

SYNTHESIS OF UNUSUAL α-AMINO ACIDS AND STUDY OF THE EFFECT OF THEIR INCORPORATION ANTIMICROBIAL PEPTIDES. TOTAL SYNTHESIS OF BIOACTIVE MARINE NATURAL PRODUCTS AND ANALOGUES THEREOF

Abdellatif EL MARROUNI EL GHAZAOUI

Dipòsit legal: GI-872-2012

http://hdl.handle.net/10803/80815

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes.

DEPARTMENT OF CHEMISTRY

Doctoral dissertation

Synthesis of unusual α-amino acids and study of the effect of their incorporation into antimicrobial peptides

Total synthesis of bioactive marine natural products and analogues thereof

ABDELLATIF EL MARROUNI EL GHZAOUI

2012

Doctoral Programme in Experimental Sciences and Sustainability

PhD supervisors:

Dr. Montserrat Heras Corominas

Prof. Dr. Janine Cossy

Submitted to the Graduate School of the University of Girona for the degree of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY

La doctora Montserrat Heras Corominas, professora titular de l'Àrea de Química Orgánica de la Universitat de Girona, i la catedràtica Janine Cossy, directora del Laboratoire de Chimie Organique de l'École Superieur de Physique et Chimie Industrielles de la ville de Paris.

CERTIFIQUEM:

Que aquest treball titulat "Synthesis of unusual α -amino acids and study of the effect of their incorporation into antimicrobial peptides. Total synthesis of bioactive marine natural products and analogues thereof", que presenta el Sr. Abdellatif El Marrouni El Ghzaoui per a l'obtenció del títol de Doctor, ha estat realitzat sota la nostra direcció i que compleix els requeriments per poder optar a Menció Europea.

Signatura

Dra. Montserrat Heras Corominas

Prof. Janine Cossy

Girona, 3 de Febrer de 2012.

Dedicated to my beloved family and my lovely wife

If we knew what it was we were doing, it would not be called research, would it?

(A. Einstein)

Acknowledgements

En primer lloc m'agradaría expressar la meva gratítud a la meva dírectora de tesi, la doctora Montserrat Heras de l'UdG per haver confíat en mí aquests darrers anys. Segurament casualitat del destí va fer que els nostres camíns es creuessín en aquesta aventura, que ha desembocat en una tesí que no hagués estat possíble sense el seus consells i el seu suport, sobretot en els moments més importants. Moltes gràcies Montse!

En aquest punt, també m'agradaría agraïr a les doctores Marta Planas i Lidía Feliu que van tenír un paper molt important en la meva decisió de començar una tesi doctoral i especialment en química orgànica com també pels seus consells i recolzament al llarg d'aquesta tesi. D'altra banda, hi ha el doctor Eduard Bardají, director del LIPPSO i *officemate*, a quí m'agradaría donar les gràcies per haver-me acollit al grup.

També, estendre aquest agraïment a la Dra Ester Badosa així com a tot l'equip del CIDSAV per la seva col·laboració, i sobretot per haver realitzat tots els testos biològics presents en aquest treball.

La entrada en el LIPPSO també va significar incorporar-me al Departament de Química de la UdG, en el qual he conegut a moltíssímes persones que m'agradaría agraïr per haver contríbuít a la meva formació tant d'un punt de vísta professíonal com personal. A més, destaca que amb moltes d'elles encara mantínc un víncle constant a día d'avuí í espero que aíxí durí. En el LIPPSO, les ja doctores Cerezo í Afonso, companyes de grup i de laboratori els primers anys. En Pep Antón (PepQuímic) juntament amb en Francesc amb qui vam arribar a formar "Los hombres de Montse". Afegir també en Josep Maria qui va contribuir de forma posítiva en aquest projecte de recerca, com també ho van fer en el seu moment en Marc, l'Ester í la Merítxell. Recentment, hí ha hagut l'arríbada de la nova generació: la Crís (el día que posín un radar a la uni et quedes sense carnet, avisada estas!), la Iteng (tranquíl·la no revelaré el teu alías), una persona molt víva i espavilada que feia que les hores en el laboratori no es notessin, podriem dir que va aportar un toc oriental a l'ambient. La Montse T. un membre de "la otra orílla" del LIPPSO, on es troben les líppsíanes de la fase sòlída. I com em podría deixar el grupet de la Sr. í Sra. Madríd (sense comentarís...una parella excepcional... gràcies per la portada: **EduDesign**), la recent Dra. Imma Güell (per fí, no!), la Dra. Cirac (despertaria a un mort amb la seva energía), la Marta D. (ponte el cinturón que nos vamos) i el Dr. Rafelíno (TeatreBrík), la M. Ríbeiro juntament amb en Manel (vísítes curtes però íntenses) í també íncloure "les cats" (la ja o quasí doctores Lídía, Sandra í Dachs, que maques totes tres, jejejeje!) doncs, no sé podriem dír que erem companys i sense donar-nos compte amb el temps í el bon rotllo us heu convertít en uns/es bons/es amícs/ques amb quí he passat moments realment divertits i grans experiències, ja que no sé que hagués fet sense vosaltres…si ho sé, el mateix però sense el mateix entusiasme. Moltes gràcies a tots i totes!

Em sembla que m'estic enrotllant massa, ja només per acabar amb un darrere agraïment abans de creuar la frontera a totes aquelles persones sobretot del departament de química (els vells veïns inorgànics com els teòrics de l'altre extrem passant per les analítiques), l'ex-dírector com l'actual directora del departament i sobretot, la secretària que sempre ha posat remei a tota qüestió burocràtica que em sobrepassava. I així com la Lluïsa Matas i tot l'equíp dels STR per haver-me facilitat la tasca.

En arrivant à ce niveau, je me suis rendu compte que pour cette thèse le chemin parcouru a été assez drôle car tout à commencer a partir d'un stage de 6 mois qui finalement c'est transformé en 2 ans de thèse, et surtout sans aucun regrette. Pendant lesquelles j'ai eu l'opportunité de travailler et de faire connaissance avec des personnes qui mon aider á évoluer professionnellement comme personnellement.

En premier lieu je tiens à remercier le Professeur Janine Cossy pour m'avoir accueilli au sein du Laboratoire et d'avoir accepter de codiriger cette thèse. Merci aussi pour tous les conseils stimulants que j'ai eu l'honneur de recevoir et toutes les opportunités qu'il mon étés données au cours de cette thèse. Merci pour votre confiance.

Ensuite, le Dr Stellios Arseniyadis (el "Jefe") a qui je remercie profondément pour m'avoir encadré pendant la durée de cette thèse. Stellios a toujours su m'indiquer les bonnes directions de recherche quand il le fallait et je pense avoir énormément appris à son contact. J'ai sincèrement apprécié de travailler avec lui et je suis reconnaissant pour le temps qu'il ma consacré.

Mes remerciements sont également adressés au Dr. Christophe Meyer, Dr. Domingo Gomez-Pardo, Dr. Veronique Bellosta, Dr. Sebastien Reymond et Dr. Andrei Corbu qui sans être mes encadrents de thèse, ont grandement contribués à ma formation en répondant avec patience à mes questions.

Je suis également très reconnaissant à Dr. Arthur Duprat, Dr. Claude Chassagnard et Mr. Thomas Aubineau pour faciliter la recherche dans le labo avec leur soutien technique ainsi que leur conseils. Les gestionnaires du labo, Philibertine et Lise, et Patricia Firmin et Francis Cahuzac pour rendre les conditions de travaillent plus confortables.

Et pour finir, un grand remerciement a tous mes collègues du labo avec qui j'ai partagé de grand moments et qui m'on permît de m'épanouir de jour en jour au labo (en spécial la SA team) - Raphaël, Mr. et Mme Anxionnat, Anne, Bruno M., Bruno A., Jeremy, Amandine K., Laurent, Aya, Béranger, Amandine G., Charlelie, Benoit, Fred, Valérie, Claire, Thomas C., Anna, Christophe, Aurèlie, Alexis, Adrien, Damien Belotti, Damien, B., Mr et Mme Commandeur, Simon, Laurent C., Jocelyn, Lionel, Johan et François. Merci a tous!

He reservat aquest raconet per la familía amb quí no se en quína llengua escríure (potser hauría d'utílítzar l'ídíoma oficíal de la casa (dar): una barreja de marroquí í català amb un toc del castellà) per deixar ben clar que no hagués aconseguit res sense el seu recolzament. Els meus pares, Yemma ou Baba, qui realment es mereixen no només un premi sino un monument per haver aconseguit portar-me fins aqui tenint en compte els kms travessats i les barreres trencades. Als meus germans: l'Asis, la Nadia, la Rahma i en Tarik, juntament amb mi sumem cinc. Podria definir-los com els dits d'una mà: tan diferents al mateix temps tan units, podria aixó és el que els fa tan especials. L'Asis (i com no la Mónica), a qui sempre he sentit un gran respecte i admiració. La Nadia, la més ràpida i valenta de casa. La Rahma i el petit Bílal, mai he entes com una noia tan tranquil·la podía donar llum a un terratremol aixi. I finalment, el petit de la casa (en edat només), en Tarik, potser una mica despístat però i a qui desitjo lo millor en la seva vida amb la seva estimada. Aixi agraïr als meus avis al Marroc, el meu avi Abdelslam (un gran educador, que descansi en pau-Allah rehmak), oncles, cosíns, etc...si fes una llista tindría més pàgines que la tesi. Shokran 3akíla!

No se si escribir con mi francés o en castellano para dedicar este último parrágrafo a la persona que comparte este día a día conmigo desde hace años y con quien más deseo compartir presente y futuro, mi mujer Venissia (stitua mziuna). Sans toi, j'aures pas arrive jusqu'a ici le fait que j'avais personne en France mais avec ton rencontre, je aussi retrouver le bonheur. Merci pour m'aimer dans les moments que moins je le mériter car cela que on plus besoin de soutien et courage. Merci aussi a ta famille (Ould): ta mamon Marie-Claire, Hedi (le chef), Coraline et Marjorie.

Contents

CONTENTS	I
ABSTRACT	VII
RESUM	XI
LIST OF FIGURES	XV
LIST OF TABLES	XVII
LIST OF SCHEMES	XIX
LIST OF ABBREVIATIONS/SYMBOLS	XXIII
GENERAL INTRODUCTION	1
CHAPTER I: SYNTHESIS OF UNUSUAL α -AMINO ACIDS AND STUDY OF T	HE
EFFECT OF THEIR INCORPORATION INTO ANTIMICROBIAL PEPTIDES	3
I.1. INTRODUCTION	5
I.1.1. NATURALLY OCCURING AMINO ACIDS	5
I.1.1.1. PROTEINOGENIC AMINO ACIDS	5
I.1.1.2. NON-PROTEINOGENIC AMINO ACIDS	8
I.1.2. UNNATURAL AMINO ACIDS	
I.1.3. NATURAL AND SYNTHETIC PYRIMIDINES	13
I.1.3.1. TAUTOMERIC EQUILIBRIUM IN PYRIMIDINE RING	15
I.1.3.2. NUCLEOPHILIC SUBSTITUTION REACTION IN PYRIMIDINE RING	15
I.1.3.3. BACKGROUND TO THE RESEARCH GROUP	16
I.1.3.3.1. Selective O-alkylation of 4(3H)-pyrimidinones	17
I.1.3.3.2. Nucleophilic ipso-substitution of 2-alkylsulphonylpyrimidines	18
I.1.3.3.3. Synthesis of pyrimidinyl α -amino acids	18
I.1.4. ANTIMICROBIAL PEPTIDES	21
I.1.4.1. SOLID-PHASE PEPTIDE SYNTHESIS	24
I.1.4.1.1. The solid support	25
I.1.4.1.2. The linker	26
I.1.4.1.3. Protecting groups	26

I.1.4.1.4. Coupling reagents	27
I.1.4.2. BACKGROUND TO THE RESEARCH GROUP	28
I.1.5. OBJECTIVES	31
I.2. RESULTS & DISCUSSION	33
I.2.1. SYNTHESIS OF N^{α} -FMOC PYRIMIDIN-4-YL AMINO ACIDS	33
I.2.1.1. Synthesis of C4 functionalized pyrimidines	33
I.2.1.2. PRELIMINAR STUDY OF PHOSPHONIUM-MEDIATED SYNTHESIS OF C4 SUBSTITUTE	D
PYRIMIDINES	37
I.2.1.3. FIRST STRATEGY TO SYNTHESIZE PYRIMIDIN-4-YL AMINO ACIDS	39
I.2.1.4. DETERMINATION OF OPTICAL PURITY OF PYRIMIDIN-4-YL AMINO ACIDS	41
I.2.1.5. SECOND STRATEGY TO SYNTHESIZE PYRIMIDIN-4-YL AMINO ACIDS	42
I.2.1.6. Synthesis of pyrimidin-4-yl tyrosine derivatives	44
I.2.1.7. Synthesis of pyrimidin-4-yl histidine derivatives	46
I.2.1.8. SYNTHESIS OF PYRIMIDIN-4-YL LYSINE DERIVATIVES	49
I.2.1.9. Synthesis of pyrimidin-4-yl tryptophan derivatives	50
I.2.2. SYNTHESIS OF N^{α} -FMOC PYRIMIDIN-2-YL AMINO ACIDS	53
I.2.2.1. Synthesis of C2 functionalized pyrimidines	53
I.2.2.2. SYNTHETIC STRATEGY TO PYRIMIDIN-2-YL AMINO ACIDS	54
I.2.2.2.1. Synthesis of pyrimidin-2-yl tyrosine derivatives	56
I.2.2.2.2. Synthesis of pyrimidin-2-yl histidine derivatives	58
I.2.2.2.3. Synthesis of pyrimidin-2-yl lysine derivatives	61
I.2.2.2.4. Synthesis of pyrimidin-2-yl tryptophan derivatives	63
I.2.2.3. SYNTHESIS OF PYRIMIDIN-2-ONE AMINO ESTERS	66
I.2.2.3.1. Synthesis of 4-(4-benzyloxybenzyloxy)-2-benzylsulfonylpyrimidine (I.38)	68
I.2.2.3.2. Synthesis of pyrimidin-2-one amino acids	69
I.2.3. SYNTHESIS AND BIOLOGICAL EVALUATION OF BP100 DERIVATIVES	73
I.2.3.1. DESIGN AND SYNTHESIS OF BP100 -DERIVATIVES	73
I.2.3.2. EVALUATION OF BIOLOGICAL ACTIVITY	77
I.2.3.2.1. Evaluation of antimicrobial activity	78
I.2.3.2.2. Evaluation of hemolytic activity	80
I.3. CONCLUSIONS	85
I.4. EXPERIMENTAL PART OF CHAPTER I	89
I.4.1. MATERIALS AND METHODS	90

I.4.1.1. GENERAL REAGENTS	90
I.4.1.2. Solvents	90
I.4.1.3. GENERAL INSTRUMENTS	90
I.4.1.4. Chromatography	92
I.4.1.5. KAISER TEST FOR MONITORING SOLID-PHASE PEPTIDE SYNTHESIS	92
I.4.2. EXPERIMENTAL PROCEDURES	
I.4.2.1. SYNTHESIS OF PYRIMIDIN-4-YL AMINO ACIDS	94
I.4.2.2. Synthesis of pyrimidin-2-yl amino acids	
I.4.2.3. Synthesis of pyrimidin-2-one amino acids	
I.4.2.4. ANALYSIS OF OPTICAL PURITY OF PYRIMIDINYL AMINO ESTERS	
I.4.2.5. Synthesis of peptides BP290-303	139
CHAPTER II: TOTAL SYNTHESIS OF BIOACTIVE MARINE NATURAL PRO	
AND ANALOGUES THEREOF	149
II. MARINE NATURAL PRODUCT CHEMISTRY	151
PART 1: TOTAL SYNTHESIS OF A STEREOISOMER OF ACREMOLIDE B	155
II.1.1. INTRODUCTION	157
II.1.1.1 ISOLATION, STRUCTURE AND BIOLOGICAL PROPERTIES OF	
II.1.1.1 ISOLATION, STRUCTURE AND BIOLOGICAL PROPERTIES OF ACREMOLIDES A-D	157
ACREMOLIDES A-D	
ACREMOLIDES A–D II.1.1.1. ISOLATION	157 158
ACREMOLIDES A–D II.1.1.1.1 ISOLATION II.1.1.1.2. STRUCTURAL ASSIGNMENT FOR ACREMOLIDE B	157 158 160
ACREMOLIDES A–D II.1.1.1.1 ISOLATION II.1.1.1.2. STRUCTURAL ASSIGNMENT FOR ACREMOLIDE B II.1.1.1.3. BIOLOGICAL PROPERTIES OF THE ACREMOLIDES A–D	157 158 160 ESIS 161
ACREMOLIDES A–D II.1.1.1.1 ISOLATION II.1.1.1.2. STRUCTURAL ASSIGNMENT FOR ACREMOLIDE B II.1.1.3. BIOLOGICAL PROPERTIES OF THE ACREMOLIDES A–D II.1.1.2. STEREOSELECTIVE METHODS FOR POLYPROPIONATE SYNTH	157 158 160 ESIS 161 161
ACREMOLIDES A–D II.1.1.1.1 ISOLATION II.1.1.1.2. STRUCTURAL ASSIGNMENT FOR ACREMOLIDE B II.1.1.3. BIOLOGICAL PROPERTIES OF THE ACREMOLIDES A–D II.1.1.2. STEREOSELECTIVE METHODS FOR POLYPROPIONATE SYNTH II.1.1.2.1. ASYMMETRIC ALLYLATION AND CROTYLATION OF ALDEHYDES	
ACREMOLIDES A–D II.1.1.1.1 ISOLATION II.1.1.1.2. STRUCTURAL ASSIGNMENT FOR ACREMOLIDE B II.1.1.3. BIOLOGICAL PROPERTIES OF THE ACREMOLIDES A–D II.1.1.2. STEREOSELECTIVE METHODS FOR POLYPROPIONATE SYNTH II.1.1.2.1. ASYMMETRIC ALLYLATION AND CROTYLATION OF ALDEHYDES II.1.1.2.1.a. Boron allylation/crotylation of aldehydes	
ACREMOLIDES A–D II.1.1.1.1 ISOLATION II.1.1.1.2. STRUCTURAL ASSIGNMENT FOR ACREMOLIDE B II.1.1.2. STRUCTURAL ASSIGNMENT FOR ACREMOLIDES A–D II.1.1.3. BIOLOGICAL PROPERTIES OF THE ACREMOLIDES A–D II.1.1.2. STEREOSELECTIVE METHODS FOR POLYPROPIONATE SYNTH II.1.1.2.1. ASYMMETRIC ALLYLATION AND CROTYLATION OF ALDEHYDES II.1.1.2.1.a. Boron allylation/crotylation of aldehydes II.1.1.2.1.b. Allyl-/crotyltitanation of aldehydes	
ACREMOLIDES A–D II.1.1.1.1 ISOLATION II.1.1.1.2. STRUCTURAL ASSIGNMENT FOR ACREMOLIDE B II.1.1.2. STRUCTURAL ASSIGNMENT FOR ACREMOLIDES A–D II.1.1.2. STEREOSELECTIVE METHODS FOR POLYPROPIONATE SYNTH II.1.1.2.1. ASYMMETRIC ALLYLATION AND CROTYLATION OF ALDEHYDES II.1.1.2.1.a. Boron allylation/crotylation of aldehydes II.1.1.2.1.b. Allyl-/crotyltitanation of aldehydes II.1.1.2.1.c. Silicon allylation/crotylation of aldehydes	
ACREMOLIDES A–D II.1.1.1.1 ISOLATION II.1.1.1.1 ISOLATION II.1.1.2. STRUCTURAL ASSIGNMENT FOR ACREMOLIDE B II.1.1.3. BIOLOGICAL PROPERTIES OF THE ACREMOLIDES A–D II.1.1.2. STEREOSELECTIVE METHODS FOR POLYPROPIONATE SYNTH II.1.1.2.1. ASYMMETRIC ALLYLATION AND CROTYLATION OF ALDEHYDES II.1.1.2.1.a. Boron allylation/crotylation of aldehydes II.1.1.2.1.b. Allyl-/crotyltitanation of aldehydes II.1.2.1.c. Silicon allylation/crotylation of aldehydes II.1.2. RESULTS & DISCUSSION	
 ACREMOLIDES A–D	
 ACREMOLIDES A–D	
 ACREMOLIDES A–D	

PART 2: TOTAL SYNTHESIS OF THE NOMINAL LYNGBOUILLOSIDE AGLY	<i>CON</i> 185
II.2.1. INTRODUCTION	187
II.2.1.1. ISOLATION, STRUCTURE AND BIOLOGICAL PROPERTIES OF	
LYNGBOUILLOSIDE	187
II.2.1.1.1. ISOLATION	187
II.2.1.1.2. STRUCTURAL ASSIGNMENT OF LYNGBOUILLOSIDE	
II.2.1.1.3. BIOLOGICAL PROPERTIES OF LYNGBOUILLOSIDE	
II.2.1.2. REPORTED EFFORTS TOWARDS THE TOTAL SYNTHESIS OF	
LYNGBOUILLOSIDE	190
II.2.1.2.1. SYNTHESIS OF THE MACROLACTONE CORE OF LYNGBOUILLOSIDE BY LEY	ET AL.
	191
II.2.1.2.2. Synthesis of the C1–C13 fragment of lyngbouilloside by Cossy	ET AL.
	195
II.2.1.3. MACROLACTONIZATION METHODS	199
II.2.1.3.1. ACID ACTIVATION THROUGH THIOESTER	
II.2.1.3.2. ACID ACTIVATION THROUGH MUKAIYAMA'S SALT	
II.2.1.3.3. ACID ACTIVATION THROUGH MIXED ANHYDRIDE	
II.2.1.3.4. ACID ACTIVATION THROUGH PHOSPHORUS-BASED REAGENTS	
II.2.1.3.5. ACID ACTIVATION THROUGH CARBODIIMIDES	204
II.2.1.3.6. BOECKMAN'S MACROLACTONIZATION	205
II.2.2. RESULTS & DISCUSSION	207
II.2.2.1. FIRST STRATEGY TOWARDS THE SYNTHESIS OF LYNGBOUILL	OSIDE
AGLYCON	207
II.2.2.1.1. FIRST RETROSYNTHETIC ANALYSIS	
II.2.2.1.2. SYNTHESIS OF C1-C8 FRAGMENT	
II.2.2.1.3. SYNTHESIS OF THE C9-C17 FRAGMENT	
II.2.2.1.4. SYNTHESIS OF THE MACROLIDE CORE OF LYNGBOUILLOSIDE	
II.2.2.1.5. FINAL EFFORTS TOWARDS THE SYNTHESIS OF LYNGBOUILLOSIDE AGLYC	on 218
II.2.2.2. SECOND STRATEGY TOWARDS THE SYNTHESIS OF	
LYNGBOUILLOSIDE.	
II.2.2.3. FINAL STRATEGY	
II.2.2.3.1. SYNTHESIS OF THE MACROLACTONE CORE	
II.2.2.3.2. END-GAME	
II.2.2.3.3. ANALYSIS OF NMR DATA	

II.3. CONCLUSIONS	231
II.4. EXPERIMENTAL PART OF CHAPTER II	235
II.4.1. MATERIALS AND METHODS	236
II.4.1.1. REAGENTS AND SOLVENTS	236
II.4.1.2. GENERAL INSTRUMENTS	236
II.4.1.3. CHROMATOGRAPHY	237
II.4.2. EXPERIMENTAL PROCEDURES	238
II.4.2.1. SYNTHESIS OF EPI-ACREMOLIDE	238
II.4.2.2. SYNTHESIS OF LYNGBOUILLOSIDE AGLYCON	261
CHAPTER III: TOTAL SYNTHESIS OF (-)-BITUNGOLIDE F	305
III.1. INTRODUCTION	307
III.1.1. ISOLATION, STRUCTURE AND BIOLOGICAL PROPERTIES OF	
BITUNGOLIDES A-F	307
III.1.1.1 ISOLATION	
III.1.1.2. BIOLOGICAL PROPERTIES OF THE BITUNGOLIDES A-F	308
III.1.1.3. BITUNGOLIDES STRUCTURAL ASSIGNMENT	309
III.1.2. REPORTED TOTAL SYNTHESES OF (-)-BITUNGOLIDE F	310
III.1.2.1. TOTAL SYNTHESIS OF (-)-BITUNGOLIDE F BY GHOSH ET AL	310
III.1.2.2. TOTAL SYNTHESIS OF (–)-BITUNGOLIDE F BY SHE ET AL.	311
III.1.3. ASYMMETRIC METHODS TOWARDS ETHYL SUBSTITUTED	
α,β-UNSATURATED δ-LACTONES	312
III.1.3.1. EPOXIDE RING-OPENING STRATEGY	313
III.1.3.2. Asymmetric aldol/olefination strategy	314
III.1.3.3. PSEUDOEPHEDRIN-MEDIATED ALKYLATION/LACTONE ANNULATION STRATEG	Y.317
III.1.3.4. ACYL HALIDE-ALDEHYDE CYCLOCONDENSATION STRATEGY	318
III.1.3.5. WITTIG REARRANGEMENT/RCM STRATEGY	319
III.1.3.6. ASYMMETRIC PENTENYLATION/RCM STRATEGY	320
III.2. RESULTS & DISCUSSION	323
III.2.1. TOTAL SYNTHESIS OF (-)-BITUNGOLIDE F	323
III.2.1.1. FIRST RETROSYNTHETIC ANALYSIS	323
III.2.1.2. SYNTHESIS OF THE C1-C10 FRAGMENT	324
III.2.1.3. SYNTHESIS OF C11-C15 FRAGMENT	326
III.2.1.4. Synthesis of (–)-bitungolide F	327

III.2.1.5. SECOND SYNTHETIC APPROACH TO (–)-BITUNGOLIDE F	329
III.2.1.5.1. Second retrosynthetic analysis of (–)-bitungolide F	
III.2.1.5.2. Introduction to enantioselective organo-catalyzed Michael addition	
III.2.1.6. SECOND SYNTHESIS OF THE C1-C10 FRAGMENT	
III.2.1.6.1. Second retrosynthetic analysis	
III.2.1.6.2. Synthesis of organocatalyst III.18	
III.2.1.6.3. Second synthesis of the C1-C10 fragment	
III.2.1.7. SECOND SYNTHESIS OF (–)-BITUNGOLIDE F	
III.3. CONCLUSIONS	337
III.4. EXPERIMENTAL PART OF CHAPTER III	341
GENERAL CONCLUSIONS	361
REFERENCES	363
LIST OF PUBLICATIONS	375

Abstract

The principle theme of this thesis is the synthesis of bioactive compounds. The development of products with interesting biological activities is assessed, on one hand, by the rational design of new synthetic compounds and/or modification of existing drugs. On the other hand, marine natural products proved to be a rich source of novel therapeutics to protect against and combat diseases, as well as serve as lead compounds in crop protection. Hence, this thesis was divided into two main projects.

The first project (Chapter I) was carried out in the Department of Chemistry of the University of Girona under the supervision of Dr Montserrat Heras, concerned the design and the synthesis of new unnatural amino acids bearing a pyrimidine ring within their side chain for incorporation into the antimicrobial peptide **BP100** and an evaluation of their activity. Non-proteinogenic amino acids, especially unnatural synthetic α -amino acids, have played a significant role in drug development. Their intrinsic biological properties and structural diversity make them both valuable pharmaceuticals and useful building blocks in peptide chemistry. Consequently, synthetic unnatural α -amino acids have emerged as important synthetic targets and a variety of stereoselective methods have recently been developed for their preparation. As part of our research aimed at synthesizing new antimicrobial peptides by incorporating unnatural α -amino acids, and following an ongoing research group project involving pyrimidine chemistry, the synthesis of a collection of pyrimidines substituted at C2- and C4-positions with an α -amino acid residue was investigated.

In particular, a coupling reaction between the electron-rich 2-morpholino-4(3*H*)pyrimidinone and the nucleophilic side chains of several natural N^{α} -Boc protected α -amino esters promoted by phosphonium salt was applied in order to incorporate the α -amino acid at the C4-position of the pyrimidine ring. After a thorough optimization study, several N^{α} -Boc pyrimidin-4-yl amino esters were obtained successfully without loss of optical integrity using a two-step approach through the easily available benzotriazol-1-yloxy pyrimidine intermediate. On the other hand, the incorporation of an amino acid at the C2-position of the pyrimidine ring was achieved by a nucleophilic *ipso*-substitution reaction between various 2-benzylsulfonyl-4-isopropoxypyrimidines and several natural N^{α} -Boc protected α -amino esters. The reaction conditions were optimized for each α -amino ester individually in order to achieve the N^{α}-Boc pyrimidin-2-yl a-amino esters in good yields (40-88%) and without racemization. This optimized method was extended to the synthesis of pyrimidin-2-one α -amino esters by using a more acid-labile than isopropoxy group at the C4-position of the starting 2-benzylsulfonylpyrimidine. The N^{α} -Boc pyrimidinyl α -amino esters were easily converted into the target N^{α} -Fmoc pyrimidinyl amino acids in good yields (40-93%) using standard procedures of deprotection and protection of functional groups. With these useful building blocks in hand for solid-phase peptide synthesis, the last part of this project involved the rational incorporation of these pyrimidinyl amino acids into the antimicrobial peptide, known as BP100, previously developed in the laboratory. A library of 14 peptides was thus synthesized and tested against plant as well as human pathogens and evaluated for their hemolytic activity. The BP100 analogues that incorporated hydrophilic pyrimidinyl amino acids, showed the best activity profile. All biological assays were carried out at the Centre for Innovation and Development in Plant Health (CIDSAV).

The second project (Chapters II and III), on the other hand, was carried out in the *Laboratoire de Chimie Organique* (ESPCI-ParisTech) under the joint supervision of Pr Janine Cossy and Dr Stellios Arseniyadis.

Hence, Chapter II focuses on the total synthesis of two macrolides of marine origin: acremolide B and lyngbouilloside. First, a simple strategy towards the total synthesis of the lipodepsipeptide acremolide B, which structure was not confirmed, was developed relying on four key steps: two stereoselective allylations/crotylations, a cross-metathesis to introduce the fatty-acid side chain, an esterification to link the dipeptide unit to the polypropionate fragment, and a macrolactamization to build the 12-membered ring. This synthetic strategy gave rise to a stereoisomer of the targeted natural product in 16 steps and 7.6% overall yield starting from (S)-Roche ester. Next, we focused on the total synthesis of an antitumor metabolite, lyngbouilloside. Consequently, a convergent and straightforward strategy was developed relying on three key steps – a Sonogashira coupling to build the side-chain, a hydrosilylation/protodesilylation sequence to generate the diene, and a thermal macrolactonization to build the 14-membered ring.

This route allowed to isolate nominal lyngbouilloside aglycon in 21 steps and 2.1% overall yield starting from commercially available 3-methylbut-3-enol.

Finally, Chapter III describes the total synthesis of (–)-bitungolide F, a marine product bearing a β -ethyl α , β -unsaturated δ -lactone. The synthesis of this dual-specificity phosphatase inhibitor was realized using two highly convergent and enantioselective routes. The first strategy counted on an asymmetric Evans alkylation, a stereoselective pentenylation to introduce the ethyl side chain, a ring-closing metathesis to build the lactone ring, and a chiral boron-mediated aldol/1,3-*anti* reduction end game. This strategy allowed to complete the synthesis of (–)-bitungolide F in 11 steps and 14.6% overall yield starting from levulinic acid. The second strategy led to the total synthesis of (–)-bitungolide F in only nine steps and 11.4% overall yield starting from simple propanal and 3-buten-2-one, employing a slightly more flexible approach which incorporated a key enantioselective organo-catalyzed Michael addition instead of an Evans alkylation. This second approach is particularly appealing as it is highly flexible, it does not involve the use of any protecting group, and is therefore amenable to a wide variety of potentially useful synthetic analogues.

Resum

El tema principal d'aquesta tesi és la síntesi de compostos bioactius. El desenvolupament de productes amb activitats biològiques d'interés es basa, per un costat, en el disseny racional de nous compostos i/o en la modificació de fàrmacs ja existens. D'altra banda, els productes naturals marins han esdevingut també una font molt rica de nous agents terapèutics, a més, també s'utilitzen com a compostos "lead" en el disseny de nous fàrmacs. Dins d'aquest context, aquesta tesi doctoral està dividida en dos projectes principals.

El primer projecte (Capítol I) es va portar a terme en el Departament de Química de la Universitat de Girona sota la direcció de la Dra. Montserrat Heras. Es va centrar en el disseny i síntesi de nous α -aminoàcids no naturals que continguin un anell de pirimidina en la seva cadena lateral, amb l'objectiu d'incorporar-los dins la seqüència del pèptid antimicrobià **BP100**, recentment desenvolupat en el grup de recerca, per estudiar-ne les propietats biològiques. Els aminoàcids no proteïnogènics, especialment els α -aminoàcids no naturals sintètics, han esdevingut elements clau en el desenvolupament de nous medicaments. Les seves propietats biològiques i diversitat estructural els han convertit tant en fàrmacs eficients com en peces útils en el camp de la química de pèptids. Conseqüentment, els α -aminoàcids no naturals s'han convertit en importants dianes sintètiques i recentment, s'han desenvolupat una gran diversitat de mètodes estereoselectius per a la seva preparació. Atés que aquest treball té com objectiu la síntesi de nous pèptids antimicrobians modificats per incorporació $d'\alpha$ -aminoàcids no naturals, i seguint un projecte del grup de recerca sobre la química de pirimidines, es va investigar la síntesi d'una col·lecció de pirimidines substituïdes en la posició C2 o C4 amb un residu d' α -aminoàcid.

Concretament, es va portar a terme una reacció d'acoblament assistida per sals de fosfoni entre la 2-morfolino-4(3H)-pirimidinona i la cadena lateral nucleòfíla de diferents α -aminoesters naturals N^{α}-Boc protegits. D'aquesta manera, i després d'un intens estudi d'optimizació, es van aconseguir els N^{α}-Boc pirimidin-4-il aminoesters en bons rendiments i sense pèrdua d'activitat òptica mitjançant una estratègia en dues etapes a través de l'intermedi benzotriazol-1-iloxipirimidina. D'altra banda, es van preparar nous compostos amb residus d' α -aminoàcids units per la seva cadena lateral a la posició C2 d'un anell de pirimidina. En aquest cas, es va realitzar una reacció d'ipso-substitució nucleòfila entre diverses 2-benzilsulfonil-4-isopropoxipirimidines i diferents α -aminoesters naturals N^{α}-Boc protegits. Les condicions de reacció es van optimitzar per a cada α -aminoester de manera individual per tal d'obtenir els corresponents N^{α} -Boc pirimidin-2-il aminoesters en rendiments acceptables (40-88%) i sense racemizació. A més, aquest mètode es va estendre a la preparació de N^{α} -Boc pyrimidin-2-ona α -aminoesters emprant un grup més àcid làbil que l'isopropoxi en la posició C4 de la 2-benzilsulfonilpirimidina de partida. Els N^{α} -Boc pirimidinil aminoesters es van poder transformar en els corresponents N^{α}-Fmoc pirimidinil aminoàcids en bons rendiments (40-93%), utilitzant procediments estàndards de protecció i desprotecció de grups funcionals. Finalment, la col·lecció de nous α -aminoàcids pirimidínics obtinguts es va emprar en el disseny i síntesi de derivats del pèptid **BP100**. Es van sintetizar un total de 14 pèptids en els quals es va reemplaçar algun dels α -aminoàcids de la seqüència peptídica pels preparats en aquest treball. Seguidament, es va testar l'activitat antimicrobiana dels 14 anàlegs de BP100, tant contra patògens vegetals com patògens animals, i també es va avaluar la seva activitat hemolítica. Les seqüències peptídiques que contenien aminoàcids pirimidínics de naturalesa hidrofílica són els que van mostrar millors perfils biològics. Tots els assajos biològics es varen realitzar al Centre d'Innovació i Desenvolupament en Sanitat Vegetal (CIDSAV).

El segon projecte (Capítols II i III) es va desenvolupar en el Laboratoire de Chimie Organique (ESPCI-ParisTech) sota la direcció conjunta de la professora Janine Cossy i el doctor Stellios Arseniyadis.

El Capítol II es va centrar en la síntesi total de dos productes d'origen marí amb estructura macrocíclica, l'acremolide B i la lyngbouilloside. En primer lloc, es va desenvolupar una estràtegia simple per a l'obtenció del lipodepsipeptide acremolide B, l'estructura de la qual no estava confirmada. Aquesta estratègia es va assentar en 4 reaccions clau: dues alil·lacions/crotil·lacions estereoselectives, una reacció de metàtesi creuada per introduir l'àcid gras de la cadena lateral, una esterificació per annexar la unitat dipeptídica al fragment polipropionat, i finalment una macrolactamizació per construir l'anell de 12 baules. Aquesta estratègia sintètica va conduir a la preparació d'un estereoisòmer del producte natural en setze etapes i amb un rendiment global del 7.6% partint de l'éster de (S)-Roche. Posteriorment, es va investigar la síntesi total de la lynboguilloside, un metabòlit antitumoral. Se'n va desenvolupar una estratègia senzilla i convergent basada en tres etapes clau – un acoblament de Sonogashira seguit d'una seqüència d'hidrosililació/deprotosililació per introduir la cadena lateral diennica, i una macrolactonització tèrmica per construir l'anell de 14 baules. Aquesta tàctica va permetre aïllar l'estructura proposada per la lyngbouilloside sense el monosacàrid en vint-i-una etapes amb un rendiment global del 2.1% començant amb el producte comercial 3-metilbut-3-enol.

En el Capítol III descriu la síntesi total de la (–)-bitungolide F, un producte d'origen marí que conté en la seva estructura una δ -lactona α, β -insaturada amb un substituent etil a la posició β de l'anell de δ -lactona. La síntesi d'aquest inhibidor de la fosfatasa de doble especificitat es va realitzar utilitzant dues rutes sintètiques molt convergents i enantioselectives. La primera estratégia es va fonamentar en una alquilació asimètrica d'Evans, una pentenil·lació estereoselectiva per introduir el grup etil de la cadena lateral, una reacció de metàtesi de tancament d'anell per construir la δ -lactona, i una seqüència final d'aldolització asimètrica mitjançant un reactiu de bor quiral seguida d'una reducció 1,3-anti. Aquesta maniobra va permetre completar la síntesi de la (-)-bitungolide F en onze etapes amb un rendiment global del 14.6% començant amb l'àcid levulínic. La segona estratègia va permetre completar la síntesi del producte natural en nou etapes i un 11.4% de rendiment global partint de dos compostos molt senzills, el propanal i la 3-buten-2-ona. En aquest cas es va emprar una reacció d'addició de Michael organocatalitzada en lloc de l'alquilació d'Evans convertint el procés molt més flexible. Aquesta darrera ruta sintètica és interessant degut a la seva versatibilitat i perqué no necessita l'ús de grups protectors per tant es podria emprar en la preparació d'una gran varietat d'anàlegs de la (-)-bitungolide F potencialment bioactius.

List of Figures

CHAPTER I

Figure I.1. The proteinogenic α -amino acids
Figure I.2. Natural occurring non-proteinogenic amino acids
Figure I.3. Natural heterocyclic α -amino acids
Figure I.4. Pyrimidine containing natural amino acids
Figure I.5. Natural and pharmaceuticals pyrimidine-based products
Figure I.6. Tautomeric equilibrium of 2- and 4-hydroxypyrimidine
Figure I.7. Mechanisms of AMP-mediated membrane disruption
Figure I.8. Molecular basis of AMP cell selectivity
Figure I.9. Some representative coupling reagents
Figure I.10. Small library of peptides incorporating an unnatural amino acid
Figure I.11. Pyrimidin-4-yl amino acids I.11
Figure I.12. Tautomeric equilibrium of histidine I.18b
Figure I.13. NOESY spectra (region 9.2-6.3 ppm) of N^{α} -Boc-pyrimidin-4-yl histidine methyl
Figure I.14. <i>N</i> -pyrimidinyl arylglycines I.6 and N^{α} -Fmoc pyrimidin-4-yl α -amino acids I.11
Figure I.15. N^{α} -Fmoc pyrimidin-2-yl amino acids I.12 and N^{α} -Fmoc pyrimidin-2-one amino acids I.13
Figure I.16. ORTEP representation of compound I.32ac
Figure I.17. ORTEP representation of compound I.32bc
Figure I.18. ¹ H NMR spectra (region 8.2-5.9 ppm) of compound I.13c recorded at 400 MHz in d_6 -DMSO from 25 to 70 °C
Figure I.19. Edmunson wheel projection of the peptide BP10073

Figure I.20. Pyrimidinyl amino acids I.12a and I.12b were incorporated into bio	oactive
peptide BP100 at positions indicated in red circles	74
Figure I.21. Pyrimidinyl amino acids I.11c and I.12c were incorporated into bio	oactive
peptide BP100 at positions indicated in red circles	75
Figure I.22. MBHA resin and linker Fmoc-Rink-amide	75

CHAPTER II

Figure II.1. Structure of acremolide B, lyngbouilloside and (–)-bitungolide F 152
Figure II.2. Structures of acremolides A–D
Figure II.3. Structures of compounds isolated from Acremonium sp 158
Figure II.4. Proposed structure of acremolide A, II.1 and acremolide B 159
Figure II.5. Structures of apicidin A, trapoxins A and B, AS1387392 and FR235222
Figure II.6. Chiral boron reagents for asymmetric allyl/crotylations
Figure II.7. Graphically depicted ${}^{13}C$ chemical shift differences ($\Delta\delta$, ppm) for each
carbon of acremolide B natural product and the synthetic stereoisomer, II.28 183
Figure II.8. Structures of lynbouilloside, lyngbyaloside, lyngbyalosides B and C 188
Figure II.9. Structure of auriside A, callipeltoside A, dolastatin 19 and phorbaside A
Figure II.10. ($\Delta\delta$, ppm) for each carbon between C1 and C13 of lyngbouilloside II.101
and our synthetic aglycon II.92 , and lyngbouilloside II.101 and
lyngbyaloside C II.102

CHAPTER III

Figure III.1. Structures of bitungolides A–F	08
Figure III.2. Structure of pironetin, phoslactomycin A and franklinolides A-C 3	08

List of Tables

CHAPTER I

Table I.1. Selected examples of natural antimicrobial peptides 22
Table I.2. Some representative protecting groups and removal conditions
Table I.3. Linear synthetic peptides
Table I.4. Synthesis of C4 substituted pyrimidines I.16 promoted by BOP 38
Table I.5. Synthesis of C4 substituted pyrimidines I.30 promoted by BOP 44
Table I.6. Synthesis of N^{α} -Boc-pyrimidin-4-yl histidine methyl ester I.20b 47
Table I.7. Synthesis of N^{α} -Boc-pyrimidin-4-yl lysine methyl ester I.20c 50
Table I.8. Synthesis of N^{α} -Boc-pyrimidin-4-yl tryptophan methyl ester I.20d
Table I.9. Synthesis of N^{α} -Boc-pyrimidin-2-yl tyrosine methyl ester I.32a
Table I.10. Synthesis of N^{α} -Boc-pyrimidin-2-yl histidine methyl ester I.32b
Table I.11. Synthesis of N^{α} -Boc-pyrimidin-2-yl lysine methyl esters I.32c
Table I.12. Synthesis of N^{α} -Boc-pyrimidin-2-yl tryptophan esters I.32d and I.32e 64
Table I.13. Synthesis of N^{α} -Boc-pyrimidin-2-yl amino esters I.39
Table I.14. Synthesis of N^{α} -Fmoc-pyrimidin-2-one amino acids I.13
Table I.15. Analyses of pyrimidinyl BP100 analogues BP290-303 77
Table I.16. Antimicrobial activity of pyrimidinyl BP100 analogues BP290-303
Table I.17. Hemolytic activity of pyrimidinyl BP100 analogues BP290-303 81

CHAPTER II

Table II.1. Esterification step between coupling partners II.7 and II.12	174
Table II.2. Selective cleavage of the primary TBS ether II.13	175
Table II.3. Cross-coupling metathesis between alkenes II.18 and II.19.	178
Table II.4. Hydrogenation of olefin II.21	180
Table II.5. Asymmetric vinylogous aldol reaction	211
Table II.6. Attempted cleavage conditions	220
Table II.7. C1 to C13 Chemical shifts (δ, ppm) for lyngbouilloside I lyngbyaloside C II.102 and our synthetic aglycon II.92 , and the differ (Δδ, ppm) with lyngbouilloside II.101	rences

List of Schemes

CHAPTER I

Scheme I.1. Synthesis of aryl and heteroaryl unnatural amino acids 12
Scheme I.2. Synthesis of a Fmoc-protected unnatural phenylalanine derivative
Scheme I.3. Nucleophilic substitution of substituted-chloropyrimidine
Scheme I.4. Synthetic strategy for the preparation of pyrimidinyl compounds
Scheme I.5. Alkylation of 4(3 <i>H</i>)-pyrimidinones II.1 under Mitsunobu conditions 18
Scheme I.6. Solid-phase synthesis of C4 substituted 2-aminopyrimidines
Scheme I.7. Synthesis of <i>N</i> -pyrimidinyl arylglycines I.6
Scheme I.8. Synthesis of pyrimidin-4-yl α-amino acids I.10
Scheme I.9. General strategy of SPPS
Scheme I.10. Synthesis of the C4-functionalizated pyrimidines from pyrimdin-
4(3 <i>H</i>)-ones
Scheme I.11. Phosphonium coupling reaction of tautomerizable heterocycles
Scheme I.12. Synthesis of C2-substituted pyrimidines via phosphonium-mediated
coupling
Scheme I.13. Synthesis of nucleoside derivatives through phosphonium coupling
reaction
Scheme I.14. Mechanism of BOP-mediated nucleophilic substitutions
Scheme I.15. First strategy for the synthesis of pyrimidin-4-yl amino acids I.1140
Scheme I.16. Synthesis of N^{α} -Boc-pyrimidin-4-yl tyrosine methyl ester I.20a
Scheme I.17. Determination of optical purity of compounds I.19
Scheme I.18. Second strategy for the synthesis of N^{α} -Fmoc pyrimidin-4-yl amino
acids I.11
Scheme I.19. Synthesis of N^{α} -Boc-pyrimidin-4-yl tyrosine methyl ester I.20a
Scheme I.20. Synthesis of N^{α} -Fmoc-pyrimidin-4-yl tyrosine I.11a
Scheme I.21. Synthesis of N^{α} -Fmoc-pyrimidin-4-yl histidine I.11b
Scheme I.22. Synthesis of N^{α} -Fmoc-pyrimidin-4-yl lysine I.11c
Scheme I.23. Synthesis of the C2-functionalizated pyrimidines
Scheme I.24. Mechanism of S _N Ar reaction on alkyl or arylsulfonylpyrimidines 55

Scheme I.25. Synthetic strategy for the synthesis of pyrimidin-2-yl amino acids	3 I.12 . 55
Scheme I.26. Synthesis of 2-benzylsulfonyl-4-isopropoxypyrimidines I.27b a	and I.27c
	56
Scheme I.27. Synthesis of N^{α} -Fmoc-pyrimidin-2-yl tyrosine I.12a	58
Scheme I.28. Synthesis of N^{α} -Fmoc-pyrimidin-2-yl histidine I.12b	60
Scheme I.29. Synthesis of N^{α} -Fmoc-pyrimidin-2-yl lysine I.12c	63
Scheme I.30. Synthesis of N^{α} -Fmoc-pyrimidin-2-yl tryptophan I.12d	65
Scheme I.31. Attempted synthesis of N^{α} -Fmoc pyrimidin-2-one amino acids I.1	l3 66
Scheme I.32. Solid-phase synthesis of purine analogues library	67
Scheme I.33. Synthetic strategy of pyrimidin-2-one amino acids I.13	68
Scheme I.34. Synthesis of sulfone I.38	69
Scheme I.35. Synthesis of pyrimidinyl peptides BP290-303	76
Scheme I.36. Mechanism of Kaiser test	

CHAPTER II

Scheme II.1. Mechanism of Type I allyl/crotylmetals onto aldehyde	
Scheme II.2. Mechanism of Type II allyl/crotylmetals onto aldehyde	
Scheme II.3. Mechanism of Type III allyl/crotylmetals onto aldehyde	
Scheme II.4. Brown's allylboration of aldehydes	
Scheme II.5. Brown's crotylboration of aldehydes	
Scheme II.6. Preparation of the allyl- or crotyltitanium reagents	
Scheme II.7. Allyl-/crotyltitanation of aldehydes	
Scheme II.8. Reactivity of Leighton's silicon reagents	
Scheme II.9. Initial retrosynthetic analysis	170
Scheme II.10. Retrosynthetic analysis of the C1-C7 fragment	170
Scheme II.11. Synthesis of the C1-C7 fragment	
Scheme II.12. Synthesis of dipeptide unit II.12	173
Scheme II.13. Synthesis of macrolactam II.18.	
Scheme II.14. Retrosynthetic analysis of acremolide B, II.28	177
Scheme II.15. Proposed structure for the chelation of the [Ru] by the	carbonyl group
Scheme II.16. Second retrosynthetic analysis of acremolide B, II.28	
Scheme II.17. Synthesis of olefin II.21	

Scheme II.18. Synthesis of <i>epi</i> -acremolide B, II.28	182
Scheme II.19. Ley's retrosynthetic analysis of the lyngbouilloside macrolacted	one core
	192
Scheme II.20. Ley's synthesis of the C3-C8 fragment II.34	193
Scheme II.21. Ley's synthesis of the fragment II.40	194
Scheme II.22. Ley's synthesis of the lyngbouilloside macrolactone core	195
Scheme II.23. Retrosynthetic analysis of C1-C13 fragment by Cossy et al	196
Scheme II.24. Synthesis of lyngbouilloside C1-C13 fragment	198
Scheme II.25. Attempted approach towards the lyngbouilloside aglycon	199
Scheme II.26. Macrolactonization through thioester-mediated activation	200
Scheme II.27. Macrolactonization through cyanuric chloride	201
Scheme II.28. Mukaiyama's salt-mediated macrolactonization	202
Scheme II.29. Yamaguchi macrolactonization	203
Scheme II.30. Macrolactonization through phosphorus-based reagents	203
Scheme II.31. Carbodiimide-mediated macrolactonization	204
Scheme II.32. Boeckman's macrolactonization	205
Scheme II.33. First retrosynthetic analysis of lyngbouilloside	208
Scheme II.34. CBS strategy towards the synthesis of alcohol (<i>R</i>)-II.48	209
Scheme II.35. Retrosynthetic analysis of the C1-C8 fragment	210
Scheme II.36. Synthesis of the C1-C8 fragment	211
Scheme II.37. Retrosynthetic analysis of the C9-C17 fragment	212
Scheme II.38. Synthesis of the C11-C17 fragment	213
Scheme II.39. Synthesis of the C9-C17 fragment	214
Scheme II.40. Retrosynthetic analysis of macrolactone II.U	215
Scheme II.41. Synthesis of the C1-C17 fragment	216
Scheme II.42. Synthesis of macrolactone II.78 via thermal macrolactonization.	218
Scheme II.43. Retrosynthetic analysis of the lyngbouilloside aglycon	219
Scheme II.44. Introduction of the lyngbouilloside side chain and attempted cle	avage of
the <i>p</i> -methoxybenzoate	220
Scheme II.45. Second synthetic strategy	221
Scheme II.46. Synthesis of the C9-C17 fragment	222
Scheme II.47. Synthesis of the C1-C17 fragment	223
Scheme II.48. Towards the synthesis of lyngbouilloside aglycon	224
Scheme II.49. Synthesis of macrolactone II.98	226

Scheme II.50. Synthesis	of lyngbouilloside aglycon	
-------------------------	----------------------------	--

CHAPTER III

Scheme III.1. Ghosh's retrosynthetic analysis of (–)-bitungolide F	311
Scheme III.2. She's retrosynthetic analysis of (–)-bitungolide F	312
Scheme III.3. Kawada's epoxide ring-opening strategy	313
Scheme III.4. Gurjar's epoxide ring-opening strategy	314
Scheme III.5. Kitahara's epoxide ring-opening strategy	314
Scheme III.6. Asymmetric aldol/olefination strategy	315
Scheme III.7. Asymmetric aldol/RCM strategy	316
Scheme III.8. Asymmetric aldol/Claisen-like cyclization strategy	316
Scheme III.9. SAMP-/RAMP-hydrazone strategy	317
Scheme III.10. Pseudoephedrin-mediated alkylation/lactone annulation strategy	318
Scheme III.11. Acyl halide-aldehyde cyclocondensation strategy	319
Scheme III.12. Wittig rearrangement/RCM strategy	320
Scheme III.13. Synthesis of <i>syn</i> -ethyl substituted homoallylic alcohol	321
Scheme III.14. First retrosynthetic analysis	324
Scheme III.15. Retrosynthetic analysis of the C1-C10 fragment	324
Scheme III.16. Synthesis of C1-C10 fragment	326
Scheme III.17. Retrosynthetic analysis of C11-C15 fragment	326
Scheme III.18. Synthesis of C11-C15 fragment	327
Scheme III.19. Synthesis of (–)-bitungolide F	329
Scheme III.20. Second retrosynthetic analysis of (–)-bitungolide F	330
Scheme III.21. Jørgensen's organo-catalyzed conjugated addition	331
Scheme III.22. Gellman's organo-catalyzed Michael addition	331
Scheme III.23. Second retrosynthetic analysis of the C1-C10 fragment	332
Scheme III.24. Synthesis of catalyst III.18	333
Scheme III.25. Second synthesis of the C1-C10 fragment III.10	334
Scheme III.26. Synthesis of the diastereoisomeric ester derivative of III.27	334
Scheme III.27. Second synthesis of (–)-bitungolide F	335

List of Abbreviations/Symbols

Ac	Acetyl
AMPs	Antimicrobial peptides
Aq.	Aqueous
Boc	tert-Butoxycarbonyl
BOP	Benzotriazol-1-yloxytris(dimethylamino)-
	phosphonium hexafluorophosphate
Bn	Benzyl
С	Concentration
CAL-B	Candida antarctica lipase B
CAN	Cerium ammonium nitrate
cat.	Catalytic
Cbz	Benzyloxycarbonyl
СМ	Cross-metathesis
<i>m</i> -CPBA	meta-Chloroperbenzoic acid
d	Day(s)
DBU	1,8-Diazabicylo[5.4.0]undec-7-ene
DCC	N,N'-Dicyclohexylcarbodiimide
DIAD	Diisopropyl azodicarboxylate
DIBAL-H	Diisobutyl aluminum hydride
DIEA	Diisopropylethylamine / Hunig's base
DMAP	4-Dimethylaminopyridine
DMP	Dess-Martin periodinane
EDCI	1-[3-(dimethylamino)propyl]-3-ethylcarbodiimde
ee	Enantiomeric excess
er	Enantiomeric ratio
Eq	Equation
equiv	Equivalent(s)
ESI	Electrospray ionization
ESI-MS or MS(ESI)	Mass spectroscopy by electrospray ionization
Fmoc	9-Fluorenylmethoxycarbonyl

Fmoc-OSu	N-(9-Fluorenylmethoxycarbonyloxy) succinimide
h	Hour(s)
HATU	O-(7-Aza-1H-benzotriazole-1-yl)-N,N,N',N'-
	tetramethyluronium hexafluorophosphate
HBTU	O-Benzotriazole-N,N,N',N'-tetramethyl-uronium-
	hexafluoro-phosphate
HPLC	High performance liquid chromatography
HRMS	High resolution mass spectroscopy
HMPA	Hexamethylphosphoramide
HOBt	1-Hydroxybenzotriazole
HOPt	1-Hydroxypyridotriazole
IC ₅₀	Molar concentration at which 50% inhibition is
	observed
imid	Imidazole
IR	Infrared spectroscopy
J	Coupling constant
LDA	Lithium diisopropyl amine
LIPPSO	Innovation Laboratory in Organic Processes and
	Products
М	Molar
MBHA	4-Methylbenzhydrylamine
MIC	Minimum inhibitory concentration
min	Minute(s)
mL	Milliliter(s)
mol	Mole(s)
Mp	Melting point
Ms	Methane sulfonyl (mesyl)
MS	Molecular sieves, mass spectroscopy
MW	Microwave irradiation
m/z	Mass/charge ratio
NaHMDS	Sodium bis(trimethylsilyl)amide
nd	Not determined
NMO	<i>N</i> -methylmorpholine <i>N</i> -oxide
NMR	Nuclear magnetic resonance

NOESY	Nuclear Overhauser Effect Spectroscopy
Nu	Nucleophile
[0]	Oxidation
OTf	Trifluoromethane sulfonyl
PCC	Pyrimidinium chlorochromate
PEG	Polyethylene glycol
Piv	Pivaloyl
PMB	para-Methoxybenzyl
PLE	Pig liver esterase
PMP	para-Methoxyphenyl
<i>i</i> -Pr	Isopropyl
PPTS	Pyridinium para-toluenesulfonate
Pr	Propyl
PS	Polystyrene
РуАОР	(7-Azabenzotriazol-1-yloxy)tris(pyrrolidino)
	phosphonium hexafluorophosphate
РуВОР	Benzotriazole-1-yl-oxytripyrrolidinophosphonium
	hexafluorophosphate
Ру	Pyridine
quant.	Quantitative
RCM	Ring closing metathesis
\mathbf{R}_{f}	Retention factor
rt	Room temperature
S _N Ar	Aromatic nucleophilic substitution
SPPS	Solid-phase peptide synthesis
TABH	Tetramethylammonium triacetoxyborohydride
(R,R)-TADDOL	(4 <i>R</i>)- <i>trans</i> -2,2-dimethyl-tetraphenyl-1,3-dioxolane-
	4,5-dimethanol
TBAF	Tetra-n-butylammonium fluoride
TBS	tert-Butyldimethylsilyl
TCBC	2,4,6-Trichlorobenzoyl chloride
TES	Triethylsilyl
Tf	Triflate
TFA	Trifluoroacetic acid

TIPS or TIS	Triisopropylsilyl
THF	Tetrahydrofuran
TLC	Thin layer chromatography
TMS	Trimethylsilyl
TPAP	Tetra-n-propylammonium perruthenate
t_R	Retention time
Ts	para-Toluenesulfonyl
UV	Ultra-violet
Z	Benzylcarboxylcarbonyl

GENERAL INTRODUCTION

The development of potential drugs relies on both the rational design of new synthetic compounds and/or the modification of existing drugs. Natural products, which are present in all life kingdoms, are also a rich source of novel therapeutic agents and, as such, represent a great source of inspiration.

Among the incredible structural diversity displayed by natural products, we chose to focus the present PhD study on the synthesis of both non-proteinogenic amino acids and marine natural products. Indeed, non-proteinogenic amino acids exhibit particularly valuable biological properties and serve as building blocks for surrogates of proteinogenic amino acids in known peptidic entities thus allowing to modulate their biological behaviour. Marine natural products, on the other hand, provide useful pharmaceuticals but also serve as lead compounds in the design of new drugs.

This thesis, which is structured around these two main topics, contains three Chapters. Chapter I concerns the design and the synthesis of unusual α -amino acids and their use as building blocks in the development of new antimicrobial peptides. The next two Chapters focus on the straightforward and flexible total synthesis of three marine natural products which exhibit promising biological properties: acremolide B, lyngbouilloside and (–)-bitungolide F.

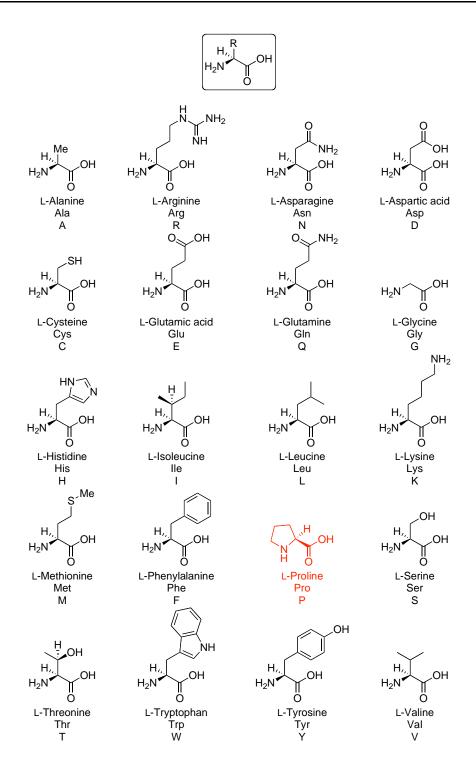
CHAPTER I

Synthesis of unusual *α*-amino acids and study of the effect of their incorporation into antimicrobial peptides

I.1. INTRODUCTION

I.1.1. NATURALLY OCCURING AMINO ACIDS

I.1.1.1. Proteinogenic amino acids


Natural proteins and peptides are linear polyamides, which are ribosomally synthesized under nucleic acid control from the 20 so-called DNA-encoded or proteinogenic α -amino acids. Proteins display a wide variety of chemical, physical and physiological properties in living organisms. As a matter of fact, enzymes as well as several hormones that catalyze and regulate reactions necessary for life are proteins. The properties of proteins are dependent on the amino acid sequence as well as on their three-dimensional structure. Peptides are simply smaller versions of proteins. The main difference between peptides and proteins is essentially the size or length of the α -amino acids backbone. The three-dimensional structures of peptides tend to be less well defined, but many, such as the peptide-hormones vasopressin, oxytocin, and calcitonin, the neuroactive peptides found in the brain, or the toxins of certain animals and bacteria, are biologically important. There are currently several peptides or peptide-based drugs in widespread clinical use. In addition, peptide molecules show much promise as potential therapeutic agents against infectious disorders.¹

¹ Lloyd-Williams, P.; Albericio, F.; Giralt, E. *Chemical approaches to the synthesis of peptides and proteins*, Florida, CRC Press, **1997**.

On the other hand, the DNA-encoded α -amino acids by themselves play a central role in chemistry and biology. Their availability is critical in basic research applications, as well as in industry. About 66% of amino acids produced are used in the food industry as flavour enhancers, 31% as feed additives and the remaining 3% in medicine and cosmetics and as starting materials in the chemical industry.²

In 1820, glycine was isolated from gelatin hydrolyzates. In the following decades, the remaining nineteen proteinogenic α -amino acids were identified (Figure I.1). All except proline have the same basic structure, which incorporates a primary amino group and differs only in the nature of the side chain. Proline, on the other hand, is unique in having a cyclic structure with a secondary amine.

² Bhat, S. V.; Nagasampagi, B. A.; Sivakumar, M. *Chemistry of Natural Products*, Berlin; New York, Springer, **2005**.

Figure I.1.³ The proteinogenic α -amino acids

With the exception of glycine, all are chiral, due to the presence of at least one stereogenic carbon atom, and belong to the L-stereochemical series. The chiral α -amino acids all have the (S) configuration at the α -carbon atom, except cysteine in which it is (R) as a consequence of the manner in which the Cahn-Ingold-Prelog convention

³ The three-letter and one-letter codes for each amino acid are given below the chemical name.

functions.⁴ Two amino acids, threonine and isoleucine, have a second stereogenic center at the β -carbon atom, giving rise to four possible diastereoisomers for each one. In the case of L-threonine this second stereogenic center has the stereochemistry (*R*), while in L-isoleucine, the β -carbon atom has the (*S*) configuration.

I.1.1.2. Non-proteinogenic amino acids

Non-proteinogenic amino acids, also referred to as non-ribosomal or non-coded amino acids, are building blocks that are not incorporated normally into proteins and peptides by the ribosome. Thus, they do not include the twenty DNA-encoded α -amino acids. There are thousands of non-proteinogenic amino acids present in protein and peptide sequences, which also play various important biological roles. Certain non-coded amino acid residues are sometimes found in ribosomally synthesized peptides and proteins as a consequence of some post-translational enzymatic modification.⁵ In addition, in several types of lower organisms, such as algae, sponges, yeast and fungi, peptides are often biosynthesized enzymatically⁶ rather ribosomally. Apart from the proteinogenic amino acids, these peptides may contain other modified amino acids of which many hundreds are not yet known.⁷

The majority of the non-proteinogenic amino acids known today were discovered during the search for new antibiotics in the culture media of microorganisms, or as components of the antibiotics in fungi, seeds, in numerous plants and fruits, and in the body fluids of animals.⁷

The non-proteinogenic amino acids may be divided into several broad classes of which some may simply be enantiomers of the proteinogenic α -amino acids, such as D-alanine found in the cell walls of bacteria and also in higher plants. Others may be methylated derivatives either at the amino group or at the α -carbon atom, such as *N*-methylleucine or aminoisobutyric acid, respectively (Figure I.2).¹ Some are amino acids that have the amino group at a position other than the α -carbon; for example, β -amino acids are key components of a variety of biologically active molecules

⁴ Cahn, R. S.; Ingold, C.; Prelog, V. Angew. Chem. Int. Ed. Engl. 1966, 5, 385-415.

⁵ Hughes, A. B. Amino Acids, Peptides and Proteins in Organic Chemistry. Vol. 1-Origins and Synthesis of Amino Acids, Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA, **2009**.

⁶ (a) Lipmann, F. Science **1971**, 173, 875-884. (b) Kleinkauf, H.; Von Döhren, Eur. J. Biochem. **1996**, 236, 335-351.

⁷ Wagner, I.; Musso, H. Angew. Chem. Int. Ed. Engl. 1983, 22, 816-828.

including the antitumor agent Taxol[®].⁸ Likewise, γ -aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system (CNS). Others γ -amino acids⁹ have an important role in the structure of natural products with antitumor activity such as hapalosin¹⁰ or dolastatin 10¹¹ (Figure I.2).

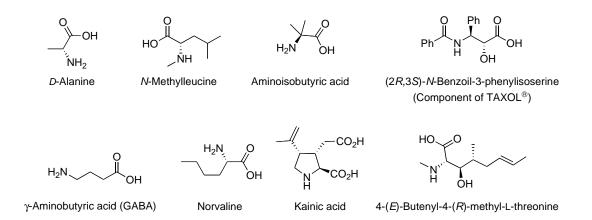


Figure I.2. Natural occurring non-proteinogenic amino acids

 α -Amino acids with modified side chains constitute another wide range of non-proteinogenic amino acids. This category includes the important groups of arylglycines,¹² α , α -disubstituted amino acids,¹³ proline derivatives,¹⁴ biaryl amino acids,¹⁵ aliphatic amino acids,⁷ unsaturated amino acids,⁷ heterocyclic amino acids,⁷ cyclic and bicyclic amino acids,¹⁶ etc... Some of them may be quite simple as in the case of norvaline, an aliphatic α -amino acid isomeric with valine which is a component of an antifungal peptide of *Bacillus subtilis*, or more complex as kainic acid, a proline derivative, which was isolated from the alga *Digenea simplex* and used as a research tool in neuropharmacology.¹⁷ Several of these structural features are often combined in

¹⁰ Stratmann, K.; Burgoyne, D. L.; Moore, R. E.; Patterson, G. M. L. J. Org. Chem. **1994**, *59*, 7219-7226.

⁸ Kingston, D. G. I. J. Nat. Prod. 2000, 63, 726-734.

⁹ Ordoñez, M.; Ctiviela, C. Tetrahedron: Asymmetry 2007, 18, 3-99.

