of these techniques
cannot measure moving scenes because they need additional patterns to normalise inten-
sity or colour. In addition, these techniques are usually limited to colour-neutral surfaces.
Nevertheless, some techniques that can be implemented with an LCD projector and a
standard CCD camera were proposed by Wust and Capson [Wust and Capson, 1991] and
Sato [Sato, 1999]. Moreover, both techniques are theoretically capable of reconstructing
colourful surfaces, and the technique by Wust and Capson can also measure moving sur-
faces. Accordingly, experimental results given by the technique by Sato showed that, in
the synthesised image, most part of the surface colours are eliminated.
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Finally, the intensity-depth per pixel used by a coded structured light technique is also
an important parameter. The noisier the application environment in which the technique
will be applied, the smaller the number of grey levels or colours used should be. Therefore,
time-multiplexing techniques based on binary patterns are the most robust against noise.
However, when increasing the number of grey levels or colours, differentiating the slits
becomes more difficult. The non-linearities of the light spectrum of the projector and the
spectral response of the cameras, and the non-uniform albedo of the measuring surface
mean that the read colours hardly match with the projected ones. In order to overcome this
problem, a full colourimetric calibration procedure should be considered. The illumination
model proposed by Caspi et al. [Caspi et al., 1998] or even a simple linear normalisation
may be a good solution.






Chapter 3

A proposal of a new one-shot

pattern

In this chapter we present a new coloured pattern which is able to obtain correspondences
with a unique shot. The pattern is generated by a new coding strategy based on De Bruijn
sequences. The new pattern is compared to similar existing patterns by reconstructing the
shape of different objects and analysing the results from a quantitative and a qualitative
point of view. The results discussed at the end of the chapter show that the pattern is able
to increase the number of correspondences in a single shot without loss of accuracy.

3.1 Introduction

As it has been shown in the previous chapter, important efforts have been done in or-
der to generate patterns able to obtain correspondences with a unique projection. As
already mentioned, there is an important group of one-shot techniques which are based
on coloured multi-slit and stripe patterns. Multi-slit patterns introduce black gaps be-
tween the coloured bands of pixels so that two consecutive slits can have the same colour.
The black gaps allow intensity peaks to be detected in the images. Every intensity peak
corresponds to the central position of a certain slit. Thus, the correspondence problem is
solved for points falling onto the centre of every slit which are imaged as intensity peaks.
Hereafter, we refer to this matching strategy as peak-based matching.

On the other hand, in stripe patterns no black gaps are introduced between the coloured
bands of pixels. Therefore, adjacent stripes cannot share the same colour. In such patterns,
edges between stripes are searched in the image in order to find correspondences so that
an edge-based matching is performed.

Note that in multi-slit patterns an edge-based matching is not suitable since a certain
amount of the intensity of a slit is integrated over the surrounding black regions. Therefore,
the edges in the image do not really correspond to the edges in the pattern. Such problem
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already appears when multiplexing binary codes by projecting a sequence of binary stripe
patterns of successively increasing frequency [Posdamer and Altschuler, 1982]. As stated
by Trobina [Trobina, 1995], the best solution in these cases consists in projecting every one
of the binary stripe pattern and its negative version. Then, by intersecting the intensity
profiles of every pattern pair the edges can be detected with high accuracy. Unfortunately,
this solution is not applicable to one-shot techniques. Note also that in the case of coloured
stripe patterns a peak-based matching is neither feasible since the pattern is projected with
a flat intensity profile.

This chapter proposes a new coloured pattern which combines the advantages of multi-
slit and stripe patterns. In Section 3.2 the new coding strategy used to generate the pattern
is exposed. Afterwards, details concerning how to segment the pattern and how to solve
the correspondence problem are explained in Section 3.3. Then, Section 3.4 presents two
calibration procedures for improving the accuracy and robustness of a structured light
setup using coloured patterns like the one proposed. Experimental results of the new
pattern compared to other similar patterns are shown and discussed in Section 3.5. The
chapter ends with conclusions concerning the new approach.

3.2 The new coding strategy

This section presents a new type of coding strategy which defines patterns containing
both edges and intensity peaks. The new hybrid pattern appears as a stripe-pattern in
the RGB space while in the intensity channel it appears as a peak-based pattern. The
intensity profile of the pattern is defined as a square function so that it alternates from a
medium intensity stripe to a high intensity stripe.

The coding strategy requires only n = 4 different hue values in order to colour a pattern
with 128 stripes so that a window property of m = 3 stripes is obtained. The formal
definition of the pattern can be noted as follows. Let W, and W}, be respectively the width
in pixels of a medium-intensity stripe and a high-intensity stripe. Let S = {1,..,2n™} be
the set of stripe indices. Then, the mapping from the pattern abscissas to the stripe indices
is defined by the following function

stripe : X — S

stripe(x) = 2 ((x—1) + (Wm+Wh))+{ 1 ((z—1) mod (W, +Wh) )JH1<W,, (3.1)

2 otherwise

where + denotes integer division. The following function determines the intensity level of
a given stripe, which has two possible values L = {high, medium}

Int: S — L
Ini(z) = { high xmod2 = 0 (3.2)

medium otherwise

The pattern is divided in n periods P = {1,..,n} of n™ consecutive stripes each one.
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In order to determine to which period belongs to a given stripe the following function is

defined
period : S — P

period(s) = ((s —1) = 2n™ 1) +1 (3:3)
Let H ={1,..,n} the set of indices to the hue values chosen. Then, the hue value of a
given stripe is set as follows

Colour : S — H

period(s) Int(s) = medium 3.4
Colour(s) = ((s—1) mod 2n?)+1 (34
b | o

otherwise

where db is an ordered vector containing a De Bruijn sequence with window property of 2
like the following one [Salvi et al., 2004]:

db=1[1,1,2,1,3,1,4,2,2,3,2,4,3,3,4, 4] (3.5)

Every stripe with a certain hue value and a certain level of intensity can be labelled
according to the set of labels B = {1,2,3,4,5,6,7,8} by using the following function

Label : Hx L — B

[ h I = high (3.6)
Label(h,l) = { h+n I = medium

The sequence of stripes generated by the proposed coding strategy and the De Bruijn
sequence in Equation 3.5 can be represented using the labelling function in Equation 3.6
as follows

5,1,5,1,5,2,5,1,5,3,5,1,5,4,5,2,5,2,5,3,5,2,5,4,5,3,5,3,5,4, 5, 4]

P, = [6,1,6,1,6,2,6,1,6,3,6,1,6,4,6,2,6,2,6,3,6,2,6,4,6,3,6,3,6,4,6, 4]
7,1,7,1,7,2,7,1,7,3,7,1,7,4,7,2,7,2,7,3,7,2,7,4,7,3,7,3,7,4, 7, 4]
8,1,8,1,8,2,8,1,8,3,8,1,8,4,8,2,8,2,8,3,8,2,8,4,8,3,8,3,8,4,8, 4]

(3.7)

where P; is the sequence of stripes corresponding to period i. Note that the elements
{1,2,3,4} correspond to high intensity stripes and 1 indicates the first hue value, 2 the
second, etc. On the other hand, the elements {5,6,7,8} correspond to medium intensity
stripes so that, in this case, 5 indicates the first hue value, 6 the second, etc. Note that
in every period, all the medium intensity stripes share the same hue value, while the hue
value of the high intensity stripes is directly chosen according to the De Bruijn sequence
in Equation 3.5.

Figure 3.1a shows a pattern encoded according to the above strategy. The n = 4
hue values used are equally spaced in the Hue space so that H = {0°, 90°, 180°, 270°}.
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Finally, the two intensity levels used are L = {0.35, 0.5}. The intensity profile of the
pattern is shown in Figure 3.1b.

Figure 3.1: An example of new pattern. a) Hybrid pattern in the RGB space. b) Hybrid
pattern intensity profile.

Note that 128 stripes have been coloured by using only 4 levels of hue. Indeed, as less
colours are projected, higher immunity against noise is obtained. The proposed pattern
allows two adjacent stripes to share the same hue value but not the same intensity level.

The aim of this pattern is to allow both intensity peaks (corresponding to the stripes
central point) and edges between stripes to be detected.

Next section presents the algorithmic details concerning the detection of both intensity
peaks and edges and the decoding of the new hybrid pattern.

3.3 Pattern segmentation and decoding

Given the system configuration of our experimental setup, i.e. a camera and a projector
positioned aside and the pattern consisting of vertical stripes, the decoding process is based
on horizontal scan-lines. In case that the projector and the camera are not approximately
aside, a stereo pair rectification algorithm can be used to transform the images taking into
account the geometry of the system [Fusiello et al., 2000].

According to the aim of the proposed hybrid pattern, for every scan-line, the intensity
peaks corresponding to the centre of every stripe and the edges between the stripes must be
located. Afterwards, the detected stripes centres and the edges between adjacent stripes
must be matched with the projected pattern in order to obtain correspondences.

3.3.1 Scan-line segmentation

First of all, we take advantage of the pattern square intensity profile in order to segment
regions in the scan-line corresponding to medium intensity and high intensity stripes of
the pattern. We define the M channel of a scan-line as a function of the RGB channels as
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follows

M) = max(R(),G (), B(i)) (3.8)

i = 1l..width(scan-line)

The second derivative of the M channel is used to distinguish between regions of max-
ima and minima intensity. In order to increase the immunity against noise the following
numeric filtered linear derivative is used [Blais and Rioux, 1986]

0/2

g(i) =Y (fli+e) = f(i—c)) (3.9)

c=1

where f is the original function (in our case, the M channel of the current scan-line), g is
the corresponding filtered linear derivative of order o, and ¢ indicates the element index
which is being filtered. This filtering operator is applied twice in order to obtain the filtered
second derivative of the M channel. The order o of the filter must be chosen according
to the apparent stripes width of the pattern in the images, which must be always greater
than o (in our experiments we have used o = 6). The effects of applying this filtered
derivative in a signal showing a maximum and a minimum is shown in Figure 3.2a. Note
that the second derivative strongly enhances the intensity differences, producing more
enhanced peaks. Then, the second derivative can be used to segment maximum and
minimum intensity regions of the pattern by simply binarising it. Concretely, regions
where the second derivative is less than 0 are binarised to 1 and inversely. In Figure 3.2b
a portion of a scan-line of the M channel of a real image is shown. The square signal
is the binarised second derivative of the scan-line. The results of segmenting the stripes
by using this technique is also shown in Figure 3.2c-d. In this case, the M channel of
an image with a human hand under the pattern illumination is shown, see Figure 3.2c.
As can be seen in the resulting binarised image in Figure 2d, the second derivative is
able to segment the stripes even in regions with low intensity (see the black background
behind the hand). In order to avoid to process the image background a minimum intensity
threshold applied to the M channel can be used in order to detect such regions. Note that
the stripes corresponding to the human hand have all been correctly segmented even if
there are contrast variations through the image.

The segmentation of the scan-line by using the second derivative allows us to distin-
guish between regions corresponding to medium and high intensity stripes. The centre
of the stripe corresponding to every segmented region can be detected with sub-pixel ac-
curacy using different peak detectors [Trucco et al., 1998]. After some experiments, we
have found that given the width of the imaged stripes the peak detector obtaining better
accuracy is the one based on a normalised centroid. This peak detector first normalises
the pixel intensities by dividing it by the maximum intensity in the region. Then, it cal-
culates the sub-pixel centre of mass of the region taking into account only those pixels
for which its normalised intensity is higher than a certain threshold (set to 0.9 during the
experiments).
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Figure 3.2: Stripes segmentation through a filtered second derivative. a) Behaviour of
the 1st and 2nd derivative on a synthetic signal. b) Segmentation of maxima and minima
using the 2nd derivative. ¢) M channel of an image of a human hand under the pattern
illumination. d) Stripes segmented by using the 2nd Derivative.
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The edges between adjacent stripes can be located by using the following strategy.
Given the stripe centre of a high intensity stripe, the sub-pixel position of the surrounding
edges corresponds to the two closest maxima in the function

g = dR* + dG? + dB?* + dM* (3.10)

where dR, dG, dB and dM denotes the first derivative (calculated by the linear filter in
Equation 3.9) of the Red, Green, Blue and M channel of the scan-line. This strategy is
similar to the used in the edge-based stripe pattern by Zhang et al. [Zhang et al., 2002]
but in this case we take profit also of the alternating intensity profile of the pattern. The
sub-pixel position of the maxima in g are calculated by using the peak detector by Blais
and Rioux [Blais and Rioux, 1986] when a zero-crossing is detected in the first derivative
of g.

3.3.2 Scan-line decoding

Once the stripes centres and the edges have been located, it is necessary to match them
with the projected pattern, a process which is known as pattern decoding. The decoding
strategy of our technique is based on the hue value of every segmented stripe in the scan-
line.

The hue value of each segmented stripe is set to be the median hue value of all the
pixels included in the corresponding region. Since only four hue values are projected, the
hue of each region can be easily identified by using simple rules over the RGB colour like
the following ones (taking into account the hue values used in the pattern proposed in
Section 3.2)

max(R,G,B) =R and G < 0.5R and B<05R = H=0°

max(R,G,B) = G and B < 0.5G = H=90°
min(R, G, B) = R = H =180°
min(R,G,B) =G = H =270°

(3.11)

Then, for every scan-line a sequence of stripes is recovered and a hue value and an intensity
level (medium or high) is assigned to each one of them. By using the labelling function
presented in Equation 3.6 a numeric sequence representing the scan-line can be obtained.
Ideally, if all the pattern stripes are segmented in the scan-line and their hue value and
intensity level are correctly identified, the numeric sequence corresponding to the scan-line
is equal to the encoded sequence in Equation 3.7. In such an ideal case, the matching of
correspondences between the projected sequence and the perceived one is straightforward.
However, in most cases either the whole sequence of projected stripes is not visible in the
image scan-line or some of them are incorrectly labelled or disorders may occur.

In order to robustly solve the correspondence problem that arises we use dynamic
programming as in [Cox et al., 1996; Zhang et al., 2002].
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3.4 Improving the performance of coloured stripe

patterns

In this section we present two modelling steps which should be always considered when
working with coloured stripe patterns. Indeed, imperfections on the devices of the struc-
tured light system setup can affect the performance and accuracy of the technique. In the
following sections two of these imperfections are introduced and a solution for minimising
their negative effects are proposed.

3.4.1 RGB channel alignment

Ideally, colour cameras should perceive an intensity peak of white light at the same image
coordinates in the three RGB channels. In practice there is an offset between the sub-
pixel location of the intensity peaks in every RGB channel. This phenomenon is known
as RGB channel misalignment. It is caused by spatial misalignments in the different CCD
cells perceiving the red, green and blue light respectively. Although the order of these
misalignments is usually below or around one pixel, it can produce higher order errors in
3D reconstruction. Furthermore, it can be easily shown experimentally that it is not only
cameras the ones suffering from RGB channel misalignment, but also LCD projectors.

Some authors propose to reduce the camera RGB channel misalignment by viewing
an object providing reference points (like a checkerboard) and locating such points in
the three channels separately. Afterwards, an homography can be calculated relating the
position of the points in the red channel with respect to the ones in the green channel, and
another homography doing the same between the points in the blue and the green channel.
These homographies are then used to reduce the misalignment in the images [Zhang et
al., 2002]. Nevertheless, this method totally ignores the RGB misalignment in the LCD
projector.

We propose to minimise the RGB misalignment observed in the camera images taking
into account both the camera and the projector at the same time. Since the decoding
process is made through horizontal scan-lines, we propose to minimise the RGB channel
misalignment in every scan-line. The algorithm is simple. A flat white panel is set in front
of the camera and the projector at the typical working distance. Three patterns consisting
of a sequence of narrow stripes separated by black gaps are projected sequentially: each one
having red stripes, green stripes and blue stripes, respectively. Images of every projected
pattern are taken by the camera. For every scan-line the sub-pixel position of every
intensity peak is located with the detector by Blais and Rioux [Blais and Rioux, 1986]. In
the image containing the red stripes, the red channel is used to locate the peaks. Similarly,
the green channel is used in the image containing green stripes and the blue channel for
the case of blue stripes. For every scan-line, the median of the sub-pixel offsets and the
relative positions between the three channels are stored. We have observed that the relative
positions of the channels coincide in all the scan-lines and that the relative offsets are very
similar. That is why we finally store two unique offsets between the central channel and
the other two. In our experimental setup we have found that in the images the central
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channel is the blue while the green channel is approximately at 1.26 pixels at its left, and
the red channel is about 0.53 pixels at its right. These offsets have been named ng and
PH,., respectively. In order to reduce the global misalignment observed in an image it
is necessary to apply the offset ng to the green channel and the offset YH, to the red
one and then combine the transformed channels with the original blue channel in order to
obtained the rectified image. Note that the intensity of every transformed pixel in the new
channels must be interpolated from the neighbouring pixels in the corresponding source
channel since the offsets are at sub-pixel precision.

3.4.2 Colour selection and calibration

The proposed hybrid pattern is based on the assumption that two different intensity
levels will be distinguished in the image regions containing the projected pattern. This is
necessary in order to be able to segment the stripes and to identify them as medium or high
intensity stripes. Ideally, any discrete RGB instruction ¢ with the same level of intensity
i should produce the projection of light with the same intensity I so that the only varying
parameter is the wavelength A. Similarly, a perfect camera should be able to digitise any
incident light of wavelength A and a certain intensity I to a discrete RGB triplet C with
intensity ¢. In real conditions, however, the mapping from the RGB projection instruction
c to the imaged RGB triplet C is a strongly non-linear process. Several radiometric models
of a structured light system composed of a LCD projector and a colour camera can be
found in the bibliography, as for example, in [Caspi et al., 1998; Nayar et al., 2003]. Such
models take also into account the reflective properties of the illuminated scene so that
a model of the object albedo is also estimated. Indeed, the complete radiometric model
identification of our experimental setup could be performed. However, taking into account
that only 4 colours (hue values) and 2 different intensity levels are projected in the hybrid
pattern, a simpler algorithm can be performed. Furthermore, since a one-shot technique
is based on a unique pattern projection, the albedo of the object cannot be recovered so
that this part of the radiometric model is unnecessary.

In Figure 3.3 the system response when projecting the four hue values with different
intensities, from the point of view of the RGB instruction c, is plotted. The response is
the value of the M channel obtained from the camera image. These curves have been
obtained by projecting solid patterns with each one of the 4 hue values with different
intensity levels. A neutral colour panel has been used in order to not excessively perturb
the projected light. As can be seen, the system response for each one of the colours is
different and it is clearly non-linear. Note that in order to obtain the same value in the
M channel of the image, each one of the 4 colours must be projected with a different
intensity level. Therefore, as shown in Figure 3.3, by choosing the two desired values
of the M channel, the required projecting intensities for each one of the colours can be
approximately obtained using the curves. With this simple calibration procedure, the
hybrid pattern can be adapted in order to produce a suitable system response without
need of performing a whole radiometric calibration.

Another typical problem of a structured light system setup is the projector-camera
colour crosstalk [Caspi et al., 1998; Nayar et al., 2003; Zhang et al., 2002]. In order to



60 Chapter 3. A proposal of a new one-shot pattern

260
K -
.
240F N
L4 —\‘
Rd
R4

220F 2

gl .
D QY .

_S (/ & Py O
[93 _ /
S 200 S
Q 4
8 L
@ 18%\ o
% vV N '\J — =1
s . H=2

160} ’ H=3

60 ’ = H=4

-
4
140f ¢
120 N N N N N N N N ,
40 50 60 70 80 90 100 110 120 130

Projected intensity

Figure 3.3: Non-linear response of the system when projecting the four selected hue values
with different intensity levels.

see the role played by this phenomenon let us remember the model presented by Caspi et
al. [Caspi et al., 1998]

R Qry  Qrg Qrp r Ry
G |=1| agpr agg ag |KPq g ¢+ | Go (3.12)
B Qbr  Abg  Apb b By
——— ~ v —_—— ——
C A c Co

where ¢ is the RGB projection instruction sent to the projector and C the corre-
sponding RGB triplet digitised by the camera. The consign c is actually modified by the
non-linear behaviour of the projector which actually projects a colour denoted by P. K is
a 3 x 3 matrix modelling the albedo of the illuminated object, and A is the colour crosstalk
matrix, while Cy is the RGB tripled digitised by the camera when there is only ambient
lighting. Therefore, A expresses how the RGB channels of the camera are affected by the
RGB channels of the projector.

Experimentally it can be observed that usually the strongest crosstalk appears when
projecting green, since it is not only detected by the green channel of the camera but also
by the red one. In order to minimise the colour crosstalk, we perform two calibration
processes. First, a solid pattern is projected using each one of the 4 calibrated colours for
medium intensity stripes. These colours are defined by the 4 hues selected in Section 3.2
and the 4 intensities selected in this section which aim to produce the same medium
intensity in the M channel. Then, the following linear system is defined
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where (R;, G;, B;) is the average colour perceived by the camera when the instruction
(74, gi,b;) is sent to the projector and using a colour neutral panel (K = I3). Matrix A,,
can be numerically calculated by using singular value decomposition. The inverse of this
matrix can be used to partially remove the colour crosstalk of the stripes identified during
the segmentation process as medium intensity stripes. Similarly, a matrix Ay, is calculated
by projecting the colours corresponding to the high intensity stripes.

3.5 Experimental results

In this section we show some experimental results validating the proposed hybrid pat-
tern. The performance of the new pattern is evaluated by calibrating the devices of the
structured light system and triangulating the correspondences.

In this case, the experimental setup consists of an Olympus Camedia digital camera
and a Mitsubishi XL1U LCD projector which are positioned aside with a relative direction
angle of about 15°. Both devices operate at 1024 x 768 pixels. The measuring volume is
about 30 cm high, 40 cm wide and 20 cm deep.

The calibration of the system has been performed according to the steps presented in
the previous section and summarised in Figure 3.4. The figure also shows the one-shot
shape acquisition process and its interaction with the data obtained during the system
calibration. Note that the image rectification step is not really necessary if the camera
and the projector are positioned aside with similar tilt angle.

During the experiments three different patterns have been tested which are now briefly
presented.

Edge-based pattern: the stripe pattern proposed by Zhang et al. [Zhang et al., 2002]
has been chosen as sample of pattern where it is possible to match points belonging to the
edges between adjacent stripes. The pattern is composed of 125 vertical stripes 7 pixels
wide coloured using 8 different hue levels and is shown in Figure 3.5a. The edges are
located in each scan-line by searching local maxima of the following function

f = dR*+ dG* + dB? (3.14)

where dR, dG and dB are the intensity gradients of the red, green and blue channels on
the current scan-line. Every edge is labelled as (dR(e;),dG(e;),dB(e;)) where e; is the
position of the edge on the scan-line. The pattern is generated so that every combination
of three consecutive edge labels appears only once as maximum (window property equal
to 3). The correspondence problem between the sequence of edges located in a scan-line
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and the sequence of emitted edges is solved by using dynamic programming [Zhang et
al., 2002].

Peak-based pattern: a pattern with 64 coloured slits of 7 pixels separated by black
gaps of the same width. Four colours have been used to generate the pattern which is
shown in Figure 3.5b. The sequence of coloured stripes has window property equal to
3. Similar patterns can be found in the bibliography like, for example, the one by Chen
et al. [Chen et al., 1997] or the one by Monks et al. [Monks et al., 1992]. In order to
locate the slits in a camera scan-line maxima in the M channel are used. Every maximum
corresponds approximately to the bounds of a coloured slit. A coloured slit is said to
be between two consecutive maxima if the gradient of M in this region is predominantly
descending. The accurate position of the central point of a coloured slit is located by
using a normalised centroid peak detector [Trucco et al., 1998]. Then, since only 4 colours
are projected, the colour of the detected slits can be easily segmented. The matching of
the detected slits on the current scan-line and the sequence of projected ones is also made
through dynamic programming based on the RGB components of the slits.

Hybrid pattern: the pattern containing 128 stripes generated according to the new
coding strategy which was already presented in Figure 3.1. Both medium and high inten-
sity stripes are 7 pixels wide.

“ “‘a) | “‘ “ “b“ “

Figure 3.5: One-shot patterns used for comparing the performance of the hybrid pattern.
a) Stripe pattern by Zhang et al. b) Multi-slit pattern similar to the one proposed by
Monks et al.

3.5.1 Quantitative results

The selected techniques have been first compared in terms of accuracy and resolution.
A measure of the accuracy has been obtained by reconstructing a plane positioned in
front of the camera and the projector at a distance of about 1.2 m. The accuracy has
been characterised by the mean and the standard deviation of the distances between the
reconstructed 3D points and the fitted plane. The figure for evaluating the resolution is
the number of 3D reconstructed points which is the number of correspondences found.
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When using the peak-based pattern, the 3D points are obtained by reconstructing the
intensity peaks detected in the image. In the case of the edge-based pattern, the detected
edges are used to triangulate 3D points. On the other hand, the hybrid pattern allows
to obtain 3D points by reconstructing both intensity peaks and edges. Let us introduce
the following notation to refer to the basic reconstruction strategies allowed in the hybrid
pattern:

e M strategy: reconstruction of intensity peaks (maxima) corresponding to the centre
of high intensity stripes.

e m strategy: reconstruction of intensity peaks (minima) corresponding to the centre
of medium intensity stripes.

e [ strategy: reconstruction of edges between adjacent stripes.

In fact, not only the individual strategies M, m and E have been used when testing
the hybrid pattern, but also some combinations of them, namely M + m, E + M and
E+M+m.

Table 3.1 shows the numerical results obtained by every pattern and the different
reconstruction strategies allowed by each one. In terms of accuracy the best result is
obtained by the peak-based pattern. In second position we find the hybrid pattern when
using the M strategy. In both cases, the average and the standard deviation of the error
is much more lower that when using the edge-based pattern. Furthermore, we note that
the accuracy of the hybrid pattern when reconstructing only edges (E strategy) is also
better that the accuracy of the edge-based pattern. When using the m strategy with
the hybrid pattern, the average error increases considerably while the standard deviation
remains quite similar. This points out that the reconstruction of minima is much more
affected by noise. Therefore, finding the sub-pixel position of an intensity minimum is a
much more sensitive and inaccurate process than locating an intensity maximum. This is
probably caused because the signal-to-noise ratio is lower in the medium intensity stripes
of the hybrid pattern. In terms of resolution we note that strategies based on intensity
peaks (M and m) obtain about half of the resolution that when reconstructing edges (E
strategy). Therefore, from the numerical results it is not easy to decide which is the best
individual strategy because there is a trade-off between accuracy and resolution.

Let us now analyse the results when combining different reconstruction strategies
thanks to the hybrid pattern. Using more than one strategy allows the resolution to
be largely increased, see last column of Table 1. In general, the combination M + m ob-
tains the same order of resolution that the F strategy. Note however, that the accuracy of
the hybrid pattern when using M + m is slightly better than using the hybrid pattern and
the E strategy. With respect to the edge-based pattern, the improvement on accuracy
is much more significant. On the other hand, we can emphasise that the combination
E + M gets a resolution about 1.5 times greater than when using E or M +m and obtains
similar accuracy. Finally, the combination £ + M 4 m doubles the resolution of the F
strategy. However, we observe a worse accuracy (the standard deviation of the error is
higher). It seems therefore, that the inclusion of the minima intensity peaks degrades the
performance of the hybrid pattern in terms of accuracy.
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Table 3.1: Accuracy results of plane fitting obtained from the three strategies. E denotes
edges, M maxima intensity peaks and m minima intensity peaks.

Pattern type Strategy Mean (mm) StDev (mm) Reconstructed points

peak-based M 0.30 0.22 1964
edge-based E 0.63 0.37 3938
hybrid E 0.51 0.34 3886
hybrid M 0.43 0.33 1943
hybrid m 0.52 0.41 1943
hybrid M-+m 0.43 0.34 3886
hybrid E+M 0.48 0.34 5829
hybrid E+M+m 0.46 0.44 7973

The results of the patterns are qualitative compared in the following section. These
results will help us to decide which combination of reconstruction strategies give better
results when using the proposed hybrid pattern.

3.5.2 Qualitative results

In this section we present and discuss the visual appearance of several reconstructions ob-
tained with the selected patterns and the different reconstruction strategies. First of all we
analyse the plane reconstruction explained in the previous section. In Figure 3.6a the re-
construction obtained using the peak-based pattern is shown. Note that the reconstructed
surface is very smooth confirming the accuracy results presented before. Figure 3.6b shows
the surface obtained when using the edge-based pattern. Note that some visual artifacts,
concretely vertical ridges, appear along the surface. Figure 3.6¢c-d shows the surfaces
obtained with the hybrid pattern when reconstructing only maxima intensity peaks and
edges, respectively. Note that in this case a smooth surface is also obtained with the
M strategy, while some ridges also appear when using the E strategy. Nevertheless, we
remark that the ridges obtained with the hybrid pattern when reconstructing edges are
much smoother that the ones appearing in the reconstruction provided by the edge-based
pattern. This fact seems to confirm the accuracy results obtained by both techniques. The
reconstruction obtained by the hybrid pattern when using the M + m strategy is shown
in Figure 3.6e. Note that a smooth plane is still obtained. The result given by the hybrid
pattern and the F+ M strategy is depicted in Figure 3.6f. Even if a small loss of accuracy
has been predicted in the previous section, we can observe that the visual appearance is
still better that when using the edge-based pattern. Nevertheless, as expected, the in-
clusion of the edges in the reconstruction process make some smooth ridges to appear.
Finally, Figure 3.6g presents the reconstruction when using the strategy £ + M 4+ m. The
appearance is bit noisier than the obtained by the E 4 M strategy.

Figure 3.7 presents three colour neutral test objects, namely a mask, a horse statue and
a sun statue. The images corresponding to the projected patterns (peak-based, edge-based
and hybrid pattern) are also shown. The reconstruction results are plotted in Figure 3.8.
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Figure 3.6: Plane reconstruction. a) Peak-based pattern. b) Edge-based pattern. c¢)
Hybrid pattern: M strategy. d) Hybrid pattern: E strategy. e) Hybrid pattern: M+m
strategy. f) Hybrid pattern: E4+M strategy. g) E+M+m strategy.
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As expected, the peak-based pattern (first row) and the hybrid pattern using the
M +m strategy (second row) obtain both smooth surfaces and almost absence of artifacts.
However, the reconstructions obtained by the peak-based pattern are too much smoothed
due to the low resolution achieved, so that details like the mask mouth and the horse eye
are not visible. Note that in the result corresponding to the hybrid pattern and the M +m
strategy such details begin to be appreciated. The gain in visual appearance obtained by
the hybrid pattern and the M + m strategy is confirmed in the sun reconstruction, where
the eyes, nose and mouth are better represented than in the case of the peak-based pattern.

The edge-based pattern (third row) shows pretty performance producing highly de-
tailed surfaces with absence of important holes. On the other hand, vertical ridges appear,
degrading the smoothness of the surfaces. If we compare the edge-based pattern and the
hybrid pattern using the M + m strategy, the former seems to get a bit more level of
detail. However, since the latter does not have the inconvenience of the vertical ridges, it
is difficult to decide which results are better from a qualitative point of view.

Finally, the last two rows of Figure 3.8 present the results obtained by the hybrid
pattern when using the £ + M and F + M + m strategies. The E + M strategy obtains
a higher level of detail (see for example the horse mouth, which was not detected in
the previous cases) than the previous techniques. Due to the inclusion of the edges in
the triangulation process, the vertical ridges also appear. However, these artifacts are
smoother than the ones observed in the edge-based pattern results. On the other hand, it
seems that some additional small holes appear and that some contours near shadows are
less well defined. Note also that the differences between the results of the E + M strategy
and the F+ M + m strategy can be hardly distinguished.

In general, we think that the results obtained by the hybrid pattern are globally better
than the ones obtained by the edge-based pattern proposed by Zhang et al. [Zhang et
al., 2002]. We think that the increase in resolution achieved by the combination of edges
and intensity peaks allows some small details of the objects to be better reconstructed. In
order to show this, Figure 3.9 presents an ampliation of the sun reconstruction focusing
on the zone corresponding to the nose, eyes and mouth. As can be seen in Figure 3.9b, the
reconstruction obtained by the peak-based pattern is quite poor. Note that the quality
of the reconstruction is already improved when using the hybrid pattern and the M + m
strategy as shown in Figure 3.9e. Even if the reconstruction obtained by the edge-based
pattern (see Figure 3.9¢) shows great level of detail, we can see that the results obtained
by the hybrid pattern and the E + M and E + M + m strategies (Figure 3.9d and f) are
even better. Note that the shape of the sun nose and mouth and the nose corresponding
to the moon are much more clear in the hybrid pattern reconstructions. We can also point
out that the fold appearing in the left cheek of the sun is better appreciated in the hybrid
pattern results.