¹¹ Pettit, G. R.; Kamano, Y.; Herald, C. L.; Tuinman, A. A.; Boettner, F. E.; Kizu, H.; Schmidt, J. M.; Baczynskyj, L.; Tomer, K. B.; Bontems, R. J. Am. Chem. Soc. **1987**, 109, 6883-6885.

 ¹² (a) Willians, R. M.; Hendrix, J. A. Chem. Rev. 1992, 92, 889-917. (b) Beenen, M. A.; Weix, D. J.;
 Ellman, J. A. J. Am. Chem. Soc. 2006, 128, 6304-6305. (c) Shang, G.; Yang, Q.; Zhang, X. Angew.
 Chem. Int. Ed. 2006, 45, 6360-6362.

¹³ Vogt, H.; Bräse, S. Org. Biomol. Chem. 2007, 5, 406-430.

 ¹⁴ (a) Van Esseveldt, B. C. J.; Vervoort, P. W. H.; Van Delft, F. L.; Rutjes, F. P. J. T. J. Org. Chem. 2005, 70, 1791-1795. (b) Onomura, O.; Kirira, P. G.; Tanaka, T.; Tsukada, S.; Matsumura, Y.; Demizu, Y. Tetrahedron 2008, 64, 7498-7503.

¹⁵ Feliu, L.; Planas, M. Int. J. Pept. Res. Ther. 2005, 11, 53-97.

¹⁶ (a) Meyer, U.; Bisel, P.; Bräuner-Osborne, H.; Madsen, U.; Höfner, G.; Wanner, K. TH.; Frahm, A. W. *Chirality* **2005**, *17*, 99-107. (b) Trabocchi, A.; Scarpi, D.; Guarna, A. *Amino Acids* **2008**, *34*, 1-24.

¹⁷ Takita, S.; Yokoshima, S.; Fukuyama, T. Org. Lett. **2011**, 13, 2068-2070.

one amino acid such as 4-(*E*)-butenyl-4-(*R*)-methyl-L-threonine, a component of cyclosporine,¹⁸ which can be classified as a *N*-methylated amino acid and also as an unsaturated amino acid (Figure I.2).

Our research group within the Laboratory of Innovation in Organic Products and Processes (LIPPSO) of the University of Girona has also been interested in the design and in the synthesis of non-coded amino acids, focusing on heterocyclic amino acids of type **I**, a class of non-proteinogenic α -amino acid whose chain carries a heterocyclic ring¹⁹ (Figure I.3). In fact, the majority of natural non-coded amino acids reported in literature are members of this class.⁷ Several examples include L-azatyrosine,²⁰ a naturally occurring amino acid isolated from *Streptomyces chibanesis*, which displays antibacterial and anticancer activities, discadenine,²¹ a spore germination inhibitor of the slime mould *Dictyostelium discoideum* or ibotenic acid,²² an active constituent of the psychotropic fly agaric mushroom *Amanita muscaria* that acts as a glutamate receptor agonist (Figure I.3).

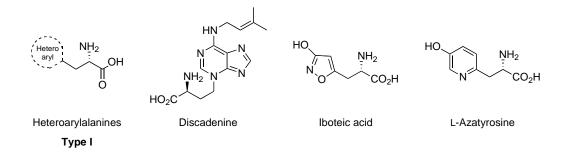


Figure I.3. Natural heterocyclic α -amino acids

Some natural heterocyclic α -amino acids such as willardiine²³ and L-lathyrine²⁴ present a pyrimidine ring in their structure (Figure I.4). Willardiine, which was isolated

¹⁸ Cyclosporin is an immunosuppressant drug widely used in post-allogeneic organ transplant.

¹⁹ Kolar, P.; Petric, A.; Tisler, M. J. Heterocyclic Chem. 1997, 34, 1067-1098.

²⁰ (a) Ye, B.; Burke, T. R. J. Org. Chem. 1995, 60, 2640-2641. (b) Adamczyk, M.; Akireddy, S. R.; Reddy, R. E. Org. Lett. 2001, 3, 3157-3159. (c) Wang, H. P.; Hwang, T. L.; Lee, O.; Tseng, Y. J.; Shu, C. Y.; Lee, S. J. Bioorg. Med. Chem. Lett. 2005, 15, 4272-4274.

²¹ (a) Nomura, T.; Tanaka, Y.; Abe, H.; Uchiyama, M. *Phytochemistry* **1977**, *16*, 1819-1820. (b) Son, J. K.; Ramaligam, K.; Woodard, R. W. *Synthesis* **1988**, 240-242.

 ²² (a) Li, C.; Oberlines, N. H. *Life Sci.* 2005, 78, 532-538. (b) Jørgensen, C. G.; Clausen, P. R.; Hansen, K. B.; Bräuner-Osborne, H.; Nielsen, B; Metzler, B.; Kehler, J.; Krogsgaard-Larsen, P.; Madsen, U. *Org. Biomol. Chem.* 2007, *5*, 463-471.

²³ (a) Jane, D.; Hoo, K.; Kamboj, R.; Deverill, M.; Bleakman, D.; Mandelzys, A. J. Med. Chem. 1997, 40, 3645-3650. (b) Dolman, N. P.; More, J. C. A.; Alt, A.; Knauss, J. L.; Pentikäinen, T. O.; Glasser, R. C.; Bleakman, D.; Mayer, M. L.; Collingridge, G. L.; Jane, D. E. J. Med. Chem. 2007, 50, 1558-1570.

from the seeds of *Acacia willardiana*. Recently, and N^3 -substituted willardiine analogs were shown to be potent and selective kainate receptor antagonists.^{23b} L-Lathyrine, on the other hand, was isolated from the seeds of *Lathyrus tingitanus* and displays a diverse range of bioactivity such as growth inhibition, antitumor properties, and a hypoglycaemic activity.

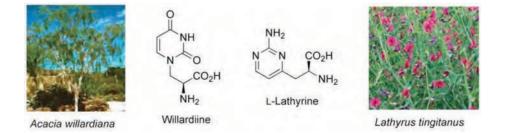
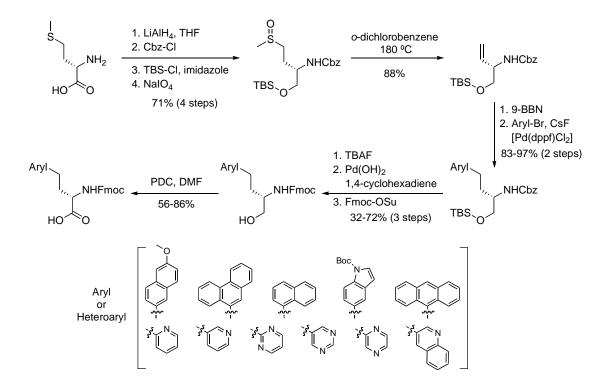


Figure I.4. Pyrimidine containing natural amino acids

I.1.2. UNNATURAL AMINO ACIDS

The non-proteinogenic α -amino acids found in nature provide us with some of the most powerful molecular tools for biology and medicine known today.⁵ Antibiotics, immunosuppressant, anticancer, antivirals, anti-inflammatory are a few of the diverse biological properties of non-proteinogenic amino acids. Consequently, synthetic non-proteinogenic amino acids, also called unnatural amino acids, have emerged as important synthetic targets.²⁵ Many of these unnatural amino acids are critical components in pharmaceuticals and developmental drugs. Furthermore, their incorporation in protein and peptide sequences has allowed to develop new mechanistic probes or to improve the activity, stability, bioavailability and selectivity of peptide-containing therapeutic agents.


On the other hand, the chirality of α -amino acids is critically essential for molecular recognition and biological activity. Thus, in recent years many stereoselective

²⁴ (a) Brown, E. G.; Turan, Y. *Phytochemistry* **1996**, *43*, 1029-1031. (b) Adlington, R. M.; Baldwin, J. E.; Catterick, D.; Pritchard, G. J. *Chem. Commun.* **1997**, 1757-1758.

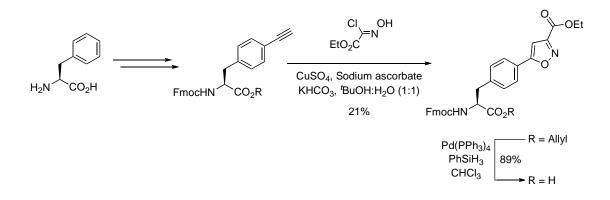
²⁵ (a) Kaiser, J.; Kinderman, S. S.; Van Esseveldt, B. C. J.; Van Delft, F. L.; Schoemaker, H. E.; Blaauw, R. H.; Rutjes, F. P. *Org. Biomol, Chem.* **2005**, *3*, 3435-3467. (b) Scott, W. L; Alsina, J.; Audu, C. O.; Babaev, E.; Cook, L.; Dage, J. L.; Goodwin, L. A.; Martynow, J. G.; Matosiuk, D.; Royo, M.; Smith, J. G.; Strong, A. T.; Wickizer, K.; Woerly, E. M.; Zhou, Z.; O'Donnell, M. J. *J. Comb. Chem.* **2009**, *11*, 14-23.

methods²⁶ to access new synthetic enantiopure unnatural α -amino acids have been reported. These methods are mainly based on the enantioselective transformation of prochiral starting materials or by modifying natural α -amino acids.⁵

In this sense, standard chemical modifications of amino acids with functionalities in the side chains, such as serine, cysteine, tyrosine, lysine, aspartic or glutamic acid,²⁷ allow a straightforward access to a wide variety of unnatural amino acids including heterocyclic α -amino acids. For example, Göbel *et al.* reported an efficient synthesis of a collection of unnatural aryl and heteroaryl amino acids starting from methionine through Suzuki couplings with various aryl halides (Scheme I.1).²⁸

Scheme I.1. Synthesis of aryl and heteroaryl unnatural amino acids

More recently, Yao and co-workers reported the synthesis of a novel unnatural α -amino acid with an isoxazole ring in its side chain that mimics phosphotyrosine.²⁹ The final Fmoc-protected form of this unnatural α -amino acid was synthesized in


²⁶ (a) Duthaler, R. O. *Tetrahedron* 1994, 50, 1539-1650. (b) Myers, A. G.; Gleason, J. L.; Yoon, T.; Kung, D. J. Am. Chem. Soc. 1997, 119, 656-673. (c) Hruby, V. J.; Soloshonok, V. A. Asymmetric synthesis of novel sterically constrained amino acids. Symposia-in-print; Tetrahedron; Eds.; 2001, 57, 6329-6650. (d) Perdih, A.; Sollner, M. D. Curr. Org. Chem. 2007, 11, 801-832. (e) Nájera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584-4671. (f) Haldar, D. Curr. Org. Synth. 2008, 5, 61-80.

²⁷ Blayo, A.-L.; Brunel, F.; Martinez, J.; Fehrentz, J.-A. Eur. J. Org. Chem. 2011, 4293-4297.

²⁸ Krebs, A.; Ludwig, V.; Pfizer, J.; Dürner, G.; Göbel, M. W. Chem. Eur. J. 2004, 10, 544-553.

²⁹ Ge, J.; Wu, H.; Yao, S. Q. Chem. Commun. **2010**, 46, 2980-2982.

several steps starting from the phenylalanine. The key step in this sequence was the isoxazole ring formation *via* a 1,3-dipolar cycloaddition reaction (Scheme I.2).

Scheme I.2. Synthesis of a Fmoc-protected unnatural phenylalanine derivative

I.1.3. NATURAL AND SYNTHETIC PYRIMIDINES

The structural feature common to the most of the bioactive non-proteinogenic α -amino acids is the presence of a heterocycle moiety in the side chain, and of special interest is the presence of a pyrimidine or pyrimidine derivative as the main pharmacophore group.

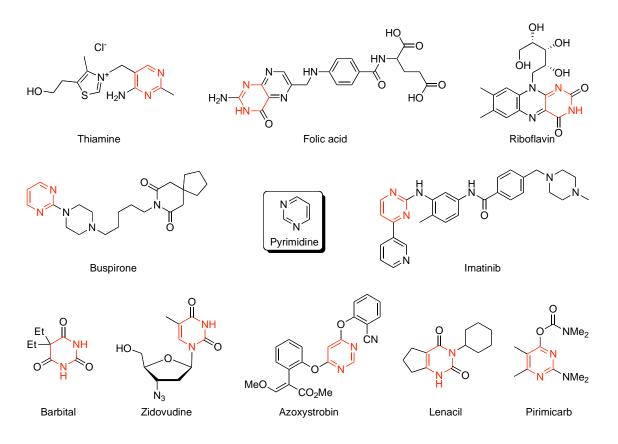


Figure I.5. Natural and pharmaceuticals pyrimidine-based products

Pyrimidine and its various oxo forms are crucial in biological systems due to their presence in all naturally occurring nucleobases. Since the discovery of the first pyrimidine derivative in 1818, there has been great interest in this type of heterocycle.³⁰ Apart from nucleobases, the pyrimidine ring is present in some of the most important biologically active compounds such as thiamine, folic acid or riboflavin (Figure I.5).³¹ In addition, synthetic pyrimidine derivatives have important medicinal³² and agrochemical³³ properties. One of the earliest series of pyrimidine pharmaceuticals is represented by the hypnotic barbiturates such as barbital (Figure I.5). Other examples of pyrimidine-based pharmaceuticals include buspirone, used to treat anxiety disorders, the antiviral agent zidovudine, and imatinib (Gleevec[®]), a tyrosine kinase inhibitor used in the treatment of certain types of cancers. Azoxystrobin, lenacil and pirimicarb are

³⁰ (a) Von Angerer, S. Science of Synthesis. Six-Membered Hetarenes with Two Identical Heteroatoms: Pyrimidines, Thieme, Stuttgart, **2003**, *16*, 379-572. (b) Rewcastle, G. W. Comprehensive Heterocyclic Chemistry III: Pyrimidines and their Benzo Derivatives, Elsevier, **2008**, 8, 117-272.

³¹ Lagoja, I. M. Chemistry & Biodiversity 2005, 2, 1-50.

³² Jain, K. S.; Chitre, T. S.; Miniyar, P. B.; Kathiravan, M. K.; Bendre, V. S.; Veer, V. S.; Shahane, S. R.; Shishoo, C. J. *Curr. Sci.* **2006**, *90*, 793-803.

³³ Laimberth, C. *Heterocycles* **2006**, *68*, 561-603.

examples of commercially available pyrimidine-based fungicides, herbicides and insecticides, respectively (Figure I.5).

I.1.3.1. Tautomeric equilibrium in pyrimidine ring

Tautomerism generally occurs in pyrimidines when substituted by hydroxyl, thiol or amino groups. Both 2- and 4-hydroxypyrimidine can exist as their hydroxyl or keto tautomeric form, and the proportion of each is highly dependent on the state of the molecule. In the gas phase, for instance, 2-hydroxypyrimidine exists primarily in the hydroxyl form (Figure I.6, Eq 1) whereas the 4-isomer exists predominantly in the oxo form (Figure I.6, Eq 2). Finally, solvation tends to shift the equilibrium toward the oxo form for both isomers.

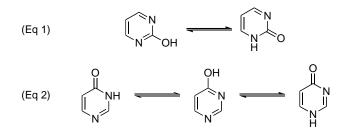


Figure I.6. Tautomeric equilibrium of 2- and 4-hydroxypyrimidine

The stability of the thiol tautomers of mercaptopyrimidines compared to the corresponding thione forms is considerably higher than for hydroxypyrimidines, although the thione is still dominant in solution. However, 2- and 4-aminopyrimidines exist predominantly in the amino form rather than the imino form.³⁴ Consequently, these equilibriums convert pyrimidines with tautomerizable substituents into tri or tetradentate nucleophiles under alkylation or acylation conditions.^{30b}

I.1.3.2. Nucleophilic substitution reaction in pyrimidine ring

A heteroaromatic nucleophilic *ipso*-substitution reaction is commonly used to introduce molecular diversity in many electron-deficient heterocycles such as pyrimidines. Therefore, halopyrimidines and especially chloropyrimidines are important intermediates in the synthesis of pyrimidine derivatives.

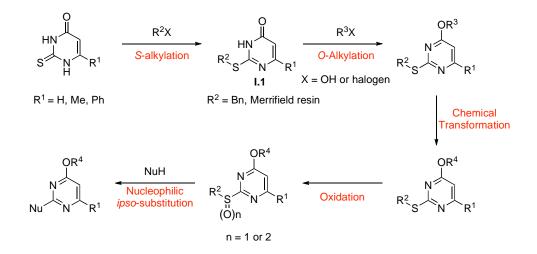
³⁴ (a) Stanovnik, B.; Tisler, M.; Katritzky, A. R.; Denisko, O. V. *Advances in Heterocyclic Chemistry*, San Diego, Elsevier, **2006**. (b) Freeman, F.; Po, H. N. *J. Phys. Chem. A* **2006**, *110*, 7904-7912.

As mentioned previously, pyrimidine is a π -deficient heterocycle. The two nitrogen atoms of the pyrimidine ring exert a strong electron-withdrawing effect that is comparable to the nitro groups in 1,3-dinitrobenzene. This effect particularly reduces electron densities at the 2-, 4-, and 6-positions making these positions susceptible to a nucleophilic attack, whereas electrophilic reactions can take place at the 5-position or on the nitrogen atoms.³⁵ Consequently, halogens in all ring positions can undergo nucleophilic substitution in the presence of a wide variety of nucleophiles (alcohols, amines, thiols, alkoxys, etc...), but C2, C4 and C6 are more favoured than C5. The reaction conditions strongly depend on the substituents attached on the pyrimidine ring. Electron-donating substituents decrease the nucleophilic displacement rate (Scheme I.3, Eq 1), whereas electron-withdrawing substituents have the opposite effect (Scheme I.3, Eq 2).

$$(Eq 1) \qquad \overbrace{N}^{OMe} \qquad \overbrace{EtOH, \Delta}^{OMe} \qquad \overbrace{N}^{OMe} \qquad \overbrace{N}^{Cl} \qquad \overbrace{N}^{NH_3} \qquad \overbrace{R}^{l} \qquad (Eq 2)$$

Scheme I.3. Nucleophilic substitution of substituted-chloropyrimidine

I.1.3.3. Background to the research group

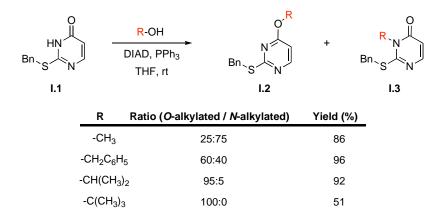

During the last few years, our laboratory has been developing efficient methods for the preparation of libraries of pyrimidinyl compounds with a high degree of molecular diversity through solution or solid-phase synthesis. These new synthetic strategies are based either on the selective *O*-alkylation of 2-(alkylsulfanyl)-4(3*H*)-pyrimidinones (**I.1**) with alkyl halides under basic conditions or on a Mitsunobu reaction, followed by subsequent chemical transformations at position 4 of the pyrimidine ring and, a final nucleophilic *ipso*-substitution step of the oxidized sulfur with a variety of nucleophiles (Scheme I.4).³⁶ The starting compound **I.1** was easily obtained by selective *S*-alkylation of the corresponding 2-thiouracil derivatives. Indeed, it is well known that alkylation of

³⁵ Eicher, T.; Hauptmann, S. *The chemistry of heterocycles*, Weinheim, Wiley-VCH, **2003**.

³⁶ (a) Font, D.; Heras, M.; Villalgordo, J. M. *Synthesis* **2002**, 1833-1842. (b) Font, D.; Heras, M.; Villalgordo, J. M. *J. Comb. Chem.* **2003**, *5*, 311-321. (c) Font, D.; Linden, A.; Heras, M.; Villalgordo, J. M. *Tetrahedron* **2006**, *62*, 1433-1443. (d) Font, D.; Heras, M.; Villalgordo, J. M. *Tetrahedron* **2008**, *64*, 5226-5235.

tautomeric thiones invariably gives the S-alkyl derivative as the N-, O-, and Calkylation are less rapid.

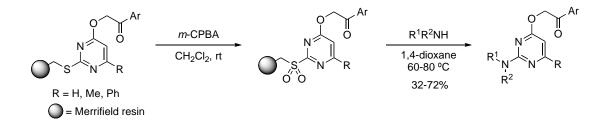
The two key steps in this synthetic strategy are the selective O-alkylation of 4(3H)-pyrimidinones **I.1** and the nucleophilic *ipso*-substitution reaction of the oxidized sulfur.



Scheme I.4. Synthetic strategy for the preparation of pyrimidinyl compounds

I.1.3.3.1. Selective O-alkylation of 4(3H)-pyrimidinones

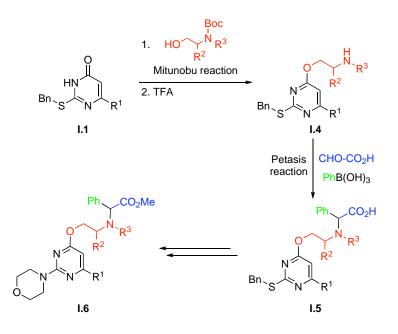
It is well accepted that the chemoselectivity in the alkylation of 4(3H)-pyrimidinones is largely governed by the nature of the alkylating agent, the reaction conditions (solvent, base, etc...) and the stereoelectronic effects induced by the adjacent substituents.³⁷ However, *N*-alkylation is sterically more demanding than *O*-alkylation. The reaction rate of nitrogen decreases relatively to that of oxygen as the bulk of the alkylating reagent increases. In good agreement with these facts, the selective *O*-alkylation of 2-(alkylsulfanyl)-4(3*H*)-pyrimidinones **I.1** can be achieved using bulky alkyl halides or bulky alcohols when the reaction are carried out under basic or Mitsunobu conditions, respectively (Scheme I.5).³⁶


³⁷ (a) Jonak, J. P.; Hopkins, G. C.; Minnemeyer, H. J.; Tieckelmann, H. J. Org. Chem. **1970**, *35*, 2512-2516. (b) Gambacorta, A.; Farah, M. E.; Tofani, D. *Tetrahedron* **1999**, *55*, 12615-12628.

Scheme I.5. Alkylation of 4(3H)-pyrimidinones I.1 under Mitsunobu conditions

I.1.3.3.2. Nucleophilic ipso-substitution of 2-alkylsulphonylpyrimidines

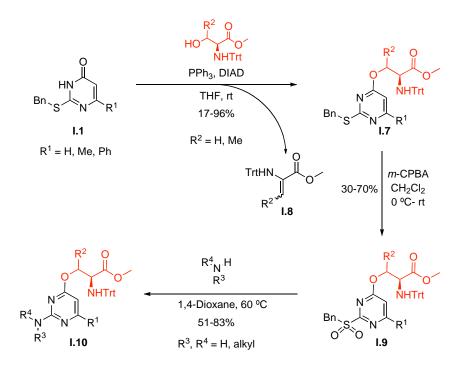
Pyrimidines bearing an alkylsulfinyl-, an arylsulfinyl-, an alkylsulfonyl- or an arylsulfonyl substituent were shown to be equally or more reactive than the corresponding halogen-substituted pyrimidines (Cl or Br).³⁸ In the synthetic method developed in our laboratory (Scheme I.4), the nucleophilic *ipso*-substitution reaction was used not only to introduce molecular diversity at the C2-position of the pyrimidine ring but also as a cleavage step when the reactions were carried out on solid support (Scheme I.6).^{36b}


Scheme I.6. Solid-phase synthesis of C4 substituted 2-aminopyrimidines

I.1.3.3.3. Synthesis of pyrimidinyl α -amino acids

Following this method, the synthesis of novel *N*-pyrimidinyl arylglycines of type **I.6** was recently reported by our laboratory. Thus, when the readily available 2-benzylsulfanyl-4(3H)-pyrimidinones **I.1** were treated with different primary and

³⁸ (a) Barlin, G. B.; Brown, W. V. J. Chem. Soc. (B) **1967**, 648-650. (b) Barlin, G. B.; Brown, W. V. J. Chem. Soc. (B) **1967**, 736-740.


secondary *N*-Boc aminoalcohols under Mitsunobu conditions, 4-alkoxypyrimidines **I.3** were obtained in good yields. Removal of the *N*-Boc protecting group afforded the corresponding amines **I.4**, which were engaged in a Petasis reaction with glyoxylic acid and phenylboronic acid. Nucleophilic *ipso*-substitution of the activated sulfur with morpholine eventually furnished the corresponding *N*-pyrimidinyl arylglycines **I.6** (Scheme I.7).^{36d}

Scheme I.7. Synthesis of *N*-pyrimidinyl arylglycines I.6

Apart from the methods used to obtain willardiine and lathyrine analogues (Figure I.4), there are few useful synthetic methods that have been reported in the literature for the synthesis of new unnatural α -amino acids carrying a pyrimidine ring in their side chain. In this sense, our laboratory has begun research to synthesize novel pyrimidin-4-yl α -amino acids following the method previously described. The incorporation of an amino acid residue at the C4-position of the pyrimidine ring was achieved *via* a Mitsunobu reaction between 4(3*H*)-pyrimidinones **I.1** and the side chain of *N*-trityl methyl serinate or *N*-trityl methyl threoninate. As shown below, Mitsunobu reactions between pyrimidinones **I.1** and bulky alcohols were completely regioselective in favour of *O*-alkylated derivatives. Subsequent oxidation of the resulting compounds **I.7** to the corresponding sulfone derivatives with *m*-CPBA followed by treatment with primary and secondary amines gave the corresponding target pyrimidines **I.10** (Scheme I.8).

However, this method was limited by the Mitsunobu reaction to α -amino acids bearing a hydroxyl group on the side chain (serine and threonine). Moreover, under Mitsunobu conditions serine and threonine amino acids could give the well-documented β -elimination reaction to the dehydroalanine derivatives **I.8**.³⁹ In a later study, Cherney *et al.* demonstrated that *N*-phenylfluorenyl or *N*-trityl-protected serine could be engaged in a Mitsunobu reaction whereas *N*-Boc-protected serine methyl ester yielded a large amount of dehydroalanine **I.8** under otherwise identical conditions. In good agreement with the literature,⁴⁰ this side reaction could be circumvented using the *N*-trityl serine methyl ester instead of the *N*-Boc derivative and the expected compounds **I.7** were isolated in high yields as the sole reaction products. However, in the case of *N*-trityl threonine methyl ester the desired compound **I.7** was obtained in only a 17% yield along with a large amount of the dehydroalanine **I.8** (Scheme I.8).

Scheme I.8. Synthesis of pyrimidin-4-yl α-amino acids I.10

³⁹ Mitsunobu, O. Synthesis **1981**, 1-28.

⁴⁰ Cherney, R. J.; Wang, L. J. Org. Chem. **1996**, 61, 2544-2546.

I.1.4. ANTIMICROBIAL PEPTIDES

Plant diseases caused by pathogenic microorganisms are currently one of the major factors limiting worldwide crop production.⁴¹ Their control requires the continued use of pesticides based mainly on copper compounds and antibiotics.⁴² Although antibiotics are highly efficient, they are not authorized in several countries as they accumulate in soils and water and affect the environment and public health.⁴³ In addition, it has been reported that these compounds evoke resistance in some plant pathogens.⁴⁴ Therefore, there is a need for new compounds with low environmental impact, broad-spectrum activity, reasonable bacterial selectivity and low eukaryotic cytotoxicity. Antimicrobial peptides (AMPs) fulfil these requirements, therefore a great deal of scientific effort has been invested in studying their application in human, veterinary and plant disease control.⁴⁵

Antimicrobial peptides, also called host-defence peptides, have evolved in almost every class of living organism as a defence mechanism against invading microorganisms. AMPs are components of the innate system and have been found in virtually all forms of life ranging from microorganisms to plants,⁴⁶ invertebrates,⁴⁷ and vertebrates including mammals.⁴⁸

In general, AMPs are small (between 6 and 59 amino acid residues), cationic and have the ability to adopt an amphipathic conformation in which positively charged and hydrophobic groups segregate onto opposing faces of an α -helix, a β -sheet, or other secondary structures.⁴⁸ Examples of AMPs with an α -helix structure are cecropins, isolated from the giant silk moth *Hyalophora cecropia*, melitin found in the venom of the honeybee *Apis mellifera* and magainins isolated from the skin secretions of the frog *Xenopus laevi*. An important family of AMPs with a β -sheet structure are the

⁴¹ Agrios, G. N. *Plant Pathology*, 5th Ed., London: Elseiver Academic Press; 2005.

⁴² (a) McManus, P. S.; Stockwell, V. O.; Sundin, V. O.; Jones, A. L. Annu. Rev. Phytopathol. **2002**, 40, 443-465. (b) Vidaver, A. K. Clin. Infect. Dis. **2002**, 34, S107-110.

⁴³ Karabelas, A. J.; Plakas, K. V.; Solomou, E. S.; Drossou, V. O.; Sarigiannis, D. A. *Environ. Int.* **2009**, *35*, 1096-1107.

⁴⁴ Loper, J. E.; Henkels, M. Plant. Dis. **1991**, 75, 287-290.

⁴⁵ (a) Hancock, R. E. W.; Sahl, H. G. *Nat. Biotechnol.* **2006**, *24*, 1551-1557. (b) Montesinos, E. *FEMS Microbiol. Lett.* **2007**, *270*, 1-11.

⁴⁶ García-Olmedo, F.; Molina, A.; Alamillo, J. M.; Rodríguez-Plalenzuela, P. *Biopolymers (Peptide Science)* **1998**, *47*, 479-491.

⁴⁷ Hancock, R. E. W.; Sahl, K. L.; Mookherjee, N. *Immunobiology* **2006**, *211*, 315-322.

⁴⁸ Jenssen, H.; Hamill, P.; Hancock, R. E. W. Clin. Microbiol. Rev. **2006**, *19*, 491-511.

defensins⁴⁹ such as α -defensins and β -defensins, which are distributed in mammals (Table I.1).

Structure	Peptide	Peptide sequence ^a	Source
α-Helical	Cecropin A	$KWKLFKKIEKVGQNIRDGIKAGPAVAVVGQATQIAK-NH_2$	Silk moth
	Melitin	GIGAVLKVLTTGLPALISWIKRKRQQ-NH ₂	Bee
	Magainins	GIGKFLHSAKKFGKAFVGEIMNS	Frog
β-Sheet	α-Defensin (HNP3)	DC1YC2RIPAC3IAGERRYGTC2IYQGRLWAFC3C1	Human
	β-Defensin (TAP)	NPVSC ₁ VRNKGIC ₂ VPIRC ₃ PGSMKQIGTC ₂ VGRAVKC ₁ C ₃ RKK	Bovine

Table I.1. Selected examples of natural antimicrobial peptides

^a Subscript numbers represent amino acids joined by disulfide bridges.

The biological activity of AMPs has been largely associated with their interaction with membranes. Although the exact mechanism of action has not been clearly unveiled, there is general agreement that amphipathicity of AMPs is essential for their membrane permeabilization involved in cell death.⁵⁰ Particularly, four mechanisms are proposed in the literature (Figure I.6). In general, all these models propose that positively charged basic amino acids of AMPs first interact with the negatively charged acidic phospholipids of the cell membrane followed by insertion of the hydrophobic side chains of the AMPs into the hydrophobic core of the membrane pores composed of the bundle of amphipathic helices according to the "barrel-stave model". In the second case, called "carpet mechanism", peptides act as a detergent and disrupt the membrane. In the third case, lipids are inserted between helices to form a mixed pore according to the "toroidal pore model". The last model, called "disordered toroidal pore

⁴⁹ Ganz, T. Nat. Rev. Immunol. 2003, 3, 710-720.

⁵⁰ (a) Yeaman, M. R.; Yount, N. Y. *Pharmacol. Rev.* **2003**, *55* (1), 27-55. (b) Brogden, K. A. *Nat. Rev. Microbiol.* **2005**, *3*, 238-250.

model", is a recent modification of the toroidal pore model in which peptides adopt a less-rigid conformation and orientation (Figure I.7).⁵¹



Figure I.7. Mechanisms of AMP-mediated membrane disruption (Taken from *Nat. Rev. Microbiol.* 2009, 7, 245-250)

Nevertheless, whatever the mechanism involved, the first step is the peptide adsorption at the membrane surface. Consequently, it seems difficult for bacteria to develop resistance to AMPs because this would require dramatic changes in the phospholipid membrane composition and/or organization.⁵²

Another interesting property of AMPs is their selectivity for prokaryotic membranes over mammalian and plant membranes. On the basis of the above theory, the selectivity for bacterial in front of mammalian cells is attributed to both AMP characteristics due to their amphipathicity, and membrane features. Concerning the membrane, two factors have been described as being involved in AMP selectivity. First, the presence of membrane-stabilizing sterols protects cells from the disruptive effect of AMPs. Therefore, mammalian membranes, which are enriched with sterols, are less susceptible to AMPs than are bacterial membranes, which do not incorporate sterols. Second, bacterial cells contain a high percentage of negatively charged phospholipids, while

⁵¹ Melo, M. N.; Ferre, R.; Castanho, M. A. R. B. Nat. Rev. Microbiol. 2009, 7, 245-250.

⁵² Zaloff, M. Nature 2002, 415, 389-395.

mammalian cells contain a much higher concentration of zwitterionic phospholipids (Figure I.8).⁵³

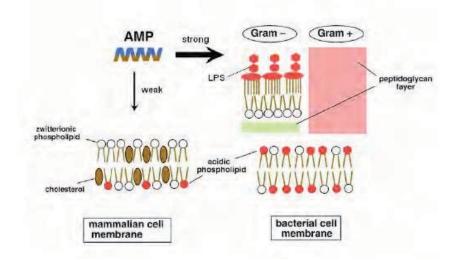
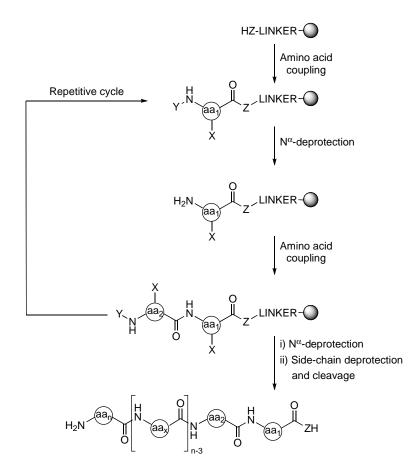


Figure I.8. Molecular basis of AMP cell selectivity (Adapted from *Biochim. Biophys. Acta* 2009, *1788*, 1687-1692)


I.1.4.1. Solid-phase peptide synthesis

Since its introduction by Merrifield in 1963,⁵⁴ solid-phase peptide synthesis (SPPS) has been used in the production of many peptides containing up to 50 amino acids in acceptable yields and purities. Nowadays, solid-phase synthesis is the most common method for the preparation of peptides but also small proteins, but also of oligosaccharides, oligonucleotides and a huge number of diverse organic compounds.

SPPS essentially consists of the covalent attachment of the *C*-terminal growing peptide chain onto an insoluble solid support. SPPS offers several advantages over the traditionally solution-phase procedures, such as high efficiency and straightforward purification steps. Briefly, the main steps of SPPS consist of: i) attachment of the first conveniently-protected amino acid onto the solid support which incorporates a linker or a spacer to facilitate the final release of the peptide; ii) selective N^{α} -deprotection of the previously incorporated amino acid; iii) cycles of coupling and N^{α} -deprotection steps of the corresponding protected amino acids until the desired peptide is achieved; iv) final

⁵³ Matsuzaki, K. Biochim. Biophys. Acta 2009, 1788, 1687-1692.

⁵⁴ Merrifield, R. B. J. Am. Chem. Soc. **1963**, 85, 2149-2154.

deprotection and release of the peptide from the solide support to obtain the desired peptide (Scheme I.9).

Scheme I.9. General strategy of SPPS. X: amino acid side-chain protecting group; Y: N^{α} -protecting group; Z: O, NH.

I.1.4.1.1. The solid support

The solid support consists of an insoluble and therefore filterable polymer, which should be mechanically robust, inert to all reagents and reaction conditions, and allow fast solvent and reagent diffusion and access to all reactive sites. In addition, the solid support must contain a functionality that enables efficient anchoring of the linker or the first amino acid. Nowadays, the most widely used solid supports are resin beads made from cross-linked polystyrene (PS), polyacrylamide, and polyethylene glycol (PEG) grafted onto a cross-linked polystyrene.⁵⁵

⁵⁵ Kate, S. A.; Albericio, F. *Solid-phase synthesis a practical guide*, New York, Marcel Dekker, Inc. **2000**.

I.1.4.1.2. The linker

The linker is a bifunctional molecule that is bound to both the solid support and the first amino acid of the peptide sequence. One side of the linker is irreversibly anchored to the solid support while the other side serves as the attachment of the first amino acid and behaves as a cleavable protecting group for the final release of the peptide. They are commonly categorized according to their cleavage conditions and their resulting *C*-terminus functionality.

I.1.4.1.3. Protecting groups

In order to control the formation of the desired peptide amide bond, protecting groups are essential for masking the functional groups that are not involved in the reaction. Temporary protecting groups are required for the protection of N^{α} -amino and permanent protecting groups for functional groups within the amino acid side chains. The latter must be stable to cleaving conditions of the temporary groups and are usually safely removed at the end of the synthesis during the peptide cleavage step.

Structure	Name	Removal
O pre-	9-Fluorenylmethoxycarbonyl (Fmoc)	Piperidine or DBU
U C C C C C C C C C C C C C C C C C C C	<i>tert</i> -Butyloxycarbonyl (Boc)	Concentrated TFA
	<i>tert</i> -Butyl (<i>t</i>-Bu)	Concentrated TFA
r r r	Benzyl (Bn)	HF or H ₂
O C C C C C C C C C C C C C C C C C C C	Benzyloxycarbonyl (Z)	HF or H ₂

Table I.2. Some repr	esentative p	protecting	groups an	nd removal	conditions
----------------------	--------------	------------	-----------	------------	------------

The most common strategies for SPPS are the *tert*-butyloxycarbonyl (Boc)/benzyl $(Bn)^{54}$ and the 9-fluorenylmethoxycarbonyl (Fmoc)/*tert*-butyl (*t*-Bu).⁵⁶ Unlike the Boc/Bn strategy, which uses a regime of graduated acidolysis to achieve selective removal of the temporary and permanent protection, the Fmoc/*t*-Bu method is based on an orthogonal protecting group strategy, involving the base-labile Fmoc group for the protection of the amine residue and the acid-labile *t*-Bu and its derivatives for the side-chain functional groups (Table I.2).

I.1.4.1.4. Coupling reagents

Coupling reagents are essential for the formation of the peptide amide bond under mild conditions as they activate the carboxyl group of the amino acid to be incorporated thus facilitating its reaction with the N^{α} -amino group of the residue anchored onto the solid support. Nowadays, the most common coupling reagents for SPPS are carbodiimides, aminium/uronium and phosphonium salts (Figure I.9).⁵⁷

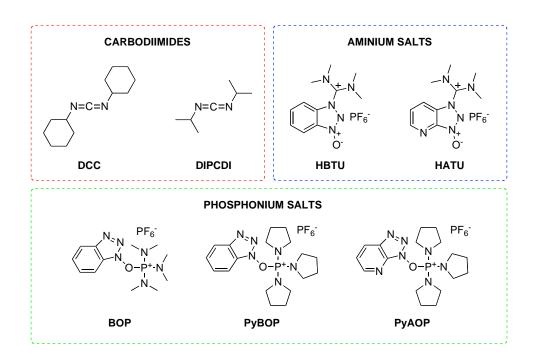


Figure I.9. Some representative coupling reagents

⁵⁶ Carpino, L. A.; Han, G. Y. J. Am. Chem. Soc. 1970, 92, 5748-5749.

⁵⁷ (a) Valeur, E.; Bradley, M.; *Chem. Soc. Rev.* **2009**, *38*, 606-631. (b) Han, S-Y.; Kim, Y-A. *Tetrahedron* **2004**, *60*, 2447-2467.

I.1.4.2. Background to the research group

The excellent properties displayed by AMPs, such as a wide spectrum of activity, selectivity towards microbial targets, and a low frequency in developing microbial resistance, have prompted their use in plant protection.⁵⁸ In this sense, our research group LIPPSO in collaboration with the Laboratory of Plant Pathology, Institute of Food and Agricultural Technology (CIDSAV-CerTA) of the University of Girona has been involved in a research project designed to identify short synthetic peptides with specific activity against economically important plant pathogenic bacteria. Their efforts are mainly focused on Erwinia amylovora, a gram-negative bacterium which is the causal agent of fire blight, a devastating bacterial disease that affects several plant species, mainly members of the rosaceous family, e.g. fruit trees such as pear and apple, and ornamental plants.⁵⁹ Moreover, they are also interested in developing new control methods against Xanthomonas vesicatoria, which is a gram-negative bacterium responsible for bacterial spot of tomato and pepper,⁶⁰ and *Pseudomonas syringae*, which is also a gram-negative bacterium that infects a wide range of deciduous fruit trees, such as pear, cherry, peach and plumb as well as other woody plant species.⁶¹ Until now, an effective method to treat these plant diseases has not been described.

Our laboratory has prepared a 125-member library of synthetic linear undecapeptides, which are cecropin A-melitin hybrids.⁶² As noted above, these peptides are naturally occurring AMPs that present an α -helix structure. Cecropin A displays a powerful antibacterial activity against mainly all gram-negative bacteria and some gram-positive bacteria, and does not have cytotoxic effects against human erythrocytes (hemolytic activity) and other eukaryotic cells, but is not stable in plant extracts due to protease degradation. Melitin also displays a powerful, broad-spectrum antimicrobial activity, but is highly hemolytic (Table I.1).

The synthetic peptides were designed using a combinatorial chemistry approach by incorporating amino acids possessing various degrees of hydrophobicity and

⁵⁸ Marco, J. F.; Muñoz, A.; Perez-Payá, E.; Misra, S.; López-Garcia, B. Annuv. Rev. Phytopathol. 2008, 46, 273-301.

⁵⁹ (a) Vanneste, J. *Fire blight: the disease and its causative agent Erwinia amylovora*. New York: CABI Publishing; **2000**. (b) Cabrefiga, J.; Montesinos, E. *Phytopathology* **2005**, *95*, 1430-1437.

⁶⁰ Leyns, F.; De Cleene, M.; Swings, J.; De Ley, J. Bot. Rev. **1984**, 50, 305-355.

⁶¹ Moragrega, C.; Llorente, I.; Manceau, C.; Montesinos, E. Eur. J. Plant. Pathol. 2003, 109, 319-326.

⁶² (a) Ferre, R.; Badosa, E.; Feliu, L.; Planas, M.; Montesinos, E.; Bardají, E. *Appl. Environ. Microbiol.* **2006**, 72, 3302-3308. (b) Badosa, E.; Ferre, R.; Planas, M.; Feliu, L.; Besalú, E.; Cabrefiga, J.; Bardají, E.; Montesinos, E. *Peptides* **2007**, *28*, 2276-2285.

hydrophilicity at positions 1 and 10 and by varying the *N*-terminus. The general structure of the synthesized undecapeptides is $\mathbf{R}-\mathbf{X}^{1}\mathbf{K}\mathbf{L}\mathbf{F}\mathbf{K}\mathbf{K}\mathbf{I}\mathbf{L}\mathbf{K}\mathbf{X}^{10}\mathbf{L}-\mathbf{N}\mathbf{H}_{2}$ where $\mathbf{R} =$ H, Ac, Bn, Bz, Ts; $\mathbf{X}^{1} =$ Lys, Leu, Trp, Tyr, Phe and $\mathbf{X}^{10} =$ Lys, Val, Trp, Tyr, Phe (Table I.3). This peptide library was screened for *in vitro* growth inhibition of *E. amylovora*, *X. vesicatoria* and *P. syringae*. Hemolytic activity and stability towards protease degradation of the most active peptides were also examined. Eight peptides with a good balance between antibacterial and hemolytic activities were identified (Table I.3). The most promising peptides were then tested *ex vivo* by evaluating their preventive effect of inhibition of *E. amylovora* infection in detached apple and pear flowers. The peptide H-KKLFKKILKYL-NH₂ (**BP100**) showed an efficacy *ex vivo* comparable to that of streptomycin, an antibiotic currently used for fire blight control.

Peptide		MIC ^a (µM)			Hemolysis (%) ^b	
Code	Sequence	Ps ^c	Xv^{c}	Ea ^c	50 µM	150 µM
BP76	KKLFKKILKFL-NH ₂	2.5-5.0	2.5-5.0	2.5-5.0	3±1.0	34±2.1
BP66	FKLFKKILKFL-NH ₂	5.0-7.5	2.5-5.0	2.5-5.0	9±2.2	63±5.9
BP77	Ac-KKLFKKILKFL-NH ₂	5.0-7.5	<2.5	5.0-7.5	6±0.6	40±3.8
BP81	LKLFKKILKFL-NH ₂	2.5-5.0	<2.5	2.5-5.0	10±1.3	65±1.5
BP100	KKLFKKILKYL-NH ₂	2.5-5.0	5.0-7.5	2.5-5.0	3±0.1	22±2.8
BP105	LKLFKKILKYL-NH ₂	5.0-7.5	2.5-5.0	5.0-7.5	14±1.6	91±6.2
BP125	Ts-YKLFKKILKKL-NH ₂	2.5-5.0	2.5-5.0	>7.5	2±0.7	8±1.6
BP126	Bz-KKLFKKILKKL-NH ₂	2.5-5.0	2.5-5.0	5.0-7.5	2±0.4	14±2.9

Table I.3. Linear synthetic peptides

^a MIC, minimum inhibitory concentration. ^b $\alpha = 0.05$. ^c Ps, *Pseudomonas syringae*; Xv, *Xanthomonas vesicatoria*; Ea, *Erwinia amylovora*.

Although this *lead* sequence with high bioactivity *in vitro* was identified, it does not guarantee a good activity *in vivo* due to the fact that, generally, bioactive peptides and,

especially, AMPs have limitations such as their poor stability toward protease degradation and their low bioavailability. One of the most prominent approaches devised to overcome these limitations is the synthesis of bioactive peptides by modification of known natural sequences. These modifications include cyclization, chirality changes, or *N*- or *C*-terminus modifications. Another simple modification is the introduction or replacement of one or more proteinogenic amino acid residues by non-proteinogenic amino acids.⁶³ The introduction of non-coded amino acid, which generates modifications in the secondary and tertiary structures of a peptide, is widely used to further enhance the stability and activity of bioactive peptide sequences.⁶⁴

For example, Pritz *et al.* reported a study on the biological effect of the replacement of tryptophan in the antimicrobial peptide Ac-RRWWRF-NH₂ by an unnatural amino acid bearing a bicyclo[1.1.1]pentane moiety in its side chain (Figure I.10). The new linear peptide sequences obtained enhanced both the antimicrobial and bilayer-permeabilizing activity.⁶⁵

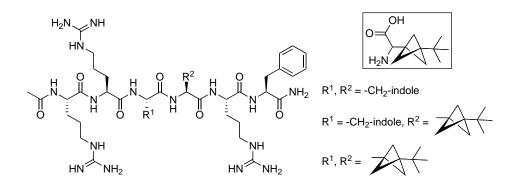
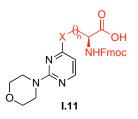
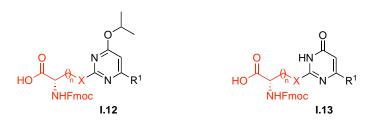


Figure I.10. Small library of peptides incorporating an unnatural amino acid

⁶³ Adessi, C.; Soto, C. Curr. Med. Chem. 2002, 9, 963-978.


⁶⁴ (a) Hicks, R. P.; Bhnsle, J. B.; Venugopal, D.; Koser, B. W.; Magill, A. L. J. Med. Chem. 2007, 50, 3026-3036. (b) Jones, M. A.; Notta, J. K.; Cobbold, M.; Palendira, M.; Hislop, A. D.; Wilkie, J.; Snaith, J. S. J. Pept. Sci. 2008, 14, 313-320. (c) Karstad, R.; Isaksen, G.; Brandsdal, B-O.; Svendsen, J. S.; Svenson, J. J. Med. Chem. 2010, 53, 5558-5566.

⁶⁵ Pritz, S.; Pätzel, M.; Szeimies, G.; Dathe, M.; Bienert, M. Org. Biomol. Chem. 2007, 5, 1789-1794.


I.1.5. OBJECTIVES

Taking into account the interest in non-proteinogenic amino acids and their utility as building blocks in the design of more useful antimicrobial peptides, the aims of the first chapter of this thesis are:

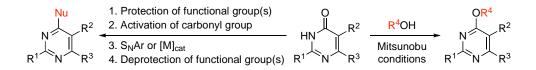
1. Synthesis of N^{α} -Fmoc-pyrimidin-4-yl amino acids **I.11**.

2. Synthesis of N^{α} -Fmoc-pyrimidin-2-yl amino acids **I.12** and N^{α} -Fmoc-pyrimidin-2-one amino acids **I.13**.

- 3. Synthesis of new antimicrobial **BP100**-derivative peptides containing pyrimidinyl amino acids **I.11**, **I.12** and/or **I.13**.
- 4. Evaluation of the biological activity of a library of **BP100**-derivative peptides incorporating pyrimidinyl amino acids.

I.2. RESULTS & DISCUSSION

I.2.1. SYNTHESIS OF N^{α} -FMOC PYRIMIDIN-4-YL AMINO ACIDS

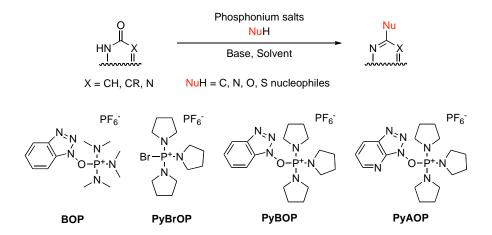

I.2.1.1. Synthesis of C4 functionalized pyrimidines

As described in Section I.1.3, pyrimidine derivatives have received a considerable amount of attention due to the interesting pharmacological properties associated with this heterocyclic scaffold. Despite the wide variety of synthetic approaches described for the construction of the pyrimidine nucleus,^{30,66} few available methods exist for the efficient synthesis of C4-substituted pyrimidines. The most convergent and perhaps the most widely used synthesis of highly functionalized pyrimidines involves a cyclocondensation reaction between a bidentate nucleophilic fragment (e.g. ureas, thioureas, guanidines or amidines) and a 1,3-dicarbonyl derivative.⁶⁷ However, this method is somewhat limited due to the unavailability of the corresponding bidentate fragments. A complementary approach for the synthesis of substituted pyrimidines involves the functionalization of a preformed pyrimidine scaffold. This method allows to access pyrimidine derivatives which would otherwise be difficult to obtain.

⁶⁶ Radi, M.; Schenoneb, S.; Botta, M. Org. Biomol. Chem. 2009, 7, 2841-2847.

⁶⁷ Hill, M. D.; Movassaghi, M. Chem. Eur. J. 2008, 14, 6836-6844.

In this sense, the synthesis of pyrimidines modified at the C4-position is generally performed starting from a pyrimidin-4(3H)-one derivative by activation of the carbonyl group followed by coupling with a carefully chosen nucleophiles. This is probably the most useful approach because it complements the existing convergent synthetic methods.⁶⁸ In general, the carbonyl group is activated by halogenation often under relatively harsh and acidic conditions with reagents such as thionyl chloride, phosphoryl chloride and phosphorus pentachloride. Consequently, this strategy often involves four synthetic steps including i) the protection of the functional groups; ii) the activation of the carbonyl group, generally via halogenation; iii) the functionalization with either nucleophiles via S_NAr displacement or organometallics through transition-metalcatalysed cross coupling;⁶⁹ and iv) the final deprotection of the functional groups (Scheme I.10). Selective O-alkylation of pyrimidin-4(3H)-one derivatives with bulky alcohols by Mitsunobu reaction is an alternative way to functionalize the C4-position of the pyrimidine ring under mild conditions. However, this approach is limited to the synthesis of 4-alkoxypyrimidines. Indeed, the chemoselectivity of the Mitsunobu reaction in this kind of substrate is rarely exclusive in favour of the O-alkylation product and, usually, a significant amount of the N-alkylated regioisomer is obtained decreasing the reaction yield (Scheme I.10).


Scheme I.10. Synthesis of the C4-functionalizated pyrimidines from pyrimdin-4(3H)-ones

As reported in the previous Section I.1.3.3.3, our laboratory studied the synthesis of pyridimin-4-yl amino esters **I.10** using a Mitsunobu reaction as a key step. However, this method was limited by the Mitsunobu reaction to α -amino acids bearing a hydroxyl group on the side chain. Therefore, a method was sought to allow the incorporation of a range of amino acid residues at the C4-position of the pyrimidine ring.

^{68 (}a) Maruenda, H.; Chenna, A.; Liem, L.-K.; Singer, B. J. Org. Chem. 1998, 63, 4385-4389. (b) Van Brocklin, H. F.; Lim, J. K.; Coffing, S. L.; Hom, D. L.; Negash, K.; Ono, M. Y.; Gilmore, J. L.; Bryant, I.; Riese, D. J. I. I. J. Med. Chem. 2005, 48, 7445-7456. (c) Al-Abdullah, E. S.; Al-Obaid, A-R. M.; Al-Deeb, O. A.; Habib, E. E.; El-Emam, A. A. Eur. J. Med. Chem. 2011, 46, 4642-4647.

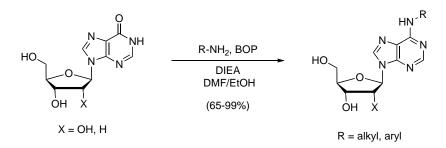
⁶⁹ Capek, P.; Pohl, R.; Hocek, M. J. Org. Chem. 2005, 70, 8001-8008.

Phosphonium coupling has recently emerged as a mild, efficient, and versatile method for the direct C-C, C-N, C-O and C-S bond formation of tautomerizable heterocycles. It proceeds *via* C-OH bond activation of a tautomerizable heterocycle with a phosphonium salt, and the subsequent functionalization with a nucleophile through S_NAr displacement (Scheme I.11).⁷⁰


Scheme I.11. Phosphonium coupling reaction of tautomerizable heterocycles

Alkyl and aryl amines have been widely used as nucleophiles in this transformation, while phenols, alcohols, thiophenols, malonates, sulfonamides and nitrogen-containing heterocyclic nucleophiles have been used less. Only a few examples of the direct amination of tautomerizable heterocycles with indoles or imidazoles *via* phosphonium coupling have been reported in the literature.⁷¹

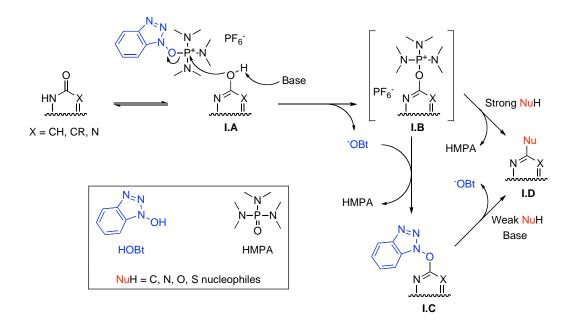
Kang and co-workers reported the first example of a phosphonium-mediated carbonnucleophile bond formation in the synthesis of C2 substituted pyrimidines from pyrimidin-2(1H)-one. The optimal conditions for this mild *in situ* activation coupling were achieved using bromo-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBrOP) as the phosphonium reagent in 1,4-dioxane at rt (Scheme I.12).⁷¹


⁷⁰ For recent reviews on phosphonium coupling, see: (a) Kang, F-A.; Sui, Z.; Murray, W. V. *Eur. J. Org. Chem.* **2009**, 461-479. (b) Mansour, T. S.; Bardhan, S.; Wan, Z-K. *Synlett* **2010**, 1143-1169.

⁷¹ Kang, F-A.; Kodah, J.; Guan, Q.; Li, X.; Murray, W. V. J. Org. Chem. 2005, 70, 1957-1960.

Scheme I.12. Synthesis of C2-substituted pyrimidines via phosphonium-mediated coupling

This method was quickly extended to the synthesis of nucleosides, purines and other heterocycles containing an amide linkage as part of the cyclic system. For example, Wan *et al.* applied this method to the synthesis of N^6 -adenosine and N^6 -2'-deoxyadenosine derivatives. In this example, treatment of inosine or 2'-deoxyinosine with alkyl or arylamines without protecting the sugar hydroxyl groups in the presence of benzotriazol-1-yloxytris(dimethylamino)-phosphonium hexafluorophosphate (BOP) and *N*,*N*-diisopropylethylamine (DIEA) in DMF led to the formation of nucleoside derivatives in good to excellent yields (Scheme I.13).⁷²

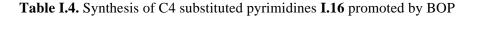

Scheme I.13. Synthesis of nucleoside derivatives through phosphonium coupling reaction

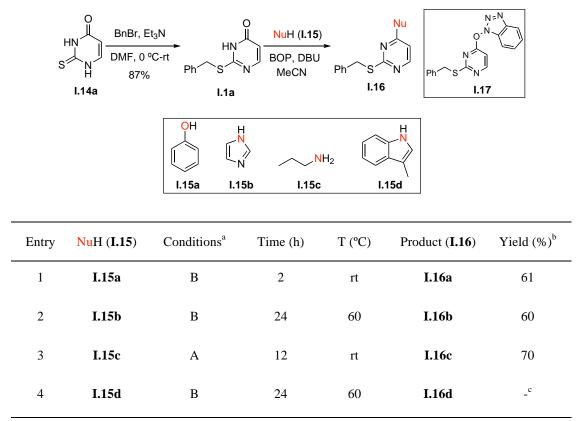
The mechanistic aspects of the phosphonium-mediated reactions have been thoroughly discussed in the literature.⁷³ Phosphonium salt **I.B** is presumably readily formed when cyclic amides or ureas are treated with phosphonium reagents in the presence of a base. These phosphonium intermediates **I.B** have been isolated and characterized by ¹H and ³¹P NMR spectroscopy. The S_NAr reaction of phosphonium intermediates **I.B** with reactive nucleophiles leads to the formation of the desired products **I.D**. Benzotriazolyloxy- or pyridotriazolyloxy-containing phosphonium reagents (BOP, PyBOP and PyAOP) sometimes conduct to the formation of

⁷² Wan, Z. K.; Binnun, F.; Wilson, D. P.; Lee, Y. Org. Lett. 2005, 7, 5877-5880.

⁷³ (a) Lakshman, M. K.; Frank, J. *Org. Biomol. Chem.* **2009**, *7*, 2933-2940. (b) Wan, Z-K.; Wacharansindhu, S.; Levins, C. G.; Lin, M.; Tabei, K.; Mansour, T. S. J. Org. Chem. **2007**, *72*, 10194-10210.

N-hydroxybenzotriazole (HOBt) or *N*-hydroxypyridotriazole (HOPt) adducts, e.g. compound **I.C**, when less reactive or more hindered nucleophiles are used, usually when its nucleophilicity follows the order Nu < OBt or OPt. In such cases, a second nucleophilic substitution, which would need an additional base, leads to the formation of the expected product **I.D** (Scheme I.14).




Scheme I.14. Mechanism of BOP-mediated nucleophilic substitutions

I.2.1.2. Preliminar study of phosphonium-mediated synthesis of C4 substituted pyrimidines

Following this phosphonium-mediated method, our laboratory started to study the phosphonium coupling reaction for the synthesis of C4 substituted pyrimidines starting from 2-benzylsulfanyl-4(3H)-pyrimidinone **I.1a**, easily obtained by selective *S*-alkylation of commercially available thiouracil **I.14a** with benzyl bromide (Table I.14). First of all, a screening of the reaction conditions on pyrimidinone **I.1a** was performed to identify the most effective reagent combination. In this manner, compound **I.1a** was treated with imidazole as a nucleophile in the presence of different coupling reagents (PyBrOP, PyBOP and BOP), bases (Et₃N and DBU) and solvents (acetonitrile and 1,4-dioxane). BOP in conjunction with 1,8-diazabicyclo[5.4.0]undecene-7 (DBU) in acetonitrile gave the best results for this transformation. These optimized conditions were used to couple pyrimidinone **I.1a** with various nucleophiles **I.15** such as phenol,

imidazole, *n*-propylamine and 3-methyl-1*H*-indole as models of amino acid side chains of tyrosine, histidine, lysine and tryptophan, respectively. All reactions led to the expected compounds **I.16** in moderate to good yields, except for 3-methyl-1*H*-indole **I.15d**. The coupling reaction with strong nucleophiles such as *n*-propylamine and phenol proceeded efficiently at rt in short reaction times (Table I.4, entries 1 and 3).⁷⁴ However, the coupling reaction with weak nucleophile such as imidazole needed to be heated at 60 °C to reach completion and compound **I.16b** was obtained in a moderate yield (Table I.4, entry 2). The phosphonium-mediated reaction with 3-methyl-1*H*-indole **I.16d** failed as only the OBt adduct **I.17** was isolated from the crude reaction mixture (Table I.4, entry 4).

^a Conditions A: I.1a (1 equiv), BOP (1.3 equiv), DBU (1.5 equiv); I.15 (1.3 equiv).

Conditions **B**: **I.1a** (1 equiv), BOP (1.3 equiv), DBU (1.5 equiv); **I.15** (1.3 equiv), DBU (1.5 equiv).

^b Isolated yields.

^c Only OBt-adduct I.17 was isolated in 60% yield.

⁷⁴ Planellas, M.; Díaz. E.; Pascual, M.; Bardají, E.; Heras, M "Synthesis of new non-proteinogenic α-amino acids" (poster presented at the Third West Mediterranean Chemistry Meeting, La Grande Motte, France, June 14–15, **2007**).

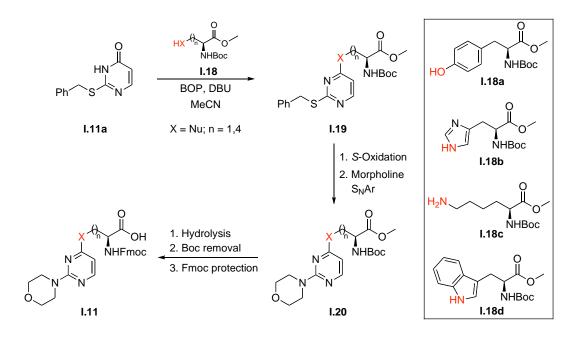
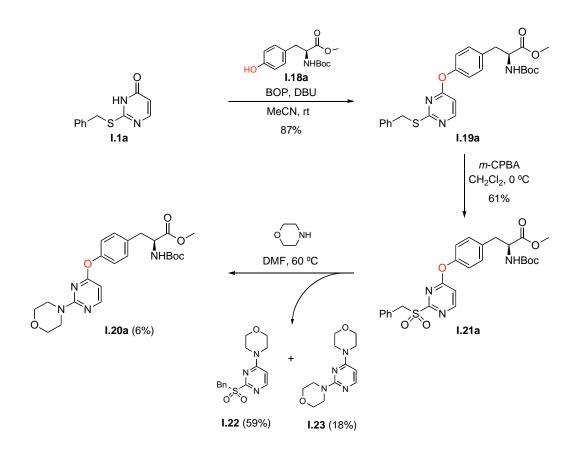
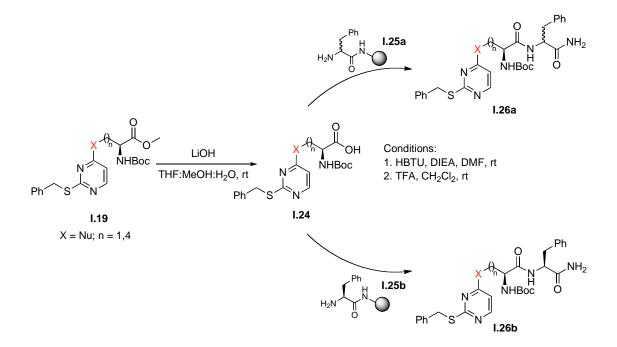

Based on these results, we decided to focus on the synthesis of the target amino acids **I.11** bearing a C4-substituted pyrimidine ring on the side chain (Figure I.11).

Figure I.11. Pyrimidin-4-yl amino acids I.11


I.2.1.3. First strategy to synthesize pyrimidin-4-yl amino acids

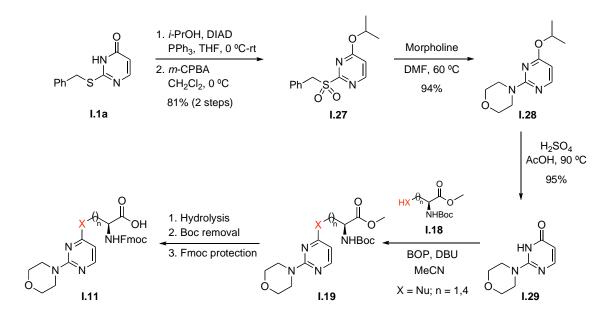
Consistent with this goal, the synthesis of pyrimidin-4-yl amino acids **I.11** was envisioned following the synthetic strategy depicted in Scheme I.15. First, pyrimidinone **I.1a** could be engaged in a phosphonium coupling reaction with several N^{α} -Bocprotected amino esters **I.18** to get the corresponding pyrimidin-4-yl amino esters **I.19**. Next, the functionalization of **I.19** at the C2-position of the pyrimidine ring by nucleophilic displacement of the activated benzylsulfonyl group with morpholine could afford compounds **I.20**. Taking into account that one of the objectives of this thesis was to design and synthesize new antimicrobial peptides incorporating non-proteinogenic α -amino acids in their sequences, N^{α} -Boc-amino esters **I.20** were not useful building blocks for the solid-phase peptide synthesis following a Fmoc/*t*-Bu strategy. Consequently, compounds **I.20** was converted to the target N^{α} -Fmoc-pyrimidin-4-yl amino acids **I.11**. This was achieved in a three-step sequence including an ester hydrolysis followed by the removal of the Boc protecting group and final reprotection of the primary amine with the Fmoc group (Scheme I.15).

Scheme I.15. First strategy for the synthesis of pyrimidin-4-yl amino acids I.11


The phosphonium coupling reaction of 4(3H)-pyrimidinone **I.1a** was first carried out with N^{α} -Boc methyl tyrosinate **I.18a** in the presence of BOP and DBU in acetonitrile at rt to afford the pyrimidin-4-yl amino ester analogue **I.19a** in 87% yield and without appreciable racemization. Next, compound **I.19a** was treated with an excess of *m*-CPBA to obtain the corresponding sulfone **I.21a** in 61% yield. Unexpectedly, the subsequent nucleophilic substitution reaction of compound **I.21a** with morpholine failed. The purification of the crude mixture only afforded a 6% yield of the expected compound **I.20a** along with a large amount of side products **I.22** and **I.23** (Scheme I.16). These results clearly indicated that the tyrosine residue in the C4-position underwent aminolysis faster than the benzylsulfonyl group at the C2-position of the pyrimidine ring.

Scheme I.16. Synthesis of N^{α} -Boc-pyrimidin-4-yl tyrosine methyl ester I.20a

I.2.1.4. Determination of optical purity of pyrimidin-4-yl amino acids


A chromatography method was established to determine the possible racemization of the compounds **I.18** caused by the basic conditions of the phosphonium coupling reaction. Thus, the optical purity of compounds **I.19** was verified by coupling the pyrimidinyl α -amino acids **I.24** obtained after saponification, with both racemic phenylalanine resin **I.25a** and L-phenylalanine resin **I.25b** in order to measure the degree of racemization by high-performance liquid chromatography (HPLC). Particularly, a sample of N^{α} -Boc-amino esters **I.19a** was hydrolysed using LiOH to give the free N^{α} -Boc-amino acids **I.24** in quantitative yield. The latter was first coupled to racemic phenylalanine resin **I.25a** using standard protocols for solid-phase peptide synthesis following a Fmoc/*t*-Bu strategy. After cleavage from the resin by acid treatment with trifluoroacetic acid (TFA), the HPLC analysis of the resulting dipeptide **I.26a** showed the formation of two diastereoisomers. Analogously, dipeptide **I.26b** was then synthesized by coupling N^{α} -Boc-amino acids **I.24** to L-phenylalanine resin **I.25b**. When no reasonable racemization occurred during the synthesis of **I.19**, HPLC analysis of **I.26b** showed only one peak corresponding to the formation of one single diastereoisomer (Scheme I.17).