Finally, we present to reconstructions obtained with the hybrid pattern taking into
account slightly coloured objects. One-shot techniques projecting colourful patterns have
usually problems when dealing with non-colour neutral objects. We first show the results
obtained when reconstructing a human hand. The skin usually introduces a strong gain on
the red component of the pattern and at the same time attenuates the whole luminosity
reaching the camera. Figure 3.10a shows the picture of the hand with the projected
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Figure 3.8: Reconstruction results of the test objects. The first row corresponds to the
peak-based pattern; second row: hybrid pattern and the M +m strategy; third row: edge-
based; fourth row: hybrid pattern and the E'+ M strategy; sixth row: hybrid pattern and
E + M + m strategy.
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Figure 3.9: Zone enlargement of the sun reconstruction. a) Picture of the real object. b)
Peak-based pattern. ¢) Edge-based pattern. d) Hybrid pattern: M+E strategy. e) Hybrid
pattern: M+m strategy. f) Hybrid pattern: E4+M+m strategy.

pattern. The stripe and colour segmentation obtained is shown in Figure 3.10b. The
reconstruction results are plotted in form of points and surface in Figure 3.10c-d. As can
be seen, the level of detail is as expected very high (see the veins passing through the hand)
taking into account that a unique pattern is projected. The second example consists of
three coloured sheets of papers as shown in Figure 3.10e. The obtained reconstruction is
presented in Figure 3.10f.

3.6 Conclusions

This chapter has presented a new coloured pattern which is able to provide a large number
of correspondences in a single shot. The new pattern aims to improve similar existing
patterns in terms of resolution and accuracy. Among the one-shot colour-based techniques
two of the most frequent patterns are based on multi-slits or stripes. In multi-slit patterns
the intensity profile has periodic peaks corresponding to the central point of the slits
which are used to find correspondences. In stripe patterns, since the intensity profile
is flat, edges between adjacent stripes are used to find correspondences. Both types of
patterns are usually coloured according to De Bruijn sequences. The advantage of stripe
patterns over multi-slit patterns is that the resolution is higher since no black gaps must
be inserted. However, the number of hue values required is also higher since adjacent
stripes must be different.

In this chapter a new hybrid pattern has been proposed which combines the properties
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Figure 3.10: Reconstruction example of non-colour neutral objects. Human hand: a) Skin
under the pattern illumination. b) Colour segmentation of the received pattern. ¢) Cloud
of reconstructed points. d) Surface fitting the reconstructed hand. Coloured papers: e)
the coloured sheets used in the experiment. f) The reconstructed surface.
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of a multi-slit pattern and the ones of an edge-based pattern. First of all, the new coding
strategy allows a stripe pattern to be defined by using less hue values than usual. The
new pattern contains 2n'™ stripes, where the window length m is set to be 3, and n, the
number of different hue values used, remains free in order to obtain the desired resolution.
We remind that classical multi-slit patterns contain n" slits, since consecutive slits can
have the same hue. In the case of stripe patterns, the number of coloured bands is
n(n—1)""1 [Hiigli and Maitre, 1989]. Therefore, the resolution of the new hybrid pattern
given a certain number of hue values is always larger than in classic multi-slit and stripe
patterns.

The hybrid pattern has a multi-slit structure in the Intensity channel while it has
a stripe appearance in the RGB space. Then, the odd stripes have a medium-intensity
value while the even stripes have high-intensity. Since all the stripes are coloured, both
maxima and minima intensity peaks can be located in the images. Furthermore, edges
between stripes can also be detected with accuracy. This allows the pattern resolution to
be increased in a factor up to 2.

The new pattern has been compared to an edge-based pattern and a peak-based pat-
tern. The performance of the three patterns have been analysed in a shape acquisition
framework by calibrating the camera and the projector. The accuracy and resolution of
each technique has been characterised by reconstructing a plane and measuring the average
and the standard deviation of the fitting error, and the number of 3D points, respectively.
A first conclusion is that the accuracy of the sub-pixel correspondences based on intensity
peaks is higher than when matching edges as shown by the reconstruction results. Indeed,
the sub-pixel estimation of an intensity peak is more stable than the sub-pixel location
of an edge between coloured stripes. This numerical results are confirmed by the visual
appearance of the reconstructions. When reconstructing intensity peaks, the obtained
surfaces are smoother, while in the case of edges, visual artifacts like ridges appear.

The peak-based pattern has obtained the better results in terms of accuracy. Never-
theless, the number of correspondences provided by this pattern is quite low. Concretely,
it is about half of the obtained by the edge-based pattern. The better results obtained
with the hybrid pattern arise when reconstructing only the maxima intensity peaks. In
this case, however, the resolution is also half of the obtained by the edge-based pattern.
The accuracy of the hybrid pattern when reconstructing only edges is still better than
the one obtained by the edge-based pattern. This fact is visually confirmed by observing
the plane reconstruction. The numerical results show that the accuracy diminishes when
using the hybrid pattern and reconstructing only minima intensity peaks. This confirms
that the medium-intensity stripes are more sensitive to noise. However, the most interest-
ing results are obtained when using the hybrid pattern and combining edges and maxima
intensity peaks. In this case, the accuracy is not so good as for the peak-based pattern,
but it is better than the edge-based pattern. In addition to this, the resolution is increased
in a factor of 1.5. The resolution of the edge-based pattern is overcome by a factor of 2
when using the hybrid pattern and when reconstructing edges and maxima and minima
intensity peaks. Nevertheless, the accuracy is slightly worse than when reconstructing
only edges and maxima intensity peaks.

Several objects containing high level of details have been reconstructed by using the
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three selected patterns. The visual appearance of the reconstructions confirm that when
using only intensity peaks the obtained surfaces are smoother. Otherwise, when using
edges periodic ridges appear. On the other hand, the importance of increasing the res-
olution is visually confirmed. In fact, while with the peak-based pattern coarse object’s
reconstructions are obtained, with the edge-based and the hybrid pattern they are more
detailed. Furthermore, it has been shown that when using the hybrid pattern and re-
constructing edges and maxima intensity peaks, more object’s details are distinguished in
the reconstructions. Finally, two results showing the performance of the new hybrid pat-
tern when reconstructing more difficult textures, like human skin, have been presented,
obtaining good results even if the colours of the pattern are perturbed by the object’s
albedo.






Chapter 4

An approach to visual servoing
based on coded light

The aim of visual servoing is to control a robot by using visual information provided by
a vision sensor. This chapter presents an overview of visual servoing techniques and
focuses on the projection of structured light as a reliable way to provide visual features.
An approach to visual servoing based on coded structured light is presented. The approach
1s validated through experimental results and the advantages and constraints are discussed.

4.1 Introduction

Visual servoing is a largely used technique which is able to control on-line robots by using
data provided by visual sensors. Nowadays, the most typical sensors used in a visual
servoing framework are CCD cameras. In this case, some features extracted from images
are used as feedback in a control loop which leads to the execution of a robotic task like
positioning with respect to static objects or target tracking. A comprehensive survey on
the main visual servoing approaches can be found, for example in [Hutchinson et al., 1996].

A necessary condition to apply visual servoing is that visual features must be available
in the images. Therefore, positioning a robot with respect to a uniform or non-textured
object, wall, obstacle, etc. is not feasible since no visual features can be extracted. In
order to remove this limitation, structured light can be used by project visual features
onto the object of interest. However, this solution can be insufficient. In visual servoing it
is usual to define the goal robot position by the image perceived in such configuration, the
so-called desired image. If the initial and desired robot positions are quite far, matching
the visual features extracted from the initial and desired images can be very difficult. This
happens, for example, when using points as visual features. A way to solve this problem
is to project coded structured light patterns. As seen in Chapter 2, by including a coding
strategy on the pattern, the visual features can be robustly identified and matched when
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viewed from different points of view.

The aim of this chapter is to propose an approach to visual servoing based on coded
structured light projection by using a static projector. Using coded light patterns in a vi-
sual servoing framework is a research area which has not been yet investigated. Therefore,
this chapter intends to make a first step contribution in this field showing the potentiality
of such a new approach. The case of an onboard structured light emitter attached to the
camera of the robot end-effector will be studied in Chapter 5.

The chapter is organised as follows. First of all, a brief review of the mathemati-
cal basis of visual servoing and an overview of the existing techniques are presented in
Section 4.2 and Section 4.3, respectively. These reminders are here included in order to
clarify the reading of the rest of the chapter as well as following chapters. Afterwards,
Section 4.5 exposes a new approach to visual servoing based on coded structured light.
The choice of the coded pattern as well as its segmentation and decoding are discussed.
Some experimental results of the new approach are presented in Section 4.6. The chapter
ends with conclusions and some perspectives.

4.2 The fundamentals of visual servoing

Two main configurations in visual servoing exist. In both cases, cameras are used to extract
visual features from the images which will be used for controlling purposes. The most
typical configuration consists in attaching a camera to the end-effector of the robot. Such
configuration is known as eye-in-hand and it is represented in Figure 4.1a. In this case, the
visual features extracted from the images correspond to some object of the environment.
Another configuration known as eye-to-hand is shown in Figure 4.1b. In this case, the
camera remains static observing the end-effector of the robot and its environment. The
most usual configuration used in robotics is the eye-in-hand configuration which will be
considered the default hereafter.

a) b)

i

Figure 4.1: Typical configurations for visual servoing.

Visual servoing is based on the relationship between the variation of the robot pose and
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the consequent variation of the visual features extracted from the images. The robot pose
is expressed as an element of the configuration space of rigid bodies noted as SEs3 (Special
Euclidean group). Therefore, a robot moves in a three-dimensional space according to 6
degrees of freedom: three for displacements and three for rotations. The visual features
are contained in a R¥ vector of the form

s = s(r(t)) (4.1)

where r(t) is the relative pose between the camera and the environment at time ¢. There-
fore, the time derivative of the visual features depends on the pose variation as pointed
out by the well-known equation [Feddema et al., 1991; Espiau et al., 1992]

s = %i‘ = Lgv (4.2)

where Lg is the image jacobian so-called interaction matriz, and v = (V, V,,, V., Q, Q,, )
the camera velocity screw assuming a static environment.

4.2.1 Task function

A robotic task can be described by a function which must be regulated to 0 [Samson et
al., 1991; Espiau et al., 1992]. In visual servoing the goal of the task is usually defined by
the visual features corresponding to the desired camera-environment relative pose. These
desired visual features are acquired during a learning stage by bringing the robot to the de-
sired configuration. Concretely, the task function is noted as the following m—dimensional
vector

e=C(s—s") (4.3)

where s are the visual features corresponding to the current state and s* denotes the visual
features values in the desired state. C is a m X k combination matrix that must be of full
rank m < k in order to produce the m independent components of e. The aim of visual
servoing is to regulate the task function e to 0 so that s —s* = 0.

The task e controls m degrees of freedom from a total of n. When m < n it means
that a virtual link of class NN is fulfilled so that m =n — N < k.

A usual choice for the combination matrix C is [Espiau et al., 1992]

C=WL, (4.4)

—~+
where Lg is the pseudoinverse of a model of the interaction matrix and W is an m x 6
matrix of full rank m having the same kernel that Ls. The choice of W depends on the
number of visual features k. For example, let us consider the following cases

e rank(Lg) =m=k=W = i\s In this particular case C = I,,,.
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e rank(Ls) = m < k = the rows of W are the m vectors forming the base of the row
space generated by Lg.

4.2.2 Control law

A simple control law can be defined in order to fulfill the task e. We assume that the
combination matrix C is constant so that the derivative of the task function (4.3) is

e =Cs (4.5)
and taking into account that
$ =Lgv (4.6)
we have that
€ = CLgv (4.7)

then, by imposing an exponential decrease of the task function
e=—)e (4.8)
being A a positive gain, we find
—Xe = CLgv (4.9)

from this expression a proportional control law can be built by using a model of the
interaction matrix Lg

v =—A(CLg) e (4.10)

which is equal to

V= —)\(Cf;)_lC(s —s") (4.11)

If it is not possible to estimate all the parameters of the interaction matrix at each
iteration, a typical choice is to set Lg as the interaction matrix evaluated at the desired
state noted as L} or Lg(e*).

Then, from the control law in (4.10) and the expression in (4.7) the variation of e is
defined by the following equation

é = —ACL4(CLg) e (4.12)
so that a sufficient condition for ensuring the convergence to its desired state is

CLs(CLy) ' >0 (4.13)
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4.3 Overview of visual servoing approaches

This section presents a brief overview of visual servoing techniques. A classic classification
based on the type of visual features has been used similarly than in [Hutchinson et al.,
1996; Chaumette, 2002]. However, the techniques exploiting structured light have been
classified apart in a new group.

4.3.1 Position-based visual servoing

In the case of position-based visual servoing, 3D information computed from the image(s)
are used in the control law. In this case, the object model is known and its pose is estimated
by using algorithms based on points [Horaud et al., 1989; Dementhon and Davis, 1995;
Haralick et al., 1989; Yuan, 1989; Lowe, 1991; Wilson et al., 1996], straight lines [Dhome
et al., 1989], polyhedric objects [Drummond and Cipolla, 2002], conics [De Ma, 1993] and
some quadrics like spheres and cylinders [Dhome et al., 1990].

A classical advantage granted to position-based approaches is their ability to produce
good camera trajectories since the control is made in the cartesian space [Chaumette,
1998]. In addition to this, the rotational velocities can be decoupled from the translational
ones, even if this only holds when the system is perfectly calibrated. There are three
main drawbacks inherent to position-based approaches. First, the pose estimation or 3D
reconstruction algorithms are sensible to image noise. Secondly, since no control is made
in the image space, the features used for the reconstruction can get out of the image
bounds. Finally, the stability analysis taking into account calibration errors is in most
cases impossible to face since it depends on the algorithm of pose estimation.

4.3.2 Image-based visual servoing

Image-based or 2D visual servoing consists in using visual features directly calculated from
the images which are used as input in the control scheme. Thus, this type of approaches
tend to avoid the use of any object model.

Former works started using image points which are still today one of the most popular
primitives [Feddema et al., 1991; Espiau et al., 1992; Bien et al., 1993; Hager, 1997; Rives,
2000; Lots et al., 2001; Collewet and Chaumette, 2002]. Other 2D primitives have been
modelled like straight lines [Espiau et al., 1992; Malis et al., 2002], segments, circles,
ellipsis, cylinders and spheres [Espiau et al., 1992; Marchand and Chaumette, 1999].

On the recent years, more complicated primitives have been taken into account. For
example, complex contours [Colombo and Allotta, 1999; Collewet and Chaumette, 2000],
the principal components of the image [Deguchi, 1997] and image moments [Chaumette,
2004].

Some other works tend to combine different visual features cited above in a unique
control scheme. For example, in [Corke and Hutchinson, 2001], point coordinates, the area
enclosed by points and the angle between segments are used to improve the performance
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of the system.

Image-based visual servoing is traditionally robust against modelling errors of the
system like camera calibration errors. Furthermore, since control is made in the im-
age space, it is easier to design strategies to avoid image features going out the image
bounds [Mezouar and Chaumette, 2002; Corke and Hutchinson, 2001]. However, since
the features are usually strongly coupled, the generated camera trajectory cannot be very
suitable. Some efforts in order to decouple degrees of freedom can be found for example
in [Corke and Hutchinson, 2001; Mahony et al., 2002; Tahri and Chaumette, 2004]. Other
drawbacks are the possibility of reaching a singularity in the control law or falling into
local minima [Chaumette, 1998].

4.3.3 Hybrid visual servoing

This approach combines 2D with 3D features. In case of knowing the model of the object,
classic pose recovering algorithms can be used to estimate some 3D features as in position-
based visual servoing. However, several model-free approaches have been presented. A
lot of approaches have been done for the case when the desired image is known. Some
of them are based on recovering the partial pose between the camera and the object
from the desired and the current image [Malis et al., 1999; Morel et al., 2000; Lots et
al., 2000; Malis and Chaumette, 2002]. The obtained homography is decomposed in a
rotation matrix and a scaled translation. Note that if both displacement components are
directly used in a control law, a model-free position-based visual servoing scheme arises
as in [Basri et al., 1998]. However, the most usual choice is to combine part of the 3D
information recovered with 2D features like an image reference point. Other approaches
exist, like the one presented in [Schramm et al., 2004], where the depth distribution of the
object is explicitly included in the visual features. Another example is found in [Andreff
et al., 2002], where the pliicker coordinates of 3D lines are used, so that the depth to the
lines are estimated from a pose calculation algorithm assuming a partial knowledge of the
object structure. When the desired image is unknown, the rotation to be executed can be
calculated by doing a local reconstruction of the object normal in a certain point [Questa
et al., 1995; Colombo et al., 1995; Sundareswaran et al., 1996; Alhaj et al., 2003; Collewet
et al., 2004].

Typical advantages of hybrid approaches are: they are usually model-free (do not re-
quire to know the object model even if in most cases the desired image must be known);
they allow control in the image since 2D information is included; they can exhibit de-
coupling between translational and rotational degrees of freedom; stability analysis in
front of camera and robot calibration errors is often feasible [Morel et al., 2000; Malis
and Chaumette, 2002]. On the other hand, the main drawback that can appear is the
sensibility to image noise affecting the partial pose algorithm.

4.3.4 Dynamic visual servoing

The analysis of the 2D motion appearing in a sequence of images can be used to obtain
geometric visual features which can be then used in a visual servoing scheme like the
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presented in the previous sections [Colombo et al., 1995; Sundareswaran et al., 1996;
Collewet et al., 2004; Alhaj et al., 2003]. However, if the visual features are, for example,
the parameters of the 2D motion model itself, a dynamic visual servoing scheme can be
defined [Santos-Victor and Sandini, 1997; Crétual and Chaumette, 2001].

Basically, these techniques define the vision task in terms of dynamic visual features
so that, for example, the system can be controlled in order to observe a desired 2D motion
field along the sequence of acquired images.

4.4 Combining visual servoing and structured light

Although the large domain of applications that can be faced with classic visual servoing,
there are still some open issues. As already mentioned, classic techniques cannot cope,
for example, with the simple problem of keeping a mobile robot running parallel to a
wall containing no landmarks or easily distinguishable visual features. This problem can
be generalised to any task where it is necessary to position the camera with respect to
an object with uniform appearance so that it is not possible to extract visual features
like characteristic points, straight lines, contours, regions, etc. A possible solution to
this problem is to use structured light emitters to project visual features in such objects.
Thus, the application field of visual servoing can be enlarged to applications like painting,
welding, trimming or navigation in general.

As already mentioned in Chapter 2 there are many robotic applications taking profit of
structured light. In the following section we present an overview of applications in different
fields of robotics. Afterwards, we focus on applications explicitly using image-based visual
servoing and structured light.

4.4.1 Applications of structured light in robotics
Applications in mobile and autonomous robots

In this section some examples of vision tasks performed with the aid of structured light
in mobile or underwater robots are reported.

Range sensing: robots can be equipped with a structured light source and a camera
for measuring distances. In this case the range measures are obtained from the images by
using triangulation based on the calibration of the camera and the light source. We must
differentiate this range acquisition technique from the laser telemetry based on the time-
of-flight of laser pulses which is also widely used in robotics [Nevado et al., 2004; Matthies
et al., 2002]. In [Kondo and Tamaki, 2004] two laser pointers projecting one each a light
spot are placed onboard an underwater robot for calculating distances to obstacles in
front of the vehicle. A similar setup is used in [Sun et al., 2004] which allows a glass
climbing robot to calculate its orientation to the window-pane and the window frame.
In [Sazbona et al., 2005], a laser projects several segments so that the range is a function
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of the observed segments inclination. Hattori and Sato developed a small head composed
of a camera and a diode laser and a rotating mirror which projects a fast sequence of
binary encoded patterns for dense reconstruction of the environment.

Object recognition: a typical structured light sensor composed of a laser plane and
a camera is used for analysing the light section in the image and recognise objects like
cylinders [Grimson et al., 1993] or quadrics of revolution [Tsai et al., 2005]. Other alter-
natives consist of rotating quickly the laser plane for obtaining dense reconstructions of
the object and matching it onto pre-defined models [Lin et al., 1996]. The identification
of objects by using these sensors is usually used in robotics as a previous step for planning
manipulation operations like object grasping [Lozano-Perez et al., 1987].

Simultaneous Localisation and Mapping (SLAM): structured light can be used for
mobile robot self-localisation [De la Escalera et al., 1996; Dubrawski and Siemiatkowska,
1998; Neira et al., 1999], for map building [Kim and Cho, 2001] and for SLAM [Jung et
al., 2004; Surmann et al., 2003]. Typically, a horizontal laser plane (static or rotating in
tilt) and a camera are used for obtaining range information of the environment. In most
cases these data are fused by other sensor measurements like ultrasonic sensors.

Obstacle detection/avoidance: in mobile robotics, the typical configuration for de-
tecting obstacles consists of laser planes projecting onto the floor, or in parallel to it, and
a camera as in [Weckesser et al., 1995; Haverinen and Roning, 1998]. However, there are
other sensors like the laser pointers and camera used in the underwater robot in [Kondo
and Tamaki, 2004], the rotating laser plane and the catadioptric camera for omnidirec-
tional perception in [Joung and Cho, 1998], or the grid projector and camera in [Le Moigne
and Waxman, 1988]. Once the obstacles are detected the robot trajectory can be modified
in order to avoid collisions.

Applications for industrial manipulators

In this case, we consider an industrial robot with a fixed base and several joints or moving
axis and an end-effector where different types of tools can be attached. This type of robots
have a great impact in the current industry.

Grasping: the operation of grasping objects or industrial pieces can benefit from the
structured light as shown in [Lozano-Perez et al., 1987]. In this case, laser planes linked
to the robot end-effector are projected. Another example is found in [Gutsche et al., 1991]
where a sequence of binary patterns are projected and imaged from a deported LCD
projector and camera, respectively, in order to reconstruct the object and then perform a
pick and place operation with a robot arm.

Object pose estimation and robot positioning: in this case, onboard laser planes
and a camera are used for determining the pose of objects. In [Albus et al., 1982] a sensor
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formed by a camera and two laser planes was proposed. Then, in [Rutkowski et al., 1987]
this sensor is used for locating piecewise objects consisting of planes, spheres and cylinders.
Then, a position-based visual servoing approach is used for moving the robot relative to
the pieces. In [Kemmotsu and Kanade, 1995] three laser planes are used, while in [Niel et
al., 2004] two cameras and a grid projector are exploited.

Welding and trimming: the use of lasers planes and a camera is also used for guiding
the robot tool in welding of metallic pieces [Smati et al., 1987; Agapakis, 1990; Kim et
al., 1999]. Similarly, a light plane is used for locating, reconstructing and tracking the
seam in trimming operations [Amin-Nejad et al., 2003].

Machined finishing: an example of finishing operation of manufactured parts can be
found in [Kwok et al., 1998]. In this case, a calibrated laser plane and a camera mounted
on the tool holder of a robot arm are used to collect 3D data of turbine blades. Then, the
blade is automatically polished with the tool.

Surface inspection: in [Nurre et al., 1988] a pattern of several parallel laser planes are
projected for inspecting the quality of manufactured parts. Similarly, a grid pattern is
used in [Zhang and Ma, 2000].

Medical applications

Thanks to its non-invasive nature, structured light has a great potential in medical appli-
cations. In [Nwodoh et al., 1997], a camera and a laser plane are linked to the end-effector
of a manipulator for obtaining 3D data from a lying human body. The aim of the applica-
tion is guiding the robot end-effector for removing burnt skin tissue from the injured parts
of the body. Another example is shown in [Buendia et al., 1999] where a coloured grid
is projected onto the back of the patient which is observed by a colour camera. The aim
is to obtain a measure of the spine deviation from 3D reconstruction. Finally, structured
light can also help in robotised laparascopic surgery as explained in [Krupa et al., 2003].

4.4.2 Image-based visual servoing based on structured light

In the applications summarised above, structured light is typically used as an additional
sensor providing 3D information of the robot’s environment. All these applications rely
on an accurate calibration of the camera and the structured light emitters in order to
obtain 3D information through triangulation [Besl, 1988; Jarvis, 1993]. Therefore, the
cited examples where 3D data are used for controlling the robot motion can be considered
position-based approaches as in [Rutkowski et al., 1987; Amin-Nejad et al., 2003]. However,
there are no works providing results concerning the sensitivity to image noise and camera-
sensor calibration for such type of approach.

There are few works addressing the use of the visual features provided by structured
light in image-based visual servoing. Urban used two orthogonal laser planes and a camera
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for positioning a robot manipulator with respect to car batteries [Urban, 1990]. The
visual features used were the straight lines in the image provided by the lasers. Motyl et
al. [Motyl, 1992; Khadraoui et al., 1996] properly investigated eye-in-hand systems with
structured light emitters attached to the camera. They adapted the calculation method
of the image jacobian corresponding to simple geometric primitives [Espiau et al., 1992]
to the case when they are provided by the projection of laser planes onto simple objects.
It was shown that in this type of configurations, both the projected light and the object
surface must be modelled in the image jacobian. They modelled different cases where laser
planes are projected to planar and spherical objects. Their study also focuses on fixing
virtual links between the camera and such objects with the aid of laser planes. Different
sets of visual features extracted from the projected light were formulated like straight
lines, discontinuity points and ellipse moments.

Some years later, Andreff et al. included depth control by using structured light in
their 2 1/2 D approach based on lines [Andreff et al., 2002]. Their control scheme was
however depth-invariant. They prevented this lack of depth-control by providing a laser
pointer to the camera. They first formulated the variation of the distance between the
laser and its projection onto the object due to the robot’s motion. The interaction matrix
of this 3D feature was formulated taking into account a planar object. The result was
equivalent to the one presented by Samson et al. [Samson et al., 1991] concerning thin-field
range sensors. Afterwards, they showed that the projected point lies always onto a line
in the camera image, which is the unique epipolar line of the particular stereo system
composed by the camera and the laser. Then, they chose as 2D visual feature the distance
along the epipolar line between the current position of the point and a certain reference
point. The variation of such feature was related to the variation of the distance between
the laser and the object.

In [Ramachandram and Rajeswari, 2000], a laser with a diffracting lens emitting a
4 x 4 grid was linked to a robot end-effector with a camera for positioning tasks with
respect to complex volumetric objects. The approach is based on bringing the robot to
the desired position relative to the object and training a neural network for estimating
the non-linear function relating the variation of the observed grid projected onto the
object surface and different robot motions. Nevertheless, neither experimental results nor
convergence conditions are provided.

More recently, Krupa et al. [Krupa et al., 2003] applied visual servoing and structured
light to laparoscopic surgery. In their application, two incision points are made into the
patient body: one for introducing an endoscopic camera and the other to introduce a
surgical instrument held by the end-effector of a robot. The camera pose with respect to
the robot frame is unknown. The task consists in moving the instrument to a certain point
of the observed image keeping a desired depth to the underlying organ. Due to constraints
of the surgical incision and the type of instrument, only three degrees of freedom must
be controlled. The instrument holder is a laser pointer which has three LEDs which are
collinear with the projected spot. The depth from the surgical instrument to the organ
is estimated by using the cross ratio of the projected laser dot and the three LEDs and
the corresponding image points. The rotational degrees of freedom are controlled by an
online identification of the image jacobian of the projected spot. On the other hand, the
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depth is directly controlled from the calculated estimation.

Finally, a robotic arm with eye-in-hand configuration and 5 laser planes attached to
the end-effector is described in [Kahane and Rosenfeld, 2004]. The application consists in
automatically adding tiles in a wall by using a suction gripper in the end-effector. A visual
iterative procedure is used for guiding the robot, so that it can be considered an image-
based visual servoing technique. Visual features extracted from the laser lines projected
onto the wall and the already positioned tiles are used. First, the end-effector is oriented
with respect to the wall so that the gripped tile gets parallel to it. Then, the lengths
and orientation of the broken laser segments appearing among the gripped tile and the
adjacent tiles are used for aligning and adding the new tile. However, the interaction
matrix is not analytically derived and heuristics are used instead. Therefore, no analytic
results about the stability of the system are available.

In this chapter a new approach to visual servoing based on structured light is proposed.
Our proposal consists in placing a structured light emitter beside the robot manipulator
as shown in Figure 4.2b. Contrary to the use of an onboard emitter, see Figure 4.2a, when
a deported and static emitter is used, the projected marks remain static onto the object
surface. The advantage of such approach is that classic image-based visual servoing can be
directly applied. Furthermore we propose to project a coded pattern for providing robust
visual features independently of the object appearance. Up to our knowledge, the only
work using a similar setup is found in [Gutsche et al., 1991]. In this case, a video-projector
is used for emitting the sequence of binary patterns proposed by Posdamer et al. [Posdamer
and Altschuler, 1982]. The work by Gusche et al. relies on precisely calibrating the robot,
the camera and the projector, so that the object can be reconstructed from different
points of view by using the correspondences provided by the projected patterns. Then,
the reconstructed points are used for planning a trajectory for the robot end-effector,
which is executed in open loop. We remark that this system is a position-based approach
and that visual information is not used on-line for minimising the effects of calibration
erTors.

a) b)

Figure 4.2: Two possible configurations of an eye-in-hand system and a structured light
emitter

The remaining of the chapter is devoted to show how coded structured light can be
used in a deported configuration for eye-in-hand systems. Contrary to the technique of
Gutsche et al. [Gutsche et al., 1991], our proposal uses classic image-based visual servoing
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for reaching a pre-defined position with respect to an unknown object. A first advantage of
using classic image-based visual servoing is that there is a large set of techniques for which
the behaviour has been studied. Secondly, a convergence condition is available contrary
to the case of the position-based approaches.

4.5 An approach based on coded structured light

Positioning a camera attached to a robot with respect to a given object by means of visual
servoing is not always feasible. Despite the large variety of approaches to visual servoing
that are found in the literature, there are cases where no solutions are available. For
example, positioning with respect to a uniform object like the elliptic cylinder shown in
Figure 4.3a becomes a hard task since no visual features can be extracted. This is an
example of an object with simple appearance where visual servoing cannot be directly
applied. Such situation can appear when working with industrial manipulators when
positioning with respect to manufactured parts, or in mobile robots when docking with
respect to walls or navigating avoiding obstacles.

On the other hand, Figure 4.3b shows a ham, a typical natural object of the agrifood
industry. Note that extracting visual features from this sort of image, even if possible, re-
quires a high computational cost. Furthermore, no a priori knowledge about the extracted
features distribution onto the object surface is available. Therefore, the validity of the
detected features for being tracked during the servoing is difficult to ensure.

Figure 4.3: Examples of objects for which classic visual servoing is very complex.
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4.5.1 Providing correspondences with a coded pattern

The study presented in Chapter 2 has shown that there are lots of coded structured
light patterns providing a large number of correspondences. Among all the coded light
techniques two main groups can be distinguished: the ones requiring a sequence of patterns
and the ones based on a unique pattern previously referred as one-shot patterns. As
pointed out by Gutsche et al. [Gutsche et al., 1991], a sequence of patterns could be
used in the desired state and in the initial state. Thus, a set of correspondences between
the images of both robot configurations will be obtained. Then, the required motion
to bring the robot from the initial configuration to the desired one could be executed
in open loop. This solution, however, is not suitable because the robustness of visual
servoing against calibration errors is lost since no visual feedback is included in the control
law [Chaumette, 1998].

As an alternative to the use of a sequence of patterns, we propose to use a one-shot
technique for providing correspondences between the desired image and the image corre-
sponding to each iteration of the control loop. We refer to this approach as visual servoing
based on deported coded structured light and the setup is represented in Figure 4.4. The
emitter device is a LCD video-projector which remains separated from the robot manip-
ulator and whose field of view is expected to illuminate the object of interest.

Figure 4.4: Schema of the setup for eye-in-hand visual servoing using a deported coded
light projector.

The choice of the coded pattern can depend on the object, the number of correspon-
dences that we want to get, the lighting conditions and the devices used (camera and
projector). The use of LCD projectors allows the projected pattern to be changed with
no cost thanks to its flexibility. The pattern chosen for this chapter could have been any
one of the presented in Chapter 2 or the new one-shot pattern presented in Chapter 3.
However, the choice has been taken considering a pattern for which the decoding process
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can be easily implemented at the rate required for visual servoing. The decoding time
is not crucial in a shape acquisition setup if it can be done off-line [Zhang et al., 2002].
In visual servoing, however, the time available for solving the correspondence problem
between the current and the desired image must be chosen in order to not penalising the
dynamics of the end-effector.

Taking into account these requirements a pattern encoded according to a m-array
strategy has been chosen. Concretely, a 20 x 20 m-array based on the alphabet 0,1,2 has
been generated by using the algorithm by Morano et al. [Morano et al., 1998] described
in Section 2.5.3. The resulting m-array has window property 3 x 3 so that any sub-array
of this size appears as maximum once in the whole array. The resulting array is shown in
Figure 4.5. A pattern of dimensions 768 x 768 pixels has been designed containing 20 x 20
dots coloured according to the m-array. Symbol 0 has been mapped to blue, 1 to green
and 2 to red. The resulting pattern is presented in Figure 4.6.