Scheme I.17. Determination of optical purity of compounds I.19

I.2.1.5. Second strategy to synthesize pyrimidin-4-yl amino acids

To circumvent the previous problem, we decided to incorporate the amino acid residue during the last step. Consequently, the functionalization of the C2-position of the pyrimidine ring with morpholine needed to be performed first. This transformation could be easily achieved by converting pyrimidinone **I.1a** to the corresponding 2-morpholino-4(3*H*)-pyrimidinone **I.29** by means of the synthetic method previously developed in the laboratory.^{36a} Then, the latter could be engaged in a coupling reaction with protected amino esters **I.18** to obtain N^{α} -Boc-pyrimidin-4-yl amino esters **I.20**. A final series of protecting group transformations would lead to the target N^{α} -Fmocpyrimidin-4-yl amino acids **I.11** (Scheme I.18).

Scheme I.18. Second strategy for the synthesis of N^{α} -Fmoc pyrimidin-4-yl amino acids I.11

Therefore, pyrimidinone **I.1a** was selectively *O*-alkylated with 2-propanol under Mitsunobu conditions and, the resulting 2-benzylsulfanyl-4-isopropoxypyrimidine was oxidized with *m*-CPBA to provide sulfone **I.27** in good yield. Next, compound **I.27** was treated with morpholine to afford pyrimidine **I.28** which was subsequently treated with a mixture of sulphuric acid and acetic acid at 90 °C for 15 min in order to remove the isopropyl group and thus afforde the desired pyrimidinone **I.29** (Scheme I.18).

It has been reported that the electronic properties of the substrate likely dictate the outcome of the phosphonium-mediated couplings. Indeed, this transformation is much less efficient with electron-rich tautomerizable heterocycles.⁷⁰ Knowing this, we initally explored the phosphonium coupling between 2-morpholino-4(3*H*)-pyrimidinone **I.29** and the model nucleophiles **I.15** (Table I.5). Compared to the previous study with substrate **I.1a** (Table I.4), the phosphonium coupling proceeded more slowly and under harsher conditions. In all cases, the reactions were run at 60 °C for at least 24 h and the addition of an extra base was required to promote the S_NAr displacement, even in the case of *n*-propylamine **I.15c**. The expected products **I.30** were obtained in moderate to good yield, with the exception of the indole derivative **I.30d**, which showed no product formation even after 40 h of heating (Table I.5, entries 1-4). In this latter case, the OBt-adduct **I.31** was the sole compound isolated from the crude reaction mixture. When compound **I.31** was subjected again to a S_NAr with 3-methyl-1*H*-indole **I.15d** and

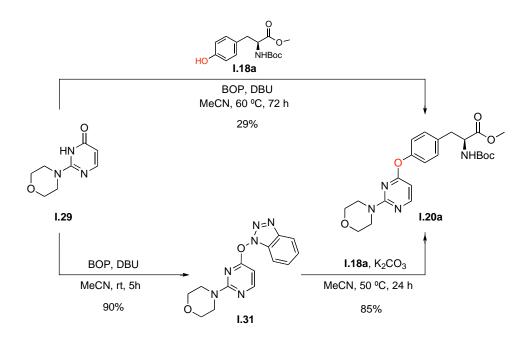
potassium carbonate, the target N^{α} -Boc-pyrimidin-4-yl indole **I.30d** was isolated in 47% yield (Table I.5, entry 5).

		MeCN			N=N 0. N N I.31	
Entry	NuH	Conditions ^a	Time (h)	T (°C)	Product	Yield (%) ^b
1	I.15a	А	24	60	I.30a	68
2	I.15b	А	24	60	I.30b	55
3	I.15c	А	24	60	I.30c	82
4	I.15d	А	40	60	I.30d	_c
5	I.15d	В	15	60	I.30d	47

Table I.5. Synthesis of C4 substituted pyrimidines I.30 promoted by BOP

^a Conditions A: **I.29** (1 equiv), BOP (1.5 equiv), DBU (1.5 equiv); **I.15** (1.5 equiv), DBU (1.5 equiv). Conditions **B**: **I.31** (1 equiv), K₂CO₃ (4.0 equiv); **I.15** (1.3 equiv).

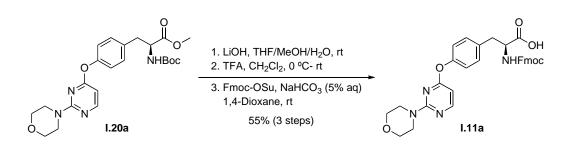
^b Isolated yields.


^c Only OBt-adduct **I.31** was isolated.

I.2.1.6. Synthesis of pyrimidin-4-yl tyrosine derivatives

The extension of the phosphonium coupling reaction of pyrimidinone **I.29** to amino esters **I.18** started with N^{α} -Boc methyl tyrosinate **I.18a**. Under the set of conditions previously optimized, the synthesis of N^{α} -Boc-pyrimidin-4-yl tyrosine methyl ester **I.20a** through a BOP-mediated reaction in the presence of DBU at 60 °C for 72 h resulted in a poor yield of 29%. In addition, compound **I.20a** presented a partial racemization⁷⁵ probably due to the long reaction time under basic conditions. As the major compound isolated in this reaction was the OBt-adduct **I.31**, we therefore investigated the synthesis of **I.20** using a two-step approach through the OBt-adduct **I.31**. Thus, pyrimidinone **I.29** was treated with BOP and DBU at rt for 5 h without the presence of nucleophiles in order to get compound **I.31** in a good yield. The latter was

⁷⁵ The determination of the optical purity was assessed by the HPLC method described in Section I.2.1.4.


subsequently engaged in a S_NAr reaction with N^{α} -Boc-methyl tyrosinate **I.18a** in the presence of a weak base, potassium carbonate, at 50 °C for 24 h. Under these conditions the expected product **I.20a** could be obtained in high yield (85%) and without significant racemization (Scheme I.19).

Scheme I.19. Synthesis of N^{α} -Boc-pyrimidin-4-yl tyrosine methyl ester I.20a

Once the N^{α} -Boc-pyrimidin-4-yl tyrosine methyl ester **I.20a** in hand, it was converted into the desired N^{α} -Fmoc-pyrimidin-4-yl tyrosine **I.11a** following the proposed synthetic strategy. First, the methyl ester of compound **I.20a** was saponified using an excess of LiOH in a mixture of tetrahydrofuran, methanol and water at rt. After an acid work-up to neutralize the excess of base, the crude residue was engaged directly in the next step without further purification. The N^{α} -Boc protecting group was thus removed by TFA treatment to afford the free amino acid, which was subsequently protected with *N*-(9-fluorenylmethoxycarbonyloxy) succinimide (Fmoc-OSu) in a mixture of aqueous sodium bicarbonate and 1,4-dioxane at rt for 24 h.⁷⁶ Finally, the crude reaction mixture was purified by flash chromatography to furnish the expected product **I.11a** in 55% yield over three steps (Scheme I.20).

⁷⁶ Lapatsanis, L.; Milias, G.; Froussios, K.; Kolovos, M. Synthesis 1998, 671-673.

Scheme I.20. Synthesis of N^{α} -Fmoc-pyrimidin-4-yl tyrosine I.11a

I.2.1.7. Synthesis of pyrimidin-4-yl histidine derivatives

Following the results obtained with the tyrosine derivative, we decided to synthesize the remaining pyrimidin-4-yl amino esters **I.20** using the same strategy.

Therefore, OBt-adduct **I.31** was treated with the N^{α} -Boc methyl histidinate **I.18b** using DBU as a base to obtain the desired amino ester **I.20b** in moderate yields, but with considerable racemization, even when the reaction was performed at rt (Table I.6, entries 1 and 2). Although the racemization of compound **I.20b** could be completely avoided using an excess of potassium carbonate at 50 °C for 48 h, the reaction yield was lower due to the incomplete conversion of the starting material (Table I.6, entry 3). Hence, we planned to perform the reaction using histidine **I.18b** as the limiting reactant and an excess of OBt-adduct **I.31** in the presence of potassium carbonate. This modification on the limiting reactant caused a significant improvement in both the yield and the reaction time. Indeed, the reaction was completed in only 19 h and furnished the optically pure compound **I.20b** in a good yield of 72% (Table I.6, entry 4). In addition, the excess amount of OBt-adduct **I.31** was easily recovered during the purification step by flash chromatography and could be reused.

0

		N=N N 31	N HN L18b Base MeCN		NHBoo N 1.20b	2
Entry	I.31 (equiv)	I.18b (equiv)	Base (equiv)	Time (h)	T (°C)	Yield ^a (%)
1	1.0	1.5	DBU (1.5)	32	50	60 ^b
2	1.0	1.5	DBU (1.5)	40	rt	70 ^b
3	1.0	1.5	K ₂ CO ₃ (4.0)	48	50	20
4	2.2	1.0	K ₂ CO ₃ (4.0)	19	50	72 ^c

Table I.6. Synthesis of N^{α} -Boc-pyrimidin-4-yl histidine methyl ester **I.20b**

^a Isolated yields.

^b Partial racemization was observed.

^c The excess amount of **I.31** was recovered by flash chromatography.

The two nitrogen atoms of the imidazole ring of histidine are not equivalent. As such, the imidazole ring can exist in two tautomeric forms. Therefore, the nucleophilic attack could, in principle, take place by $N(\pi)$ or $N(\tau)$ atoms and consequently two regioisomers can be obtained (Figure I.12).

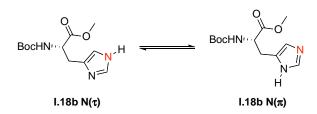
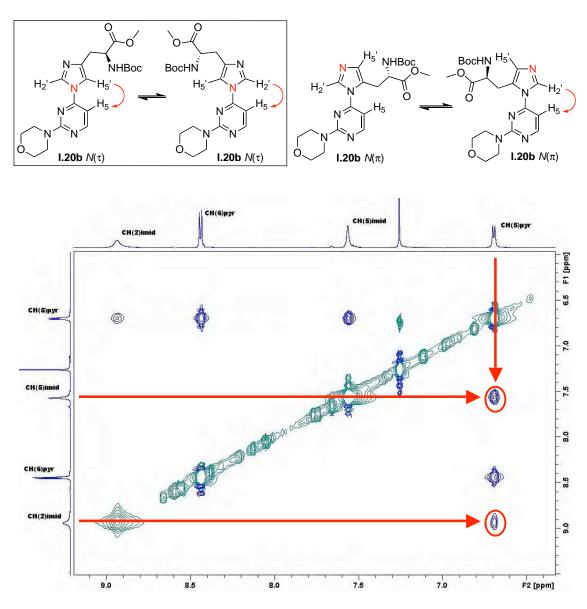
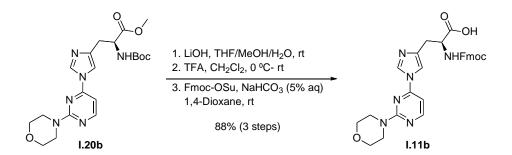



Figure I.12. Tautomeric equilibrium of histidine I.18b

Although the $N(\tau)$ derivative is usually the major product due to steric factors, it is rarely exclusive.⁷⁷ Interestingly however, all the reactions tested were completely regioselective in favour of the $N(\tau)$ derivative **I.20b** according to a NOESY NMR


⁷⁷ (a) Bambal, R.; Hanzlik, R. P. J. Org. Chem. **1994**, 59, 729-732. (b) Jain, R.; Cohen, L. A. Tetrahedron **1996**, 52, 5363-5370.

experiment. Indeed, a strong NOESY correlation between the H5 proton of the pyrimidine ring and the H5' and H2' protons of the imidazole ring was observed. This result was consistent only with the $N(\tau)$ regioisomer, which had both protons H2' and H5' of the imidazole ring close in space with the H5 proton of the pyrimidine ring (Figure I.13).

Figure I.13. NOESY spectra (region 9.2-6.3 ppm) of N^{α} -Boc-pyrimidin-4-yl histidine methyl ester **I.20b** recorded at 400 MHz in d_6 -DMSO

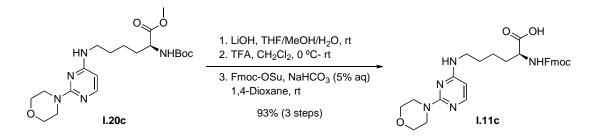
Analogously to the previous section, the N^{α} -Boc pyrimidin-4-yl methyl histidinate **I.20b** was then converted to the target N^{α} -Fmoc-pyrimidin-4-yl histidine **I.11b** by applying the standard three-step procedure: methyl ester saponification, Boc protecting group removal and reprotection of the amino functionality with the Fmoc group. In this case, the desired product **I.11b** was obtained in an excellent yield of 88% over three steps (Scheme I.21).

Scheme I.21. Synthesis of N^{α} -Fmoc-pyrimidin-4-yl histidine **I.11b**

I.2.1.8. Synthesis of pyrimidin-4-yl lysine derivatives

The synthesis of the N^{α} -Boc-pyrimidin-4-yl lysine methyl ester **I.20c** began by treating pyrimidinyl OBt-adduct **I.31** with the commercially available N^{α} -Boc methyl lysinate acetate salt **I.18c** using potassium carbonate as a base at 50 °C for 48 h. Under these conditions, the expected product **I.20c** was isolated in 67% yield but with a significant degree of racemization (Table I.7, entry 1). In order to avoid the racemization, the reaction was performed at rt. In this case, compound **I.20c** was obtained without detectable optical degradation; however, the reaction time was extended to 72 h and the yield was lower (Table I.7, entry 2). In a new test, the reaction was effected under a controlled heating below 40 °C. After 42 h, compound **I.20c** was isolated in 66% yield and without appreciable racemization (Table I.7, entry 3). This last result could be improved using an excess of the starting OBt-adduct **I.31** at 40 °C. In only 24 h, this reaction furnished compound **I.20c** as a sole enantiomer in 84% yield (Table I.7, entry 4). Analogously to the previous Section the excess amount of the OBt-adduct **I.31** could be recovered and reused.

		=N +H₃N~	D2 NHBoc I.18c Base MeCN		0,0 NH	HBoc
Entry	I.31 (equiv)	I.18c (equiv)	Base (equiv)	Time (h)	T (°C)	Yield ^a (%)
1	1.0	1.5	K ₂ CO ₃ (4.0)	48	50	67 ^b
2	1.0	1.5	K ₂ CO ₃ (4.0)	76	rt	43
3	1.0	1.5	K ₂ CO ₃ (4.0)	42	40	66
4	2.2	1.0	K ₂ CO ₃ (4.0)	24	40	84 ^c


Table I.7. Synthesis of N^{α} -Boc-pyrimidin-4-yl lysine methyl ester **I.20c**

^a Isolated yields.

^b Partial racemization was observed.

^c The excess amount of **I.31** was recovered by flash chromatography.

Subsequently, the target N^{α} -Fmoc pyrimidin-4-yl lysine **I.11c** was obtained in 93% yield after subjecting the N^{α} -Boc pyrimidin-4-yl methyl lysinate **I.20c** to the three-step sequence previously used (Scheme I.22).

Scheme I.22. Synthesis of N^{α} -Fmoc-pyrimidin-4-yl lysine **I.11c**

I.2.1.9. Synthesis of pyrimidin-4-yl tryptophan derivatives

The synthesis of the N^{α} -Boc-pyrimidin-4-yl tryptophan methyl ester **I.20d** was problematic due to the low nucleophilicity of the indole nitrogen atom. Consequently, a large number of experiments were run to reach the target compound **I.20d** with reasonable efficiency (Table I.8). First, the reaction was carried out with N^{α} -Boc methyl tryptophanate **I.18d** and potassium carbonate as a base in acetonitrile at 50 °C for 24 h, which afforded the product **I.20d** in 22% yield (Table I.8, entry 1). In order to improve the reaction yield, an excess of OBt-adduct **I.31** was used; however, after 6 days at 50 °C compound **I.20d** was isolated in only 11% yield (Table I.8, entry 2). The use of a more polar solvent such as DMF instead of acetonitrile did not produce any significant change (Table I.8, entry 3). The main cause of this low yield could be attributed to a poor reaction conversion. In all cases, the reaction conversion was around 25% after 24 h according to the monitoring of the progress of the reaction by HPLC. Besides, HPLC-monitoring showed that increasing the reaction time beyond 24 h did not improve the conversion. Thereafter, the heating method was changed to improve the above reaction conditions at different temperatures under microwave heating.⁷⁸ However, microwave heating did not ameliorate the results obtained by conventional heating (Table I.8, entries 4 and 5).

According to the literature, Kang *et al.*⁷⁰ achieved the phosphonium coupling between an electron-deficient pyrimidin-2(1*H*)-one and an indole using PyBrOP as the activating agent. Hence, the direct phosphonium coupling reaction between the electron-rich 2-morpholino-4(3*H*)-pyrimidinone **I.29** and N^{α} -Boc methyl tryptophan **I.18d** was tested using the same reaction conditions as the ones reported by Kang and co-workers. However, no reaction took place under these conditions and only the starting material **I.29** was isolated after 45 h stirring (Table I.8, entry 6). Thereafter, the direct coupling reaction between pyrimidinone **I.29** and amino ester **I.18d** promoted by PyBrOP was carried out under different reaction conditions. Unfortunately, all reactions failed, even using different combinations of bases and solvents under conventional or microwave heating (Table I.8, entries 7-9). In general, the starting substrate **I.29** was totally recovered and only a 10% yield of the expected product **I.20d** was obtained when Et₃N and K₂CO₃ were used as bases in acetonitrile at 80 °C under microwave irradiation (Table I.8, entry 7).

⁷⁸ Ashton, T. D.; Scammells, P. J. Aust. J. Chem. **2008**, *61*, 49-58.

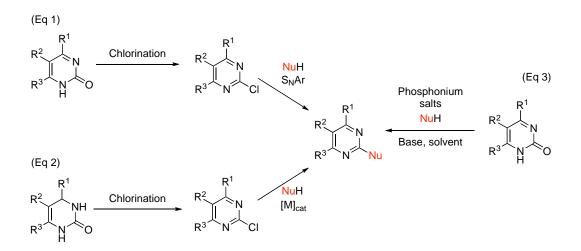
			NHBOC I.18d Base A Solvent	N N I.20d	NHBoc 1. PyBrO Base A 2. I.18d ,	A, solvent		0 1 N 29
Entry	I.29 or I.31 (equiv)	I.18d (equiv)	Base A (equiv)	Base B (equiv)	Solvent	Time (h)	Т (°С)	Yield ^a (%)
1	I.31 (1.0)	1.5	K ₂ CO ₃ (4.0)	-	MeCN	24	50	22
2	I.31 (2.2)	1.0	K ₂ CO ₃ (4.0)	-	MeCN	6 days	50	11 ^b
3	I.31 (1.0)	2.0	K ₂ CO ₃ (4.0)	-	DMF	24	50	16
4	I.31 (1.0)	1.5	K ₂ CO ₃ (4.0)	-	MeCN	1	80 ^c	-
5	I.31 (1.0)	1.5	K ₂ CO ₃ (4.0)	-	MeCN	1	110 ^c	< 5 ^d
6	I.29 (1.0)	1.3	Et ₃ N (2.5)	KOt-Bu (1.3)	1,4-dioxane	45	rt	-
7	I.29 (1.0)	1.3	Et ₃ N (2.5)	K ₂ CO ₃ (4.0)	1,4-dioxane	42	50	-
8	I.29 (1.0)	1.3	Et ₃ N (2.5)	K ₂ CO ₃ (4.0)	MeCN	1	80 ^c	10
9	I.29 (1.0)	2.0	DBU (2.5)	DBU (2.0)	MeCN	1	80 ^c	-

Table I.8. Synthesis of N^{α} -Boc-pyrimidin-4-yl tryptophan methyl ester **I.20d**

^a Isolated yields.

^b The excess amount of **I.31** was recovered by flash chromatography.

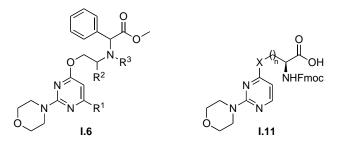
^c Microwave heating.


^d Yield based on HPLC of crude material.

In summary, with the exception of the tryptophan derivative **I.20b**, the incorporation of an amino acid residue at the C4-position of the electron-rich 2-morpholino-4(3*H*)pyrimidinone **I.29** was achieved in high yields using a two-step approach *via* the OBt-adduct **I.31**. We demonstrated that the base, the reaction temperature and the number of reagent equivalents played a crucial role in obtaining these compounds in good yield and without loss of optical integrity. Moreover, the N^{α} -Boc-pyrimidin-4-yl amino esters **I.20** were successfully converted to the corresponding N^{α} -Boc-pyrimidin-4-yl amino acids **I.11** useful as building blocks for the solid-phase peptide synthesis.

I.2.2. SYNTHESIS OF N^{α} -FMOC PYRIMIDIN-2-YL AMINO ACIDS

I.2.2.1. Synthesis of C2 functionalized pyrimidines


Analogously to C4-substituted pyrimidines, the synthesis of pyrimidines modified at the C2-position is generally performed from pyimidin-2(1*H*)-one derivatives by activation of the carbonyl group, followed by coupling with nucleophiles as a complementary approach to convergent synthetic methods of C2-substituted pyrimidines. Chlorination is the most common method used to activate the carbonyl function and both nucleophilic displacement and metal-catalyzed cross coupling reactions⁷⁹ are usually employed to functionalize the C2-position (Scheme I.23, Eq 1 and Eq 2). Alternatively, the phosphonium coupling reaction between pyrimidin-2(1*H*)-one derivatives and nucleophiles is an efficient way to synthesize C2-substituted pyrimidines (Scheme I.23, Eq 3).⁷⁰ This method has been largely discussed in the previous Section I.2.1.1. However, some limitations still exist, such as the harsh reaction conditions, the use of expensive catalysts and/or the long reaction times.

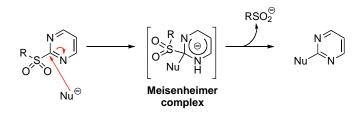
Scheme I.23. Synthesis of the C2-functionalizated pyrimidines


⁷⁹ Gholap, A. R.; Toti, K. S.; Shirazi, F.; Deshpande, M. V.; Srinivasan, K. V. *Tetrahedron* **2008**, *64*, 10214-10223.

As mentioned in Section I.1.3.3, our laboratory has been developing efficient methods for the preparation of pyrimidinyl compounds with a high degree of molecular diversity.³⁶ These approaches include a method to functionalize the C2-position of the pyrimidine ring based on the *ipso*-substitution reaction of 2-alkylsulfonylpyrimidines with a variety of nucleophiles under mild reaction conditions (Scheme I.4). While procedure was applied in a previous work to achieve the synthesis of *N*-pyrimidinyl arylglycines **I.6**,^{36d} we applied it for the synthesis of N^{α} -Fmoc pyrimidin-4-yl α -amino acids **I.11** (Figure I.14).

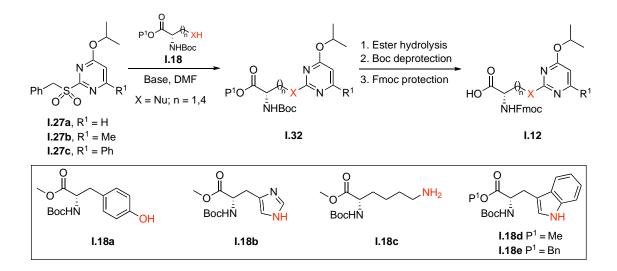
Figure I.14. *N*-pyrimidinyl arylglycines **I.6** and N^{α} -Fmoc pyrimidin-4-yl α -amino acids **I.11**

Based upon these results, we envisioned to apply the *ipso*-substitution reaction of 2-alkylsulfonylpyrimidines method to access new pyrimidin-2-yl amino acids **I.12** and pyrimidin-2-one amino acids **I.13** (Figure I.15).

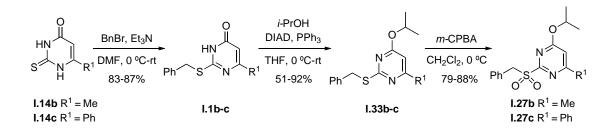

Figure I.15. N^{α} -Fmoc pyrimidin-2-yl amino acids **I.12** and N^{α} -Fmoc pyrimidin-2-one amino acids **I.13**

I.2.2.2. Synthetic strategy to pyrimidin-2-yl amino acids

The synthesis of pyrimidin-2-yl amino acids **I.12** was envisioned *via* a key S_NAr reaction of an alkylsulfonyl group. As described in Section I.1.3.3.2, this reaction works well with electron-deficient heterocycles such as a pyrimidine ring.⁸⁰ Besides, alkyl and arylsulfonyl groups proved to be better leaving groups than the corresponding halides in


⁸⁰ Sheperd, R. G.; Fedrick, J. Adv. Heterocycl. Chem. **1965**, *4*, 145-423.

the S_NAr reaction on the pyrimidine ring.³⁸ The overall mechanism of this reaction is an addition-elimination process through a Meisenheimer complex with the release of an alkyl- or an arylsulfonyl group in the last step (Scheme I.24).


Scheme I.24. Mechanism of S_NAr reaction on alkyl or arylsulfonylpyrimidines

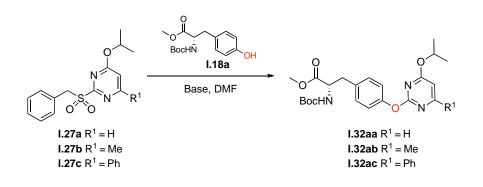
Consistent with this goal, the incorporation of an α -amino acid residue at the C2-position of the pyrimidine ring could be achieved by an S_NAr reaction between 2-benzylsulfonyl-4-isopropoxypyrimidines **I.27a-c** and the nucleophilic side chain of several natural α -amino acids **I.18**. Consequently, the amine and carboxyl functional groups must be suitably protected (Scheme I.25). In addition, the S_NAr reaction should be performed in the presence of a base to reinforce the nucleophilicity of the side chains. Therefore, the sulfones **I.27a-c** would be treated under basic conditions with N^{α} -Boc-amino esters **I.18** in order to obtain the corresponding pyrimidin-2-yl amino esters **I.32**. Once again, a series of protecting group transformations should lead to the target N^{α} -Fmoc pyrimidin-2-yl amino acids **I.12** (Scheme I.25).

Scheme I.25. Synthetic strategy for the synthesis of pyrimidin-2-yl amino acids I.12

The starting compounds **I.27b** and **I.27c** were obtained in good yield as depicted in Scheme I.26 following the procedure previously used to prepare **I.27a**.^{36a} First, thiouracil derivatives **I.14b** and **I.14c** were selectively *S*-alkylated with benzyl bromide under basic conditions to afford the corresponding 2-benzylsulfanylpyrimidin-4(3*H*)-ones **I.1b** and **I.1c**. These latter compounds were then *O*-alkylated with 2-propanol under Mitsunobu conditions and the resulting 2-benzylsulfanyl-4-isopropoxypyrimidines **I.33b** and **I.33c** were oxidized with *m*-CPBA to give rise to the desired sulfones **I.27b** and **I.27c** (Scheme I.26).

Scheme I.26. Synthesis of 2-benzylsulfonyl-4-isopropoxypyrimidines I.27b and I.27c

I.2.2.2.1. Synthesis of pyrimidin-2-yl tyrosine derivatives


In the initial experiments with the N^{α} -Boc-tyrosine methyl ester **I.18a**, we studied the nucleophilic displacement starting from 2-benzylsulfonylpyrimidine **I.27a** and employing several bases in anhydrous DMF (Table I.9). This polar aprotic solvent was chosen because it favours nucleophilic substitution reactions and allows a good solubility of the starting materials. The first attempt was carried out with potassium *tert*-butoxide as a base at 80 °C. Under these conditions, no reaction took place and only the starting material **I.27a** was recovered after 24 h (Table I.9, entry 1). Better results were obtained using both sodium hydride and potassium carbonate affording the desired compound **I.32aa** without appreciable racemization (Table I.9, entries 2 and 3).⁸¹ While the reaction with sodium hydride occurred at rt, in the case of potassium carbonate the reaction needed to be heated to 50 °C to reach completion but the yield was higher than with NaH.

These last reaction conditions were extended to 2-benzylsulfonylpyrimidines **I.27b** and **I.27c**, which afforded the corresponding pyrimidinyl amino esters **I.32ab** and

⁸¹ The determination of the optical purity was assessed by the HPLC method described in Section I.2.1.4.

I.32ac in good yields (Table I.9, entries 4 and 5). Unfortunately, compound **I.32ac** was obtained with a high degree of racemization (er = 60:40). To avoid the loss of optical integrity of this compound, the reaction was tested at lower temperatures. A substantial reduction in the racemization (er = 87:13) was noticed when the reaction was carried out at 40 °C, whereas at rt the expected product **I.32ac** was isolated without any appreciable racemization but in a considerably lower yield (Table I.9, entries 6 and 7). However, it was possible to obtain an X-ray structure of this compound **I.32ac**, which showed the tyrosine residue linked to the C2-position of the pyrimidine ring by the phenoxy group of its side chain (Figure I.16).

Table I.9. Synthesis of N^{α} -Boc-pyrimidin-2-yl tyrosine methyl ester **I.32a**

Entry	Sulfone	Base (equiv)	Time (h)	T (°C)	Product	Yield ^a (%)	er ^c
1	I.27a	KOt-Bu (1.1)	24	80	I.32aa	-	
2	I.27a	NaH (1.2)	18	rt	I.32aa	60	
3	I.27a	K ₂ CO ₃ (2.4)	24	50	I.32aa	79	
4	I.27b	K ₂ CO ₃ (2.4)	24	50	I.32ab	60	
5	I.27c	K ₂ CO ₃ (2.4)	24	50	I.32ac	90 ^b	60:40
6	I.27c	K ₂ CO ₃ (2.4)	24	40	I.32ac	58 ^b	87:13
7	I.27c	K ₂ CO ₃ (2.4)	24	rt	I.32ac	40	

^a Isolated yields.

^b Partial racemisation observed.

^c er: enantiomeric ratio determined by HPLC of dipeptide derivative **I.26** (Section I.2.1.4).

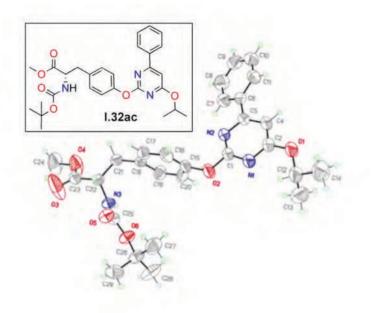
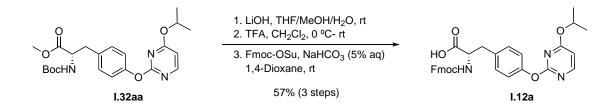
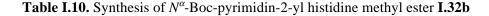



Figure I.16. ORTEP representation of compound I.32ac

We therefore selected the N^{α} -Boc-pyrimidin-2-yl tyrosine methyl ester **I.32aa**, which afforded best results, to be converted to the target N^{α} -Fmoc-pyrimidin-2-yl tyrosine **I.12a**. First, the methyl ester of compound **I.32aa** was saponified using LiOH, and the resulting acid was directly engaged in the next reaction without further purification. The N^{α} -Boc protecting group was then removed by treatment with TFA to release the free primary amine, which was subsequently protected using Fmoc-OSu. This three-step sequence furnished the expected product **I.12a** in 57% overall yield after purification by flash chromatography (Scheme I.27).



Scheme I.27. Synthesis of N^{α} -Fmoc-pyrimidin-2-yl tyrosine **I.12a**

I.2.2.2.2. Synthesis of pyrimidin-2-yl histidine derivatives

Analogously to the previous Section, the N^{α} -Boc-histidine methyl ester **I.18b** was first treated with sulfone **I.27a** using potassium *tert*-butoxide as a base in DMF at 50 °C

for 15 h. Under these conditions, the expected N^{α} -Boc-pyrimidin-2-yl histidine methyl ester **I.32ba** was obtained in a low yield of 37% (Table I.10, entry 1). The use of DBU as a base gave better results (Table I.10, entries 2-4). Hence, the reaction between sulfones **I.27a-c** with protected histidine **I.18b** and DBU at 50 °C allowed the isolation of the desired pyrimidin-2-yl amino esters **I.32ba-c** in very good yield and without appreciable racemization except for compound **I.32bc** bearing a phenyl group at the C6-position of the pyrimidine ring showed a substantial degree of racemization (Table I.10, entry 4). It proved possible to avoid racemization of compound **I.32bc** carrying out the reaction at rt; however, the yield was lower (Table I.10, entry 5).

	C o		BocHN ^I I.18b ^{N[±]} Base, DMF				
	1.27	a R ¹ = H b R ¹ = Me c R ¹ = Ph			I.32ba R I.32bb R I.32bc R	¹ = Me	
Entry	Sulfone	Base (equiv)	Time (h)	T (°C)	Product	Yield ^a (%)	er ^c
1	I.27a	KOt-Bu (1.1)	15	50	I.32ba	37	
2	I.27a	DBU (1.2)	8	50	I.32ba	80	
3	I.27b	DBU (1.2)	8	50	I.32bb	79	
4	I.27c	DBU (1.2)	24	50	I.32bc	79 ^b	70:30
5	I.27c	DBU (1.2)	24	rt	I.32bc	58	

^a Isolated yields.

^b Partial racemisation observed.

^c er: enantiomeric ratio determined by HPLC of dipeptide derivative **I.26** (Section I.2.1.4).

As in the case of the synthesis of N^{α} -Boc-pyrimidin-4-yl histidine methyl ester **I.20b**, this reaction could afford two regioisomers because the two nitrogen atoms of the imidazole ring of histidine are not equivalent and the nucleophilic attack could, in principle, take place by $N(\pi)$ or $N(\tau)$ atoms. However, in all cases the reaction was completely regioselective in favour of the $N(\tau)$ derivative. The unambiguous assignment of the structures **I.32ba-c** was secured by X-ray analysis of the compound **I.32bc**. As evidenced in Figure I.17, the histidine residue is attached to the C2-position of the pyrimidine ring by the $N(\tau)$ atom of the imidazole ring.

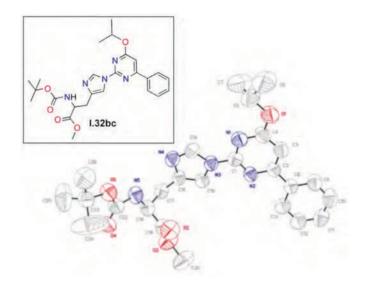
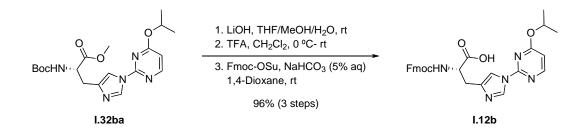



Figure I.17. ORTEP representation of compound I.32bc

 N^{α} -Boc-pyrimidin-2-yl histidine methyl ester **I.32ba** was then converted to the corresponding N^{α} -Fmoc-pyrimidin-2-yl histidine **I.12b**. Thus, the standard three-step procedure – methyl ester hydrolysis, Boc removal and reprotection of the amino group with Fmoc protecting group – was applied to compound **I.32ba**. In this case, the desired product **I.12b** was isolated in a near quantitative yield (Scheme I.28).

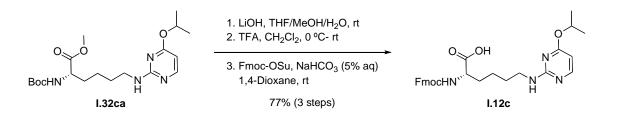
Scheme I.28. Synthesis of N^{α} -Fmoc-pyrimidin-2-yl histidine I.12b

I.2.2.2.3. Synthesis of pyrimidin-2-yl lysine derivatives

In the case of the N^{α} -Boc-lysine methyl ester, we used the commercially available N^{α} -Boc-lysine methyl ester acetate salt **I.18c**. Thus, even if the lysine has an aliphatic primary amine on its side chain, which is a good nucleophile, the nucleophilic *ipso*-substitution reaction between sulfones **I.27a-c** and amino ester **I.18c** also required basic conditions.

First of all, the starting sulfone **I.27a** was treated with the protected amino ester **I.18c** and a base (triethylamine and DIEA). In both cases, the reaction was not complete even after several days of heating at 50 °C, and consequently, the expected product **I.32ca** was isolated in poor yield (Table I.11, entries 1 and 2). The yield could be improved and the reaction time reduced by using a stronger base such as DBU at 50 °C. Under these reaction conditions, compounds **I.32cb** and **I.32cc** were obtained in moderate yields and without appreciable racemization (Table I.11, entries 5 and 6). Compound **I.32ca**, on the other hand, was isolated with a noticeable loss of optical purity (Table I.11, entry 3). This could be circumvented by using K_2CO_3 and heating at 40 °C for 24 h. In addition, under this set of conditions the reaction yield was substantially increased and the pyrimidin-2-yl lysine methyl ester **I.32ca** could be obtained in an excellent yield of 88% (Table I.11, entry 4).

$ \begin{array}{c} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array}$							
Entry	Sulfone	Base (equiv)	Time (h)	T (°C)	Product	Yield ^a (%)	er ^c
1	I.27a	Et ₃ N (2.0)	96	50	I.32ca	14	
2	I.27a	DIEA (2.0)	48	50	I.32ca	16	
3	I.27a	DBU (1.2)	28	50	I.32ca	60 ^b	89:11
4	I.27a	K ₂ CO ₃ (4.0)	24	40	I.32ca	88	
5	I.27b	DBU (1.2)	24	50	I.32cb	43	
6	I.27c	DBU (1.2)	24	50	I.32cc	42	


Table I.11. Synthesis of N^{α} -Boc-pyrimidin-2-yl lysine methyl esters **I.32c**

^a Isolated yields.

^b Partial racemisation observed.

^c er: enantiomeric ratio determined by HPLC of dipeptide derivative **I.26** (Section I.2.1.4).

Finally, the N^{α} -Boc-pyrimidin-2-yl lysine methyl ester **I.32ca** was converted to the target N^{α} -Fmoc-pyrimidin-2-yl lysine **I.12c** following the three-step procedure used in the previous Sections. Methyl ester was first saponified using LiOH, and treated with TFA to cleave the N^{α} -Boc protecting group. The resulting free amine was then reprotected as a Fmoc carbamate leading to the expected N^{α} -Fmoc-pyrimidin-2-yl lysine **I.12c** with a global yield of 77% (Scheme I.29).

Scheme I.29. Synthesis of N^{α} -Fmoc-pyrimidin-2-yl lysine I.12c

An important issue in this three-step sequence was the work-up, as compounds such as **I.12c** contained a cyclic guanidine moiety which could be protonated.

I.2.2.2.4. Synthesis of pyrimidin-2-yl tryptophan derivatives

Initially, the nucleophilic ipso-substitution reaction between sulfones I.27 and N^{α} -Boc-tryptophan was studied using the commercially available benzyl ester derivative I.18e. First, the reaction was carried out at 50 °C with sulfone I.27a using potassium tert-butoxide as a base. Although the reaction was completed in 1 h, the desired pyrimidinyl amino ester I.32ea was obtained in only 5% yield. Because the major compounds isolated from the crude mixture were the transesterification product N^{α} -Boc-tryptophan *tert*-butyl ester **I.34** together with the 53% yield of 2-benzyloxy-4isopropoxypyrimidine I.35 (Table I.12, entry 1). Apparently, a transesterification reaction occurred between amino ester **I.18e** and potassium *tert*-butoxide affording a benzyloxy anion, which reacted as a nucleophile with the sulfone I.27a to form the side product I.35. To circumvent this issue, NaH and DBU, two strong bases with poor nucleophilicity, were tested at different temperatures. In all cases, the corresponding pyrimidinyl amino esters I.32ea-c were obtained in moderate yields, ranging from 34% to 57%, and with a complete loss of optical integrity. Even at rt, the reaction between starting sulfone I.27a and protected tryptophan I.18e in the presence of DBU or NaH resulted in a complete racemization of the product I.32ea (Table I.12, entries 2-4, 7 and 8). The degree of racemization could be substantially reduced when sulfone **I.27a** and tryptophan **I.18e** were treated with an excess of the weak base, potassium carbonate, at 50 °C (Table I.12, entry 5), while at rt pyrimidinyl amino ester I.32ea was obtained without appreciable racemization but in a poor yield of 19% (Table I.12, entry 6).

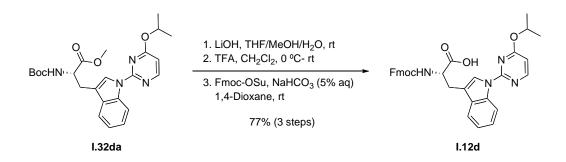
	BocHN/	BocHN ⁽⁾	
I.27a R ¹ = H I.27b R ¹ = Me I.27c R ¹ = Ph		I.32ea P ¹ = Bn; R ¹ = H I.32eb P ¹ = Bn; R ¹ = Me I.32ec P ¹ = Bn; R ¹ = Ph I.32da P ¹ = Me; R ¹ = H	

Entry	\mathbf{P}^1	Sulfone	Base (equiv)	Time (h)	T (°C)	Product	Yield ^a (%)	er ^b
1	Bn	I.27a	KOt-Bu (1.2)	1	50	I.32ea	5 [°]	
2	Bn	I.27a	NaH (1.2)	24	rt	I.32ea	34 ^d	50:50
3	Bn	I.27a	DBU (1.2)	24	50	I.32ea	50 ^d	50:50
4	Bn	I.27a	DBU (1.2)	24	rt	I.32ea	50 ^d	50:50
5	Bn	I.27a	K ₂ CO ₃ (2.4)	24	50	I.32ea	37 ^{e,f}	75:25
6	Bn	I.27a	K ₂ CO ₃ (2.4)	24	rt	I.32ea	19 ^f	
7	Bn	I.27b	DBU (1.2)	24	50	I.32eb	40 ^d	50:50
8	Bn	I.27c	DBU (1.2)	24	50	I.32ec	57 ^d	50:50
9	Me	I.27a	K_2CO_3 (4.0)	24	40	I.32da	40^f	
10	Me	I.27a	K ₂ CO ₃ (4.0)	48	40	I.32da	$40^{\rm f}$	
11	Me	I.27a	K ₂ CO ₃ (4.0)	7 days	rt	I.32da	35 ^f	

^a Isolated yields.

^b er: enantiomeric ratio determined by HPLC of dipeptide derivative **I.26** (Section I.2.1.4).

^c Compounds **I.34** and **I.35** were isolated as a major product reaction.

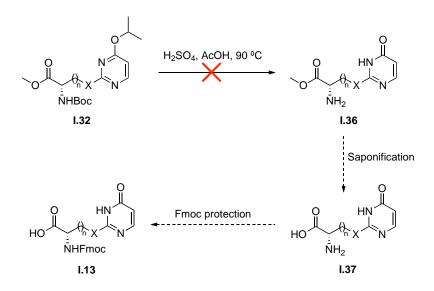

^d Complete racemisation observed.

^e Partial racemisation observed.

^f About 50% of starting sulfone **I.27a** recovered.

At this point, the study was continued using the more readily available N^{α} -Boctryptophan methyl ester **I.18d** instead of the benzyl ester derivative **I.18e**. Hence, treatment of sulfone **I.27a** with amino ester **I.18d** in the presence of an excess of potassium carbonate at 40 °C gave the pyrimidinyl amino ester **I.32da** in 40% yield and without significant racemization (Table I.12, entry 9). These results clearly indicated that the *ipso*-substitution reaction could be performed without any racemization by using potassium carbonate as the base and by running the reaction at temperatures below 40 °C. Moreover, the low yields obtained for compounds **I.32ea** and **I.32da** could be attributed to the low level of conversion. In general, HPLC-monitoring of the progress of the reaction showed that the conversion was about 50% after 24 h and that longer reaction times did not improve the conversion. Nevertheless, the starting sulfone **I.27a** could be recovered and reused (Table I.12, entries 10 and 11).

The N^{α} -Boc-pyrimidin-2-yl tryptophan methyl ester **I.32da** that afforded the best results was therefore converted to the target N^{α} -Fmoc-pyrimidin-2-yl tryptophan **I.12d** following the three-step procedure previously used. First, the methyl ester of compounds **I.32da** was saponified using lithium hydroxide and the resulting acid was directly engaged to the cleavage of the N^{α} -Boc protecting group by treatment with TFA. Finally, the free amino group was reprotected with Fmoc-Osu leading to the expected N^{α} -Fmoc-pyrimidin-2-yl amino acid **I.12d** with a global yield of 77% (Scheme I.30).

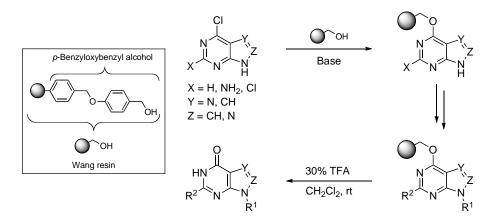


Scheme I.30. Synthesis of N^{α} -Fmoc-pyrimidin-2-yl tryptophan I.12d

In summary, the synthesis of pyrimidinyl amino esters **I.32** could be achieved *via* a nucleophilic aromatic substitution reaction between sulfones **I.27** and the nucleophilic side chain of tyrosine, histidine, lysine and tryptophan. In general, the best reaction conditions were potassium carbonate as base and a reaction temperature ranging from rt to 50 °C. Pyrimidinyl amino esters **I.32** could be converted in good yields to the corresponding Fmoc derivatives **I.12**, which would be used as useful building blocks for the solid-phase peptide synthesis.

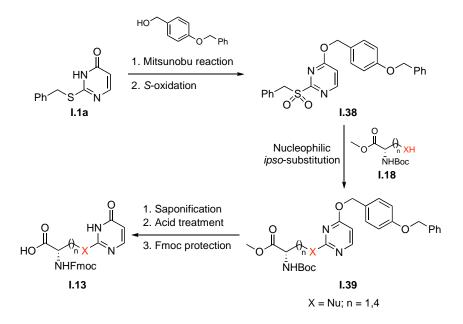
I.2.2.3. Synthesis of pyrimidin-2-one amino esters

Initially, the preparation of pyrimidin-2-one amino acids **I.13** was envisioned by a simply cleaving the isopropoxy group of the pyrimidin-2-yl amino esters **I.32** under acidic conditions as previously described in Section I.2.1.5 (Scheme I.31).^{36a} Thus, the target compounds **I.13** could be achieved from the simultaneous cleavage of both isopropoxy and Boc groups after acid treatment of pyrimidin-2-yl amino esters **I.32** followed by a subsequent ester saponification and Fmoc protection of the free amino acid (Scheme I.31). Disappointingly, the strong acidic conditions required to remove the isopropoxy group caused the decomposition of the starting compounds **I.32**.



Scheme I.31. Attempted synthesis of N^{α} -Fmoc pyrimidin-2-one amino acids I.13

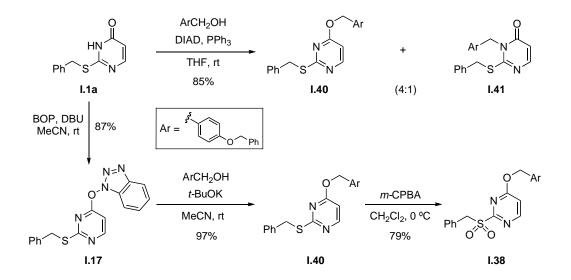
As a result of a literature search, we decided that the *p*-benzyloxybenzyloxy group should be used instead of the isopropoxy. The *p*-benzyloxybenzyl ether is an acid labile group, which can be cleaved under mild acidic conditions, generally, with TFA at rt. This group is an analogue to the linker of the Wang resin, widely used in solid-phase organic chemistry.⁸² For example, Lam *et al.* reported the solid-phase synthesis of a library of purine analogues where the final compounds were efficiently cleaved from the Wang resin with 30% TFA in CH₂Cl₂ at rt (Scheme I.32).⁸³


⁸² (a) Wang, S.-S. J. Am. Chem. Soc. **1973**, 95, 1328-1333. (b) James, I. W. Tetrahedron **1999**, 55, 4855-4946.

⁸³ Chin-Tan, T. M.; Yang, F.; Fu, H.; Raghavendra, M. S.; Lam, Y. J. Comb. Chem. 2007, 9, 210-218.

Scheme I.32. Solid-phase synthesis of purine analogues library

We planned to prepare the target compounds **I.13** following the strategy depicted in Scheme I.33. First, a selective *O*-alkylation of 2-benzylsulfonyl-4(3*H*)-pyrimidinone **I.1a** with *p*-benzyloxybenzyl alcohol under Mitsunobu conditions followed by oxidation of the resulting pyrimidine would furnish the sulfone **I.38**. This compound **I.38** would then be treated with the N^{α} -Boc amino esters **I.18** under basic conditions to afford the corresponding N^{α} -Boc-pyrimidin-2-yl amino esters **I.39**. Finally, compounds **I.39** could be converted to the target N^{α} -Fmoc-pyrimidin-2-one amino acids **I.13** through the threestep sequence used in the previous sections: i) ester saponification, ii) acid treatment to remove simultaneously both the Boc and the *p*-benzyloxybenzyloxy groups, and iii) Fmoc protection of the free amino acid (Scheme I.33).

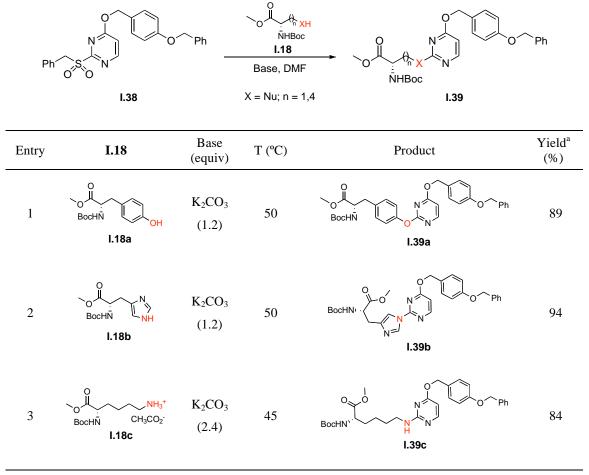


Scheme I.33. Synthetic strategy of pyrimidin-2-one amino acids I.13

I.2.2.3.1. Synthesis of 4-(4-benzyloxybenzyloxy)-2-benzylsulfonylpyrimidine (*I.38*)

The Mitsunobu reaction between 2-benzylsulfonyl-4(3*H*)-pyrimidinone **I.1a** and *p*-benzyloxybenzyl alcohol at rt yielded a mixture of regioisomers **I.40** and **I.41** in a 4:1 ratio.⁸⁴ In this case, the Mitsunobu reaction was not completely selective in favour of the *O*-alkylated product **I.40** as a significant amount of *N*-alkylated product **I.41** was also obtained (Scheme I.34). Although the desired compound **I.40** was obtained as the major regioisomer in a good yield, the separation of these isomers **I.40** and **I.41** by flash column chromatography proved to be problematic. For this reason, the phosphonium coupling reaction previously described was also tested as an alternative synthesis of compound **I.38**. Based on the anterior results, the two-step method mediated by the OBt-adduct **I.17** was applied. Thus, pyrimidinone **I.1a** was first treated with the phosphonium reagent BOP and DBU as a base in acetonitrile to afford the OBt-adduct **I.17** in 87% yield. The latter was then subjected to a S_NAr with *p*-benzyloxybenzyl alcohol in the presence of potassium *tert*-butoxide in acetonitrile to provide the desired product **I.40** in an excellent yield. Finally, pyrimidine **I.40** was oxidized using *m*-CPBA to afford the sulfone **I.38** in 79% yield (Scheme I.34).

⁸⁴ Regioisomer ratio determined by HPLC analysis of the crude reaction mixture.


Scheme I.34. Synthesis of sulfone I.38

In order to test the deprotection conditions of the *p*-benzyloxybenzyloxy group, a sample of pyrimidine **I.40** was subjected to 30% TFA in CH_2Cl_2 at rt. After 2 h, compound **I.40** was completely converted to the starting 2-benzylsulfanyl-4(3*H*)-pyrimidinone **I.1a**.

I.2.2.3.2. Synthesis of pyrimidin-2-one amino acids

The *ipso*-substitution reaction between pyrimidinyl sulfone **I.38** and the suitably protected amino esters **I.18** – tyrosine, histidine and lysine – was carried out using potassium carbonate as the base in DMF at a maximum of 50 °C to prevent the racemization of the final products. Under this set of conditions, the corresponding pyrimidin-2-yl amino esters **I.39** were isolated in excellent yields and without appreciable racemization⁸⁵ (Table I.13, entries 1-3).

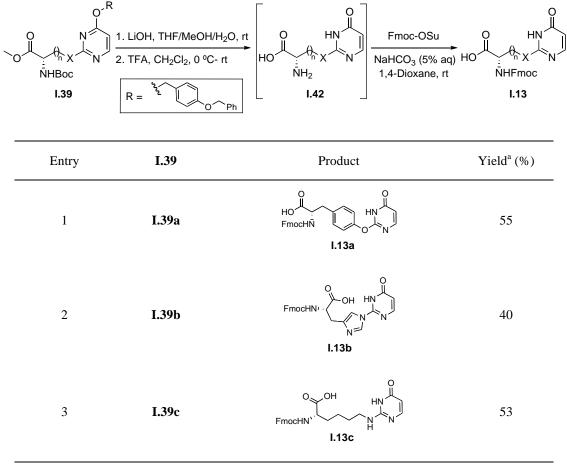

 $^{^{85}}$ The optical purity of compounds **I.39** was verified mediated the HPLC method described in Section I.2.1.4.

Table I.13. Synthesis of N^{α} -Boc-pyrimidin-2-yl amino esters **I.39**

^a Isolated yields.

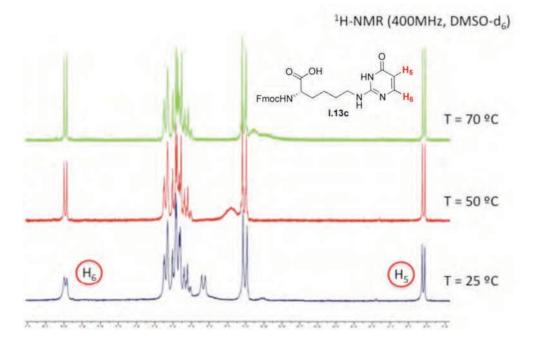

The N^{α} -Boc-pyrimidin-2-yl amino esters **I.39** were then converted to the target N^{α} -Fmoc-pyrimidin-2-one amino acids **I.13**. Initially, methyl ester was saponified successfully and, as expected, the treatment with TFA removed both the Boc and the *p*-benzyloxybenzylxoy group. The resulting 4(3*H*)-pyrimidin-2-one **I.42** carrying an amino acid moiety at the C2-position was immediately protected as a Fmoc carbamate to achieve the target N^{α} -Fmoc-pyrimidin-2-one amino acids **I.13**. In all cases, the global yield was moderate, ranging from 40% to 55% (Table I.14). The main cause of these moderate yields was the high polarity of the final compound **I.13** that made its purification by flash chromatography difficult.

Table I.14. Synthesis of N^{α} -Fmoc-pyrimidin-2-one amino acids **I.13**

^{a.} Isolated yields.

In the case of N^{α} -Fmoc-pyrimidin-2-yl lysine **I.13c**, the NMR spectra showed a dynamic process probably due to interchangeable protons on the guanidine, which makes its characterization difficult. At rt the H5 and H6 protons of the pyrimidinone ring and their corresponding carbons exhibited broad signals. Hence, a variable-temperature ¹H NMR study was undertaken. As evidenced in Figure I.18, at rt, proton H6 appeared as a broad doublet compared to the doublet of H5. As the temperature increased, the resolution of this signal also improved and, finally, both protons became similar in intensity at 70 °C.

Figure I.18. ¹H NMR spectra (region 8.2-5.9 ppm) of compound **I.13c** recorded at 400 MHz in d_6 -DMSO from 25 to 70 °C

I.2.3. SYNTHESIS AND BIOLOGICAL EVALUATION OF BP100 DERIVATIVES

I.2.3.1. Design and synthesis of BP100-derivatives

Among all the pyrimidinyl amino acids synthesized in the previous sections, we chose compounds **I.11c**, **I.12a**, **I.12b** and **I.12c** to study the effect of their incorporation into the antimicrobial peptide **BP100**. The synthesis of **BP100**-derivatives was designed based on the ideal α -helical wheel diagram⁸⁶ of H-K¹KLFKKILKY¹⁰L-NH₂ (**BP100**) where black background stands for hydrophilic amino acids and white background for hydrophobic amino acids (Figure I.19).

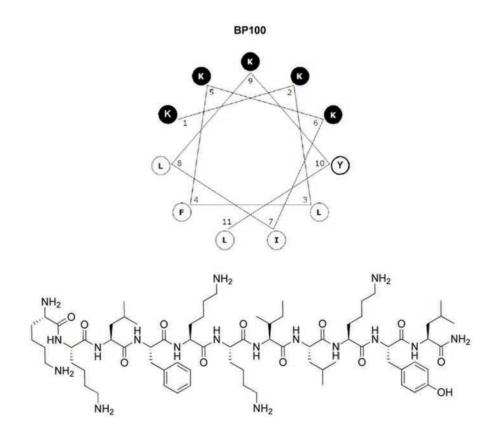


Figure I.19. Edmunson wheel projection of the peptide BP100

It has been reported that amino acid substitution in AMPs may considerably alter some fundamental parameters such as the overall hydrophobicity and amphipathicity, which are essential for their antimicrobial activity. Therefore, the analogues derived

⁸⁶ Shiffer, M.; Edmunson, A. B. *Biophysical J.* **1967**, *7*, 121-135.

from peptide **BP100** incorporating an unnatural pyrimidinyl amino acid were designed by taking into account the different nature of the selected pyrimidinyl amino acids: compounds **I.12a** [**Tyr(Py**)] and **I.12b** [**His(Py**)] with an aromatic side chain could be considered as hydrophobic amino acids, while **I.11c** [**Lys(Mor**)] and **I.12c** [**Lys(Py**)] had a more hydrophilic character. In this sense, we designed the **BP100** analogues with the aim of studying two effects: i) the change of a proteinogenic amino acid residue by a pyrimidinyl amino acid keeping the same hydrophobic or hydrophilic character, and ii) the replacement of a proteinogenic amino acid residue in the hydrophobichydrophilic interface by a pyrimidinyl amino acid with the opposite nature in order to analyse the effect of extending the hydrophilic or hydrophobic character of the peptide.

Consequently, hydrophobic pyrimidinyl amino acids **I.12a** and **I.12b** would replace both aromatic amino acid residues, phenylalanine and tyrosine, located at the positions 4 and 10, respectively, in the **BP100** sequence. And, on the other side, these synthetic amino acids would substitute hydrophilic lysine at position 1 (Figure I.20).

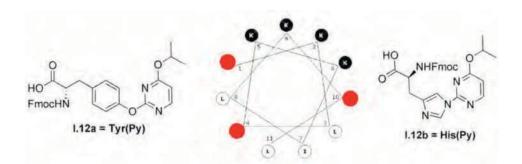


Figure I.20. Pyrimidinyl amino acids I.12a and I.12b were incorporated into bioactive peptide BP100 at positions indicated in red circles

Analogously, hydrophilic pyrimidinyl amino acids **I.11c** and **I.12c** would take the place of lysines at the positions 1 and 2 in the **BP100** sequence. In addition, tyrosine at position 10 would also be replaced by both pyrimidinyl lysines **I.11c** and **I.12c** (Figure I.21). In order to not alter the original amphipathicity character of **BP100**, lysine at position 2 would not be substituted by amino acids **I.12a** and **I.12b**, and phenylalanine at position 4 would not be replaced by amino acids **I.11c** and **I.12c**.

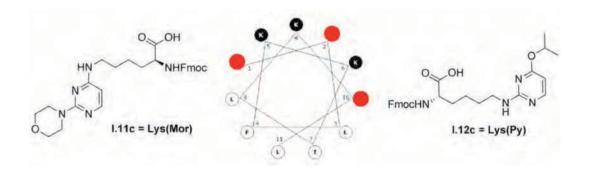


Figure I.21. Pyrimidinyl amino acids I.11c and I.12c were incorporated into bioactive peptide BP100 at positions indicated in red circles

All **BP100** analogues were synthesized by solid-phase methods using a Fmoc/*t*-Bu strategy and prepared as *C*-terminal amide. Particularly, 4-methylbenzylhydrylamine (MBHA) resin coupled to Rink-amide linker was used for the synthesis of the peptides. This resin made of polystyrene cross-linked with 1% of divinylbenzene shows excellent swelling properties with aprotic polar solvents, such as DMF. The linker Fmoc-Rink-amide, or $p-\{(R,S)-\alpha-[1-(9H-fluoren-9-yl)-methoxycarbonylamino]-2,4-dimethyoxybenzyl\}-phenoxyacetic acid, is an acid-labile handle which affords the peptide amide after cleavage (Figure I.22).$

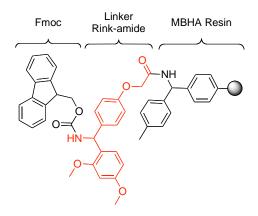
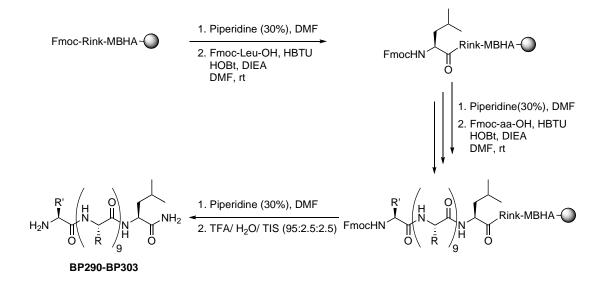



Figure I.22. MBHA resin and linker Fmoc-Rink-amide

According to the synthetic pathway depicted in the following scheme, a collection of fourteen peptides **BP290-BP303** was synthesized successfully (Scheme I.35). The N^{α} -Fmoc amine deprotection was carried out by treatment with piperidine in DMF, and the amide bond was formed using *O*-benzotriazole-*N*,*N*,*N'*,*N'*-tetramethyluronium hexafluorophosphate (HBTU) as the coupling reagent, DIEA as the base and in the presence of HOBt as an additive in order to prevent any racemization. Side-chain

deprotection and release of the peptides from the solid support was promoted by treatment with TFA in the presence of small amounts of water and triisopropylsilane (TIS), which both act as carbocation scavengers.

Scheme I.35. Synthesis of pyrimidinyl peptides BP290-303

The identities of the resulting peptides **BP290-303** were confirmed by mass spectrometry. For all peptides, the molecular masses determined experimentally were consistent with the masses calculated from the proposed structures. The HPLC analysis of the synthesized sequences showed a purity range from 60% to 99% (Table I.15).

Peptide	Sequence	$t_{\rm R} ({\rm min})^{\rm a}$	Purity (%) ^b	MS ^c
BP100	H-KKLFKKILKYL-NH ₂	6.23	99	1421.10
BP290	H- Tyr(Py) -KLFKKILKYL-NH ₂	6.82	83	1592.90
BP291	H-KKLFKKILK- Tyr(Py) -L-NH ₂	6.69	89	1557.00
BP292	H-KKL- Tyr(Py) -KKILKYL-NH ₂	6.24	68	1573.00
BP293	H- Tyr(Py) -KLFKKILK- Tyr(Py) -L-NH ₂	6.81	70	1709.00
BP294	H-His(Py)-KLFKKILKYL-NH2	6.85	73	1565.90
BP295	H-KKLFKKILK- <mark>His(Py)</mark> -L-NH ₂	6.40	99	1531.00
BP296	H-KKL-His(Py)-KKILKYL-NH ₂	6.23	99	1547.00
BP297	H-His(Py)-KLFKKILK-His(Py)-L-NH ₂	6.45	99	1657.00
BP298	H-K- Lys(Py) -LFKKILKYL-NH ₂	6.65	92	1578.88 ^d
BP299	H-K-Lys(Mor)-LFKKILKYL-NH ₂	6.41	70	1584.09
BP300	H-Lys(Py)-KLFKKILKYL-NH ₂	6.72	71	1556.97
BP301	H-Lys(Mor)-KLFKKILKYL-NH ₂	6.49	80	1583.99
BP302	H-KKLFKKILK- Lys(Py) -L-NH ₂	6.46	67	1523.20
BP303	H-KKLFKKILK-Lys(Mor)-L-NH ₂	6.27	60	1549.20

Table I.15. Analyses of pyrimidinyl BP100 analogues BP290-303

^a $t_{\rm R}$: retention time in HPLC. ^b Determined by HPLC at 220 nm.

^c Mass correspondent to [M+H]⁺. ^d Mass correspondent to [M+Na]⁺.

I.2.3.2. Evaluation of biological activity

The synthesized peptide library **BP290-303** was evaluated for antimicrobial as well as hemolytic activities in the Laboratory of Plant Pathology of the Institute of Food and Agricultural Technology CIDSAV-CerTA.

I.2.3.2.1. Evaluation of antimicrobial activity

The antimicrobial activity of the synthesized pyrimidinyl conjugated peptides was tested against the bacterial strains *Pseudomonas syringae*, *Xanthomonas vesicatoria* and *Erwinia amylovora* as plant pathogens, and *Escherillia coli*, *Listeria* and *Salmonella* as animal pathogens. The antimicrobial activity was assessed as a minimal inhibitory concentration (MIC), which is the lowest concentration of a peptide that completely inhibits the growth of a microorganism. Indeed, the tests were performed at different peptide concentrations: 2.5, 5, 10 and 15 μ M.

In general, the effects of the incorporation of a pyrimidinyl amino acid into the BP100 sequence depended on the nature of the substituted amino acid. On one hand, the replacement of the hydrophilic lysine at position 1 of the BP100 sequence by the hydrophobic pyrimidinyl amino acids I.12a and I.12b caused a slight decrease of the antimicrobial activity against the tested pathogens, with the exception of Xanthomonas vesicatoria (sequences BP290 and BP294). This could be attributed to the reduction of the peptide cationic charge. While the substitution of the tyrosine residue at position 10 for these pyrimidinyl amino acids I.12a and I.12b resulted in an improvement of the general antimicrobial activity (sequences BP291 and BP295). The replacement of the phenylalanine residue at position 4 by these unnatural amino acids produced a significant loss of the antimicrobial activity against all the tested pathogens (sequences BP292 and BP296). Apparently, modifications in the hydrophobic part of the BP100 sequence were problematic even with the replacement by unnatural amino acids with similar character. The sequences BP293 and BP297 with a double-residue substitution with amino acids I.12a and I.12b led to an important increase of the MIC values compared to control peptide BP100. Probably, a double-residue substitution considerably altered its α -helical structure, which is essential for the antimicrobial activity.

Peptide	$MIC^{a}(\mu M)$						
	Ps ^b	Ea ^b	Xv^{b}	Ec^{b}	Listeria	Salmonelld	
BP100	5	5	5	5	>15	10	
BP290	10	15	5	5	10	10	
BP291	5	5	2.5	2.5	10	5	
BP292	10	10-15	10	5-10	>15	>15	
BP293	10-15	15	5-10	10	>15	15	
BP294	10-15	15	5	5-10	10-15	15	
BP295	5	5-10	2.5-5	2.5	15	10-15	
BP296	15	>15	15	15	>15	>15	
BP297	15	>15	10	15	>15	>15	
BP298	2.5-5	2.5-5	nd ^c	15	2.5-5	>15	
BP299	2.5-5	<2.5	nd	>15	5-10	10-15	
BP300	2.5-5	<2.5	nd	>15	2.5-5	10-15	
BP301	>15	<2.5	nd	>15	5-10	15	
BP302	2.5-5	<2.5	nd	>15	5-10	>15	
BP303	2.5-5	<2.5	nd	>15	10-15	>15	

Table I.16. Antimicrobial activity of pyrimidinyl BP100 analogues BP290-303

^a MIC: minimum inhibitory concentration. ^b Ps, *Pseudomonas syringae*; Ea, *Erwinia amylovora*; Xv, *Xanthomonas vesicatoria*; Ec, *Escherillia coli*. ^c nd: not determined.

On the other hand, the peptides **BP298-BP303** that incorporated modified lysines **I.11c** and **I.12c** in positions 1, 2 and 10 presented a considerable antimicrobial improvement, especially against *Pseudomonas syringae*, *Erwinia amylovora* and *Listeria*, even when hydrophobic tyrosine residue was replaced. These results indicated that an increase in the cationic charge of **BP100** analogues correlated with an improvement of the antimicrobial activity. In addition, modifications in the hydrophilic part of **BP100** instead of its hydrophobic part by replacement with unnatural amino

acids **I.11c** and **I.12c** with similar characters of lysine improved the antimicrobial activity.

To sum up, the increase of hydrophilic amino acids in the **BP100** sequence significantly enhanced the antimicrobial activity. However, the extension of hydrophobic residues into the peptides resulted in a slight loss of antimicrobial activity.

I.2.3.2.2. Evaluation of hemolytic activity

The ability of the peptides to disrupt the membrane integrity of mammalian cells was interrogated by a hemolytic assay at different peptide concentrations: 50, 150 and 250 μ M (Table I.17). Basically, the sequences incorporating at least one modified amino acid resulted in higher hemolytic activity. However, among the synthesized peptides in this library, only sequence **BP296** showed a lower hemolytic activity than the peptide pattern **BP100**.

The candidates that showed an increase in antimicrobial activity, **BP295**, **BP299** and **BP303**, presented acceptable hemolytic values at 50 μ M taking into account their MIC in front of some bacteria, which were ten times lower.

It has previously been demonstrated that increasing hydrophobicity correlates with hemolytic activity.⁸⁷ Accordingly, the hydrophobicity of the peptides was evaluated based on their retention times on reversed phase HPLC. In general, the introduction of a pyrimidinyl α -amino acid resulted in an increase of hydrophobicity compared to the parent peptide **BP100**. Consequently, they showed a significant increase in the ability to disrupt mammalian cells.

Peptide **BP296** showed the lowest hemolytic activity and the lowest retention time, which means the lowest hydrophobicity. On the other hand, peptides such as **BP293** or **BP294**, which are the most hydrophobic candidates, presented the highest hemolysis values at 150 μ M.

⁸⁷ Tachi, T.; Epand, R. F.; Epand, R. M.; Matsuzaki, K. Biochemistry 2002, 41, 10723-10731.

Peptide		$t_{\rm R}$ (min) ^c		
	50 µM	150 µM	250 µM	
BP100	3 ± 0.1	22 ± 2.8	nd	6.23
BP290	73.0 ± 6.6	93.5 ± 1.5	94.1 ± 1.8	6.82
BP291	79.0 ± 3.3	89.0 ± 2.2	92.4 ± 1.6	6.69
BP292	12.8 ± 2.9	55.5 ± 8.5	84.2 ± 4.7	6.24
BP293	46.6 ± 3.4	101 ± 9.2	95.4 ± 3.7	6.81
BP294	53.4 ± 6.7	96.0 ± 13.7	95.2 ± 3.8	6.85
BP295	30.3 ± 3.9	82.0 ± 3.8	88.4 ± 4.1	6.40
BP296	1.5 ± 0.3	6.9 ± 1.3	19.8 ± 0.7	6.23
BP297	nd ^b	nd	nd	6.45
BP298	88.0 ± 5.2	93.4 ± 1.5	95.6 ± 2.8	6.65
BP299	47.7 ± 9.4	90.0 ± 0.4	97.9 ± 3.4	6.41
BP300	94.5 ± 13.5	87.8 ± 1.1	93.7 ± 3.3	6.72
BP301	84.5 ± 4.7	93.5 ± 2.9	97.5 ± 8.9	6.49
BP302	77.9 ± 5.2	93.4 ± 2.6	94.8 ± 2.3	6.46
BP303	16.7 ± 5.9	69.1 ± 2.0	81.3 ± 1.4	6.27

Table I.17. Hemolytic activity of pyrimidinyl BP100 analogues BP290-303

^a $\alpha = 0.05$. ^b nd: not determined. ^c $t_{\rm R}$: retention time in HPLC.

Overall, these results were consistent with previous studies that showed that increasing hydrophobicity results in a higher hemolytic tendency, indicating that a fine

balance between hydrophobicity and charge as in the case of magainin-like peptides is crucial for redesigning with pyrimidine analogues.⁸⁸

⁸⁸ Meng, H.; Kumar, K. J. Am. Chem. Soc. 2007, 129, 15615-15622.

I.3. CONCLUSIONS

From the first part of this thesis, the following conclusions can be drawn:

- The synthesis of N^{α} -Boc-pyrimidin-4-yl α -amino esters **I.20a-c** has been achieved by phosphonium coupling reaction between 2-morpholinopyrimdin-4(*3H*)-one **I.29** and the nucleophilic side-chain of the protected amino acids – tyrosine **I.18a**, histidine **I.18b** and lysine **I.18c** – using a two-step approach through OBt-adduct **I.31**. It has been demonstrated that the base, the reaction temperature and the reagent equivalents played a key role in the preparation of these compounds **I.20a-c** in good yields (72-82%) and without loss of optical integrity. In general, the best reaction conditions were potassium carbonate as base, an excess of OBt-adduct **I.31** and heating at 40 or 50 °C.
- N^{α} -Boc-pyrimidin-4-yl tryptophan derivative **I.20d** was obtained in only 22% yield using the above two-step approach. All reaction conditions attempted, including microwave heating or the direct coupling reaction between pyrimidinone **I.29** and tryptophan **I.18d** assisted by PyBrOP, failed to improve this result. This unfruitful outcome has been attributed to the low nucleophilicity of the indole nitrogen atom together with the poor reaction conversion.
- The synthesis of N^{α} -Boc-pyrimidin-2-yl α -amino esters **I.32** and **I.39** has been achieved by nucleophilic aromatic substitution of 4-alkoxy-2-

benzylsulfonylpyrimidine **I.27a-c** and **I.38**, respectively, using the side chain of proteinogenic amino esters **I.18a-e** as nucleophiles. The reaction conditions (base, temperature and reaction time) have been optimized for each α -amino ester **I.18** individually in order to afford the target compounds in good yields (40-88%) and without degradation of the optical integrity. In general, the best reaction conditions were the use of potassium carbonate as a base and a reaction temperature ranging from rt to 50 °C.

- All the nucleophilic aromatic substitutions carried out with N^{α} -Boc histidine methyl ester **I.18b** were completely regioselective in favour of regioisomer $N(\tau)$ as demonstrated by NOESY experiment and X-ray analysis of compounds **I.20b** and **I.32bc**, respectively.
- N^α-Boc-pyrimidinyl α-amino esters **I.20**, **I.32** and **I.39** can be converted into the corresponding N^{α} -Fmoc-pyrimidinyl α-amino acids **I.11** and **I.12**, and N^{α} -Fmoc-pyrimidin-2-one α-amino esters **I.13**, respectively, through standard procedures of deprotection and protection of functional groups. Essentially, methyl ester was saponified using LiOH, N^{α} -Boc protecting group was removed by TFA treatment and the resulting free amino acid were subsequently protected with Fmoc-OSu. The overall yields of this three-step sequence were generally very good: **I.11a-c** (55-93%), **I.12a-d** (57-96%) and **I.13a-c** (40-50%).
- It has been demonstrated that *p*-benzyloxybenzyloxy group at the C4-position of the N^{α} -Boc-pyrimidin-2-yl α -amino esters **I.39** can be removed under mild acid conditions to recover the pyrimidinone ring. Particularly, the hydrolysis of this group can be performed simultaneously with N^{α} -Boc removal by TFA treatment at rt.
- A rational design and synthesis of a small library of peptides analogues of **BP100** has been undertaken, replacing one or two proteinogenic amino acids of the **BP100** sequence with pyrimidinyl amino acids **I.11c**, **I.12a**, **I.12b** and **I.12c**. **BP290-303** peptides have been obtained in purities ranging from 60 to 99% and characterized by mass spectrometry.

- The modified peptides **BP290-303** have been tested for antimicrobial activity against plant pathogens *Pseudomonas syringae*, *Xanthomonas vesicatoria* and *Erwinia amylovora*, as well as animal pathogens *Escherillia coli*, *Salmonella* and *Listeria*. Indeed, they have been evaluated for hemolytic activity.
- In general, the replacement of a proteinogenic amino acid residue at positions 1, 4 and/or 10 of the **BP100** sequence by the hydrophobic pyrimidinyl amino acids **I.12a** and **I.12b** produced a decrease of the antimicrobial activity against plant as well as animal pathogens. Concluding that the reduction of the cationic charge or modifications in the hydrophobic part of **BP100** considerably alter the structural features of **BP100** essential for their antimicrobial activity.
- Peptides **BP298-303** that incorporated hydrophilic pyrimidinyl amino acids **I.11c** and **I.12c** at positions 1, 2 or 10 of the **BP100** sequence enhanced the antimicrobial activity against most of the tested pathogens, especially against *Erwinia amylovora* (MIC < 2.5 μ M). Demonstrating that an increase in the cationic charge or modifications in the hydrophilic part of **BP100** improve the antimicrobial activity.
- As a rule, **BP100** analogues exhibited hemolytic values higher than **BP100** in agreement with the observed hydrophobicity according to the retention time on HPLC. Therefore, **BP295**, **BP299** and **BP303** presented a good balance between antimicrobial and hemolytic activities, as the hemolytic values at 50 μ M are acceptable (12-47%) taking into account that MIC are one order lower.

I.4. EXPERIMENTAL PART OF CHAPTER I

I.4.1. MATERIALS AND METHODS

I.4.1.1. General reagents

General reagents were purchased from Aldrich, Fluka, Bachem SA, Panreac, Novabiochem or Iris Biotech and were used throughout without purification, except for PyBroP (Novabiochem), which was purified by crystallization with CH₂Cl₂-hexane.⁸⁹

I.4.1.2. Solvents

 H_2O was deionized and filtered using a COT Millipore Q-gradient (COT < 3 ppb) system with a resistivity of 18 M Ω cm⁻¹. The most common used organic solvents were synthesis grade, except for DMF and MeCN, which were multisolvent HPLC grade. They were purchased from Aldrich (1,4-dioxane), Sharlau (DMF, MeCN), SDS (CH₂Cl₂) or VWR International (hexane, ether, EtOAc, THF, MeOH). DMF and 1,4-dioxane were dried over activated 4 Å molecular sieves. Dry THF and MeCN were purified and dried by passing through an activated alumina purification system (MBraun SPS-800).

I.4.1.3. General instruments

Melting points (capillary tube) were measured with an Electrothermal digital melting point apparatus IA 91000 and were uncorrected.

IR spectra were recorded on a Mattson-Galaxy Satellite FT-IR using a MKII Golden Gate using a single reflection ATR system (Spacec) as a sampling accessory. Absorption band position is registered in cm⁻¹.

NMR spectra were recorded on a Bruker 200, 300 or 400 MHz NMR Advance spectrometer. ¹H NMR spectra were recorded at 400, 300 or 200 MHz and ¹³C NMR spectra were recorded at 100, 75 or 50 MHz. Spectra recorded in CDCl₃ were referenced to residual CHCl₃ at 7.26 ppm for ¹H or 77.0 ppm for ¹³C. Spectra recorded in d_6 -DMSO were referenced to residual DMSO at 2.49 ppm for ¹H or 39.5 ppm for ¹³C. Coupling constants (*J*) were given in Hertz (Hz). Abbreviations used in the

⁸⁹ Alsina, J.; Barany, G.; Albericio, F.; Kates, S. A. Lett. Peptide Sci. 1999, 6, 243-245.

description of resonance were as follows: singlet: s, doublet: d, triplet: t, quartet: q, sextet: sext, septet: sept, multiplet: m, double of doublet: dd, broad: br, apparent: app.

X-ray diffraction all measurements were conducted on a single X-Ray Bruker SMART Apex CCD diffractometer using graphite-monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) from an X-Ray tube, CCD area detector and X-Ray capillary collimator (Monocap).

Optical rotations ($[\alpha]_D^T$ (*c* g/100 mL)) were measured on a Perkin-Elmer polarimeter (Model 343 Plus), using the sodium D line. Specific rotations $[\alpha]_D^T$ are given in 10⁻¹ cm² g⁻¹, and concentration (*c*) is expressed in g per 100 mL.

Elemental analyses were performed on an EA1110-CHNS apparatus from Thermo-Finnigan/CE Instruments.

The microwave-assisted synthesis was performed using an Ethos SEL labstation from Milestone equipped with a dual magnetron system (1600W). The experiment time, temperature and power were controlled with the EasyControl software package. The temperature was monitored through the ATC-400FO Automatic Fiber Optic Temperature Control System immersed into a standard Milestone reference vessel.

Electrospray ionization (ESI) mass spectra were acquired using a Navigator quadrupole mass spectrometer (Finnigan AQA thermoQuest) equipped with an electrospray ion source. The instrument was operated in the positive ESI (+) ion mode at a probe tip voltage of 3 kV. The other ESI-MS analyses were recorded on an esquire 6000 ESI ion Trap LC/MS (Bruker Daltonics) equipped with an electrospray ion source. The instrument was operated in the positive ESI (+). Samples were introduced into the mass spectrometer ion source directly through a HPLC autosampler with a 5 μ L sample. The mobile phase flow (100 μ L·min⁻¹ of 80:20 vol/vol MeCN/H₂O) was delivered by an 1100 Series HPLC pump (Agilent). Nitrogen was employed as both a drying and nebulising gas.

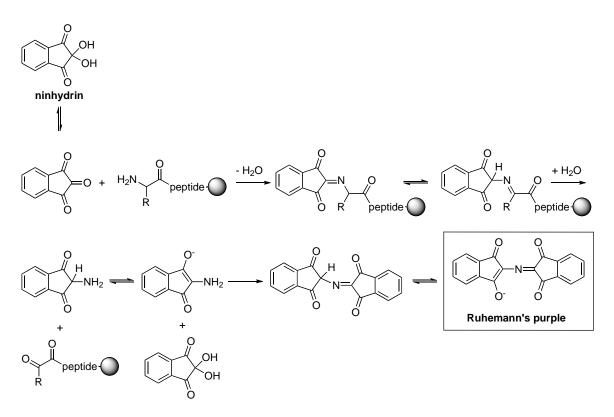
Matrix-assisted laser desorption/ionization-Time-of-flight (MALDI-TOF) mass spectra were recorded on a Bruker ULTRAflex TOF mass spectrometer equipped with a nitrogen laser.

High-resolution mass spectra (HRMS) were determined under conditions of ESI on a Bruker Micro-Q-Tof instrument using a hybrid quadrupole time-of-flight mass spectrometer (University of Zaragoza). Samples were introduced into the mass spectrometer ion source directly through an 1100 Series Agilent HPLC autosampler and were external calibrated using sodium formiate. The instrument was operated in the positive ESI (+) ion mode.

I.4.1.4. Chromatography

Thin layer chromatography (TLC) was performed on precoated TLC plates, silica gel 60 F_{254} (Merck). The spots on the TLC plates were visualized with UV/visible light (254 nm) and/or stained with a solution of potassium permanganate (1.5 g/100 mL H_2O).

Flash chromatography purifications were performed on silica gel 60 (230-400 mesh, Merck).


High performance liquid chromatography (HPLC) was performed on a Summit Dionex instruments composed of P680 binary pump, UVD 170U 4-Channel UV-Vis Detector, ASI-100 Autosampler and the Chromaleon 6.60 software from Dionex, on a C_{18} Kromasil reverse-phase column (4.6 x 40 mm; 3.5 µm particle size). The conditions used were a linear gradient of (2-100%) solvent B at a flow rate of 1.0 mL/min over 17 min; solvent A: H₂O/0.1% TFA, solvent B: MeCN/0.1% TFA. Purity estimates are based upon area percent of the peaks detected at 220 nm.

I.4.1.5. Kaiser test for monitoring solid-phase peptide synthesis

The ninhydrin or Kaiser test⁹⁰ is a qualitative colour test to detect the presence or absence of free primary amino groups, constituting a useful indication about the completeness of the amino acid coupling in Fmoc solid-phase peptide synthesis. The

⁹⁰ Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Anal. Biochem. **1970**, 34, 595.

test is based on the reaction of ninhydrin with the free primary amines, which gives an intensive dark blue colour. In particular, ninhydrin (triketohydrindene hydrate) is a strong oxidizing agent, which causes the oxidative deamination of the α -amino function as depicted in Scheme I.36. The product of the reaction is the hydrindatin, a reduced derivative of ninhydrin, which reacts with another molecule of ninhydrin to yield a purple chromophore product (Ruhemann's purple).

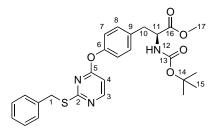
Scheme I.36. Mechanism of Kaiser test

Ninhydrin test was performed as follows: a few resin beads from the reaction vessel were transferred into a small test tube and 3 drops of each solution of the test kit were added. Next, the suspension was mixed well and heated at 100 °C for 3 min. The resin beads and the solution turn dark blue when free primary amines are present. The resin beads remain their colour and the solution stays yellow when no free primary amines are present. The ninhydrin test kit contains three solutions:

Solution A: phenol (40 g) in absolute ethanol (10 mL).

Solution B: 2 mL of a solution of KCN (65 g) in H_2O (100 mL) are added to pyridine (100 mL).

Solution C: ninhydrin (2.5 g) in absolute ethanol (50 mL).


I.4.2. EXPERIMENTAL PROCEDURES

I.4.2.1. Synthesis of pyrimidin-4-yl amino acids

I.4.2.1.1. Synthesis of 2-(benzylsulfanyl)-4-isopropoxypyrimidines I.1 and I.27

The synthesis of these compounds was described in reference 36a.

I.4.2.1.2. Synthesis of methyl (2S)-N-Boc-2-amino-3-[4-(2benzylsulfanylpyrimidin-4-yloxy)phenyl]propanoate (I.19a)

MW (g/mol): 495.59

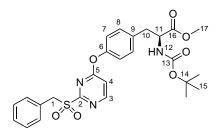
Molecular formula: C₂₆H₂₉N₃O₅S

To a solution of 2-(benzylsulfanyl)pyrimidin-4(3*H*)-one **I.1a** (100 mg, 0.46 mmol) and DBU (0.11 mL, 0.69 mmol) in acetonitrile (1.5 mL) was added BOP (265 mg, 0.6 mmol) and the solution was stirred at rt for 15 min. Then, N^{α} -Boc-(*S*)-tyrosine methyl ester (204 mg, 0.69 mmol) and DBU (0.11 mL, 0.69 mmol) were added as an acetonitrile solution (0.5 mL). The resulting mixture was stirred at rt. Upon completion of the reaction (TLC monitoring, 12 h), the solvent was removed under reduced pressure and the crude material was purified by flash chromatography (*n*-hexane/EtOAc, from 15:1 to 1:1) to afford compound 198 mg (87%) of compound **I.19a** as a colourless oil.

 R_f (*n*-hexane/EtOAc, 1:1): 0.68.

 $[\alpha]_{D}^{25}$ +3.92 (*c* 1.95, CHCl₃).

IR (neat): 3357, 3038, 2978, 1736, 1698, 1557, 1443 cm⁻¹.


¹**H** NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 5.8 Hz, 1H, H₃), 7.23-7.15 (m, 7H, H_{aryl}), 7.07 (d, J = 8.8 Hz, 2H, H₇), 6.50 (d, J = 5.8 Hz, 1H, H₄), 5.00 (d, J = 7.6 Hz, 1H, H₁₂),

4.58 (m, 1H, H₁₁), 4.16 (s, 2H, H₁), 3.68 (s, 3H, H₁₇), 3.15 (dd, J = 13.9, 5.6 Hz, 1H, H₁₀), 3.05 (dd, J = 13.9, 5.9 Hz, 1H, H₁₀), 1.42 (s, 9H, H₁₅).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.0 (s, C₁₆), 171.8 (s, C₅), 168.7 (s, C₂), 158.7 (d, C₃), 154.9 (s, C₁₃), 151.2 (s, C_{aryl}), 137.5 (s, C_{aryl}), 133.7 (s, C₇), 130.4 (d, 2C, C_{aryl}), 128.9 (d, 2C, C_{aryl}), 128.2 (d, 2C, C_{aryl}), 127.0 (d, C_{aryl}), 121.7 (d, 2C, C_{aryl}), 103.3 (d, C₄), 80.0 (s, C₁₄), 54.4 (d, C₁₁), 52.2 (q, C₁₇), 37.8 (t, C₁₀), 35.0 (t, C₁), 28.2 (q, 3C, C₁₅).

HRMS (ESI) m/z: calculated for C₂₆H₂₉KN₃O₅S [M+K]⁺ 534.1460, found 534.1460; calculated for C₂₆H₂₉NaN₃O₅S [M+Na]⁺ 518.1720, found 518.1724; calculated for C₂₆H₃₀N₃O₅S [M+H]⁺ 496.1901, found 496.1910.

I.4.2.1.3. Synthesis of methyl (2S)-N-Boc-2-amino-3-[4-(2benzylsulfonylpyrimidin-4-uloxy)phenyl]propanoate (I.21a)

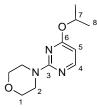
MW (g/mol): 527.5894

Molecular formula: C₂₆H₂₉N₃O₇S

Compound **I.19a** (120 mg, 0.24 mmol) was dissolved in CH_2Cl_2 (2.5 mL). The solution was cooled in an ice bath and *m*-CPBA (118 mg, 5.23 mmol) was added in small portions. The resulting mixture was warmed to rt and stirred during 3h. Upon completion of the reaction (TLC monitoring), the solvent was removed under reduced pressure and the residue was dissolved in EtOAc (10 mL), washed with saturated NaHCO₃ solution (2 x 5 mL) and brine (2 x 5 mL). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by flash chromatography (*n*-hexane/EtOAc, from 10:1 to 1:1) to afford 78 mg (61%) of compound **I.21a** as a colourless solid.

 R_f (*n*-hexane/EtOAc, 1:1): 0.40.

 $[\alpha]_{D}^{20}$ +10.28 (*c* 0.7, CHCl₃).


IR (neat): 3380, 3040, 2972, 1741, 1711, 1570, 1543, 1434, 1310 cm⁻¹.

¹**H NMR** (200 MHz, CDCl₃) δ 8.67 (d, J = 5.8 Hz, 1H, H₃), 7.30-7.22 (m, 7H, H_{aryl}), 7.11 (d, J = 8.5 Hz, 2H, H_{aryl}), 6.98 (d, J = 5.8 Hz, 1H, H₄), 5.03 (d, J = 7.8 Hz, 1H, H₁₂), 4.59 (br s, 3H, H₁, H₁₁), 3.70 (s, 3H, H₁₇), 3.17 (dd, J = 13.8, 5.7 Hz, 1H, H₁₀), 3.06 (dd, J = 13.8, 6.5 Hz, 1H, H₁₀), 1.42 (s, 9H, H₁₅).

¹³**C NMR** (50 MHz, CDCl₃) δ 172.0 (s, C₁₆), 169.9 (s, C₅), 164.9 (s, C₂), 159.6 (d, C₃), 155.0 (s, C₁₃), 150.7 (s, C_{aryl}), 134.8 (s, C_{aryl}), 131.3 (d, 2C, C_{aryl}), 130.9 (d, 2C, C_{aryl}), 128.8 (d, C_{aryl}), 128.6 (d, 2C, C_{aryl}), 126.7 (s, C_{aryl}), 121.3 (d, 2C, C₇), 110.8 (d, C₄), 80.1 (s, C₁₄), 57.1 (t, C₁), 54.5 (d, C₁₁), 52.3 (q, C₁₇), 38.0 (t, C₁₀), 28.3 (q, 3C, C₁₅).

HRMS (ESI) m/z: calculated for calculated for C₂₆H₂₉NaN₃O₇S [M+Na]⁺ 550.1618, found 550.1621.

I.4.2.1.4. Synthesis of 4-isopropoxy-2-morpholinopyrimidine (I.28)

MW (g/mol): 223.2715

Molecular formula: C₁₁H₁₇N₃O₂

Morpholine (3.75 mL, 42.8 mmol) was added to a solution of pyrimidinyl sulfone **I.27a** (5 g, 17.12 mmol) in dry 1,4-dioxane (50 mL) and the resulting solution was stirred at 60 °C under a nitrogen atmosphere until completion of the reaction (TLC monitoring). Then, the solvent was removed under reduced pressure, and the resulting residue was purified by flash chromatography (*n*-hexane/EtOAc, 1:1) to afford 3.44 g (90%) of pyrimidine **I.28** as a colourless oil.

 R_f (*n*-hexane/EtOAc, 4:1): 0.58.

IR (neat): 2977, 2852, 1578, 1559, 1493, 1438, 1335, 1299, 1267, 1250, 1234, 1113, 1089, 1014, 977, 945, 799 cm⁻¹.

¹**H** NMR (200 MHz, CDCl₃) δ 8.06 (d, J = 5.8 Hz, 1H, H₄), 5.97 (d, J = 5.8 Hz, 1H, H₅), 5.29 (sept, J = 6.2 Hz, 1H, H₇), 3.77 (s, 8H, H₁, H₂), 1.35 (d, J = 6.2 Hz, 6H, H₈).

¹³**C NMR** (50 MHz, CDCl₃) δ 168.1 (s, C₆), 160.8 (s, C₃), 156.8 (d, C₄), 96.7 (d, C₅), 67.3 (d, C₇), 65.8 (t, 2C, C₁), 43.3 (t, 2C, C₂), 20.8 (q, 2C, C₈).

MS (ESI) *m*/*z*: 224.1 [M+H]⁺.

I.4.2.1.5. Synthesis of 2-morpholinopyrimidin-4(3H)-one (I.29)

MW (g/mol): 181.1918

Molecular formula: C₈H₁₁N₃O₂

Pyrimidine **I.28** (3.3 g, 14.8 mmol) was dissolved in glacial acetic acid (14.8 mL) and concentrated H_2SO_4 (14.8 mL). The resulting mixture was stirred at 90 °C for 15 min (TLC monitoring). After this time, upon cooling, the crude mixture was neutralized with a 5M NaOH solution. Next, the aqueous solution was extracted with CH_2Cl_2 (3 x 25 mL). The combined organic layers were washed with brine (15 mL), dried over MgSO₄ and concentrated under reduced pressure affording 2.14 g (80%) of pyrimidinone **I.29** as a colourless solid.

Mp: 171-174 °C.

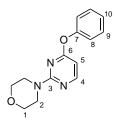
*R*_{*f*} (MeOH/CH₂Cl₂/NH₃, 1:10:0.1): 0.30.

IR (neat): 3015, 2920, 1629, 1552, 1485, 1303, 1274, 1257, 1115, 998, 969, 891, 835 cm⁻¹.

¹**H** NMR (200 MHz, CDCl₃) δ 7.80 (d, J = 6.2 Hz, 1H, H₄), 5.79 (d, J = 6.2 Hz, 1H, H₅), 3.85-3.75 (s, 8H, H₁, H₂).

¹³C NMR (50 MHz, CDCl₃) *δ* 165.0 (s, C₆), 155.9 (d, C₄), 136.0 (s, C₃), 101.8 (d, C₅), 65.4 (t, 2C, C₁), 43.9 (t, 2C, C₂).

MS (ESI) m/z: 182.1 [M+H]⁺; 204.1 [M+Na]⁺.


I.4.2.1.6. Synthesis of C4 substituted 2-morpholinopyrimidines I.30

I.4.2.1.6.1. General procedure

A mixture of pyrimidinone **I.29** (1.0 equiv), DBU (1.5 equiv) and BOP (1.5 equiv) in MeCN (0.4M) was stirred at rt for 15 min. Next, the corresponding nucleophile **I.15** (1.5 equiv) and DBU (1.5 equiv) were subsequently added to this mixture and the

resulting solution was stirred at 60 °C for 24 h. Upon completion of the reaction (TLC monitoring), the solvent was removed under reduced pressure, and the resulting residue was purified by flash chromatography (*n*-hexane/EtOAc, from 9:1 to 1:1) to afford compounds **I.30**.

I.4.2.1.6.2. 2-Morpholino-4-phenoxypyrimidine (I.30a)

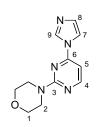
MW (g/mol): 257.2878

Molecular formula: C₁₄H₁₅N₃O₂

Synthesized according to general procedure from pyrimidinone **I.29** (100 mg, 0.55 mmol), BOP (367 mg, 0.83 mmol), DBU (0.25 mL, 1.65 mmol) and phenol **I.15a** (78 mg, 0.83 mmol), 96 mg (68%) of compound **I.30a** was obtained as a colourless solid.

Mp: 99-103 °C.

*R*_f (CH₂Cl₂/MeOH, 20:1): 0.80.


IR (neat): 2956, 2921, 2857, 1583, 1551, 1499, 1462, 1434, 1329, 1240, 1109, 1023, 970, 949 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, J = 5.6 Hz, 1H, H₄), 7.37-7.41 (m, 2H, H₉), 7.23 (m, 1H, H₁₀), 7.14-7.12 (m, 2H, H₈), 6.03 (d, J = 5.6 Hz, 1H, H₅), 3.73-3.63 (m, 8H, H₁, H₂).

¹³C NMR (100 MHz, CDCl₃) δ 170.0 (s, C₆), 161.2 (s, C₃), 158.7 (d, C₄), 152.5 (s, C₇), 129.5 (d, 2C, C₉), 125.4 (d, C₁₀), 121.6 (d, 2C, C₈), 96.2 (d, C₅), 66.6 (t, 2C, C₁), 44.2 (t, 2C, C₂).

HRMS (ESI) m/z: calculated for C₁₄H₁₆N₃O₂ [M+H]⁺ 258.1237, found 258.1248.

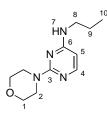
I.4.2.1.6.3. 4-(1*H*-Imidazol-1-yl)-2-morpholinopyrimidine (I.30b)

MW (g/mol): 231.2538

Molecular formula: C₁₁H₁₃N₅O

Synthesized according to general procedure from pyrimidinone **I.29** (100 mg, 0.55 mmol), BOP (367 mg, 0.83 mmol), DBU (0.25 mL, 1.65 mmol) and imidazole **I.15b** (56 mg, 0.83 mmol), 70 mg (55%) of compound **I.30b** was obtained as a colourless solid.

Mp: 114-116 °C.


*R*_f (CH₂Cl₂/MeOH, 10:1): 0.48.

IR (neat): 3012, 2959, 2927, 2852, 1626, 1607, 1582, 1538, 1498, 1427, 1362, 1296, 1259, 1224, 1088, 1052, 1033 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (d, J = 5.2 Hz, 1H, H₄), 8.35 (s, 1H, H₉), 7.58 (d, J = 0.8 Hz, 1H, H₇), 7.17 (s, 1H, H₈), 6.53 (d, J = 5.2 Hz, 1H, H₅), 3.86-3.83 (m, 4H, H₁), 3.79-3.76 (m, 4H, H₂).

¹³**C NMR** (100 MHz, CDCl₃) δ 161.7 (s, C₃ or C₆), 160.4 (d, C₄), 155.5 (s, C₃ or C₆), 135.2 (d, C₉), 131.2 (d, C₈), 115.9 (d, C₇), 97.2 (d, C₅), 66.9 (t, 2C, C₁), 44.4 (t, 2C, C₂). **HRMS (ESI)** *m/z*: calculated for C₁₁H₁₄N₅O [M+H]⁺ 232.1193, found 232.1183.

I.4.2.1.6.4. 2-Morpholino-N-propylpyrimidin-4-amine (I.30c)

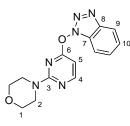
MW (g/mol): 222.2868

Molecular formula: C₁₁H₁₈N₄O

Synthesized according to general procedure from pyrimidone **I.28** (100 mg, 0.55 mmol), BOP (367 mg, 0.83 mmol), DBU (0.25 mL, 1.65 mmol) and propylamine

I.15c (68 μ L, 0.83 mmol), 99 mg (82%) of compound **I.30c** was obtained as a colourless oil.

R_f (CH₂Cl₂/MeOH, 9:1): 0.48.


IR (neat): 3347, 2958, 2924, 1579, 1478, 1432, 1339, 1267, 1246, 1229, 1110, 1067 cm^{-1} .

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 5.6 Hz, 1H, H₄), 5.73 (d, J = 5.6 Hz, 1H, H₅), 4.92 (br s, 1H, H₇), 3.79-3.68 (m, 8H, H₁, H₂), 3.26-3.24 (m, 2H, H₈), 1.60 (sext, J = 7.3 Hz, 2H, H₉), 0.97 (t, J = 7.3 Hz, 3H, H₁₀).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 162.8 (s, C₃ or C₆), 160.8 (s, C₃ or C₆), 154.5 (d, C₄), 94.4 (d, C₅), 66.8 (t, 2C, C₁), 44.3 (t, 2C, C₂), 43.0 (t, C₈), 22.7 (t, C₉), 11.5 (q, C₁₀).

HRMS (ESI) m/z: calculated for C₁₁H₁₉N₄O [M+H]⁺ 223.1553, found 223.1554.

I.4.2.1.7. Synthesis of 1-(2-(morpholinopyrimidin-4-yloxy)-1H-benzo[d]-[1,2,3]benzotriazole (I.31)

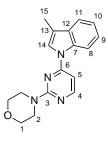
MW (g/mol): 298.2999

Molecular formula: C₁₄H₁₄N₆O₂

To a suspension of pyrimidinone **I.29** (1.4 g, 7.73 mmol) and BOP (4.1 g, 9.27 mmol) in MeCN (26 mL), DBU (1.8 mL, 11.59 mmol) was added. The resulting solution was stirred at rt for 5 h (TLC monitoring). After this time, the solvent was removed under reduced pressure and the crude material was purified by flash chromatography (*n*-hexane/EtOAc, from 20:1 to 15:1) to afford 2.3 g (90%) of OBt-adduct **I.31** as a colourless solid.

Mp: 105-106 °C.

 R_f (*n*-hexane/EtOAc, 1:1): 0.38.


IR (neat): 3073, 2982, 1619, 1539, 1511, 1436, 1337, 1275, 1220, 1078, 1001, 881, 777 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (d, J = 5.5 Hz, 1H, H₄), 8.06 (d, J = 8.4 Hz, 1H, H_{aryl}), 7.50 (m, 1H, H_{aryl}), 7.44-7.38 (m, 2H, H_{aryl}), 6.27 (d, J = 5.5 Hz, 1H, H₅), 3.49-3.33 (m, 8H, H₁, H₂).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.8 (s, C₆), 161.3 (s, C₃), 160.9 (d, C₄), 143.5 (s, C_{aryl}), 129.2 (s, C_{aryl}), 128.7 (d, C_{aryl}), 124.9 (d, C_{aryl}), 120.6 (d, C_{aryl}), 109.1 (d, C_{aryl}), 93.1 (d, C₅), 66.6 (t, 2C, C₁), 44.1 (t, 2C, C₂).

HRMS (ESI) m/z: calculated for C₁₄H₁₅N₆O₂ [M+H]⁺ 299.1251, found: 299.1243; calculated for C₁₄H₁₄N₆NaO₂ [M+Na]⁺ 321.1070, found 321.1072.

*I.4.2.1.8. Synthesis of 3-methyl-1-(2-morpholinopyrimidin-4-yl)-1*H*-indole* (*I.30d*)

MW (g/mol): 294.3510

Molecular formula: C₁₇H₁₈N₄O

3-Methyl-1*H*-indole **I.15d** (65 mg, 0.5 mmol) and K_2CO_3 (91 mg, 0.66 mmol) were dissolved in acetonitrile (1 mL) and the resulting mixture was stirred at rt for 15 min. Then, OBt-adduct **I.31** (100 mg, 0.33 mmol) was added as an acetonitrile solution (0.5 mL) and the reaction mixture was stirred at 60 °C. Upon completion of the reaction (TLC monitoring, 15 h), the solvent was removed under reduced pressure and the crude material was purified by flash chromatography (*n*-hexane/EtOAc, 20:1 to 10:1) to afford 46 mg (47%) of compound **I.30d** as a colourless solid.

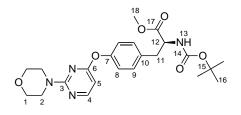
MP: 122-124 °C

 R_f (*n*-Hexane/EtOAc, 1:1): 0.44.

IR (neat): 3035, 2971, 1599, 1553, 1550, 1478, 1459 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (m, 1H, H₁₁), 8.31 (d, *J* = 5.6 Hz, 1H, H₄), 7.57 (m, 1H, H₈), 7.47 (d, ⁴*J* = 1.2 Hz, 1H, H₁₄), 7.33 (m, 1H, H₉), 7.25 (m, 1H, H₁₀), 6.63 (d, *J* = 5.6 Hz, 1H, H₅), 3.92-3.89 (m, 4H, H₁), 3.84-3.82 (m, 4H, H₂), 2.34 (t, ⁴*J* = 1.2 Hz, 3H, H₁₅).

¹³**C NMR** (100 MHz, CDCl₃) δ 161.8 (s, C₆), 158.6 (d, C₃), 158.5 (d, C₄), 135.3 (s, C₁₂), 131.7 (s, C₇), 123.7 (d, C₁₄), 122.1 (d, C₉), 121.7 (d, C₁₁), 119.2 (d, C₁₀), 116.4 (s, C₁₃), 114.8 (d, C₈), 98.3 (d, C₅), 66.9 (t, 2C, C₁), 44.5 (t, 2C, C₂), 9.7 (q, C₁₅).


HRMS (ESI) m/z: calculated for C₁₇H₁₉N₄O [M+H]⁺ 295.1553, found 295.1559.

I.4.2.1.9. Synthesis of N^{α} -Boc pyrimidin-4-yl amino esters I.20

I.4.2.1.9.1. General procedure

 K_2CO_3 (4 equiv) was added to a solution of the corresponding N^{α} -Boc-amino ester **I.18a-d** (1.1-1.5 equiv) in MeCN (0.4M) and the resulting mixture was stirred at rt for 15 min. After this time, OBt-adduct **I.31** (1.0-2.2 equiv) was added, as a MeCN solution (1M). The resulting mixture was stirred at the temperature specified for each compound. Upon completion of the reaction (TLC monitoring), the solvent was removed under reduced pressure, and the resulting residue was purified by flash chromatography (*n*-hexane/EtOAc, from 15:1 to 1:1) to afford N^{α} -Boc-pyimidin-4-yl amino esters **I.20**.

I.4.2.1.9.2. Methyl (2S)-N-Boc-2-amino-3-[4-(2-morpholinopyrimidin-4-yloxy)phenyl]propanoate (I.20a)

MW (g/mol): 458.5075

Molecular formula: C₂₃H₃₀N₄O₆

Synthesized according to general procedure from OBt-adduct **I.31** (299 mg, 1.0 mmol), N^{α} -Boc-(*S*)-tyrosine methyl ester **I.18a** (438 mg, 1.5 mmol) and K₂CO₃ (275 mg, 2 mmol) at 50 °C for 24 h. Before flash chromatography, the crude material was diluted in EtOAc (20 mL) and washed with a 1M NaOH solution (2 x 10 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure.⁹¹ The resulting

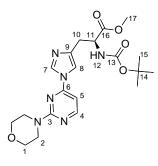
⁹¹ Compound **I.20a** and amino ester **I.18a** have the same R_f in TLC. Without this work-up the purification of compound **I.20a** proved to be problematic.

residue was purified by flash chromatography (*n*-hexane/EtOAc, 7:3), 417.7 mg (85%) of product **I.20a** was obtained as a colourless solid.

Mp: 118-119 °C.

 R_f (*n*-hexane/EtOAc, 1:1): 0.41.

 $[\alpha]_{D}^{25}$ +25.48 (*c* 0.11, MeOH).


IR (neat): 3340, 1736, 1683, 1589, 1553, 1500, 1439, 1337, 1290, 1231, 1163, 1111, 1007 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 5.6 Hz, 1H, H₄), 7.13 (d, J = 8.5 Hz, 2H, H₈), 7.04 (d, J = 8.5 Hz, 2H, H₉), 5.99 (d, J = 5.6 Hz, 1H, H₅), 5.02 (d, J = 8.0 Hz, 1H, H₁₃), 4.57 (m, 1H, H₁₂), 3.70 (s, 3H, H₁₈), 3.69-3.66 (m, 8H, H₁, H₂), 3.12 (dd, J = 14.0, 5.5 Hz, 1H, H₁₁), 3.03 (dd, J = 14.0, 6.3 Hz, 1H, H₁₁), 1.41 (s, 9H, H₁₆).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.7 (s, C₁₇), 170.5 (s, C₆), 162.3 (s, C₃), 160.0 (d, C₄), 155.6 (s, C₁₄), 152.3 (s, C₇), 133.8 (s, C₁₀), 131.0 (d, C₉), 130.9 (d, C₉), 122.4 (d, 2C, C₈), 96.7 (d, C₅), 80.6 (s, C₁₅), 67.3 (t, 2C, C₁), 55.0 (d, C₁₂), 52.8 (q, C₁₈), 44.7 (t, 2C, C₂), 38.5 (t, C₁₁), 28.9 (q, 3C, C₁₆).

HRMS (ESI) m/z: calculated for C₂₃H₃₁N₄O₆ [M+H]⁺ 459.2238, found 459.2240; calculated for C₂₃H₃₀N₄NaO₆ [M+Na]⁺ 481.2058, found 481.2053.

I.4.2.1.9.3. Methyl (2S)-N-Boc-2-amino-3-[4-(2-morpholinopyrimidin-4-yloxy)-1*H*-imidazol-4-yl]propanoate (I.20b)

MW (g/mol): 432.4735

Molecular formula: C₂₀H₂₈N₆O₅

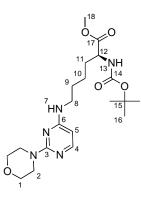
Synthesized according to general procedure from OBt-adduct **I.31** (610 mg, 2.05 mmol), N^{α} -Boc-(*S*)-histidine methyl ester **I.18b** (250 mg, 0.93 mmol) and K₂CO₃

(257.1 mg, 1.86 mmol) at 50 °C for 19 h, 254.1 mg (72%) of compound **I.20b** was obtained as a colourless solid.

Mp: 60-62 °C.

 R_f (EtOAc/*n*-hexane, 1:1): 0.47.

 $[\alpha]_{D}^{25}$ +10.65 (*c* 0.17, MeOH).


IR (neat): 3692, 1741, 1707, 1595, 1553, 1506, 1479, 1451, 1442, 1390, 1345, 1249, 1230, 1161, 1111, 1055, 951 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (d, J = 5.4 Hz, 1H, H₄), 8.28 (d, ⁴J = 1.1 Hz, H₇), 7.41 (d, ⁴J = 1.1 Hz, 1H, H₈), 6.50 (d, J = 5.4 Hz, 1H, H₅), 5.81 (d, J = 5.4 Hz, 1H, H₁₂), 4.64 (m, 1H, H₁₁), 3.89-3.74 (m, 8H, H₁, H₂), 3.70 (s, 3H, H₁₇), 3.17-3.09 (m, 2H, H₁₀), 1.46 (s, 9H, H₁₅).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.5 (s, C₁₆), 161.5 (s, C₆), 160.3 (d, C₄), 155.6 (s, C₃), 155.1 (s, C₁₃), 139.4 (s, C₉), 134.8 (d, C₇), 113.3 (d, C₈), 96.8 (d, C₅), 79.8 (s, C₁₄), 66.8 (t, 2C, C₁), 53.3 (d, C₁₁), 52.4 (q, C₁₇), 44.3 (t, 2C, C₂), 30.5 (t, C₁₀), 28.3 (q, 3C, C₁₅).

HRMS (ESI) m/z: calculated for C₂₀H₂₉N₆O₅ [M+H]⁺ 433.2194, found 433.2208; calculated for C₂₀H₂₈N₆NaO₅ [M+Na]⁺ 455.2056, found 455.2038.

I.4.2.1.9.4. Methyl (2S)-N-Boc-2-amino-6-[N-(2-morpholinopyrimidin-4yl)amino]hexanoate (I.20c)

MW (g/mol): 423.5065

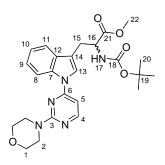
Molecular formula: C₂₀H₃₃N₅O₅

Synthesized according to general procedure from OBt-adduct **I.31** (1.75 g, 5.87 mmol), N^{α} -Boc-(*S*)-lysine methyl ester **I.18c** (855.4 mg, 2.67 mmol) and K₂CO₃ (737.9 mg,

5.34 mmol) at 40 °C for 24 h, 1.78 mg (84%) of compound **I.20c** was obtained as a colourless oil.

 R_f (*n*-hexane/EtOAc, 4:1): 0.40.

 $[\alpha]_{D}^{25}$ -6.07 (*c* 0.28, MeOH).


IR (neat): 3364, 2982, 1740, 1708, 1583, 1480, 1459, 1435, 1364, 1342, 1244, 1169, 1113 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, J = 6.4 Hz, 1H, H₄), 5.66 (d, J = 6.4 Hz, 1H, H₅), 5.06 (d, J = 7.6 Hz, 1H, H₁₃), 4.73 (s, 1H, H₇), 4.28 (m, 1H, H₁₂), 3.72-3.71 (m, 11H, H₁, H₂, H₁₈), 3.28-3.19 (m, 2H, H₈), 1.85-1.52 (m, 4H, H₉, H₁₁), 1.46-1.38 (m, 2H, H₁₀), 1.41 (s, 9H, H₁₆).

¹³**C NMR** (400 MHz, CDCl₃) δ 173.1 (s, C₁₇), 162.7 (s, C₆), 161.6 (s, C₃), 155.4 (s, C₁₄), 155.1 (d, C₄), 94.2 (d, C₅), 79.9 (s, C₁₅), 66.8 (t, 2C, C₁), 53.1 (d, C₁₂), 52.2 (q, C₁₈), 44.2 (t, 2C, C₂), 40.7 (t, C₈), 32.6 (t, C₁₁), 28.9 (t, C₉), 28.2 (q, 3C, C₁₆), 22.7 (d, C₁₀).

HRMS (ESI) m/z: calculated for C₂₀H₃₄N₅O₅ [M+H]⁺ 424.2554, found 424.2571.

I.4.2.1.9.5. Methyl *N*-Boc-2-amino-3-[1-(2-(morpholinopyrimidin-4-yl)-1*H*indol-3-yl]propanoate (I.20d)

MW (g/mol): 481.5441

Molecular formula: C₂₅H₃₁N₅O₅

Synthesized according to general procedure from OBt-adduct **I.31** (184.8 mg, 0.62 mmol), N^{α} -Boc-(S)-tryptophan methyl ester **I.18d** (250 mg, 0.93 mmol) and K₂CO₃ (171.4 mg, 1.24 mmol) at 50 °C for 24 h, 254.1 mg (22%) of compound **I.20d** was obtained as a colourless solid.

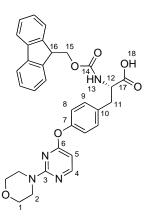
 R_f (*n*-hexane/EtOAc, 1:1): 0.35.

IR (neat): 3364, 1740, 1708, 1583, 1480, 1459, 1435, 1364, 1342, 1245, 1160, 1113 cm^{-1} .

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (d, J = 5.6 Hz, 1H, H₄), 8.30 (d, J = 8.8 Hz, 1H, H₁₁), 7.56-7.54 (m, 2H, H₈, H₁₃), 7.32 (m, 1H, H₉), 7.24 (m, 1H, H₁₀), 6.64 (d, J = 5.6 Hz, 1H, H₅), 5.12 (d, J = 8.0 Hz, 1H, H₁₇), 4.69 (m, 1H, H₁₆), 3.91-3.81 (m, 8H, H₁, H₂), 3.69 (s, 3H, H₂₂), 3.32 (dd, J = 14.8, 5.5 Hz, 1H, H₁₅), 3.24 (dd, J = 14.8, 5.8 Hz, 1H, H₁₅), 1.43 (s, 9H, H₂₀).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.5 (s, C₂₁), 161.8 (s, C₆), 159.0 (d, C₄), 158.4 (s, C₃), 155.1 (s, C₁₈), 135.2 (d, C₁₁), 130.9 (s, C₁₂), 123.9 (d, C₁₃), 123.4 (s, C₇), 121.9 (d, C₈), 119.1 (d, C₉), 115.0 (s, C₁₄), 114.7 (d, C₁₀), 98.6 (d, C₅), 80.0 (s, C₁₉), 66.8 (t, 2C, C₁), 53.7 (d, C₁₆), 52.3 (q, C₂₂), 44.5 (t, 2C, C₂), 29.6 (t, C₁₅), 28.3 (q, 3C, C₂₀).

HRMS (ESI) m/z: calculated for C₂₅H₃₁N₅O₅ [M+H]⁺ 482.2430, found 482.2421; calculated for C₂₅H₃₀N₅NaO₅ [M+Na]⁺ 504.2217, found 504.2214.


I.4.2.1.10. Synthesis of N^{α}-Fmoc pyrimidin-4-yl amino acids I.11

I.4.2.1.10.1. General procedure

LiOH monohydrate (2.5 equiv) was added to a solution of appropriate N^{a} -Boc-amino methyl esters **I.20** (1 equiv) in THF/MeOH/H₂O (1:2:2; 0.12M), and the reaction mixture was stirred at rt for 3-4 h. Upon completion of the reaction (TLC monitoring), the organic solvents were removed under reduced pressure. The pH of the resulting aqueous solution was then adjusted to pH 4 with glacial acetic acid, and the solution was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Next, the free N^{a} -Boc-amino acid was dissolved in CH₂Cl₂ (0.7M) and the solution was cooled in an ice bath. TFA (0.7M) was added dropwise and the resulting mixture was stirred at 0 °C for 1-2 h. Upon completion of the reaction (TLC monitoring), the solvent was removed under reduced pressure. The crude material obtained was dissolved in 1,4-dioxane (0.3M) and the resulting solution was adjusted with 5% NaHCO₃ aqueous solution to pH 7. The resulting mixture was stirred at rt for 8-12 h upon completion of the reaction (TLC monitoring). The solvent was removed under

reduced pressure and the resulting residue was diluted in water (10 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were then extracted with saturated NaHCO₃ solution (3 x 5 mL). The combined basic aqueous layers were then acidified to pH 1-2 with 1% HCl aqueous solution, and extracted with EtOAc (3 x 5 mL). These combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The crude material obtained was purified by flash chromatography (*n*-hexane/EtOAc/AcOH, from 4:1:0 to 0:20:1) to afford N^{α} -Fmoc pyrimidin-4-yl amino acids **I.11**.

I.4.2.1.10.2. (2S)-N-Fmoc-2-amino-3-[4-(2-morpholinopyrimidin-4-yloxy) phenyl]propanoic acid (I.11a)

MW (g/mol): 566.6038

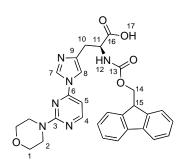
Molecular formula: C₃₂H₃₀N₄O₆

Synthesized according to general procedure from N^{α} -Boc-pyrimidin-4-yl amino ester **I.20a** (417 mg, 0.91 mmol), 283 mg (55%) of compound **I.11a** was obtained as a colourless solid.

Mp: 88-89 °C.

R_f (EtOAc/MeOH/AcOH, 10:2:0.1): 0.49

 $[\alpha]_{D}^{25}$ +5.02 (*c* 0.22, MeOH).


IR (neat): 2957, 2919, 2850, 1714, 1586, 1549, 1502, 1438, 1338, 1235, 1200, 1105, 1021, 1006, 739 cm⁻¹.

¹**H** NMR (400 MHz, d_6 -DMSO) δ 12.86 (br s, 1H, H₁₈), 8.17 (d, J = 5.7 Hz, 1H, H₄), 7.87 (d, J = 7.4 Hz, 2H, H_{Fmoc}), 7.64 (t, J = 6.5 Hz, 2H, H_{Fmoc}), 7.42-7.37 (m, 2H, H_{Fmoc}), 7.32-7.26 (m, 4H, H₉, H_{Fmoc}), 7.07 (d, J = 8.2 Hz, 2H, H₈), 6.06 (d, J = 5.7 Hz, 1H, H₅), 4.22-4.17 (m, 4H, H₁₂, H₁₅, H₁₆), 3.89 (dd, J = 13.6, 10.2 Hz, 1H, H₁₁), 3.65-3.57 (m, 8H, H₁, H₂), 3.18 (dd, J = 13.6, 3.9 Hz, 1H, H₁₁), 2.89 (dd, J = 13.6, 10.2 Hz, 1H, H₁₁).

¹³**C NMR** (100 MHz, d_6 -DMSO) δ 173.5 (s, C₁₇), 170.0 (s, C₆), 161.9 (s, C₁₄), 160.5 (d, C₄), 144.4 (s, C₃), 143.2 (s, C₇), 141.3 (s, C₁₀), 140.1 (s, 2C, C_{Fmoc}), 138.1 (s, 2C, C_{Fmoc}), 129.4 (d, 2C, C_{Fmoc}), 127.7 (d, 4C, C_{Fmoc}), 126.0 (d, 2C, C_{aryl}), 121.8 (d, 2C, C_{Fmoc}), 120.4 (d, 2C, C_{aryl}), 96.5 (d, C₅), 66.3 (t, 2C, C₁), 65.7 (t, C₁₅), 55.5 (d, C₁₆), 47.3 (d, C₁₂), 44.3 (t, 2C, C₂), 25.6 (t, C₁₁).

HRMS (ESI) m/z: calculated for C₃₂H₃₁N₄O₆ [M+H]⁺ 567.2254, found 567.2238.

I.4.2.1.10.3. (2S)-N-Fmoc-2-amino-3-[1-(2-morpholinopyrimidin-4-yl)-1*H*imidazol-4-yl]propanoic acid (I.11b)

MW (g/mol): 540.5698

Molecular formula: C₂₉H₂₈N₆O₅

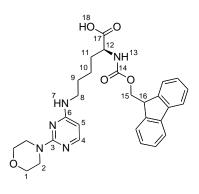
Synthesized according to general procedure from N^{α} -Boc-pyrimidin-4-yl amino ester **I.20b** (220 mg, 0.51 mmol), 242 mg (88%) of compound **I.11b** was obtained as a colourless solid.

Mp: 139-140 °C.

*R*_f (EtOAc/MeOH/AcOH, 10:3:0.2): 0.62.

 $[\alpha]_{D}^{25}$ +7.06 (*c* 0.32, MeOH).

IR (neat): 3410, 1682, 1598, 1553, 1518, 1484, 1443, 1346, 1253, 1206, 1179, 1132, 952, 738 cm⁻¹.


¹**H** NMR (400 MHz, d_6 -DMSO) δ 12.79 (br s, 1H, H₁₇), 8.64 (s, 1H, H₇), 8.43 (d, J = 5.4 Hz, 1H, H₄), 7.83 (d, J = 6.8 Hz, 2H, H_{Fmoc}), 7.77 (s, 1H, H₈), 7.70 (d, J = 8.2 Hz, 1H, H₁₂), 7.63 (t, J = 6.9 Hz, 2H, H_{Fmoc}), 7.39-7.34 (m, 2H, H_{Fmoc}), 7.27-

7.21 (m, 2H, H_{Fmoc}), 6.97 (d, J = 5.4 Hz, 1H, H_5), 4.35 (m, 1H, H_{11}), 4.23-4.19 (m, 3H, H_{14} , H_{15}), 3.72-3.70 (m, 4H, H_1 or H_2), 3.63-3.61 (m, 4H, H_1 or H_2), 3.03 (dd, J = 14.6, 4.1 Hz, 1H, H_{10}), 2.94 (dd, J = 14.6, 9.7 Hz, 1H, H_{10}).

¹³**C NMR** (400 MHz, d_6 -DMSO) δ 173.2 (s, C₁₆), 160.9 (s, C₆), 160.6 (d, C₄), 155.9 (s, C₃), 154.7 (s, C₁₃), 143.7 (s, 2C, C_{Fmoc}), 140.6 (s, 2C, C_{Fmoc}), 139.3 (s, C₉), 135.2 (d, C₇), 127.6 (d, 2C, C_{Fmoc}), 127.0 (d, 2C, C_{Fmoc}), 125.2 (d, 2C, C_{Fmoc}), 120.1 (d, 2C, C_{Fmoc}), 113.5 (d, C₈), 97.1 (d, C₅), 65.8 (t, 2C, C₁), 65.6 (t, C₁₄), 53.5 (d, C₁₁), 46.5 (d, C₁₅), 43.8 (t, 2C, C₂), 29.6 (t, C₁₀).

HRMS (ESI) m/z: calculated for C₂₉H₂₉N₆O₅ [M+H]⁺ 541.2194, found 541.2183.

I.4.2.1.10.4. (2S)-*N*-Fmoc-2-amino-6-[*N*-(2-morpholinopyrimidin-4-yl)amino] hexanoic acid (I.11c)

MW (g/mol): 531.6028

Molecular formula: C₂₉H₃₃N₅O₅

Synthesized according to general procedure from N^{α} -Boc-pyrimidin-4-yl amino ester **I.20c** (380 mg, 0.89 mmol), 440 mg (93%) of compound **I.11c** was obtained as a colourless solid.

Mp: 96-98 °C.

*R*_f (EtOAc/MeOH/AcOH, 2:3:0.3): 0.57.

 $[\alpha]_{D}^{25}$ –2.99 (*c* 0.30, MeOH).

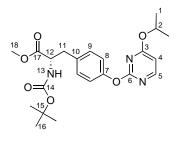
IR (neat): 3270, 1688, 1656, 1621, 1583, 1198, 1176, 1125, 1052, 1025, 1004 cm⁻¹.

¹**H NMR** (400 MHz, *d*₆-DMSO) δ 12.56 (br s, 1H, H₁₈), 7.88 (d, J = 7.4 Hz, 2H, H_{Fmoc}), 7.73-7.71 (m, 3H, H_{Fmoc}), 7.54 (br s, 1H, H₁₃), 7.43-7.39 (m, 2H, H_{Fmoc}), 7.34-7.30 (m, 2H, H_{Fmoc}), 7.05 (br s, 1H, H₇), 5.76 (d, J = 5.8 Hz, 1H, H₅), 4.29-4.20 (m, 3H, H₁₅),

 H_{16}), 3.91 (dd, J = 8.8, 4.8 Hz, 1H, H_{12}), 3.58 (s, 8H, H_1 , H_2), 3.22 (br s, 2H, H_8), 1.70 (m, 1H, H_{11}), 1.62 (m, 1H, H_{11}), 1.52-1.50 (m, 2H, H_9), 1.47-1.41 (m, 2H, H_{10}).

¹³**C NMR** (400 MHz, d_6 -DMSO) δ 174.3 (s, C₁₇), 162.8 (s, C₆), 161.6 (s, C₁₄), 156.4 (s, C₃), 154.2 (d, C₄), 143.8 (s, 2C, C_{Fmoc}), 140.73 (s, C_{Fmoc}), 140.71 (s, C_{Fmoc}), 127.6 (d, 2C, C_{Fmoc}), 127.1 (d, 2C, C_{Fmoc}), 125.29 (d, C_{Fmoc}), 125.26 (d, C_{Fmoc}), 120.1 (d, 2C, C_{Fmoc}), 96.2 (d, C₅), 66.1 (t, 2C, C₁), 65.5 (t, C₁₅), 54.0 (d, C₁₂), 46.7 (d, C₁₆), 43.9 (t, 2C, C₂), 30.7 (t, C₈), 28.4 (t, C₁₁), 25.2 (t, C₉), 23.2 (t, C₁₀).

HRMS (ESI) m/z: calculated for C₂₉H₃₄N₅O₅ [M+H]⁺ 532.2554, found 532.2570.


I.4.2.2. Synthesis of pyrimidin-2-yl amino acids

I.4.2.2.1. Synthesis of N^{α} -Boc pyrimidin-2-yl amino esters I.32

I.4.2.2.1.1. General procedure

The appropriate N^{α} -Boc-amino ester **I.18a-e** (1.1-1.2 equiv) was dissolved in dry DMF (0.4M) under a nitrogen atmosphere. The corresponding base (1.2-4.0 equiv) was added and the resulting mixture was stirred at rt for 15 min. After this time, pyrimidinyl sulfone **I.27a-c** (1 equiv) was added to this mixture as a DMF solution (1M). The resulting solution was stirred under nitrogen at the temperature specified for each compound. Upon completion of the reaction (TLC monitoring), the solvent was removed under reduced pressure, and the resulting residue was purified by flash chromatography (*n*-hexane/EtOAc) to afford N^{α} -Boc-pyrimidinyl amino esters **I.32**.

I.4.2.2.1.2. Methyl (2S)-*N*-Boc-2-amino-3-{4-[4-(propan-2-yloxy)pyrimidin-2-yloxy]phenyl}propanoate (I.32aa)

Molecular formula: C₂₂H₂₉N₃O₆

MW (g/mol): 431.4822

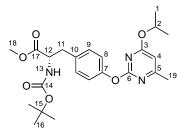
Synthesized according to general procedure from pyrimidinyl sulfone **I.27a** (292.4 mg, 1.0 mmol), N^{α} -Boc-(*S*)-tyrosine methyl ester **I.18a** (354.4 mg, 1.2 mmol) and K₂CO₃ (136.7 mg, 1.2 mmol) at 50 °C for 24 h, 340 mg (79%) of compound **I.32aa** was obtained as a colourless solid.

Mp: 114-115 °C.

 R_f (*n*-hexane/EtOAc, 1:1): 0.27.

 $[\alpha]_{\mathbf{D}}^{25}$ -2.80 (*c* 0.14, MeOH).

IR (neat): 3360, 2978, 1739, 1699, 1517, 1508, 1450, 1383, 1366, 1321, 1272, 1252, 1224, 1202, 1171, 1150, 1110, 1041, 1017, 839, 786 cm⁻¹.


¹**H** NMR (200 MHz, CDCl₃) δ 8.18 (d, J = 5.6 Hz, 1H, H₅), 7.29-7.16 (m, 4H, H₈, H₉), 6.38 (d, J = 5.6 Hz, 1H, H₄), 5.27 (sept, J = 6.2 Hz, 1H, H₂), 5.01 (br s, 1H, H₁₃), 4.62 (m, 1H, H₁₂), 3.74 (s, 3H, H₁₈), 3.16-3.12 (m, 2H, H₁₁), 1.45 (s, 9H, H₁₆), 1.34 (d, J = 6.2 Hz, 6H, H₁).

¹³**C NMR** (50 MHz, CDCl₃) δ 172.9 (s, C₁₇), 171.6 (s, C₃), 165.7 (s, C₆), 159.3 (d, C₄), 155.4 (s, C₇), 152.7 (s, C₁₄), 133.6 (s, C₁₀), 130.9 (d, 2C, C₉), 122.5 (d, 2C, C₈), 104.5 (d, C₅), 80.7 (s, C₁₅), 70.6 (d, C₂), 55.1 (d, C₁₂), 52.9 (q, C₁₈), 38.5 (t, C₁₁), 28.9 (q, 3C, C₁₆), 22.4 (q, 2C, C₁).

MS (ESI) *m*/*z*: 431.9 [M+H]⁺.

Elemental analyses: calculated for C₂₂H₂₉N₃O₆: C, 61.24; H, 6.77; N, 9.74; found: C, 61.39; H, 6.88; N, 9.90.

I.4.2.2.1.3. Methyl (2S)-N-Boc-2-amino-3-{4-[4-methyl-6-(propan-2-yloxy)pyrimidin-2-yloxy]phenyl}propanoate (I.32ab)

MW (g/mol): 445.5087

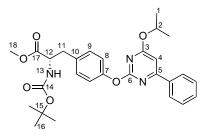
Molecular formula: C₂₃H₃₁N₃O₆

Synthesized according to general procedure from pyrimidinyl sulfone **I.27b** (306.4 mg, 1.0 mmol), N^{α} -Boc-(*S*)-tyrosine methyl ester **I.18a** (354.4 mg, 1.2 mmol) and K₂CO₃ (136.7 mg, 1.2 mmol) at 50 °C for 24 h, 266 mg (60%) of compound **I.32ab** was obtained as a colourless oil.

 R_f (*n*-hexane/EtOAc, 1:1): 0.49.

 $[\alpha]_{D}^{25}$ –28.6 (*c* 0.3, MeOH).

IR (neat): 3355, 2979, 1744, 1712, 1596, 1561, 1533, 1505, 1452, 1354, 1321, 1247, 1211, 1165, 1101, 1075, 1017, 731 cm⁻¹.


¹**H** NMR (200 MHz, CDCl₃) δ 7.13 (s, 4H, H₈, H₉), 6.22 (s, 1H, H₄), 5.10 (sept, J = 6.2 Hz, 1H, H₂), 5.01 (br s, 1H, H₁₃), 4.61 (br s, 1H, H₁₂), 3.71 (s, 3H, H₁₈), 3.12-3.09 (m, 2H, H₁₁), 2.34 (s, 3H, H₁₉), 1.43 (s, 9H, H₁₆), 1.24 (d, J = 6.2 Hz, 6H, H₁).

¹³**C NMR** (50 MHz, CDCl₃) δ 172.2 (s, C₁₇), 171.1 (s, C₃), 169.6 (s, C₆), 164.4 (s, C₅), 155.0 (s, C₇), 152.2 (s, C₁₄), 132.4 (s, C₁₀), 130.3 (d, 2C, C₉), 121.7 (d, 2C, C₈), 101.8 (d, C₄), 79.9 (s, C₁₅), 70.1 (d, C₂), 54.4 (d, C₁₂), 52.7 (q, C₁₈), 37.7 (t, C₁₁), 28.9 (q, 3C, C₁₆), 23.7 (q, C₁₉), 22.0 (q, 2C, C₁).

MS (ESI) *m/z*: 446 [M+H]⁺.

Elemental analyses: calculated for C₂₃H₃₁N₃O₆: C, 62.01; H, 7.01; N, 9.43; found: C, 62.19; H, 7.19; N, 9.57.