4.5.2 Robust segmentation and decoding of the pattern

The aim of projecting the encoded pattern onto the object of interest is to easily find
matchings between images taken from different points of view. The coding scheme included
in the pattern allows a list of points to be identified and labelled in each image. Then, the
matching between images can be directly done by using the labels of the decoded points
in each image. The process of identifying the projected pattern onto the image correspond
to the projected pattern is referred as pattern segmentation. Once the elements of the
pattern are segmented, they can be decoded taking into account the coding strategy used to
generate the pattern. Given the m-array pattern consisting of coloured dots in Figure 4.6,
the segmentation and decoding procedures are detailed in the following paragraphs.

The pattern segmentation is done according to the following steps:

¢ RGB binarisation: the pattern projects high intensity red, green and blue spots
on a black background. The iris of the camera’s objective can be closed enough
for only perceiving the coloured spots projected onto the object of interest. Then,
the colour of every pixel of the image can be modified according to the following
function

(1,0,0) if maz(R,G,B) = R and R > threshold
pizel(z,y) =< (0,1,0) if max(R,G,B)= G and G > threshold (4.14)
(0,0,1) if max(R,G, B) = B and B > threshold

where R, G and B are the original red, green and blue level of pizel(z,y) and
threshold is the minimum intensity level for being considered part of the projected
pattern. With this per-channel binarisation, the imaged spots are segmented to
the most likely colour and regions of the image not highly illuminated, i.e. not
illuminated by the pattern, are removed.

e Spot segmentation: in this step the gravity centre of every coloured spot are
located. First, the RGB image provided by the previous step is binarised according
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Figure 4.5: 20 x 20 m-array based on 3 elements and 3 x 3 window property.

Figure 4.6: Pattern generated according the algorithm by Morano et al. and the 20 x 20

m-array.
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to its luminance channel. Then, a region growing algorithm is used for locating every
blob. Some blobs are rejected taking into account their compactness and their area.

According to Chapter 2, once the pattern spots are located in the image, the following
decoding process starts:

e Adjacency graph: for every spot, the four closest spots in the four main directions
are searched. With this step the 4-neighbourhood of each spot is located. These
neighbours are used to complete the 8-neighbourhood of every spot.

e Graph consistency: in this step, the consistency of every 8-neighbourhood is
tested. For example, given a spot, its north-west neighbour must be the west neigh-
bour of its north neighbour, and at the same time, the north neighbour of its west
neighbour. These consistency rules can be extrapolated to the rest of neighbours
corresponding to the corners of the 8-neighbourhood. Those spots not respecting
the consistency rules are removed from the 8-neighbourhood being considered.

e Spot decoding: the process of decoding consists in, for every spot having a com-
plete 8-neighbourhood, its colour and the colours of its neighbours are used for
identifying the spot in the original pattern. In order to speed up this search, a look
up table is recommended.

In Figure 4.7 three results of the decoding process are presented. The original images
taken by the camera with the overprinted labels of the decoded points are shown. In all
the cases, the processing time required for locating and decoding the spots was about
30 ms, which is lower than the acquisition period with a CCIR format camera (40 ms).

Figure 4.7: Segmentation and decoding of the pattern. a) Projection onto a ham. b)
Projection onto a white elliptic cylinder. ¢) Projection onto a textured elliptic cylinder.

4.5.3 Task definition and control loop

The projection of the m-array pattern allows a set of correspondences to be found between
the image perceived by the eye-in-hand system and the pattern. Decoded points in images
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taken from different points of view can be easily and robustly matched thanks to the
coding strategy included in the pattern. This allows us to easily define a robot positioning
task with respect to objects being illuminated by the LCD projector.

The approach consists in moving the robot to the desired pose and take an image with
the camera attached to its end-effector. From this desired image, the algorithm decoding
the pattern is able to recover a list of points which are corresponded to the points of the
projected pattern. Then, for any other robot pose, if the object appears in the image, the
same process can be done in order to obtain another list of decoded points. Once a set
of points are matched between the initial image and the desired image, the robot can be
guided through visual servoing in order to reach the desired configuration. The schema of
this control strategy is represented in Figure 4.8.
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Figure 4.8: Schema of the control loop based on common points detected in both the
current and the desired image.

Visual servoing requires to define a set of visual features extracted from the images.
In this case, we have chosen to build a feature vector with the normalised coordinates of
the common points appearing both in the current and desired image. Therefore, s is a
k x 1 vector of the form

S = (x17y17x27y27"'7xk7yk) (415)
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Note that there are other alternatives like the image moments of the points distribu-
tion [Tahri and Chaumette, 2004].

Let us now define the task function and control law taking into account this set of
visual features. In most cases, more than 6 common points will be detected in the desired
and current image due to the large amount of projected spots (20 x 20 = 400). Otherwise,
the task function and control law can be easily adapted following the guidelines recalled in
Section 4.2. For the case of k points matched between the current and the desired image,
if £ > n, being n = 6 the number of degrees of freedom controlled, a possible choice for
W is

W =1 (4.16)

and then, the combination matrix in (4.4) is
C=L, (4.17)

being i\: the pseudoinverse of a model or approximation of the interaction matrix of s.
Therefore, the task function is

e= i\: (s —s%) (4.18)
Since s is based on image points, it is built by stacking, as many times as matched
points are available, the interaction matrix of a normalised point which is [Feddema et
al., 1991; Espiau et al., 1992]

-1/Z 0 =z/Z = —(1+ 2?)
LX:( 0 -1/Z y/Z 1+yy2 —zy —yx> (4.19)

Therefore, Lg has the form

-1/7; 0 /27 iy —(1+21) wn

0 -1/Zv w/Z 1+yi -z —m

Li=| 5 z 5 5 5 (4.20)
—1/Z 0  xw/Zp wpye —(1+23)  wk
0 -1/Zy yk/Zk 1+vyP  —weyr -

Note that the real interaction matrix depends on the depth distribution of the points
which is generally unknown. The model of interaction matrix i\s used in the control law is
defined as the matrix evaluated at the desired state L by using the normalised coordinates
from the desired image (z*,y*) and assuming that in the desired configuration the points
are coplanar at a depth Z*. This model of matrix is hereafter noted as i\z This type of
approximation is usually sufficient as already seen in Section 4.2.2.

The proportional control in (4.11) is then

*
S S

V=) (I’Eff Lt (s —s") (4.21)
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Assuming that E§ is a k£ x 6 matrix of rank 6 then
L Li =1, (4.22)
so that the control law can be modelled as

V= —)\f?r (s —s%) (4.23)

Note that if i\g is near Lg the convergence is ensured thanks to the positivity condition
in (4.13).

4.6 Experimental results

This section shows two experiments using the approach presented in this chapter. The
experiments have been done with a six-degrees-of-freedom robot manipulator formed by
three translational axis and three rotational joints. A colour camera has been attached
to the end-effector of the robot. The camera sensor has squared pixels of 8.3umx8.3um
and a focal length of 8.5 mm. The images are digitised by a Corona-II card at 768 x 582
pixels.

For the experiments, a LCD projector has been positioned about 1 m aside the robot.
The focal has been set so that the pattern gets acceptably focused in a range of distances
between 1.6 and 1.8 m in front of the projector. In this range of distances the objects are
placed for realising the experiments.

Two experiments are now presented. In both cases non-textured objects for which
classic visual servoing is unable to work have been used. The first is a planar object while
the second consists of an elliptic cylinder in order to test the approach in front of objects
exhibiting a curved surface.

4.6.1 First experiment: planar object

Firstly, a large non-textured white plane has been positioned in front of the robotic cell.
The desired position of the robot has been defined so that the camera on the end-effector
gets parallel to the plane at a distance of Z* = 90 cm.

In order to learn the desired position a flat target with 4 landmarks forming an square
of known dimensions has been attached to the plane as shown in Figure 4.9. Then, classic
2D visual servoing has been used for getting the camera at the desired distance and parallel
to the plane. Once the desired position has been reached and stored, the target has been
removed and the projector has been turned on so that the coded pattern is projected onto
the object plane as shown in Figure 4.10.

The desired image corresponding to this robot configuration is shown in Figure 4.11a.
In this image a total number of 370 coloured spots out of 400 have been successfully
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Figure 4.9: Target used for positioning the robot parallel to a plane.

decoded. Afterwards, the robot end-effector has been displaced —5 cm along its X axis,
10 cm along Y, —20 cm along Z, and rotations of —15° about X and —10° about Y have
been applied. The image perceived in this configuration is shown in Figure 4.11b. In this
case, the number of decoded points is 361. Matching points between the initial and the
desired images is straightforward thanks to the decoding process of the pattern. Both
images shown in Figure 4.11 are the ones resulting of the RGB binarisation procedure
described in Section 4.5.2.

The goal is then to move the camera back to the desired position by using visual
servoing. At each iteration, the visual features set s in (4.15) is filled with the matched
points between the current and the desired image. The model of interaction matrix used
both in the task function definition (4.18) and the control law (4.23) are computed at each
iteration with the desired image point coordinates corresponding to the coloured dots
appearing both in the current and desired image. Furthermore, the depth of all the points
in the desired configuration has been set to its right value of Z* = 90 cm. The result of
the servoing is presented in Figure 4.11c-d. Concretely, the camera velocities generated
by the control law are plotted in Figure 4.11c. Note that the norm of the task function
decreases at each iteration as shown in Figure 4.11d. As can be seen, the behaviour of
both the task function and the camera velocities is satisfactory and the robot reaches the
desired position with no problems.

4.6.2 Second experiment: elliptic cylinder

In the second experiment a non-planar object has been used. Concretely, the elliptic
cylinder shown in Figure 4.12 has been positioned in the workspace. In this case, the
desired position has been chosen so that the camera points to the object’s zone of maximum
curvature with a certain angle and the distance between both is about 60 cm. The desired
image perceived in this configuration is shown in Figure 4.13a. The number of successfully
decoded points is 160. Then, the robot end-effector has been displaced —20 cm along X,
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J0/

Figure 4.10: First experiment: projection of the coded pattern onto a planar object
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Figure 4.11: First experiment: planar object. a) Desired image. b) Initial Image. c)
Camera velocities (ms/s and rad/s) vs. time (in s). d) Norm of the task function vs. time
(in s).
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—20 cm along Y and —30 c¢m along Z. Afterwards, rotations of —10° about X, 15° about
Y and 5° about Z have been effectuated. This defines the initial position of the robot
end-effector. The image perceived in this configuration is shown in 4.13b. In this case,
the number of decoded points is 148.

The results of the visual servoing are plotted in Figure 4.13c-d. The desired image
is reached again at the end of the servoing. However, the camera velocities generated
by the control law are more noisy and less monotonic than in the previous experiment.
Furthermore, the task function takes more time to cancel. We suppose that this is due
to the fact that the modelling assumptions taken in this experiment were quite far from
the real case. Note that the model of interaction matrix used in the control law is not
only based on the point distribution of the desired image, but also considers that all the
points are coplanar at depth Z* = 60 cm. Since the object has a high curvature, the
points used in the task function are non-coplanar so that the interaction matrix used is
false. Recently, Malis et Rives proved that the depth distribution of a cloud of points
used in visual servoing plays an important role in the stability of the system [Malis and
Rives, 2003]. Nevertheless, this example confirms that visual servoing is usually quite
robust against modelling errors [Chaumette, 1998]. Furthermore, during the robot motion
some of the pattern points were occluded by the robot itself. Therefore, the control law
has shown to be robust against occlusions.

4.7 Conclusions

This chapter proposes to use deported structured light in order to provide visual features
and to perform classic image-based visual servoing for robot positioning. The motivation
of our approach comes from the fact that most part of applications in robotics using
structured light are based on 3D data provided by the sensor. There are really few works
using image-based visual servoing based on features provided by structured light. The use
of classic image-based visual servoing has the advantage that there are a lot of techniques
available and their behaviour has been pretty studied. Furthermore, when using image-
visual servoing a convergence condition is available, something which does not happen
when using 3D visual servoing.

Our approach is based on attach a camera to the end-effector of the robot for perceiving
its environment. Furthermore, a LCD projector is placed aside the robot for illuminating
the working area with a coded pattern. One of the aims of projecting light patterns is
obtaining visual features when dealing with uniform or non-textured objects. Furthermore,
including a coding strategy in the pattern allows correspondences between the image and
the pattern to be robustly recovered as ambiguities are removed. Thus, matching visual
features between the initial image, intermediate images captured during the robot motion,
and the desired image becomes straightforward.

A pattern containing a m-array of coloured spots has been used for illustrating this
approach. The choice of this pattern has been made taking into account its easy segmen-
tation and fast decoding, which fits on the visual servoing requirements of sampling rate.
Concretely, the computing time has kept in about 35 ms per iteration. To our knowledge,
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Figure 4.12: Second experiment: projection of the coded pattern onto an elliptic cylinder.
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Figure 4.13: Second experiment: elliptic cylinder. a) Desired image. b) Initial Image. ¢)
Camera velocities (ms/s and rad/s) vs. time (in s). d) Norm of the task function vs. time
(in s).
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this is the first work using coded structured light in a visual servoing framework. There-
fore, we consider this approach a first step which shows the potentiality of coded light in
visual servoing applications.

A classic image-based approach based on points provided by the coded pattern has
been used. Experiments have shown that good results are obtained when positioning
the robot with respect to planar objects. Furthermore, thanks to the large number of
correspondences provided by the coded pattern, the system has shown to be robust even
in presence of eventual occlusions. On the other hand, the results when using non-planar
objects are not so good. This is a well known problem in classic 2D visual servoing. For
example, assumptions about the depth distribution of the points play an important role
in the convergence [Malis and Rives, 2003]. The advantage of using coded light is that the
pattern can be changed in order to obtain other visual features so that any of the existing
2D visual servoing approaches can be used. Indeed, the use of different types of visual
features will change the behaviour of the robot [Chaumette, 1998]. For example, with the
current pattern, image moments of the point distribution [Tahri and Chaumette, 2004] or
the extended-2D visual servoing [Schramm et al., 2004] could be used in order to improve
the behaviour. For improving the behaviour of the system when positioning with respect
to non-planar objects, the depths could be estimated by triangulation, even if it would
require to calibrate the projector. Another solution would be to use 2D 1/2 visual servoing
as in [Malis and Chaumette, 2000].

The main constraint of the current approach is that the pattern used is not rotation
invariant. This means that in order to properly decode the pattern it cannot appear
too much rotated in the image. Hence, if the camera is considerably rotated around the
optical axis from the initial to the desired position, no correspondences can be found. This
problem does not appear in the presented experiments since no large rotations around the
optical axis were used when defining both the desired and the initial robot configuration.
In order to remove this constraint a pattern which is rotation invariant can be used, as
the one proposed in [Salvi et al., 1998] at the expense of a more costly segmentation and
decoding procedure.

The work developed in this chapter can be improved with new research perspectives
proposed in Chapter 6.

Finally, we insist on the fact that structured light allows us to choose the visual features
which will be used in the control law. In the following chapter we show that a good choice
of the projected pattern can optimise the control law of the visual servoing approach.



Chapter 5

A structured light sensor for

plane-to-plane positioning

In this chapter we address a robot positioning task by using an onboard structured light
emitter. The case of a deported structured light emitter has been studied in the previ-
ous chapter. The onboard case is pretty challenging as the modelling of the variation on
the visual features due to the camera motion is more complex. Therefore, an important
modelling effort is developed in this chapter. A dedicated structured light sensor for plane-
to-plane positioning is proposed. The sensor has been designed in order to optimise the
visual control loop and to obtain mice properties like decoupling, stability and good cam-
era trajectory. Several sets of visual features are presented providing stability analysis,
stmulations and experimental results.

5.1 Introduction

The previous chapter has shown that a deported source of coded structured light can
provide robust visual features to complex or non-textured objects. This can be a very
useful solution in robotic cells for manipulating static objects for which extracting its own
visual features is difficult.

On the other hand, in case of certain robotic tasks, moving objects or in mobile
robotics, the use of a deported source of light can be unappropriated. In these cases,
the use of an onboard structured light emitter linked to the camera seems a better solu-
tion. However, the current dimensions and weight of LCD projectors prevent them to be
placed on the end-effector of robot manipulators or in some mobile robots. This techno-
logic constraint is expected to be removed in a near future by miniaturising the devices
and diminishing their cost. By the time, as already mentioned in Section 4.4.1, most part
of robotics applications using onboard structured light are based on laser technology. In
this case, the available patterns are dots, lines, circles and grids. However, most part
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of applications combining structured light and cameras in robotics use these devices for
obtaining range measures by triangulation. For example, the underwater robot in [Kondo
and Tamaki, 2004] uses two laser pointers and a camera for obstacle avoidance and dock-
ing maneuvering. In [Sun et al., 2004], a climbing robot uses two laser pointers and a
camera for obtaining its orientation with respect to the window pane that it is cleaning.
Finally, we can mention the robot manipulators in [Clocksin et al., 1985; Amin-Nejad et
al., 2003] taking profit of onboard laser planes and cameras for reconstructing surfaces for
welding and trimming operations. It should be notice that these examples and a lot of
applications taking profit of structured light rely on an accurate calibration of the devices
for obtaining 3D reconstructions. At the same time, we note that, in most cases, the
task to perform could be formulated as a visual servoing task. Then, the calibration of
the devices could be softened thanks to the closed-loop control based on visual feedback.
As a clear example, we can cite the robot in [Kahane and Rosenfeld, 2004] for automatic
tile mosaicking. In this application the robot adds tiles in a wall by visually guiding the
gripper by using an onboard camera and five laser planes. Even if a control loop based
on visual feedback is used, the analytic expression of the interaction matrix related to the
visual features is not calculated. We think that with a stricter formulation of the visual
task the system behaviour could be easily improved.

Although the important potentiality on performing positioning or navigating tasks in
robotics by combining onboard structured light and visual servoing, there exist few works
exploiting this type of approach. For example, Andreff et al. [Andreff et al., 2002] used
an onboard laser pointer in their eye-in-hand configuration for depth control. Similarly,
Krupa et al. [Krupa et al., 2003] coupled a laser pointer to a surgical instrument in order
to control its depth to the organ surface, while both the organ and the laser are viewed
from a static camera. Urban et al. [Urban et al., 1994] used two onboard laser planes an
a camera for positioning a 2 degrees of freedom (dof) robot end-effector with respect to
car batteries. In general, most of the applications only take profit of the emitted light in
order to control one or two dofs and to make easier the image processing. There are few
works addressing the issue of controlling several dofs by using visual features extracted
from the projected structured light. The main contribution in this field is due to Motyl
et al. [Motyl, 1992; Khadraoui et al., 1996], who modelled the interaction matrix of the
visual features obtained when projecting laser planes onto planar objects and spheres.

The objective of this chapter is to implement a positioning task with visual servoing
and using onboard structured light in an eye-in-hand configuration. In this case, and
contrary to the previous chapter, the structured light will be used not only for providing
visual features in non-textured or uniform objects, or under adverse lighting conditions,
but also for showing that an adequate design of the structured light sensor can be used for
obtaining a robust control law. By robust we mean that the system is able to reach the
goal from any initial state even if modelling and calibration errors have been made. The
robustness can be checked through stability analysis. There are several design strategies
which are intended to produce robust control laws like designing a decoupled control law
and producing smooth camera velocities.

Certainly, during the last years, many works in visual servoing have been directed on
developing approaches for which the convergence of the system is largely ensured even if
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the initial position is far from the desired one [Andreff et al., 2002; Malis and Chaumette,
2002; Schramm et al., 2004]. As mentioned before, a suitable design strategy consists in
searching for decoupled visual features, so that each one only controls one dof. Even if such
control design seems to be out of reach, there are several works concerning the problem
of partially decoupling dofs. For example, hybrid techniques are based on controlling
rotational dof in the cartesian space while the translational ones are controlled by image
information [Deguchi, 1997; Malis and Chaumette, 2002]. However, they require partial
pose estimation of the object at each iteration. On the other hand, some pure image-
based techniques have succeed to decouple rotational dof from translational ones near the
desired state [Corke and Hutchinson, 2001; Tahri and Chaumette, 2004]. Concerning the
stability analysis, most part of techniques for which it has been possible to find analytical
conditions are hybrid approaches like in [Andreff et al., 2002; Malis and Chaumette, 2002]
or more recently, the extended-2D visual servoing [Schramm et al., 2004]. Usually, the
global stability analysis of pure image-based techniques is too complex even in absence of
calibration errors.

Another important research topic in image-based visual servoing is to improve the
camera trajectory in the cartesian space. It is well known that even if an exponential
decrease of the visual error is achieved, it does not necessarily imply a suitable camera
trajectory. This is mainly due to strong non-linearities in the image jacobian. Important
efforts have been done in order to improve the mapping from the feature space to the
camera velocities [Mahony et al., 2002; Tahri and Chaumette, 2004].

In this chapter we contribute to these research topics by using a dedicated structured
light emitter which allows the plane-to-plane positioning task to be optimised. This task
consists in moving the camera so that it gets parallel to a planar object. This classic task
has been chosen in order to show that structured light can be useful for obtaining nice
properties like decoupling, stability and good camera trajectory.

First of all, we develop a method for a better estimation of the object plane param-
eters by using the structured light pattern. Then, several image-based approaches are
formulated leading to a decoupled approach which is less time consuming and less sensi-
tive to image noise than a position-based approach based on the object pose estimation.
Furthermore, its robustness against calibration errors is demonstrated analytically and
experimentally. In addition to this, a linear map from the task function to the camera
velocities is made, producing a suitable camera trajectory.

The chapter is structured as follows. The structured light sensor proposed to fulfill
the plane-to-plane virtual link and its modelling is presented in Section 5.2. Then, Sec-
tion 4.2 reviews the plane-to-plane task function definition, presents the control law and
the procedure used to analyse its stability. Afterwards, four visual servoing approaches
exploiting the projected light are presented. First, Section 5.4 deals with several position-
based approaches based on reconstructing the object pose by triangulation. Then, a simple
2D approach based on image points coordinates is shown in Section 5.5. After that, in
Section 5.6 a 2D approach based on the area corresponding to the projected pattern and
combinations of angles extracted from the image is analysed. The last approach is based
on a robust non-linear combination of image points which is presented in Section 5.7. Some
experiments showing the behaviour obtained with each one of the proposed approaches are
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shown in Section 5.8. Finally, despite the sensor has been developed to cope with planar
objects, the behaviour of the last approach in presence of several non-planar objects is
tested in Section 5.10. The chapter ends with conclusions.

5.2 A proposal of structured light sensor for plane-

to-plane positioning

We present an eye-in-hand system with a structured light sensor attached to the camera.
The goal of the task here addressed consists in positioning the camera parallel to a planar
object. Such type of task, namely plane-to-plane positioning, aims to fix a virtual link
between the camera image plane and the object plane. With this classic task we aim to
demonstrate that using a suitable structured light emitter, the performance of the visual
servoing scheme can be optimised in terms of decoupling, stability and camera trajectory.

The structured light sensor is based on laser pointers since they are low-cost and easily
available. Theoretically, three non-collinear points are enough to recover the parameters
of the equation of a planar object. Consequently, we initially designed a sensor composed
of three laser pointers. Nevertheless, we found that better results can be obtained by using
four laser pointers in order to decouple visual features.

Therefore, the structured light sensor that we propose consists of four laser pointers
attached to a cross-shaped structure as shown in Figure 5.1a. The direction of the lasers
have been chosen to be equal so that four points are orthogonally projected to the planar
object, see Figure 5.1b. This causes that the projected shape enclosed by the four points
is invariant to the distance between the object and the laser-cross. This invariance will
be very useful as will be shown in following sections. The symmetric distribution of the
lasers in the cross structure will be also useful for decoupling the visual features.

Consequently, the model of the proposed sensor is as follows. The laser-cross has
its own frame {L} so that all the lasers have the same orientation vector “u = (0,0, 1).
Furthermore, the lasers are placed symmetrically so that two of them lie on the X axis
and the other two on the Y, axis. All the lasers are positioned at a distance L from the
origin of the laser-cross frame. The structured light sensor is modelled assuming that it is
ideally attached to the camera of the robot manipulator as shown in Figure 5.1b . As can
be seen, in this model, the cross-laser frame perfectly coincides with the camera frame,
so that the structured light sensor is placed just in the camera origin and the lasers point
toward the direction of the camera optical axis. Whenever the camera and the planar
object are parallel, the projected laser points exhibit a symmetric distribution onto the
object surface and also in the camera image, see Figure 5.2, which will allow us to find
decoupled visual features.

Note that these assumptions have been only taken for modelling issues. However, it
is perhaps not always possible to perfectly align the laser-cross with the camera frame
because of the structure of the robot or because the optical centre position is not exactly
known. That is why the study of the robustness against misalignments between the camera



5.2 A proposal of structured light sensor for plane-to-plane positioning 108

and the laser-cross will be a key point when analysing the different approaches presented
in this chapter.

Figure 5.1: System architecture. a) The proposed structured light sensor. b) Ideal config-
uration of the robot manipulator, camera and structured light sensor.

Figure 5.2: Camera image when it is parallel to the object at a given depth.

Next section presents the modelling of a laser pointer and the image jacobian corre-
sponding to the projected point onto a planar object. Afterwards, the whole model of the
proposed structured light emitter is presented under ideal conditions and different types
of calibration errors.
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5.2.1 Laser pointer modelling

In visual servoing, given a set of visual features s extracted from an image, its variation
due to the relative camera-object velocity (kinematic screw) is expressed in the well known
equation

$ =Lgv (5.1)

being v = (V,,V,,, V2, Q,, €, Q) the camera velocity screw assuming a static object, and
Lg the image jacobian known as interaction matriz.

Given a 3D point X = (X,Y,Z) fixed to the observed object, its normalised coor-
dinates x = (z,y) resulting of the perspective projection x = X/Z are the most widely
used features in image-based visual servoing. The interaction matrix of a fixed point of
coordinates (z,y) is [Espiau et al., 1992; Feddema et al., 1991]

-1/Zz 0 z/Z —(1+2?%)
Lx:( 0 -1/Z y/Z 1+yy2 —xy —yx> (5:2)

note that the only 3D information included in the interaction matrix is the depth of the
point which appears in the translational components.

The analog case when working with structured light consists in using a laser pointer
so that the intersection of the laser with the object produces also a point X as shown in
Figure 5.3. When the laser pointer is linked to the camera in an eye-in-hand configuration,
the time variation of the observed point x depends also on the geometry of the object since
X is not a static physical point. Therefore, some modelling of the object surface must be
included in the interaction matrix.

-

Figure 5.3: Case of a laser pointer and a planar object.

In this work we focus on the case of planar objects, which are modelled according to

the following explicit equation
n'X+D=0 (5.3)

being n = (A4, B,C) the unitary normal vector to the plane and D its distance to the
origin of the camera frame. Hereafter, we take the convention that C' > 0 which implies
that D < 0 since the object is in front of the camera.

Motyl et al. were the first on formulating the interaction matrix of a projected point
onto a planar object [Khadraoui et al., 1996]. In their case, the projected point was the
result of the intersection of two laser planes with the planar object. Note that a laser
pointer (straight line in the space) can be modelled as the intersection of two planes, so
that it is equivalent to projecting two intersecting laser planes. The interaction matrix
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proposed by Motyl et al. has the disadvantage of depending on 12 3D parameters: 4
parameters for every one of the two laser planes (normal vector and distance to the origin)
plus 4 parameters for the planar object. Furthermore, the explicit depth Z of the point
does not appear in the interaction matrix.

In a more natural way, the laser pointer can be modelled with a vectorial equation as
follows (all the parameters are expressed in the camera frame)

X =X, + pu (5.4)

where u = (ug, uy,u;) is an unitary vector defining the laser direction, X, = (X,,Y;, Z,)
is any reference point belonging to the straight line, and p is the distance from X, to X.

By deriving the above expression and taking into account that both X, and u do not
change when the camera moves we find that the time derivative of the projected point is

X = jm (5.5)
then, deriving the normalised coordinates x and using the above result we can write

X X. 1 X -
«c— = _ 7 —u->-7 5.6
XTy T peT My (5.6)

from (5.5) we have that Z = fiu, so that

(u - xu,) (5.7)

X =

N|=

In order to calculate i let first express p in function of the 3D parameters. By substi-
tuting X in (5.3) by its expression in (5.4) we have

LT
= —— X, + D 5.8
p=———(@0"X, +D) (53)

deriving this expression we obtain

. 1 .7 . n'X,+D ¢
=——mn'X,+ D)+ =——=——+— 5.9
K QTE(Q r+ D)+ (QTE)Q (5.9)
which can be reduced to 1
o= —E(QT(Xr + pu) + D) (5.10)
and finally, applying (5.4) the time derivative of p is
L= n'X + D) (5.11)

n'u
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Taking into account the time derivatives of the planar object parameters [Urban et al.,

1994]
( lg'? > - ( 053 ([)gl]:g )V (5.12)

where [n]x is the antisymmetric matrix associated to vector n, the interaction matrix of
L is
1 T
L:——(nT X x n ) 5.13
o=y (0 Xxw) (.13

The equivalence of this formula to the one presented by Samson et al. [Samson et al., 1991]
and the one provided by Andreff et al. [Andreff et al., 2002] is shown in appendix A.

By using the time derivative of p, Equation (5.7) can be rewritten as follows

1 2" X+ D
x=——(u-— xuz)%

—= (5.14)

note that the time derivative of x is expressed in function of 7 3D parameters, namely Z,
n and u. The only parameters concerning the laser configuration are the components of
its direction vector u. This result can be still improved by expressing u as follows

u= (X_Xr)/HX_XrH (5'15)

applying this expression in (5.14) and after some developments X becomes

X = % <g + g&) (5.16)

Note that the expression does not longer depend on the orientation of the laser u but on
its reference point X,. Furthermore, if the reference point X, is chosen as X, = Xy =
(Xo, Yp,0), which corresponds to the intersection of the straight line modelling the laser
and the plane Z = 0 of the camera frame, the expression simplifies to

X = ﬁ <g + ng> (5.17)

Applying the time derivatives of the plane parameters in (5.12) into (5.17) the inter-
action matrix of a projected point is
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-AXy -BX, -CX,
1 Z Z Z

Xoer Xoea Xoes

ol —4y, -BY, -CY;
Z Z Z

Yoe1r Yoeo Yoes

(5.18)
Iy = n'(Xy—x2)
(e1,62,83) = nx(z,y,1) (5.19)

note that Iy is the distance of the reference point Xy to the object. With respect to
the interaction matrix given by Motyl et al. [Khadraoui et al., 1996], the number of 3D
parameters concerning the laser pointer has been reduced from 8 to 3, i.e. Xg, Yy and Z.
The orientation u of the laser remains implicit in our equations. Concerning the planar
object, the number of parameters has been reduced from 4 to 3 since D has been expressed
in function of the image coordinates (z,y), the corresponding depth Z, and the normal
vector to the planar object n.

The rank of Ly is always equal to 1, which means that the time variation of the z and y
coordinates are linked. As already pointed out by Andreff et al. [Andreff et al., 2002], the
image point x moves always along a straight line (hereafter called epipolar line). Andreff
et al. did not specify the interaction matrix of a projected point, but the interaction
matrix of the distance of the point to a certain origin of the epipolar line. Furthermore,
the interaction matrix related to this feature was expressed in a frame centred in the laser
reference point (similar to Xg), and was expressed in function of the angles defining the
normal of the planar object, the angle between the laser pointer and the camera optical
axis, and the distance between the camera centre and Xy. The main problem concerning
the feature used by Andreff et al. is that a convention must be taken to chose the sign of
the distance from x to the origin of the epipolar line.

5.2.2 Model of the structured light sensor

This section presents the parametric model of the system composed by the camera and
the structured light sensor composed of 4 laser pointers. The parameters of the model
are the ones appearing in the interaction matrix of every projected point, which are here
summarised

e Reference point of each laser pointer (Xp, Yy, 0).
e Normalised image point coordinates x = X /Z of every projected point.

e Depth Z of the projected points.

The reference points Xy are determined by the actual pose of the laser-cross with
respect to the camera frame. The 3D coordinates X of the projected points can be
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calculated from Xj, the orientation of the lasers u and the object pose. Concretely, from
the equation of the line modelling a laser pointer and the equation of the planar object

X = Xp+pu
{ 0 = n'X+D (5.20)
we can obtain the depth of the projected point
u,(n"Xq + D)
7 = ————=——+7 (5.21)
n'u
and the real normalised coordinates of the image point
U X
Treal = u_:: + 70
(5.22)
U YO
Yreal = U_Z + 7

The following subsections present the values of the model parameters under different
types of relative poses between the camera and the laser-cross. First of all, the ideal case
is presented where the laser-cross frame is perfectly aligned with the camera frame. After-
wards, the parameters of the model are calculated under different types of misalignment
between the camera and the laser-cross.