I.4.2.2.1.4. Methyl (2S)-N-Boc-2-amino-3-{4-[4-phenyl-6-(propan-2-yloxy)pyrimidin-2-yloxy]phenyl}propanoate (I.32ac)

MW (g/mol): 507.5781

Molecular formula: C₂₈H₃₃N₃O₆

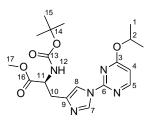
Synthesized according to general procedure from pyrimidinyl sulfone **I.27c** (368.4 mg, 1.0 mmol), N^{α} -Boc-(*S*)-tyrosine methyl ester **I.18a** (354.4 mg, 1.2 mmol) and K₂CO₃

(136.7 mg, 1.2 mmol) at rt for 24 h, 202 mg (40%) of compound **I.32ac** was obtained as a colourless oil.

 R_f (*n*-hexane/EtOAc, 1:1): 0.52.

 $[\alpha]_{D}^{25}$ -6.23 (*c* 0.26, MeOH).

IR (neat): 3442, 2978, 2928, 1744, 1713, 1580, 1549, 1503, 1453, 1431, 1356, 1324, 1250, 1212, 1164, 1095, 1065, 1018, 939, 770, 731, 693 cm⁻¹.


¹**H NMR** (200 MHz, CDCl₃) δ 8.01-7.94 (m, 2H, H_{aryl}), 7.50-7.43 (m, 3H, H_{aryl}), 7.26-7.21 (m, 4H, H₈, H₉), 6.81 (s, 1H, H₄), 5.27 (sept, *J* = 6.2 Hz, 1H, H₂), 5.03 (br s, 1H, H₁₃), 4.65 (m, 1H, H₁₂), 4.61 (d, *J* = 8.2 Hz, 1H, H₁₃), 3.73 (s, 3H, H₁₈), 3.16 (d, *J* = 5.4 Hz, 2H, H₁₁), 1.47 (s, 9H, H₁₆), 1.35 (d, *J* = 6.2 Hz, 6H, H₁).

¹³**C NMR** (50 MHz, CDCl₃) δ 172.9 (s, C₁₇), 172.7 (s, C₃), 167.1 (s, C₅), 165.7 (s, C₆), 155.8 (s, C₇), 153.0 (s, C₁₄), 137.1 (s, C_{aryl}), 133.2 (s, C₁₀), 131.4 (d, C_{aryl}), 130.6 (d, 2C, C₉), 129.4 (d, 2C, C_{aryl}), 127.7 (d, 2C, C_{aryl}), 122.7 (d, 2C, C₈), 99.3 (d, C₄), 82.1 (s, C₁₅), 70.7 (d, C₂), 55.2 (d, C₁₂), 52.8 (q, C₁₈), 38.6 (t, C₁₁), 29.0 (q, 3C, C₁₆), 22.5 (q, 2C, C₁).

MS (ESI) *m/z*: 508 [M+H]⁺.

Elemental analyses: calculated for C₂₈H₃₃N₃O₆: C, 66.26; H, 6.55; N, 8.28; found: C, 66.17; H, 6.41; N, 8.37.

I.4.2.2.1.5. Methyl (2S)-N-Boc-2-amino-3-{1-[4-(propan-2-yloxy)pyrimidin-2-yl]-1*H*-imidazol-4-yl}propanoate (I.32ba)

MW (g/mol): 405.4482

Molecular formula: C₁₉H₂₇N₅O₅

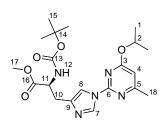
Synthesized according to general procedure from pyrimidinyl sulfone **I.27a** (292.4 mg, 1.0 mmol), N^{α} -Boc-(*S*)-histidine methyl ester **I.18b** (296.2 mg, 1.1 mmol) and DBU (1.52 mL, 1.2 mmol) at 50 °C for 8 h, 324 mg (80%) of compound **I.32ba** was obtained as a colourless solid.

Mp: 100-101 °C.

 R_f (*n*-hexane/EtOAc, 1:1): 0.19.

 $[\alpha]_{D}^{25}$ +8.19 (*c* 0.5, MeOH).

IR (neat): 3264, 2980, 1744, 1700, 1586, 1562, 1484, 1438, 1366, 1349, 1315, 1276, 1249, 1215, 1174, 1092, 1057, 1022, 949, 823 cm⁻¹.


¹**H** NMR (200 MHz, CDCl₃) δ 8.46 (d, ⁴*J* = 1.2 Hz, 1H, H₇), 8.32 (d, *J* = 5.8 Hz, 1H, H₅), 7.61 (d, ⁴*J* = 1.2 Hz, 1H, H₈), 6.54 (d, *J* = 5.8 Hz, 1H, H₄), 5.86 (d, *J* = 8.0 Hz, 1H, H₁₂), 5.42 (sept, *J* = 6.2 Hz, 1H, H₂), 4.62 (m, 1H, H₁₁), 3.74 (s, 3H, H₁₇), 3.14-3.11 (m, 2H, H₁₀), 1.46 (s, 9H, H₁₅), 1.43 (d, *J* = 6.2 Hz, 6H, H₁).

¹³**C NMR** (50 MHz, d_6 -DMSO) δ 172.4 (s, C₁₆), 169.5 (s, C₃), 159.1 (d, C₅), 155.3 (s, C₆), 153.4 (s, C₁₃), 139.1 (s, C₉), 135.3 (d, C₇), 113.9 (d, C₈), 106.2 (d, C₄), 78.3 (s, C₁₄), 70.2 (d, C₂), 53.4 (d, C₁₁), 51.8 (q, C₁₇), 29.6 (t, C₁₀), 28.0 (q, 3C, C₁₅), 21.4 (q, 2C, C₁).

MS (ESI) m/z: 405.9 [M+H]⁺.

Elemental analyses: calculated for C₁₉H₂₇N₅O₅: C, 56.28; H, 6.71; N, 17.27; found: C, 56.35; H, 6.58; N, 17.42.

I.4.2.2.1.6. Methyl (2S)-N-Boc-2-amino-3-{1-[4-methyl-6-(propan-2-yloxy)pyrimidin-2-yl]-1*H*-imidazol-4-yl}propanoate (I.32bb)

MW (g/mol): 419.4748

Molecular formula: C₂₀H₂₉N₅O₅

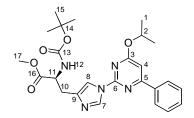
Synthesized according to general procedure from pyrimidinyl sulfone **I.27b** (306.0 mg, 1.0 mmol), N^{α} -Boc-(*S*)-histidine methyl ester **I.18b** (296.2 mg, 1.1 mmol) and DBU (1.52 mL, 1.2 mmol) at 50 °C for 8 h, 330 mg (79%) of compound **I.32bb** was obtained as a colourless solid.

Mp: 110-111 °C.

 R_f (*n*-hexane/EtOAc, 1:1): 0.29.

 $[\alpha]_{D}^{25}$ +10.23 (*c* 0.17, MeOH).

IR (neat): 3344, 2978, 1711, 1600, 1554, 1481, 1450, 1401, 1366, 1311, 1164, 1102, 1042, 1014, 866 cm⁻¹.


¹**H NMR** (200 MHz, CDCl₃) δ 8.48 (s, 1H, H₇), 7.63 (s, 1H, H₈), 6.38 (s, 1H, H₄), 5.86 (br s, 1H, H₁₂), 5.39 (sept, J = 6.2 Hz, 1H, H₂), 4.63-4.59 (m, 1H, H₁₁), 3.75 (s, 3H, H₁₇), 3.13-3.11 (m, 2H, H₁₀), 2.43 (s, 3H, H₁₈), 1.46 (s, 9H, H₁₅), 1.41 (d, J = 6.2 Hz, 6H, H₁).

¹³**C NMR** (50 MHz, CDCl₃) δ 173.2 (s, C₁₆), 171.0 (s, C₃), 169.7 (s, C₅), 156.2 (s, C₆), 154.2 (s, C₁₃), 139.1 (s, C₉), 136.6 (d, C₇), 114.8 (d, C₈), 105.3 (d, C₄), 80.3 (s, C₁₄), 70.7 (d, C₂), 54.1 (d, C₁₁), 52.9 (q, C₁₇), 31.0 (t, C₁₀), 29.0 (q, 3C, C₁₅), 24.4 (q, C₁₈), 22.4 (q, 2C, C₁).

MS (ESI) *m*/*z*: 419.9 [M+H]⁺.

Elemental analyses: calculated for C₂₀H₂₉N₅O₅: C, 57.17; H, 6.97; N, 16.70; found: C, 57.35; H, 7.09; N, 16.82.

I.4.2.2.1.7. Methyl (2S)-N-Boc-2-amino-3-{1-[4-phenyl-6-(propan-2-yloxy)pyrimidin-2-yl]-1*H*-imidazol-4-yl}propanoate (I.32bc)

MW (g/mol): 481.5441

Molecular formula: C₂₅H₃₁N₅O₅

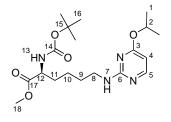
Synthesized according to general procedure from pyrimidinyl sulfone **I.27c** (368.4 mg, 1.0 mmol), N^{α} -Boc-(*S*)-histidine methyl ester **I.18b** (296.2 mg, 1.1 mmol) and DBU (1.52 mL, 1.2 mmol) at rt for 24 h, 278 mg (58%) of compound **I.32bc** was obtained as a colourless solid.

Mp: 133-134 °C.

 R_f (*n*-hexane/EtOAc, 1:1): 0.35.

 $[\alpha]_{D}^{25}$ +23.28 (*c* 0.35, MeOH).

IR (neat): 3383, 1748, 1716, 1596, 1552, 1480, 1454, 1399, 1369, 1309, 1226, 1209, 1160, 1031, 964 cm⁻¹.


¹**H NMR** (200 MHz, d_6 -DMSO) δ 8.77 (s, 1H, H₇), 8.38-8.36 (m, 2H, H_{aryl}), 7.91 (s, 1H, H₈), 7.66-7.45 (m, 3H, H_{aryl}), 7.32 (s, 1H, H₄), 7.01 (br s, 1H, H₁₂), 5.59 (sept, J = 6.2 Hz, 1H, H₂), 4.43 (m, 1H, H₁₁), 3.74 (s, 3H, H₁₇), 3.05-3.02 (m, 2H, H₁₀), 1.49 (d, J = 6.2 Hz, 6H, H₁), 1.45 (s, 9H, H₁₅).

¹³**C NMR** (50 MHz, CDCl₃) δ 173.2 (s, C₁₆), 171.7 (s, C₃), 166.6 (s, C₅), 156.0 (s, C₆), 154.5 (s, C₁₃), 139.3 (s, C_{aryl}), 136.7 (d, C₇), 131.7 (d, C_{aryl}), 129.5 (d, 2C, C_{aryl}), 129.4 (s, C₉), 127.6 (d, 2C, C_{aryl}), 114.9 (d, C₈), 101.9 (d, C₄), 80.3 (s, C₁₄), 71.2 (d, C₂), 54.2 (d, C₁₁), 52.9 (q, C₁₇), 31.1 (t, C₁₀), 29.0 (q, 3C, C₁₅), 22.5 (q, 2C, C₁).

MS (ESI) *m*/*z*: 480.9 [M+H]⁺.

Elemental analyses: calculated for C₂₅H₃₁N₅O₅: C, 62.36; H, 6.49; N, 14.54; found: C, 62.45; H, 6.61; N, 14.72.

I.4.2.2.1.8. Methyl (2S)-N-Boc-2-amino-6-{N-[4-(propan-2-yloxy)pyrimidin-2-yl]amino}hexanoate (I.32ca)

MW (g/mol): 396.4812

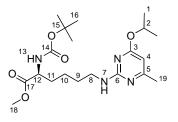
Molecular formula: C₁₉H₃₂N₄O₅

Synthesized according to general procedure from pyrimidinyl sulfone **I.27a** (292.4 mg, 1.0 mmol), N^{α} -Boc-(*S*)-lysine methyl ester **I.18c** (384.4 mg, 1.2 mmol) and K₂CO₃ (275.8 mg, 2.0 mmol) at 40 °C for 24 h, 348.4 mg (88 %) of compound **I.32ca** was obtained as a colourless oil.

 R_f (*n*-hexane/EtOAc, 1:1): 0.27.

 $[\alpha]_{D}^{25}$ –5.60 (*c* 0.19, MeOH).

IR (neat): 3397, 3316, 2978, 1708, 1668, 1579, 1525, 1458, 1422, 1366, 1303, 1233, 1164 cm⁻¹.


¹**H NMR** (200 MHz, CDCl₃) δ 7.98 (d, J = 5.6 Hz, 1H, H₅), 6.36 (br s, 1H, H₇), 5.93 (d, J = 5.6 Hz, 1H, H₄), 5.28 (sept, J = 6.2 Hz, 1H, H₂), 5.14 (br s, 1H, H₁₃), 4.31 (m, 1H, H₁₂), 3.75 (s, 3H, H₁₈), 3.38 (q_{app}, J = 6.4 Hz, 2H, H₈), 1.88-1.53 (m, 6H, H₉, H₁₀, H₁₁), 1.46 (s, 9H, H₁₆), 1.34 (d, J = 6.2 Hz, 6H, H₁).

¹³**C NMR** (50 MHz, CDCl₃) δ 173.9 (s, C₁₇), 170.1 (s, C₃), 163.1 (s, C₆), 158.6 (d, C₅), 156.0 (s, C₁₄), 98.3 (d, C₄), 80.5 (s, C₁₅), 68.9 (d, C₂), 53.9 (d, C₁₂), 52.8 (q, C₁₈), 41.7 (t, C₈), 33.2 (t, C₁₁), 30.3 (t, C₉), 29.6 (q, 3C, C₁₆), 23.4 (t, C₁₀), 22.5 (q, 2C, C₁).

MS (ESI) *m/z*: 396.9 [M+H]⁺.

Elemental analyses: calculated for C₁₉H₃₂N₄O₅: C, 57.56; H, 8.14; N, 14.13; found: C, 57.64; H, 8.23; N, 14.17.

I.4.2.2.1.9. Methyl (2S)-N-Boc-2-amino-6-{N-[4-methyl-6-(propan-2-yloxy)pyrimidin-2-yl]amino}hexanoate (I.32cb)

MW (g/mol): 410.5078

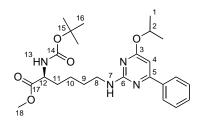
Molecular formula: C₂₀H₃₄N₄O₅

Synthesized according to general procedure from pyrimidinyl sulfone **I.27b** (306.4 mg, 1.0 mmol), N^{α} -Boc-(S)-lysine methyl ester **I.18c** (384.4 mg, 1.2 mmol) and DBU (1.2 mL, 1.2 mmol) at 50 °C for 24 h, 176.0 mg (43 %) of compound **I.32ca** was obtained as a colourless oil.

 R_f (*n*-hexane/EtOAc, 2:1): 0.46.

 $[\alpha]_{D}^{25}$ -12.38 (*c* 0.1, MeOH).

IR (neat): 3397, 3317, 2964, 2930, 1717, 1687, 1657, 1477, 1435, 1364, 1335, 1259, 1221, 1164, 1098, 1075, 1051, 1018, 798 cm⁻¹.


¹**H NMR** (200 MHz, CDCl₃) δ 5.83 (s, 1H, H₄), 5.26 (sept, J = 6.2 Hz, 1H, H₂), 4.97 (br s, 2H, H₇, H₁₃), 4.32 (m, 1H, H₁₂), 3.76 (s, 3H, H₁₈), 3.38 (q_{app}, J = 6.4 Hz, 2H, H₈), 2.29 (s, 3H, H₁₉), 2.07-1.63 (m, 6H, H₉, H₁₀, H₁₁), 1.47 (s, 9H, H₁₆), 1.34 (d, J = 6.2 Hz, 6H, H₁).

¹³**C NMR** (50 MHz, CDCl₃) δ 173.3 (s, C₁₇), 170.0 (s, C₃), 167.8 (s, C₅), 162.3 (s, C₆), 155.3 (s, C₁₄), 96.1 (d, C₄), 79.8 (s, C₁₅), 68.1 (d, C₂), 53.3 (d, C₁₂), 52.2 (q, C₁₈), 41.0 (t, C₈), 32.5 (t, C₁₁), 29.4 (t, C₉), 28.1 (q, 3C, C₁₆), 23.7 (q, C₁₉), 22.7 (t, C₁₀), 21.9 (q, 2C, C₁).

MS (ESI) *m*/*z*: 411 [M+H]⁺.

Elemental analyses: calculated for C₂₀H₃₄N₄O₅: C, 58.52; H, 8.35; N, 13.65; found: C, 58.65; H, 8.51; N, 13.71.

I.4.2.2.1.10. Methyl (2S)-N-Boc-2-amino-6-{N-[4-phenyl-6-(propan-2-yloxy)pyrimidin-2-yl]amino}hexanoate (I.32cc):

MW (g/mol): 472.5771

Molecular formula: C₂₅H₃₆N₄O₅

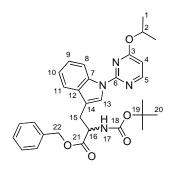
Synthesized according to general procedure from pyrimidinyl sulfone **I.27c** (368.4 mg, 1.0 mmol), N^{α} -Boc-(S)-lysine methyl ester **I.18c** (384.4 mg, 1.2 mmol) and DBU (1.2 mL, 1.2 mmol) at 50 °C for 24 h, 198.0 mg (42 %) of compound **I.32ca** was obtained as a colourless oil.

 R_f (*n*-hexane/EtOAc, 2:1): 0.50.

 $[\alpha]_{D}^{25}$ -18.55 (*c* 0.15, MeOH).

IR (neat): 3367, 3315, 2977, 2930, 1739, 1709, 1578, 1559, 1497, 1459, 1391, 1366, 1319, 1210, 1164, 909, 771, 733 cm⁻¹.

¹**H NMR** (200 MHz, CDCl₃) δ 8.00-7.95 (m, 2H, H_{aryl}), 7.47-7.38 (m, 3H, H_{aryl}), 6.41 (s, 1H, H₄), 5.37 (sept, J = 6.2 Hz, 1H, H₂), 5.15 (br s, 2H, H₇, H₁₃), 4.30 (m, 1H, H₁₂),


3.76 (s, 3H, H₁₈), 3.49 (q_{app}, *J* = 6.4 Hz, 2H, H₈), 2.07-1.66 (m, 6H, H₉, H₁₀, H₁₁), 1.47 (s, 9H, H₁₆), 1.39 (d, *J* = 6.2 Hz, 6H, H₁).

¹³**C NMR** (50 MHz, CDCl₃) δ 173.4 (s, C₁₇), 170.9 (s, C₃), 165.6 (s, C₅), 162.7 (s, C₆), 155.4 (s, C₁₄), 138.1 (s, C_{aryl}), 131.0 (d, C_{aryl}), 128.9 (d, 2C, C_{aryl}), 126.9 (d, 2C, C_{aryl}), 93.6 (d, C₄), 80.0 (s, C₁₅), 68.4 (d, C₂), 53.4 (d, C₁₂), 52.3 (q, C₁₈), 41.3 (t, C₈), 32.7 (t, C₁₁), 30.5 (t, C₉), 29.0 (q, 3C, C₁₆), 23.1 (t, C₁₀), 22.1 (q, 2C, C₁).

MS (ESI) *m*/*z*: 473 [M+H]⁺.

Elemental analyses: calculated for C₂₅H₃₆N₄O₅: C, 63.54; H, 7.68; N, 11.86; found: C, 63.67; H, 7.71; N, 11.81.

I.4.2.2.1.11. Benzyl (±) *N*-Boc-2-amino-3-{1-[4-(propan-2-yloxy)pyrimidin-2-yl]-1*H*-indol-3-yl}propanoate (I.32ea)

MW (g/mol): 530.6148

Molecular formula: C₃₀H₃₄N₄O₅

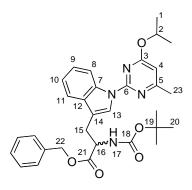
Synthesized according to general procedure from pyrimidinyl sulfone **I.27a** (292.4 mg, 1.0 mmol), N^{α} -Boc-(*S*)-tryptophan benzyl ester **I.18e** (433.8 mg, 1.1 mmol) and DBU (1.52 mL, 1.2 mmol) at 50 °C for 24 h, 265 mg (50%) of compound **I.32ea** was obtained as a colourless solid.

Mp: 103-104 °C.

 R_f (*n*-hexane/EtOAc, 2:1): 0.71.

IR (neat): 3366, 2973, 1735, 1696, 1565, 1506, 1471, 1447, 1434, 1372, 1293, 1167, 1140, 1107, 1018, 743 cm⁻¹.

¹**H NMR** (200 MHz, d_6 -DMSO) δ 8.77 (d, J = 8.0 Hz, 1H, H₁₁), 8.60 (d, J = 5.6 Hz, 1H, H₅), 8.24 (s, 1H, H₁₃), 7.70 (d, J = 7.6 Hz, 1H, H₈), 7.55-7.30 (m, 8H, H₉, H₁₀, H₁₇, H_{aryl}), 6.75 (d, J = 5.6 Hz, 1H, H₄), 5.52 (sept, J = 6.0 Hz, 1H, H₂), 5.20 (s, 2H, H₂₂),


4.47 (m, 1H, H₁₆), 3.26-3.21 (m, 2H, H₁₅), 1.51 (d, J = 6.0 Hz, 6H, H₁), 1.41 (s, 9H, H₂₀).

¹³**C NMR** (50 MHz, d_6 -DMSO) δ 172.0 (s, C₂₁), 169.0 (s, C₃), 158.8 (d, C₅), 156.3 (s, C₆), 155.4 (s, C₁₈), 135.8 (s, C₇), 134.8 (s, C₁₂), 130.4 (s, C_{aryl}), 128.2 (d, 2C, C_{aryl}), 127.9 (d, C_{aryl}), 127.6 (d, 2C, C_{aryl}), 124.2 (d, C₁₃), 123.7 (d, C₈), 121.8 (d, C₉), 118.6 (d, C₁₀), 115.8 (s, C₁₄), 115.3 (d, C₁₁), 103.6 (d, C₄), 78.3 (s, C₁₉), 69.8 (d, C₂), 65.8 (t, C₂₂), 54.0 (d, C₁₆), 28.0 (q, 3C, C₂₀), 26.4 (t, C₁₅), 21.5 (q, 2C, C₁).

MS (ESI) *m*/*z*: 531.0 [M+H]⁺.

Elemental analyses: calculated for C₃₀H₃₄N₄O₅: C, 67.91; H, 6.46; N, 10.56; found: C, 67.84; H, 6.58; N, 10.62.

I.4.2.2.1.12. Benzyl (±) N-Boc-2-amino-3-{1-[4-methyl-6-(propan-2-yloxy)pyrimidin-2-yl]-1*H*-indol-3-yl}propanoate (I.32eb)

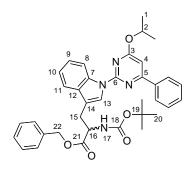
MW (g/mol): 544.6413

Molecular formula: C₃₁H₃₆N₄O₅

Synthesized according to general procedure from pyrimidinyl sulfone **I.27b** (306.4 mg, 1.0 mmol), N^{α} -Boc-(*S*)-tryptophan benzyl ester **I.18e** (433.8 mg, 1.1 mmol) and DBU (1.52 mL, 1.2 mmol) at 50 °C for 24 h, 217 mg (40%) of compound **I.32eb** was obtained as a colourless oil.

 R_f (*n*-hexane/EtOAc, 2:1): 0.59.

IR (neat): 3438, 2976, 1709, 1588, 1458, 1390, 1323, 1162, 1102, 1014, 977, 884, 741, 703 cm⁻¹.


¹**H NMR** (200 MHz, CDCl₃) δ 8.80 (d, J = 8.4 Hz, 1H, H₁₁), 8.11 (s, 1H, H₁₃), 7.59 (d, J = 7.8 Hz, 1H, H₈), 7.55-7.30 (m, 7H, H₉, H₁₀, H_{aryl}), 6.32 (s, 1H, H₄), 5.51 (sept,

 $J = 6.0 \text{ Hz}, 1\text{H}, \text{H}_2), 5.32 \text{ (br s, 1H, H}_{17}), 5.22 \text{ (s, 2H, H}_{22}), 4.77-4.73 \text{ (m, 1H, H}_{16}), 3.36-3.34 \text{ (m, 2H, H}_{15}), 2.52 \text{ (s, 3H, H}_{23}), 1.49 \text{ (d, } J = 6.0 \text{ Hz}, 6\text{H}, \text{H}_1), 1.47 \text{ (s, 9H, H}_{20}).$ ¹³C NMR (50 MHz, CDCl₃) δ 172.6 (s, C₂₁), 170.6 (s, C₃), 168.9 (s, C₅), 157.8 (s, C₆), 156.4 (s, C₁₈), 136.2 (s, C₇), 135.8 (s, C₁₂), 131.4 (s, C_{aryl}), 129.1 (d, 2C, C_{aryl}), 128.9 (d, C_{aryl}), 128.8 (d, 2C, C_{aryl}), 125.2 (d, C₁₃), 124.3 (d, C₈), 122.3 (d, C₉), 119.3 (d, C₁₀), 116.8 (s, C₁₄), 114.3 (d, C₁₁), 102.6 (d, C₄), 80.1 (s, C₁₉), 70.1 (d, C₂), 67.7 (t, C₂₂), 55.0 (d, C₁₆), 28.9 (q, 3C, C₂₀), 28.8 (t, C₁₅), 24.6 (q, C₂₃), 22.5 (q, 2C, C₁).

MS (ESI) *m*/*z*: 545.0 [M+H]⁺.

Elemental analyses: calculated for C₃₁H₃₆N₄O₅: C, 68.36; H, 6.66; N, 10.29; found: C, 68.18; H, 6.90; N, 10.23.

I.4.2.2.1.13. Benzyl (±) N-Boc-2-amino-3-{1-[4-phenyl-6-(propan-2-yloxy)pyrimidin-2-yl]-1*H*-indol-3-yl}propanoate (I.32ec)

MW (g/mol): 606.7107

Molecular formula: C₃₆H₃₈N₄O₅

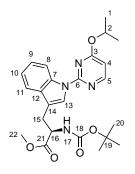
Synthesized according to general procedure from pyrimidinyl sulfone **I.27c** (368.4 mg, 1.0 mmol), N^{α} -Boc-(*S*)-tryptophan benzyl ester **I.18e** (433.8 mg, 1.1 mmol) and DBU (1.52 mL, 1.2 mmol) at 50 °C for 24 h, 310 mg (57%) of compound **I.18ec** was obtained as a colourless solid.

Mp: 140-141 °C.

 R_f (*n*-hexane/EtOAc, 2:1): 0.53.

IR (neat): 3378, 2977, 1731, 1682, 1582, 1552, 1518, 1465, 1389, 1369, 1321, 1286, 1245, 1210, 1158, 1101, 1014, 958, 766, 738, 691 cm⁻¹.

¹**H NMR** (200 MHz, d_6 -DMSO) δ 8.85 (d, J = 8.2 Hz, 1H, H₁₁), 8.39-8.23 (m, 3H, H₁₃, 2H_{aryl}), 7.55-7.30 (m, 13H, H₄, H₉, H₁₀, H₈, H₁₇, 8H_{aryl}), 5.61 (sept, J = 6.0 Hz, 1H, H₂),


5.21 (s, 2H, H₂₂), 4.53-4.49 (m, 1H, H₁₆), 3.30-3.25 (m, 2H, H₁₅), 1.55 (d, J = 6.0 Hz, 6H, H₁), 1.41 (s, 9H, H₂₀).

¹³C NMR (50 MHz, d_6 -DMSO) δ 172.0 (s, C₂₁), 170.4 (s, C₃), 165.1 (s, C₅), 156.3 (s, C₆), 155.4 (s, C₁₈), 136.1 (s, C₇), 135.8 (s, C₁₂), 134.9 (s, C_{aryl}), 131.1 (d, C_{aryl}), 130.5 (s, C_{aryl}), 128.9 (d, 2C, C_{aryl}), 128.5 (d, 2C, C_{aryl}), 128.2 (d, C_{aryl}), 127.8 (d, 2C, C_{aryl}), 127.6 (d, 2C, C_{aryl}), 124.4 (d, C₁₃), 123.7 (d, C₈), 121.8 (d, C₉), 118.7 (d, C₁₀), 115.7 (d, C₁₁), 115.3 (s, C₁₄), 98.5 (d, C₄), 78.3 (s, C₁₉), 69.9 (d, C₂), 65.9 (t, C₂₂), 54.0 (d, C₁₆), 28.0 (q, 3C, C₂₀), 26.4 (t, C₁₅), 21.6 (q, 2C, C₁).

MS (ESI) *m/z*: 607.0 [M+H]⁺.

Elemental analyses: calculated for C₃₆H₃₈N₄O₅: C, 71.27; H, 6.31; N, 9.23; found: C, 70.99; H, 6.56; N, 9.31.

I.4.2.2.1.14. Methyl (2S)-N-Boc-2-amino-3-{1-[4-(propan-2-yloxy)pyrimidin-2-yl]-1*H*-indol-3-yl}propanoate (I.32da)

MW (g/mol): 454.5188

Molecular formula: C₂₄H₃₀N₄O₅

Synthesized according to general procedure from pyrimidinyl sulfone **I.27a** (292.4 mg, 1.0 mmol), N^{α} -Boc-(*S*)-tryptophan methyl ester **I.18d** (350 mg, 1.1 mmol) and K₂CO₃ (276 mg, 2.0 mmol) at 40 °C for 24 h, 182 mg (40%) of compound **I.32da** was obtained as a colourless solid.

Mp: 88-89 °C.

 R_f (*n*-hexane/EtOAc, 2:1): 0.61.

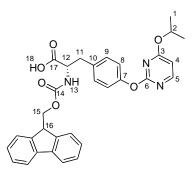
 $[\alpha]_{D}^{25}$ +9.90 (*c* 0.11, MeOH).

IR (neat): 3645, 3372, 2978, 1735, 1690, 1573, 1518, 1465, 1425, 1361, 1304, 1271, 1247, 1159, 1136, 1107, 1092, 1076, 1006 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 7.6 Hz, 1H, H₁₁), 8.36 (d, J = 5.7 Hz, 1H, H₅), 8.05 (s, 1H, H₁₃), 7.55 (d, J = 7.7 Hz, 1H, H₈), 7.25 (m, 1H, H₉), 7.16 (m, 1H, H₁₀), 6.32 (d, J = 5.7 Hz, 1H, H₄), 5.51 (sept, J = 6.2 Hz, 1H, H₂), 5.15 (d, J = 7.8 Hz, 1H, H₁₇), 4.70 (m, 1H, H₁₆), 3.70 (s, 3H, H₂₂), 3.31 (m, 2H, H₁₅), 1.47 (s, 9H, H₂₀), 1.44 (d, J = 6.2 Hz, 6H, H₁).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.5 (s, C₂₁), 168.5 (s, C₃), 156.9 (d, C₅), 156.0 (s, C₁₈), 154.2 (s, C₁₉), 134.6 (s, C₇), 130.1 (s, C₁₂), 123.3 (d, C₁₁), 122.8 (d, C₁₃), 120.8 (d, C₈), 117.8 (d, C₉), 115.1 (d, C₁₀), 113.3 (s, C₁₄), 102.7 (d, C₄), 78.8 (s, C₁₉), 68.8 (d, C₂), 52.9 (d, C₁₆), 51.2 (q, C₂₂), 28.0 (q, 2C, C₁), 27.0 (t, C₁₅), 20.8 (q, 3C, C₂₀).

HRMS (ESI) m/z: calculated for C₂₄H₃₀N₄NaO₅ [M+Na]⁺ 477.2108, found 477.2121; calculated for C₂₄H₃₁N₄O₅ [M+H]⁺ 455.2289, found 455.2292.


I.4.2.2.2. Synthesis of N^{α} -Fmoc pyrimidin-2-yl amino acids I.12

I.4.2.2.2.1. General procedure

LiOH monohydrate (2.5 equiv) was added to a solution of appropriate N^{α} -Boc-amino methyl esters I.32 (1 equiv) in THF/MeOH/H₂O (1:2:2; 0.12M), and the reaction mixture was stirred at rt for 3-4 h. Upon completion of the reaction (TLC monitoring), the organic solvents were removed under reduced pressure. The pH of the resulting aqueous solution was then adjusted to 4 with glacial acetic acid, and the solution was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Next, the free N^{α} -Boc-amino acid was dissolved in CH₂Cl₂ (0.7M) and the solution was cooled in an ice bath. TFA (0.7M) was added dropwise and the resulting mixture was stirred at 0 °C for 1-2 h. Upon completion of the reaction (TLC monitoring), the solvent was removed under reduced pressure. The crude material was dissolved in 1,4-dioxane (0.3M) and the resulting solution was adjusted with 5% NaHCO₃ aqueous solution to pH 7. Fmoc-Osu (1.02-1.05 equiv) was then added slowly. During this addition, pH was readjusting with 5% NaHCO₃ aqueous solution to 7. The resulting mixture was stirred at rt for 8-12 h upon completion of the reaction (TLC monitoring). After this time, the solvent was removed under reduced pressure and the resulting residue was diluted in water (10 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were then extracted

with saturated NaHCO₃ solution (3 x 5 mL). The combined basic aqueous layers were then acidified to pH 1-2 with 1% HCl aqueous solution, and extracted with EtOAc (3 x 5 mL). These combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting crude material was purified by flash chromatography (*n*-hexane/EtOAc/AcOH, from 4:1:0 to 0:20:1) to afford N^{α} -Fmoc pyrimidin-2-yl amino acids **I.12**.

I.4.2.2.2.2. (2S)-N-Fmoc-2-amino-3-{4-[4-(propan-2-yloxy)pyrimidin-2-yloxy]phenyl}propanoic acid (I.12a)

MW (g/mol): 539.5785

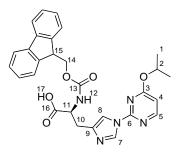
Molecular formula: C₃₁H₂₉N₃O₆

Synthesized according to general procedure from N^{α} -Boc-pyrimidin-2-yl amino ester **I.32aa** (172 mg, 0.40 mmol), 123 mg (57%) of compound **I.12a** was obtained as a colourless solid.

Mp: 72-74 °C.

*R*_{*f*} (EtOAc/MeOH/AcOH, 10:3:0.2): 0.71.

 $[\alpha]_{D}^{25}$ +5.92 (*c* 0.32, MeOH).


IR (neat): 3745, 3709, 3474, 3414, 3355, 3327, 2977, 1711, 1586, 1563, 1506, 1451, 1384, 1324, 1275, 1245, 1200, 1143, 1105, 1046, 836, 759, 739, 539, 515 cm⁻¹.

¹**H NMR** (200 MHz, d_6 -DMSO) δ 8.20 (d, J = 5.6 Hz, 1H, H₅), 7.80-7.76 (m, 2H, H_{Fmoc}), 7.62-7.59 (m, 2H, H_{Fmoc}), 7.41-7.28 (m, 4H, H_{Fmoc}), 7.22-7.06 (m, 4H, H₈, H₉), 6.41 (d, J = 5.6 Hz, 1H, H₄), 5.54 (br s, 1H, H₁₃), 5.20 (sept, J = 6.0 Hz, 1H, H₂), 4.75 (m, 1H, H₁₂), 4.55-4.42 (m, 2H, H₁₅), 4.25 (m, 1H, H₁₆), 3.22-3.20 (m, 2H, H₁₁), 1.33 (d, J = 6.0 Hz, 6H, H₁).

¹³**C NMR** (50 MHz, CDCl₃) δ 174.6 (s, C₁₇), 171.6 (s, C₃), 165.0 (s, C₆), 158.0 (d, C₅), 156.3 (s, C₁₄), 152.2 (s, C₇), 144.3 (s, C_{Fmoc}), 144.1 (s, C_{Fmoc}), 141.7 (s, 2C, C_{Fmoc}), 133.5 (s, C₁₀), 131.0 (d, 2C, C_{Fmoc}), 128.2 (d, 2C, C₉), 127.5 (d, 2C, C_{Fmoc}), 125.5 (d, 2C, C_{Fmoc}), 122.2 (d, 2C, C₈), 120.4 (d, 2C, C_{Fmoc}), 104.3 (d, C₄), 70.9 (d, C₂), 67.4 (t, C₁₅), 55.1 (d, C₁₂), 47.6 (d, C₁₆), 37.7 (t, C₁₁), 22.0 (q, 2C, C₁).

HRMS (ESI) m/z: calculated for C₃₁H₃₀N₃O₆ [M+H]⁺ 540.2129, found 540.2131.

I.4.2.2.2.3. (2S)-N-Fmoc-2-amino-3-{1-[4-(propan-2-yloxy)pyrimidin-2-yl]-1*H*imidazol-4-yl}propanoic acid (I.12b)

MW (g/mol): 513.5445

Molecular formula: C₂₈H₂₇N₅O₅

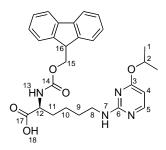
Synthesized according to general procedure from N^{α} -Boc-pyrimidin-2-yl amino ester **I.32ba** (162 mg, 0.40 mmol), 197 mg (96%) of compound **I.12b** was obtained as a colourless solid.

Mp: 80-83 °C.

*R*_f (EtOAc/MeOH/AcOH, 5:3:0.2): 0.50.

 $[\alpha]_{D}^{25}$ +5.50 (*c* 0.23, MeOH).

IR (neat): 3363, 1710, 1592, 1562, 1445, 1381, 1311, 1214, 1097, 1026, 947, 738 cm⁻¹.


¹**H** NMR (300 MHz, d_6 -DMSO) δ 8.48 (s, 1H, H₇), 8.44 (d, J = 5.8 Hz, 1H, H₅), 7.85 (d, J = 7.5 Hz, 2H, H_{Fmoc}), 7.68 (s, 1H, H₈), 7.64-7.60 (m, 3H, H₁₂, H_{Fmoc}), 7.38-7.32 (m, 2H, H_{Fmoc}), 7.26-7.18 (m, 2H, H_{Fmoc}), 6.76 (d, J = 5.8 Hz, 1H, H₄), 5.34 (sept, J = 6.2 Hz, 1H, H₂), 4.29-4.17 (m, 4H, H₁₁, H₁₄, H₁₅), 3.03 (dd, J = 14.5, 3.7 Hz, 1H, H₁₀), 2.90 (dd, J = 14.5, 9.4 Hz, 1H, H₁₀), 1.31 (d, J = 6.2 Hz, 3H, H₁), 1.28 (d, J = 6.2 Hz, 3H, H₁).

¹³**C NMR** (100 MHz, d_6 -DMSO) δ 173.1 (s, C₁₆), 169.2 (s, C₃), 158.8 (d, C₅), 155.6 (s, C₆), 153.1 (s, C₁₃), 143.4 (s, 2C, C_{Fmoc}), 140.4 (s, 2C, C_{Fmoc}), 139.3 (s, C₉), 135.0 (d,

C₇), 127.3 (d, 2C, C_{Fmoc}), 126.7 (d, 2C, C_{Fmoc}), 125.0 (d, 2C, C_{Fmoc}), 119.8 (d, 2C, C_{Fmoc}), 113.6 (d, C₈), 105.9 (d, C₄), 69.9 (d, C₂), 65.4 (t, C₁₄), 53.4 (d, C₁₁), 46.3 (d, C₁₅), 29.6 (t, C₁₀), 21.2 (q, 2C, C₁).

HRMS (ESI) m/z: calculated for C₂₈H₂₈N₅O₅ [M+H]⁺ 514.2085, found 514.2071.

I.4.2.2.2.4. (2S)-*N*-Fmoc-2-amino-6-{*N*-[4-(propan-2-yloxy)pyrimidin-2-yl]amino}hexanoic acid (I.12c)

MW (g/mol): 504.5775

Molecular formula: C₂₈H₃₂N₄O₅

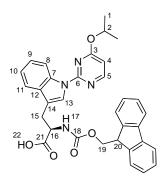
Synthesized according to general procedure from N^{α} -Boc-pyrimidin-2-yl amino ester **I.32ca** (158 mg, 0.40 mmol), 155 mg (77%) of compound **12c** was obtained as a colourless solid.

Mp: 54-57 °C.

*R*_{*f*} (EtOAc/MeOH/AcOH, 10:3:0.2): 0.57.

 $[\alpha]_{D}^{25}$ –5.91 (*c* 0.10, MeOH).

IR (neat): 3385, 3343, 3316, 1674, 1640, 1474, 1461, 1400, 1323, 1201, 1180, 1130, 841, 799 cm⁻¹.


¹**H NMR** (400 MHz, *d*₆-DMSO) δ 12.63 (br s, 1H, H₁₈), 7.99 (d, J = 5.6 Hz, 1H, H₅), 7.93 (d, J = 7.6 Hz, 2H, H_{Fmoc}), 7.77 (d, J = 7.2 Hz, 2H, H_{Fmoc}), 7.67 (d, J = 8.0 Hz, 1H, H₇), 7.46 (t, J = 7.2 Hz, 2H, H_{Fmoc}), 7.37 (t, J = 7.6 Hz, 2H, H_{Fmoc}), 5.94 (d, J = 5.6 Hz, 1H, H₄), 5.27 (sept, J = 6.0 Hz, 1H, H₂), 4.33-4.25 (m, 3H, H₁₅, H₁₆), 3.98 (m, 1H, H₁₂), 3.29-3.25 (m, 2H, H₈), 1.75-1.73 (m, 2H, H₁₁), 1.70-1.69 (m, 2H, H₉ or H₁₀), 1.68-1.66 (m, 2H, H₉ or H₁₀), 1.30 (d, J = 6.0 Hz, 6H, H₁).

¹³C NMR (100 MHz, d_6 -DMSO) δ 172.3 (s, C₁₇), 162.5 (s, C₃), 157.7 (d, C₅), 157.2 (s, C₁₄), 147.4 (s, C₆), 145.3 (s, C_{Fmoc}), 145.1 (s, C_{Fmoc}), 142.1 (s, 2C, C_{Fmoc}), 128.4 (d, 2C, C_{Fmoc}), 128.2 (d, 2C, C_{Fmoc}), 126.3 (d, 2C, C_{Fmoc}), 121.0 (d, 2C, C_{Fmoc}), 99.4 (d, C₄),

73.3 (d, C₂), 67.5 (t, C₁₅), 55.8 (d, C₁₂), 48.1 (d, C₁₆), 41.9 (t, C₈), 32.0 (t, C₁₁), 29.1 (t, C₉ or C₁₀), 23.6 (t, C₉ or C₁₀), 21.8 (q, 2C, C₁).

HRMS (ESI) m/z: calculated for C₂₈H₃₂N₄NaO₅ [M+Na]⁺ 527.2265, found 527.2244; calculated for C₂₈H₃₃N₄O₅ [M+H]⁺ 505.2445, found 505.2435.

I.4.2.2.2.5. (2S)-N-Fmoc-2-amino-3-{1-[4-(propan-2-yloxy)pyrimidin-2-yl]-1Hindol-3-yl}propanoic acid (I.12d)

MW (g/mol): 562.6151

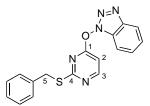
Molecular formula: C₃₃H₃₀N₄O₅

Synthesized according to general procedure from N^{α} -Boc-pyrimidin-2-yl amino ester **I.32da** (182 mg, 0.40 mmol), 173 mg (77%) of compound **I.12d** was obtained as a colourless solid.

Mp: 174-176 °C.

R_f (EtOAc/MeOH/AcOH, 10:3:0.2): 0.77.

 $[\alpha]_{D}^{25}$ +4.38 (*c* 0.14, MeOH).


IR (neat): 3342, 1731, 1686, 1559, 1537, 1469, 1430, 1305, 1235, 1223, 1087, 1032, 756 cm⁻¹.

¹**H NMR** (400 MHz, *d*₆-DMSO) δ 12.84 (br s, 1H, H₂₂), 8.66 (d, J = 8.4 Hz, 1H, H₁₁), 8.46 (d, J = 5.6 Hz, 1H, H₅), 8.18 (s, 1H, H₁₃), 7.87-7.82 (m, 3H, H_{Fmoc}), 7.67 (d, J = 7.6 Hz, 1H, H_{Fmoc}), 7.61 (d, J = 7.6 Hz, 1H, H₁₇), 7.56 (d, J = 7.6 Hz, 1H, H₈), 7.42-7.35 (m, 3H, H_{Fmoc}, H₉), 7.30-7.23 (m, 2H, H_{Fmoc}), 7.14 (t, J = 7.6 Hz, 1H, H₁₀), 6.61 (d, J = 5.6 Hz, 1H, H₄), 5.40 (sept, J = 6.0 Hz, 1H, H₂), 4.40 (m, 1H, H₁₆), 4.20-4.12 (m, 3H, H₁₉, H₂₀), 3.26 (dd, J = 14.8, 4.4 Hz, 1H, H₁₅), 3.11 (dd, J = 14.8, 10.4 Hz, 1H, H₁₅), 1.42 (d, J = 6.0 Hz, 3H, H₁), 1.40 (d, J = 6.0 Hz, 3H, H₁). ¹³**C NMR** (75 MHz, d_6 -DMSO) δ 173.4 (s, C₂₁), 169.0 (s, C₃), 158.7 (d, C₅), 156.3 (s, C₆), 155.9 (s, C₁₈), 143.7 (s, 2C, C_{Fmoc}), 143.6 (s, 2C, C_{Fmoc}), 140.6 (s, C₇), 134.8 (s, C₁₂), 130.5 (s, C₁₄), 127.5 (d, C₁₁), 127.4 (d, C₁₃), 126.9 (d, C_{Fmoc}), 126.8 (d, C_{Fmoc}), 125.2 (d, C_{Fmoc}), 125.1 (d, C_{Fmoc}), 124.1 (d, C_{Fmoc}), 123.6 (d, C_{Fmoc}), 121.8 (d, C₈), 119.9 (d, 2C, C_{Fmoc}), 118.8 (d, C₉), 115.7 (d, C₁₀), 103.5 (d, C₄), 69.7 (d, C₂), 65.7 (t, C₁₉), 53.9 (d, C₁₆), 46.5 (d, C₂₀), 26.5 (t, C₁₅), 21.5 (q, C₁), 21.5 (q, C₁).

HRMS (ESI) m/z: calculated for C₃₃H₃₀N₄NaO₅ [M+Na]⁺ 585.2108, found 585.2107; calculated for C₃₃H₃₁N₄O₅ [M+H]⁺ 563.2294, found 563.2293.

I.4.2.3. Synthesis of pyrimidin-2-one amino acids

I.4.2.3.1. Synthesis of 1-{[2-(benzylsulfanyl)pyrimidin-4-yl]oxy}-1H-1,2,3benzotriazole] (I.17)

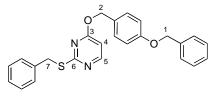
MW (g/mol): 335.3830

Molecular formula: C₁₇H₁₃N₅OS

DBU (2 mL, 13.75 mmol) and BOP (6 g, 13.75 mmol) were subsequently added to a suspension of pyrimidinone **I.1a** (2 g, 9.17 mmol) in MECN (0.3M), and the resulting solution was stirred at rt for 3 h. After this time, the solvent was removed under reduced pressure, and the resulting residue was purified by flash chromatography (*n*-hexane/EtOAc, 7:3) to afford OBt-adduct **I.17** as a white solid (2.66 g, 87%).

Mp: 131-132 °C.

 R_f (*n*-hexane/EtOAc, 1:1): 0.59.


IR (neat): 3062, 3028, 1581, 1542, 1424, 1336, 1258, 1236, 1213, 1081, 929, 910, 742, 712 cm⁻¹.

¹**H NMR** (300 MHz, CDCl₃) δ 8.53 (d, J = 5.6 Hz, 1H, H₃), 8.09 (dd, J = 8.1, 1.2 Hz, 1H, H_{OBt}), 7.55 (t_{app}, J = 7.2 Hz, 1H, H_{OBt}), 7.43 (t_{app}, J = 6.9 Hz, 2H, H_{OBt}), 7.15-6.94 (m, 3H, H_{aryl}), 6.93-6.91 (m, 2H, H_{aryl}), 6.79 (d, J = 5.6 Hz, 1H, H₂), 3.79 (s, 2H, H₅).

¹³**C NMR** (75 MHz, CDCl₃) δ 173.1 (s, C₁), 168.8 (s, C₄), 160.1 (d, C₃), 143.4 (s, C_{OBt}), 136.4 (s, C_{OBt}), 128.9 (d, C_{OBt}), 128.8 (s, C_{aryl}), 128.6 (d, 2C, C_{aryl}), 128.4 (d, 2C, C_{aryl}), 127.2 (d, C_{aryl}), 125.0 (d, C_{OBt}), 120.6 (d, C_{OBt}), 108.7 (d, C₂), 100.4 (d, C_{OBt}), 35.1 (t, C₅).

HRMS (ESI) m/z: calculated for C₁₇H₁₄N₅OS [M+H]⁺ 336.0914, found 336.0900; calculated for C₁₇H₁₃N₅NaOS [M+Na]⁺ 358.0733, found 358.0717.

I.4.2.3.2. Synthesis of 4-[4-(benzyloxy)benzyloxy]-2-(benzylsulfanyl)pyrimidine (I.40)

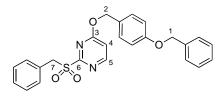
MW (g/mol): 414.5193

Molecular formula: C₂₅H₂₂N₂O₂S

To a stirring solution of OBt-adduct **17** (3.0 g, 9.0 mmol) in MECN (0.3 M), *t*-BuOK (2.0 g, 18 mmol) and 4-benzyloxybenzyl alcohol (2.9 g, 13.5 mmol) were added and the resulting mixture was stirred at rt for 90 min. After this time, the solvent was removed under reduced pressure, and the resulting residue was purified by flash chromatography (*n*-hexane/EtOAc, 85:15) to afford compound **I.40** as a white solid (3.62 g, 97%).

Mp: 65-66 °C.

Rf (*n*-hexane/EtOAc, 1:1): 0.72.


IR (neat): 3060, 3030, 1610, 1553, 1511, 1437, 1307, 1225, 1173, 983, 819, 696 cm⁻¹.

¹**H NMR** (300 MHz, CDCl₃) δ 8.24 (d, J = 5.7 Hz, 1H, H₅), 7.46-7.28 (m, 12H, H_{aryl}), 6.98 (d, J = 8.7 Hz, 2H, H_{aryl}), 6.42 (d, J = 5.7 Hz, 1H, H₄), 5.33 (s, 2H, H₁ or H₂), 5.08 (s, 2H, H₁ or H₂), 4.44 (s, 2H, H₇).

¹³**C NMR** (75 MHz, CDCl₃) δ 171.2 (s, C₃), 168.5 (s, C₆), 158.9 (s, C_{aryl}), 157.4 (d, C₅), 137.6 (s, C_{aryl}), 136.9 (s, C_{aryl}), 130.1 (d, 2C, C_{aryl}), 128.9 (d, 2C, C_{aryl}), 128.7 (d, 2C, C_{aryl}), 128.6 (d, 2C, C_{aryl}), 128.4 (s, C_{aryl}), 128.0 (d, C_{aryl}), 127.5 (d, 2C, C_{aryl}), 127.2 (d, C_{aryl}), 115.0 (d, 2C, C_{aryl}), 104.2 (d, C₄), 70.1 (t, C₁ or C₂), 68.1 (t, C₁ or C₂), 35.4 (t, C₇).

HRMS (ESI) m/z: calculated for C₂₅H₂₃N₂O₂S [M+H]⁺ 415.1475, found 415.1478; calculated for C₂₅H₂₂N₂NaO₂S [M+Na]⁺ 437.1294, found 437.1301.

I.4.2.3.3. Synthesis of 4-[4-(benzyloxy)benzyloxy]-2-(benzylsulfonyl)pyrimidine (I.38)

MW (g/mol): 446.5182

Molecular formula: C₂₅H₂₂N₂O₄S

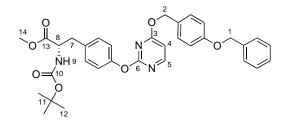
To a cooled solution (0 °C) of benzylsulfanylpyrimidine **I.40** (3.5 g, 8.4 mmol) in CH_2Cl_2 (0.2M), *m*-CPBA (3.6 g, 21.1 mmol) was added in small portions. The resulting mixture was warmed up to rt and stirred for 1 h. Next, the solvent was removed under reduced pressure and the residue was dissolved in EtOAc (100 mL), washed with saturated NaHCO₃ solution (2 x 20 mL) and brine (1 x 20 mL). The organic layer was dried over MgSO₄, filtered, concentrated under reduced pressure and the resulting crude purified by flash chromatography (*n*-hexane/EtOAc, 6:4) to afford sulfone **I.38** as a colourless oil (2.89 g, 79%).

 R_f (*n*-hexane/EtOAc, 1:1): 0.41.

IR (neat): 3062, 3032, 1578, 1535, 1511, 1467, 1449, 1318, 1239, 1174, 1123, 982, 734, 695 cm⁻¹.

¹**H NMR** (300 MHz, CDCl₃) δ 8.52 (d, J = 5.7 Hz, 1H, H₅), 7.42-7.31 (m, 12H, H_{aryl}), 6.99 (d, J = 8.7 Hz, 2H, H_{aryl}), 6.85 (d, J = 5.7 Hz, 1H, H₄), 5.42 (s, 2H, H₁ or H₂), 5.06 (s, 2H, H₁ or H₂), 4.71 (s, 2H, H₇).

¹³**C NMR** (75 MHz, CDCl₃) δ 169.9 (s, C₃), 164.3 (s, C₆), 159.2 (s, C_{aryl}), 157.7 (d, C₅), 136.7 (s, C_{aryl}), 131.2 (d, 2C, C_{aryl}), 130.6 (d, 2C, C_{aryl}), 128.8 (d, C_{aryl}), 128.7 (d, 2C, C_{aryl}), 128.6 (d, 2C, C_{aryl}), 128.0 (d, C_{aryl}), 127.4 (d, 2C, C_{aryl}), 127.3 (s, C_{aryl}), 126.8 (s, C_{aryl}), 115.0 (d, 2C, C_{aryl}), 111.6 (d, C₄), 70.0 (t, C₁ or C₂), 69.6 (t, C₁ or C₂), 57.6 (t, C₇).


HRMS (ESI) m/z: calculated for C₂₅H₂N₂NaO₄S [M+Na]⁺ 469.1192, found 469.1177.

I.4.2.3.4. Synthesis of N^{α}-Boc pyrimidin-2-yl amino esters I.39

I.4.2.3.4.1. General procedure

 K_2CO_3 (1.2-2.4 equiv) was added to a solution of the corresponding N^{α} -Boc-amino ester **I.18a-d** (1.1 equiv) in dry DMF (0.4M) and the resulting mixture was stirred at rt for 15 min. After this time, pyrimidinyl sulfone **I.38** (1.0 equiv) was added, as a DMF solution (1M). The resulting mixture was stirred at the temperature specified for each compound. Upon completion of the reaction (TLC monitoring), the solvent was removed under reduced pressure, and the resulting residue was purified by flash chromatography (*n*-hexane/EtOAc, from 15:1 to 1:1) to afford N^{α} -Boc-pyrimidin-2-yl amino esters **I.39**.

I.4.2.3.4.2. Methyl (2S)-N-Boc-2-amino-3-{4-[4-(4-(benzyloxy)benzyloxy) pyrimidin-2-yloxy]phenyl}propanoate (I.39a)

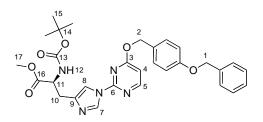
MW (g/mol): 585.6469

Molecular formula: C₃₃H₃₅N₃O₇

Synthesized according to the general procedure from pyridiminyl sufone **I.38** (250 mg, 0.56 mmol), N^{α} -Boc-(*S*)-tyrosine methyl ester **I.18a** (182 mg, 0.61 mmol) and K₂CO₃ (93 mg, 0.67 mmol) at 50 °C for 24 h, 291 mg (89%) of compound **I.39a** was obtained as a colourless oil.

 R_f (*n*-hexane/EtOAc, 3:2): 0.25.

 $[\alpha]_{D}^{20}$ +22.9 (*c* 1.36, CHCl₃).


IR (neat): 3433, 1741, 1709, 1568, 1508, 1380, 1334, 1271, 1240, 1213, 1166, 1046, 1016, 730 cm⁻¹.

¹**H** NMR (300 MHz, CDCl₃) δ 8.19 (d, J = 5.6 Hz, 1H, H₅), 7.45-7.30 (m, 5H, H_{aryl}), 7.25 (m, 2H, H_{aryl}), 7.20 (d, J = 8.6 Hz, 2H, H_{aryl}), 7.13 (d, J = 8.6 Hz, 2H, H_{aryl}), 6.95 (d, J = 8.6 Hz, 2H, H_{aryl}), 6.45 (d, J = 5.6 Hz, 1H, H₄), 5.26 (s, 2H, H₁ or H₂), 5.08 (s, 2H, H₁ or H₂), 4.61 (m, 1H, H₈), 3.71 (s, 3H, H₁₄), 3.18-3.08 (m, 2H, H₇), 1.42 (s, 9H, H₁₂).

¹³C NMR (75 MHz, CDCl₃) δ 172.3 (s, C₁₃), 171.2 (s, C₃), 164.9 (s, C₆), 159.0 (s, C_{aryl}), 158.9 (d, C₅), 152.0 (s, C₁₀), 136.8 (s, C_{aryl}), 133.1 (s, 2C, C_{aryl}), 130.4 (d, 2C, C_{aryl}), 130.3 (d, 2C, C_{aryl}), 128.6 (d, 2C, C_{aryl}), 128.1 (s, C_{aryl}), 128.0 (d, C_{aryl}), 127.5 (d, 2C, C_{aryl}), 122.0 (d, 2C, C_{aryl}), 114.9 (d, 2C, C_{aryl}), 103.6 (d, C₄), 80.2 (s, C₁₁), 70.1 (t, C₁ or C₂), 68.2 (t, C₁ or C₂), 54.5 (d, C₈), 52.3 (q, C₁₄), 37.8 (t, C₇), 28.4 (q, 3C, C₁₂).

HRMS (ESI) m/z: calculated for C₃₃H₃₆N₃O₇ [M+H]⁺ 586.2548, found 586.2555; calculated for C₃₃H₃₅N₃NaO₇ [M+Na]⁺ 608.2367, found 608.2384.

I.4.2.3.4.3. Methyl (2S)-N-Boc-2-amino-3-{1-[4-(4-(benzyloxy)benzyloxy) pyrimidin-2-yl]-1*H*-imidazol-4-yl}propanoate (I.39b)

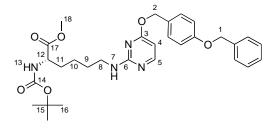
MW (g/mol): 552.6129

Molecular formula: C₃₀H₃₃N₅O₆

Synthesized according to the general procedure from pyridiminyl sufone **I.38** (250 mg, 0.56 mmol), N^{α} -Boc-(*S*)-histidine methyl ester **I.18b** (164 mg, 0.61 mmol) and K₂CO₃ (93 mg, 0.67 mmol) at 50 °C for 24 h, 293 mg (94%) of compound was obtained as a colourless oil.

 R_f (*n*-hexane/EtOAc, 3:2): 0.25.

 $[\alpha]_{D}^{20}$ +17.2 (*c* 1.5, CHCl₃)


IR (neat): 2961, 2919, 1745, 1710, 1590, 1565, 1512, 1486, 1446, 1361, 1298, 1247, 1170, 1027 cm⁻¹.

¹**H NMR** (300 MHz, CDCl₃) δ 8.51 (s, 1H, H₇), 8.33 (d, J = 5.7 Hz, 1H, H₅), 7.64 (s, 1H, H₈), 7.44-7.32 (m, 7H, H_{aryl}), 6.99 (d, J = 8.7 Hz, 2H, H_{aryl}), 6.61 (d, J = 5.7 Hz, 1H, H₄), 5.83 (d, J = 7.6 Hz, 1H, H₁₂), 5.41 (s, 2H, H₁ or H₂), 5.08 (s, 2H, H₁ or H₂), 4.62 (m, 1H, H₁₁), 3.73 (s, 3H, H₁₇), 3.16-3.12 (m, 2H, H₁₀), 1.44 (s, 9H, H₁₅).

¹³**C NMR** (75 MHz, CDCl₃) δ 172.5 (s, C₁₆), 170.3 (s, C₆), 159.0 (s, C₃), 158.5 (d, C₅), 155.3 (s, C₁₃), 136.9 (s, C_{aryl}), 135.9 (s, C₉), 131.7 (d, C₇), 130.2 (d, 2C, C_{aryl}), 128.7 (d, 2C, C_{aryl}), 128.1 (d, C_{aryl}), 127.9 (s, 2C, C_{aryl}), 127.5 (d, 2C, C_{aryl}), 115.2 (d, 2C, C_{aryl}), 114.3 (d, C₈), 106.4 (d, C₄), 79.6 (s, C₁₄), 70.2 (t, C₁ or C₂), 68.7 (t, C₁ or C₂), 53.5 (d, C₁₁), 52.3 (q, C₁₇), 29.8 (t, C₁₀), 28.4 (q, 3C, C₁₅).

HRMS (ESI) m/z: calculated for C₃₀H₃₄N₅O₆ [M+H]⁺ 560.2504, found 560.2511; calculated for C₃₀H₃₃N₅NaO₆ [M+Na]⁺ 582.2323, found 582.2294.

I.4.2.3.4.4. Methyl (2S)-N-Boc-2-amino-6-{N-[4-(4-(benzyloxy)benzyloxy) pyrimidin-2-yl]amino}hexanoate (I.39c)

MW (g/mol): 550.6459

Molecular formula: C₃₀H₃₈N₄O₆

Synthesized according to the general procedure from pyridiminyl sufone **I.38** (250 mg, 0.56 mmol), N^{α} -Boc-(*S*)-lysine methyl ester **I.18c** (200 mg, 0.61 mmol) and K₂CO₃ (155 mg, 1.22 mmol) at 45 °C for 24 h, 280 mg (84%) of compound was obtained as a colourless oil.

 R_f (*n*-hexane/EtOAc, 3:7): 0.51.

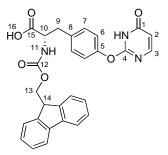
 $[\alpha]_{D}^{20}$ +7.8 (*c* 1.0, CHCl₃)

IR (neat): 3365, 3255, 2935, 1739, 1685, 1584, 1528, 1511, 1453, 1427, 1282, 1243, 1225, 1171, 1159, 1010, 733 cm⁻¹.

¹**H NMR** (300 MHz, CDCl₃) δ 7.95 (d, J = 5.7 Hz, 1H, H₅), 7.44-7.31 (m, 7H, H_{aryl}), 6.98 (d, J = 8.7 Hz, 2H, H_{aryl}), 6.01 (d, J = 5.7 Hz, 1H, H₄), 5.27 (s, 2H, H₁ or H₂), 5.13 (br s, 1H, H₁₃), 5.07 (s, 2H, H₁ or H₂), 4.30 (br s, 1H, H₁₂), 3.71 (s, 3H, H₁₈), 3.40 (q, J = 6.7 Hz, 2H, H₈), 1.83 (m, 1H, H₁₁), 1.73-1.56 (m, 3H, H₉, H₁₁), 1.43 (m, 2H, H₁₀), 1.43 (s, 9H, H₁₆).

¹³C NMR (75 MHz, CDCl₃) δ 173.5 (s, C₁₇), 170.1 (s, C₃), 161.9 (s, C₆), 159.0 (s, C_{aryl}), 156.8 (d, C₅), 155.6 (s, C₁₄), 137.1 (s, C_{aryl}), 130.1 (d, 2C, C_{aryl}), 129.0 (s, C_{aryl}), 128.8

(d, 2C, C_{aryl}), 128.2 (d, C_{aryl}), 127.6 (d, 2C, C_{aryl}), 115.1 (d, 2C, C_{aryl}), 97.7 (d, C_4), 80.1 (s, C_{15}), 70.3 (t, C_1 or C_2), 67.6 (t, C_1 or C_2), 53.6 (d, C_{12}), 52.4 (q, C_{18}), 41.3 (t, C_8), 32.7 (t, C_{11}), 29.4 (t, C_9), 28.5 (q, 3C, C_{16}), 23.0 (t, C_{10}).


HRMS (ESI) m/z: calculated for C₃₀H₃₉N₄O₆ [M+H]⁺ 551.2864, found 551.2884.

I.4.2.3.5. Synthesis of N^{α} -Fmoc pyrimidin-2-one amino acids I.13

I.4.2.3.5.1. General procedure

LiOH monohydrate (2.5 equiv) was added to a solution of appropriate N^{α} -Boc-amino methyl esters I.39 (1 equiv) in THF/MeOH/H₂O (1:2:2; 0.12M), and the reaction mixture was stirred at rt for 3-4 h. Upon completion of the reaction (TLC monitoring), the organic solvents were removed under reduced pressure. The pH of the resulting aqueous solution was then adjusted to 4 with glacial acetic acid, and the solution was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Next, the free N^{α} -Boc-amino acid was dissolved in CH₂Cl₂ (0.7M) and the solution was cooled in an ice bath. TFA (0.3M) was added dropwise and the resulting mixture was stirred at 0 °C for 5 h. Upon completion of the reaction (TLC monitoring), the solvent was removed under reduced pressure. The crude material was dissolved in 1,4-dioxane (0.3M) and the resulting solution was adjusted with 5% NaHCO₃ aqueous solution to pH 7. Fmoc-Osu (1.02-1.05 equiv) was then added slowly. During this addition, pH was readjusting with 5% NaHCO₃ aqueous solution to 7. The resulting mixture was stirred at rt for 8-12 h upon completion of the reaction (TLC monitoring). After this time, the solvent was removed under reduced pressure and the resulting residue was diluted in water (10 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were back extracted with saturated NaHCO₃ solution (3 x 5 mL). Then, the combined basic aqueous layers were then acidified to pH 1-2 with 1% HCl aqueous solution, and extracted with EtOAc (3 x 5 mL). These combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash chromatography (*n*-hexane/EtOAc/AcOH, from 4:1:0 to 0:20:1) to afford N^{α} -Fmoc pyrimidin-2-one amino acids I.13.

I.4.2.3.5.2. (2S)-N-Fmoc-2-amino-3-[4-(6-oxo-1,6-dihydropyrimidin-2yloxy)phenyl]propanoic acid (I.13a)

MW (g/mol): 497.4987

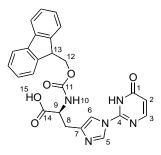
Molecular formula: C₂₈H₂₃N₃O₆

Synthesized according to the general procedure from N^{α} -Boc-pyrimidin-2-yl amino ester **I.39a** (140 mg, 0.25 mmol), 65 mg (55%) of compound **I.13a** was obtained as a colourless solid.

Mp: 117-118 °C.

*R*_{*f*} (EtOAc/MeOH/AcOH, 10:2:0.1): 0.45.

 $[\alpha]_{D}^{20}$ – 1.3 (*c* 0.4, DMF).


IR (neat): 3318, 1663, 1592, 1551, 1502, 1306, 1193, 1137, 842, 760, 738 cm⁻¹.

¹**H NMR** (300 MHz, *d*₆-DMSO) δ 7.89 (d, J = 7.4 Hz, 2H, H_{Fmoc}), 7.70-7.66 (m, 2H, H_{Fmoc}), 7.58 (br s, 1H, H₃), 7.42 (t, J = 7.4 Hz, 2H, H_{Fmoc}), 7.36-7.30 (m, 4H, H_{aryl}), 7.13 (d, J = 8.4 Hz, 2H, H_{Fmoc}), 6.09 (d, J = 6.4 Hz, 1H, H₂), 4.27-4.18 (m, 4H, H₁₀, H₁₃, H₁₄), 3.13 (dd, J = 14.1, 3.9 Hz, 1H, H₉), 2.91 (dd, J = 14.1, 10.2 Hz, 1H, H₉).

¹³C NMR (75 MHz, d_6 -DMSO) δ 173.5 (s, C₁₅), 164.2 (s, C₄), 159.6 (s, C₁), 155.9 (s, C₁₂), 153.9 (d, C₃), 150.1 (s, C₅), 143.8 (s, 2C, C_{Fmoc}), 140.6 (s, 2C, C_{Fmoc}), 135.7 (s, C₈), 130.2 (d, 2C, C_{Fmoc}), 127.6 (d, 2C, C_{Fmoc}), 127.0 (d, 2C, C₇), 125.2 (d, C_{Fmoc}), 125.1 (d, C_{Fmoc}), 121.3 (d, 2C, C₆), 120.0 (d, 2C, C_{Fmoc}), 108.4 (d, C₂), 65.5 (t, C₁₃), 55.7 (d, C₁₀), 46.6 (d, C₁₄), 35.9 (t, C₉).

HRMS (ESI) m/z: calculated for C₂₈H₂₄N₃O₆ [M+H]⁺ 498.1660, found 498.1683; calculated for C₂₈H₂₃N₃NaO₆ [M+Na]⁺ 520.1479, found 520.1493.

I.4.2.3.5.3. (2*S*)-*N*-Fmoc-2-amino-3-[1-(6-oxo-1,6-dihydropyrimidin-2-yl)-1*H*imidazol-4-yl]propanoic acid (I.13b)

MW (g/mol): 471.4647

Molecular formula: C₂₅H₂₁N₅O₅

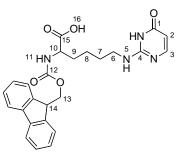
Synthesized according to the general procedure from N^{α} -Boc-pyrimidin-2-yl amino ester **I.39b** (150 mg, 0.25 mmol), 43 mg (40%) of compound **I.13b** was obtained as a colourless solid.

Mp: 163-164 °C.

R_f(EtOAc/MeOH/AcOH, 10:2:0.1): 0.25.

 $[\alpha]_{D}^{20}$ +17.4 (*c* 0.3, DMF).

IR (neat): 3135, 1685, 1598, 1526, 1494, 1445, 1389, 1206, 1142, 1045, 758, 738 cm⁻¹.


¹**H NMR** (300 MHz, d_6 -DMSO) δ 8.37 (s, 1H, H₅), 8.24 (d, J = 5.7 Hz, 1H, H₃), 7.85 (d, J = 7.4 Hz, 2H, H_{Fmoc}), 7.65-7.58 (m, 4H, H₆, H₁₀, H_{Fmoc}), 7.37 (t, J = 7.4 Hz, 2H, H_{Fmoc}), 7.26 (m, 2H, H_{Fmoc}), 6.48 (d, J = 5.7 Hz, 1H, H₂), 4.29-4.20 (m, 4H, H₉, H₁₂, H₁₃), 3.02 (dd, J = 14.7, 4.4 Hz, 1H, H₈), 2.90 (dd, J = 14.7, 9.4 Hz, 1H, H₈).

¹³C NMR (75 MHz, d_6 -DMSO) δ 173.4 (s, C₁₄), 171.2 (s, C₄), 157.8 (d, C₃), 155.9 (s, C₁₁), 153.8 (s, C₁), 143.7 (s, 2C, C_{Fmoc}), 140.6 (s, 2C, C_{Fmoc}), 139.0 (s, C₇), 134.9 (d, C₅), 127.5 (d, 2C, C_{Fmoc}), 127.0 (d, 2C, C_{Fmoc}), 125.2 (d, C_{Fmoc}), 125.1 (d, C_{Fmoc}), 120.0 (d, 2C, C_{Fmoc}), 113.8 (d, C₆), 106.4 (d, C₃), 65.6 (t, C₁₂), 53.7 (d, C₉), 46.5 (d, C₁₃), 29.8 (t, C₈).

HRMS (ESI) m/z: calculated for C₂₅H₂₂N₅O₅ [M+H]⁺ 472.1615, found 472.1615.

I.4.2.3.5.4. (2S)-N-Fmoc-2-amino-6-[N-(4-oxo-3H-pyrimidin-2-

yl)amino]hexanoic acid (I.13c)

MW (g/mol): 462.4977

Molecular formula: C₂₅H₂₆N₄O₅

Synthesized according to the general procedure from N^{α} -Boc-pyrimidin-2-yl amino ester **I.39c** (150 mg, 0.27 mmol), 65 mg (53%) of compound **I.13c** was obtained as a colourless solid.

Mp: 121-122 °C.

*R*_f (EtOAc/MeOH/AcOH, 10:2:0.1): 0.69.

 $[\alpha]_{D}^{20}$ +6.6 (*c* 1.0, DMF)

IR (neat): 2944, 1686, 1645, 1534, 1446, 1193, 1132, 735, 536 cm⁻¹.

¹**H NMR** (400 MHz, *d*₆-DMSO) δ 12.62 (br s, 1H, H₁₆), 7.89 (d, J = 7.5 Hz, 2H, H_{Fmoc}), 7.72 (d, J = 7.1 Hz, 2H, H_{Fmoc}), 7.63 (dd, J = 7.9, 5.3 Hz, 2H, H_{Fmoc}), 7.41 (t, J = 7.4 Hz, 2H, H_{Fmoc}), 7.33 (t, J = 7.4 Hz, 2H, H_{Fmoc}), 5.68 (d, J = 6.6 Hz, 1H, H₂), 4.30-4.20 (m, 3H, H₁₃, H₁₄), 3.93 (m, 1H, H₁₀), 3.27-3.25 (m, 2H, H₆), 1.72 (m, 1H, H₉), 1.63 (m, 1H, H₉), 1.55-1.47 (m, 2H, H₇), 1.41-1.31 (m, 2H, H₈).

¹³**C NMR** (100 MHz, d_6 -DMSO) δ 173.9 (s, C₁₅), 162.5 (s, C₄), 162.3 (s, C₁), 156.2 (s, C₁₂), 153.8 (d, C₂), 143.8 (s, 2C, C_{Fmoc}), 140.7 (s, 2C, C_{Fmoc}), 127.6 (d, 2C, C_{Fmoc}), 127.1 (d, 2C, C_{Fmoc}), 125.3 (d, 2C, C_{Fmoc}), 120.1 (d, 2C, C_{Fmoc}), 102.9 (d, C₂), 65.6 (t, C₁₃), 53.8 (d, C₁₀), 46.7 (d, C₁₄), 40.4 (t, C₆), 30.4 (t, C₉), 28.1 (t, C₇), 22.9 (t, C₈).

HRMS (ESI) m/z: calculated for C₂₅H₂₇N₄O₅ [M+H]⁺ 463.1976, found 463.1984.

I.4.2.4. Analysis of optical purity of pyrimidinyl amino esters I.19, I.20, I.32 and I.39

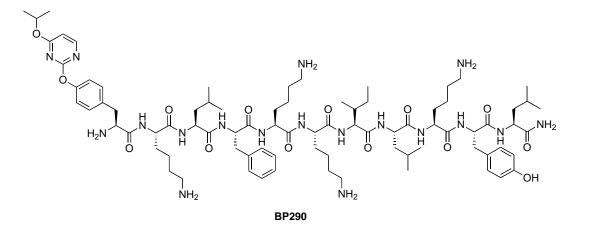
As described in section I.2.1.4, the optical purity of these compounds was verified by coupling the pyrimidinyl α -amino acids, obtained after saponification reaction of **I.19**, **I.20**, **I.32** or **I.39** with both racemic phenylalanyl resin **I.25a** and L-phenylalanyl resin **25b** in order to measure the degree of racemization by HPLC.

I.4.2.4.1. Saponification reaction of pyrimidinyl amino esters I.19, I.20, I.32 and I.39. General procedure.

LiOH monohydrate (2.5 equiv) was added to a solution of appropriate N^{α} -Boc-amino methyl esters **I.19, I.20, I.32** or **I.39** (1 equiv) in THF/MeOH/H₂O (1:2:2; 0.12M), and the reaction mixture was stirred at rt for 3-4 h. Upon completion of the reaction (TLC monitoring), the organic solvents were removed under reduced pressure. The pH of the resulting aqueous solution was then adjusted to 4 with glacial acetic acid, and the solution was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting N^{α} -Bocamino acids were used to couple with phenylalanyl resin **25a** and **25b** without further purification.

I.4.2.4.2. General protocol of solid-phase synthesis of dipeptides I.26

Dipeptides **I.26** were prepared manually by solid-phase method using Fmoc-Rink-MBHA resin (0.64 mmol/g) as solid support following standard Fmoc-strategy. Coupling of amino acids were mediated by HBTU (3 equiv) and DIEA (3 equiv) in DMF at rt for 3 h. The completion of the reactions was checked by the Kaiser test. Fmoc group was removed by treating the resin with 30% of piperidine in DMF (v/v) for 2 and 8 min. After each coupling and deprotection step, the resin was washed with DMF (6 x 1 min) and CH₂Cl₂ (3 x 1 min). The Fmoc-Rink-MBHA resin (10 mg) was placed into a plastic syringe fitted with a polypropylene frit and was swollen with CH₂Cl₂ (1 x 20 min) and DMF (1 x 20 min). Fmoc group was removed and subsequently couple with Fmoc-Phe-OH. After Fmoc group removal, resin was treated with the corresponding pyrimidinyl amino acid under coupling conditions. The resulting dipeptides were deprotected and cleaved from resin by treatment with TFA/CH₂Cl₂/TIS

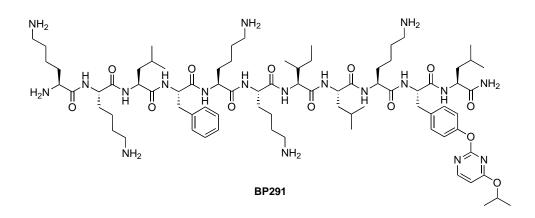

(95:2.5:2.5) for 2 h. The solvents were evaporated to dryness and the crude dipeptides were dissolved in H_2O , lyophilized and tested for purity on HPLC. Electrospray ionitzation mass spectrometry was used to confirm peptide identity.

I.4.2.5. Synthesis of peptides BP290-303

I.4.2.5.1. General protocol for the synthesis of BP290-303

All peptides **BP290-303** were synthesized manually by the solid-phase method using standard Fmoc chemistry. Fmoc-Rink-MBHA resin (200-400 mesh) with a 0.56 mmol/g functionalization was used as solid support. The Fmoc-Rink-MBHA resin (50 mg) was placed into a plastic syringe fitted with a polypropylene frit and was swollen with CH₂Cl₂ (1 x 20 min) and DMF (1 x 20 min). Fmoc group was removed by treating the resin twice with 30% of piperidine in DMF (v/v) for 2 and 8 min. Couplings of commercial Fmoc amino acids were carried out as follows: Fmoc-aa-OH (4 equiv) was dissolved in DMF and preactivated for 5 min with HBTU (3.8 equiv), HOBt (4 equiv) and DIEA (7.8 equiv). The mixture was added to the resin and shaken for 1 h at rt. Couplings of N^{α} -Fmoc pyrimidinyl amino acids **I.11** or **I.12** were performed using HBTU (3 equiv) and DIEA (3 equiv) in DMF under stirring for 3 h at rt. The completion of the reactions was checked by the Kaiser test. After each coupling and deprotection step, the resin was washed with DMF (6 x 1 min) and CH₂Cl₂ (3 x 2 min). The resulting peptides were cleaved from the resin with TFA/TIS/H₂O (95/5/5) under stirring for 2 h at rt. Following TFA evaporation and diethyl ether extraction, the crude peptides were dissolved in H₂O, lyophilized and tested for purity on HPLC. ESI-MS or MALDI-TOF mass spectrometry was used to confirm peptide identity.

I.4.2.5.1.1. H-Tyr(Py)-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH₂ (BP290)

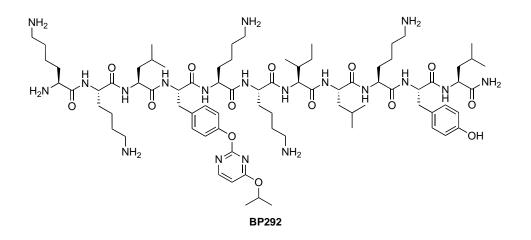

MW (g/mol): 1591.0218

Molecular formula: C₈₂H₁₃₀N₁₈O₄

HPLC (λ = 220 nm): t_R = 6.82 min (83%).

MS (MALDI-TOF) *m/z*: 1592.90 [M+H]⁺.

I.4.2.5.1.2. H-Lys-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Tyr(Py)-Leu-NH₂ (BP291)

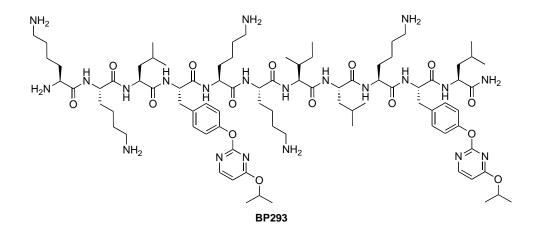

MW (g/mol): 1557.0208

Molecular formula: C₇₉H₁₃₈N₁₉O₁₃

HPLC (λ = 220 nm): t_R = 6.69 min (89%).

MS (MALDI-TOF) *m/z*: 1557.00 [M+H]⁺.

I.4.2.5.1.3. H-Lys-Lys-Leu-Tyr(Py)-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH₂ (BP292)

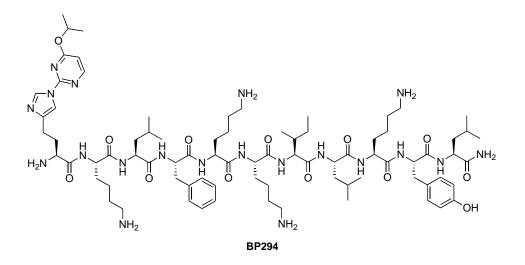

MW (g/mol): 1573.0202

Molecular formula: C₇₉H₁₃₃N₁₉O₁₄

HPLC (λ = 220 nm): t_R = 6.24 min (68%).

MS (MALDI-TOF) *m/z*: 1573.00 [M+H]⁺.

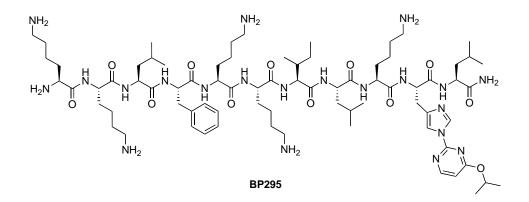
I.4.2.5.1.4. H-Lys-Lys-Leu-Tyr(Py)-Lys-Lys-Ile-Leu-Lys-Tyr(Py)-Leu-NH₂ (BP293)


MW (g/mol): 1709.1714

Molecular formula: C₆₈H₁₄₁N₂₁O₁₅

HPLC (λ = 220 nm): t_R = 6.81 min (70%).

MS (MALDI) *m/z*: 1709.00 [M+H]⁺.

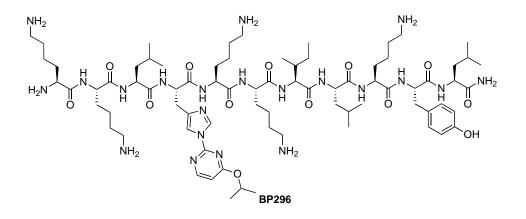

MW (g/mol): 1580.0144

Molecular formula: C₈₀H₁₃₀N₂₀O₁₃

HPLC (λ = 220 nm): t_R = 6.85 min (73%).

MS (MALDI-TOF) *m/z*: 1565.90 [M+H]⁺.

I.4.2.5.1.6. H-Lys-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-His(Py)-Leu-NH₂ (BP295)

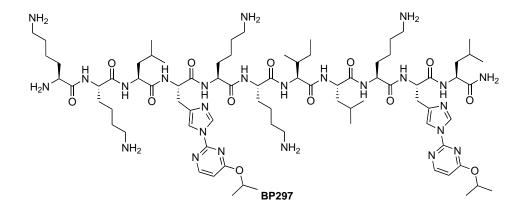

MW (g/mol): 1530.9868

Molecular formula: C₇₆H₁₃₁N₂₁O₁₂

HPLC (λ = 220 nm): t_R = 6.40 min (99%).

MS (MALDI-TOF) *m/z*: 1531.00 [M+H]⁺.

I.4.2.5.1.7. H-Lys-Lys-Leu-His(Py)-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH₂ (BP296)

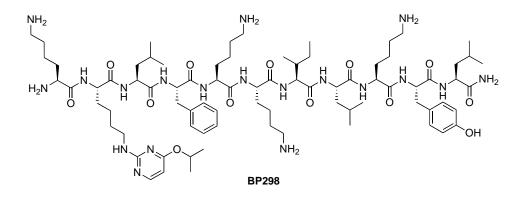

MW (g/mol): 1546.9862

Molecular formula: C₇₆H₁₃₁N₂₁O₁₃

HPLC (λ = 220 nm): t_R = 6.23 min (99%).

MS (MALDI-TOF) *m/z*: 1547.00 [M+H]⁺.

I.4.2.5.1.8. H-Lys-Lys-Leu-His(Py)-Lys-Lys-Ile-Leu-Lys-His(Py)-Leu-NH₂ (BP297)

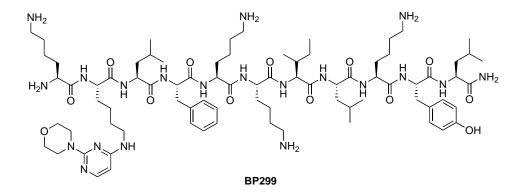

MW (g/mol): 1657.1034

Molecular formula: $C_{80}H_{137}N_{25}O_{13}$

HPLC (λ = 220 nm): t_R = 6.45 min (99%).

MS (MALDI-TOF) *m/z*: 1657.00 [M+H]⁺.

I.4.2.5.1.9. H-Lys-Lys(Py)-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Y-Leu-NH₂ (BP298)

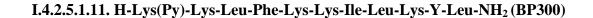

MW (g/mol): 1557.0208

Molecular formula: C₇₉H₁₃₃N₁₉O₁₃

HPLC (λ = 220 nm): t_R = 6.65 min (92%).

MS (MALDI-TOF) *m/z*: 1578.88 [M+Na]⁺, 1594.87 [M+K]⁺.

I.4.2.5.1.10. H-Lys-Lys(Mor)-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Y-Leu-NH₂ (BP299)

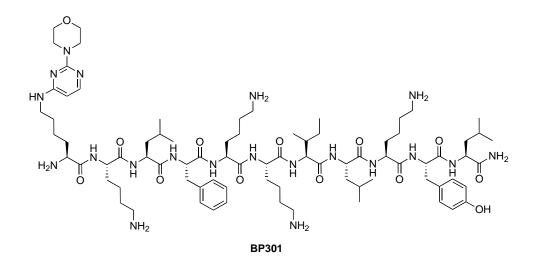


MW (g/mol): 1584.0461

Molecular formula: $C_{80}H_{134}N_{20}O_{13}$

HPLC (λ = 220 nm): t_R = 6.41 min (70%).

MS (MALDI-TOF) *m*/*z*: 1584.09 [M+H]⁺, 1606.06 [M+Na]⁺, 1623.05 [M+K]⁺.

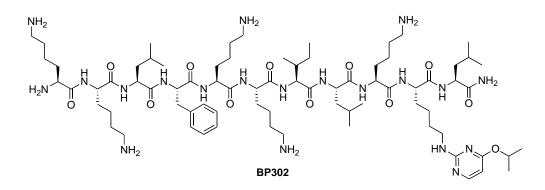

MW (g/mol): 1557.0208

Molecular formula: C₇₉H₁₃₃N₁₉O₁₃

HPLC (λ = 220 nm): t_R = 6.72 min (71%).

MS (MALDI-TOF) *m*/*z*: 1556.98 [M+H]⁺, 1578.99 [M+Na]⁺, 1594.98 [M+K]⁺.

I.4.2.5.1.12. H-Lys(Mor)-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Y-Leu-NH₂ (BP301)

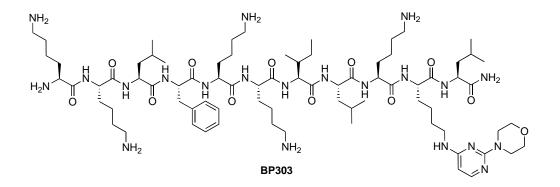

MW (g/mol): 1584.0461

Molecular formula: C₈₀H₁₃₄N₂₀O₁₃

HPLC (λ = 220 nm): t_R = 6.49 min (80%).

MS (MALDI-TOF) *m*/*z*: 1583.99 [M+H]⁺, 1606.00 [M+Na]⁺, 1621.99 [M+K]⁺.

I.4.2.5.1.13. H-Lys-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Lys(Py)-Leu-NH₂ (BP302)


MW (g/mol): 1521.0646

Molecular formula: C₇₆H₁₃₆N₂₀O₁₂

HPLC (λ = 220 nm): t_R = 6.46 min (67%).

MS (ESI+) *m/z*: 1523.20 [M+H]⁺, 761.6 [M+2H]²⁺.

I.4.2.5.1.14. H-Lys-Lys-Leu-His(Py)-Lys-Lys-Ile-Leu-Lys-Lys(Mor)-Leu-NH₂ (BP303)

MW (g/mol): 1549.0451

Molecular formula: C₇₇H₁₃₇N₂₁O₁₂

HPLC ($\lambda = 220 \text{ nm}$): $t_R = 6.27 \min (60\%)$.

MS (**ESI**+) *m/z*: 1549.20 [M+H]⁺, 775.5 [M+2H]²⁺.

CHAPTER II

Total synthesis of bioactive marine natural products and analogues thereof

II. MARINE NATURAL PRODUCT CHEMISTRY

In the last 50 years, there has been an increasing interest for marine natural products since tremendous chemical and biological diversity are found among metabolites from marine species. Since the identification of the first marine natural product, chemists have been fascinated by the immense structural diversity and complexity of the metabolites isolated from organisms ranging from marine plants and invertebrates to microbes. The wide-spectrum of metabolites isolated from these organisms,^{92,93} as well as the potent biological activities exhibited by many of these marine natural products,^{94,95} led to consider the ocean as a great source of potential drugs.

Marine natural products are usually small to medium molecular weight compounds that have stimulated remarkable interdisciplinary studies by both chemists and biologists. From marine toxins that impact public health concerns to the search for new drugs, the study of the biologically active marine natural products has profoundly influenced the course of discovery in fields ranging from organic chemistry to cancer medicine.

Natural products and synthetic chemistry have traditionally been strong allies. In this relationship, natural product chemists discover and present evidence for new natural products, which often possess an exotic array of carbon skeletons, heterocycles, and functionalities. For their part, synthetic chemists use these novel structures as platforms to develop new and efficient syntheses, which allow to confirm or revise the assigned structures. This alliance is all the more significant when the target natural product is in limited supply, has exciting and potentially very valuable properties, and/or when the structure assignment is incomplete or in doubt. The wealth of structurally diverse marine metabolites continues to provide synthetic chemists with an endless supply of inspiring structures.

⁹² Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. *Nat. Prod. Rep.* **2010**, *27*, 165-237.

⁹³ Faulkner, D. J. Nat. Prod. Rep. **2000**, 17, 1-6.

⁹⁴ (a) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2004, 67, 1216-1238. (b) Molinski, T. F.; Dalisay, S. L.; Lievens, S. L.; Saludes, J. P. Nat. Rev. Drug Discovery 2009, 8, 69-85. (c) Mayer, A. M. S.; Glaser, K. B.; Cuevas, C.; Jacobs, R. S.; Kem, W.; Little, R. D.; McInstosh, J. M.; Newman, D. J.; Potts, B. C.; Shuster, D. E. Trends Pharmacol. Sci. 2010, 31, 255-265.

⁹⁵ Bhakuni, D. S.; Dawar, D. S. *Bioactive marine natural products* New York, Springer, 2005.

As mentionned previously, one of the fundamental goals of this thesis was the synthesis of biologically active compounds bearing a peptidic moiety. In this context, Chapter I focuses on the rational preparation of modified antimicrobial peptides incorporating synthetic pyrimidinyl α -amino acids. The next Chapter, on the other hand, concerns the total synthesis of two biologically active marine natural products bearing a macrocyclic lactone moiety. The first part of Chapter II will thus illustrate our efforts toward the first total synthesis of acremolide B, a natural 12-membered cyclic depsipeptide whose structure was unconfirmed, while the second part of Chapter II will focus on the development of the first efficient synthetic strategy toward lyngbouilloside, a 14-membered macrolide that attracted our attention due to its promising biological profile as well as its appealing structural features (Figure II.1). Finally, the last Chapter of this thesis will focus on our endeavour toward the expedient synthesis of the dual-specificity phosphatase inhibitor bitungolide F (Figure II.1).

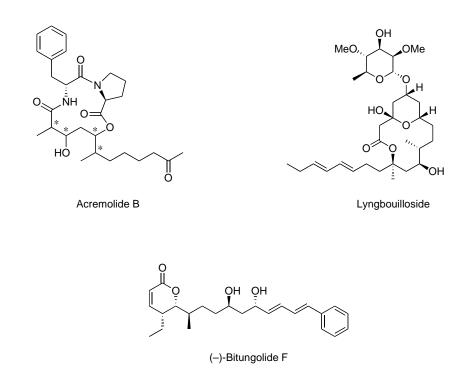


Figure II.1. Structure of acremolide B, lyngbouilloside and (-)-bitungolide F

PART 1

Total synthesis of a stereoisomer of Acremolide B

II.1.1. INTRODUCTION

II.1.1.1 ISOLATION, STRUCTURE AND BIOLOGICAL PROPERTIES OF ACREMOLIDES A-D

II.1.1.1.1 Isolation

In 2008, Capon *et al.* reported the isolation of a family of novel lipodepsipeptides named acremolides A–D from an Australian estuarine isolate of an *Acremonium* sp. (MST-MF588a) obtained from a sediment sample collected in the Huon River, near Franklin, Tasmania (Figure II.2).⁹⁶

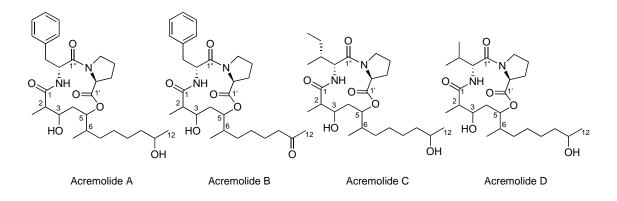


Figure II.2. Structures of acremolides A–D

⁹⁶ Ratnayake, R.; Fremlin, L. J.; Lacey, E.; Gill, J. H.; Capon, R. J. J. Nat. Prod. 2008, 71, 403-408.

Subsequent fractionation studies on the same *Acremonium* extract also identified the known mycotoxins 19-*O*-acetylchaetoglobosin B and D,⁹⁷ together with the known small-molecule aromatic compound RKB 3564S (Figure II.3).⁹⁸

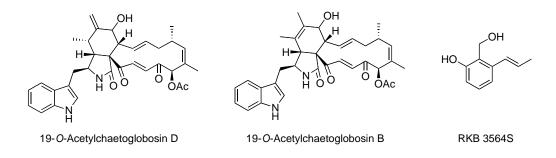


Figure II.3. Structures of compounds isolated from Acremonium sp.

II.1.1.1.2. Structural assignment for acremolide B

In the initial report by Capon *et al.*, the gross structure of the various acremolides was determined through a combination of chemical degradation, NMR spectroscopic methods and HRMS analysis. Although the structures of acremolides A–D were proposed to display a 12-membered-ring lactam constituted of a C1-C12 polypropionate unit linked to a dipeptide, the three-dimensional structure of the acremolides still remains undetermined.

While preliminary analysis of the ¹H NMR (d_6 -DMSO) data of acremolide A revealed resonance doubling (ratio 2:1) that coalesced at elevated temperature thus suggesting the presence of equilibrating isomers, the HRMS revealed a pseudomolecular ion [M + Na] corresponding to a molecular formula C₂₈H₄₂O₆N₂ requiring nine double bond equivalents. Careful analysis of the NMR data allowed tabulation of the resonances attributable to both major and minor isomers and indicated the presence of phenylalanine and proline residues. The amino acid content in acremolide A was eventually confirmed by hydrolysis and C3 Marfey's analysis⁹⁹ as

⁹⁷ Probst, A.; Tamm, C. Helv. Chim. Acta 1981, 64, 2056-2064.

⁹⁸ Osada, H.; Kakeya, H.; Konno, H.; Kanazawa, S. Japanese Patent 051804, **2003**.

⁹⁹ Marfey's analysis relies on the hydrolysis of a peptide- or amino acid-containing substance followed by *in situ* conversion of the resulting amino acids using a chiral derivatizing agent such as 1-fluoro-2,4dinitrophenyl-5-L-alanine amide (L-FDDA) to form the corresponding 2,4-dinitrophenyl-5-L-alanine amide (DNP) derivatives. The C18 HPLC retention times of the resulting DNP derivatives monitored by UV at 340 nm are then compared to DNP derivatives obtained from authentic amino acid standards allowing a diagnostic for both a given amino acid and a given stereochemistry, see: Fujii, K.; Ikai, Y.; Oka, H.; Suzuki, M.; Harada, K. A. *Anal. Chem.* **1997**, *69*, 5146-5151.

L-Pro and D-Phe, while a key Heteronuclear Multiple Bond Correlation (HMBC) between these residues confirmed the amide linkage.¹⁰⁰

A set of COSY and HMBC correlations together with ¹³C NMR data identified the remaining structural fragment as a substituted fatty acid attached to D-Phe *via* an amide bond. In addition, these experiments allowed the identification and the positioning of C2- and C6-Me, and the C3- and C5-oxy substituents. In addition, the deshielded nature of the ¹³C NMR chemical shift of C11 combined with the COSY correlation from an exchangeable OH resonance to H11 confirmed the presence of a hydroxyl group.

Unfortunately, while a pyridinium chlorochromate (PCC)-mediated oxidation of acremolide A afforded the corresponding diketone **II.1**, whose NMR data reasserted the assigned structure (Figure II.4), Mosher's analysis¹⁰¹ proved impossible as neither if the hydroxyl moieties reacted with (*S*)-Mosher's reagent, returning unreacted starting material. In this context, neither the relative nor the absolute stereochemistry about the fatty acid substructure of acremolide A remains unassigned.

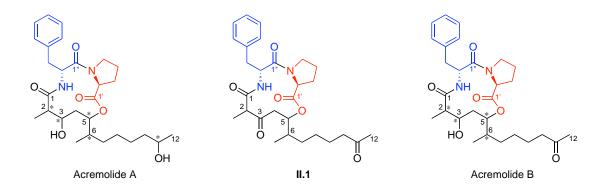


Figure II.4. Proposed structure of acremolide A, II.1 and acremolide B

Acremolide B, on the other hand, was initially suggested to be a didehydro analogue of acremolide A. Indeed, analytical scale acid hydrolysis followed by C3 Marfey's analysis⁹⁹ confirmed the presence of D-Phe and L-Pro residues, while the NMR data were almost identical, revealing a 2:1 ratio of major *cis* versus minor *trans* rotamers. As might be expected, the major rotamer in acremolide B matched that found in

¹⁰⁰ Amides attached through proline nitrogen are known to be capable of existing as equilibrating rotamers, with literature empirical rules establishing that ¹³C NMR chemical shift differences between proline β and γ carbon resonances are characteristic of *cis* ($\Delta\beta\gamma \sim 8-12$ ppm) vs *trans* ($\Delta\beta\gamma \sim 2-6$ ppm) prolinyl amide rotamers, respectively. See: Siemion, I. Z.; Wieland, T.; Pook, K. H. *Angew. Chem. Int. Ed. Engl.* **1975**, *14*, 702-703.

¹⁰¹ (a) Dale, J. A.; Dull, D. H.; Mosher, H. S. *J. Org. Chem.* **1969**, *34*, 2543-2549. (b) Dale, J. A.; Dull, D. H.; Mosher, H. S. *J. Am. Chem Soc.* **1973**, *95*, 512-519.

acremolide A. More detailed analysis of these NMR data confirmed the presence of a ketone at C11, which justified the notable differences compared to acremolide A.

II.1.1.3. Biological properties of the acremolides A–D

The methanol extract from a solid phase culture of the fungus *Acremonium* sp. displayed significant cytotoxic activity against NS-1 cells. Subsequent bioassay and fractionation studies afforded 19-*O*-acetylchaetoglobosin B (LD₉₉ 1.6 μ g/mL) and 19-*O*-acetylchaetoglobosin D (LD₉₉ 0.8 μ g/mL), together with the co-metabolite RKB 3564S^{98,102} and acremolides A-D all of which exhibited no cytotoxicity. Considering the estimated yields of the chaetoglobosins in the crude EtOAc extract (0.16 and 0.17%, respectively) and the modest cytotoxicity potency displayed by the chaetoglobosins compared to the overall cytotoxicity of the crude *Acremonium* extract, the authors suspected a possible synergistic effect. The acremolides were therefore tested in combination with each of the chaetoglobosins in order to establish if the former could synergize the cytotoxic properties of the latter against NS-1 cells and thereby account for the anomalous cytotoxicity of the crude *Acremonium* extract. Unfortunately, this study did not reveal any significant synergistic effect.

In addition, the acremolides displayed no antibacterial against (*Bacillus subtilis*) and antifungal against (*Candida albicans*) properties while sharing a similar structural scaffold with the known histone deacetylase (HDAC) inhibitors such as FR235222, apicidin A, and trapoxin (Figure II.5).

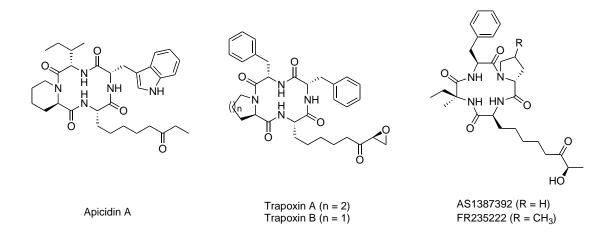


Figure II.5. Structures of apicidin A, trapoxins A and B, AS1387392 and FR235222

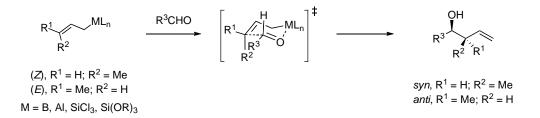
¹⁰² Osada, H.; Kakeya, H.; Hayashi, Y.; Shoji, M.; Uchida, S. P. Japanese Patent 101483, 2004.

Therefore, it remains unclear whether the acremolides' structural diversity or the associated prolinyl amide bond conformer bias adjusts the potency and/or the selectivity of the acremolides' biological/ecological response, particularly given that the ecological role of these molecules remains unknown.

II.1.1.2. STEREOSELECTIVE METHODS FOR POLYPROPIONATE SYNTHESIS

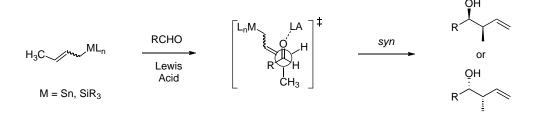
As mentioned above, the acremolides are a family of lipodepsipeptides bearing a polypropionate framework. This key structural feature, which is characterized by a sequence of methyl- and hydroxyl-bearing stereogenic centers, is present in a wide variety of biologically active natural products, and constitutes therefore a challenge for synthetic organic chemists. This has resulted in the development of a number of particularly useful allylation and crotylation methods, which will be presented hereafter.¹⁰³

II.1.1.2.1. Asymmetric allylation and crotylation of aldehydes

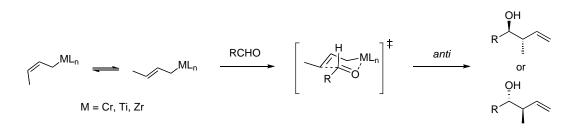

The asymmetric allylation and crotylation of aldehydes have been extensively studied during the past two decades resulting in particularly predictable and efficient methods for the stereocontrolled synthesis of polypropionates. These methods, which involve the addition of an allylmetal usually derived from boron, tin, indium, titanium or silicon,¹⁰⁴ are of three types depending on their mechanism.

- Type I reagents, which mainly involve boranes, aluminum-derived reagents, and either trihalo- or trialkoxysilanes, proceed *via* a rigid chair-like transition state through the coordination of the carbonyl to the metal atom. Consequently, the Z/E ratio of the starting alkene dictates the *syn/anti* diastereoselectivity of the product while the enantioselectivity induced by the chiral auxilliary can be explained by a Zimmerman-Traxler model (Scheme II.1).¹⁰⁵

¹⁰³ Li, J.; Menche, D. Synthesis **2009**, 2293-2315.


¹⁰⁴ Yamamoto, Y.; Asao, N. *Chem. Rev.* **1993**, *93*, 2207-2293.

 ¹⁰⁵ (a) Li, Y.; Houk, K. N. J. Am. Chem. Soc. 1989, 111, 1236-1240. (b) Vulpetti, A.; Gardner, M.; Gennari, C.; Bernardi, A.; Goodman, J. M.; Paterson, I. J. Org. Chem. 1993, 58, 1711-1718. (c) Gennari, C.; Fioravanzo, E.; Bernardi, A.; Vulpetti, A. Tetrahedron 1994, 50, 8815-8826. (d) Omoto, K.;


Scheme II.1. Mechanism of Type I allyl/crotylmetals onto aldehyde

- Type II reagents, exemplified by trialkylsilanes and stannanes, require the activation of the carbonyl substrate with an external Lewis acid and proceed usually *via* an open transition state. The product is predominantely *syn* independently of the geometry of the starting alkene (Scheme II.2).¹⁰⁶

Scheme II.2. Mechanism of Type II allyl/crotylmetals onto aldehyde

- Type III reagents, which include chromium-, titanium- and zirconium-derived reagents, also proceed through a cyclic six-membered transition state as Type I reagents, however, they undergo metallotropic rearrangement faster than they actually react with the aldehyde. Thus, the diastereoselectivity does not depend on the geometry of the double bond and the product is exclusively *anti* (Scheme II.3).

Scheme II.3. Mechanism of Type III allyl/crotylmetals onto aldehyde

Fujimoto, H. J. Org. Chem. 1998, 63, 8331-8336. (e) Gajewski, J. J.; Bocian, W.; Brichford, N. L.; Henderson, J. L. J. Org. Chem. 2002, 67, 4236-4240.

¹⁰⁶ (a) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. **2001**, 123, 9488-9489. (b) Denmark, S. E.; Fu, J. Chem. Commun. **2003**, 167-170.

It is worth pointing out that a number of catalytic processes have also been developed for the allylation and crotylation of aldehydes,¹⁰⁷ however, they are not as general in terms of efficacy yet and will therefore not be presented here.

II.1.1.2.1.a. Boron allylation/crotylation of aldehydes

Pioneering work by Brown¹⁰⁸ and Roush¹⁰⁹ on the asymmetric allylation and crotylation of aldehydes has led to the development of particularly efficient chiral borane reagents, which are commonly used today. However, it is worth noting that others groups have also reported boron-mediated allyl- and crotylations such as Hoffmann,¹¹⁰ Masamune,¹¹¹ Corey,¹¹² Soderquist¹¹³ and Hall¹¹⁴ (Figure II.6).

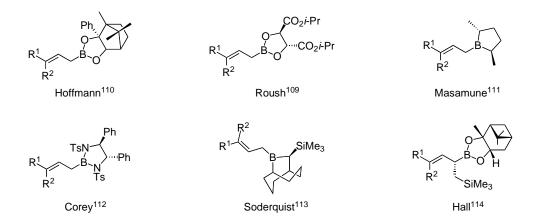


Figure II.6. Chiral boron reagents for asymmetric allyl/crotylations

Despite certain disadvantages such as being non catalytic and non storable, the allyland the crotyldiisopinocampheylboranes developed by Brown *et al.* are probably the

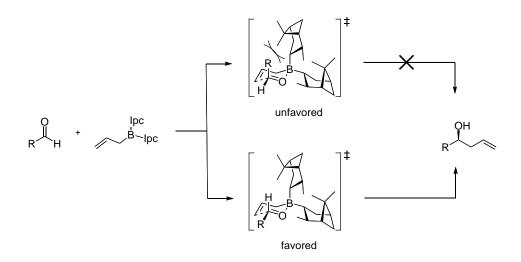
¹⁰⁷ (a) Masse, C. E.; Panek, J. C. *Chem. Rev.* **1995**, *95*, 1293-1316. (b) *Comprehensive Asymmetric Catalysis;* Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, **1999**, 965-982. (c) *Principles and Applications of Asymmetric Synthesis;* Lin, G.-Q.; Li, Y.-M.; Chan, A. S. C., Eds.; John Wiley & Sons: New York, **2001**, 167-178. (d) Denmark, S. E.; Fu, J. *Chem. Rev.* **2003**, *103*, 2763-2794. For a review on Lewis and Brønsted acid catalyzed allylborations of carbonyl compounds, see: Hall, D. G. Synlett **2007**, 1644-1655.

¹⁰⁸ (a) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. **1986**, 108, 293-294. (b) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. **1986**, 108, 5919-5923.

¹⁰⁹ (a) Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc. **1990**, *112*, 6339-6348. (b) Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem. Soc. **1990**, *112*, 6348-6359. (c) Scheidt, K. A.; Tasaka, A.; Bannister, T. D.; Wendt, M. D.; Roush, W. R. Angew. Chem. Int. Ed. **1999**, *38*, 1652-1655.

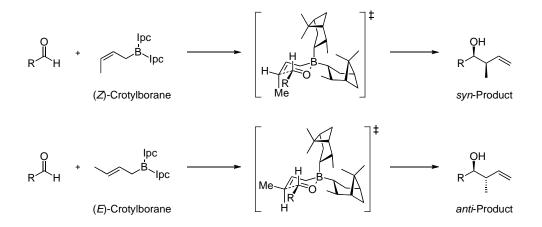
¹¹⁰ Herold, T.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1978, 17, 768-769.

¹¹¹ Garcia, J.; Kim, B.; Masamune, S. J. Org. Chem. **1987**, 52, 4831-4832.


¹¹² Corey, E. J.; Yu, C.-M.; Kim, S. S. J. Am. Chem. Soc. 1989, 111, 5495-5496.

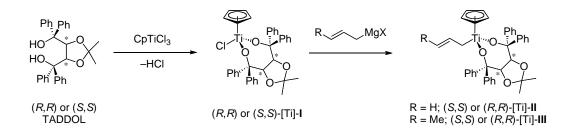
¹¹³ Burgos, C. H.; Canales, E.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2005, 127, 8044-8049.

¹¹⁴ Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2007, 129, 3070-3071.


most commonly used among all the chiral boron reagents developed so far, due to their demonstrated good performance and to the commercial availability of the chiral auxiliary. In contrast, although Roush's chiral boranes are derived from tartrate analogues which are commercially available, much more stable and therefore easier to handle, they usually exhibit slightly lower face selectivity.

The high stereoselectivity induced by the diisopinocampheyl-derived boranes can be explained by a closed chair-like transition state where the boron is coordinated to the carbonyl oxygen. The aldehyde is oriented in such a manner that the R group is placed in a *pseudo*-equatorial position in order to minimize steric interactions between the chiral auxiliary and the allyl unit (Scheme II.4).

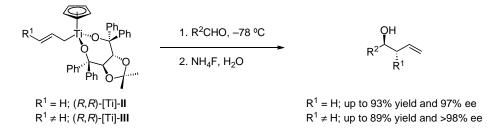
Scheme II.4. Brown's allylboration of aldehydes


The crotyl variant behaves the same way except for the fact that two contiguous stereogenic centers are formed. While the absolute stereochemistry is controlled by the chiral auxiliary, the relative stereochemistry between the alcohol and the methyl is induced by the geometry of the alkene. Thus, the reaction of (*E*)- or (*Z*)-crotylboronates with aldehydes results in the formation of the *anti*- or *syn*- β -methyl homoallylic alcohols, respectively (Scheme II.5).

Scheme II.5. Brown's crotylboration of aldehydes

II.1.1.2.1.b. Allyl-/crotyltitanation of aldehydes

Duthaler et al.¹¹⁵ introduced chiral titanium complexes elaborated from readily available nontoxic materials. Most importantly, the chiral ligand which is derived from tartaric acid, TADDOL,¹¹⁶ is available in both enantiomeric forms. Unlike the boron reagents, these titanium complexes can be prepared by transmetalation with a variety of allyl- or crotyl-Grignard reagents and their isolation or purification is not necessary, rendering their manipulation easier (Scheme II.6).



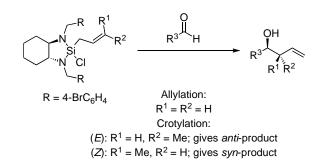
Scheme II.6. Preparation of the allyl- or crotyltitanium reagents

These allyl- and crotyltitanium reagents react with both aromatic and aliphatic aldehydes with a high degree of facial discrimination to afford the corresponding homoallylic alcohols in an enantio- and diastereoselective fashion regardless of the aldehyde. As a general trend, the (R,R)-[Ti]-II complex attacks preferentially the Si face of the aldehyde whereas the (S,S)-[Ti]-II complex attacks the opposite Re face, thus

¹¹⁵ (a) Duthaler, R. O.; Hafner, A.; Riediker, M. Pure Appl. Chem. 1990, 62, 631-642. (b) Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, J.; Rothe-Streit, P.; Schwarzenbach, F. J. J. Am. Chem. Soc. 1992, 114, 2321-2336. (c) Duthaler, R. O.; Hafner, A. *Chem. Rev.* **1992**, *92*, 807-832. ¹¹⁶ Seebach, D.; Beck, A. K.; Heckel, A. *Angew. Chem., Int. Ed.* **2001**, *20*, 92-138.

providing the (*S*)- and the (*R*)- homoallylic alcohols, respectively. In the case of the crotylation, the major product is exclusively the *anti*-diastereoisomer since the *E*-crotyl titanium species is favoured due to a rapid 1,3-migration of the titanium to the unsubstituted terminus of the crotyl group (Scheme II.7). Finally, the addition of a chiral titanium reagent to an aldehyde bearing an α -or a β -stereogenic center remains highly diastereoselective independently of its configuration, while the presence of a free hydroxyl group or a free amine does not affect either the reactivity of the reagent nor its selectivity which is a clear bonus in front of all the other allyl- and crotylmetal reagents.¹¹⁷

Scheme II.7. Allyl-/crotyltitanation of aldehydes


II.1.1.2.1.c. Silicon allylation/crotylation of aldehydes

In 2002, Leighton *et al.* developed a new method for the asymmetric allyl- and crotylation of carbonyl compounds featuring a highly reactive species derived from silicon.¹¹⁸ These cristalline solid silacycles consisting of an allyl- or a crotylsilane and a chiral 1,2-diamine, are storable and may be prepared in bulk amounts, though their synthesis requires a few steps. A thorough survey of the performance of these reagents that act as chiral silicon-based Lewis acids was carried on a variety of aromatic, aliphatic and α , β -unsaturated aldehydes. In every single case, high levels of selectivity were observed and the chiral diamine could be recovered (Scheme II.8).¹¹⁹

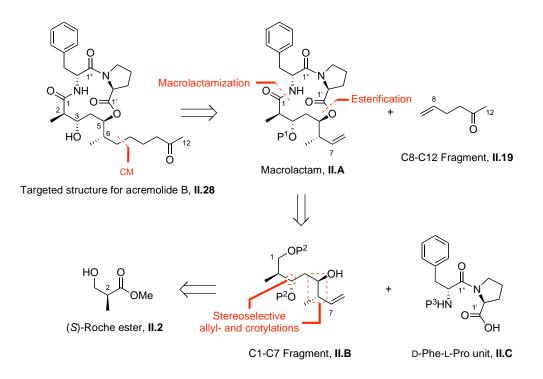
¹¹⁷ (a) BouzBouz, S.; Popkin, M. E.; Cossy, J. *Org. Lett.* **2000**, *2*, 3449-3451. (b) BouzBouz, S.; Cossy, J. *Org. Lett.* **2001**, *3*, 3995-3998.

¹¹⁸ Review: Leighton, J. L. Aldrichimica Acta **2010**, *31*, 3-12.

¹¹⁹ Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X., Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920-7921.

Scheme II.8. Reactivity of Leighton's silicon reagents

In the course of this thesis, the construction of the polypropionate subunits in both acremolide B and lyngbouilloside were secured using the chiral titanium complexes developed by Duthaler *et al.* Hence, asymmetric allylations and *anti*-crotylations were performed using reagents such as [Ti]-**II** and [Ti]-**III**, respectively.

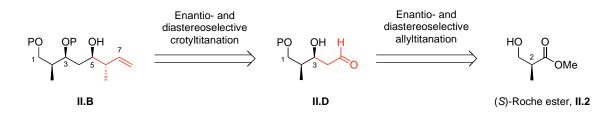

II.1.2. RESULTS & DISCUSSION

II.1.2.1. TOTAL SYNTHESIS OF A STEREOISOMER OF ACREMOLIDE B

Due to the biological potential of acremolides and with the goal to finally ascertain both their relative and absolute stereochemistry, we felt that it would be particularly interesting to develop a concise and flexible synthesis that would allow a straightforward access to these natural products and to various analogues thereof. After close examination of the NMR data, it was decided to first undertake the synthesis of the (2R,3S,5R,6S)-isomer of acremolide B.

II.1.2.1.1. Initial retrosynthetic analysis

The synthesis of acremolide B, which had been originally started by Aya Fukuda in the group prior to my arrival, featured a key cross-metathesis (CM) to introduce the fatty-acid side chain, an esterification to link the dipeptide unit to the C1-C9 polypropionate fragment, a macrolactamization to build the 12-membered ring, and two stereoselective allylations/crotylations to control the three stereogenic centers at C3, C5, and C6. Overall, these disconnections would enable a high level of versatility through the entire synthesis (Scheme II.9).



Scheme II.9. Initial retrosynthetic analysis

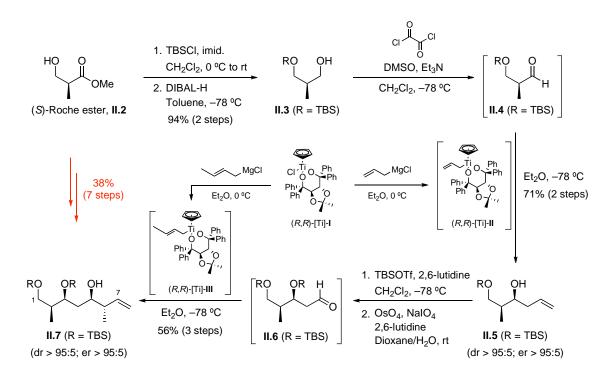
II.1.2.1.2. Synthesis of the C1-C7 fragment

II.1.2.1.2.a. Retrosynthetic analysis of the C1-C7 fragment

The synthesis of the C1-C7 fragment **II.B** featured two highly enantio- and diastereoselective titanium-mediated allylations and crotylations as the key steps in order to set the stereogenic centers with the 3*S*, 5*S* and 6*S* configurations. **II.B** could be synthesized from aldehyde **II.D** which would be obtained by transformation of the Roche ester, **II.2** (Scheme II.10).

Scheme II.10. Retrosynthetic analysis of the C1-C7 fragment

II.1.2.1.2.b. Synthesis of the C1-C7 fragment


The synthesis of the C1-C7 subunit commenced by protecting the (*S*)-Roche ester **II.2** as a *tert*-butyldimethylsilyl (TBS) ether (TBSCl, CH₂Cl₂, 0 °C to rt) followed by a DIBAL-H-mediated reduction of the ester moiety (toluene, -78 °C) to the corresponding alcohol **II.3** in 94% yield over two steps. The latter was then oxidized to aldehyde **II.4** under standard Swern¹²⁰ conditions [(COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C] and subsequently treated with the *in situ* generated (*R*,*R*)-TADDOL-derived allyltitanium complex,¹¹⁵ (*R*,*R*)-[Ti]-**II**, thus setting the (3*S*) stereogenic center. Under this set of conditions, alcohol **II.5** was isolated as a single stereoisomer (dr > 95:5; er > 95:5) in 71% yield overall yield (Scheme II.11). The diastereomeric ratio was determined by ¹H NMR analysis of the crude reaction mixture, while the absolute configuration of the C3 stereogenic centre was secured as (3*S*) by comparing the optical rotation of the newly synthesized compound with the one reported in the literature {[α]²⁵_D-5.5 (*c* 1.08, CHCl₃); lit.¹²¹ [α]²²_D-6.4 (*c* 0.33, CHCl₃)}.

The homoallylic alcohol **II.5** was then protected as a TBS ether (TBSOTf, 2,6-lutidine, CH_2Cl_2 , -78 °C) and engaged in an OsO₄-catalyzed oxidative cleavage¹²² in the presence of NaIO₄ and 2,6-lutidine in a 3:1 dioxane/H₂O mixture. The resulting aldehyde **II.6** was then directly treated with the (*R*,*R*)-TADDOL-derived crotyltitanium complex, (*R*,*R*)-[Ti]-**III**, in order to afford the desired homoallylic alcohol **II.7** (56% yield over three steps) and thus complete the synthesis of the C1-C7 fragment of acremolide B (Scheme II.11).

¹²⁰ Omura, K.; Swern, D. *Tetrahedron* **1978**, *34*, 1651-1660.

¹²¹ Roush, W. R.; Hoong, L. K.; Palmer, M. A.; Straub, J. A.; Palkowitz, A. D. J. Org. Chem. **1990**, 55, 4117-4126.

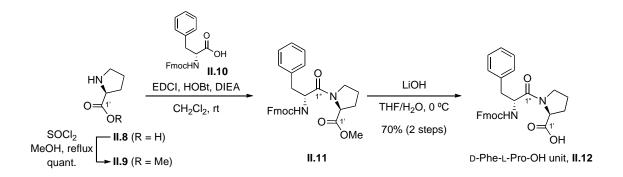
¹²² Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. **2004**, *6*, 3217-3219.

Scheme II.11. Synthesis of the C1-C7 fragment

A rational for the observed stereoselectivities is attributed to the fact that (R,R)-[Ti]-II and (R,R)-[Ti]-III react predominantly on the *Si*-face of aldehydes II.4 and II.6, respectively. As noted previously, these allyl- and crotyltitanium species are well known to afford a very high degree of stereo-facial discrimination on both chiral and achiral aldehydes.^{115,117}

II.1.2.1.3. Synthesis of macrolactam II.A

II.1.2.1.3.a. Retrosynthetic analysis


The devised route to macrolactam **II.A** featured an esterification between the C1-C7 fragment **II.B** and the dipeptide D-Phe-L-Pro-OH unit **II.C**, and a macrolactamization as the two key steps (Scheme II.9).

II.1.2.1.3.b. Synthesis of the dipeptide D-Phe-L-Pro-OH unit

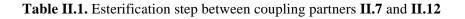
The dipeptide Fmoc-D-Phe-L-Pro-OH unit **II.12** was prepared in three steps and 70% overall yield following a reported procedure¹²³ (Scheme II.12). The latter involved the

¹²³ Stüber, W.; Kosina, H.; Heimburger, N. Int. J. Pept. Protein Res. 1988, 31, 63-70.

conversion of proline **II.8** to the corresponding methyl ester (SOCl₂, MeOH, reflux) followed by a peptide coupling with Fmoc-D-Phe-OH **II.10** (EDCI, HOBt, DIEA, CH₂Cl₂, rt), and a selective saponification of the methyl ester moiety (LiOH, THF/H₂O, 0 °C).

Scheme II.12. Synthesis of dipeptide unit II.12

II.1.2.1.3.c. Synthesis of macrolactam II.19

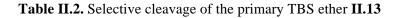

II.1.2.1.3.c.1. Esterification step

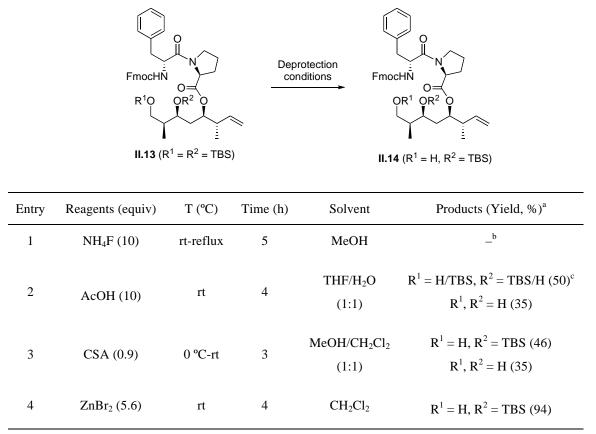
With the two partners II.7 and II.12 in hand, the stage was set for the key esterification. Interestingly, while our first attempt using the Steglich conditions¹²⁴ with *N*,*N*'-dicyclohexylcarbodiimide (DCC) and a catalytic amount of 4-dimethylaminopyridine (DMAP) at -20 °C led to the complete recovery of the starting material **II.7** (Table II.1, entry 1), increasing the temperature allowed to isolate the desired product II.13 in 20% yield (Table II.1, entry 2). The reaction using a phosphonium-mediated esterification (BOP, HOBt, DIEA, CH₂Cl₂, rt), largely used in Solid Phase Peptide Synthesis (SPPS), gave a mixture of products which identification remained difficult (Table II.1, entry 3). On the other hand, whereas no reaction took place when combining 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCI) and HOBt in the presence of DIEA (Table II.1, entry 4), the use of DMAP instead of HOBt afforded a moderate 45% yield (Table II.1, entry 5). Finally, the use of the Yamaguchi esterification conditions¹²⁵ (2,4,6-trichlorobenzoyl chloride, DMAP, DIEA, toluene, rt)

¹²⁴ Neises, B.; Steglich, W. Angew. Chem. Int. Ed., 1978, 17, 522-524.

¹²⁵ (a) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989-1993. (b) Kawanami, Y.; Dainobu, Y.; Inanaga, J.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1981, 54, 943-944.

afforded the best results, as the desired ester **II.13** was isolated in 85% yield (Table II.1, entry 6).

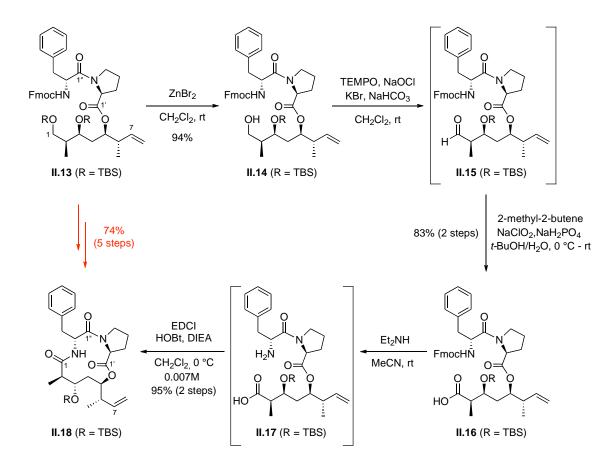

RO	OR OH	FmocHN O HI.12 OH		FmocHN RO II.13 (R = T	
Entry	Reagents (equiv)	T (°C)	Time (h)	Solvent	Yield (%) ^a
1	II.7 (3.0) DCC (3.0) + DMAP (0.6)	-20	24	CH ₂ Cl ₂	_b
2	II.7 (3.0) DCC (3.0) + DMAP (0.6)	rt	24	CH ₂ Cl ₂	20 ^b
3	II.7 (1.5) BOP (1.5) + HOBt (1.5) DIEA (3.5)	rt	16	DMF/CH ₂ Cl ₂ (5:1)	_c
4	II.7 (1.5) EDCI (1.5) + HOBt (1.5) DIEA (3.5)	rt	40	CH ₂ Cl ₂	_b
5	II.7 (1.5) EDCI (1.5)+DMAP (0.15)	rt	40	CH ₂ Cl ₂	45 ^b
6	II.7 (1.5) 2,4,6-Cl ₃ PhCOCl (3.0) DMAP (2.0)+DIEA (3.7)	rt	5	Toluene	85


^a Isolated yield. ^b Starting material II.7 was recovered. ^c Mixture of unidentified by-products.

II.1.2.1.3.c.2. Synthesis of macrolactam II.19

The synthesis of macrolactam **II.19** began with the selective cleavage of the primary TBS ether. Interestingly however, while treatment with excess ammonium fluoride in

refluxing methanol¹²⁶ left the starting material **II.13** unreacted (Table II.2, entry 1), the use of a large excess of acetic acid in a THF/H₂O mixture led to a mixture of monodeprotected and fully deprotected substrates in 50% and 35% yield, respectively (Table II.2, entry 2). After a detailed analysis of the former, ¹H NMR revealed the existence of two constitutional isomers resulting from an intramolecular silyl migration.¹²⁷ Our next attempt using camphorsulfonic acid (CSA) in a MeOH/CH₂Cl₂ mixture afforded the targeted product **II.14** in 46% yield along with a significant amount of the fully deprotected product (Table II.2, entry 3). Finally, treatment of **II.13** with ZnBr₂ (CH₂Cl₂, rt)¹²⁸ allowed the isolation of the required primary alcohol **II.14** in 94% yield (Table II.2, entry 4).

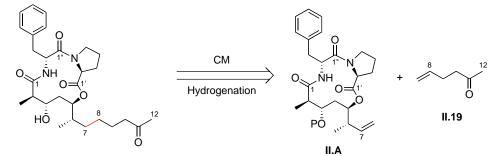

^a Isolated yield. ^b Starting material II.13 was recovered. ^c Unseparable mixture.

¹²⁶ Zhang, W.; Robbins, M. J. Tetrahedron Lett. 1992, 33, 1177-1180.

¹²⁷ Wuts, P. G. M.; Bigelow, S. S. J. Org. Chem. **1988**, 53, 5023-5034.

¹²⁸ Crouch, R. D.; Polizzi, J. M.; Cleiman, R. A.; Yi, J.; Romany, C. A. *Tetrahedron Lett.* **2002**, *43*, 7151-7153.

The resulting alcohol **II.14** was subsequently oxidized, first to aldehyde **II.15** using TEMPO and NaOCl as standard Swern conditions [(COCl)₂, DMSO, Et₃N, CH₂Cl₂, $-78 \,^{\circ}$ C] failed dramatically. Then, the aldehyde was oxidized to the corresponding carboxylic acid **II.16** using 2-methyl-2-butene, NaClO₂, NaH₂PO₄, in a *t*-BuOH/H₂O mixture (83% yield over two steps).¹²⁹ The Fmoc protecting group was removed (Et₂NH, MeCN) to provide amino acid **II.17**, which was directly engaged in the key macrolactamization using standard peptide coupling conditions under higher dilution (*c* = 0.007M) in order to favour the intramolecular amide bond formation (EDCI, HOBt, DIEA, CH₂Cl₂, 0 °C). Under these conditions, the desired 12-membered ring macrolactam **II.18** was obtained in 95% yield (Scheme II.13).


Scheme II.13. Synthesis of macrolactam II.18

¹²⁹ Kurosawa, K.; Matsuura, K.; Nagase, T.; Chida, N. Bull. Chem. Soc. Jpn. 2006, 6, 921-937.

II.1.2.1.4. Attempted synthesis of acremolide B

II.1.2.1.4.a. Retrosynthetic analysis of acremolide B

In order to introduce the side chain and complete the synthesis of acremolide B, a three-step sequence involving a CM with commercially available 5-hexen-2-one II.29, a hydrogenation of the newly formed C7-C8 double bond, and a final cleavage of the protecting group was envisioned (Scheme II.14).

Acremolide B or one stereoisomer, II.28

Scheme II.14. Retrosynthetic analysis of acremolide B, II.28

II.1.2.1.4.b. Attempted coupling of the C1-C7 and C8-C12 subunits by olefin cross-metathesis

The two coupling partners – macrolactone olefin II.18 and 5-hexen-2-one (II.19) – were therefore engaged in a ruthenium-catalyzed CM to afford the acremolide precursor II.20. Unfortunately, none of the conditions tested using either the Grubbs secondgeneration catalyst $([Ru]-I)^{130}$ or the Hoveyda-Grubbs second-generation catalyst $([Ru]-II)^{131}$ produced the desired cross-coupled product (Table II.3, entries 1 and 2).

¹³⁰ Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. *Org. Lett.* **1999**, *1*, 953-956.
¹³¹ (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2000**, *122*, 8168; (b) Gessler, S.; Randl, S.; Blechert, S. Tetrahedron Lett. 2000, 41, 9973-9976.

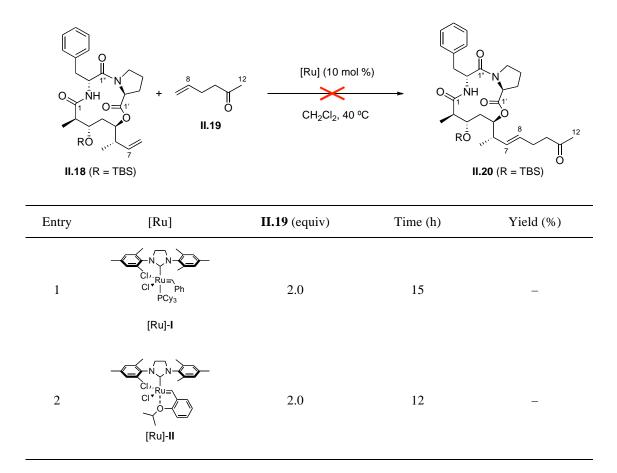
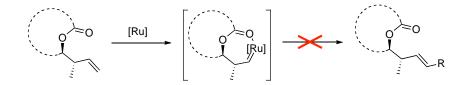
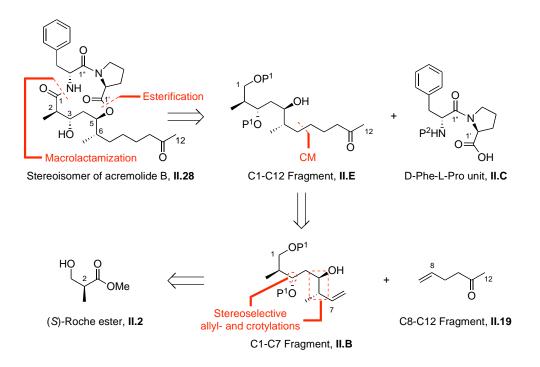



Table II.3. Cross-coupling metathesis between alkenes II.18 and II.19

This unfortunate outcome may be the result of a counter-productive chelation between the ruthenium carbene species and the carbonyl present in its vicinity (Scheme II.15).¹³²

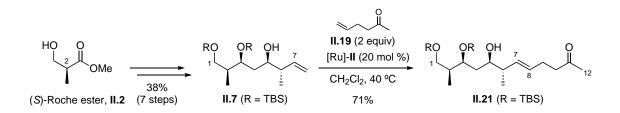

Scheme II.15. Proposed structure for the chelation of the [Ru] by the carbonyl group

¹³² (a) Fürstner, A.; Langemann, K. Synthesis **1997**, 792-803. (b) Fürstner, A. Top. Organomet. Chem. **1998**, 1, 37-72.