Ideal model

First of all, let us consider that the structured light sensor is perfectly attached to the
camera so that the laser-cross frame perfectly coincides with the camera frame. In such
a case the model parameters are shown in Table 5.1. The (z,y) and Z parameters have
been calculated taking into account that the ideal orientation of the lasers coincides with
the optical axis direction so that “u = fu = (0,0,1).

Table 5.1: Ideal model parameters

Laser Xg Y) T Y Z
1 0 L 0 L/Zy —(BL+D)/C
2 —-L 0 —L/Z 0 (AL - D)/C
3 0 —-L 0 -L/Zy (BL-D)/C
4 L 0 L/Z, 0 —(AL+D)/C
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Model considering laser-cross misalignment

In this case, we are interested in calculating the model parameters when the laser-cross is
not perfectly aligned with the camera frame and not perfectly centred in the camera origin.
Such a misalignment is represented in Figure 5.4 and it can be modelled according to a
frame transformation matrix My, which passes from points expressed in the laser-cross
frame to the camera frame. The model parameters under these conditions are developed
in Appendix B.

Figure 5.4: Model of misalignment of the laser-cross

5.3 Task definition and stability analysis

5.3.1 Task definition

The goal of our task is to bring the camera to a position where it is parallel to the object.
This task corresponds to fixing a plane-to-plane virtual link between the camera image
plane and the planar object. Such a virtual link belongs to the class N = 3 since this is the
number of dof constrained by the link [Espiau et al., 1992]. Concretely, 2 translational and
1 rotational dofs are constrained. This can be seen by stacking the interaction matrices
of at least three projected points and evaluating it for n = (0,0, 1)

0 0 X01/22 y1X01/Z —x1X01/Zl 0
0 0 Y01/22 y1Y01/Z —.%'1Y01/Zl 0
|00 Xo2/Z% yoXo2/Z —x9X02/Z> 0 (5.23)
x 0 0 Y02/22 yQYOQ/Z —.%'QYOQ/ZQ 0 ’
0 0 X03/Z2 ngog/Z —.%'3X03/Zg 0
0 0 Yo3/2* ysYos/Z —w3Ys/Z3 O

The rank of the above matrix is 3 if the points are not collinear. This means that there
are three types of camera motion, namely V.., Vj, and 2., which will produce no changes
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in the image. For the case of a general relative pose camera-object it can also be seen by
expressing the above matrix in a frame attached to the object as explained in Appendix C.
The interaction matrix expressed in the object frame has the following form (see the

appendix for the details)

0 0 —Xo1/(Ilp1Z1) Xoym/Hor Xoi1&1/Hor 0
0 0 —Yo1/(IIp1Z1) Yorm/Hor Yoi&i/Hor 0
oL, — °Ly - °T, — 0 0 —Xoo/(Ip2Z2) Xoomo/Ip2  Xo2&2/Ilp2 0 (5.24)
0 0 —Yoo/(IlpaZa2) Yoorp/Ilpa  Yp2la/Ig2 0
0 0 —Xo3/(Tlo323) Xozns/Hoz Xo3&3/o3 0
0 0 —Yp3/(Tlo3Z3) Yozns/los  Yo3&3/Io3 0
with
o 1— A2 - A(Bxi—i—ACyi)
W= e C(1+0C)
1 - B? B(Ay; + BCu;
& = T+ (Ay: i)
C C1+0)
The rank of °Ly is 3 and the kernel is generated by the following base
{(1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,0,0,0,1)} (5.25)

As can be seen, for any relative pose camera-object there are three dofs of the planar
object which cannot be perceived by the camera.

5.3.2 Stability analysis

One interesting aim in visual servoing is concerned on studying whether the control law
(see Section 4.2.2)

v = —A(CLg)"C(s — s*) (5.26)

is able to regulate the task function
e=C(s—s") (5.27)
to the desired state e* = 0 or not. Assuming that C is constant the derivative of e is
é = CLgv (5.28)

The behaviour of e is described by the closed-loop equation of the system, which is obtained
by plugging the control law (5.26) into (5.28)

é = —ACL4(CLy)"e (5.29)
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Note that Lg is the actual interaction matrix in a certain instant of time ¢, while f; is
the value of the model used in the control law. The closed-loop equation will be noted
hereafter as

e =—\M(e)e (5.30)

The aim of the stability analysis is to study if the desired state e* = 0 is an stable
equilibrium point which is reached when time approaches infinity.

Let us remember the following basic definitions:
Equilibrium point: e* = 0 is said to be an equilibrium point if € = 0 when e = 0.

Stability: the stability of an equilibrium point is classically defined in the Lyapunov
sense. The equilibrium point in the origin is said to be stable if

Ve > 035>0 s.t. [|[e(0)] <= |e(t)] <e, Vt (5.31)

Asymptotic stability: the equilibrium point e* = 0 is asymptotically stable if it is
stable and if it is attracting so that

lim e(t) =e* =0 (5.32)

t—oo

Hereafter we will focus only on the asymptotic stability since it ensures that the equi-
librium is reached. The stability analysis of the control law allows us to determine whether
e* = 0 is reached from any starting point (global asymptotic stability) or only when the
initial state is nearby the equilibrium (local asymptotic stability).

If the explicit expression of e in function of time can be obtained by solving the dif-
ferential equation (5.30), then it can be checked if the task function zeroes when time
approaches infinity. However, in most cases it is not possible to obtain such explicit solu-
tion. Alternatively, necessary and sufficient conditions for the local asymptotic stability,
and sufficient conditions for the global asymptotic stability are hereafter recalled.

Local asymptotic stability

The local asymptotic stability of the equilibrium point e* = 0 is analysed by evaluating
the closed-loop equation of the system (5.30) around e*

e" = —\M(e")e” (5.33)

where M(e*) is the product of matrices CLS(CE\S)+ evaluated in the desired state. Since
M = M(e*) is a constant matrix, it can be diagonalised as M = TDT ! being T a
constant frame transformation and D a constant diagonal matrix. Noting f = T le* we
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obtain the following differential equation

f = -A\Df (5.34)
having as solution
f(t) = £(0)exp P! (5.35)

therefore, every component of f(t) is defined by

fi(t) = fi(0)exp 4! (5.36)

where d; is the ith element of the diagonal of D. Every solution f;(t) will converge to 0
as time approaches infinity
tlim fi(0)exp it =0 (5.37)
—00

if and only if Re(d;) > 0. Note that if f(¢) = 0 when ¢t — oo so does e(t). Therefore, since
the elements d; on the diagonal of D are nothing but the eigenvalues of M, the necessary
and sufficient condition for the system (5.30) to be locally asymptotically stable is that the
eigenvalues of M(e*) must have all positive real part.

Global asymptotic stability

The global asymptotic stability analysis of non-linear systems is usually done through
the Lyapunov indirect method, which provides sufficient conditions. Lyapunov’s indirect
method states that given a non-linear system of the form

x = f(x) (5.38)
with a unique zero solution at x = 0, a sufficient condition for this equilibrium point to

be globally asymptotically stable is the existence of a scalar function V(x) which must
accomplish:

e V(0)=0
e V(x)>0Vx#0
e V(x) continuous and differentiable

e V(x) <0Vx

if V(x) accomplishes all this properties then it is said to be a Lyapunov function.

Therefore, in order to demonstrate that the task function e converges to 0 for any
initial state, it is necessary to find a Lyapunov function V(e). We assume of course that
in the initial state the object is not at the infinity and its orientation is less than 90°, since
then the lasers do not project onto the object and the task function cannot be measured.
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First of all, it is necessary to prove that our differential system
é =—-A\M(e)e (5.39)

has a unique equilibrium point at e = 0. This is true if and only if det(M) # 0 Ve, since
then, the kernel of M is empty. As in [Malis and Chaumette, 2002], we use the following
Lyapunov candidate function

V(e) = %eTe (5.40)

Note that this function is always positive and it only zeroes when e = 0. Its derivative is
Vie)=e'é=—)le' Me (5.41)

Therefore, if M is positive definite then V(e) < 0 and V(e) is a Lyapunov function.
Matrix M is positive definitive if and only if its symmetric part

S = %(M +M") (5.42)

has all positive eigenvalues. Therefore, this is a sufficient condition to ensure the global
asymptotic stability of the equilibrium point e* = 0.

Note that this sufficient condition ensures that the norm of the task function |e||
decreases at every iteration towards 0, since the Lyapunov function that has been chosen

can be expressed as

Vie) = 5lel? (5.3

therefore, if V(e) decreases to 0, so does | e]|.

5.4 Object plane parameters approach

The first visual servoing approach that we present is a pure position-based method. Indeed,
we can use the triangulation capabilities of the system composed by the camera and the
lasers in order to reconstruct up to 4 points of the object so that its pose can be recovered.
In such case, the 3D parameters of the reconstructed plane can be directly used in the
closed-loop of the control scheme so that a position-based approach is performed.

Let us consider that the four parameters of the planar object A, B, C and D can be
precisely estimated at each iteration. The feature vector s could be built up by using these
four 3D parameters. However, since the number of controlled dof is 3, a feature vector of
the same dimension is going to be defined. The equation of the object can be noted as a
relationship between the depth of a point and its normalised image coordinates as follows

1
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with P, = —C/D, P, = —B/D and P; = —A/D. By using the time derivatives of n and
D in (5.12) the interaction matrix of s = (P, P», P3) is calculated obtaining

PPy PP, P} —-P P3 0
L= R P? PP, P 0 —P; (5.45)
P} PP, PP; 0 -P P

which in the desired state it has the following value

00 1/Z2*2 0 0 0
L:=(00 0 1/z* 0 0 (5.46)
00 0 0 0-1/Z2* 0

On the other hand, the depth of the points belonging to the planar object can be also
expressed as
Z=v+pY +aX (5.47)

where v = —D/C, 3 = —B/C and a = —A/C. In this case, the interaction matrix of the
parameters s = (v, [, «) is

a [/ -1 —v0 Yo 0
L= 0 0 0 —-1-8%2 fpa -« (5.48)
0 0 O —fa  1+a®> 3

Note that in this case the level of decoupling between the 3D features is higher. Further-
more, if we look at the interaction matrix in the desired state

0 -1 0 00
0 0 -100 (5.49)
00 0 10

we can see that it does not depend on the depth as in the case of s = (P;, P2, P3) shown
in (5.46). Therefore, in this case the dynamics of the object parameters around the desired
state vary linearly with respect to the camera motion. That is why we prefer to use the
object plane representation based on s = (v, (3, «). Since the dimension of s is 3 the
control law is

V= —)\i\:(s —s") (5.50)

In order to estimate the object plane parameters it is necessary to reconstruct the four
3D points X projected by the lasers. Then, the equation of the plane best fitting the four
points can be calculated by means of least squares. First of all, it is necessary to calculate
the 3D point coordinates of every projected laser. The simplest way is to triangulate the
points by using the corresponding image normalised coordinates and the laser orientation
u and the laser origin Xg. Nevertheless, it is possible to reduce the number of parameters
concerning the laser calibration by using the information provided by the desired image.



5.4 Object plane parameters approach 115

Remember that the 3D point X projected by a certain laser of orientation u and origin
X must accomplish the following relationship

X =xZ = pu+ Xg (5.51)

Given an image point x* from the desired image the following relationships are extracted
from the above equation

o7 = prug + Xo
y*Zr = pruy+ Yy (5.52)
Z* = uru,

Then, from the last equation we have that u* = Z* /u, so that plugging it onto the others
we get

7" = Z'ug/u, + Xo
vzt = Z'uyfu. +Y) (5.53)

so that the origin of the laser X can be expressed as follows

Xo = Z%(x" —uy)
Yo = Z°(y" —uy.) (5.54)

where u,, = uy/u, and uy, = uy/u,.

By using the above definitions, the equations in (5.53) can be written for the current
image as

xZ = Zug, + Z*(x" — uy,)
Yz = Zuy, + Z°(y" — uy) (5.55)

From (5.47) the depth is related to the object parameters as

v

Z=——
1—ax— Py

(5.56)

so that the equations in (5.55) can be expressed in terms of the object parameters as
follows

arZ* (2™ — ugy) + PYZT (2™ — ugy) + y(x — ugy) — Z7 (2™ — uyy)
axZ* (Y — uyz) + BYyZ* (Y — uyz) + 9y —uy.) = Z°(y* —uy) = 0 (5.57)

Then, using these equations for every one of the four laser pointers the following system
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of non-linear equations is obtained

a$IZ*(x>{ - u:vz) + ByIZ*(xT - u:vz) + 7($1 - u:vz) - Z*(xf - u:vz) = 0
OZCUIZ*(?/T - uyz) + ByIZ*(yT - uyz) =+ 7(?/1 - uyz) - Z*(yf - uyz) =0
: - (5.58)
ary 2 () — Ugy) + PyaZ™ (2 — Ugz) + ¥ (24 — Ugy) — Z5 (2 —Uzz) = 0
045542*(?/2 - uyz) + ﬁy4Z*(y2I - uyz) =+ 7(?/4 - uyz) - Z*(yi - uyz) =0
Note that there are 8 equations for 5 unknowns which are
§=(a, 53,7, gz, Uysz) (5.59)

Therefore, all the four lasers are assumed to have the same orientation. The system can
be numerically solved by a minimisation algorithm based on non-linear least squares like
Gauss-Newton or Levenberg-Marquardt. Nevertheless, it cannot be analytically ensured
that the algorithm always converges to the right solution. Under calibration errors and
image noise, it is possible to reach local minima. Therefore, demonstrating analytically
the global asymptotic stability of this position-based approach seems out of reach.

In the following subsection simulations using this position-based approach are pre-
sented.

5.4.1 Simulation results

The simulations have been performed by taking into account a sampling time of At =
40 ms and the camera intrinsic parameters obtained from the experimental setup (see
Section 5.8). The laser-cross has been simulated using L = 15 cm according to the real
experimental setup. The desired position has been chosen so that the camera is parallel
to the plane at Z* = 60 cm. The initial position the camera is at a distance of 105 cm
from the plane and the relative orientation camera-object is defined by «, = —30° and
ay = 15° according to the specification given in Appendix A. The gain A has been set to
0.12.

Ideal system

A first simulation has been done by taking into account a perfect alignment of the laser-
cross with the camera frame. Furthermore, it has been assumed that the camera intrinsic
parameters are perfectly known and all the lasers have the same direction (which coincides
in this case with the optical axis direction). The initial and desired image simulated under
these conditions are shown in Figure 5.5. As can be seen, the epipolar lines of the lasers
1 — 3 and 2 — 4 are perfectly orthogonal and intersect in the central point of the image.

non-constant control law: Figure 5.6 shows the results when i\s is estimated at each
iteration by using the reconstructed object plane parameters. Figure 5.6c shows the co-
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Figure 5.5: Simulation of the ideal system when using 3D visual servoing. The initial
point distribution is shown with the red dots. The desired point distribution is depicted
by the circles. The epipolar lines are painted in blue.

ordinates of a fixed point expressed in the camera frame along the simulation. The fixed
point has been set as the initial position of the camera origin. Note that the camera trajec-
tory is almost a straight line in the cartesian space as can also be observed in Figure 5.6d.
This is possible since the object pose is perfectly reconstructed under the ideal conditions.
Furthermore, the task function has a pure exponential decrease since Lg = Lg and the
closed-loop equation of the system becomes

é=—Je (5.60)

constant control law: the results when using the constant control law based on L = L;
in (5.49) are plotted in Figure 5.7. As can be seen, even if the camera trajectory is no
longer almost a straight line, the lateral displacements of the camera are quite small. On
the other hand, both the task function components and the camera velocities are strictly
monotonic thanks to the linear link existing between them near the desired position (as
can be seen in the form of LY).

System including laser-cross misalignment and image noise

A second simulation including calibration errors and image noise has been performed.
First, the laser-cross has been displaced from the camera origin according to the translation
vector (4,10,9) cm. Then, the laser-cross has been rotated 12° about its Z axis, 9° about
Y and —15° about X. The rest of model assumptions still fit (all the lasers have the same
relative direction and perfect camera calibration). However, random gaussian noise with
standard deviation of 0.5 pixels has been added to the images at each iteration.

The initial position of the camera is still at 105 cm from the object but their relative
orientation is defined by o, = —25° and «, = 15°. The initial and desired image are
shown in Figure 5.8. Note that the large misalignment of the laser-cross is evident in
these images. However, note that all the epipolar lines intersect in a unique image point.
This only happens when all the laser pointers have the same direction.
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Figure 5.6: Ideal system: simulation using s = (v, 3, @) and the non-constant control law.
a) e = s —s* vs. time (in s). b) Camera velocities (ms/s and rad/s) vs. time. c¢) Fixed
point coordinates in the camera frame. d) Scheme of the camera trajectory.
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Figure 5.7: Ideal system: simulation using s = (v, 3, @) and the constant control law. a)
e =s—s* vs. time (in s). b) Camera velocities (ms/s and rad/s) vs. time. ¢) Fixed point
coordinates in the camera frame. d) Scheme of the camera trajectory.

As can be seen in Figure 5.9 and Figure 5.10 the behaviour of both control laws when
using s = (v, (3, a) is robust against large misalignment of the laser-cross. The image
noise mainly affects the components of the task function es and eg while e; remains almost
insensitive to it.

Remark: the success of the position-based approach in front of large calibration errors
relies on the iterative minimisation of the non-linear system of equations which leads to a
robust depth estimation of the four projected laser points. During this simulation we have
detected certain sensitivity of the numeric algorithm in front of image noise. Therefore, a
robust algorithm of minimisation must be used.
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Figure 5.8: Simulation of the system including large laser-cross misalignment. The initial
point distribution is shown with the red dots. The desired point distribution is depicted
by the circles. The epipolar lines are painted in blue.
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Figure 5.9: System including large laser-cross misalignment and image noise: simulation
using s = (v, ,a) and the non-constant control law. a) e = s —s* vs. time (in s). b)
Camera velocities (ms/s and rad/s) vs. time. c¢) Fixed point coordinates in the camera

frame. d) Scheme of the camera trajectory.
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Figure 5.10: System including large laser-cross misalignment and image noise: simulation
using s = (7, 5, a) and the constant control law. a) e =s —s* vs. time (in s). b) Camera

velocities (ms/s and rad/s) vs. time. ¢) Fixed point coordinates in the camera frame. d)
Scheme of the camera trajectory.

5.5 Image points approach

The simplest 2D visual servoing approach that can be defined consists in using the image
coordinates of the four projected points. According to the ideal model, if the laser-cross is
aligned with the camera frame, the coordinates x1, y2, 3 and y4 of the four points remain
always to 0. Therefore, we can chose as visual features the following vector

S = (yla €2, Y3, IE4) (561)

Since the number of visual features k = 4 is greater than the number of dofs that must
be controlled (m = 3), matrix W is chosen so that its rows are the basis of the row space
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generated by f;

0
W=1|0
0

o O O

1 0 00
0100 (5.62)
0 010
Then, setting C = Wi:_, the control law in (5.26) becomes
v=—\ <WLS LS) WL, (s —s") (5.63)

and the closed-loop equation of the system in (5.29) when using image points is

. —+ e\

é=—AWL, L, (WLS LS> e (5.64)

A constant interaction matrix is used in the control law, which is obtained by using
the parameters of the ideal model presented in Table 5.1 (see Section 5.2.2), evaluated in
the desired position where n = (0,0,1) and D = —Z*.

0 0 L/Z** L?/7** 0 0

-~ . oo -rL/z22 o -L?/7% 0

La=Le=1 9 0 —1/z? 12/27 0 0 (5.65)
00 L/Z* 0 —1?/7*% 0

In the following subsections three studies of stability are faced. First, we show that
the global asymptotic stability of the ideal model cannot be proved. Afterwards, the local
asymptotic stability of the system is analysed taking into account certain types of laser-
cross misalignment. Finally, the local asymptotic stability in front of errors in the camera
intrinsic parameters is also studied.

5.5.1 Global asymptotic stability under perfect conditions

The general expression of Lg is obtained by using the ideal model parameters in Table 5.1
(see Section 5.2.2) which are expressed in function of the object parameters. The obtained
matrix is

LAC LBC LC? L(B?L+BD+LC?) __LA __L*AC
(BL+D)? (BL+D)?2 (BL+D)? (BL+D)? BL+D (BL+D)?
__LAC ___LBC _ _ LC? BL _ L(LA’+LC?-AD) _L?BC
L.—| (AL-D)* ~(AL-D)® = (AL-D)? AL—D (AL—D)2 (AL-D)2
sT|__LAC _ _LBC _ __LC?> _ L(BD-LB?’-LC?) LA __L*AC
(D—BL)* ~ (D—BL)? ~ (D-BL)? (D—BL)? D-BL (D—BL)®
LAC LBC LC? BL _ L(LA*+LC*4+AD)  L[2BC
(AL+D)? (AL+D)> (AL+D)? AL+D (AL+D)? (AL+D)?
(5.66)

A sufficient condition for the system to be globally asymptotically stable is that the
product of matrices M in the closed-loop equation is positive definite. The positiveness



5.5 Image points approach 128

of M is ensured if all the eigenvalues of its symmetric part S are positive.

When using the constant control law based on L} the analytic expression of the eigen-
values are too complex. On the other hand, if a non-constant law based on estimating
Lg at each iteration is used (reconstructing the object pose parameters involved by trian-
gulation), M is the identity so that the global asymptotic stability of the ideal model is
ensured for any initial object pose.

In presence of calibration errors, the global asymptotic stability analysis becomes too
complex. That is why we use instead the local asymptotic stability analysis.

5.5.2 Local asymptotic stability analysis under laser-cross

misalignment

The local asymptotic stability analysis is based on studying the real part of the eigenvalues
of the matrices product appearing in the closed-loop equation (5.64) evaluated in the
desired state

—_~ —_~ —_ +
M(e*) = WLy Ls(e") (WLS+LS) (5.67)

where Lg(e*) is the real interaction matrix at the desired state which takes into account the
actual pose of the laser-cross. We take the model parameters presented in Appendix B in
order to obtain such an interaction matrix. The study of stability when using an estimation
of Lg at each iteration becomes too complex. The case of using the constant control law
based on L} is considered in the following sections.

Misalignment consisting of a translation

In this case we assume that the cross-laser frame has the same orientation as the camera
frame, but that its centre has been displaced according to the vector “T, = (tz, ty, t2).
In this case the parameters in Table B.1 are evaluated for A= B =0,C =1and D = —Z*
in order to obtain the expression of Lg(e*) which is

Lot, (L4t (Lt )t

- Z Ty Py 0
¥ 0 0 - -tz ——F3 0
Ls(e") = 0 0 L=t (L—Zty)2 (L—%y)t, 0 (5.68)
*2 *2 Z*Z
L+t, ty (L+ts) (L+ts)?
O O Z*2 72 - 72 0

The system is locally asymptotically stable if and only if the eigenvalues of M(e*) have
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all positive real part. The eigenvalues of M(e*) are

o1 = 1
B2 \/(tg +12)2 4+ 6L2(12 + 12)
72 = 212
12442+ 2L% — \/(tg +12)2 4+ 6L2(12 + 12)
7 = 212

Imposing their positivity the following constraint arises
th+ 1ty < 2L (5.69)
which means that the local asymptotic stability is only ensured when the projection of
the laser-cross centre into the camera plane Z = 0 is included in the circle of radius /2L

centred in the camera origin (see Figure 5.11 for a schema). Note that the component ¢,
of the misalignment does not affect the local asymptotic stability. Therefore, a displace-

70

Figure 5.11: Region of local asymptotic stability for the projection of the laser-cross onto
the image plane

ment of the laser-cross from the camera origin can strongly affect the global asymptotic
stability of the system when using image points since even the local asymptotic stability
is constrained.

Misalignment consisting of individual rotations

Let now test the stability of the system when the laser-cross is centred in the camera
frame, but rotated with respect to one of the axis. If the three rotations are considered at
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the same time, too many parameters appear and no analytical results arise.

In the first case, the laser-cross is rotated an angle 1 around the X axis of the camera
frame. The interaction matrix Lg(e*) is calculated according to the model parameters in
Table B.2. The eigenvalues of M(e*) are

op = 1
~ 1+cosy
2 = cos Y
B 1
7T os? P

it is easy to see that all the eigenvalues are positive if the rotation angle v is expressed in
the interval (—m/2, m/2). Note that there is a singularity for ¢ = —7/2 and ¢) = 7/2, since
in those configurations the lasers do not intersect the object and therefore the servoing is
not possible.

When a rotation 6 is done around the Y axis the same eigenvalues are obtained.
Finally, the eigenvalues corresponding to the case of a rotation ¢ around the Z axis are

o1 = cos¢
oy = cos® ¢+ /cos? p(cosZ ¢ — 1)
o3 = cos®¢p—+/cos?p(cosZp—1)

The positivity of the first eigenvalue imposes that ¢ € [—7/2, 7/2]. In the second and
the third eigenvalue, the square root is always of a negative number, so that the real part
of both eigenvalues is cos? ¢, which is always positive.

In conclusion, the approach based on image points is locally asymptotic stable with
respect to individual rotations of the laser-cross around the principal axis of the camera
frame.

5.5.3 Local asymptotic stability analysis in presence of cam-

era calibration errors

This section presents the local asymptotic stability analysis of the system when the laser-
cross is perfectly aligned with the camera frame but the calibrated intrinsic parameters of
the camera are not the real ones.

We model the intrinsic parameters of the camera according to the following matrix

Jky 0 w
Vo (5.70)

>

I
@)
~
??
S
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where (ug, vp) is the principal point in pixels, f the focal distance (in metres), and (k,, ky)
the conversion factors from metres to pixels for the horizontal and vertical camera axis,
respectively. This matrix expresses how the normalised coordinates x = X/Z of a 3D
point projects onto a certain pixel x, of the image as follows

xp, = Ax (5.71)

When only an estimation A of the real intrinsic parameters is available, an estimation X
of the real normalised coordinates x is obtained from the pixel coordinates

x=A"'x, (5.72)
This estimation is related to the real normalised coordinates by
x=ATAx (5.73)

Hereafter, the elements of A~'A will be noted as follows

& 0 o — o
~ f’kvu ]T];u,v Ku 0 UO
AlA = 0 fkv wvo—v [=[ 0 K, WV (5.74)
oo T 0 0 1
0 0 1

We assume that K, > 0 and K, > 0 since f, k, and k, are positive by definition.

With this notation, the estimated normalised coordinates are related to the real ones
as

r = Kyux+U
o= Kyt (5.75)

and therefore, its time derivatives are

r = Ky

Fo= K (5.76)
so that

L; = K,L,

L; = KL, (5.77)

By using the equations above, it is easy to calculate the interaction matrix Lz correspond-
ing to the visual features set s measured under a bad camera calibration. Then, the local
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asymptotic stability analysis must be applied to the closed-loop equation of the measured
task function € N
& = CLs(d) (CLS) & (5.78)

For the case of s = (y1,Z2,¥ys3,Z4) it can be found that the product of matrices M(€) in
the closed-loop equation of the system evaluated in the desired state becomes

Kotk oo
0 0 K

u

whose eigenvalues are in this case the elements of the main diagonal, which are always
positive if K, > 0 and K, > 0, which is true if f> 0, Eu > (0 and EU > 0. Therefore, the
local asymptotic stability of the system when using the image point coordinates is ensured
if the elements of the main diagonal of A are positive.

5.5.4 Simulation results

The system based on the set of visual features s = (y1, x2, y3, x4) has been simulated
under the same conditions than the ones exposed in Section 5.4.1.

Ideal system

In Figure 5.12 the results of the ideal system when using normalised image points is
presented. In this case, the decrease of s — s* is not pure exponential and the rotational
velocities generated by the constant control law based on L are non-monotonic.

System including laser-cross misalignment and image noise

The system under the calibration errors described in Section 5.4.1 has rapidly diverged
when using s = (y1, x2,y3, x4). This result was already expected from the local asymptotic
stability analysis of this set of visual features when laser-cross misalignment occurs.

5.5.5 Linear combination of image points

As it has been said, in order to fulfill a plane-to-plane virtual link we only need k = 3
independent visual features. In the approach based on image points redundant information
has been used since the number of visual features was greater than the number of controlled
dofs. One might think about linearly combining the image points coordinates in order to
obtain a set of 3 visual features.
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a) b)
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— y3-y3 Qy

o4k — x4-x4 0.04f.
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Figure 5.12: Ideal system: simulation using s = (y1,x2,ys,x4) and the constant control
law. a) e = s —s* vs. time (in s). b) Camera velocities (ms/s and rad/s) vs. time. c)
Fixed point coordinates in the camera frame. d) Scheme of the camera trajectory.
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For example, let us define the following set of visual features
f=(z4—22 y14ys zo+zs ) (5.80)

The interaction matrix for the desired position is

0 0 2L/Z* 0 0 0
Li=[ 0 0 0 2L% ) 7*? 0 0 (5.81)
0 0 0 0 —2L%/7Z** 0

which seems much more decoupled than the interaction matrix corresponding to the image
points approach in (5.65).

Let us generalise the definition of the set of 3 visual features f as a linear combination
of s of the form

f = Qs (5.82)
Q =0

so that the interaction matrix in the desired state has the general form

00 Dy 0 0 O
L= 0 0 0 Dy 0 O (5.83)
00 0 0 Ds 0
Note that Li can be decomposed as
D; 0 O
L; = 0 Dy O W =DW (5.84)
0 0 Ds
On the other hand, by deriving (5.82) we have
f=Qs=QLgv (5.85)
so that
L = QL] (5.86)
Therefore, the following equality holds
DW = QL; (5.87)

and post-multiplying both sides for L%

DWL:" = QLIL:" (5.88)
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since LL:" = I we have
Q=DWL:" (5.89)

The time derivative of the task function when using s can be expressed as
es =C(s—s*) = é = C$ = CLgv = WL/ Lgv (5.90)
Similarly, for the case of f we have
e =f—f" = é =f=Liv=QLILsv = DWL/L,v (5.91)
Note therefore that the dynamics of both tasks are related as follows
ér = Dég (5.92)

Therefore, the system dynamics of ef are identical to the dynamics of eg but including
a constant factor. Therefore, using a linear combination of visual features which obtains
a diagonal interaction matrix in the desired state does not affect the behaviour of the
system.

In the following sections new sets of visual features are proposed aiming to improve the
performance of the system in terms of stability against calibration errors and decoupling.
As it will be seen, the features are based on non-linear combinations of the image points
coordinates. Therefore, matrix Q will depend on the state so that it will be no longer
constant and therefore, the dynamics of e will change.

5.6 Normalised area and angles approach

In this section we analyse the performance of a set of visual features consisting of non-linear
combinations of the image points [Pages et al., 2004].

The first visual feature is based on the area of an element of the image. Such visual
feature has been largely used for depth control [Mahony et al., 2002; Tahri and Chaumette,
2004; Corke and Hutchinson, 2001]. In our case, we take into account the area enclosed
by the four image points, which can be formulated as follows

a =

(w3 — 21)(ys — y2) + (22 — 24)(y3 — y1)) (5.93)

DN | =

The interaction matrix of the area can be easily derived by using the interaction matrices
of the image point coordinates appearing in the formula above. The interaction matrix
evaluated in any state where the camera is parallel to the object (A =0, B=0,C = 1)
at a certain depth Z (D = —Z) will be hereafter denoted as Lll. For the case of the area
this matrix is

Ll = (00 2l/z 00 0) (5.94)
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Note that the area all observed in any position where the camera is parallel to the object
is known. According to the ideal model it depends on the lasers positions which are
symmetrically placed around the camera and pointing towards the same direction than
the optical axis. Concretely, we have

Al

= (5.95)

4l

where All is the 3D area enclosed by the four points onto the object surface whenever the
camera is parallel to the object. Since the four laser pointers are orthogonally projected,
the 3D area is constant for any position where the camera and the object are parallel.

Concretely, we have that
Al =212 (5.96)

Therefore, the interaction matrix in (5.94) can be rewritten as
Ll = (00 422> 0 0 0 ) (5.97)

Note that the dynamics of the area are strongly non-linear.

The 2 visual features controlling the remaining dofs are selected from the 4 virtual
segments defined according to Figure 5.13.

Yp

Figure 5.13: At left side, virtual segments defined by the image points. At right side,
definition of the angle a;.

An interesting feature is the angle between each pair of intersecting virtual segments.
The angle «; corresponding to the angle between the segment /;;, and the segment [j; (see
Figure 5.13) is defined as

17 x 7 z-7
sin Q= T =, » COSQj; = 7= (598)
Iallical ol

Then, developing the inner and outer products, the angle is obtained from the point
coordinates as follows

(g — 25)(yi — y5) — (2 — 25)(yr — y5) (5.99)

o =arctan
J w — x5)(xi — x5) + (Y — y;) (Wi — y;)
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Knowing that the derivative of f(x) = arctan(x) is f(x) = @/(1 + x?), the interaction
matrix of o can easily be calculated.

Then, by choosing the visual features a13 = a3 —ag and asy = as—ay, the following
interaction matrices are obtained for the case whenever the camera is parallel to the object

Il _
Lﬁ{13 = (00 0 2L/Z 0 0 ) (5.100)
Lo,, = (0 0 0 0 2L/Z 0 )
Note that by using the visual feature set s = ( a, aj3, ag4) the interaction matrix is

diagonal (for any state where the camera and the object are parallel) so that a decoupled
control scheme is obtained with no singularities. However, it can be also noted that the
non-null terms of the interaction matrix are inversely proportional to the depth Z or
a power of the depth Z3. This will cause the camera trajectory to be not completely
satisfactory. As pointed out by Mahony et al. [Mahony et al., 2002], a good visual feature
controlling one dof is the one whose error function varies proportionally to the variation

of the dof.

Let us start by searching a feature a,, whose time derivative only depends on constant
values. Since the time derivative of a depends on the inverse of the depth, we can search
a feature of the form a, = a” so that the depth is cancelled in its time derivative. Then,
taking into account all this, the required power v can be deduced as follows

. 1. 2vA7Y
an =0a" = a, =va' la = o1 Ve (5.101)
In order to cancel the depth it is necessary that
2y+1=0=>~v=-1/2 (5.102)

so that we find a,, = 1/y/a as in [Mahony et al., 2002; Tahri and Chaumette, 2003]. The
interaction matrix of a, evaluated in the desired state is in fact valid for any camera
position where it is parallel to the object since it only depends on constant values and not
on the depth

L; = LI, = (00 -1/(v/2L) 0 0 0 ) (5.103)

An

Following the same method we can find that defining

a13n, = Oélgn/\/a (5.104)
n = Qoan/Va (5.105)

we obtain the following interaction matrices for the new normalised features

L =1L = (o0o00+v2Z 0 0
13 ﬁ‘“n ( V2 ) (5.106)
Li, = Lo, = (000 0 v20)
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These normalised visual features are related to the object parameters (A, B,C, D) as
follows

\/(A2L2 _ D2)(B2L2 _ D2)

ap = -
V2LCD
4LBD(L?*(A% + B?) — 2D?)
a3, = anarctan L4(A2 T B2 + AD2(D? — 2B2L7)
4LAD(L*(A? + B?%) — 2D?)
Qo4n = anarctan <L4(A2 - BY)? 1+ AD2(D% — 24217 (5.107)
Similarly, they are related to the object representation (y = —D/C,8 = —B/C,a =
—A/C) by
VA7)
ap, = -
V2Ly
o [ AT+ 5) = 27
= rctan
e T AT 1 2 4 40207 - 2P )
ALory(L?(0? + B%) — 29%)
o4, = aparctan <L4(a2 0 A2 (77 = 202 L) (5.108)

If a Taylor approximation of first order is made about A = B =0 or a« = 3 = 0, the
following relationships appear

w o~ L ﬂ) _ L
T VaL\ C NoT
Qsn A —/2 % = —V2p (5.109)
Q24n = \/§<_—Cj,4> = \/504

Therefore, when the camera is nearly parallel to the object, the features based on nor-
malised area and angles are proportional to the object parameters (v,3,«). That is why
the features s = (a,,, @13, @245, ) are decoupled in the desired state.

Given this set of visual features we have m = k = 3 so that C = I3 and the control
law is .
v=—-ALg (s—s%) (5.110)

and therefore the closed-loop equation of the system is

e= AL, e (5.111)
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When using a constant control law, the estimation of the interaction matrix is simply

0 0 0 0
L=L:=Ll=1{ 0 0 0 V2 0 (5.112)
0 0

0 0 V2

o O O

5.6.1 Global asymptotic stability under perfect conditions

Unfortunately, the interaction matrix in function of the object parameters corresponding
to the ideal model is very complex. For example, we show the non-null elements of the
general interaction matrix for a,, expressed in the object frame (see Appendix C)

Lo, = (0 0 °Le,(V2) °La, (Q) °La,(Q,) 0) (5.113)
o C?’L?D(A?B?L* — D%)
Lo, (V) = 4(A2L2 — D2)2(B2L2 — D?)?
L () = AL2CBD?((1+ C)(D* — L2D?) + A?L*(1 — A’ + C(1 + B?)))
AT (1+ C)(AZL% — D?)2(B2L2 — D?)2
oL, (q,) = _APCAD((1+C)(D!-L7D?) + BXLA(1- B+ C(1- A%))
Qnp Yy - -

(1+ C)(A2L2 — D?)2(B2L? + D?)?

The interaction matrices for a3, and sy, are still more complicated because of the
definition of their time derivatives

13 = Qp - Q13+ Q13- Ay

Qogn = Qp - Qo4+ Qo4 - ap (5.114)

Note that when the camera is not parallel to the object a3 and asy are different to 0.
Then, the general interaction matrices depend on arctan functions.

Trying to analyse the global asymptotic stability of the system when using the constant
control law based on matrix (5.112) becomes too complex. We could only ensure the global
asymptotic stability of the ideal system when using a non-constant control law based on
perfectly estimating i\s = Lg at each iteration. In this case, the closed-loop equation of
the system is

e=—)e (5.115)

obtaining a pure exponential decrease of the task function.

Hereafter we focus on the image-based approach based on s = (a,, a13n, @24,) and
the constant control law. We show its robustness against to calibration errors through the
local asymptotic stability analysis.
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5.6.2 Local asymptotic stability analysis under laser-cross
misalignment

Misalignment consisting of a translation

The interaction matrix for the desired position including a misalignment of the laser-cross

consisting of a translation “T}, = (tz, ty, t-) has been computed taking into account the
model parameters in Table B.1 at Appendix B obtaining

\/i _ 3\/§ty 3\/5251 0

0 0 2L 4L AL
*
Ls(e)=[ 0 0 o0 V2 0 0 (5.116)
00 0 0 V2 0

Note that the misalignment parameters only affect the normalised area a,. On the other
hand, a3, and o4, are invariant to such type of misalignment near the desired state.

Then, the product of matrices in the closed-loop equation (5.111) becomes M(e*) =
Ls(e*)f:r that is

1 3ty 3ts
L AL

Me)=[0 1 0 (5.117)
0 0 1

Note that the eigenvalues of M(e*) are equal to the elements of the main diagonal. There-
fore, the eigenvalues are all equal to 1. It means that the local asymptotic stability of
the system when using this set of visual features is not affected by a misalignment of the
laser-cross consisting of a translation. Therefore, the stability domain of this set of visual
features is much larger than the approach based on image points.

Misalignment consisting of individual rotations

Let us now consider how does a rotation of the laser-cross around one of the axis of the
camera frame affect the local asymptotic stability of the system.

Given the case of a rotation 1) around the X axis the eigenvalues of M(e*) are

2cospy/1/ cos )

cos21) +1

2 cos? 1py/1/ cos 1

cosZp +1

o3 = cosiy/1/cosp

which are all positive and definite if ¢ € (—7/2, 7/2).

o1 =

o9 =

The same eigenvalues are obtained for the case of a rotation 6 around the Y axis of
the camera.
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Finally, when a rotation ¢ is applied around the Z axis, the eigenvalues of M(e*) are

o1 = 1
o9 = cosp+/cos?2p—1
o3 = cos¢p—/cos2¢p—1

Note that the real part of the two last eigenvalues is cos ¢ so in order to ensure their
positivity we must have ¢ € [—7/2, 7/2].

It can be stated that the local asymptotic stability of the approach based on the
normalised area and angles is not affected by individual rotations of the laser-cross around
the camera axis.

5.6.3 Local asymptotic stability analysis in presence of cam-
era calibration errors

We now present the local asymptotic stability analysis taking into account in the real

interaction matrix both the real and the estimated intrinsic parameters of the camera. As

explained in Section 5.5.3, it is necessary to study the dynamic behaviour of the measured
task function € evaluated in the desired state

& = \L(&")L, & (5.118)

In this case, the interaction matrix in the desired state €* is

0 0 —Y2KAK) 0 0
Lg(e*)=] 0 0 0 \/2%(2 0 0 (5.119)
00 0 0 L

so that the product of matrices M(e*) = LS(E*)EZ+ is

K, ; K, .
_ SLK
M(&*) = 0 L 0 (5.120)
VE.Z
9K, L
0 0o Y=
Z*

Note that the eigenvalues are the elements of the main diagonal and are positive if K, > 0
and K, > 0, which is true if f >0, k, > 0 and &k, > 0.

Therefore, the system based on the normalised area and angles is robust against camera
calibration errors if the elements of the main diagonal of A are positive.
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5.6.4 Simulation results

The simulations described in Section 5.4.1 have been also done taking into account the set
of visual features s = (ay, ®i13,, o4y) and the constant control law based on L.

Ideal system

The results obtained according to the ideal system specification are shown in Figure3 5.14.
The decrease of the task function is strictly monotonic as well as the camera velocities.

a)
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0.06
0.087 5 10 15 20 25
t
d)
1.5
1
—0.2} 5 — é .
Ly -
S M 0.5 5.
“al
-0.3 0
0.4 T
05 5 10 15 20 25

Figure 5.14: Ideal system: simulation using s = (a,, ®13,, ®24y) and the constant control
law. a) e = s —s* vs. time (in s). b) Camera velocities (ms/s and rad/s) vs. time. c)
Fixed point coordinates in the camera frame. d) Scheme of the camera trajectory.

Note that the camera velocities and the camera trajectory are pretty similar to the ones
obtained by the position-based approach in Section 5.4.1 when using the constant con-
trol law. This similarity was expected from the analytic approximate behaviour deduced
in (5.109).
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System including laser-cross misalignment and image noise

Figure 5.15 presents the results obtained by the current image-based approach for the sim-
ulation conditions described in Section 5.4.1. Note that the system is almost unaffected by
the large laser-cross misalignment, as already expected from the local asymptotic stability
analysis results in presence of this type of calibration errors. Again, the results are very
similar to the ones obtained by the positioned-based approach when using the constant
control law.

Figure 5.15: System including large laser-cross misalignment and image noise: simulation
using s = (an, Q13,, Q24n) and the constant control law. a) e = s —s* vs. time (in s). b)
Camera velocities (ms/s and rad/s) vs. time. c¢) Fixed point coordinates in the camera
frame. d) Scheme of the camera trajectory.
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5.7 A decoupled image-based approach

The aim of this section is to obtain a set of 3 visual features which decouples as much
as possible the controlled dof not only near the desired position (as in the case of the
normalised area and angles) but for any camera-object pose. With such a decoupling
we also aim to demonstrate the global asymptotic stability of the system when using the
constant control law based on L. Moreover, we expect a set of visual features which have
the same robustness against calibration errors demonstrated for the previous features.

Let us take a look at the interaction matrices of yfl, y;l, x;l and x;l

L . — ( K, -K, —Ks _K2(BCL+D) 1 Kl(Bé+D) KL >

K, K, Ks _KQ(BOLJD)_1 KI(BCLfD) KlL)

K, K, Ks _ Ky(AL-D) Kl(ACL—D)+1 —KQL)

=

8

N

it
| I
N7 N N

C
L= (K -K, —K; —fUD KAAD) 4 —KQL)
A B 1
ith K=—"— Kyo=-—"— Ki=—
b 'YL *TIo BT

It is obvious that simple combinations of such features can lead to a decoupled system.
We have chosen the following set of visual features

s = (y —wy' vty oz bap)
- + o+
_ <y3 y1’ (1 y3, 2 4) (5.121)
Y1ys Y1Y3 T2x4
whose interaction matrix is
_2A _2B _2 __2BD 2AD 0
S
L,= 0 0 0o - gQB 2(10232) ?B (5.122)
2 — 2
0 0 0 reR c? e

which is always rank 3 unless for degenerated cases. Note that the rotational part is
decoupled from the translational one for any camera-object pose. To our knowledge, there
are no other image-based approach where the interaction matrix has such a high order of
decoupling for any state.

In the ideal case, that is, when no calibration errors occur, the visual features are
related to the object parameters as follows

2D _,B A> (5.123)

S = (81, 52, 53) = <_Ea _255 _25
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Therefore, these features are proportional to the parameters of the object plane expressed
as
Z=v+pY +aX (5.124)

so that 9
51= 77 82= 203, s3 =2« (5.125)

Furthermore, taking into account the Taylor developments in (5.109), the new visual
features are related to (an, ®13n, @24n) by

S1 =~ 2\/561”, So —\/504137“ S3 ~ \/§ag4n (5.126)

Therefore, under ideal conditions, the image-based approach based on these features be-
haves as the position-based technique presented in Section 5.4 and very similar to the
image-based approach based on (ay,, a13,, @24y, ). Hence, a new way to implicitly estimate
the object pose has been found from a non-linear combination of the image point coordi-
nates. In absence of calibration errors the equations in (5.125) could be used to obtain
the object parameters (v, 3, a) and execute the position-based approach without need to
solve the system of non-linear equations in (5.58).

Another interesting characteristic of these features is that the interaction matrix can
be expressed in terms of the task function components. Usually, in most part of 2D visual
servoing approaches this is unfeasible. By using the normalised image points coordinates
for the ideal case (presented in Table 5.1), the components of e = s —s* = (e, €2, €3) can
be expressed as follows

—2(D+CZ%) B A
_ — 9~ =92 5.127
“ c  “ c C (5.127)
We remember that n is a unitary vector so that C = +/1 — A2 — B2, Hence, we have a

system of 3 equations and 3 unknowns (A, B and D) whose unique solution is

es3 (D) e1L +27*
A=—-——-2 B=—-2 D= ——_ 5.128
h’ h’ h ( )
with
h=/e3+e+4 (5.129)
and therefore 5
C = 7 (5.130)

Using these equivalences, the interaction matrix can be expressed in terms of the task
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function components as follows

es e 2 ex(enL+22*)  esz(enL422*) 0
LT LT L 2L 2L

Lie)=| 0 0 0 —1e3-2 leges  —es (5.131)
0 O 0 —%6263 2+ %e% €9

Note that all the terms in the interaction matrix are known. This allows us to decide
which model of interaction matrix is used in the control law obtained by setting W = Lg
so that C = I3 and

v=-),'e (5.132)

° i\s estimated at each iteration. Note that in this case the elements of the interaction
matrix can be obtained from the task function, without reconstructing the object
parameters by triangulation. The main advantage of such a control law is that
if the interaction matrix is perfectly estimated the task function will have a pure
exponential decrease. However, the camera velocities may be inadequate due to the
non-linearities visible in (5.131).

—

e L =L} being

N 00 —2/L 0 0 0
Ly=L:=[00 0 -20 0 (5.133)
00 0 0 20

In this case, the control law becomes simpler and can be calculated faster (it is not
required to calculate the pseudoinverse at each iteration). Note that this matrix
does not contain any non-linearities neither depth information, like in the set of
visual features based on the normalised area and angles. In this case however, this
result has been achieved without need to normalise the features as before. Then,
since each visual feature varies proportionally to the dof which controls, if the task
function has a good decreasing, which will be studied in the following subsection,
suitable camera velocities will be produced [Mahony et al., 2002].

5.7.1 Global asymptotic stability under perfect conditions

The closed-loop equation of the system is again
, —~+
e =—-)\Lg(e)Ls e (5.134)

We now present the global asymptotic stability analysis when using two different con-
trol laws.
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Non-constant control law

In this case we compute the real interaction matrix at each iteration from the task function
value so that Lg = Lg(e). Then the product of matrices M in the control law is the identity.
Therefore, the equilibrium point is unique and the closed-loop equation becomes simply

é=—)e (5.135)

which ensures a pure exponential decrease of the task function. However, the camera
velocities produced by the non-constant control law can be not very suitable due to the
strong non-linearities in Lg(e)™.

Constant control law

When using the constant diagonal matrix in (5.133) in the control law, the product of
matrices M = Lsf:r = L5L§+ is the following 3 x 3 matrix

1 BD AD 1 ea(enL+2Z*)  esz(esL+2Z*)
e Ty "
M=|o0 E2~ 48 =0 2+1 £a8 (5.136)
AB AR C? ) 2
0 & & 0 ep S 41

whose determinant is , 5 5
1 h ves+es+4
det(M) = —=—=+2_3_ 5.137
which is always non-null, and therefore, the equilibrium point e = 0 is unique. The
global asymptotic stability analysis can be done by using the Lyapunov method, but only
sufficient conditions are provided. However, thanks to the nice decoupled form of the
interaction matrix, we can solve the differential system in function of time corresponding

to the closed-loop equation of the system
&(t) = —ALg(e(t))Ls e(t) (5.138)

This differential system can be decomposed as follows

él(t) = —ﬁ (61 (t) (4L + 62(t)2L + eg(t)QL) + 27 (62(t)2 + 63(t)2)) (5139)
ea(t) = —2(62@)3 + dea(t) + ea(t)es(t)?) (5.140)
A

és(t) = =5 (es(t)’ +4ea(t) + es(t)ez(t)) (5.141)
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The following solutions are obtained according to the developments presented in Ap-
pendix D.1

2e1(0)  2bZ” arctan (u(?))

al) = o L (5.142)
ea(t) = 222(1(5;)) (5.143)
es(t) — 22?27(5?) (5.144)

with
a(t) = 1/ (c3(0) + c3(0)) (exp —1) + dexp? (5.145)
b = /e2(0) + €2(0) (5.146)
u(t) = %2;(;) (5.147)

Let us start by demonstrating the global asymptotic stability of the rotational subsys-
tem defined by (5.140) and (5.141). The subsystem formed by ex(t) and es(t) is globally
asymptotically stable if

lim ez(t) =0, lim e3(t) =0 (5.148)
t—00 t—o00

Both functions clearly tend to 0 when time approaches infinity since lim; o a(t) = oo.
Moreover, it is easy to show that ey () and es(t) are strictly monotonic functions by taking
a look at their first derivative

iy = - 2eleet C(Lf)(f )+ 50 +4) (5.149)

with ¢ = {2,3}. Note that the functions es and es are monotonic since the sign of their
derivatives never changes and it only depends on the initial conditions. Furthermore, they
are strictly monotonic since their derivative only zeroes when ¢ — oo or when the function
at ¢ = 0 is already 0. Therefore, for any initial condition, es(t) and es(t) always tend
towards 0 strictly monotonically.

The global asymptotic stability of the translational subsystem depends on the be-
haviour of e;(t). It is easy to show that e;(t) converges to 0 for any initial state since

limgcalt) = oo [ Ament)=0 (5.150)

The monotonicity of e;(¢) is not so easy to proof. In fact, depending on the initial
conditions, ej(t) can be not monotonic showing some extrema. In Appendix D.2 it is
shown that ej (t) either is always monotonic or it has a unique extremum before converging
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monotonically to 0. Furthermore, sufficient conditions are given so that it is possible to
check from the initial state of the system and the desired depth Z* if either e;(t) will be
monotonic during all the servoing or it will have a peak.

5.7.2 Camera trajectory

Thanks to the decoupled form of the interaction matrix in (5.122) we have obtained the
analytic functions describing the behaviour of the task function e(¢). Furthermore, when
using the constant control law based on L} we can also obtain the functions describing
the camera trajectory. In this case, the control law maps the task function components
e1(t), ea(t) and e3(t) to the camera velocities as follows

v=-)L:Te (5.151)
where
0 0 0
0 0 0
—L/2 0 0
*+
L™ = 0 “1/2 0 (5.152)
0 0 1/2
0 0 0
so that
L
V.(t) = )\Eel(t)
1
Q.(t) = )\562(75) (5.153)
1
Qy(t) = —)\563(15)

Then, we can express the coordinates of a fixed point X in the camera frame in any
instant of time ¢ when the camera moves according to v(t) = (V(t) Q(t)) by using the
well-known kinematic equation

X(t) = =V(t) — Q(t) x X(t) (5.154)

Since the constant control law only generates velocities for V,, Q, and €2,, the above
equation can be rewritten as

X(t) = —O()Z(¢)
Y(t) = 4+Q.(0)Z(t) (5.155)
Zt) = —Vi(t)+Qt)X(1t) - Q2@0)Y(t)

where V,(t), Q,(t) and Q,(t) are the expressions in (5.153). If we choose as fixed point
the initial position of the camera (X(0) = (0,0,0)), we can solve the system of differential
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equations obtaining

e exp M
X(t) = % (exp)‘t b2 Z*h(0)? arctan (u(t)) — e (0)Lb <exp)‘t h(0)* — b* — 2a(t))

+ 63 Z* (a(t) — 2))

Y(t) = M (exp)‘t b’ Z*h(0)? arctan (u(t)) — e (0)Lb <exp)‘t h(0)* — b* — 2a(t))
h(0)%3

+ 32" (a(t) — 2))

—exp™ ™ 2 At At
Z(t) = “hOZ <—b z* (exp —1> +e1(0)L (a(t) —2)2Z" (a(t) — 2exp >)

(5.156)

Note that X(¢) describes how the camera moves farther from its initial position. The
expressions of X (¢) and Y (¢) have the same form, the only difference is that X (¢) depends
on e3(0) while Y'(¢) does on e3(0). The study of the derivative of X (¢) (and similarly for
Y (t)) shows that both X (¢) and Y'(¢) are monotonic functions. The demonstration is as
follows. Let us look at for example at the derivative of X (¢)

Y - Ae3(0) eXP)‘t 2 % At * At
(5.157)
noting that the sign depends on e3(0) and will not change if
22" (eXpM —1> + 27" <2 exp™ —a(t)> +er(0)L (2 — a(t)) = 0 (5.158)

By using the definition of e;(t) in (5.127) the above condition can be rewritten as

b2 7+ (eXp)\t _1> L4z (exp”) _ %8) (2—a(t)) >0 (5.159)

which is always true since D(0) < 0, C(0) > 0, Z* > 0, exp™ > 1 and a(t) € [2,00) (as
shown in Appendix D.1).

Concerning Z(t), its derivative can change of sign, so its monotonicity is not ensured.
Indeed, Z(t) will be monotonic under the same conditions that ej(t) is monotonic too.
When e (t) is not monotonic, a unique peak will appear also in Z(t).

The final coordinates of X are obtained by calculating the limit when time approaches
infinity

tlgglo X(t) = e3(0)G (5.160)
tliglo Y(t) = e2(0)G (5.161)
m z() = AOL=2Z"+M0)Z7 (5.162)
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with

G = Qb%h(()) (-2522* (h(o) arctan (%) + b) +mb* Z*h(0) + 2be1 (0)L (2 — h(052263)

Note that by using the definition of e; in function of the object parameters in (5.127) and
that h = 2/C we have
tlim Z(t)=D(0)+ Z* (5.164)
—00

where D(0) is the initial distance between the object plane and the camera origin.

In summary, we can state that a complete analytic model describing the behaviour of
the system when using the constant control law has been obtained.

5.7.3 Local asymptotic stability analysis under laser-cross

misalignment

The closed-loop equation of the system in presence of calibration errors becomes strongly
coupled so that it is not possible to develop the global asymptotic stability analysis under
these conditions. We present instead the local asymptotic stability analysis when the
laser-cross is not aligned with the camera frame.

Misalignment consisting of a translation

By using the model parameters in Table B.1 we can calculate the interaction matrices of
the inverses of y1, 2, y3 and x4 for the desired state taking into account that the laser-
cross is displaced ¢T| = (tz,ty,t>) from the camera origin. Then, the interaction matrix
of s can be computed obtaining

2L 2Lt,
t2-L2 0 _tfﬁLZ
. 2t, 2t,t,
Lie)=| 0 0 —z== -2 72 0 (5.165)
2.t
0 —pie, S 2 0
22 2 L2

The local asymptotic stability analysis of the system under this type of misalignment
. . . —+ Sy
consists in studying the product of matrices M(e*) = Lg(e*)Ls  which is

L? O teL
LLtE, )
*y t Lot
M(e ) - _Lnytfl 1 _L27E£§ (5166)
_ tyL _ toty 1
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The eigenvalues of M(e*) are

L2
o1 = T332
L2 —12
L2422 - L?)
72 = 12—
b~ Do VEE-TY
L2 —¢2

so that imposing the positiveness of oy we have that L? — tz > 0 which means that
|ty < L (5.167)

When imposing the positiveness of o9 and o3 we must deal with two hypothesis, one
assuming L? —t2 > 0 and the other L? — ¢2 < 0. Let us develop both hypothesis:

e hypothesis 1: L? —t2 > 0. Imposing the positiveness of o5 and o3 according to this
assumption leads to

L? —t2 > 0 = Re(02) = Re(o3) = 1 (5.168)

since

VE {2 —L2) = /2 (-2 + L2)Vi (5.169)

e hypothesis 2: L? —t2 < 0. In this case, imposing the positiveness according to the
second hypothesis we obtain

L2 <0=00>0 L% 2+ /12(t2-12) <0 (5.170)

which is never true as can be seen by developing the condition as follows

V22— L) < —L*+ ¢t
t2(t2-L% < (t2—-L%?
2 < 217
0 < —IL? (5.171)
Therefore, the right hypothesis is
L —t2>0 (5.172)

which imposes that
|tz] < L (5.173)
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Note that the stability domain when using these visual features is a little bit more
restricted than when using directly image point coordinates and therefore, than when
using the normalised area and angles approach. Concretely, the misalignment of the
centre of the laser-cross projected onto the camera plane Z = 0 must be included in the
square circumscribed by the circle 2 + t; < 2L?, which was the error tolerated when using
image points (see Figure 5.16).

v

<

Figure 5.16: Local asymptotic stability areas for the projection of the laser-cross centre
onto the plane Z = 0.

Misalignment consisting of individual rotations

First of all, let us consider a single rotation v of the laser-cross around the X axis of the
camera frame. In this case, matrix Lg(e*) is calculated from the model parameters in

Table B.2. Then, the eigenvalues of M = Ls(e*)f;+ are

op = 1
o2 = f(L7Z*7¢)
g3 = f(L7Z*7¢)

the explicit expressions of o1 and g9 are too complex to be included here. In Figure 5.17a
the distribution of oy in function of the rotation @ and the depth to the object Z* for
L = 0.15 m is plotted. In Figure 5.17b a particular case of oo for Z* = 1.1 m. As can
be seen, the positiveness of o9 is ensured for almost all angle values. The same plots are
shown in Figure 5.18 for o3. As can be seen, the positiveness of this eigenvalue is not
always ensured and depends on the rotation angle.

In the case of a rotation 6 of the laser-cross around the Y axis of the camera, also two
complex eigenvalues appear, whose distributions are plotted in Figure 5.19 and Figure 5.20,
showing that the rotation around the Y axis is better tolerated by the system.

Finally, if a rotation ¢ around the Z axis of the camera is applied to the laser-cross,
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Figure 5.17: a) Rotation around X axis o9 in function of ¢ (degrees) and Zg = Z* b) oy
in function of ¥ (degrees) for the case Zg =1.1 m
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Figure 5.18: Rotation around X axis a) o3 in function of ¢ (degrees) and Zg = Z* b) o3
in function of ¢ (degrees) for the case Zg =1.1 m



150 Chapter 5. A structured light sensor for plane-to-plane positioning

08

0.8
0.6

0.4
0.6

0.2

0.4

0.2

0 I L 1 I I I I
-100 -80 -60 -40 -20 0 20 40 60 80 100

Figure 5.19: Rotation around Y axis a) o in function of 6 (degrees) and Zg = Z* b) o,
in function of # (degrees) for the case Zg = 1.1 m
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Figure 5.20: Rotation around Y axis a) o3 in function of 6 (degrees) and Zg = Z* b) o3
in function of 6 (degrees) for the case Zg =1.1 m
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the eigenvalues obtained from M are

1
oL = cos ¢
oo = 1+itang
oo = 1—itan¢

(5.174)

imposing the positiveness of the first one, we have that the rotation must be included in
¢ € [-m/2, w/2]. Note that the other eigenvalues are complex numbers and that their
real part is always positive. Therefore, rotation of the laser-cross around the optical axis
of the camera does not affect the local asymptotic stability of the system.

In summary, the approach based on this non-linear combination of image points is less
robust against individual rotations of the laser-cross than the image points based approach
and the normalised area and angles approach. In the following section we show how to
overcome this problem by improving the set of visual features.

5.7.4 Making features robust against laser-cross misalign-

ment

In this section we present a simple method to enlarge the robustness domain of the features
against laser-cross misalignment. The goal is to define a corrected set of visual features
s’ which is analytically and experimentally robust against laser-cross misalignment. Fig-
ure 5.21 shows the image point distribution in the desired state when different types of
misalignment take place (the 4 lasers have the same relative orientation). As can be seen,
a general misalignment of the laser-cross produces that the polygon enclosing the 4 points
in the desired image appears rotated and translated from the image centre as shown in
Figure 5.22a.

Xp a) b) c) d)
l—' 3 3 e 3
Yp : | 208, 2e. 2
20--+-04 2 T ) T
—!_ o+ P4 _l_ #-\‘4
10 10 ! 1@

Figure 5.21: Effects of laser-cross misalignment in the desired image. a) Ideal image.
b) The laser-cross is horizontally displaced or rotated around Y¢. c¢) The laser-cross is
vertically displaced or rotated around Y. d) Laser-cross rotated around Zc.

In fact, the set of visual features s = (ay, a13n, Qo4n) is robust against laser-cross
misalignment since both the area and the angles are invariant to the location and orien-
tation of the polygon enclosing the 4 points in the image. Therefore, the corrected set of
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visual features s’ must be also unaffected by this type of planar transformation. The idea
consists in defining an image point transformation composed of a planar transformation
and a translation which minimises the misalignment observed in the image. This image
transformation will be constrained as follows: in absence of laser-cross misalignment, the
corrected set of visual features s’ must be equal to the uncorrected one s. Hence, in the
ideal case the results concerning the global asymptotic stability and camera trajectory
concerning s will also hold for s’.

a) b) c)

% 3

®3 2e--i--9 ’
Zocki +, 4|0 [zetee

Vo 1 i

19 1 1@

Figure 5.22: Image points correction. a) Desired image under a general misalignment of
the laser-cross. b) Image points after applying the transformation T. c¢) Image points
after transformation T and translation —x,.

First of all, we eliminate the misalignment exhibited by the polygon in Figure 5.21d
which is produced when the laser-cross is rotated around the optical axis. Let us define
the following unitary vectors

T42 X3 — X5 ( 13 > X] — X3
42 ( Y42 ) ;-3 Y13 1— X3 ( )

Then, a simple 2D transformation matrix of the form

T=[xu xi5] = 1 ( Y13 13 > (5.176)
T42Y13 — L13Y42 —Ya2  T42

is defined so that T uses the desired image points in order to align the unitary vector
corresponding to x4 — X2 with the image axis X, and the unitary vector corresponding to
x1 — x3 with the image axis Y},. Let us note the transformed image points as follows

x! = Tx; (5.177)

The result of applying the transformation matrix T to the misaligned image points of
Figure 5.22a is shown in Figure 5.22b. Then, it only rests to define a translation vector
which is able to centre the polygon in the image (see Figure 5.22¢). The most intuitive
choice is the centre of gravity of the polygon x,. However, the choice of a suitable expres-
sion for x, is not trivial as it could be supposed. First of all, x, must be computed from
the current image. Secondly, we remember that in absence of laser-cross misalignment s’
must be equal to s so that x, = x} = x;. Hence, under ideal conditions T must be the
identity, which is true according to (5.176), and x4 must be 0. Hence, we could intuitively
set x4 = (1/4)(x1 + x2 + x3 + x4). However, according to the ideal model parameters
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(see Table 5.1), the general expression of the laser image points in function of the object
parameters are

LC
T = 0 Y = %S
Lo BL+ D
= caop Y
- LC (5.178)
= 0 = _
T3 o Y3 BL—D
Ty = ————— Ys = 0
AL+ D
Therefore, we have that
1 " ! ! " L2AC
which is only zero when the camera is parallel to the object. Instead of this, we propose
to use B B
1/ 2+
Xg =5 ( y;, +y§ > (5.180)

Note that this expression is also a measure of the polygon centre of gravity according to
Figure 5.22b. Moreover, in the ideal case x4 is actually 0 for any object pose. Then, the
corrected image points are obtained as follows

x; = Tx; — X, (5.181)

The corrected set of visual features s’ is therefore

e T T A S TR (5.182)

The global asymptotic stability of the ideal model is also ensured when using s’. In the
following sections the robustness of s’ with respect to laser-cross misalignment is proved
analytically. Furthermore, the corrected visual features avoid a potential problem of the
uncorrected set s. Certainly, since the definition of s involves the computation of 1/y;,
1/x9, 1/ys and 1/x4, a division by 0 may be reached due to the laser-cross misalignment.
Note that this problem does not longer appear in s’ since the corrected image points are
symmetrically distributed around the image centre.

5.7.5 Robust visual features: local asymptotic stability anal-

ysis under laser-cross misalignment

The study of the global asymptotic stability of the system when using the corrected set
of visual features s’ and the constant control law is again too complex. As in the previous
approaches, we instead analyse the local asymptotic stability in front of different types
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of laser-cross misalignment. Hence, we intend to prove the robustness of the new set of
visual features in front of such calibration errors.