II.1.2.1.5. Second synthetic approach to acremolide B

II.1.2.1.5.a. Retrosynthetic analysis of acremolide B

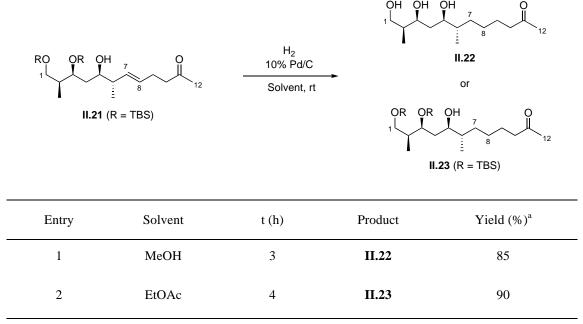
In order to circumvent this particularly dramatic issue, we decided to slightly modify our route to acremolide B. Hence, the second strategy relied on the same four disconnections as previously, but implied the introduction of the side chain **II.19** prior to the dipeptide unit (Scheme II.16). Consequently, the C1-C7 fragment **II.B** could be obtained from (*S*)-Roche ester **II.2** *via* two stereoselective allyl- and crotyltitanations, while a CM with coupling partner **II.19** would enable the construction of the C7-C8 bond and thus afford the entire C1-C12 fragment. Esterification of the latter with the dipeptide unit **II.C** followed by a macrolactamization would eventually lead to acremolide B or to one of its stereoisomer.



Scheme II.16. Second retrosynthetic analysis of acremolide B, II.28

II.1.2.1.5.b. Synthesis of the C1-C12 fragment

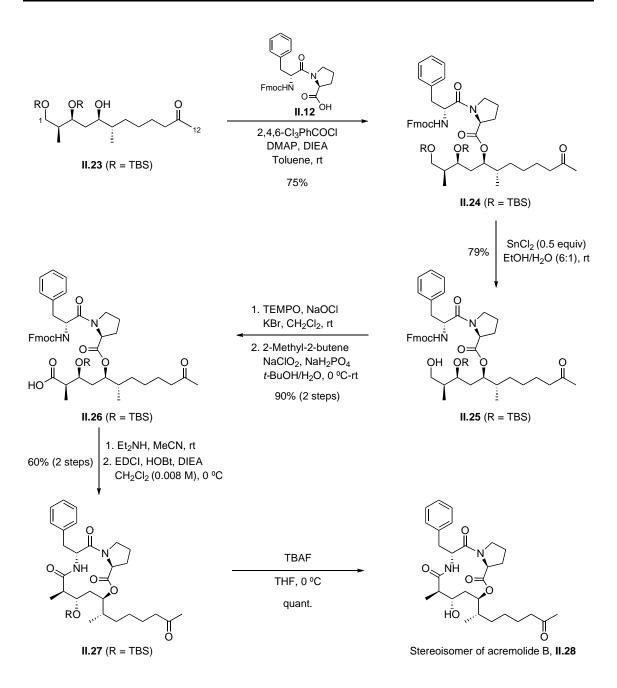
The C1-C7 fragment **II.7**, previously prepared in seven steps and 38% overall yield starting from (*S*)-Roche ester **II.2**, was directly engaged in a CM with 5-hexen-2-one (**II.19**) (2 equiv) using 20 mol % of the Hoveyda-Grubbs catalyst [Ru]-**II** in refluxing


CH₂Cl₂. To our delight, the desired disubstituted olefin was obtained in 71% yield (Scheme II.17).

Scheme II.17. Synthesis of olefin II.21

In order to reduce the double bond, olefin **II.21** was engaged in a hydrogenation reaction using 10% Pd/C (MeOH, rt). Unfortunately, under these reaction conditions only the fully TBS-deprotected product **II.22** was isolated, albeit in high yield (Table II.4, entry 1). The cleavage of the silyl protecting groups under hydrogenation conditions being susceptible to significant solvent effects,¹³³ the hydrogenation was carried out in EtOAc under otherwise identical conditions. Fortunately, this allowed the isolation of the desired compound **II.23** in 90% yield (Table II.4, entry 2).

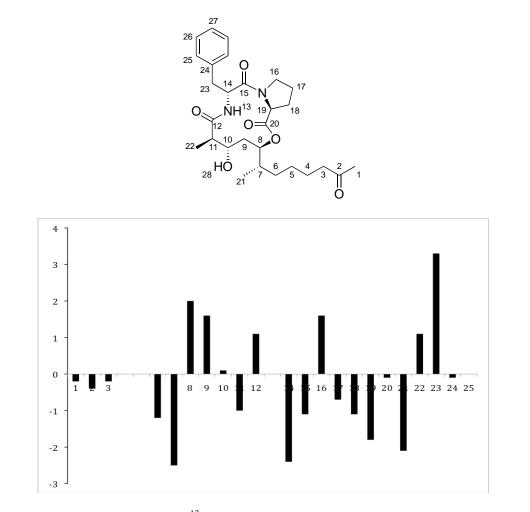
Table II.4. Hydrogenation of olefin II.21


^a Isolated yield.

¹³³ Ikawa, T.; Hattori, K.; Sajiki, H.; Hirota, K. *Tetrahedron* **2004**, *60*, 6901-6911.

II.1.2.1.5.c. Completion of the synthesis

The introduction of the dipeptide unit **II.12** using the same Yamaguchi esterification conditions (2,4,6-trichlorobenzoyl chloride, DMAP, DIEA, toluene, rt) as previously, afforded the desired coupled product **II.24** in 75% yield (Scheme II.18). The primary TBS ether was then selectively cleaved using 0.5 equiv of SnCl₂ in a 6:1 mixture of EtOH/H₂O¹³⁴ (79% yield) as ZnBr₂ induced a slightly lower yield (60%). The resulting alcohol **II.25** was subsequently oxidized first to the corresponding aldehyde using TEMPO, NaOCl, KBr in CH₂Cl₂, then to the carboxylic acid derivative **II.26** using 2-methyl-2-butene, NaClO₂, NaH₂PO₄, in a *t*-BuOH/H₂O mixture (90% yield over two steps). The latter was then treated with Et₂NH in order to cleave the Fmoc protecting group, and the resulting amino acid was directly engaged in the key macrolactamization (EDCI, HOBt, DIEA, CH₂Cl₂, rt) at high dilution (*c* = 0.008M) which afforded the expected 12-membered-ring lactam **II.27** in 60% overall yield. The (2*R*,3*S*,5*R*,6*S*)-macrolactone **II.28** was finally isolated after removal of the TBS protecting group using TBAF (THF, 0 °C). The latter was thus synthesized in 16 steps and 7.6% overall yield starting from (*S*)-Roche ester **II.2**.


¹³⁴ Hua, J.; Jiang, Z. Y.; Wang, Y. G. Chin. Chem. Lett. 2004, 15, 1430-1432.

Scheme II.18. Synthesis of epi-acremolide B, II.28

Careful analysis of the spectroscopic and physical data of **II.28** and comparison with the ones reported in the literature for the natural product $\{[\alpha]_{D}^{20}-65.2 \ (c\ 0.02,\ MeOH)\}$; lit.⁹⁶ $[\alpha]_{D}$ –98 (*c* 0.02, MeOH) $\}$ confirmed the fact that we had synthesized one of the 16 possible stereoisomers of acremolide B. Due to the macrocyclic structure of the product, it is particularly difficult to speculate on the relative and absolute configuration of the C2, C3, C5 and C6 stereogenic centers of acremolide B since a slight modification of one of them could cause a significant change on the global shape of the molecule and consequently on all the chemical shifts.

In an attempt to revise the structure of acremolide B according to the information extracted from the NMR comparison using a graphic of the difference between the ¹³C chemical shifts of the natural product and the synthetic one is presented.¹³⁵ Consequently, taking into account that the differences for C7, C14, C21 and C23 atoms are higher than the rest, their configurations should be different from the synthesized stereoisomer. Mainly, a proposed structure based on these results should include surprisingly a revision for the D-Phe stereogenic center, which was already determined by Capon *et al.*, as well as the *anti* relationship between the substituents at C7 and C8, which could give three different combinations: *anti*-(7*S*,8*R*), *syn*-(7*R*,8*R*) or *syn*-(7*S*,8*S*) (Figure II.7).

Figure II.7. Graphically depicted ¹³C chemical shift differences (Δδ, ppm) for each carbon of acremolide B natural product and the synthetic stereoisomer, **II.28**

¹³⁵ The numbering of the atoms has been changed for an easier comparison with the reported data. In addition, C4, C5, C26 and C27 were not included as their corresponding ¹³C chemical shift were not described for the natural product.

PART 2

Total synthesis of the nominal lyngbouilloside aglycon

II.2.1. INTRODUCTION

II.2.1.1. ISOLATION, STRUCTURE AND BIOLOGICAL PROPERTIES OF LYNGBOUILLOSIDE

II.2.1.1.1. Isolation

Lyngbouilloside is a glycosidic macrolide isolated by Gerwick *et al.* from the marine cyanobacterium *Lyngbya bouillonii* collected off the North Coast of Papua New Guinea (Figure II.8).¹³⁶ This particularly intriguing subtidal and filamentous species of *Lyngbya* was later identified as *Lyngbya bouillonii* Hoffman and Demoulin,¹³⁷ a species mainly found in coral reefs where it forms dark reddish, non-gelatinous, and tenacious plant masses.

L. bouillonii has quickly emerged as an exceptional source of new natural products including the linear tetrapeptide, lyngbyapeptin,¹³⁸ the three macrolides: laingolide, laingolide A and madangolide,¹³⁹ and various structural homologues of lyngbouilloside;

¹³⁶ Tan, L. T.; Márquez, B. L.; Gerwick, W. H. J. Nat. Prod. 2002, 65, 925-928.

¹³⁷ Hoffmann, L.; Demoulin, V. *Belg. J. Bot.* **1991**, *124*, 82-88.

¹³⁸ Klein, D.; Braekman, J. C.; Daloze, D.; Hoffmann, L.; Castillo, G.; Demoulin, V. *Tetrahedron Lett.* **1999**, 40, 695-696.

¹³⁹ (a) Klein, D.; Braekman, J. C.; Daloze, D.; Hoffmann, L.; Demoulin, V. *Tetrahedron Lett.* **1996**, *37*, 7519-7520. (b) Klein, D.; Braekman, J. C.; Daloze, D.; Hoffmann, L.; Castillo, G.; Demoulin, V. J. Nat. *Prod.* **1999**, *62*, 934-936.

lyngbyaloside,¹⁴⁰ lyngbyaloside B^{141} and the recently isolated lyngbyaloside C (Figure II.8).¹⁴²

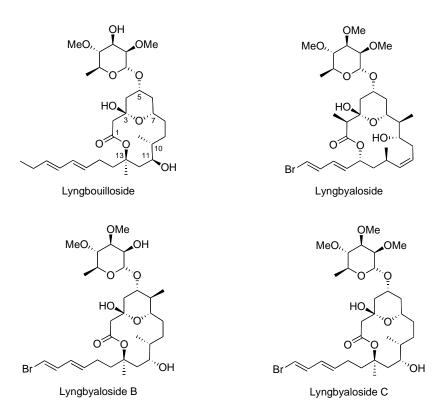


Figure II.8. Structures of lynbouilloside, lyngbyaloside, lyngbyalosides B and C

II.2.1.1.2. Structural assignment of lyngbouilloside

Despite the relative and absolute configuration of both the sugar and the aglycon units which still remain unknown, the gross structure of lyngbouilloside was elucidated after exhaustive spectroscopic analysis and chemical derivatizations.¹³⁶ HRMS analysis, for instance, indicated a molecular formula of $C_{31}H_{52}O_{10}$ suggesting the presence of six degrees of unsaturation. Three were assigned by ¹³C NMR to two olefins, which correspond to a conjugated diene system according to the UV spectrum, and one carbonyl. This observation was eventually comforted by the IR data, which, in addition to the carbonyl moiety, also revealed the presence of hydroxyl groups. The remaining three unsaturations were therefore attributed to a tricycle structure. Interestingly,

¹⁴⁰ Klein, D.; Braekman, J. C.; Daloze, D.; Hoffmann, L.; Demoulin, V. J. Nat. Prod. **1997**, 60, 1057-1059.

¹⁴¹ Luesch, H.; Yoshida, W. Y.; Harrigan, G. G.; Doom, J. P.; Moore, R. E.; Paul, V. J. *J. Nat. Prod.* **2002**, *65*, 1945-1948.

¹⁴² Matthew, S.; Salvador, L.; Schupp, P.J.; Paul, V.J.; Luesch, H. J. Nat. Prod. **2010**, 73, 1544-1552.

NMR analysis of the corresponding acetylated lyngbouilloside also helped in the determination of the structure of the backbone core. Indeed, while the planar structure of the natural product was established by 1D and 2D NMR analysis, the nature of the sugar moiety was secured by comparing the NMR data with the ones pertaining to the sugar moiety in the *Dolabella auricularia* metabolite auriside A (Figure II.9).¹⁴³ Consequently, the relative stereochemistry of the sugar ring was assigned arbitrarily as (1'*R*,2'*R*,3'*R*,4'*S*,5'*S*). Additional NMR experiments (ROESY correlations between H-5 and H-7, and H-7 and H-10) allowed to establish the relative stereochemistry of the aglycon portion of lyngbouilloside as (3*S*,5*R*,7*S*,10*R*,11*S*,13*R*).

As depicted in Figure II.8, lyngbouilloside was finally assigned as a 14-membered macrolide that contains a 2,4-di-*O*-methylrhamnopyranoside unit and a hemiketalpyran. Interestingly, although lyngbouilloside is the second example after acutiphycin of a macrolide glycoside isolated directly from a marine cyanobacterium, several structurally related compounds such as auriside A, callipeltoside A, phorbaside A or dolastatin 19 were isolated from marine invertebrates suggesting a common cyanobacterial origin either through sequestration in the diet (e.g., molluscs) or through symbiotic associations (e.g., sponges) (Figure II.9).^{143, 144}

¹⁴³ Sone, H.; Kigoshi, H.; Yamada, K. J. Org. Chem. **1996**, 61, 8956-8960.

¹⁴⁴ (a) Zampella, A.; Dauria, M. V.; Minale, L.; Debitus, C.; Roussakis, C. J. Am. Chem. Soc. 1996, 118, 11085-11088. (b) Pettit, G. R.; Xu, J. P.; Doubek, D. L.; Chapuis, J. C.; Schmidt, J. M. J. Nat. Prod. 2004, 67, 1252-1255.

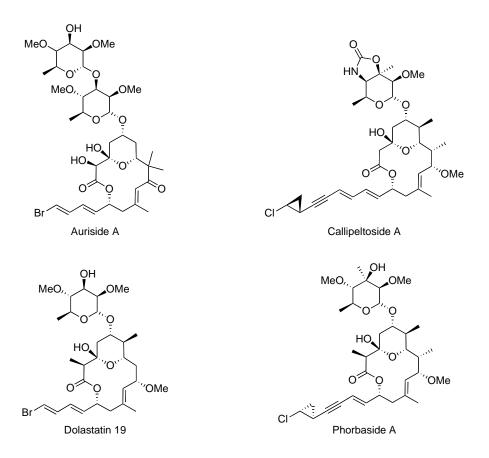


Figure II.9. Structure of auriside A, callipeltoside A, dolastatin 19 and phorbaside A

II.2.1.1.3. Biological properties of lyngbouilloside

The extreme scarcity of lyngbouilloside has hampered the efforts to establish a complete biological profile of the natural product. However, Gerwick *et al.* were able to show that it was moderately cytotoxic against neuro-2a neuroblastoma cells with an $IC_{50} = 17 \ \mu M$. Besides, the significant cytoxicity displayed by the structurally related 14-membered macrolides, callipeltosides, phorbaside A, lyngbyaloside, auriside A and dolastatin 19, suggests a promising cytotoxicity pattern.

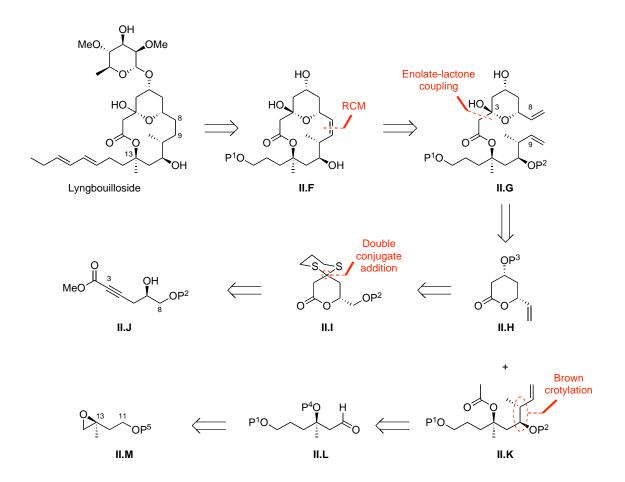
II.2.1.2. REPORTED EFFORTS TOWARDS THE TOTAL SYNTHESIS OF LYNGBOUILLOSIDE

The encouraging cytotoxic activity of lyngbouilloside combined with its challenging molecular architecture and its natural scarcity attracted the attention of various groups around the world. Although, no total synthesis has been reported so far, Ley *et al.*¹⁴⁵ and Cossy *et al.*¹⁴⁶ recently reported their efforts towards the synthesis of the lyngbouilloside framework.

II.2.1.2.1. Synthesis of the macrolactone core of lyngbouilloside by Ley *et al.*

II.2.1.2.1.a. Key steps

In 2009, Ley *et al.*¹⁴⁵ reported their initial efforts towards the synthesis of lyngbouilloside describing a synthetic route to the macrocyclic core of the natural product. The key steps of their strategy included a RCM to build the macrolactone¹⁴⁷ through the C8-C9 bond (Scheme II.19), an enolate-lactone coupling between **II.H** and **II.K** to install the C3 substituent on the pyran ring, and a double conjugate addition of propane-1,3-dithiol onto the conjugated ester **II.J** followed by an *in situ* cyclization to generate the desired lactone **II.I**.¹⁴⁸ Finally, the control of the C10 and C11 stereogenic centers was secured by a stereoselective Brown crotylation of aldehyde **II.L** (Scheme II.19).^{108b}


¹⁴⁵ Webb, D.; Van den Heuvel, A.; Kögl, M.; Ley, S. V. Synlett, 2009, 2320-2324.

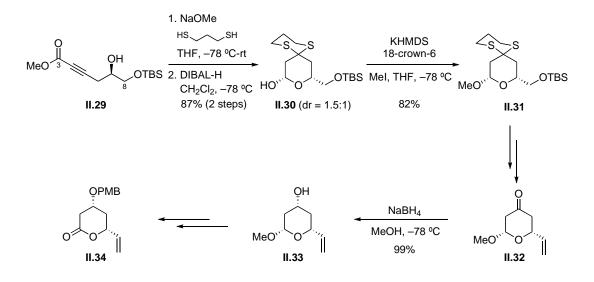
¹⁴⁶ Gebauer, J.; Arseniyadis, S.; Cossy, J. Synlett 2008, 712-714.

¹⁴⁷ Hong, S. H.; Sanders, D. P.; Lee, C. W.; Grubbs, R. H. J. Am. Chem. Soc. **2005**, 127, 17160-17161.

¹⁴⁸ (a) Sneddon, H. F.; Gaunt, M. J.; Ley, S. V. Org. Lett. 2003, 5, 1147-1150. (b) Gaunt, M. J.; Sneddon,

H. F.; Hewitt, P. R.; Orsini, P.; Hook, D. F.; Ley, S. V. *Org. Biomol. Chem.* **2003**, *1*, 15-16. (c) Sneddon, H. F.; Van den Heuvel, A.; Hirsch, A. K. H.; Booth, R. A.; Shaw, D. M.; Gaunt, M. J.; Ley, S. V. *J. Org.*

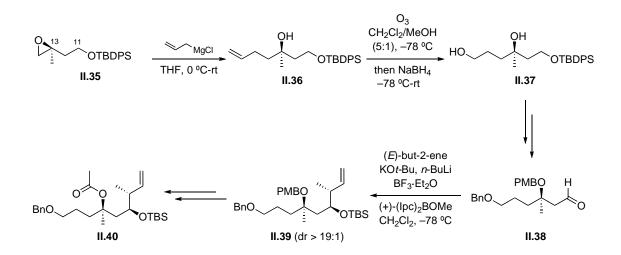
Scheme II.19. Ley's retrosynthetic analysis of the lyngbouilloside macrolactone core


II.2.1.2.1.b. Synthesis of the C3-C8 fragment II.35

The synthesis of the C3-C8 fragment of lyngbouilloside began from the known ynone **II.29**, which was prepared in two steps starting from (*S*)-glycidol.¹⁴⁹ Hence, ynone **II.29** was first engaged in a double conjugate addition with propane-1,3-dithiol to afford the corresponding hydroxyester which underwent simultaneous *in situ* cyclization to furnish the corresponding lactone. The latter was then reduced with DIBAL-H to the analogous hemiketal **II.30** which was obtained as a mixture of diastereoisomers (dr = 1.5:1) in 87% overall yield. The resulting δ -lactol was eventually deprotonated with KHMDS in the presence of 18-crown- 6^{150} to afford the corresponding alkoxide which underwent a highly diastereoselective methylation to the corresponding ketal **II.31**. A few subsequent steps enabled to set the terminal olefin and convert the dithiol moiety to the corresponding ketone **II.32**, while reduction with sodium borohydride

¹⁴⁹ Maguire, R. J.; Munt, S. P.; Thomas, E. J. J. Chem. Soc., Perkin Trans. 1 1998, 2853-2864.

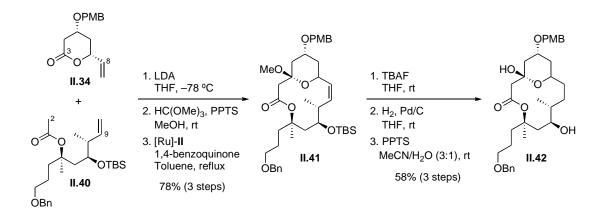
¹⁵⁰ Adderley, N. J.; Buchanan, D. J.; Dixon, D. J.; Laine, D. I. Angew. Chem. Int. Ed. 2003, 42, 4241-4244.


introduced the C5 stereogenic center and generated **II.33** as a single diastereoisomer in 99% yield. A final PMB-protection/hydrolysis/oxidation sequence ultimately provided the desired lactone **II.34** in 46% yield (Scheme II.20).

Scheme II.20. Ley's synthesis of the C3-C8 fragment II.34

II.2.1.2.1.c. Synthesis of the C2-C9 fragment II.40

The first step in the preparation of fragment **II.40** was the regioselective opening of the optically active epoxide **II.35** with allyl magnesium chloride. The ring-opening proceeded cleanly to generate the mono-protected 1,3-diol **II.36** which was converted to the corresponding primary alcohol **II.37** upon ozonolysis with a reductive work-up. The latter was then converted to aldehyde **II.38** after a few trivial transformations and subjected to a Brown crotylboration to afford the corresponding *anti*-homoallylic alcohol **II.39** with a high stereocontrol (dr > 19:1). Several protecting group manipulations ultimately gave the desired fragment **II.40** in 33.1% overall yield (Scheme II.21).

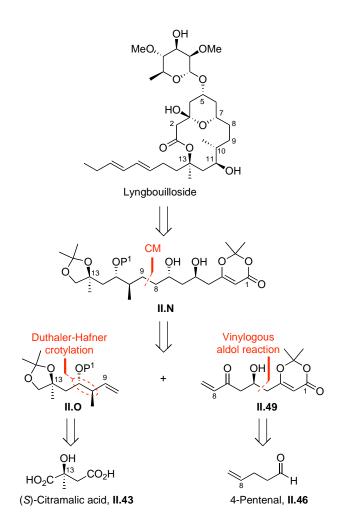


Scheme II.21. Ley's synthesis of the fragment II.40

II.2.1.2.1.d. Synthesis of the macrolactone core of lyngbouilloside

With effective routes to fragments **II.34** and **II.40** in place, attention was next turned to their successful coupling (Scheme II.22). To that effect, lactone **II.34** was added to 2 equiv of the lithium enolate derived from **II.40** to afford the corresponding lactol in quantitative yield. The latter was then converted to the acetal [HC(OMe)₃, PPTS] and ring-closed using the Hoveyda-Grubbs second-generation catalyst in the presence of 1,4-benzoquinone,¹⁴⁷ and the resulting macrocycle **II.41** was treated with TBAF to remove the TBS protecting group. Finally, hydrogenation followed by mild acid hydrolysis provided the desired macrolactone **II.42** in 46% yield over four steps (Scheme II.22).

This strategy afforded an advanced macrolactone intermediate **II.42** in 17 steps and 12.4% overall yield starting from homopropargylic alcohol **II.29** and terminal epoxide **II.35**. Most importantly, spectroscopical analysis and DFT chemical shift calculations of their lyngbouilloside precursor provided evidence of a possible structure misassigned.


Scheme II.22. Ley's synthesis of the lyngbouilloside macrolactone core

II.2.1.2.2. Synthesis of the C1–C13 fragment of lyngbouilloside by Cossy *et al.*

II.2.1.2.2.a. Key steps

Cossy *et al.*¹⁴⁶ also got involved in the total synthesis of lyngbouilloside roughly at the same time as Ley and co-workers. Their approach involved a selective CM between the fully functionalized C1-C8 and C9-C13 fragments **II.49** and **II.0** to afford the macrolactone precursor **II.N**, while a highly enantio- and diastereoselective crotyltitanation and a vinylogous aldol¹⁵¹ combined to a preparative chiral HPLC separation controlled the C5, C10 and C11 stereogenic centers (Scheme II.23).

¹⁵¹ Bach, T.; Kirsch, S. Synlett **2001**, 1474-1476.

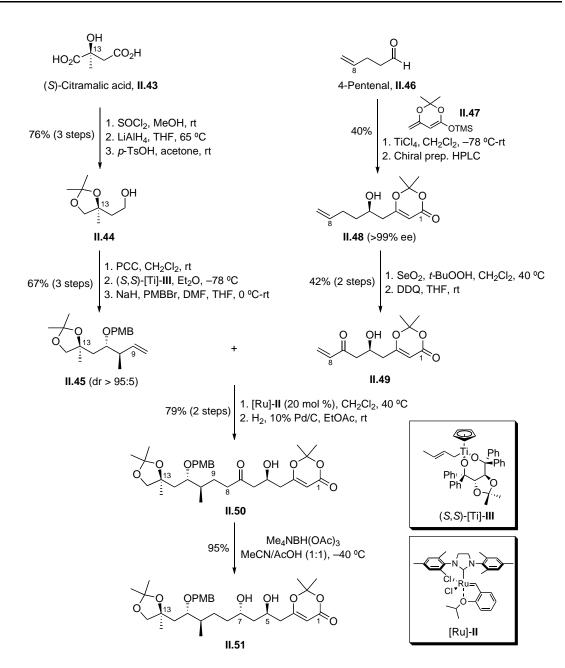
Scheme II.23. Retrosynthetic analysis of C1-C13 fragment by Cossy et al.

II.2.1.2.2.a. Synthesis of the C1-C13 fragment

The convergent strategy used for the synthesis of the C1-C13 carbon backbone of lyngbouilloside started with the preparation of the two subunits **II.49** and **II.45**. The former was synthesized using a vinylogous Mukaiyama aldol reaction between 4-pentenal (**II.46**) and the silyl dienol ether derived from 2,2,6-trimethyl-4*H*-1,3-dioxin-4-one (**II.47**)¹⁵² to afford the corresponding alcohol **II.48** as a racemic mixture of enantiomers, which were separated by chiral preparative HPLC.¹⁵³

The required (R)-enantiomer, which absolute configuration was secured by hydrogenation of the terminal double bond and comparison of its optical rotation

¹⁵² (a) Grunwell, J. R.; Karipides, A.; Wigal, C. T.; Heinzman, S. W.; Parlow, J.; Surso, J. A.; Clayton, L.;
Fleitz, F. J.; Daffner, M.; Stevens, J. E. *J. Org. Chem.* **1991**, *56*, 91-95. (b) Sugita, Y.; Sakaki, J.-I.; Sato, M.; Kaneko, C. J. Chem. Soc., Perkin Trans. 1 **1992**, 2855-2861.

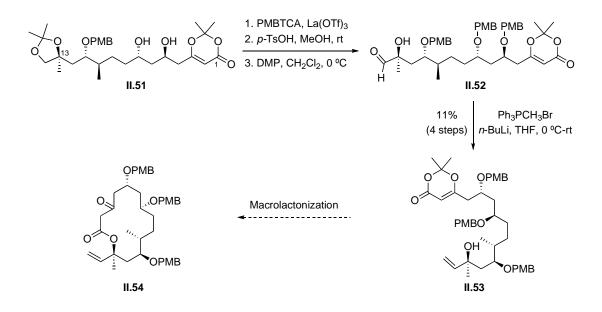

¹⁵³ CHIRALPACK AD-H (SFC), MeOH/CO₂ = 8:92.

 $\{[\alpha]_D^{20} - 21.0 \ (c \ 0.1, \ CHCl_3)\}\$ with the one reported in the literature¹⁵⁴ $\{[\alpha]_D^{20} + 19.0 \ (CHCl_3)\}\$, was engaged in two concomitant allylic oxidations (*t*-BuOOH, SeO₂, CH₂Cl₂, 40 °C, then DDQ, THF, rt) to obtain the targeted enone **II.49** in 42% yield over two steps. On the other hand, the synthesis of compound **II.45** involved the esterification of (*S*)-citramalic acid (SOCl₂, MeOH, rt) followed by a LiAlH₄-mediated reduction and the protection of the resulting triol (*p*-TsOH, acetone) as a cyclic acetal. The remaining free primary alcohol **II.46** was then oxidized to the corresponding aldehyde (PCC, CH₂Cl₂, rt) and subjected to a highly enantio- and diastereoseletive crotyltitanation. The resulting homoallylic alcohol was finally protected as a PMB ether (NaH, PMBBr, DMF/THF) in order to complete the synthesis.

The two subunits were then coupled together using a second-generation Hoveyda-Grubbs catalyst (20 mol %)-promoted CM, and the resulting enone was directly reduced to the corresponding ketone **II.50** *via* a catalytic hydrogenation. In order to complete the synthesis of the C1-C13 fragment of lyngbouilloside, the latter was finally engaged in a 1,3-*anti* reduction using tetramethylammonium triacetoxyborohydride (TABH) to afford the desired *anti*-diol in quasi-quantitative yield (Scheme II.24).

This strategy resulted in the straightforward synthesis of the fully functionalized C1-C13 fragment **II.51** in nine steps (longest linear sequence) starting from commercially available (*S*)-citramalic acid **II.43** and 4-pentenal (**II.46**).

¹⁵⁴ Sato, M.; Sunami, S.; Sugita, Y.; Kaneko, C. *Heterocycles* **1995**, *41*, 1435-1444.


Scheme II.24. Synthesis of lyngbouilloside C1-C13 fragment

II.2.1.2.2.b. Synthesis of the macrolactone core of lyngbouilloside

Once the synthesis of the C1-C13 fragment **II.51** was secured, the next step involved the construction of the macrolactone core and the introduction of the side chain (Scheme II.25). In this context, diol **II.51** was protected as a bis-PMB ether [PMBTCA, $La(OTf)_3$],¹⁵⁵ while the acetal was removed under mild acidic conditions (*p*-TsOH, MeOH, rt). Oxidation of the newly released primary alcohol (DMP, CH₂Cl₂, 0 °C) and

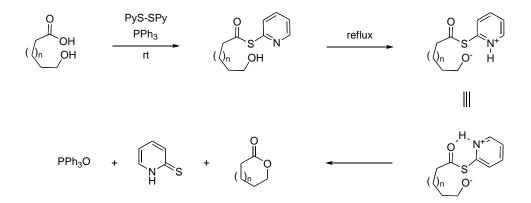
¹⁵⁵ PMBTCA: *p*-(methoxybenzyl)trichloroacetimidate, see: Nakajima, N.; Horita, K.; Abe, R.; Yonemitsu, O. *Tetrahedron Lett.* **1988**, *29*, 4139–4142.

subsequent olefination under Wittig conditions (Ph₃PCH₃Br, *n*-BuLi, THF, 0 °C-rt) eventually afforded the required terminal olefin **II.53**.¹⁵⁶ Unfortunately, the Wittig olefination appeared to be very low yielding resulting in only small amounts of the macrolactone precursor.¹⁵⁷ Nonetheless, the macrolactonization under the intramolecular acylketene-trapping conditions (refluxing in toluene under high dilution) was tempted, resulting to our delight in the isolation of the desired macrolactone **II.54**. However, do to the particularly low yields obtained in the Wittig olefination step, this approach had to be abandoned.

Scheme II.25. Attempted approach towards the lyngbouilloside aglycon

II.2.1.3. MACROLACTONIZATION METHODS

The macrocyclic lactone motif is present in a wide variety of natural products with a large spectrum of interesting biological properties. Hence, in the previous Section, we described the synthesis of an isomer of the 13-membered macrolactone acremolide B featuring an intramolecular peptide coupling to generate the macrocyclic core. In the next section, we will describe our efforts toward the first synthesis of lyngbouilloside aglycon, a 14-membered macrolactone with an unusual tertiary methyl carbinol, which features a macrolactonization *via* an intramolecular acylketene-trapping to generate the


¹⁵⁶ (a) Reber, K. P.; Tilley, S. D.; Sorensen, E. J. *Chem. Soc. Rev.* **2009**, *38*, 3022-3034. (b) Gebauer, J.; Blechert, S. *J. Org. Chem.* **2006**, *71*, 2021-2025. (c) Hoye, T. R.; Danielson, M. E.; May, A. E.; Zhao, H. *Angew. Chem. Int. Ed.* **2008**, *47*, 9743-9746.

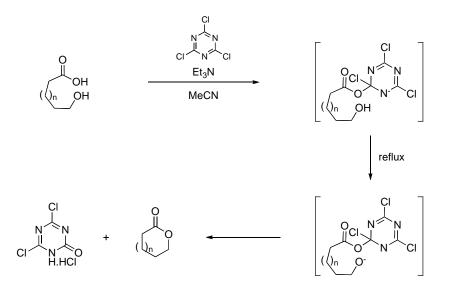
¹⁵⁷ Unpublished results.

macrocycle. Since macrolactonizations are often used as key steps in natural product total synthesis, A brief overview of some of the existing methods used to prepare macrocyclic esters will be presented. Indeed, despite the use of high dilution or slow addition of the substrate, which tend to favour the intra- over the intermolecular process, or the immobilisation of the substrate on zeolites or in microemulsions that are not always applicable, there are a few methods that have been developed and that are commonly used today. All of these methods are based either on the activation of the activation of the alcohol, however, only the former strategy will be described here.¹⁵⁸

II.2.1.3.1. Acid activation through thioester

This method, which was first described by Corey and Nicolaou,¹⁵⁹ proceeds through a one-pot double-activation procedure: a first activation of the acid *via* its conversion to the corresponding thioester derivative at rt, followed by a thermal activation to trigger the lactonization (Scheme II.26).

Scheme II.26. Macrolactonization through thioester-mediated activation


Among the various variants of this transformation, which mainly involve the preparation of other thioester derivatives or the addition of a metal to induce a chelation between the sulfur and the alcoholate,¹⁶⁰ Gerlach's modification is probably the most

¹⁵⁸ For a review, see: Parenty, A.; Moreau, X.; Campagne, J.-M. Chem. Rev. 2006, 106, 911-.

¹⁵⁹ (a) Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. **1974**, 96, 5614-5616. (b) Mukaiyama, T. Angew. Chem., Int. Ed. Engl. **1979**, 18, 707-721.

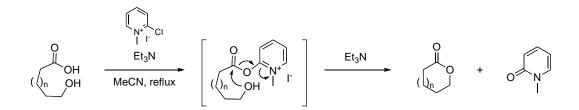
¹⁶⁰ (a) Nimitz, J. S.; Wollenberg, R. H. *Tetrahedron Lett.* **1978**, *19*, 3523-3526. (b) Schmidt, U.; Heermann, D. *Angew. Chem., Int. Ed. Engl.* **1979**, *18*, 308-309. (c) Corey, E. J.; Clark, D. A. *Tetrahedron Lett.* **1979**, 2875-2878. (d) Hillis, L. R.; Ronald, R. C. *J. Org. Chem.* **1985**, *50*, 470-473.

accepted one.¹⁶¹ It requires the use of silver salts such as $AgClO_4$, $AgBF_4$ and AgOTfand generally allows to carry out the reactions at rt. Another variation was introduced by Masamune *et al.*¹⁶² The latter consisted in the preparation and the isolation of a thioester derivative which was then engaged in the actual macrolactonization in the presence of a thiophilic metal salt such as $Ag(CO_2CF_3)$, CuOTf or $Hg(CO_2CF_3)_2$. Nonetheless, despite the good results obtained using both approaches, the macrolactonizations still remain highly substrate-dependant. Finally, in addition to the methods introduced by Gerlach *et al.* and Masamune *et al.*, we can also include the cyanuric chloride-mediated acid activation method¹⁶³ developed by Venkataraman and Wagle which mechanism is closely related to Corey's and Nicolaou's lactonization (Scheme II.27).

Scheme II.27. Macrolactonization through cyanuric chloride

II.2.1.3.2. Acid activation through Mukaiyama's salt

In 1976, Mukaiyama and co-workers¹⁶⁴ reported the first example of a macrolactonization using 1-methyl-2-chloropyridinium iodide as an acid activator in the presence of Et₃N. This reaction involves chloride substitution by the carboxylate ion to


¹⁶¹ Gerlach, H.; Thalmann, A. Helv. Chim. Acta 1974, 57, 2661-2663.

¹⁶² Masamune, S.; Bates, G. S.; Corcoran, J. W. Angew. Chem., Int. Ed. Engl. **1977**, 16, 585-607.

¹⁶³ (a) Venkataraman, K.; Wagle, D. R. *Tetrahedron Lett.* **1979**, *20*, 3037-3040. (b) Venkataraman, K.; Wagle, D. R. *Tetrahedron Lett.* **1980**, *21*, 1893-1896.

¹⁶⁴ Mukaiyama, T.; Usui, M.; Saigo, K. Chem. Lett. 1976, 49-50.

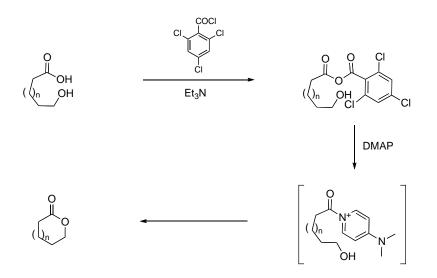
give a highly activated acyloxypyridinium species which then undergoes macrolactonization (Scheme II.28).

Scheme II.28. Mukaiyama's salt-mediated macrolactonization

This procedure has been successfully used in the total synthesis of various analogues of both paclitaxel¹⁶⁵ (Taxol[®]) and jatrophone.¹⁶⁶

II.2.1.3.3. Acid activation through mixed anhydride

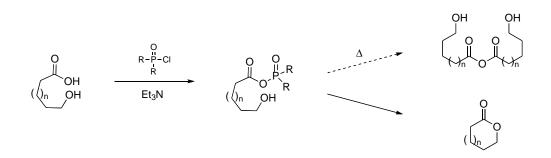
Despite the number of macrolactonization methods involving the formation of a mixed anhydride intermediate,¹⁶⁷ the one developed by Yamaguchi *et al.* is probably the most popular. It requires the use of 2,4,6-trichlorobenzoyl chloride and a stoichiometric amount of DMAP¹⁶⁸ (Scheme II.29). The mixed anhydride intermediate is highly reactive and thermally unstable, and leads to different results depending on the temperature and/or the order of addition of the reactants. One of the most useful modifications of this method was the development of a one-pot version which allows the regioselective synthesis of highly functionalized macrolactones.¹⁶⁹


¹⁶⁵ Yuan, H.; Kingston, D. G. I.; Sackett, D. L.; Hamel, E. *Tetrahedron* **1999**, *55*, 9707-9716.

¹⁶⁶ Smith, A. B.; Malamas, M. S. J. Org. Chem. **1982**, 47, 3442-3447.

¹⁶⁷ (a) Shiina, I.; Kubota, M.; Ibuka, R. *Tetrahedron Lett.* 2002, 43, 7535-7539. (b) Shiina, I.; Oshiumi, H.; Hashizume, M.; Yamai, Y.-s.; Ibuka, R.*Tetrahedron Lett.* 2004, 45, 543-547. (c) Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. J. Org. Chem. 2004, 69, 1822-1830. (d) White, J. D.; Johnson, A. T. J. Org. Chem. 1994, 59, 3347-3358. (e) Mukaiyama, T.; Izumi, J.; Miyashita, M.; Shiina, I. Chem. Lett. 1993, 907-910. (f) Mukaiyama, T.; Izumi, J.; Shiina, I. Chem. Lett. 1997, 187-188. (g) Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1996, 61, 4560-4567.

¹⁶⁸ Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. **1979**, 52, 1989-1993.


¹⁶⁹ (a) Hikota, M.; Tone, H.; Horita, K.; Yonemitsu, O. J. Org. Chem. **1990**, 55, 7-9. (b) Evans, D. A.; Ng, H. P.; Rieger, D. L. J. Am. Chem. Soc. **1993**, 115, 11446-11459.

Scheme II.29. Yamaguchi macrolactonization

II.2.1.3.4. Acid activation through phosphorus-based reagents

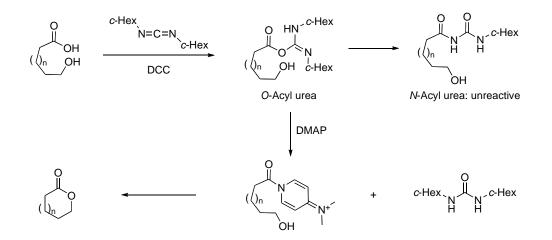
Masamune *et al.*¹⁷⁰ and Corey *et al.*¹⁷¹ were the first to exploit the potential of the mixed carbon-phosphorus anhydrides¹⁷² as acid-activating agents in macrolactonizations. Most importantly, this type of macrolactonization needs to be carried out at temperatures below 80 °C in order to avoid the formation of symmetric anhydrides (Scheme II.30). This strategy was successfully used by Schreiber *et al.* and later by Roush and co-workers in the total synthesis of dynemicin A^{173} and chlorothricolide,¹⁷⁴ respectively.

Scheme II.30. Macrolactonization through phosphorus-based reagents

¹⁷⁰ Kaiho, T.; Masamune, S.; Toyoda, T. J. Org. Chem. 1982, 47, 1612-1614.

¹⁷¹ Corey, E. J.; Hua, D. H.; Pan, B. C.; Seitz, S. P. J. Am. Chem. Soc. **1982**, 104, 6818-6820.

¹⁷² Coste, J.; Frerot, E.; Jouin, P.; Castro, B. *Tetrahedron Lett.* **1991**, *32*, 1967-1970.


¹⁷³ Wood, J. L.; Porco, J. A., Jr.; Taunton, J.; Lee, A. Y.; Clardy, J.; Schreiber, S. L. J. Am. Chem. Soc. **1992**, *114*, 5898-5900.

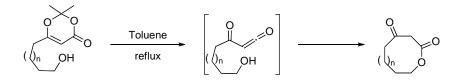
¹⁷⁴ Roush, W. R.; Sciotti, R. J. J. Am. Chem. Soc. 1998, 120, 7411-7419.

II.2.1.3.5. Acid activation through carbodiimides

The first macrolactonizations involving the use of carbodiimides as activating agents were based on the combination of DCC and DMAP. Also referred as Steglich protocol,¹⁷⁵ these conditions were barely applied due to the *N*-acyl urea by-product formed during the reaction (Scheme II.31). In contrast, the addition of DMAP·HCl provides higher yields and suppresses the formation of the *N*-acyl urea by-product by prolonging the lifetime of the activated acyl intermediate.

The formation of medium- and large-ring lactones from hydroxy acids using a combination of a dialkyl carbodiimide, an amine hydrochloride and an amine base is known as Keck macrolactonization.¹⁷⁶ This transformation requires the dissolution of the substrate in an aprotic solvent and subsequent addition to a refluxing solution of the reagents over several hours under high-dilution (c < 0.03 M). The activating agent is a *N*,*N*'-dialkyl carbodiimide such as DCC or EDCI and the corresponding activated acyl derivative is generated *in situ*. Hence, the procedure is inherently self-drying and cannot be compromised by serendipitous moisture. It is worth pointing out however that the main disadvantage of this method is the need to use large amounts of carbodiimide in order to achieve optimal yields.

Scheme II.31. Carbodiimide-mediated macrolactonization


¹⁷⁵ Steglich, W.; Höfle, G. Angew. Chem., Int. Ed. Engl. **1969**, *8*, 981.

¹⁷⁶ Boden, E. P.; Keck, G. E. J. Org. Chem. **1985**, 50, 2394–2395.

This type of macrolactonization was successfully applied in the total synthesis of various complex natural products such as colletodiol,¹⁷⁷ colletol,¹⁷⁸ dihydroerythronolide A,¹⁷⁹ calyculin,¹⁸⁰ epothilone B¹⁸¹ and swinholide.¹⁸²

II.2.1.3.6. Boeckman's macrolactonization

In 1989, Boeckman *et al.*¹⁸³ and Paquette *et al.*¹⁸⁴ reported the first total synthesis of (+)-ikuarungamycin at the same time demonstrating the use of acylketenes as intermediates for macrocyclization.^{156,185} Dioxinone thermolysis is a particularly attractive alternative to the typical acid activation strategies previously described due to the ease of use as only heating is required to obtain the reactive β -acetylketene intermediate, which can be trapped intramolecularly to give the corresponding lactone (Scheme II.32). This method was actually chosen for our synthesis of lyngbouilloside.

Scheme II.32. Boeckman's macrolactonization

¹⁷⁷ Keck, G. E.; Boden, E. P.; Wiley, M. R. J. Org. Chem. **1989**, 54, 896–906.

¹⁷⁸ Keck, G. E.; Murry, J. A. J. Org. Chem. **1991**, 56, 6606–6611.

¹⁷⁹ Stork, G.; Rychnovsky, S. D. J. Am. Chem. Soc. **1986**, 109, 1565-1567.

¹⁸⁰ Evans, D. A.; Gage, J.; Leighton, J. L. J. Am. Chem. Soc. **1992**, 114, 9434-9453.

¹⁸¹ Danishefsky, S. J.; Su, D. S.; Meng, D. F.; Bertinato, P.; Balog, A.; Sorensen, E. J.; Zheng, Y. H.; Chou, T. C.; He, L. F.; Horwitz, S. B. *Angew. Chem.*, *Int. Ed.* **1997**, 36, 757-759.

¹⁸² Patterson, I.; Yeung, K. S.; Ward, R. A.; Smith, J. D.; Cumming, G.; Lamboley, S. *Tetrahedron* **1995**, 51, 6497-9486.

¹⁸³ (a) Boeckman, R. K., Jr.; Weidner, C. H.; Perni, R. B.; Napier, J. J. J. Am. Chem. Soc. **1989**, 111, 8036-8037.

¹⁸⁴ Paquette, L. A.; Macdonald, D.; Anderson, L. G.; Wright, J. J. Am. Chem. Soc. **1989**, 111, 8037-8039.

¹⁸⁵ Boeckman, R. K., Jr.; Pruitt, J. R. J. Am. Chem. Soc. **1989**, 111, 8286-8288.

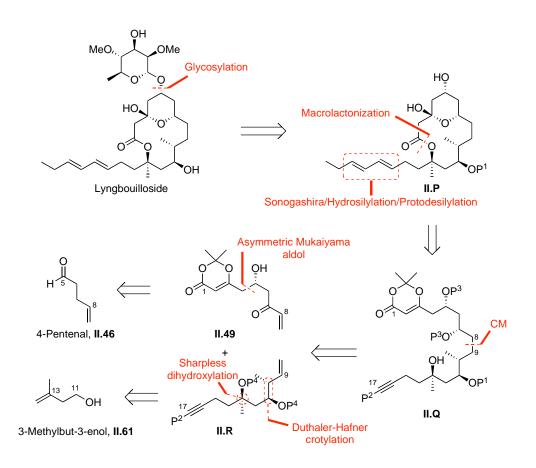
II.2.2. RESULTS & DISCUSSION

II.2.2.1. FIRST STRATEGY TOWARDS THE SYNTHESIS OF LYNGBOUILLOSIDE AGLYCON

In this part, we describe our continued endeavour towards the total synthesis of the glycosidic macrolide lyngbouilloside. The main goal behind this project was to develop an efficient, highly straightforward and flexible route that would allow 1) to definitely secure the structure of the natural product, 2) to assign both its relative and absolute configuration, 3) to synthesize various structural analogues and 4) to establish a complete biological profile of the natural product and provide an insight into structure-activity relationships (SAR).

In front of the unsatisfying results obtained so far with the previous route and the supply problems of the necessary starting material (*S*)-citramalic acid, a new strategy based on more readily available starting materials was explored avoiding, when possible, the low-yielding reaction steps encountered previously.

II.2.2.1.1. First retrosynthetic analysis

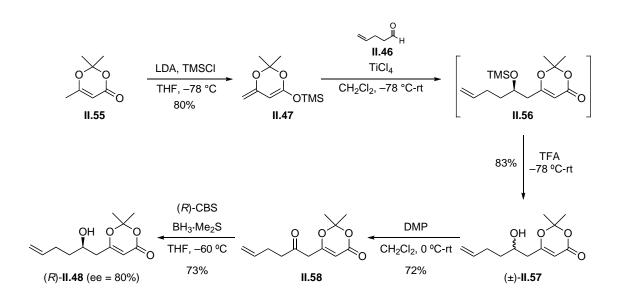

After considering the successes and downfalls of the previous approach, we decided to base our new strategy upon the following key steps (Scheme II.33):

- a glycosylation to introduce the hexapyranoside moiety,

- a Sonogashira coupling followed by a hydrosilylation/protodesilylation sequence to introduce the (E,E)-diene side chain,

-an intramolecular acylketene trapping macrolactonization to build the cyclic ester linkage on to the fully substituted C13 stereogenic center.

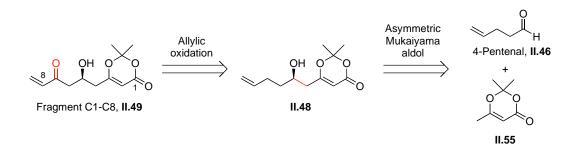
The linear C1-C17 fragment **II.Q** would in turn be obtained through a selective cross-metathesis between enone **II.49** and the olefinic coupling partner **II.R**, while an asymmetric version of the previous vinylogous Mukaiyama aldol would allow the installation of the C5 stereogenic center and introduce the dioxinone moiety. On the other hand, the C10 and C11 stereogenic centers would be controlled by a Duthaler-Hafner crotyltitanation, while the quaternary stereogenic center at C13 would be controlled by a Sharpless dihydroxylation of commercially available 3-methylbut-3-one (**II.61**).



Scheme II.33. First retrosynthetic analysis of lyngbouilloside

II.2.2.1.2. Synthesis of C1-C8 fragment

As mentioned previously, we decided not to drastically modify our initial strategy towards the synthesis of lyngbouilloside, especially for the construction of the macrolactone core. However, among the few changes that were considered, we were particularly interested in developing a stereoselective synthesis of the C1-C8 fragment **II.49** in order to prevent the unnecessary waste of half of the material.


In this context, we planned to control the configuration of the alcohol at C5 by performing an enantioselective reduction of ketone **II.58** (Scheme II.34).¹⁸⁶ The latter, obtained by treating alcohol **II.57** with DMP (CH₂Cl₂, 0 °C-rt), was therefore subjected to the standard Corey-Bakshi-Shibata (CBS) reduction conditions (BH₃·Me₂S, (*R*)-CBS, THF, -60 °C) to afford the desired enantio-enriched alcohol (*R*)-**II.48** in 53% yield and 80% ee. Unfortunately, despite the good level of enantioselectivty, this approach had to be abandoned due to persisting reproducibility issues.

Scheme II.34. CBS strategy towards the synthesis of alcohol (R)-II.48

In order to access the C1-C8 fragment whilst avoiding any unnecessary steps (oxidation, reduction...), we next considered the asymmetric Mukaiyama aldol between 4-pentenal (**II.46**) and the silyl dienol ether derived from 2,2,6-trimethyl-4*H*-1,3-dioxin-4-one (**II.55**) (Scheme II.35).

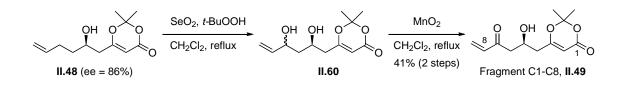
¹⁸⁶ (a) Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C. P.; Singh, V. K. J. Am. Chem. Soc. **1987**, 109, 7925-7926. (b) Deloux, L.; Srebnik, M. Chem. Rev. **1993**, 93, 763-784.

Scheme II.35. Retrosynthetic analysis of the C1-C8 fragment

Among the various enantioselective catalytic processes developed so far in the field of asymmetric Mukaiyama aldol,¹⁸⁷ the ones reported by Denmark et al.¹⁸⁸ involving the combination of a catalytic amount of chiral bis-phosphoramide (R,R)-II.59 and silicon tetrachloride to promote a highly enantio- and diastereoselective addition of silyl ketene acetals to aldehydes appeared particularly attractive. Unfortunately, the application of these conditions [SiCl₄, (R,R)-II.59, CH₂Cl₂, -78 °C] to our system afforded the desired product in 62% yield and in a moderate 65% ee as determined by chiral preparative HPLC¹⁵³ (Table II.5, entry 1). The conditions reported by Sato and co-workers,¹⁵⁴ which involve the use of a Ti(IV) complex in the presence of chiral (S)-BINOL (20 mol %) were also tested, however, the resulting product was obtained in only 22% yield and 30% ee (Table II.5, entry 2). More recently, Scettri et al.¹⁸⁹ developed a new protocol for the asymmetric Mukaiyama aldol between dienolates and aliphatic aldehydes in the presence of the same chiral Ti(Oi-Pr)₄/BINOL catalytic system, showing the influence of the number of equivalents on the enantioselectivity. Interestingly, by employing their conditions $[Ti(Oi-Pr)_4 (8 \mod \%), (S)-BINOL]$ (8 mol %), THF, -78 °C], the expected aldol product (R)-II.48 was isolated in 40% yield and up to 86% ee (Table II.5, entry 3). These conditions were therefore selected, and the mixture of the two enantiomers was used in the next step without further purification.

¹⁸⁷ (a) Evans, D. A.; Murry, J. A.; Kozlowski, M. C. J. Am. Chem. Soc. **1996**, 118, 5814-5815. (b) Krüger, J.; Carreira, E. M. J. Am. Chem. Soc. **1998**, 120, 669-685. (c) Pagenkopf, B. L.; Krüger, J.; Stojanovic, A.; Carreira, E. M. Angew. Chem., Int. Ed. **1998**, 37, 3124-3126. (d) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J. J. Am. Chem. Soc. **1999**, 121, 837-838. (e) Bluet, G.; Campagne, J.-M. Tetrahedron Lett. **1999**, 40, 5507-5509. (f) Bluet, G.; Campagne, J.-M. J. Org. Chem. **2001**, 66, 4293-4298.

¹⁸⁸ (a) Denmark, S. E.; Wynn, T.; Beutner, G. L. J. Am. Chem. Soc. 2002, 124, 13405-13407. (b) Denmark, S. E.; Beutner, G. L. J. Am. Chem. Soc. 2003, 125, 7800-7801. (c) Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D. J. Am. Chem. Soc. 2005, 125, 3774-3789.


¹⁸⁹ De Rosa, M.; Acocella, M. R.; Villano, R.; Soriente, A.; Scettri, A. *Tetrahedron: Asymmetry* **2003**, *14*, 2499-2502.

	OD OH	Me 0 N.P' Me Me (CH ₂) ₅ 2 <i>R</i> ()- II.59	он о (<i>R</i>)- II.48	0
Entry	Reagents (equiv)	Solvent	Yield (%) ^b	ee (%) ^a
1	II.47 (1.2) SiCl ₄ (1.1) DIEA (5 mol %) + (<i>R</i> , <i>R</i>)- II.59 (5 mol %	CH ₂ Cl ₂	62	65
2	II.47 (1.4) Ti(<i>i</i> -PrO) ₄ (20 mol %) (S)-BINOL (20 mol %)	THF	22	30
3	II.47 (2.0) Ti(<i>i</i> -PrO) ₄ (8 mol %) (S)-BINOL (8 mol %)	THF	40	86

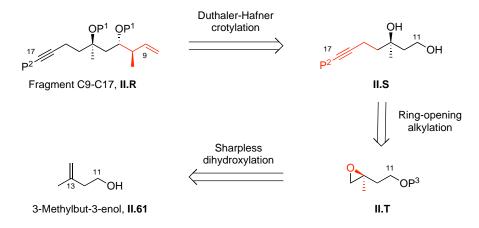
Table II.5. Asymmetric vinylogous aldol reaction

^a Enantiomeric excess determined by chiral SFC. ^b Isolated yield.

In order to complete the synthesis of the C1-C8 fragment of lyngbouilloside, alcohol **II.48** was then treated with SeO₂ and *t*-BuOOH (CH₂Cl₂, rt) to afford the corresponding diol **II.60** which was subsequently engaged in a MnO₂-mediated oxidation to provide the desired enone **II.49** in 41% yield (Scheme II.36). The C1-C8 fragment was thus obtained in five steps and 13% overall yield starting from commercially available 2,2,6-trimethyl-4*H*-1,3-dioxin-4-one (**II.55**).

Scheme II.36. Synthesis of the C1-C8 fragment

II.2.2.1.3. Synthesis of the C9-C17 fragment


II.2.2.1.3.a. Retrosynthetic analysis

The synthesis of the C9-C17 fragment of lyngbouilloside was devised around three key steps (Scheme II.37):

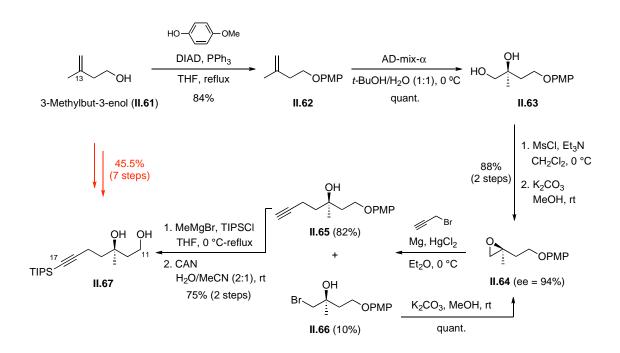
- a Duthaler-Hafner crotyltitanation to control the C10 and C11 stereogenic centers,

- an epoxide ring-opening to install the propargyl substituent,

- an asymmetric Sharpless dihydroxylation to control the fully substituted C13 stereogenic center.

Scheme II.37. Retrosynthetic analysis of the C9-C17 fragment

II.2.2.1.3.b. Synthesis of the C9-C17 fragment


The synthesis of the C9-C17 fragment began with the protection of 3-methylbut-3enol (**II.61**) as a *para*-methoxyphenyl (PMP) ether using diisopropylazodicarboxylate (DIAD) and triphenylphosphine (PPh₃) in refluxing THF.^{39,190} The latter was then engaged in a Sharpless dihydroxylation¹⁹¹ with AD-mix α (*t*-BuOH/H₂O, 0 °C) to afford diol **II.63** in quantitative yield and 94% ee (Scheme II.38).¹⁹² The primary alcohol was

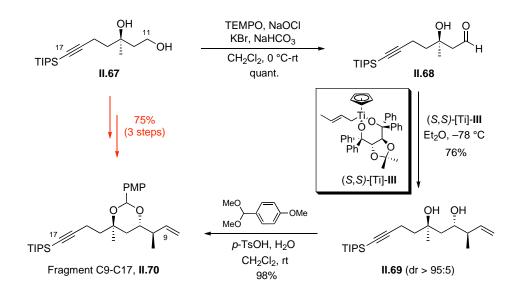
¹⁹⁰ Mitsunobu, O.; Yamada, Y. Bull. Chem. Soc. Japan 1967, 40, 2380-2382.

¹⁹¹ (a) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. J. Am. Chem. Soc. **1988**, *110*, 1968-1970. (b) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. **1994**, *94*, 2483-2547.

¹⁹² The selectivity of the Sharpless dihydroxylation was determined by chiral SFC analysis of the corresponding epoxide **II.64** (CHIRALCEL OD-H, 100 bar, 5 mL.min⁻¹, 5% MeOH). This result was in absolute accordance with the studies performed by Tietze *et al.* who demonstrated that the nature of the

later converted to the corresponding mesylate (MsCl, Et₃N, 0 °C) which was subsequently treated with K_2CO_3 in MeOH to afford epoxide II.64¹⁹³ in 88% yield over two steps. Ring-opening of the epoxide with allenyl magnesium bromide¹⁹⁴ afforded an inseparable mixture of alcohol II.65 and bromohydrin II.66, which was treated with K_2CO_3 (MeOH, rt) in order to convert the bromohydrin back to the epoxide. Flash column chromatography over silica gel eventually afforded the desired product II.65 in 82% yield as well as 10% of the starting epoxide II.64. Compound II.65 bearing a terminal alkyne was then selectively protected as a triisopropylsilylacetylene after treatment with methyl magnesium bromide and triisopropylsilyl chloride (TIPSCI), and the PMP protecting group was removed using cerium ammonium nitrate (CAN) in a water/acetonitrile mixture at rt to afford diol II.67 in 75% yield over two steps. Diol II.67 was obtained in seven steps starting from II.61 with an overall yield of 45.5%.

Scheme II.38. Synthesis of the C11-C17 fragment


protecting group had a strong influence on the enantioselectivity of the dihydroxylation, see : Tietze, L. F.; Görlitzer, J. *Synthesis* **1998**, 873-878.

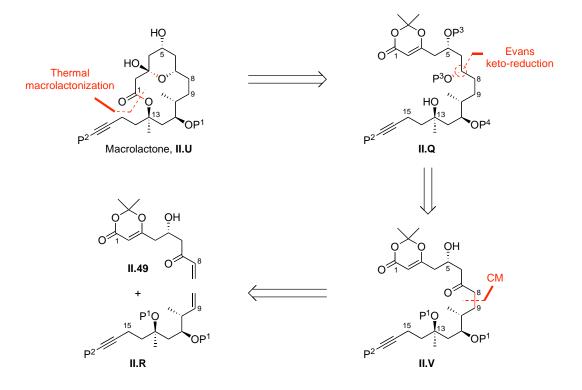
¹⁹³ (a) Anikin, A.; Maslov, M.; Siele, J.; Blaurock, S.; Baldamus, J.; Hennig, L.; Findeisen, M.; Reinhardt, G.; Oehme, R.; Welzel, P. *Tetrahedron* 2003, *59*, 5295-5306. (b) Sparks, S. M.; Chen, C.-L.; Martin, S.

F. Tetrahedron 2007, 63, 8619-8635.

¹⁹⁴ Allenylmagnesium bromide was generated *in situ* from propargyl bromide and metallic magnesium in the presence of a catalytic amount of HgCl₂, see: (a) Nakayama, Y.; Kumar, G. B.; Kobayashi, Y. J. Org. Chem. **2000**, 65, 707-715. (b) Dimitrieva, L. L.; Nikitina, L. P.; Albanov, A. I.; Nedolya, N. A. Russian J. Org. Chem. **2005**, 41, 1583-1593.

In order to complete the synthesis of the C9-C17 fragment of lyngbouilloside, diol **II.67** was engaged in a TEMPO-mediated oxidation of the primary alcohol to provide aldehyde **II.68** in quantitative yield (Scheme II.39).¹²⁹ This aldehyde was then crotylated in a highly stereoselective fashion using the chiral titanium reagent (S,S)-[Ti]-**III** to afford the corresponding homoallylic alcohol **II.69** as a single diastereoisomer¹⁹⁵ in 76% yield. Finally, protection of diol **II.69** as a *p*-methoxybenzylidene acetal enabled the isolation of the C9-C17 fragment **II.70** in a quasi-quantitative yield. Three steps were therefore necessary to transform **II.67** into **II.70** with a high overall yield (75%) and an excellent diastereoselectivity.

Scheme II.39. Synthesis of the C9-C17 fragment


II.2.2.1.4. Synthesis of the macrolide core of lyngbouilloside

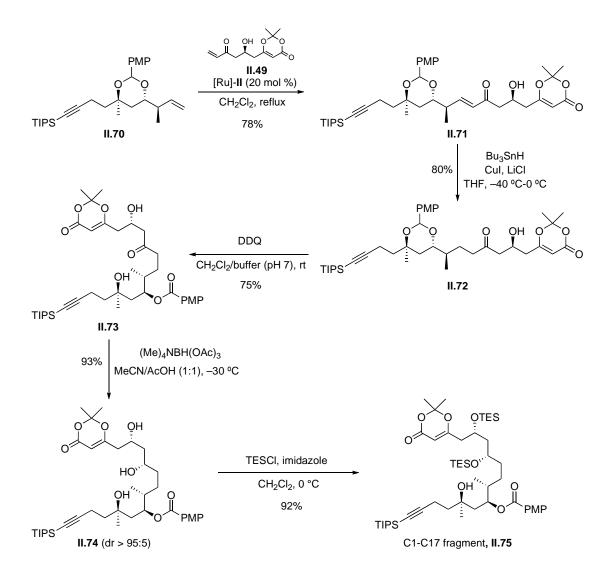
II.2.2.1.4.a. Retrosynthetic analysis

As depicted in Scheme II.40, the macrolactone core of lyngbouilloside, **II.U**, would be obtained *via* a thermal macrolactonization of the fully functionalized C1-C17 fragment **II.Q**. The latter would in turn be obtained through a cross-metathesis between enone **II.49** and the olefinic coupling partner **II.R** while the C7 stereogenic center

¹⁹⁵ The diastereoisomeric ration was determined by ¹H NMR analysis of the crude reaction mixture.

would be controlled by a tetramethylammonium triacetoxyborohydride (TABH)mediated stereoselective β -hydroxy ketone reduction.^{196,226}

Scheme II.40. Retrosynthetic analysis of macrolactone II.U


II.2.2.1.4.b. Synthesis of the C1-C17 fragment

With the syntheses of the C1-C8 II.49 and C9-C17 II.70 subunits secured, the next step was the construction of the macrolactone precursor. The two olefinic coupling partners II.49 and II.70 were thus subjected to a second generation Hoveyda-Grubbs catalyst (20 mol %)-mediated cross-metathesis in refluxing CH₂Cl₂ to furnish enone **II.71** in 78% yield (Scheme II.41). However, it is worth pointing out that the hydroxyl group at C13 needed to be protected prior to the CM in order to prevent any concomitant oxo-Michael addition that could occur in the presence of the free hydroxyl group.¹⁹⁷ The α , β -unsaturated ketone **II.71** was then reduced chemoselectively using an in situ generated hydridocuprate (LiCl, CuI, Bu₃SnH, THF, -40 °C)¹⁹⁸ to afford the saturated ketone II.72 which was treated with 2,3-dichloro-5,6-dicyano-1,4benzoquinone (DDQ) in a CH_2Cl_2 /phosphate buffer (pH = 7.2) mixture in order to

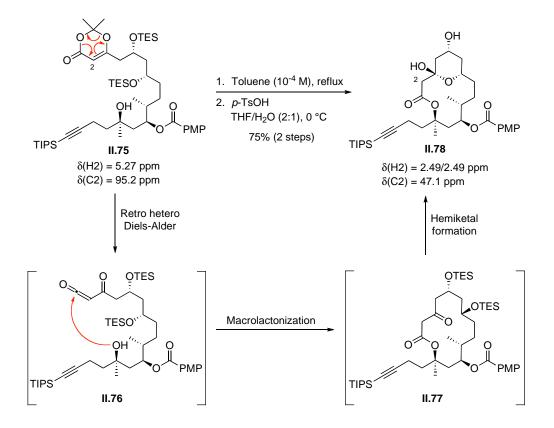
 ¹⁹⁶ Evans, D. A.; Chapman, K. T. *Tetrahedron Letters* **1986**, *27*, 5939-5942.
 ¹⁹⁷ Fuwa, H.; Noto, K.; Sasaki, M. Org. Lett. **2010**, *12*, 1636-1639.