Misalignment consisting of a translation

Let us first analyse the case when the laser-cross is aligned with the camera frame, but it
is displaced from the camera origin according to T, = (tz,ty,t2). The real interaction
matrix for this laser-cross pose evaluated in the desired state Lg (e*) must be calculated.
First we evaluate the interaction matrices in the desired state of the point coordinates
Y1, T2, y3 and x4 using the model parameters in Table B.1 evaluated according to the
desired state A = B =0, C =1 and D = —Z*. These parameters are also used in order
to calculate the 2D transformation defined in (5.176) and in (5.180) in the desired state.
The expressions obtained for T and x, are

10 t t

The interaction matrix of the corrected set of visual features in the desired state is
then

2 2t
"1 17 1"
0 O 2 0

o o O

and the product of matrices in the linearised closed-loop equation of the system M =
Ly (e*)Ly  is

ol
L (5.185)
0

— Oh|§’“

1
M=| g
0

whose eigenvalues are the elements on the main diagonal which are all equal to 1. There-
fore, the local asymptotic stability of the system in front of a displacement of the laser-cross
is always ensured when using s’ and the constant control law.

Misalignment consisting of individual rotations

We now present the local asymptotic stability analysis when the laser-cross is centred in
the camera origin but it is rotated around one of the camera axis. Let us first consider a
rotation ¢ € (—m/2,m/2) around the X axis. The 2D transformation based on T and x4
can be obtained from the model parameters in Table B.2.

10 sin v
T—<O 1), g =0, yg_coszl) (5.186)
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and the interaction matrix in the desired state taking into account this laser-cross pose is

2cos —27* cosy siny

0 0 — 0 0
L L cos
Ly (e*) = 2cos Y (5.187)
0 0 0 — 0
cos Y
0 0 0 0 2 0
so that the product of matrices in the closed-loop equation of the system is
Z* cos 1 siny
cos ¢ L cosp
M — 0 1 0 (5.188)
0 0 1

Note that all the eigenvalues (in this case the elements of the main diagonal) are positive
since ¢ € (—7n/2,7/2).

In case that the laser-cross is rotated an angle 6 € (—m/2,7/2) around the Y camera
axis (model parameters in Table B.3), the 2D transformation in the desired state is

1 0 sin 0
T:<0 1), Tg=— . Yg = (5.189)

while the interaction matrix in the desired state taking into account this laser-cross pose
is

00 2 0 —2Z*sin 6
L Lcos@
Lg(e)=] 0 0 0 =2 ) 0 ; 0 (5.190)
00 0 0 o8
cos 6

so that the product of matrices in the closed-loop equation of the system is

Z*sin6
Lcos6
0
1

10
0 0
Note that all the eigenvalues are also positive.

Finally, let us study the case when the laser-cross is rotated an angle ¢ around the
optical axis of the camera (model parameters in Table B.4. In this case we have that

T — ( cos¢p sing

—sing cos@

) , =0, y,=0 (5.192)
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2
00 = 0 0 0

Le(€)=1| 0 0 0 —2cos¢ 2sing 0 (5.193)
00 O 2sing  2cos¢ 0

while the product of matrices in the closed-loop equation of the system is

The eigenvalues are

1 0 0
M=| 0 cos¢ sing (5.194)
0 —sing cos¢o

op = 1
o9 cos ¢+ 1/cos2¢p —1
o3 = cos¢p—/cos2¢p—1

Note that the real part of o9 and o3 is cos ¢ so that in order to ensure its positiveness it
is only necessary that ¢ € [—7/2,7/2].

Therefore, the system based on the corrected set of visual features s’ is locally asymp-
totically stable if the laser-cross is not aligned with the camera frame.

5.7.6 Robust visual features: local asymptotic stability anal-

ysis in presence of camera calibration errors

We now present the local asymptotic stability analysis in presence of calibration errors in
the intrinsic parameters of the camera. as explained in Section 5.5.3, it is necessary to
study the closed-loop equation of the measured task function € that in this case is

6 = —ALg(e")Lg & (5.195)

00 -2 9 0 0
=100 0 -2K, 0 O (5.196)
00 0 0 2K, 0

(5.197)
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Note that the eigenvalues are the elements of the main diagonal and are positive if K, > 0
and K, > 0, which is true if and only if f > 0, k: > 0 and k: > 0. Similarly to the
previous image-based approaches, the system based on s’ is also robust against camera
calibration errors if the elements of the main diagonal of A are positive.

5.7.7 Simulation results

We now present the simulation results obtained by the corrected set of visual features s’
according to the conditions described in Section 5.4.1.

Ideal system

As has been shown, under ideal conditions, the interaction matrix of s’ can be evaluated
from the task function. The results obtained with the non-constant control law based
on a perfect estimation of Lg are plotted in Figure 5.23. Both an exponential decrease
of the task function and a monotonic behaviour of the camera velocities are observed.
Furthermore, the camera trajectory is almost a straight line in the space. Note that,
as expected, the results coincide with the ones obtained by the position-based approach
presented in Section 5.4.1. Unlike the position-based approach, this image-based approach
does not require the minimisation of the non-linear equations.

The behaviour of the system when using s’ and the constant control law based on L
is shown in Figure 5.24. Note that both the task function components and the camera
velocities are strictly monotonic as expected from the analytic results. We remark that
these results also coincide with the ideal behaviour of the position-based approach based on
the constant control law presented in Section 5.4.1. In addition to this, the results of s’ are
also very similar to the ones given by the image-based approach using s = (a,, 135, @241)-
This result was already expected from the Taylor approximations shown in (5.126).

Remember that the behaviour of the system when using the constant control law
under ideal conditions can also be obtained from the analytic expressions of the task
function e(t), the camera velocities V(t), Q4 (), Q,(t) and the trajectory X(t) developed
in Appendix D.1 and in Section 5.7.2. Given the initial object pose parameters n and D
and the desired state defined by n = (0,0,1), D = —Z*, the task function components at
t = 0 can be evaluated by using Equation (D.16), Equation (D.11) and Equation (D.12).
The initial conditions found are the following

e1(0) = 8.5953
e2(0) = 0.5359
e3(0) = 1.1547

The functions e;(t), e2(t) and es(t) and the corresponding camera velocities V. (t), Q. (t),
Qy(t) in (5.153) have been evaluated in the interval ¢ € [0,30] s and are plotted in Fig-
ure 5.25a-b. The coordinates of the initial position expressed in the camera frame obtained
analytically in (5.156) have been also evaluated in the same interval. The resulting curves
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Figure 5.23: Ideal system: simulation using s’ and the non-constant control law. a)
e =s—s" vs. time (in s). b) Camera velocities (ms/s and rad/s) vs. time. ¢) Fixed point
coordinates in the camera frame. d) Scheme of the camera trajectory.
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Figure 5.24: Ideal system: simulation using s’ and the constant control law. a) e = s — s*
vs. time (in s). b) Camera velocities (ms/s and rad/s) vs. time. ¢) Fixed point coordinates
in the camera frame. d) Scheme of the camera trajectory.
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are plotted in Figure 5.25¢ and the trajectory of this fixed point in the camera frame is
shown in Figure 5.25d. Note that the task function decrease, the camera velocities and
the trajectory predicted by the analytic model coincide with the simulation results in
Figure 5.24.
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Figure 5.25: Ideal system: analytic behaviour when using s’ and the constant control
law. a) ej(t), e2(t) and e3(t) evaluated at ¢ € [0,30] s. b) Camera velocities V,(¢) (m/s),
Q,(t) and Q,(t) (rad/s) evaluated at t € [0,30] s. ¢) Coordinates of a fixed point (initial
position) in the camera frame (in m). d) 3D plot of the same point (’o’ and "’ are the
initial and the final point respectively.

System including laser-cross misalignment and image noise

The behaviour of the system when using s’ and the non-constant control law in presence
of large calibration errors and image noise is shown in Figure 5.26. Note that the system
is almost unaffected by the calibration errors. We find again that the results are nearly
the same that the ones obtained by the position-based approach.

When using the constant control law based on LZ, the system is also robust against
the laser-cross misalignment, as expected from the local asymptotic stability analysis in
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Figure 5.26: System including large laser-cross misalignment and image noise: simulation
using s’ and the non-constant control law. a) e = s —s* vs. time (in s). b) Camera
velocities (ms/s and rad/s) vs. time. c¢) Fixed point coordinates in the camera frame. d)
Scheme of the camera trajectory.
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presence of such errors. The results are plotted in Figure 5.27. Note that under laser-cross
misalignment the simulation results of this approach are still pretty similar to the ones
obtained by s = (ap, @135, @24p,)-

a) b)

t 1.5 15

Figure 5.27: System including large laser-cross misalignment and image noise: simulation
using s’ and the constant control law. a) e = s — s* vs. time (in s). b) Camera velocities
(ms/s and rad/s) vs. time. ¢) Fixed point coordinates in the camera frame. d) Scheme of

the camera trajectory.
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5.8 Experimental results with planar objects

In order to validate the theoretical results and to confirm the simulation results of the
different approaches presented in this chapter, real experiments have been carried out.
The experimental setup consists of a six-dofs robot manipulator with a camera with focal
length 8.5 mm coupled to its end-effector. The images are digitised at 782 x 582 pixels
and the pixel dimensions are about 8.3umx8.3um. The laser-cross has been built so that
L = 15 cm. Such a parameter has been chosen taking into account the robot structure
so that the laser-cross can be approximately positioned according to the ideal model, i.e.
aligned with the camera frame.

The visual features corresponding to the desired state are calculated through the fol-
lowing learning stage. The camera is positioned with respect to the planar target, already
presented in Figure 4.9, by using classic 2D visual servoing. Once the desired position
is reached, the lasers are turned on obtaining the desired image point distribution from
which the desired visual features s* are calculated. This target plane is only used once
for obtaining the desired point distribution. Afterwards, the experiments are made with
another planar surface containing no visual marks.

The aim of the experiments is to test the behaviour of the control loop when both
the laser-cross is positioned according to the ideal model specifications and when a large
misalignment between the camera and the laser-cross takes place. Furthermore, during the
real experiments a coarse calibration of the camera intrinsic parameters has been used and
the direction of all the lasers is not exactly equal, so that the robustness of the approaches
against this kind of modelling errors is also tested.

Laser-cross approximately aligned with the camera

In the first experiment, the laser-cross has been approximately aligned with the camera.
The desired depth is Z* = 60 cm, while in the initial position the camera is at a distance
to the plane of 105 cm and its orientation is defined by a, = —20° and «, = 20°. The
image corresponding to the initial state and the desired image point distribution is shown
in Figure 5.28a. On the other hand, Figure 5.28b shows the trace of the laser points in
the image from the initial state to the final one.

Indeed, a perfect alignment of the camera and the laser-cross is not possible since we
do not exactly know neither the camera origin location nor the orientation of its axis. This
is evident by looking at the initial and desired images. As can be seen, the laser points
do not exactly lie onto the image axis and their traces from the initial to the desired
position (which shows us the epipolar line of each laser) are not perfectly parallel to the
axis. Furthermore, it is neither possible to ensure that all the 4 lasers have the same exact
orientation (which causes that the epipolar lines do not intersect in a unique point).

The position-based approach has not been implemented since it is equivalent to the
2D approach based on s’. Furthermore, the latter has the advantage that it is less time
consuming since no numerical minimisation of non-linear equations is required.

First of all, Figure 5.29 presents the system response when using image points as visual
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features. As can be seen, since the laser-cross misalignment is small enough, the system
converges showing a nice decrease on the visual feature errors and the norm of the task
function (even if it is not a pure exponential decrease, as expected from the expression of
L which depends on 1/Z*). On the other hand, note that the camera velocities generated
by the constant control law are not monotonic, specially the rotational ones.

Figure 5.30 shows the results when using the set of visual features based on the nor-
malised area and angles. As expected, both the task function and the camera velocities
better fit an exponential decrease. Furthermore, a linear mapping from task function space
to camera velocities is almost exhibited.

Very similar results are obtained with the corrected version of the decoupled set of
visual features s/, which are presented in Figure 5.31. In this case, the results when
using the constant control law are plotted. We can observe the monotonic decrease of the
task function and the camera velocities as predicted by the analytic model. No major
differences are appreciated with respect to the approach based on normalised area and
angles.

In Figure 5.32 the results when using s’ and the non-constant control law are shown.
In this case, a pure exponential decrease of the task function is expected. Note however,
that the actual behaviour is not monotonic, which implies that this type of control law is a
bit more sensitive to the lasers directions and the camera calibration errors. Nevertheless,
the system converges with no major problems. Note also the non-monotonic camera
velocities generated by the control law. We must also mention that when using the non-
constant control law the computation time required at each iteration is higher since the
pseudoinverse of the estimated i\s must be calculated.

Large misalignment between the camera and the laser-cross

The same experiment has been repeated by introducing a large misalignment between the
laser-cross and the camera. Concretely, the laser-cross has been displaced from the camera
origin about 6 c¢m in the sense of the —X axis of the camera frame. Furthermore, it has
been rotated about 7° around the Z axis (the rotation introduced about the X and Y axis
are much smaller). Such a large misalignment is clearly observed in the initial and desired
image points distribution shown in Figure 5.33a. The final image is shown in Figure 5.33b.

Under these conditions, only the approaches based on normalised area and angles,
and the corrected version of the decoupled set of visual features have succeeded. On
the other hand, the image-based approach based on s = (y1,x2,ys3,x4) has diverged as
expected from the simulation results. In Figure 5.34 the results when using the constant
control law based on s = (ay, @13, @24,) are shown. On the other hand, when using
the corrected set of visual features, the original image is transformed at each iteration
producing the image trace plotted in Figure 5.33c. Then, Figure 5.35 presents the results
when using s’. As can be seen, even with such a large misalignment of the laser-cross,
both approaches still obtain almost a monotonic decrease in the task function as well as
an almost monotonic decrease in the camera velocities. Therefore, the large convergence
domain of these approaches expected from the analytic results is here confirmed.



5.8 Experimental results with planar objects 165

Figure 5.28: Experiment using an approximated alignment. a) Initial image (solid dots)
including image axis and the desired position of each laser point (circles). b) Final image
with the trace of each laser point from its initial position to its final position.
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Figure 5.29: Approximated alignment: experiment using s = (y1,x2,y3,x4) and the con-
stant control law. a) s —s* vs. time (in s). b) Norm of the task function vs. time. c)
Camera velocities (ms/s and rad/s) vs. time.
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Figure 5.30: Approximated alignment: experiment using s = (an, ®13,, @24,) and the
constant control law. a) e = s —s* vs. time (in s). b) Norm of the task function vs. time.
c) Camera velocities (ms/s and rad/s) vs. time.
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Figure 5.32: Approximated alignment: experiment using s = (y];  — yéfl,y'f +
vy ab ™t 4+ 27" and the non-constant control law. a) e = s —s* vs. time (in s).
b) Norm of the task function vs. time. ¢) Camera velocities (ms/s and rad/s) vs. time.

When using s’ and the non-constant control law, the system has not been able to
converge to the desired position since the robot has reached a joint limit. This fact has
been also observed when using other initial positions. It seems that the non-linearities
in the camera velocities produced by such a control law become stronger due to errors
in the lasers directions when the laser-cross is largely misaligned. Hence, some of the
demanded robot motions are unfeasible or usually bring the robot very close to some
joint limits. Therefore, we confirm that designing decoupled visual features which vary
proportionally to the corresponding controlled dof is a good strategy to obtain suitable
camera trajectories [Mahony et al., 2002].
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Figure 5.33: Experiment using a large misalignment. Initial image (solid dots) including
image axis and the desired position of each laser point (circles). b) Final image with the
trace of each laser point from its initial position to its final position. c¢) Corrected image
from the initial to the desired position (the dashed lines show the image axis).
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Figure 5.34: Large misalignment: experiment using s = (ay,, @13, a245,) and the constant
b) Norm of the task function vs. time. c)
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Figure 5.35: Large misalignment: experiment using s =
2/,”') and the constant control law. a) e = s —s* vs. time (in s). b) Norm of the task
function vs. time. ¢) Camera velocities (ms/s and rad/s) vs. time.
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5.9 Summary

In this section we briefly summarise the different approaches presented along the chapter
for plane-to-plane positioning. The analytic results concerning the stability under ideal
conditions and under calibration errors are summarised in Table 5.2. The results provided
in the table take into account the control based on the interaction matrix evaluated in the
desired state L. When using a non-constant control law, the global asymptotic stability
has only been proven when the estimation of Lg at each iteration is perfect, that is, when
the conditions of the ideal model hold and there are no calibration errors.

Position-based approach: the input of the control law are the parameters of the object
plane equation -, 8 and «. The interaction matrix of such parameters shows a nice
decoupling from the rotational to the translational part. Calculating these parameters
requires to solve at each iteration a system of non-linear equations. This can be done
numerically with a minimisation algorithm which can be sensible to fall into local minima.
Therefore, the convergence of the approach cannot be proven. Nevertheless, the camera
trajectory obtained is almost a straight line and the task function shows an exponential
decrease under ideal conditions.

Image points approach: the inputs of the control law are the image point coordinates
(y1,72,y3,24). The stability of the system is not ensured in presence of a displacement of
the laser-cross with respect to the camera centre. Furthermore, the camera velocities are
non-monotonic.

Normalised area and angles approach: the input of the control law are the geomet-
ric image-based features (a,, a13n, @24y ), which have shown a strong robustness against
calibration errors both analytically (through the local asymptotic stability analysis) and
experimentally. Simulations and experiments have shown that both the task function and
the camera velocities are monotonic. However, due to the complexity of the features no
analytic results concerning the global asymptotic stability have been provided.

Decoupled features approach: the input of the control law are the image-based fea-
tures

s= (" =5yt ety eyt (5.198)

This set of features decouples the rotational from the translational dof in all the workspace
and the interaction matrix can be entirely expressed in terms of the task function approach.
This is possible since these features are proportional to the object parameters v, 5 and «.
It has been possible to demonstrate the global asymptotic stability under ideal conditions
when using both a constant control law based on L} and when using an estimation of Lg
(which does not require to reconstruct the object). When using the non-constant control
law a pure exponential decrease of the task function is obtained under ideal conditions.
In the case of the constant control law, a monotonic decrease is obtained for the visual
features controlling the rotational subsystem, and the behaviour of the feature controlling
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the depth is either monotonic or it presents a unique peak. The system is however quite
sensitive to laser-cross misalignment.

Corrected decoupled features approach: a simple planar transformation applied to
the image allows the robustness domain in presence of calibration errors to be enlarged.
The corrected set of visual features s’ has nice robustness properties and obtains the same
results than the uncorrected version under ideal conditions.

Table 5.2: Stability analysis of the different approaches

Ideal system: Laser-cross misalignment: intrinsic
. . . erTors:

Visual stability local asymptotic stability local as.

Features Global | Local (tysty,tz) Rot(X,1)) | Rot(Y,0) | Rot(Z,p) | stab.

(,6,) v | v ? ? ? ? ?
ravysa) | 7 | v | E+e<2rt| v v v
(Gn, X130, Q241 ? \/ \/ \/ \/ \/ \/
s vV V4 [tz,y| < L restricted vV vV ?
s’ Vv Vv Vv Vv v v Vv

5.10 Positioning task with respect to non-planar

objects

The number of pure image-based approaches able to deal with non-planar objects is quite
reduced and they usually have some limitations. In some cases, they are model-based since
they are only valid for certain objects. As example we have the approaches presented by
Espiau et al. [Espiau et al., 1992] which allow the camera to be positioned with respect
to cylinders and spheres. There are other approaches that are considered model-free. For
example, a typical example are the approaches based on image points, but they require an
estimation of the depth distribution [Benhimane and Malis, 2003; Schramm et al., 2004].
Furthermore, such estimation must be accurate enough for ensuring the convergence [Malis
and Rives, 2003]. Another example is the contour approach presented in [Collewet and
Chaumette, 2000] which does not require depth information and it is able to deal with
non-planar objects. However, the object’s curvature must be weak and only binary objects
have been taken into account.

The structured light emitter proposed in this chapter has been designed for positioning
the robot with respect to planar objects. However, it is interesting to see what happens
when the object is actually non-planar. In the following sections, the case of quadric
objects is considered. This type of objects have been addressed because some analytic
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predictions can be formulated. Furthermore, simulations and experiments illustrating this
case are shown.

In next section we investigate whether it is possible to cancel the task function of the
decoupled image-based approach proposed in this chapter when the object is a quadric.

5.10.1 Non-planar objects: can the task function cancel?

The decoupled image-based approach is based on the following set of visual features
s=(s1, 52, 83) = (11 ' —ws" yi +us', wy +ag)) (5.199)

where s1 controls the depth and so and s3 the orientation of the camera with respect to a
planar object. Taking into account that x = Y /Z and the lasers distribution around the
camera provided by Table 5.1, the normalised image points corresponding to the lasers
are

v = L/Zy

y3 = —L/Z3

x9 = —L/Z

v = L7 (5.200)

Let us hereafter consider two cases: when the object is unknown and when a model of
the object is available.

Unknown object model

A possible strategy when the object model is unknown is to consider like if it was a planar
object. In this case, all the four laser points are supposed to lie at a depth Z*, which is
the depth included in the model of interaction matrix used in the control law. Under this
modelling assumption, the desired laser point distribution in the image is

vi = L/ZF
yi = —L)Z*
@i = —L/Z*

o = L)Z* (5.201)



5.10 Positioning task with respect to non-planar objects 171

Therefore, the task function components e = s — s* can be expressed as

1 1 1 1 1
Y1 Y3 <y1 y3> L ( ) ( )
1 1 1 1 1
0 = 24o— (L l) - Loz (5.203
Y1 Y3 Y1 Y3 L
1 1 1 1 1
S L I (LI R 5.204
“ T2 * T4 (355 - $Z> L s 2 ( )

According to (5.203) and (5.204) the following conditions hold

eo=0&21=23 (5.205)

e3=0&2Zy=24 (5.206)
which implies that

e1=0& 27 = Z3 =Z" (5207)

In summary, the task function cancels when Z1 = Z3 = Z* and Zy = Z4. The question is:
can the task function cancel when the object is non-planar and no model of it is available?

We address this problem by taking quadric objects into account. A quadric can be
expressed by the following equation

MOXZ 4+ NOY2 4 0322 — M =0 (5.208)

being M > 0 and noting that (°X,°Y,°Z) is a vector expressed in the canonic frame
of the quadric {O}. For a comprehensive taxonomy of the different quadrics we refer
to [Audin, 2002].

It is easy to demonstrate that, for any quadric object, there is at minimum a position
of the camera where the task function cancels. Let the camera frame {C'} have the same
orientation that the canonic frame {O} and the origin of {O} being expressed in the camera
frame as ©(0,0,0,). Figure 5.36 illustrates this case when the quadric is an sphere.

In this particular configuration, the quadric is expressed in the camera frame by the
equation
MXZ+X0Y2 4+ 0372 -0,)2 -~ M =0 (5.209)

The (X,Y") coordinates of the laser points projected on the object are provided by the
lasers distribution in Table 5.1 being

X, = 0 i = L
Xy = —L Yo = 0
X — o Yo — _L (5.210)

Xy = L Y, = 0
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Figure 5.36: Example of relative pose between the camera and a sphere for which the task
function cancels.

The depth of the points are obtained from (5.209) and there are two solutions

VAs(M — X X2 — \Y?2)

Z=0,+ (5.211)
A3
Considering the first solution
A3(M — XA X2 — \Y?2
Z=0,+ Vs ! 21) (5.212)
A3
the depths of the laser points are obtained by using (5.210)
1
Zi1=2Z3 = 0O,+ —+/ )\3(M — )\2[/2)
A3 (5.213)

1
ZZ = Z4 = Oz + )\—\/ )\3(M — )\1L2)
3

Therefore, in this position, the task function components e; and ez are always cancelled for
any type of quadric object with depth distribution described by (5.212). Then, according
to (5.202) the task function component e; is

1 2 1
e1=—(Z1+ 235 —22") == (0. = Z* + —/\s(M — X\, L2) (5.214)
L L A3

which is 0 only when the camera is at the right distance of the quadric, given by

1
0. = 2" = VXM = X L?) (5.215)
3
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In this case the laser depths are

I =25 = 2
1

Z=Zi = 774+ <\/)\3(M “NL2) — /g (M — )\2L2))
3

(5.216)

If the second solution in (5.211) is considered the depth distribution of the object is

VM = X2 - Y2

Z =0, (5.217)
A3
and the depths of the laser points are
1
=73 = O0,——/A3(M — X\o2L?)
A8 (5.218)
Zo=1Jy = O, = A3(M — N\ L?)
As can be seen, in this case ey and ez are also 0. The task component ey is
1 . 2 . 1
e = — (Zl + Z3 — 27 ) =—|0,—-27 - — )\3(M — )\2L2) (5219)
L L A3
being 0 when the object frame origin is in front of the camera at a distance
. 1
O,=7"+ = A3(M — Ny L?) (5.220)
3
Then, the laser depths are
Z\=J3y = Z*
(5.221)

1
Z=Zi = 74+ <\/)\3(M —XL?) — /A3 (M — A1L2))
3

Note that, according to the laser points depth distribution in (5.213) and the symmetric
case in (5.218), it is clear that the four laser points are co-planar, like in the case of a
planar object, when A\; = A\o. This case appears for objects of revolution around the Z axis
like sphere, ellipsoids of revolution, hyperboloids of revolution and cones of revolutions.

Let us calculate the tangent plane of the quadric at the intersection point P with the
optical axis. The normal to this point is defined by

_(_ 9z
=7 ox

_ 9z

R 1) (5.222)
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with P = (0,0, Zp). For both depth distributions in (5.212) and in (5.217) the normal is
n= (0,0, 1) (5.223)

Therefore, in this position, the camera optical axis has the same orientation than the
normal to the tangent plane at P. Furthermore, the depth Zp is

Zp =0, + (5.224)
VA3
when the depth distribution is given by (5.212) or
A3M
Zp =0, - X3 (5.225)

VA3

when given by (5.217).

In summary, it has been proven that for any quadric, there is at least one position
of the camera for which the task function is cancelled even if the model of the object is
unknown and it is supposed to be planar. Furthermore, in this position the camera gets
parallel to the object tangent plane at the intersection point between the optical axis and
the object. Nevertheless, we do not know whether the visual control approach is able to
move the camera to such position for any initial state.

Model of the object available

In this case, as the model of the object is available, the true desired visual features can be
calculated and some information about the object shape can be included in the interaction
matrix.

Let us consider a concrete example: the goal is to get positioned in front of a quadric
object like in the example illustrated in Figure 5.36. Then, the true depths of every
projected laser point in the desired state are given either by (5.212) or by (5.217). With
these depths, the desired visual features can be calculated by taking into account that

vi = L/Z7
y3 = —L/Z3
x5 = —L/Z;
ot = L)Z; (5.226)

In order to include some information about the object shape in the interaction matrix
let us use the following procedure. We remember that the interaction matrix of every
projected point is
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~AX, -BX, -CXp

Xoer Xoea Xoes

. 1 Z Z Z
0 Io| _ay, —Bv, -0V
0 0 0
Yoer Yoea Y
7 7 7 0€1 0€2 0€3
(5.227)
Iy, = n'(Xg—x2)
(e1,€2,83) = nx(z,y,1) (5.228)

which includes the normal n = (A, B, C) to the object in the projected laser point. In the
case of planar objects, it has been considered that the normal to every projected point
was equal. If the object is non-planar and its model is known, the actual normal to each
laser point can be used. Let

n = (A1, By, (1)
ny = (Aa, By, (9)

5.229
n3 = (A37 B37 03) ( )
ng = (A4, By, Cy)

be the object normals to each projected laser point. These normals can be used for
calculating the interaction matrices Ly, , Ls,, Ly, and L,,. And from them, the interaction
matrix of the decoupled set of visual features

—1 —1 —1 —1 —1 —1
s = (s1, 52, 83) = (?/1 Y3, Y1 tys, Ty t+ay ) (5.230)
is obtained
A1C3+AsC, B1C3+BsC; =2 C3B1Z,+C1BsZ3 Z1A,Cs3+Z3A3Cy A C3—AsC,
—LC,Cs —LC.Cs L LC,C:- —LC,Cs C,C:
L| AsCi=AiCs BiCimBiCy, () CaBi2,2LC Ci-CiByZy Z1ACi ZASC ALCatAsCy
s LC,Cs LC,Cs LC,Cs —LC,Cs C,C;
A Cy—A4Cy ByCy—BuCo 0 Z4BsCs—75B>C4 2LCC4+Cy A3 Zs—C3A4Zs BysCy+B>Cy
LC,Cy LC,Cy LC,Cy LC,Cy —CyCy
(5.231)

From this expression it is possible to calculate the model of interaction matrix used
in the control law by using the normals and depths corresponding to the desired state.
Note that the interaction matrix is no longer decoupled unless all the normals are equal
to (0, 0, 1) which is the case of a planar object.

The following sections investigates several examples through simulations and some
experiments.
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5.10.2 Case of a sphere

A sphere of radius R is represented in its canonic frame {O} by the well known cartesian
equation
°X? 4 oY? 4972 —R? =0 (5.232)

In this case, there are infinite camera positions for which the task function is cancelled.
Concretely, the task function can be cancelled for any position where the optical axis
direction contains the sphere centre which must be at the coordinates (0,0, 0,) with

0,=27"+R?— L2 (5.233)

Several simulations are hereafter presented showing the behaviour of the image-based
decoupled approach. The first two simulations assume that the model of the sphere is not
known. Therefore, the desired visual features and the control law are calculated assuming
a planar object. The third simulation shows the behaviour of the system when the model
of the sphere is known.

First simulation: unknown sphere

The first simulation consists in positioning the camera with respect to a sphere of radius
R = 0.4 m. The camera initial pose can be described with the aid of Figure 5.36. The
origin of the camera in the initial state in the sphere frame is given by °(0,0,1.4) m. Then,

the orientation of the camera with respect of the sphere is defined by the angles o, = —8°
and o, = —6° which are expressing the orientation of the optical axis with respect to the
plane °Z = 0.

The model of the sphere is supposed to be unknown and the desired visual features
and the control law are calculated assuming a planar object placed at the desired depth.
The initial relative pose camera-sphere is represented in Figure 5.37a. Note that only the
visible part of the sphere surface is represented. The initial laser point distribution on the
image as well as the desired image point distribution are shown in Figure 5.37b. At the
end of the simulation, the camera reaches the position shown in Figure 5.37c.

The behaviour of the task function and the camera velocities during the simulation is
shown in Figure 5.37d-e. As can be seen, the behaviour is quite similar to the one obtained
with a planar object. The main difference is that the rate of convergence of the rotational
subsystem controlled by e; and eg is faster. This is due to the curvature of the object
which provokes larger variations in the task function than if a planar object was used.
About the camera trajectory, Figure 5.37f shows the coordinates of the initial position in
the camera frame along time. As can be seen, the major variation occurs in depth, while
lateral displacements are quite reduced.

In order to evaluate the correctness of the final position we present numeric results
corresponding to the final state in Table 5.3. As can be seen, the camera actually reaches
a position where it is parallel to the tangent plane of the sphere at point P, as shown by
the very small values of o, and o, and the normal to II. Note that the task function can



5.10 Positioning task with respect to non-planar objects 177

b)
a
&
100
0 L
w0 |5 —5
40
=00 L
o

5 0.08
— el
e2 0.06 V; —

5 _
&3 0.04 Q
4
0.02
3

0
2 onf

1 -0.04}
o —
-0.06
o 20 20 80 80 -0.08 20 a0 80 80
t t
02
0.1
01 —X
\ ¥

02 % nZ
-0.3 "
04 e
035y 20 40 60 80

Figure 5.37: Positioning with respect to an unknown sphere (only a portion of the sphere is
represented). a) Initial position. b) Initial image point distribution (solid dots) including
the laser epipolar lines and the desired image point distribution (circles). c¢) Camera
trajectory till the final position. d) Task function vs. time (in s). e) Camera velocities (in
m/s and rad/s). f) Camera initial position (in m) expressed in the camera frame vs. time

(in s).
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be considered numerically cancelled.

Furthermore, in order to check if the camera has reached the type of position studied
in Section 5.10.1, the expected laser depths and the expected depth Z} to point P are
also shown in Table 5.3. The expected laser depths have been calculated with (5.221).
The expected depth Z7% has been calculated by using (5.220) and then (5.225). As can be
seen in the table, the depths corresponding to the final state of the simulation are equal
to the ones predicted analytically.

Table 5.3: Final results when positioning with respect to an unknown sphere.

Normal to II: €(0,0,1)
(0, o) with respect to II: (—2.905e — 5°, —4.444e — 5°)
Zp: 0.5709 m
7z 0.5708 m
Task function e: (0.6823e — 3, —0.0012e — 3, 0.0016e — 3)
Lasers depths: (0.6001, 0.6001, 0.6001, 0.6001) m
Expected laser depths: (0.6, 0.6, 0.6, 0.6) m

Second simulation: unknown sphere including a fixation point

As said before, in the case of a sphere, there are infinite positions where the task function
can be cancelled so that the camera gets parallel to the sphere tangent plane to a certain
point P. We now investigate whether it is possible to choose such point P. We consider
that a given point of the sphere can be tracked during the camera motion. Therefore, this
point can be used as fixation point and the goal consists in centering point P in the image
so that the camera gets parallel to the tangent plane in P. Again, we suppose that the
model of the sphere is unknown. We suggest two ways of achieving such a task:

e Stacking the interaction matrix Ly of the fixation point in the interaction matrix of
the decoupled image-based approach.

e Centering the fixation point by using a secondary task.

The first option has the disadvantage that the decoupling of the plane-to-plane positioning
approach is lost. Furthermore, simulations have shown that a better camera trajectory
is obtained if a secondary task is used according to the redundancy approach by Espiau
et al. [Espiau et al., 1992]. According to the redundancy approach definition, if the real
interaction matrix is known at each iteration, only camera motions belonging to its kernel
will be allowed for the secondary task. However, when a static estimation of the interaction
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matrix is only available, as in our case since L} is used, the secondary task can slightly
perturb the primary one. Nevertheless, with this formalism we reduce the influence of the
secondary task over the plane-to-plane positioning goal. Note that given the kernel of L
the camera motions that the secondary task can generate are V;, Vj, and 2,. The control
law taking into account the secondary task is

v=-X\ (ffj(s )+ e (16 - fjf;) L. (x— x*)) (5.234)

where x are the normalised coordinates of the fixation point and f; is the interaction
matrix in (5.2) evaluated for the desired state, i.e. when the point is centred in the image.

The same conditions described in the previous simulation have been used in this case.
Figure 5.38a shows a representation of the initial position of the camera with respect
to the sphere and the fixation point drawn in green. The initial and final image point
distribution as well as the initial position in the image of the fixation point are represented
in Figure 5.38b. As can be seen in Figure 5.38¢c, the camera trajectory differs from the
one obtained without fixation point since the final position is no longer the same. Note
also that the behaviour of the task function shown in Figure 5.38a slightly differs from the
previous simulation.

The correctness of the final position of the camera is analysed from the results given
by Table 5.4. As can be seen, the camera actually gets parallel to the tangent plane II
and the laser depths and the depth Zp are the expected ones. Furthermore, the secondary
task is also fulfilled as can be seen in the final error of the fixation point.

Table 5.4: Final results when positioning with respect to an unknown sphere and a fixation
point.

Normal to II: €(0.0001, —0.0001, 1.0)
(ag, ay) with respect to II: (0.0057°,0.0040°)
Zp: 0.5709 m
7% 0.5708 m
Task function e: (0.764e — 3,0.149e — 3, —0.216e — 3)
Lasers depths: (0.6001, 0.6001, 0.6001, 0.6001) m
Expected laser depths: (0.6, 0.6, 0.6, 0.6) m

Fixation point error (pixels): (—0.0103,—-0.0071)
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Figure 5.38: Positioning with respect to an unknown sphere and a fixation point. a) Initial
position. b) Initial image point distribution (solid red dots) including the laser epipolar
lines, the initial position of the fixation point (solid black dot) and the desired image point
distribution (circles). c¢) Camera trajectory till the final position. d) Task function vs.
time (in s). e) Secondary task: fixation point error (in pixels). f) Camera velocities (in
m/s and rad/s). g) Camera initial position (in m) expressed in the camera frame vs. time

(in s).
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Third simulation: known sphere

In this case, the conditions described in the first simulation have been adopted. However,
it has been assumed that the model of the sphere is known. This allows the real desired
visual features to be calculated. The depths of every projected point and the object
normals in these points are also available thanks to the object model in the desired state.
Concretely, the laser points depths in the desired state are

Zi =75 =75 =75 =0.6402 m (5.235)
and the normals are
(A1, By, C1) = (0, —0.5, 0.866)
(A2, Bs, C3) = (0.5, 0, 0.866)
2
(As, Bs, C3) = (0, 0.5, 0.866) (5.236)

(A4, By, C4) = (=05, 0, 0.866)

With these parameters, the interaction matrix of the decoupled set of visual features
in (5.231) is

0 0 -2/L 0 0 0
L= 0 769 0 —693 0 0 (5.237)
769 0 0 0 693 0

By using the real desired visual features and the control law based on the model of
interaction matrix above, the simulation results are the ones shown in Figure 5.39. As
can be seen, the task function decrease and the camera velocities are smoother as when
assuming the object as planar. This improvement is due to the real normal vectors included
in the interaction matrix.
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Figure 5.39: Positioning with respect to a known sphere. a) Task function vs. time (in s).
b) Camera velocities (in m/s and rad/s). c¢) Camera initial position (in m) expressed in
the camera frame vs. time (in s).

The numeric results of the positioning task are shown in Table 5.5. As can be seen, in
this case the camera gets parallel to the tangent plane at the intersecting point between
the optical axis and the object at the desired depth Z* = 0.6 m. Note that the final laser
depths are also the ones calculated in the desired state.
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Table 5.5: Final results when positioning with respect to a known sphere.

Normal to II: €(0,0,1)
(0, o) with respect to II: (—0.0284°, —0.0214°)
Zp: 0.6 m
Zp: 0.6 m
Task function e: (0.0005, —0.0008, 0.0011)
Lasers depths: (0.6292, 0.6291, 0.6293, 0.6293) m
Expected laser depths: (0.6292, 0.6292, 0.6292, 0.6292) m

5.10.3 Case of an elliptic cylinder

An elliptic cylinder is a quadric having one A; = 0 and the other two of the same sign as
M. For example, we can express an elliptic cylinder by setting A\ = k1M and A3 = ksM
so that

ki M°X? 4+ ksM°Z* — M =0 (5.238)

with k&1 > 0 and k3 > 0. When k; = k3 then a right circular cylinder, simply known
as usual cylinder, is obtained. An example of an elliptic cylinder generated by (5.238) is
shown in Figure 5.40.

Y ey
X

Figure 5.40: Example of an elliptic cylinder.
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It is easy to show that there are two types of camera positions for which the task
function cancels. Both types of positions are represented in Figure 5.40. The frames {C4 }
and {C3} represents the cases when the camera is positioned with respect to the minimum
curvature regions of the elliptic cylinder. On the other hand, {C2} and {C4} represents
camera positions where it is positioned with respect to the maximum curvature regions.
Furthermore, there are infinite positions where the task function is 0 as these cases are
valid for any position along the °Y axis.

The case described by {C1} has already been demonstrated in Section 5.10.1 for a
generic quadric. The demonstration for {C5} is straightforward as it is a symmetric case.

The demonstration for the camera position {Cs} is as follows. According to Figure 5.40
the frame transformation from {Cs} to {O} is defined by

01 ~0,
10 |X+([ o (5.239)
00 0

0
°X = 0
-1

with O, > 0. Therefore, the quadric expressed in the camera frame {Cs} is
ksMX%+ kyM(Z — 0,)> = M =0 (5.240)

The expression of the depth closest to the camera origin is

1
7 =0 = VIl ~ ksX?) (5.241)
1

which provides the depths of every projected laser point which are

1
Vki

VT = k32
Vi

Therefore, the task function components ey and e3 are 0 for this camera position. Fur-
thermore, e; is 0 when Z; = Z3 = Z* which happens when

Z1 =23 =0, —

Zy = Z4 =0y — (5.242)

1
Op = 7* + —— 5.243
N (5.243)

The demonstration for the cases represented by {C4} is homologous to this one.

Two simulations showing the task of positioning the camera with respect to an un-
known elliptic cylinder are now presented. Then, a simulation taking profit of the cylinder
model is shown.
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First simulation: elliptic cylinder

An elliptic cylinder of parameters Ay = 1, A3 = 0.25 and M = 0.09 has been defined. The
initial position of the camera expressed in the object frame is °(—0.8,0,—1.4) m. The
orientation of the optical axis is defined by o, = —25° and «, = 15° which are expressed
with respect to the plane °Z = 0. The initial state of the simulation is represented
in Figure 5.41a. Note that the lasers are projected between the regions of maximum
and minimum curvature of the cylinder. The initial and desired image are plotted in
Figure 5.41b. The goal is again to move the camera to a position where the task function
cancels. The model of the cylinder is assumed to be unknown. Therefore, it is assumed
to be a planar object and the corresponding desired visual features and control law are
used. At the end of the simulation the camera reaches the position shown in Figure 5.41c.
The plots corresponding to the task function, camera velocities and camera trajectory are
shown in Figure 5.41d-f. As can be seen, the task function component most affected by
the object curvature is es which controls 2.

The accuracy of the positioning task can be analysed from the numeric results presented
in Table 5.6. As can be seen, the final value of es is a higher order than es. This causes
that the normal to point P has a final error of about 5° in one of the components. We
think that the explanation is that the camera was converging to a position of the type {Cs}
represented in Figure 5.40. However, once the camera has reached the position shown in
Figure 5.41c, it stabilises because Z1 = Z3 and Zy = Z;. Nevertheless, the final value
of Zy and Z, is not the one predicted by (5.221) as can be seen in Table 5.6. It means
that the final position does not correspond, as clearly seen in Figure 5.41c, to any of the
positions shown in Figure 5.40. Therefore, even if the task is cancelled, the predictions
presented in Section 5.10.1 are not valid in this case.

This simulation shows that depending on the type of object, there might be more
positions where the task function gets cancelled but the normal to point P does not
exactly correspond to the optical axis direction.

Table 5.6: Final results when positioning with respect to an elliptic cylinder.

Normal to II: €(0.0870, —0.0001, 0.9962)
(0, o) with respect to II: (4.992°, —0.0075°)
Zp: 0.6 m
Zp: 0.6 m
Task function e: (0.0054, 0.00004, —0.0000)
Lasers depths: (0.6004, 0.6447, 0.6004, 0.6447) m

Expected laser depths: (0.6, 0.6804, 0.6, 0.6804) m
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Figure 5.41: Positioning with respect to an elliptic cylinder (only a portion of the object is
represented). a) Initial position. b) Initial image point distribution (solid dots) including
the laser epipolar lines and the desired image point distribution (circles). c¢) Camera
trajectory till the final position. d) Task function vs. time (in s). e) Camera velocities (in
m/s and rad/s). f) Camera initial position (in m) expressed in the camera frame vs. time

(in s).
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Second simulation: elliptic cylinder including a fixation point

In the second simulation a static point of the object surface has been included in the
control scheme. The aim is again to centre such point in the image by using a secondary
task. The initial conditions are the same as in the previous simulation. Figure 5.42a shows
the initial camera position and the fixation point over the quadric. As can be seen, the aim
is to force the camera to get positioned with respect to the zone of maximum curvature as
the fixation point lies onto the plane of symmetry °X = 0. The initial and desired images
are plotted in Figure 5.42b. The camera converges to the desired position according to the
trajectory shown in Figure 5.42c. The curves obtained during the simulation are presented
in Figure 5.42d-g.

The numeric results shown in Table 5.7 point out that the fixation point is able to
force the camera to reach the type of position denoted as {C3} and shown in Figure 5.40.
As can be seen, the normal of the tangent plane and o, and «, are better than in the
previous example. The task function final residual is also lower. Furthermore, the final
laser depths as well as the depth to point P are the ones predicted by the equations in
Section 5.10.1.

Table 5.7: Final results when positioning with respect to an elliptic cylinder and a fixation
point.

Normal to II: €(0.0105, 0.0000, 0.9999)
(ag, ) with respect to II: (0.5995°,0.0023°)
Zp: 0.6 m
Zp: 0.6 m
Task function e: (0.7082¢ — 3, 0.0809¢ — 3, 0.1241e — 3)
Lasers depths: (0.6001, 0.6802, 0.6000, 0.6803) m
Expected laser depths: (0.6, 0.6804, 0.6, 0.6804) m
Fixation point error (pixels): (0.0064, 0.0040)

Third simulation: known elliptic cylinder

In this case, the model of the elliptic cylinder is known. This allows the desired position to
be defined and calculate the desired visual features, the laser depths and the object normal
in every projected point. The desired position denoted as {C3} in Figure 5.40 has been
chosen. The desired laser depths which allow the camera to be at a depth Z% = 0.6 m of
point P are

Zi=2; = 06m

Zi=2F = 0.6804m (5.244)
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Figure 5.42: Positioning with respect to an elliptic cylinder and a fixation point. a) Initial
position. b) Initial image point distribution (solid dots) including the laser epipolar lines,
the initial position of the fixation point (solid black dot) and the desired image point
distribution (circles). c¢) Camera trajectory till the final position. d) Task function vs.
time (in s). e) Secondary task: fixation point error (in pixels). f) Camera velocities (in
m/s and rad/s). g) Camera initial position (in m) expressed in the camera frame vs. time

(in s).
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and the object normals to every laser point are

(Aly Bla Cl) = (05 0’ 1)

(As, Bs, Co) = (0.756, 0, 0.654)

(Ay. By, Cy) — 0, 0. 1) (5.245)
(A4, Bi, C1) = (—0.756, 0, 0.654)

With these parameters, the interaction matrix of the decoupled set of visual features
in (5.231) is
0 0 —=2/L 0 0 0
L = 0 0 0 -2 0 0 (5.246)
15.39 0 0 0 1247 0

By using the real desired visual features and the control law based on the model of
interaction matrix above, the simulation results are the ones shown in Figure 5.43. The
final position of the camera is quite similar to the one obtained in the first simulation.
Therefore, the camera is not able to reach the desired position.
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Figure 5.43: Positioning with respect to a known elliptic cylinder. a) Task function vs.
time (in s). b) Camera velocities (in m/s and rad/s). c¢) Camera initial position (in m)

expressed in the camera frame vs. time (in s).

The reason is found in Table 5.8. As can be seen, the position reached by the camera
also cancels the task function even if the laser depths are not the desired ones. Note that
the normal vector to point P is worst in this case as shown by the error in «,. This
example shows that taking profit of the object model for calculating the desired visual
features and making more complex the interaction matrix does not always improves the
results. This is because there are multiple positions different to the desired one where the

task function cancels.
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Table 5.8: Final results when positioning with respect to a known sphere.

Normal to II: €(0.1051, —0.0004, 0.9945)
(0g, ay) with respect to II: (6.0310°, 0.0230°)
Zp: 0.5996 m
Zp: 0.6 m
Task function e: (—0.0024, 0.0008, —0.0090)
Lasers depths: (0.5999, 0.6535, 0.5998, 0.6521) m
Desired laser depths: (0.6, 0.6804, 0.6, 0.6804) m

5.10.4 Case of a hyperbolic cylinder

A hyperbolic cylinder is a quadric having one A\; = 0 and the other two of different sign.
For example, it can noted by setting A3 = —ksA; and

MOX2 —ks\°Z2 - M =0 (5.247)

with k3 > 0. The type of hyperbolic cylinder generated by this equation is shown in
Figure 5.44.
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Figure 5.44: Example of hyperbolic cylinder.

First simulation: hyperbolic cylinder

A hyperbolic cylinder of parameters \; = —3, A3 = 1 and M = 0.09 has been defined.
The initial position of the camera expressed in the object frame is °(0,0, —1.4) m. The
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orientation is defined by o, = —2° and a,, = 15° which are expressed with respect to the
plane °Z = 0. The initial state of the simulation is represented in Figure 5.45a. The initial
and desired image are plotted in Figure 5.45b. At the end of the simulation the camera
reaches the position shown in Figure 5.45¢c. As can be seen, the camera converges to the
closest region with minimum curvature. The plots corresponding to the task function,
camera velocities and camera trajectory are shown in Figure 5.45d-f.

The numeric results corresponding to the final position are presented in Table 5.9. As
can be seen, the final position of the simulation is pretty accurate as shown by the normal
to point P and the low task function error, as well as the final depth. This is possible
because the low curvature regions of the hyperbolic cylinder are almost planar.

Other simulations have stated that the camera only stabilises in the region of maximum
curvature when the initial orientation of the camera is defined by a, = 0. Note that this
position is the one for which Section 5.10.1 demonstrates that the task function is 0.
However, this simulation shows that this position is not attractive and the camera tends
to another final position.

Table 5.9: Final results when positioning with respect to an hyperbolic cylinder.

Normal to II: €(0.0016, —0.0001, 1.000)
(0, o) with respect to II: (0.0945°, 0.057°)
Zp: 0.5998 m
Task function e: (—0.0031, 0.0002, —0.0023)
Lasers depths: (0.5998, 0.5994, 0.5998, 0.5991) m

Second simulation: hyperbolic cylinder including a fixation point

In this case, the camera initial position is still (0,0, —1.4) m but its initial orientation
with respect to °Z = 0 is defined by o, = —18° and «, = 10°. A static point of the
quadric belonging to the plane of symmetry °X = 0 has been used as fixation point
as shown in Figure 5.46a. Then, the objective is that the camera gets positioned with
respect to the maximum curvature region of the hyperbolic cylinder as in the case studied
in Section 5.10.1. The initial and desired images are shown in Figure 5.46b. The camera
trajectory is shown in Figure 5.46¢c. The camera velocities and the trajectory are plotted
in Figure 5.42d-g. As can be seen, the system response shows few oscillations which
progressively weaken until reaching the convergence.

The information concerning the final position is shown in Table 5.10. As can be seen,
the approach based on the fixation point allows the desired position to be reached. Note
that the task function is cancelled and the laser depths and Zp correspond to the ones
predicted by (5.221) and (5.225), respectively, shown in Table 5.10.
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Figure 5.45: Positioning with respect to an hyperbolic cylinder. a) Initial position. b)
Initial image point distribution (solid dots) including the laser epipolar lines and the
desired image point distribution (circles). ¢) Camera trajectory till the final position. d)
Task function vs. time (in s). e) Camera velocities (in m/s and rad/s). f) Camera initial
position (in m) expressed in the camera frame vs. time (in s).



192

Chapter 5. A structured light sensor for plane-to-plane positioning

b) c)
0
-
M
1m0
L
o2m
W -y
4m
L
=m0
. )] .
0 0 400 eI
5 200
—_— 1 — X-X*
4 e2 y-y*
3 100
3
o .
2
-100
1
—-200}
0
4 -300
) 20 40 60 80 ~40% 20 40 60 80
t t
— X
Y
z
0.05
ol
=
—
-0.05 vy -0.2
—
z
r — &y -0.4
0.1 _—
-0.6
0 20 10 60 80 20 40 60 80

t

Figure 5.46: Positioning with respect to an hyperbolic cylinder and a fixation point. a)
Initial position. b) Initial image point distribution (solid dots) including the laser epipolar
lines, the initial position of the fixation point (solid black dot) and the desired image point
distribution (circles). c¢) Camera trajectory till the final position. d) Task function vs.
time (in s). e) Secondary task: fixation point error (in pixels). f) Camera velocities (in
m/s and rad/s). g) Camera initial position (in m) expressed in the camera frame vs. time

(in s).
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Table 5.10: Final results when positioning with respect to an hyperbolic cylinder and a
fixation point.

Normal to II: €(—0.0318,0.0,0.9995)
(0g, o) with respect to II: (—0.182°,0.012°)
Zp: 0.600 m
Zp: 0.6 m
Task function e: (0.000745,0.0000510, —0.0000071)
Lasers depths: (0.6000, 0.5033, 0.6000, 0.5033) m
Desired laser depths: (0.6, 0.5031, 0.6, 0.5031) m
Fixation point error (pixels): (—2.23e — 4, 0.0021)

5.10.5 Experiments with a non-planar object

This section presents two experiments where a non-planar object similar to an elliptic
cylinder has been used. Concretely, the object already presented in Figure 4.12 has been
used. As the exact model of the object is unknown no numeric results concerning the
accuracy of the positioning tasks are available. With these examples we want to show
that the decoupled image-based approach is able to converge even if the object has strong
curvature.

First experiment

In this example, the camera has been roughly positioned in front of the maximum curvature
region of the object at a distance of about “Z = 90 cm. Then, a rotation of 20° about
the €Y axis of the camera has been applied. The initial image perceived in this state is
shown in Figure 5.47a. The visual features obtained from the desired image learned with
a plane positioned at Z* = 60 cm have been used in the control law. The task function
and the camera velocities obtained are plotted in Figure 5.47c-d. As can be seen, the task
function shows a nice decrease to 0, as well as the camera velocities. Note that the larger
rotational error appears in eg which must cancel the large rotation used for defining the
initial position of the camera. The final image obtained in the experiment is shown in
Figure 5.47b.

Further experiments have shown that the system is able to converge whenever the
lasers are projected onto the object in the initial state.
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Figure 5.47: Experiment with a non-planar object. a) Initial image. b) Final image
containing the lasers point traces. c¢) Task function vs. time (in s). d) Camera velocities
(in m/s and rad/s).
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Second experiment

In this example, a fixation point has been used. Therefore, this experiment shows the
behaviour of the system when a secondary task aiming to centre the point in the image is
simultaneously used. Then, the goal is to get parallel to the fixation point at a distance
of Z* =60 cm.

The initial image of the experiment is shown in Figure 5.48a. The fixation point
is the black spot. The image corresponding to the end of the experiment is presented in
Figure 5.48b, while the task function and the camera velocities are plotted in Figure 5.48c-
d. Note that this experiment shows that it is possible to position the camera with respect
to a single point of a quadric object by using the laser points. However, the orientation
error with respect to the tangent plane in the fixation point is unknown.

m-
c)

0.1

vPP<<<
NN

O M L o 4N ow Ao

Figure 5.48: Experiment with a non-planar object and a fixation point. a) Initial image
(the fixation point is the black spot). b) Final image containing the lasers point and
fixation point traces. c) Task function vs. time (in s). d) Camera velocities (in m/s and
rad/s).

5.11 Conclusions

This chapter has presented a solution to the classic plane-to-plane positioning task from the
combination of visual servoing and structured light. The projection of structured light not
only simplifies the image processing but also allows the system to deal with low-textured
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objects lacking of visual features. A structured light sensor for eye-in-hand systems has
been proposed. The sensor is based on four laser pointers attached to a cross-structure.
Such a configuration has been chosen in order to obtain an optimal distribution of image
points which is invariant to depth once the camera is parallel to the object. A position-
based approach and several image-based approaches have been presented. The former
is based on reconstructing the parameters of the plane equation of the object and has
shown pretty decoupling and robustness against calibration errors. However, it requires
to robustly reconstruct the parameters by solving a system of non-linear equations at
each iteration. This process may be sensible to image noise depending on the numeric
algorithm used. On the other hand, the image-based approaches have been analytically
compared through stability analysis in front of different types of misalignments and camera
calibration errors.

Two of the image-based approaches have shown a pretty robustness against calibration
errors. The first is based on the area and several angles extracted from the polygon
containing the four points in the image. Such features have been normalised in order to
obtain a linear mapping from the task function space to the camera velocities near the
desired state. Furthermore, they exhibit a nice decoupling near the desired state. The
good performance of these features has been experimentally demonstrated. However, the
high complexity of the analytic expressions of the features has avoided to obtain analytic
results concerning either the global asymptotic stability or the camera trajectory generated
by the constant control law based on the interaction matrix evaluated in the desired state.

On the other hand, a set of visual features based on non-complex non-linear combi-
nations of the image point coordinates has also obtained very good performance. The
advantage of these features is that they decouple rotational from translational dof in all
the workspace (not only around the desired state as in the previous approach). This decou-
pling is possible because these image-based features are proportional to the object plane
parameters used in the position-based approach. By evaluating the interaction matrix for
the desired state it can be seen that these features also produce a linear mapping from the
task function space to the camera velocities around the desired state, without needing any
normalisation. Thanks to the decoupled form of the general interaction matrix, it has been
possible to prove the global asymptotic stability under ideal conditions (so that it is sure
that the system converges for any initial camera-object relative pose where the visibility
constraint holds), and the analytic expression of the camera trajectory in the space. The
advantage of this control law is that both the task function and the camera velocities are
monotonic producing good camera trajectories. The main drawback of this approach is
its sensitivity to large calibration errors like a large misalignment between the camera and
the laser-cross. However, its robustness has been improved (the analytic proof has been
provided) by defining a corrected version of the features based on a planar transformation
applied to the image. The corrected visual features have obtained the same robustness
against large laser-cross misalignment that the features based on the area and the angles.
The camera velocities produced by these two techniques in the simulations are almost the
same, since both sets of visual features are proportional when the camera is nearly parallel
to the object. In the real experiments under large calibration errors similar performances
have been obtained.
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An interesting characteristic of the image-based approach based on the decoupled fea-
tures and the position-based approach is that the interaction matrix can be estimated
at each iteration from the feature vector. Hence, a non-constant law based on the esti-
mated interaction matrix can be also used, obtaining a camera trajectory very similar to
a straight line even in presence of small calibration errors. The image-based approach
has the advantage that the feature vector is calculated only from image data and, unlike
the position-based approach, it does not require to solve a non-linear system of equations.
Experiments have shown that in presence of large calibration errors the robot is not always
capable of reaching the desired position since the velocities produced by the control law
become strongly non-linear. Therefore, it seems preferable to use the constant control law
which produces almost strictly monotonic velocities in presence of large calibration errors.

The behaviour of the decoupled image-based approach in presence of non-planar ob-
jects has also been studied. Concretely, quadric objects have been considered. Firstly,
the case of quadric objects of unknown model has been addressed. In this case, the ob-
ject is assumed to be planar in order to define the desired visual features and the control
law. It has been analytically proven that there exist, at least, a position of the camera
for which the task function is cancelled. Furthermore, in this position the camera gets
parallel to the tangent plane of the intersection point between the optical axis and the
object. Simulations have shown, however, that in some cases, depending on the object,
the task can get cancelled in other positions where the accuracy of the positioning task
is not so good. Other simulations show that it is possible to force the camera to reach a
given desired position by using a unique fixation point corresponding to a physical point of
the object’s surface. Experimental results with a non-planar object validate the approach.
On the other hand, the case when the model of the quadric object is available has also
been addressed. In this case, the desired position can be analytically defined obtaining
the real desired visual features. Furthermore, information about the object curvature in
the desired state can be included in the interaction matrix. Simulations have shown that
in some cases this improves the results. However, the decoupling of the interaction matrix
is lost and the improvement is not ensured as shown by other simulations.

Finally, we remark that the level of decoupling achieved in this work is due to the fact
that the points are projected. Such decoupling has not been reached with visual features
extracted from the object itself. We have also shown that an appropriate choice of the
light pattern can be used for optimising the control law.






Chapter 6

Conclusions and further work

This chapter presents the conclusions and some perspectives opened by this work. The
scientific contributions of the thesis are first discussed. Afterwards, the list of publications
related to this work is presented as well as the scientific collaborations involved during its
preparation. Finally, further work and future perspectives are discussed.

6.1 Conclusions

This thesis has focused on the combination of visual servoing and structured light for
positioning a robot with respect to objects observed by a camera. Most part of techniques
in visual servoing rely on extracting visual features from the objects of interest. However,
these techniques are valid as long as the objects are textured, and good lighting conditions
are available, or if they have artificial landmarks. Therefore, there is a lack of approaches to
visual servoing which are able to deal with positioning tasks with respect to non-textured
objects or under adverse lighting conditions. Furthermore, every visual servoing technique
is dependent to the object appearance, which can be pretty complex in case of natural
objects.

The solution pointed out in this thesis is based on using structured light emitters for
projecting light patterns onto the objects. In this manner, visual features are always avail-
able independently of the object appearance. Furthermore, if the patterns are encoded,
correspondences between images taken under different points of view are robustly and
unambiguously found. Another research topic that has been treated is how to optimise
the control law in visual servoing thanks to the flexibility of structured light. In this case,
the projected pattern can be designed in order to optimise the control law in terms of
decoupling, stability and robustness against calibration errors. We remark that visual
servoing based on visual features provided by structured lighting is still a very unexplored
research area. Therefore, this thesis intends to investigate and contribute into this field.

Firstly, a comprehensive study on coding strategies for structured light has been pre-
sented. Coded structured light is typically used in active stereovision by using a camera
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and a video-projector placed aside. By taking the coding strategy used into account,
robust correspondences are found between the camera image and the projected pattern.
Subsequently, if the devices are calibrated, the illuminated object can be reconstructed by
triangulating the correspondences. This part of the work updates the survey presented
in [Batlle et al., 1998] and proposes a novel and more consistent classification of the ex-
isting techniques. One of the contributions of this study is the comparative evaluation of
a group of representative coded patterns by using a common experimental setup. The re-
sults allow the most common patterns to be compared in terms of resolution, i.e. number
of correspondences, accuracy and quality of the reconstructed objects. The extensive clas-
sification and explanation of each group of techniques bring valuable guidelines for easily
deciding which type of pattern must be used depending on the application requirements.

The survey on coded structured light has shown that techniques exploiting time-
multiplexing obtain the highest resolution and accuracy since the number of patterns is
unrestricted and therefore more information can be projected. However, since a sequence
of patterns must be projected, this type of techniques are usually restricted to reconstruct
static objects. In many applications this constraint cannot be tolerated because either
the object is moving or the camera and the projector are not static. The most suitable
alternative for these cases are patterns encoded using spatial neighbourhood. In this cases
a unique image must be acquired as a unique pattern is projected. The survey comparison
states that the best results in terms of both resolution and accuracy are obtained with
stripe and multi-slit patterns. However, in order to obtain a robust coding scheme and fair
resolution it is usually necessary to use a considerable number of colours which increases
the sensitivity of the pattern in front of colourful objects. As result, a new colour en-
coded stripe pattern has been proposed which improves the resolution of typical one-shot
patterns by using less colours than usual. The new approach has been compared through
quantitative and qualitative results to similar patterns in order to validate it. The results
show that with the new pattern the resolution is 1.5 times greater than the one obtained
with a classic stripe pattern. Furthermore, the number of required colours is reduced to
the half. Moreover, the 3D reconstruction results show that the sub-pixel accuracy on
the determination of the correspondences is more accurate when using the new pattern.
However, as the new pattern still projects colour, its performance in presence of colourful
objects decreases as in any other similar pattern.

A second important contribution of this thesis is the study of the applicability of
coded structured light in a visual servoing framework. Up to our knowledge, there are no
previous works considering the projection of a coded pattern for visual servoing purposes.
The advantage of this approach is that the existing techniques of visual servoing can be
directly applied without any adaptation. Experiments have been carried out with a 6
dof robot with eye-in-hand configuration and a video-projector placed aside the robotic
cell. A pattern consisting of an array of coloured dots has been used in the experiments
for controlling the robot. The pattern provides robust correspondences among the dots
imaged from different points of view. Therefore, finding point correspondences between the
desired image and the initial and intermediate images becomes straightforward. A control
law based on the normalised coordinates of the image points assuming a constant depth
distribution has been used. Even with this simple control law, the robot has been able
to reach the desired position in the case of planar and non-planar objects. Nevertheless,
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the behaviour with the non-planar object has been less satisfactory, probably due to the
strong assumptions about the depth distribution of the points used in the control law.
The most important conclusion is that any of the classic image-based visual servoing
approaches can be used by projecting a suitable coded pattern. The advantage of using
coded structured light is that the system becomes independent to the object appearance.
This allows to deal not only with non-textured objects but also with objects too complex
for robustly extracting and tracking visual features. However, two main drawbacks have
been identified. Firstly, this approach is only valid when the desired image is known, as
in classic image-based visual servoing, and when the object remains in the field of view
of the static projector. Secondly, the number of existing coded structured light patterns
which can be used for controlling the 6 degrees of freedom is quite reduced. This is due to
that for visual servoing applications it is necessary that patterns are rotation invariant.

Finally, another potentiality of using structured light has been addressed. Concretely,
the ability of optimising the control law thanks to a specific design of the projected pat-
tern has been investigated. For this purpose, the classic plane-to-plane positioning task
has been treated when using an eye-in-hand configuration. In this case, the dedicated
structured light has been placed onboard so that it remains linked to the camera. The
structured light emitter proposed for this task consists of four low-cost laser pointers at-
tached to a cross centred in the camera frame. The first advantage of this configuration is
that the laser points distribution in the image when the camera is parallel to the object
plane at the desired depth is valid for any planar object independently of its texture. A
position-based and several image-based visual servoing approaches based on the 4 points
provided by the lasers have been formulated. The position-based approach has shown good
performance even if no analytic results concerning its stability have been obtained. How-
ever, it requires a non-linear optimisation step at each iteration for robustly estimating
the object parameters. On the other hand, a decoupled image-based approach based on a
non-linear combination of the image point coordinates has obtained great results. The vi-
sual features decouple the rotational part of the interaction matrix from the translational
one for any camera-object relative pose. Thanks to the decoupled form of the interaction
matrix, the global asymptotic stability under ideal conditions has been proven. In addition
to this, the robustness against misalignments between the camera and the structured light
emitter has been proven through the local asymptotic stability and experimental results.
Therefore, the main contribution of this part of the work is to provide a robust control
law thanks to a specific design of the structured light sensor. This type of results had
never been obtained with a visual servoing approach based on visual features extracted
from the object itself. As a drawback, we can mention that the validity of the proposed
sensor is ensured if the four lasers point towards the same direction. Such a perfect align-
ment is pretty difficult to achieve in real conditions. Nevertheless, experiments show that
good results are achieved even when the lasers have slightly different orientations. We
have also studied what happens when the decoupled image-based approach is used when
positioning the camera with respect to non-planar objects of known and unknown model.
Concretely, quadric objects have been considered. Analytic and simulation results show
that it is possible to cancel the task function with respect to these objects so that the
camera gets parallel to the tangent plane of the object in certain points. Furthermore, if
the object model is known, some information about the object’s shape can be included in
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the interaction matrix. This can improve the positioning task in some cases. However, we
remark that the decoupling achieved for the case of planar objects is lost. Nevertheless,
it seems that an appropriate orientation of the lasers taking into account the shape of the
object might lead to a partially decoupled interaction matrix.

Overall, the combination of structured light and visual servoing has been proved to
have a great potentiality for enlarging the application field on visual control. Indeed,
structured light and coded light patterns provide a rich variety of visual features which
can be specifically designed in order to optimise the control law.

6.2 Publications and scientific collaborations

The work developed in this thesis has produced few journal publications and several contri-
butions to international conferences. In the following paragraphs the list of contributions
is presented. Finally, the scientific collaborations made during the thesis preparation are
summarised.

Publications

The following publications in international journals have been contributed:

e J. Salvi, J. Pages and J. Batlle. Pattern codification strategies in structured light
systems. Pattern Recognition 37(4), pp 827-849, April 2004. (JCR! = 2.176)

e J. Pages, J. Salvi, C. Collewet and J. Forest. Optimised De Bruijn Patterns for
One-Shot Shape Acquisition. Image and Vision Computing 23(8), pp 707-720,
August 2005. (JCR = 1.159)

The article in Pattern Recognition presents the comprehensive survey on coded struc-
tured light techniques and a benchmark of the more representative ones. Currently, google
scholar? reports 13 citations to this article, being only 4 of them self references, even if it
was published in 2004.

The second article, recently published in Image and Vision Computing presents the
new coloured pattern for dense 3D reconstruction.

A new article describing the plane-to-plane visual servoing approach based on struc-
tured light is currently being reviewed:

e J. Pages, C. Collewet, F. Chaumette and J. Salvi. Optimising plane-to-plane po-
sitioning tasks by image-based visual servoing and structured light. Submitted to
IEEE Transactions on Robotics on 17/06/2005. (JCR = 2.126)

!Journal Citation Report (the bigger the more impact factor of the journal). (©Thomson
Corporation.
2scholar.google.com
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In addition to this, during the thesis the following contributions to international con-

ferences have been made:

J. Pages, C. Collewet, F. Chaumette and J. Salvi. Robust decoupled visual servoing
based on structured light. IEEE/RSJ International Conference on Intelligent Robots
and Systems, TROS 2005, pp. 2676-2681, Edmonton, Canada. 2-6 August 2005.

J. Pages, C. Collewet, F. Chaumette and J. Salvi. Plane-to-plane positioning from
image-based visual servoing and structured light. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS 2004, pp. 1004-1009, Vol. 1,
Sendai, Japan, September 28 - October 2, 2004.

J. Pages and J. Salvi. A new optimised De Bruijn coding strategy for structured light
patterns. IEEE International Conference on Pattern Recognition, ICPR. 2004, pp.
284-287, Vol. 4, Cambridge, UK, 23-26 August 2004.

J. Pages, J. Salvi and C. Matabosch. Implementation of a robust coded structured
light technique for dynamic 3D measurements. IEEE International Conference on
Image Processing, ICIP 2003, pp. 1073-1076, Vol. 2, Barcelona, Spain, September
2003.

J. Pages, J. Salvi, R. Garcia and C. Matabosch. Overview of coded light pro-
jection techniques for automatic 3D profiling. IEEE International Conference on
Robotics and Automation, ICRA 2003, pp. 133-138, Vol. 1, Taipei, Taiwan,
14-19th September 2003.

Scientific collaborations

The thesis has been developed during the four years period of 2002-2005. According to the
joint thesis signed between the University of Girona and the University of Rennes I, the
thesis has been distributed between both centres. A big part has been made within the
VICOROB group in the University of Girona and a total of 15 months have been spent
in Rennes (France) according to the following stays:

3 months stay in the INRTA LAGADIC group (previously forming part of the VISTA
group). Period: 04/11/02 — 20/12/02 and 04/01/03 — 28/02/03. Supervisor: Dr.
Frangois Chaumette.

6 months stay in the CEMAGREF of Rennes. Period: 05/01/04 — 30/06/04. Di-
rector: Dr. Christophe Collewet. Supervisor: Dr. Frangois Chaumette.

6 months stay in the CEMAGREF of Rennes. Period: 10/01/05 — 08/07/05. Di-
rector: Dr. Christophe Collewet. Supervisor: Dr. Frangois Chaumette.
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6.3 Perspectives

The domain of visual servoing based on structured light rests mainly unexplored. There-
fore, the present thesis requires some further work and opens several perspectives of future
research.

First of all, some further work based on the proposed approach should be done in order
to solve some problems that have appeared. For example, during the experiments of robot
positioning by using points provided by the deported video-projector, we have realised that
a large number of points must be matched from the initial to the desired image in order
to success. It seems that the problem is related to the distribution of the points in the
desired image, which has an important repercussion on the conditioning of the interaction
matrix. As made in [Feddema et al., 1991], an optimal choice of the image points should
be studied in order to improve the matrix conditioning. Nevertheless, the problem should
be studied in depth in order to explain why a large number of correspondences are required
specially when the object is non-planar. In the case of planar objects it is known that the
control law is able to converge by using only 4 points. Furthermore, it is also interesting
to study the influence of taking a variable number of points at each iteration, because
it allows occlusions to be treated. Alternatively, other visual features should be used
for improving the control law like the image moments of the point distribution [Tahri
and Chaumette, 2004] or the extended visual servoing [Schramm et al., 2004]. Another
option that should be studied is the use of the point depths obtained by triangulating
correspondences between the camera image and the projected pattern. This is easy to do
as the correspondence problem is easily solved in our case.

Apart from this further work, the present thesis opens several perspectives of future
research.

Firstly, some perspectives for coded structured light are proposed. In this field, the use
of colour to get a large number of correspondences from a unique pattern is very extended.
However, in presence of highly saturated colourful objects, difficulties when distinguishing
all the projected colours appear. The current tendency is to define sophisticated grey-level
patterns for increasing the robustness against the object colours. However, since a unique
pattern is projected, either the accuracy decreases or a non-absolute coding scheme is
applied. The latter means that only several elements of the pattern are uniquely encoded
and the rest must be decoded by using propagation of neighbouring constraints. There
remains therefore the goal of designing an absolute-coded pattern using the minimum
number of grey levels. In this direction, a future work consists of studying the adaptation
of the pattern proposed in Chapter 3 to the case of grey-levels.

This thesis has presented a first step towards the use of coded light patterns in a visual
servoing framework. In the case of using a deported video-projector, several open issues
remain. Firstly, it is necessary to the design a new coding strategy which is able to generate
patterns being rotation invariant. These patterns will be very useful for visual servoing
purposes. On the other hand, it is interesting to identify which primitives must contain
the pattern in order to optimise the control law. It is well known that in classic image-
based visual servoing the use of some primitives can lead to singularities in the interaction
matrix or bad conditioning [Chaumette, 1998]. Avoiding this type of problems by using
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an appropriate pattern design is another advantage of the flexibility of coded structured
light. Another goal is to specifically design the pattern in order to optimise the control law
for specific tasks like it has been done for the case of the plane-to-plane positioning task.
The most ambitious perspective is to take profit of the projected pattern for performing
robust positioning tasks with respect to unknown non-planar objects. It is well known
that image-based approaches have problems of convergence with non-planar objects when
the depth distribution is not well estimated [Malis and Rives, 2003]. Therefore, the case
of non-planar objects is still matter of research. In our opinion, it seems feasible to use
patterns projecting 2D contours onto non-planar objects. 2D contours have been already
used in monocular vision for obtaining local surface reconstruction as in [Ulupinar and
Nevatia, 1993]. This type of techniques belong to the group of shape from contours or
silhouettes [Cipolla and Blake, 1992]. Contours have already been used in visual servoing
for the case of planar objects [Colombo and Allotta, 1999; Drummond and Cipolla, 1999;
Collewet and Chaumette, 2000]. The projected pattern could be designed in order to
provide the required 2D contours for obtaining the 3D information needed for positioning
the camera with respect to an unknown object. However, a more interesting alternative
would be to design an image-based visual servoing approach based on the deformation
parameters of these contours in the image as long as the robot moves.

The case of an onboard structured light emitter also presents many perspectives. In-
deed, this type of configuration has to be considered since it is the one that must be chosen
in case of mobile robots. The first perspective is the use of non heavy projectors being
able to project encoded patterns. Nowadays, the dimensions, the weight and the cost of
video-projectors are being progressively reduced. Therefore, it is likely to predict that in
few years such type of devices will be suitable to be integrated in a robot end-effector
or in mobile robots. This will give a large flexibility when designing patterns for robot
positioning. Nevertheless, the use of structured light sensors based on lasers must be still
considered as a lower cost option. Therefore, different types of laser primitives other than
points like planes, circles or grids should be studied for performing more complex position-
ing tasks or taking non-planar objects into account. In this direction, the structured light
emitter could be specially designed in order to produce a robust control law similarly to
what it has been done in Chapter 5 for the case of plane-to-plane positioning. An impor-
tant future work is, as already mentioned for the case of a deported projector, performing
positioning tasks with respect to non-planar objects. In this case, since the relative pose
between the camera and the structured light emitter remains fixed, 3D information of the
object can be obtained by calibrating these devices. However, it seems more interesting
to consider an uncalibrated or a coarsely calibrated structured light sensor and develop-
ing image-based visual servoing approaches based on the deformations of the projected
pattern which provide cues of the object curvature. This is the main unexplored area
of assisted visual servoing by means of structured light and opens an exciting research
direction which is expected to enlarge its application field.






Appendix A

Interaction matrix of u

Samson et al. [Samson et al., 1991] modelled a general thin-field rangefinder which obtains
a measure of the depth to an object along a straight line. According to our notation, the
case studied by Samson et al. is represented in Fig. A.1.

Figure A.1: Thin-field rangefinder schema

Note that n is the normal to the object at point X. The measure of the depth that the
sensor obtains is expressed in the rangefinder frame denoted as {R}. From the variation
of the distance p due to the sensor motion found by Samson et al., we can extract the
following interaction matrix

1
R T T
Ly =~y (07 [nxn)’) (A1)
where both n and u are expressed in the sensor frame.

In our case, when the system is composed by a camera and a laser pointer as shown
in Fig. A.2, both n and u are expressed in the camera frame, as well as the interaction
matrix of u.

As shown in (5.13), the interaction matrix of y expressed in the camera frame is

oL, —ﬁ (07| Xxn)") (A.2)
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Figure A.2: Our camera-laser system modelling

In order to demonstrate the equivalence with the interaction matrix by Samson et al. it is
necessary to express X, n and u in a laser frame with origin equal to Xy. Then from (5.4)
we have that point X in the laser frame is

X = pu (A.3)

so that (A.2) expressed in the laser frame becomes the same than the interaction matrix
by Samson et al.

Andreff et al. also formulated the interaction matrix of p [Andreff et al., 2002]. In
their case, the laser frame was chosen so that the Z axis coincides with the laser direction
as shown in Fig. A.3.

n X
4"\\”
/7 AY
’ N

4

AY
N
/
/ Y

A /, ZL=U

4

(C} {L}

Figure A.3: Camera-laser system modelling by Andreff et al.

The interaction matrix presented by Andreff et al. was expressed in function of o, and
ay. The former is the angle between Z;, and n, = (A,0,C), being n, the projection of n
to the plane Y7, = 0. Similarly, oy, is the angle between Z;, and n, = (0, B, C') which is the
projection of n to the plane Xy = 0. The geometric interpretation of a, and «, is shown
in Fig. A.4. Taking into account the sign conventions of the angles and the constraint
C > 0, we have that

A = C(Ctanay,
B = —Ctanaqy (A4)
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so that expressing C' = v/1 — A2 — B2 the following relationship arise

A4 — tan o,
\/tan2 Q. + tan? ay +1
t
B = il (A.5)

Vtan?a, + tana, + 1

B<0

Figure A.4: Geometric interpretation of o, and «, when they are positive.

The interaction matrix by Andreff et al. can be derived from the one by Samson et
al. in (A.1). If the parameters of this interaction matrix are expressed in the laser frame
proposed by Andreff et al. we have that u = (0,0,1) and

i j k -B
uxn = 0 0 1 |= A
A B C 0
n'u = C (A.6)
Then, the formula by Samson becomes
L,= ( —-A/C —-B/C -1 upuB/C —pA/C 0 ) (A.7)

so that taking into account the relationships in (A.4) we obtain
L,=( —tana, tanoy, -1 —ptana, ptana, 0) (A.8)

which is the form of the interaction matrix proposed by Andreff et al. [Andreff et al., 2002].






Appendix B

Model considering laser-cross

misalignment

This appendix presents the model parameters when the laser-cross center is displaced from
the camera origin and the orientation of the laser-cross frame is not the same that the cam-
era frame. The camera intrinsic parameters are supposed to be perfectly calibrated. The
laser-cross misalignment is modelled according to a homogeneous frame transformation

My, = < “Ry “Ty > (B.1)

which passes from points expressed in the structured light sensor frame to the camera

matrix of the form

frame (see Fig. 5.4).

First of all, the orientation vector and the reference point of every laser in the camera
frame must be calculated taking into account the misalignment. We start from the values
of these parameters in the laser-cross frame, which coincide with the ideal parameters
shown in Table 5.1. Then, in the camera frame we have that for every laser

“u “Rp'u
X, = “Ri*Xo+°T, (B.3)

—~
os
\)

~—

where “u = (0,0, 1). Note that X, is a point belonging to the laser direction but it is not
the reference point of the laser according to our definition. Remember that the reference
point X must lie on the plane Zc = 0. The equation of the line corresponding to the
laser direction can be expressed in function of X as follows

X, = nfu+°X, (B.4)
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so that since we impose that ©Zy = 0 then

CZT

o= o (B.5)
The calculation of the “X is then straightforward
Xy = —%CquCX (B.6)
0 CUZ u T .

The model parameters taking into account the whole model of misalignment become
too complicated. Instead of this, we present the model parameters under individual types
of misalignment, namely a simple displacement of the laser-cross with respect to the
camera origin, and individual rotations of the laser-cross around the X, Y and Z axis,
respectively.

Displacement In this case, the laser-cross frame has the same orientation that the
camera frame (“Ry, = I3), but its origin has been displaced according to the vector

“TL = (t, ty, t.) (B.7)

The model parameters are then the ones shown in Table B.1.

Table B.1: Model parameters under a translational misalignment of the laser-cross.

Laser Xo Yo T Y A

At, + BL + Bt, + D
1 te L+t, A (ty+L)/Zy ——= o u

At, — AL+ Bt,+ D
2 —L+t, ty (ty — L)/ Z3 ty/Zo -z a Y

At, — BL+ Bt,+ D
3 ty —L+t, te/Z3 (ty—L)/Z5 ——= o v

Aty + AL+ Bt, + D
4 L+t, ty (te + L)/ Z4 ty/Zs - Y

C

Rotation around the X axis The laser-cross is centered in the camera origin, but
the laser-cross frame is rotated a certain angle ¢ with respect to the X axis of the camera
frame. The rotation is restricted to the interval ¢ € (—m/2,7/2), otherwise the lasers
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projection is out of the camera field of view. The rotation matrix © Ry, is then

1 0 0
Rot(X,v)=1| 0 cp —sv¢ (B.8)
0 syY cyY

where ¢y = cos 1 and sy = sin. The model parameters under this type of misalignment
are shown in Table B.2.

Table B.2: Model parameters when the laser-cross is rotated around Xc.

Laser Xj Yo T Y A

1 0 L 0 _Dszl)—i—LC BL 4 Deyp
cy BL+ Deyp Bsyp — Ceyp
5 I 0 _ L(Bsy — Ccy) s cp(D — AL)
(D — AL) cp Bsyp — Ceyp
3 0 _£ 0 LC — Dsy —BL + Dcyp
cy Dcyy — BL Bsyp — Cep
4 I 0 L(Bsy — Cet) sy cp(AL + D)
c(AL + D) c Bsy — Cerp

Rotation around the Yy axis. Let us present now the case where the laser-cross is
centered in the camera origin, but it is rotated an angle 0 € (—m/2,7/2) with respect to
the Y axis of the camera frame. The rotation matrix ¢ Ry, has the following form

cd 0 sb
Rot(Y,0) = 0O 1 0 (B.9)
—sf0 0 cb

where ¢ = cosf and sf = sinf). The model parameters are then the ones shown in
Table B.3.

Rotation around the Zo axis In case that a rotation of ¢ occurs around the Z axis
of the camera frame, the rotation matrix is

cp —s¢ O
Rot(Z,¢) = | s¢p cop O (B.10)
0 0 1
where cp = cos¢ and s¢ = sin¢. In this case, the model parameters are shown in

Table B.4.
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Table B.3: Model parameters when the laser-cross is rotated around Yg.

Laser X Yo T Y Z

) 0 L st _L(As0+Ccf)  cf(BL+D)
ct cd (BL+ D) As + Cct

5 L 0 Dsf+ LC 0 _ —AL+ Dcf

ch —AL + Dch Asl + Cch

3 0 L st L(As6+Ccl)  cb(—BL+D)
ct cd (—BL+ D) Asf + Cct

4 £ 0 Dst — LC 0 _ AL+ Dch

ch AL+ Dcf Ast + Ccb

Table B.4: Model parameters when the laser-cross is rotated around Z.

Laser Xo Yo T Y Z
Ls¢ Led  AsdL — BegL — D
1 —s¢L L -
spL o Z, 7 C
Lco Ls¢p  Ac¢L + BspL — D
9 —copl —sdl — -
ol —s¢ Z Z C
Ls¢ Lecg As¢pL — BeopL + D
3 L —coL — —
5¢ bl = Z c

Lcg Lso AcoL + Bs¢pL + D
Zy Zy C

4 coL soL




Appendix C

Kinematic screw frame

transformation

The objective of this appendix is to define a frame transformation which allows the kine-
matic screw typically expressed in the camera frame to be expressed in a frame attached
to the object. This can be done by using a transformation like

‘v="T,, v (C.1)

where “v and °v are the kinematic screw expressed in the camera and the object frames,
respectively, and “T, is the 6 x 6 transformation changing the basis frame. This trans-
formation is then useful to express the interaction matrix Ly in the object frame, which
can be used to check which type of object motions can be detected in the camera image
by using a certain set of visual features. The time variation of the visual features can be
expressed in two ways

§ = ‘L

§ = °L¢°v

olle)

—~
)
~— ~—

where “Lg and °Lg are the interaction matrices expressed in the camera and object frames,
respectively. Then, by plugging (C.1) into (C.2), we can write

§ = ‘L¢°T,°v (C.4)
so that according to (C.3) the interaction matrix expressed in the object frame is

°Lg = ‘LT, (C.5)
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The transformation matrix has the following form

c _ CRO [CPO]XCRO
- (T (PR o

where ‘R, is the rotation matrix from the camera frame to the object frame, and “P,, is
the origin of the frame {O} expressed in the object frame {C}. [°P,]« is the antisymmetric
matrix associated to the vector °P,. In Fig. C.1 the frame transformation is represented.

Figure C.1: Frame transformation schema

Let us now present how to obtain the analytic expression of the rotation matrix ‘R,
and the origin of the object frame “P,,.

C.1 Rotation matrix

The constraint that is fixed to calculate the rotation matrix °R,, is that Z, must be equal
to Z. after applying the rotation (both Z, and Z. are expressed in the camera frame).
Note that this constraint implies that a single rotation # is made around an unitary axis
u which is orthogonal to Z. and Z,. The rotation axis u can be calculated as follows

u=Z. x Zo = (0,0,1) x (4, B,C) = (—B, A,0) (C.7)

Therefore, the unitary vector u is

1 —-B
U= — A C.8
s E (©8)
The rotation 6 can be calculated as follows
sin(0) = ||Z.xZ,]] = sin(f) = A2+ B? (C.9)

cos(d) = Z!-Z, = cos() = C
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According to the Rodrigues formula, a rotation matrix can be written as

‘R, = cos(#)I3 + sin(6)[u]x + (1 — cos(A))u-u" (C.10)
with
0 —Uy Uy
=1 w. 0 -uy (C.11)
—Uy Uy 0

1— A2 ___AB A
: ¢ g
R, = ¢ l-150¢ B (C.12)
—A -B C

C.2 Origin of the object frame

The origin of the object frame has been chosen to be equal to the projection of the focal
point along the optical axis of the camera onto the planar object. Such a point expressed
in the camera frame is

0
‘P, = 0 (C.13)
~D/C

C.3 Frame transformation

Given the chosen ‘P, in (C.13) and the calculated rotation matrix ‘R, in (C.12), the
frame transformation T, has the following expression

|_ A _AB 4 __ABD  _D(B-1-C) DB
1+C 1+C C(1+C) C(1+C) C
_AB | _ B p DA-1-0) ABD __AD
i+C 1+C C(+0) C(1+0) C
A -B C 0 0 0
Ty = (C.14)
A? AB
0 0 0 1- 1+C T 1+C A
AB B2
0 o o0 -4 -2 B
0 0 0 —A -B C
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Then, the interaction matrix Ly expressed in the object frame is

0 0 -3 Xy Xp¢ 0

1 Z
OLXZCLX'CTO:H_ (015)
N0 0 % Yo Y& 0
where
1— A2 A(Bzx + ACYy)
n = Y+
C C(1+0C)
2
¢ = 1 Bx+B(Ay+BCx)
C C(1+0C)

Iy = A(Xo—22)+B(Yo—yZ)—CZ

Therefore, according to x = °Ly°v, if the object moved on °V,, °V, or °€1,, the image

coordinates of the projected points would not change.



Appendix D

Stability analysis of the decoupled
approach

This appendix presents different issues concerning the stability analysis of the set of visual
features

s = (' —us' wi'Hut 2+t (D.1)

when using the constant control law based on the interaction matrix evaluated in the
desired state L.

D.1 Solving the differential system

The closed-loop equation of the system corresponding to the set of visual features (5.121)
when using the constant control law based on L can be written as the following differential

system
é1 (t) = —ﬁ (61 (t) (4L + 62(t)2L + eg(t)QL) +27* (eg(t)Q + 63(15)2)) (D.Q)
éalt) = ~2(ealt)® +4es(t) + ealt)es()?) (D.3)
exlt) = —2(eslt)’ +des(t) + ex(t)ea(t)?) (D.4)

The solutions of e} (t), e2(t) and e3(t) can be found as follows. As expected, both é3(t) (D.3)
and é3(t) (D.4) are not affected by ej(t) (D.2). Hence, we can start by searching the
solutions of es(t) and e3(t), which control the rotational dof of the system. First, we
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obtain the expression of és(t) by deriving (D.3)

Ea(t)= —% (2(t) (3e3(t) + €3(t) +4) + 2e2(t)es(t)és(t)) (D.5)

Afterwards, plugging é3(t) from (D.4) into (D.5)

éa(t) = % (—éa(t) (6e3(t) + 2€3(t) + 8) +

+Ae3(t)ea(t) (e3(t) + e3(t) +4)) (D.6)
From (D.3) the expression of €3(¢) can be expressed in function of éo(¢) and e (t)

—4e —Xe3(t) — 4)e
iy = Al - ety ®)

then, by plugging it into (D.6) and after some developments we obtain

2o (t
& (t) — éa(t) <2)\ el )> =0 (D.8)
ea(t)
which is a second order Liouville differential equation with two symmetric solutions
A
ea(t) =+ VA (D.9)

\/—(Cl exp”‘t +2CQ)\)

where C and C are integration constants. By plugging (D.9) into (D.7) the solutions for
e3(t) are directly obtained

A(8Cy — 1)
\/—(Cl exp?M +2\C5

es(t) = sgn(ea(t)) (D.10)

where sgn(z) returns the sign of the given value. Then, by evaluating any of the two pairs
of solutions at time ¢ = 0, C7 and C5 can be expressed in terms of the initial conditions
e2(0) and e3(0) leading finally to

2 (0)

ex(t) = a?t) (D.11)
_ 2e3(0)

es(t) = a?t) (D.12)

with

a(t) = 1/ (3(0) + 3(0)) (exp?t —1) + 4 exp?¥ (D.13)



D.2 Study of the behavior of the depth vs. time 221

Finally, let us plug (D.11) in the definition of é;(¢) in (D.2) and solving a first order
differential equation with non-constant coefficients the following solution arises

b(a(t)—2)
er(t) = 210 _ 202" arctan (§23557 ) (D.14)
BT a0 a(t)L '
with b = 1/e3(0) + €2(0).
We note that function a(t) has the following properties
a(0) = 2
lim a(t) = oo
t—o0
Furthermore, by looking at its derivative
Aexp(2At) (e2(0)? + e3(0)* + 4

a(t)

it is always positive. Therefore a(t) is monotonic in ¢ € [0, co) and is bounded in the
interval [2, 00).

D.2 Study of the behavior of the depth vs. time

We now study the behavior of the depth control which depends on e;(t). We are interested
on identifying under which analytic conditions it becomes a monotonic function. In order
to achieve it, we are going to identify the extrema of e;(t) by studying when the first
derivative zeroes. Then, we will search for sufficient conditions which ensure that the
derivative never zeroes so that e;(t) is monotonic.

We remember that the expression of e;(t) is given by

- 261(0) 2bZ* arctan (137(2&4(-2(;(?))>
er(t) = a(t) B a(t)L (D.16)
whose derivative
) = _ﬁ (e1(t) (AL + e2(t)*L + e3(t)’L) + 227 (ea(t) + e3(t)*)) (D.17)

From this expression it is evident that when b = 0 (e2(0) = 0 and e3(0) = 0 so that the
camera is already parallel to the object) a linear differential equation is obtained so that
e1(t) is monotonic. Otherwise, it is necessary to study the derivative of e;(¢) which can
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be rewritten as

—24(t) (—bZ* arctan (@gﬁg;@;) (b + a(t)?) + e1 (0)L (b + a(t)?) + b?Z*a(t))
L (b + a(t)?) a(t)?

ér(t) = —
(D.18)

As shown in Appendix D.1, a(t) is always positive and never zeroes, while the denom-
inator of é1(t) is also positive. Therefore, é1(t) only zeroes when

—bZ* arctan (%) (b2 + a(t)Z) +e1(0)L (b2 + a(t)Z) +0?Z*a(t) =0 (D.19)

By setting the following change of variable

b(a(t) —2)

u(t) = B2+ 2a(t) (D.20)
the expression in (D.19) can be rewritten as
arctan (u(t)) = f(u(t)) (D.21)
with
) = u(t)? (e1(0)L (b% +4) — 262 Z*) + u(t)bZ* (b* — 4) 1 (0)L (b* + 4) + 2b*Z*
flult) = bZ* ((b? +4)(u(t)? +1))

(D.22)
Note that the derivative of ej(t) only zeroes if and only if arctan (u(t)) intersects with
f(u(t)). Therefore, if we can find analytical conditions which avoid both functions to
intersect, e;(t) will be monotonic under those conditions since its derivative never will
zZero.

We first study the behavior of u(t). The following properties hold

o b(BP+4)

u(t) = a(t) 7(62 o) (D.23)

w0 = 0 (D.24)
lim u(t) = b/2 (D.25)

t—o0

and since a(t) is strictly monotonic increasing then u(t) is also strictly monotonic increasing
when b # 0 and it is bounded in the interval [0,b/2] for ¢ € [0, 00).

The derivative of f(u(t)) is

u(t)? (b? —4) + u(t)8b + 4 — b?
(u(t) +1) (0% +4) (u(t)> + 1))

flut)) = () (D.26)
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since u(t) is always positive and so is the denominator of f(u(t)), the sign of f(u(t))
depends on the following polynomial

plu(t)) = u(t)2(b? — 4) + u(t)8b + 4 — b2 (D.27)

which can be written as
(v* - 4) (u—wp) (u— ug) (D.28)

with w1 and us the roots of the polynomial

. b+ 2
1 = —7 45

B 22 (D.29)
N

When p(u(t)) < 0 then f(u(t)) increases and inversely. Note that depending on if b < 2 or
b > 2 the sign of p(u(t)) is affected. Let us study the sign depending on these conditions.

bi2: in this case b? — 4 is negative, and u; > b/2 and uy < 0 as shown hereafter

1 b+2 b2+ 4
Se s =-4+ " <0= D.
u1>2<:>2 up <0 2+b—2 2(1)—2)<0 ( 30)
b—2
— D.31
u2<0<:>b+2<0 (D.31)

which means that when b < 2 there are no zero-crossings in the interval u € [0,b/2].
Furthermore, the sign of the polynomial in this interval is always

(b* —4) (u—uy) (u—u2) >0 (D.32)
<0 <0 >0

b;2: in this case b> — 4 is positive, and u; < 0 and ug € [0,b/2] since

b+ 2
- D.
u <0< b+2<0 (D.33)
b—2
Uy > 0<:>b—|——2>0
b b b+ 4 (D.34)
up < -~ -—u>0=——x
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Therefore p(u(t)) has a unique zero-crossing in the interval u € [0,b/2] so that p(u(t)) is
always increasing in such interval because

plu=0) = (b2 —4) (u1) (u2) <0
% %
plu=1b/2) = (b*—4)(b/2—u1)(b/2—up) >0 (D.35)
>0 >0 =0

Then, the behavior of f(u(t)) is determined by the following two cases (we remember
that b >= 0 and when b = 0 e;(¢) is always monotonic)

e be (0,2]: f(u(t)) is monotonic decreasing when u(t) € [0,b/2].

e b>2: f(u(t)) has a global maximum in the interval [0, /2] when u(t) = (b—2)/(b+
2).

In summary, the behavior of arctan(u(t)) and f(u(t)) in the interval [0,b/2] is repre-
sented in Fig. (D.1).

a) b) c)

arctan(u(t))

0 b/2 u() 0 b/2 u(t) 0 (b-2)/(b+2) b/2 u(®

Figure D.1: Schema of arctan(u(t)) and f(u(t)) when u(t) € [0,b/2]. a) arctan(u(t)). b)
f(u(t)) when b € (0,2]. c) f(u(t)) when b > 2.

Note that two sufficient conditions can be defined in order to avoid the intersection of

arctan(u(t)) and f(u(t)):
e min(f(u(t))) > max(arctan(u(t)))

e max(f(u(t))) < min(arctan(u(t)))

According to the first condition we need the following expressions

win(f(u(0) = flu=b/2) = 7 (D.36)

max(arctan(u(t))) = arctan(b/2) (D.37)

so that the condition is
61(0)L

AP
< barctan(b/2)

(D.38)
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The second condition requires to distinguish between two cases

~e(0)L(b* +4) + 202 Z*
B bZ*(b% + 4)

e b > 2: max(f(u(t))) :f(u: b—_2> — %ZL*Q(O)

while
min(arctan(u(t))) =0 (D.39)

Therefore, the second sufficient condition is

L(b? +4
be(0,2] — Z*< _a(OLt" +4) 2532 +4)

_ 2L61(O)
b

b>2 — Z*< (D.40)

If these sufficient conditions are true then no intersection between arctan(u(t)) and
f(u(t)) will occur, and therefore, e1(t) will be monotonic.

The sufficient conditions in (D.38) and in (D.40) are expressed in terms of the initial
state of the task function. They can be rewritten in terms of the initial object pose in the
camera frame obtaining two different cases. The first case corresponds to the condition
in (D.38) which is valid when the camera must go forward (Z* < —D(0)). In such a case,
the sufficient condition to ensure that e;(t) is monotonic is

—2D(0)

C(0) (2 + /1 — C(0)? arctan (@))

Z* < (D.41)

On the other hand, from (D.40) we obtain the sufficient condition valid when the camera
must go backwards since Z* > —D(0)

D(0)
C(0)3
—2D(0)

2C(0) — /1 — C(0)?

be(0,2] — Z*>-—

b>2 — ZF>

(D.42)

In summary, we have obtained sufficient conditions depending on the initial state (or
the initial camera-object pose) which ensure that e;(¢) will be monotonic. Even if these
sufficient conditions are not ensured, we can al least ensure that e;(¢) will present a unique
peak since a unique intersection of arctan(u(t)) and f(u(t)) occurs.
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