¹⁹⁸ Lipshutz, B. H.; Ung, C. S.; Sengupta, S. Synlett **1989**, 64-66.

oxidatively open the cyclic PMP acetal in a regioselective fashion.¹⁹⁹ The resulting β -hydroxy ketone **II.73** was then diastereoselectively reduced using Evans protocol¹⁹⁶ (Me₄NBH(OAc)₃, MeCN/AcOH, -40 °C) to afford the corresponding triol **II.74** in 70% overall yield as a single diastereoisomer (dr > 95:5) as confirmed by ¹H NMR analysis of the crude reaction mixture. Compound **II.74** was finally protected as a bis-triethylsilyl (TES) ether (TESCl, imidazole, CH₂Cl₂, 0 °C) in order to complete the synthesis of the macrolactone precursor **II.75**, which was isolated in 92% yield.

Scheme II.41. Synthesis of the C1-C17 fragment

¹⁹⁹ Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. *Tetrahedron Lett.* **1982**, *23*, 889-892.


II.2.2.1.4.c. Macrolide core formation

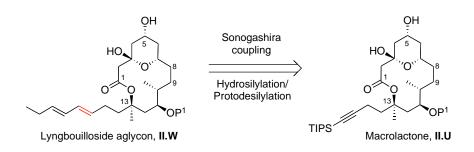
The obtained C1-C17 linear fragment **II.75** was ultimately subjected to a sequential acylketene macrolactonization/pyran hemiketal formation in order to build up the macrolactone core of lyngbouilloside **II.78**.^{156,200}

Hence, the thermolysis of dioxinone **II.75** ($\delta_{H2} = 5.27$ ppm, $\delta_{C2} = 95.2$ ppm) in refluxing toluene under diluted conditions ($c = 10^{-4}$ M) promoted a retro-hetero Diels-Alder reaction that generated the highly reactive acylketene intermediate **II.76** which was instantaneously trapped intramolecularly by the tertiary alcohol to form the corresponding macrocyclic β -keto lactone **II.77** along with trace amounts of the corresponding methyl ketone derivative resulting from keto-acid decarboxylation (Scheme II.42).²⁰¹ The crude reaction mixture was finally treated with *p*-toluenesulfonic acid in a THF/H₂O mixture in order to concomitantly remove the TES protecting groups and generate the desired hemiketal **II.78** ($\delta_{H2} = 2.59/2.49$ ppm, $\delta_{C2} = 47.1$ ppm) in 75% yield over two steps.

²⁰⁰ For a recent application of the acylketene dual macrolactonization/pyran hemiketal formation reaction, see: (f) Trost, B. M.; Gunzner, J. L. *J. Am. Chem. Soc.* **2001**, *123*, 9449-9450. (g) Trost, B. M.; Gunzner, J. L.; Dirat, O.; Rhee, Y. H. *J. Am. Chem. Soc.* **2002**, *124*, 10396-10415.

²⁰¹ Wentrup, C.; Heilmayer, W.; Kollenz, G. Synthesis **1994**, 1219-1248.

Scheme II.42. Synthesis of macrolactone II.78 via thermal macrolactonization


II.2.2.1.5. Final efforts towards the synthesis of lyngbouilloside aglycon

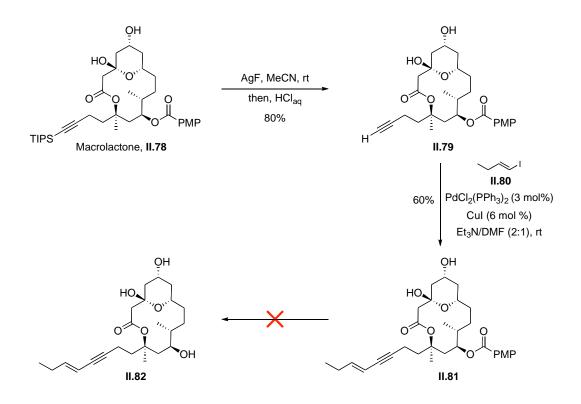
II.2.2.1.5.a. Retrosynthetic analysis of the lyngbouilloside aglycon

With the synthesis of the macrolactone core secured, we next turned our attention to the construction the (E,E)-dienic side chain which was envisioned through a three-step sequence featuring a Sonogashira coupling²⁰² followed by a one-pot hydrosilylation/protodesilylation (Scheme II.43).²⁰³

²⁰² (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* **1975**, *16*, 4467-4470. (b) Chinchilla, R.; Nájera, C. *Chem Rev.* **2007**, *107*, 874-922.

²⁰³ (a) Trost, B. M.; Ball, Z. T.; Jöge, T. J. Am. Chem. Soc. 2002, 124, 7922-7923. (b) Lacombe, F.; Radkowski, K.; Seidel, G.; Fürstner, A. Tetrahedron 2004, 60, 7315-7324. (c) Kleinbeck, F.; Carreira, E. M. Angew. Chem. Int. Ed. 2009, 48, 578-581.

Scheme II.43. Retrosynthetic analysis of the lyngbouilloside aglycon


II.2.2.1.5.b. Attempted synthesis of the lyngbouilloside aglycon

II.2.2.1.5.b.1. Introduction of the lyngbouilloside side chain

The introduction of the side chain thus began with the removal of the TIPS protecting group using silver(I) fluoride (MeCN, rt) followed by a mild acidic work-up (Scheme II.44).²⁰⁴ The corresponding terminal alkyne **II.79**, which was obtained in 80% yield, was subsequently engaged in a PdCl₂(PPh₃)₂/CuI-catalyzed Sonogashira coupling with (*E*)-1-iodobut-1-ene (**II.80**)²⁰⁵ to afford the desired Sonogashira product **II.81** in a moderate 60% yield. At this time, instead of reducing the alkyne moiety to the corresponding (*E*)-olefin, we decided to explore the cleavage of the *p*-methoxybenzoate.

²⁰⁴ Kim, S.; Kim, B.; In, J. Synthesis **2009**, *12*, 1963-1968.

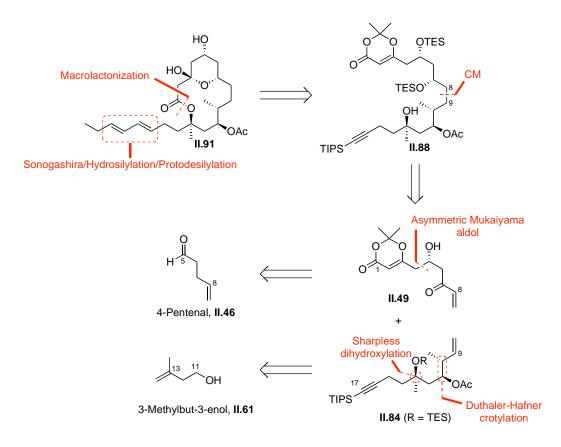
²⁰⁵ Prepared according to a reported procedure starting from but-1-yne, see: Zneifel, G.; Lewis, W. J. Org. Chem. **1978**, 43, 2739-2744.

Scheme II.44. Introduction of the lyngbouilloside side chain and attempted cleavage of the *p*-methoxybenzoate

II.2.2.1.5.b.2. Attempted cleavage of the *p*-methoxybenzoate

Unfortunately, the cleavage of the *p*-methoxybenzoate appeared particularly troublesome as none of the conditions tested (Table II.6, entries 1-5)²⁰⁶ resulted in the isolation of the fully deprotected lyngbouilloside precursor most likely due the inherent reactivity of the *p*-methoxybenzoate combined to the steric congestion in this region of the macrolide core.

Entry	Reagents (equiv)	Solvent	T (°C)	t (h)	Yield (%)
1	K ₂ CO ₃ (4.0)	MeOH	rt	5	_a
2	K ₂ CO ₃ (10.0)	MeOH	rt-40	4	_a
3	LiOH (3)	THF/H ₂ O (10:1)	0 °C-rt	5	_a
4	NaOH (10)	THF/H ₂ O (10:1)	rt	9	_a
5	NaOMe (0.5)	MeOH	0 °C	2	_b

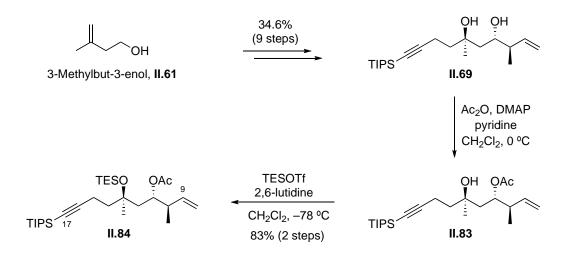

Table II.6. Attempted cleavage conditions

^a Starting material **II.81** was recovered . ^b Decomposition of the substrate.

²⁰⁶ (a) Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd edition, J. Wiley & Sons, **1991**. (b) Kocienski, P. J. *Protecting Groups*, Georg Thieme Verlag, **1994**.

II.2.2.2. SECOND STRATEGY TOWARDS THE SYNTHESIS OF LYNGBOUILLOSIDE

In front of the experienced difficulties to cleave the *p*-methoxybenzoate, we decided to slightly modify the protecting group strategy by replacing the *p*-methoxybenzoate by an acetate (Scheme II.45).²⁰⁶



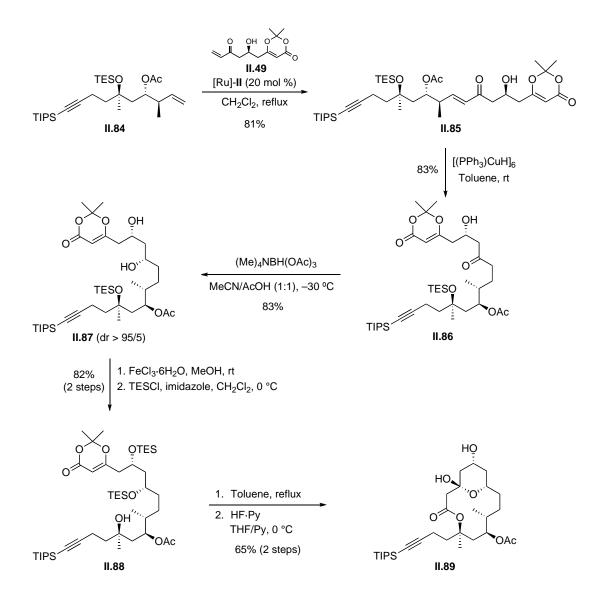
Scheme II.45. Second synthetic strategy

II.2.2.2.a. Synthesis of the C9-C17 fragment

The synthesis of the C9-C17 fragment thus began with the suitable protection of diol **II.69**, which was previously obtained in nine steps and 34.6% overall yield starting from commercially available 3-methyl-3-enol (**II.61**) (Scheme II.46). In this context, the secondary alcohol was treated with acetic anhydride (DMAP, Py, CH₂Cl₂, 0 °C) to afford the corresponding ester derivative **II.83**, which was immediately subjected to TESOTf in the presence of 2,6-lutidine to convert the tertiary alcohol into a TES ether.

The fully protected compound **II.84** was eventually isolated in 83% yield over two steps.

Scheme II.46. Synthesis of the C9-C17 fragment

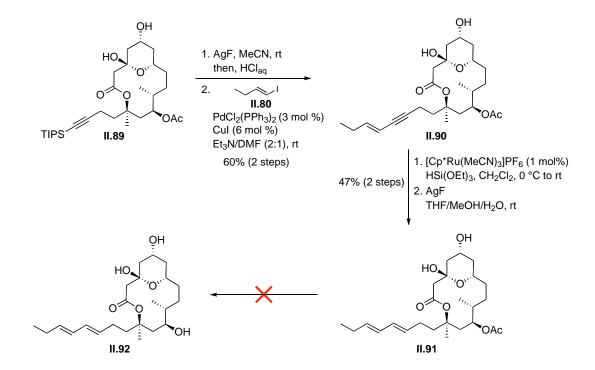

II.2.2.2.b. Synthesis of the macrolide core of lyngbouilloside

The next step in the synthesis was to carry out the key CM between enone **II.49** and the olefinic coupling partner **II.84** to provide the linear C1-C17 fragment **II.85** (Scheme II.47). This was best achieved using the second generation Hoveyda-Grubbs catalyst in refluxing CH₂Cl₂ as the desired coupled product was obtained in 81% yield. The resulting enone was then selectively reduced to the corresponding β -hydroxy ketone using Stryker's reagent [(PPh₃)CuH₆, toluene, rt]²⁰⁷ and subsequently subjected to the approved Evans TABH-mediated 1,3-*anti* reduction (Me₄NBH(OAc)₃, MeCN/AcOH, -30 °C) to afford the desired 1,3-*anti* diol **II.87** as a single diastereoisomer²⁰⁸ in 69% overall yield. Removal of the TES protecting group from the tertiary alcohol using FeCl₃·6H₂O (MeOH, rt)²⁰⁹ and treatment of the resulting triol with TESCl (imidazole, CH₂Cl₂, 0 °C) allowed to selectively protect the two secondary alcohol while keeping the tertiary alcohol free and thus complete the synthesis of the macrolactone precursor **II.88** (82% over two steps). The latter was finally engaged in the sequential thermal macrolactonization/pyran hemiketal formation to afford macrolactone **II.89** in 65% yield.

²⁰⁷ (a) Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem. Soc 1988, 110, 291-293.
(b) Paterson, I.; Blakey, S. B.; Cowden, C. J. Tetrahedron Lett. 2002, 43, 6005-6008.

 $[\]frac{208}{100}$ The diastereoisomeric ratio was determined by ¹H NMR of the crude reaction mixture.

²⁰⁹ Yang, Y.-Q.; Cui, J.-R.; Zhu, L.-G.; Sun, Y.-P.; Wu, Y. Synlett **2006**, 1260-1262.



Scheme II.47. Synthesis of the C1-C17 fragment

II.2.2.2.c. Synthesis of lyngbouilloside aglycon

With compound **II.89** in hand, the stage was finally set for the construction of the (E,E)-octadienyl side chain and the final deprotection which would provide the much-coveted lyngbouilloside aglycon. The TIPS protecting group was therefore removed using AgF (MeCN, rt) followed by a mild acidic work-up, and the resulting terminal alkyne was subsequently engaged in the key PdCl₂(PPh₃)₂/CuI-catalyzed Sonogashira coupling with (E)-1-iodobut-1-ene (**II.80**) to afford the corresponding Sonogashira product **II.90** in a moderate 60% yield (Scheme II.48). The latter was then

subjected to the one-pot hydrosilylation/protodehydrosilylation²¹⁰ sequence developed by Trost *et al.* to afford the lyngbouilloside aglycon precursor **II.91** in 47% yield over two steps.

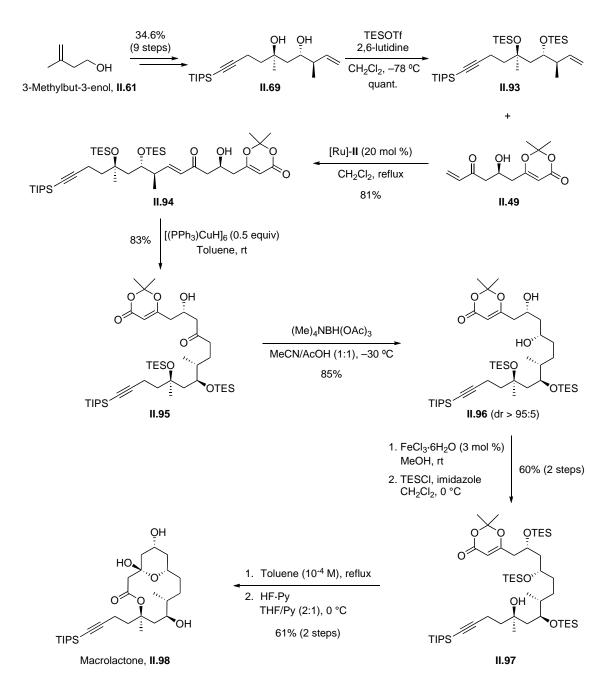
Scheme II.48. Towards the synthesis of lyngbouilloside aglycon

At this stage, we next focused on the crucial deprotection step, which would ultimately provide the lyngbouilloside aglycon. Unfortunately, despite the plethora of reaction conditions that were tested (K₂CO₃, NaOH, LiOH or even Na/MeOH), the cleavage of the acetate appeared once again particularly troublesome. The use of enzymes such as *Candida antarctica* B lipase (CAL-B), PLE, *Amano AK*, *Novozym* or *Candida Rugosa* under hydrolytic conditions or the use of stronger reagents such as DIBAL-H also resulted in no success as the starting material was either recovered or underwent total decomposition.

The unexpected lack of reactivity of both the acetate and the *p*-methoxybenzoate protecting groups led us to believe that electronic effects were most probably not responsible. As a matter of fact, molecular models of the two compounds **II.81** and

²¹⁰ (a) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2001, 123, 12726-12727. (b) Trost, B. M.; Machacek, M. R.; Ball, Z. T. Org. Lett. 2003, 5, 1895-1898. (c) Chung, L. W.; Yu, Y.-D.; Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2003, 125, 11578-11582. (d) Bressy, C.; Bargiggia, F.; Guyonnet, M.; Arseniyadis, S.; Cossy, J. Synlett 2008, 4, 565-568. (d) Bressy, C.; Vors, J.-P.; Hillebrand, S.; Arseniyadis, S.; Cossy, J. Angew. Chem, Int. Ed. 2008, 47, 10137-10140.

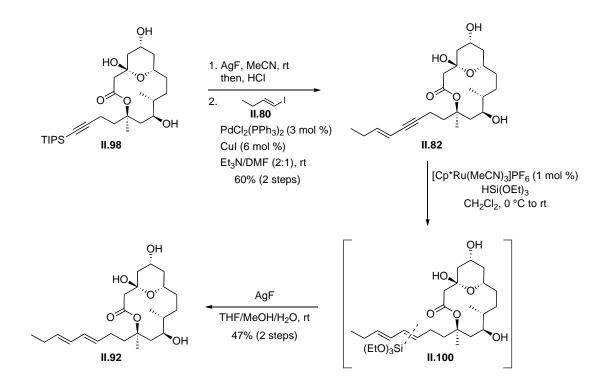
II.91 showed a possible restricted conformation of each macrolide stabilized by an intramolecular hydrogen bond between the carbonyl of the acetate/*p*-methoxybenzoate and the hemiketal, rendering the former inaccessible and therefore the deprotection impossible.


II.2.2.3. FINAL STRATEGY

After considering the rather promising results obtained so far in the previous routes, we decided to try an ultimate approach based on a silyl protecting group strategy that would avoid any internal hydrogen bond to occur and thus render the C11 hydroxyl much more accessible. Consequently, we opted for a TES protecting group, which would assure a relatively easy deprotection step without significantly altering the synthesis. In addition, we were fully aware that the TES groups would be removed simultaneously after the macrolactonization step, however, we were confident that a selective glycosylation of the less hindered C5 hydroxyl would be favoured in the final steps of the synthesis.

II.2.2.3.1. Synthesis of the macrolactone core

The synthesis of the macrolactone core of lyngbouilloside thus began with the suitable protection of diol **II.69** (Scheme II.49). The latter was therefore treated with an excess of TESOTf (2,6-lutidine, CH₂Cl₂, -78 °C) to quantitatively afford the bis-TES ether **II.93** which was going to be engaged in the exact same reaction sequence as previously. Hence, compound **II.93** was first subjected to the usual second generation Hoveyda-Grubbs catalyst-mediated CM with enone **II.49** to afford the desired coupled product **II.94** in 81% yield. The resulting enone was then reduced to the corresponding saturated ketone using Stryker's reagent [(PPh₃)CuH₆, toluene, rt] while a highly diastereoselective *anti*-reduction of the β-hydroxy ketone **II.95** under Evans' conditions (Me₄NBH(OAc)₃, MeCN/AcOH, -30 °C) afforded the desired 1,3-*anti* diol **II.96** as a unique diastereoisomer as determined by ¹H NMR analysis of the crude reaction mixture. The TES protecting groups were removed under mild conditions using a catalytic amount of FeCl₃·6H₂O in methanol,²⁰⁹ and the resulting secondary alcohols were re-protected as TES ethers (TESCl, imidazole, CH₂Cl₂, 0 °C) to afford the key macrolide precursor **II.97** in 60% yield over two steps.


With dioxinone **II.97** in hand, the stage was set for the sequential thermal macrolactonization/pyran hemiketal formation which would ultimately afford the lyngbouilloside aglycon precursor. To our delight, thermolysis of dioxinone **II.97** in rigorously anhydrous refluxing toluene ($c = 10^{-4}$ M) resulted in the formation of the macrolactone core, while treatment with HF·Py in a THF/Py mixture finally afforded the desired fully TES-deprotected macrolactone **II.98** in 61% overall yield.

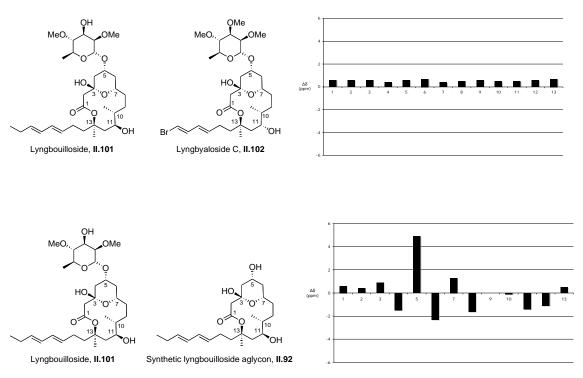
Scheme II.49. Synthesis of macrolactone II.98

II.2.2.3.2. End-game

In order to complete the synthesis, macrolactone **II.98** was treated with AgF (MeCN, rt) to afford the corresponding terminal alkyne which was engaged in the same $PdCl_2(PPh_3)_2/CuI$ -catalyzed Sonogashira coupling as previously (Scheme II.50). The resulting enyne was then subjected to the approved one-pot hydrosilylation/protodesilylation sequence,^{203a,210} which resulted in the isolation of lyngbouilloside aglycon **II.92** in 47% yield over two steps.

Scheme II.50. Synthesis of lyngbouilloside aglycon

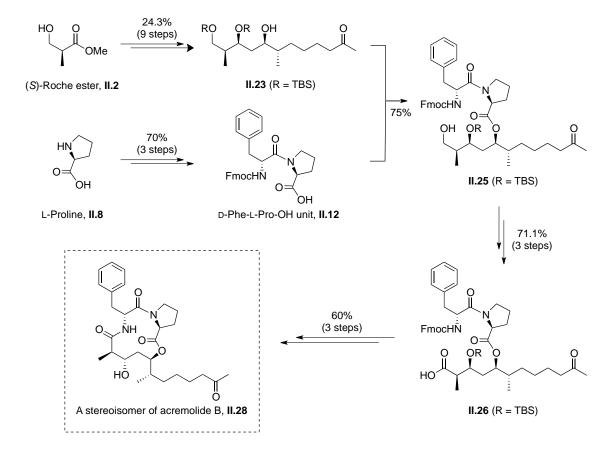
In summary, the proposed structure of lyngbouilloside aglycon **II.92** was synthesized in 21 steps and 2.1% overall yield starting from commercially available 3-methylbut-3enol (**II.61**) featuring an acylketene macrolactonization and a late stage side chain introduction as the key steps.

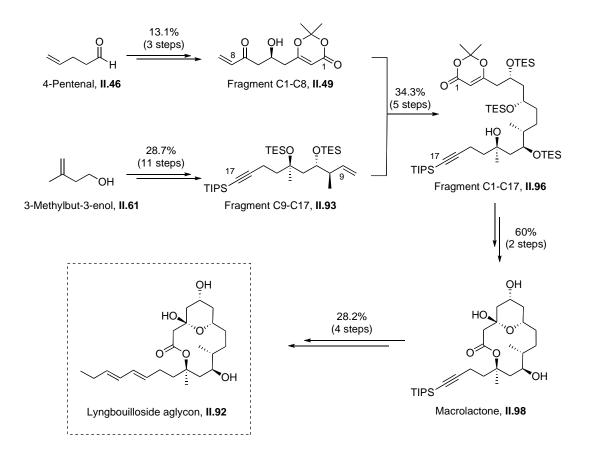

II.2.2.3.3. Analysis of NMR data

Interestingly, comparison of the NMR chemical shifts of our synthetic aglycon with the ones reported for the natural lyngbouilloside (Table II.7, Figure II.2, top), particularly in the C9-C13 region, strongly suggests that the structure of the natural product may have been originally misassigned. This observation, which was also made by Ley and co-workers after spectroscopic analysis and DFT chemical shift calculations of a closely related PMB-protected macrolactone,¹⁴⁵ is also comforted by the fact that the ¹³C NMR data of both lyngbouilloside **II.101** and the more recently reported lyngbyaloside C **II.102** (Figure II.12)¹⁴² are virtually identical within the region of the macrocycle (Figure II.12, bottom) while the proposed structures of the two natural products differ at C11.

11.101.							
Carbon	δ for (II.101) ^a	δ for (II.92) ^a ($\Delta\delta$)	δ for (II.102) ^b ($\Delta\delta$)				
1	172.9	172.3 (+0.6)	172.3 (+0.6)				
2	47.5	47.1 (+0.4)	46.9 (+0.6)				
3	97.2	96.3 (+0.9)	96.6 (+0.6)				
4	41.9	43.4 (-1.5)	41.5 (+0.4)				
5	69.8	64.9 (+4.9)	69.2 (+0.6)				
6	38.4	40.7 (-2.3)	37.7 (+0.7)				
7	70.2	68.9 (+1.3)	69.8 (+0.4)				
8	31.9	33.5 (-1.6)	31.4 (+0.5)				
9	33.0	31.5 (+1.5)	32.4 (+0.6)				
10	37.5	37.6 (-0.1)	37.0 (+0.5)				
11	66.0	67.4 (-1.4)	65.5 (+0.5)				
12	44.7	45.8 (-1.1)	44.1 (+0.6)				
13	86.9	86.4 (+0.5)	86.2 (+0.7)				

Table II.7. C1 to C13 Chemical shifts (δ , ppm) for lyngbouilloside **II.101**, lyngbyaloside C **II.102** and our synthetic aglycon **II.92**, and the differences ($\Delta\delta$, ppm) with lyngbouilloside **II.101**.^a


^a 150 MHz. ^b 100 MHz.


Figure II.10. ($\Delta\delta$, ppm) for each carbon between C1 and C13 of lyngbouilloside **II.101** and our synthetic aglycon **II.92** (top), and lyngbouilloside **II.101** and lyngbyaloside C **II.102** (bottom).

II.3. CONCLUSIONS

In summary, we developed a straightforward and flexible synthesis of an isomer of acremolide B based on two stereoselective allylations/crotylations to control all four stereogenic centers of the C1-C12 polypropionate segment, a cross-metathesis to introduce the fatty acid side chain, an esterification to introduce the dipeptide unit and a macrolactamization to build the macrolide core. Hence, the (2R,3S,5R,6S)-isomer of acremolide B was synthesized in 16 steps and 7.6% overall yield starting from (*S*)-Roche ester **II.2**.

Following this work, we also completed the first synthesis of the proposed structure of lyngbouilloside aglycon. The latter was obtained in 21 steps and 2.1% overall yield starting from commercially available 4-pentenal and 3-methylbut-3-enol and featuring a Sonogashira coupling followed by a hydrosilylation/deprotosilylation sequence to build the (E,E)-diene side chain, and an acylketene macrolactonization to build the macrolide core. In addition, by comparing the NMR chemical shifts of our synthetic aglycon with the ones reported for the natural lyngbouilloside, we proposed a possible stereochemical reassignment.

II.4. EXPERIMENTAL PART OF CHAPTER II

II.4.1. MATERIALS AND METHODS

II.4.1.1. Reagents and solvents

All commercially available chemicals were used as purchased without further purification. Dichloromethane and toluene were distilled from calcium hydride. THF and Et₂O were distilled from sodium/benzophenone. DMF was distilled under vacuum over MgSO₄, and pyridine was distilled and stored over KOH pellets.

II.4.1.2. General instruments

Melting points were performed on a Kofler bench calibrated with an analytically pure standard.

Infrared spectra (**IR**) were recorded on a Bruker TENSORTM 27 (IRTF) and wave numbers are indicated in cm⁻¹.

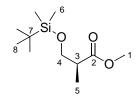
NMR spectra were recorded on a Bruker AVANCE 400 spectrometer. ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra were recorded at 100 MHz. Spectra recorded in CDCl₃ were referenced to residual CHCl₃ at 7.26 ppm for ¹H or 77.0 ppm ¹³C. Spectra recorded in d_6 -DMSO were referenced to residual DMSO at 2.49 ppm for ¹H or 39.5 ppm for ¹³C. Coupling constants (*J*) were given in Hertz (Hz). Multiplicity with respect to carbon deduced from DEPT experiments. Abbreviations used in the description of resonance were as follows: singlet: s, doublet: d, triplet: t, quartet: q, septet: sept, multiplet: m, double of doublet: dd, broad: br, apparent: app.

Optical rotations ($[\alpha]_D^T$ (*c* g/100 mL)) were measured on a Perkin-Elmer polarimeter (Model 343 Plus), using the sodium D line.

High-resolution mass spectra (HRMS) were performed by "Groupe de Spectrométrie de Masse de l'Université Pierre et Marie Curie" (Paris, FRANCE).

II.4.1.3. Chromatography

Thin layer chromatography (TLC) was performed on precoated TLC plates, silica gel 60 F_{254} (Merck). The spots on the TLC plates were visualized with UV lamp (254 nm) and/or stained by using solutions of *p*-anisaldehyde/sulfuric acid/acetic acid in EtOH, phosphomolybdic acid in EtOH or KMnO₄/K₂CO₃/AcOH in water followed by heating.


Flash chromatography was performed on silica gel 60 (230-400 mesh, Merck).

Supercritical fluid chromatography (SFC) was performed on a Minigram Berger Mettler-Toledo apparatus.

II.4.2. EXPERIMENTAL PROCEDURES

II.4.2.1. Synthesis of *epi*-acremolide

II.4.2.1.1. Synthesis of (S)-3-(tert-butyldimethylsilanyloxy)-2-methyl propionic acid methyl ester²¹¹

MW (g/mol): 202.2491

Molecular formula: C₁₃H₁₄O₂

To a solution of (*S*)-3-hydroxy-2-methylpropionic acid methyl ester (**II.2**) (5 g, 42.3 mmol) in CH₂Cl₂ (170 mL) at 0 °C was added imidazole (3.5 g, 50.8 mmol) followed by *tert*-butyldimethylsilyl chloride (7.5 g, 46.6 mmol), and the reaction mixture was then stirred at rt for 22 h until complete conversion of the starting material (reaction monitored by TLC analysis). The reaction mixture was then filtered, concentrated under reduced pressure, and the crude residue was purified by flash chromatography (PE/Et₂O, 99:1) to afford 3-(*tert*-butyldimethylsilanyloxy)-2-methylpropionic acid methyl ester (9.8 g, 99%) as a colourless oil. Its spectroscopic and physical data matched the ones reported in the literature.²¹¹

¹**H NMR** (400 MHz, CDCl₃) δ 3.74 (dd, J = 9.7, 6.8 Hz, 1H, H₄), 3.64 (s, 3H, H₁), 3.61 (dd, J = 9.7, 6.0 Hz, 1H, H₄), 2.61 (sext_{app}, J = 7.0 Hz, 1H, H₃), 1.10 (d, J = 7.0 Hz, 3H, H₅), 0.84 (s, 9H, H₈), 0.01 (s, 3H, H₆), 0.00 (s, 3H, H₆).

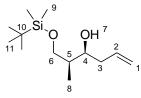
¹³**C** NMR (100 MHz, CDCl₃) δ 175.5 (s, C₂), 65.2 (t, C₄), 51.5 (q, C₁), 42.5 (d, C₃), 25.8 (q, 3C, C₈), 18.2 (s, C₇), 13.5 (q, C₅), -5.5 (q, 2C, C₆).

²¹¹ Marshall, J. A.; Blough, B. E. J. Org. Chem. **1990**, 55, 1540–1547.

II.4.2.1.2. Synthesis of (R)-3-(tert-butyldimethylsilanyloxy)-2-methyl propan-1-ol (II.3)²¹²

MW (g/mol): 204.3819

Molecular formula: C₁₀H₂₄O₂Si


To a solution of 3-(*tert*-butyldimethylsilanyloxy)-2-methylpropionic acid methyl ester (9.5 g, 40.8 mmol) in toluene (150 mL) at -78 °C, was slowly added DIBAL-H (98.5 mL of a 1M solution in toluene, 98.5 mmol). The resulting reaction mixture was stirred for 20 min, time after which it was quenched with a 1:1 mixture of EtOAc/saturated aqueous solution of sodium potassium tartrate (200 mL). Stirring was continued at rt overnight before the organic layer was separated. The aqueous layer was then extracted with EtOAc (2 x 100 mL), and the combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography (PE/EtOAc, 99:1) to afford (*R*)-3-(*tert*-butyldimethylsilanyloxy)-2-methylpropan-1-ol (**II.3**) as colorless oil (7.9 g, 95%). The spectroscopic and physical data of **II.3** matched the ones reported in the literature.²¹²

¹**H NMR** (400 MHz, CDCl₃) δ 3.62 (dd, J = 9.8, 4.8 Hz, 1H, H₁), 3.53 (d, J = 5.8 Hz, 2H, H₃), 3.48 (dd, J = 9.8, 7.5 Hz, 1H, H₁), 3.11 (br s, 1H, H₄), 1.84 (sext_{app}, J = 6.8 Hz, 1H, H₂), 0.83 (s, 9H, H₈), 0.78 (d, J = 7.0 Hz, 3H, H₅), 0.00 (s, 6H, H₆)

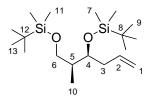
¹³C NMR (100 MHz, CDCl₃) δ 68.7 (t, C₁), 68.2 (t, C₃), 37.0 (d, C₂), 25.8 (q, 3C, C₈), 18.2 (s, C₇), 13.1 (q, C₅), -5.5 (q, C₆), -5.6 (q, C₆).

²¹² Roush, W. R.; Palkowitz, A. D.; Palmer, M. A. J. Org. Chem. **1987**, 52, 316–318.

II.4.2.1.3. Synthesis of (2S,3S)-1-(tert-butyldimethylsilanyloxy)-2-methyl hex-5-en-3-ol (II.5)²¹²

MW (g/mol): 244.4457

Molecular formula: C₁₃H₂₈O₂Si


To a solution of oxalyl chloride (2.9 mL, 33.2 mmol) in CH_2Cl_2 (110 mL) at -78 °C was slowly added DMSO (5.1 mL, 66.4 mmol), and the reaction mixture was stirred for 30 min. (*R*)-3-(*tert*-butyldimethylsilanyloxy)-2-methylpropan-1-ol (**II.3**) (3.36 g, 16.1 mmol) was then added dropwise and stirring was continued for an additional 30 min at the same temperature. Et₃N (13.9 mL, 99.6 mmol) was then added and the reaction mixture was warmed up to rt and quenched with a saturated aqueous NH₄Cl solution (50 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (2 x 100 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. Hexane was then added and the precipitate was filtered over Celite[®]. The solvent was removed under reduced pressure and the resulting crude aldehyde was used in the next step without further purification.

To a solution of the (*R*,*R*)-[Ti]-**II** complex (13.2 g, 21.9 mmol) in Et₂O (166 mL) at -78 °C was added allylmagnesium chloride (9.9 mL of a 2M solution in THF, 19.9 mmol), and the reaction mixture was stirred for 2 h at 0 °C. The solution was then cooled to -78 °C and the crude aldehyde (16.1 mmol) was added dropwise. The resulting reaction mixture was stirred for 4 h at the same temperature until complete conversion of the starting material (reaction monitored by TLC analysis), quenched with water (80 mL), and stirred overnight at rt. The reaction mixture was then filtered over Celite[®], and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 100 mL), and the combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under vacuum. The resulting crude residue was purified by flash chromatography (PE/EtOAc, 97:3) to afford (2*S*,3*S*)-1-(*tert*-butyldimethylsilanyloxy)-2-methylhex-5-en-3-ol (**II.5**) (3.6 g, 71%) as a single stereoisomer, and as a colourless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 5.78 (m, 1H, H₂), 5.14-4.94 (m, 2H, H₁), 3.80 (m, 1H, H₄), 3.69 (dd, J = 10.0, 6.0 Hz, 1H, H₆), 3.60 (dd, J = 9.8, 5.0 Hz, 1H, H₆), 2.92 (d, J = 3.0 Hz, 1H, H₇), 2.29-2.05 (m, 2H, H₃), 1.66 (m, 1H, H₅), 0.87 (d, J = 7.0 Hz, 3H, H₈), 0.83 (s, 9H, H₁₁), 0.00 (s, 6H, H₉).

¹³**C NMR** (100 MHz, CDCl₃) δ 135.7 (d, C₂), 116.9 (t, C₁), 73.9 (d, C₄), 68.2 (t, C₆), 39.0 (d, C₅), 38.4 (t, C₃), 25.8 (q, 3C, C₁₁), 18.2 (s, C₁₀), 10.1 (q, C₈), -5.6 (q, C₉), -5.7 (q, C₉).

II.4.2.1.4. Synthesis of (4S,5S)-4,6-bis-(tert-butyldimethylsilanyloxy)-5methylhex-1-ene

MW (g/mol): 358.7066

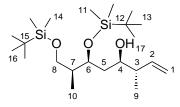
Molecular formula: C₁₉H₄₂O₂Si₂

To a solution of (2S,3S)-1-(*tert*-butyldimethylsilanyloxy)-2-methylhex-5-en-3-ol (**II.5**) (3.6 g, 14.7 mmol) in CH₂Cl₂ (75 mL) at -78 °C was added 2,6-lutidine (3.4 mL, 29.5 mmol) and TBSOTf (5.8 g, 22.1 mmol). The resulting reaction mixture was stirred for 90 min at the same temperature before a saturated aqueous NaHCO₃ solution (40 mL) was added. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 50 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The resulting crude was purified by flash chromatography (PE/Et₂O, 99:1) to afford (4*S*,5*S*)-4,6-bis-(*tert*-butyldimethylsilanyloxy)-5-methylhex-1-ene (4.2 g, 80%) as a colourless oil.

*R*_f (PE/Et₂O, 9.9:0.1): 0.87.

[α]_D²⁰ +7.55 (*c* 1.1, CHCl₃).

IR (neat): 2929, 2858, 1472, 1253, 1095, 1039, 916 cm⁻¹.


¹**H NMR** (400 MHz, CDCl₃) δ 5.72 (m, 1H, H₂), 5.08-4.94 (m, 2H, H₁), 3.81 (m, 1H, H₄), 3.50 (dd, J = 9.8, 6.8 Hz, 1H, H₆), 3.37 (dd, J = 9.8, 6.5 Hz, 1H, H₆), 2.29-2.12 (m, 2H, H₃), 1.66 (m, 1H, H₅), 0.86 (s, 9H, H₉ or H₁₃), 0.85 (s, 9H, H₉ or H₁₃), 0.80 (d,

J = 6.8 Hz, 3H, H₁₀), 0.02 (s, 3H, H₇ or H₁₁), 0.01 (s, 6H, H₇ or H₁₁), 0.00 (s, 3H, H₇ or H₁₁).

¹³**C NMR** (100 MHz, CDCl₃) δ 135.6 (d, C₁), 116.4 (t, C₂), 71.5 (d, C₄), 65.4 (t, C₆), 39.8 (d, C₅), 39.7 (t, C₃), 26.0 (q, 3C, C₉ or C₁₃), 25.9 (q, 3C, C₉ or C₁₃), 18.2 (s, C₈ or C₁₂), 18.1 (s, C₈ or C₁₂), 10.2 (q, C₁₀), -4.1 (q, C₇ or C₁₁), -4.7 (q, C₇ or C₁₁), -5.3 (q, C₇ or C₁₁), -5.4 (q, C₇ or C₁₁).

HRMS (ESI) m/z: calculated for C₁₉H₄₂NaO₂Si₂ [M+Na]⁺ 381.2621, found 381.2620.

II.4.2.1.5. Synthesis of (3S,4R,6S,7S)-6,8-bis-(tert-butyldimethylsilanyloxy)-3,7-dimethyloct-1-en-4-ol (II.7)

MW (g/mol): 416.7857

Molecular formula: C₂₂H₄₈O₃Si₂

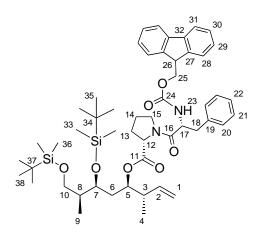
To a solution of (4S,5S)-4,6-bis-(*tert*-butyldimethylsilanyloxy)-5-methylhex-1-ene (2 g, 5.6 mmol) in a 3:1 dioxane/water mixture (56 mL) at 0 °C, were added 2,6-lutidine (1.6 mL, 13.4 mmol), OsO₄ (3.5 mL of a 2.5% solution in water, 0.28 mmol) and NaIO₄ (4.75 g, 22.3 mmol). The resulting reaction mixture was stirred for 3.5 h at rt until complete conversion of the starting material (reaction monitored by TLC analysis). The reaction mixture was then quenched with a saturated aqueous Na₂S₂O₃ solution (20 mL) and stirred for 20 min. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 30 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The resulting crude residue was finally filtered over a small plug of silica eluting with a PE/Et₂O (99:1) mixture. The solvent was removed under reduced pressure and the resulting crude aldehyde was used in the next step without further purification.

To a solution of the (*R*,*R*)-[Ti]-**III** complex (5.5 g, 8.9 mmol) in Et₂O (56 mL) at -78 °C was added 2-butenylmagnesium chloride (16.6 mL of a 2M solution in THF, 8.3 mmol), and the resulting reaction mixture was stirred for 2 h at 0 °C. The solution was then cooled to -78 °C and the crude aldehyde **II.6** (5.6 mmol) was added dropwise. The

resulting reaction mixture was stirred for 4 h at the same temperature until complete conversion of the starting material (reaction monitored by TLC analysis), quenched with water (80 mL), and stirred overnight at rt. The reaction mixture was then filtered over Celite[®], and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 30 mL), and the combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under vacuum. The resulting crude residue was purified by flash chromatography (PE/Et₂O, 95:5) to afford (3*S*,4*R*,6*S*,7*S*)-6,8-bis-(*tert*-butyldimethylsilanyloxy)-3,7-dimethyloct-1-en-4-ol (**II.7**) (1.6 g, 70%) as a colourless oil.

*R*_f (PE/Et₂O, 9.5:0.5): 0.45.

 $[\alpha]_{D}^{20}$ -6.37 (c 0.97, CHCl₃).


IR (neat): 2929, 2858, 1472, 1389, 1255, 1096, 1047, 1005, 914, 836, 775 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.73 (m, 1H, H₂), 5.09-5.00 (m, 2H, H₁), 3.93 (td_{app}, J = 6.8, 3.0 Hz, 1H, H₄), 3.57 (dd, J = 9.5, 5.8 Hz, 1H, H₈), 3.48 (m, 1H, H₆), 3.41 (dd, J = 9.5, 7.0 Hz, 1H, H₈), 2.39 (br s, 1H, H₁₇), 2.16 (m, 1H, H₃), 1.79 (m, 1H, H₇), 1.60 (m, 1H, H₅), 1.45 (m, 1H, H₅), 0.99 (d, J = 6.8 Hz, 3H, H₉), 0.85 (s, 9H, H₁₃ or H₁₆), 0.84 (s, 9H, H₁₃ or H₁₆), 0.80 (d, J = 7.0 Hz, 3H, H₁₀), 0.05 (s, 3H, H₁₁ or H₁₄), 0.03 (s, 3H, H₁₁ or H₁₄), 0.00 (s, 3H, H₁₁ or H₁₄), -0.01 (s, 3H, H₁₁ or H₁₄).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.4 (d, C₂), 115.6 (t, C₁), 73.2 (d, C₄), 72.7 (d, C₆), 64.8 (t, C₈), 44.2 (d, C₃), 40.5 (d, C₇), 37.3 (t, C₅), 26.0 (q, 3C, C₁₃ or C₁₆), 25.9 (q, 3C, C₁₃ or C₁₆), 18.3 (s, C₁₂ or C₁₅), 18.0 (s, C₁₂ or C₁₅), 15.7 (q, C₉), 11.6 (q, C₁₀), -4.3 (q, C₁₁ or C₁₄), -4.5 (q, C₁₁ or C₁₄), -5.3 (q, C₁₁ or C₁₄), -5.4 (q, C₁₁ or C₁₄).

HRMS (ESI) m/z: calculated for C₂₂H₄₈O₃NaSi₂ [M+Na]⁺: 439.3034, found: 439.3031.

II.4.2.1.6. Synthesis of (R)-1-[(R)-2-(9H-fluoren-9-yloxycarbonylamino)-3phenylpropionyl]-pyrrolidine-2-carboxylic acid (1R,3S,4S)-3,5-bis-(tertbutyldimethylsilanyloxy)-4-methyl-1-((S)-1-methylallyl)-pentyl ester (II.13)

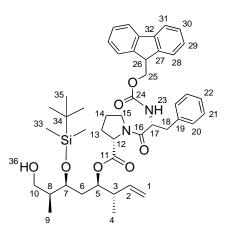
MW (g/mol): 906.3032

Molecular formula: C₅₁H₇₄N₂O₇

To a solution of (3S,4R,6S,7S)-6,8-bis-(*tert*-butyldimethylsilanyloxy)-3,7-dimethyloct-1-en-4-ol (**II.7**) (68 mg, 0.16 mmol) and L-Pro-D-Phe **II.12** (87 mg, 0.18 mmol) in toluene (16 mL), was added DMAP (39 mg, 0.32 mmol). The reaction mixture was then cooled to -78 °C before DIEA (98 mL, 0.60 mmol) was added followed by 2,4,6-trichlorobenzoyl chloride (74 mL, 0.48 mmol). The resulting slurry was slowly warmed to rt over 2 h, stirred for an additional 6 h at the same temperature, and quenched with a saturated aqueous NaHCO₃ solution (10 mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 15 mL), and the combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash chromatography (PE/EtOH, 97:3) to afford (*R*)-1-[(*R*)-2-(9*H*-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]-pyrrolidine-2-carboxylic acid (1*R*,3*S*,4*S*)-3,5-bis-(*tert*-butyldimethylsilanyloxy)-4-methyl-1-((*S*)-1-methylallyl)-pentyl ester (**II.13**) (120 mg, 85%) as a viscous oil. *Mixture of rotamers:*

*R*_f (CH₂Cl₂/CH₃OH, 9.9:0.1): 0.67.

 $[\alpha]_{D}^{20}$ –16.4 (*c* 0.45, CHCl₃).


IR (neat): 2954, 2929, 2857, 1727, 1644, 1449, 1251, 1187, 1098, 1042, 836, 775 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) *Major rotamer:* δ 7.76 (d_{app}, *J* = 7.5 Hz, 2H, H₂₈ or H₃₁), 7.60 (t_{app}, *J* = 8.2 Hz, 2H, H₂₉ or H₃₀), 7.40 (t_{app}, *J* = 7.9 Hz, 2H, H₂₉ or H₃₀), 7.36-7.29 (m, 2H, H₂₈ or H₃₁), 7.28-7.16 (m, 5H, H₂₀, H₂₁, H₂₂), 5.81-5.64 (m, 2H, H₂, H₂₃), 5.124.98 (m, 2H, H₁), 4.88 (m, 1H, H₅), 4.69 (m, 1H, H₁₇), 4.38 (dd, J = 10.2, 7.9 Hz, 1H, H₂₅), 4.37-4.24 (m, 2H, H₁₂, H₂₅), 4.21 (t_{app}, J = 7.5 Hz, 1H, H₂₆), 3.78 (m, 1H, H₇), 3.54-3.43 (m, 2H, H₁₀, H₁₅), 3.37 (dd, J = 9.4, 6.7 Hz, 1H, H₁₀), 3.11 (dd, J = 13.0, 5.5 Hz, 1H, H₁₈), 2.98 (dd, J = 13.0, 9.4 Hz, 1H, H₁₈), 2.63 (m, 1H, H₁₅), 2.51 (m, 1H, H₈), 1.96-1.76 (m, 3H, H₁₃, H₁₄), 1.75-1.59 (m, 3H, H₃, H₆), 1.50 (m, 1H, H₁₄), 1.08 (d, J = 6.7 Hz, 3H, H₄), 0.87 (s, 9H, H₃₅ or H₃₈), 0.86 (s, 9H, H₃₅ or H₃₈), 0.77 (d, J = 6.7 Hz, 3H, H₉), 0.05 (s, 3H, H₃₃ or H₃₆), 0.02 (s, 3H, H₃₃ or H₃₆), 0.01 (s, 3H, H₃₃ or H₃₆), 0.00 (s, 3H, H₃₃ or H₃₆).

¹³**C NMR** (100 MHz, CDCl₃) *Major rotamer:* δ 171.1 (s, C₁₆), 169.6 (s, C₁₁), 155.5 (s, C₂₄), 144.0 (s, C₂₇), 143.8 (s, C₂₇), 141.3 (s, 2C, C₃₂), 138.8 (d, C₂), 136.3 (s, C₁₉), 129.6 (d, 2C, C₂₁), 128.5 (d, 2C, C₂₀), 127.7 (d, 2C, C₂₈), 127.1 (d, 2C, C₃₁), 127.0 (d, C₂₂), 125.3 (d, 2C, C₂₉), 120.0 (d, 2C, C₃₀), 116.0 (t, C₁), 75.0 (d, C₅), 68.5 (d, C₇), 67.0 (t, C₂₅), 65.5 (t, C₁₀), 58.8 (d, C₁₂), 54.1 (d, C₁₇), 47.2 (d, C₂₆), 46.8 (t, C₁₅), 41.1 (d, C₈), 40.4 (t, C₁₈), 39.6 (d, C₃), 35.9 (t, C₆), 31.0 (t, C₁₃), 26.0 (q, 3C, C₃₅ or C₃₈), 25.9 (q, 3C, C₃₅ or C₃₈), 24.3 (t, C₁₄), 18.3 (s, C₃₄ or C₃₇), 18.1 (s, C₃₄ or C₃₇), 15.4 (q, C₄), 9.8 (q, C₉), -4.1 (q, C₃₃ or C₃₆), -4.7 (q, C₃₃ or C₃₆), -5.3 (q, C₃₃ or C₃₆), -5.4 (q, C₃₃ or C₃₆).

HRMS (ESI) m/z: calculated for C₅₁H₇₄N₂O₇NaSi₂ [M+Na]⁺: 905.4932, found: 905.4934.

II.4.2.1.7. Synthesis of (R)-1-[(R)-2-(9H-fluoren-9-yloxycarbonylamino)-3phenylpropionyl]-pyrrolidine-2-carboxylic acid (1R,3S,4S)-3-(tertbutyldimethylsilanyloxy)-5-hydroxy-4-methyl-1-((S)-1-methylallyl)-pentyl ester (II.14)

MW (g/mol): 769.0526

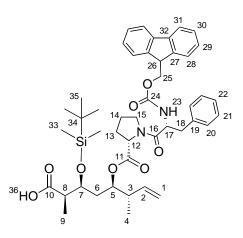
Molecular formula: C₄₅H₆₀N₂O₇Si

To a solution of ZnBr₂ (110 mg, 0.73 mmol) in CH₂Cl₂ (8 mL) at rt was added a solution (R)-1-[(R)-2-(9H-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]of pyrrolidine-2-carboxylic acid (1R,3S,4S)-3,5-bis-(*tert*-butyldimethylsilanyloxy)-4methyl-1-((S)-1-methylallyl)-pentyl ester (II.13) (110 mg, 0.13 mmol) in CH_2Cl_2 (16 mL). The resulting reaction mixture was then stirred for 4 h at the same temperature until complete conversion of the starting material (reaction monitored by TLC analysis), and quenched with a saturated aqueous NaHCO₃ solution (15 mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 15 mL), and the combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash chromatography eluting with CHCl₃ to afford (R)-1-[(R)-2-(9H-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]pyrrolidine-2-carboxylic acid (1R,3S,4S)-3-(tert-butyldimethylsilanyloxy)-5-hydroxy-4methyl-1-((S)-1-methylallyl)-pentyl ester (II.14) (83 mg, 83%) as a viscous oil. Mixture of rotamers:

*R*_{*f*} (CH₂Cl₂/CH₃OH, 9.9:0.1): 0.21.

 $[\alpha]_{D}^{20}$ –12.65 (*c* 0.63, CHCl₃).

IR (neat): 2956, 2928, 2856, 1722, 1639, 1524, 1450, 1251, 1188, 1086, 1041, 837, 775 cm⁻¹.


¹**H NMR** (400 MHz, CDCl₃) *Major rotamer:* δ 7.75 (d_{app}, J = 7.5 Hz, 2H, H₂₈ or H₃₁), 7.59 (dd, J = 11.5, 7.5 Hz, 2H, H₂₉ or H₃₀), 7.38 (t_{app}, J = 7.5 Hz, 2H, H₂₈ or H₃₁), 7.30 (t_{app}, J = 7.2 Hz, 2H, H₂₉ or H₃₀), 7.27-7.14 (m, 5H, H₂₀, H₂₁, H₂₂), 5.86 (d, J = 8.2 Hz, 1H, H₂₃), 5.72 (m, 1H, H₂), 5.10-4.98 (m, 2H, H₁), 4.99 (m, 1H, H₅), 4.70 (m, 1H, H₁₇), 4.41 (dd, J = 10.4, 7.2 Hz, 1H, H₂₅), 4.35-4.22 (m, 2H, H₁₂, H₂₅), 4.19 (t_{app}, J = 7.2 Hz, 1H, H₂₆), 3.80 (td, J = 7.6, 1.6 Hz, 1H, H₇), 3.55-3.36 (m, 3H, H₁₀, H₁₅), 3.10 (dd, J = 12.9, 5.4 Hz, 1H, H₁₈), 2.95 (dd, J = 12.9, 9.3 Hz, 1H, H₁₈), 2.63 (m, 1H, H₁₅), 2.41 (m, 1H, H₈), 1.98-1.74 (m, 4H, H₁₃, H₁₄, H₃₆), 1.72-1.62 (m, 3H, H₃, H₆), 1.49 (m, 1H, H₁₄), 1.04 (d, J = 6.8 Hz, 3H, H₄), 0.84 (s, 9H, H₃₅), 0.73 (d, J = 6.8 Hz, 3H, H₉), 0.02 (s, 6H, H₃₃).

¹³C NMR (100 MHz, CDCl₃) *Major rotamer:* δ 171.4 (s, C₁₆), 169.9 (s, C₁₁), 155.6 (s, C₂₄), 144.0 (s, C₂₇), 143.8 (s, C₂₇), 141.3 (s, 2C, C₃₂), 138.9 (d, C₂), 136.2 (s, C₁₉), 129.5 (d, 2C, C₂₁), 128.5 (d, 2C, C₂₀), 127.7 (d, 2C, C₂₈), 127.1 (d, 3C, C₂₂, C₃₁), 125.3 (d, 2C, C₂₀)

C₂₉), 120.0 (d, 2C, C₃₀), 116.1 (t, C₁), 74.8 (d, C₅), 68.6 (d, C₇), 67.0 (t, C₂₅), 65.4 (t, C₁₀), 59.1 (d, C₁₂), 54.2 (d, C₁₇), 47.2 (d, C₂₆), 46.9 (t, C₁₅), 41.9 (d, C₈), 40.4 (t, C₁₈), 38.4 (d, C₃), 35.7 (t, C₆), 29.0 (t, C₁₃), 25.8 (q, 3C, C₃₅), 24.3 (t, C₁₄), 18.0 (s, C₃₄), 15.8 (q, C₄), 9.8 (q, C₉), -4.3 (q, C₃₃), -4.8 (q, C₃₃).

HRMS (ESI) m/z: calculated for C₄₅H₆₀O₇N₂NaSi [M+Na]⁺: 791.4062, found: 791.4057.

II.4.2.1.8. Synthesis of (R)-1-[(R)-2-(9H-fluoren-9-yloxycarbonylamino)-3phenylpropionyl]-pyrrolidine-2-carboxylic acid (1R,3S,4R)-3-(tertbutyldimethylsilanyloxy)-4-carboxy-1-(S)-1-methylallyl)-pentyl ester (II.16)

MW (g/mol): 783.0361

Molecular formula: C₄₅H₅₈N₂O₈

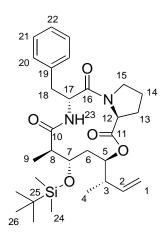
To a solution of (*R*)-1-[(*R*)-2-(9*H*-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]pyrrolidine-2-carboxylic acid (1*R*,3*S*,4*S*)-3-(*tert*-butyldimethylsilanyloxy)-5-hydroxy-4methyl-1-((*S*)-1-methylallyl)-pentyl ester, **II.15** (77 mg, 0.1 mmol) in CH₂Cl₂ (1 mL) at 0 °C were added TEMPO (22 mg, 0.14 mmol), KBr (50 mL of a 0.2 M solution in water, 0.01 mmol) and NaOCl (52 mL of a 13% solution in water, 0.1 mmol). After stirring for 30 min at the same temperature, the organic layer was dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The resulting crude aldehyde **II.15** was used in the next step without further purification.

The crude aldehyde **II.15** (0.1 mmol), *t*-BuOH (5 mL), 2-methyl-2-butene (0.74 mL, 7.0 mmol), water (1 mL), NaClO₂ (68 mg, 0.6 mmol) and NaH₂PO₄ (36 mg, 0.3 mmol) were mixed at 0 °C and the reaction mixture was stirred at rt for 30 min. *t*-BuOH was then removed under reduced pressure and EtOAc (15 mL) was added. The organic layer

was separated and the aqueous layer was extracted with EtOAc (2 x 15 mL). The combined organic layers were combined and dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash chromatography (CH₂Cl₂/MeOH, 99:1) to afford (R)-1-[(R)-2-(9H-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]-pyrrolidine-2-carboxylic acid (1R,3S,4R)-3-(*tert*-butyldimethylsilanyloxy)-4-carboxy-1-((S)-1-methylallyl)-pentyl ester (**II.16**) (73 mg, 93%) as a viscous oil. *Mixture of rotamers:*

*R*_f (CH₂Cl₂/MeOH, 9.8:0.2): 0.22.

 $[\alpha]_{D}^{20}$ –24.0 (*c* 0.87, CHCl₃).


IR (neat): 2928, 2856, 1713, 1618, 1451, 1251, 1186, 1095, 1033, 837, 776, 759, 741 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) *Major rotamer:* δ 7.74 (d, J = 7.4 Hz, 2H, H₂₈ or H₃₁), 7.58 (dd, J = 9.6, 7.6 Hz, 2H, H₂₉ or H₃₀), 7.38 (t_{app}, J = 7.6 Hz, 2H, H₂₉ or H₃₀), 7.29 (dd, J = 7.6, 0.8 Hz, 2H, H₂₈ or H₃₁), 7.26-7.14 (m, 5H, H₂₀, H₂₁, H₂₂), 5.80 (d, J = 8.4 Hz, 1H, H₂₃), 5.72 (m, 1H, H₂), 5.11-4.96 (m, 2H, H₁), 4.91 (m, 1H, H₅), 4.71 (m, 1H, H₁₇), 4.40-4.32 (m, 2H, H₁₂, H₂₅), 4.29 (dd, J = 10.8, 7.2 Hz, 1H, H₂₅), 4.19 (t_{app}, J = 7.3 Hz, 1H, H₂₆), 4.09 (m, 1H, H₇), 3.51 (m, 1H, H₁₅), 3.08 (dd, J = 12.8, 5.6 Hz, 1H, H₁₈), 2.96 (dd, J = 12.8, 9.2 Hz, 1H, H₁₈), 2.68-2.52 (m, 2H, H₈, H₁₅), 2.43 (m, 1H, H₃), 1.96-1.72 (m, 3H, H₁₃, H₁₄), 1.71-1.62 (m, 2H, H₆), 1.49 (m, 1H, H₁₄), 1.10-0.99 (d, J = 7.0 Hz, 6H, H₄, H₉) 0.83 (s, 9H, H₃₅), 0.03 (s, 3H, H₃₃), 0.02 (s, 3H, H₃₃).

¹³**C NMR** (100 MHz, CDCl₃) *Major rotamer:* δ 178.8 (s, C₁₀), 171.3 (s, C₁₆), 170.0 (s, C₁₁), 155.6 (s, C₂₄), 144.0 (s, C₂₇), 143.8 (s, C₂₇), 141.3 (s, 2C, C₃₂), 138.6 (d, C₂), 136.2 (s, C₁₉), 129.5 (d, 2C, C₂₁), 128.5 (d, 2C, C₂₀), 127.7 (d, 2C, C₂₈), 127.1 (d, 3C, C₂₂, C₃₁), 125.3 (d, 2C, C₂₉), 120.0 (d, 2C, C₃₀), 116.3 (t, C₁), 74.1 (d, C₅), 69.8 (d, C₇), 67.1 (t, C₂₅), 58.8 (d, C₁₂), 54.1 (d, C₁₇), 47.1 (d, C₂₆), 46.9 (t, C₁₅), 43.2 (d, C₈), 41.8 (d, C₃), 40.3 (t, C₁₈), 35.9 (t, C₆), 29.0 (t, C₁₃), 25.7 (q, 3C, C₃₅), 24.2 (t, C₁₄), 17.9 (s, C₃₄), 15.4 (q, C₄), 9.3 (q, C₉), -4.3 (q, C₃₃), -4.9 (q, C₃₃).

HRMS (ESI) m/z: calculated for C₄₅H₅₈O₈N₂NaSi [M+Na]⁺: 805.3855, found: 805.3859.

II.4.2.1.9. Synthesis of (5R,8R,9S,11R,13aR)-5-benzyl-9-(tertbutyldimethylsilanyloxy)-8-methyl-11-((S)-1-methylallyl)-decahydro-12-oxa-3a,6-diaza-cyclopentacyclododecene-4,7,13-trione (II.18)

MW (g/mol): 542.7821

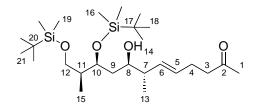
Molecular formula: C₃₀H₄₆N₂O₅

To a solution of (*R*)-1-[(*R*)-2-(9*H*-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]pyrrolidine-2-carboxylic acid (1*R*,3*S*,4*R*)-3-(*tert*-butyldimethylsilanyloxy)-4-carboxy-1-((*S*)-1-methylallyl)-pentyl ester (**II.16**) (70 mg, 0.09 mmol) in MeCN (3.2 mL) at rt, was added Et₂NH (1.6 mL), and the reaction mixture was stirred at rt until complete conversion of the starting material (reaction monitored by TLC analysis). The solvent was then removed under reduced pressure and the resulting crude amino acid **II.17** was used in the next step without further purification.

To a solution of amino acid (0.09 mmol) in CH₂Cl₂ (13 mL) at 0 °C were added EDCl (33 mg, 0.17 mmol), HOBt (23 mg, 0.17 mmol) and DIEA (64 mL, 0.39 mmol), and the resulting reaction mixture was stirred for 3 h at rt. The reaction was then quenched with a saturated aqueous NH₄Cl solution (10 mL), and the organic phase was separated. The aqueous layer was then extracted with CH₂Cl₂ (2 x 15 mL), and the combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash chromatography eluting with CHCl₃ to afford (*5R*,8*R*,9*S*,11*R*,13a*R*)-5-benzyl-9-(*tert*-butyldimethylsilanyloxy)-8-methyl-11-((*S*)-1-methylallyl)-decahydro-12-oxa-3a,6-diazacyclopenta cyclododecene-4,7,13-trione (**II.18**) (46 mg, 95%) as an amorphous solid. *Mixture of rotamers:*

*R*_f (CH₂Cl₂/CH₃OH, 9.5:0.5): 0.66.

 $[\alpha]_{\mathbf{D}}^{\mathbf{20}} - 12.7 \ (c \ 0.3, \text{CHCl}_3).$


IR (neat): 3675, 2987, 2972, 2901, 1733, 1665, 1621, 1542, 1452, 1406, 1394, 1382, 1252, 1229, 1075, 1066 cm⁻¹.

¹**H NMR** (400 MHz, acetone-*d*₆) *Major rotamer:* δ 7.32-7.12 (m, 6H, H₂₀, H₂₁, H₂₂, H₂₃), 5.67 (ddd, J = 17.3, 10.3, 7.3 Hz, 1H, H₂), 5.21 (m, 1H, H₁₇), 5.08-4.96 (m, 2H, H₁), 4.72-4.62 (m, 2H, H₇, H₁₂), 3.76 (td, J = 9.4, 2.9 Hz, 1H, H₅), 3.56 (m, 1H, H₁₅), 3.33 (m, 1H, H₁₅), 3.16-2.98 (m, 2H, H₁₃), 2.30 (m, 1H, H₈), 2.26-2.02 (m, 3H, H₃, H₁₈), 1.85 (m, 1H, H₁₄), 1.69 (m, 1H, H₁₄), 1.57 (dd, J = 15.6, 3.3 Hz, 2H, H₆), 0.97 (d, J = 7.0 Hz, 3H, H₄), 0.91 (d, J = 7.0 Hz, 3H, H₉), 0.85 (s, 9H, H₂₆), 0.03 (s, 3H, H₂₄), 0.01 (s, 3H, H₂₄).

¹³**C NMR** (100 MHz, acetone-*d*₆) *Major rotamer:* δ 179.9 (s, C₁₀), 177.4 (s, C₁₆), 175.6 (s, C₁₁), 144.6 (d, C₂), 143.5 (s, C₁₉), 134.5 (d, 2C, C₂₁), 133.8 (d, 2C, C₂₀), 132.1 (d, C₂₂), 121.0 (t, C₁), 77.4 (d, C₅), 65.4 (d, C₇), 62.7 (d, C₁₂), 52.9 (t, C₁₅), 49.5 (d, C₁₇), 48.8 (d, C₈), 41.6 (t, C₁₈), 41.0 (t, C₆), 38.2 (t, C₁₃), 35.0 (d, C₃), 30.9 (q, 3C, C₂₆), 26.7 (t, C₁₄), 23.1 (s, C₂₅), 22.6 (q, C₄), 20.0 (q, C₉), 0.9 (q, C₂₄), 0.0 (q, C₂₄).

HRMS (ESI) m/z: calculated for C₃₀H₄₆O₅N₂NaSi [M+Na]⁺: 565.3068, found: 565.3060.

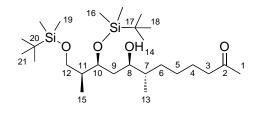
II.4.2.1.10. Synthesis of (E)-(7S,8R,10S,11S)-10,12-bis-(tertbutyldimethylsilanyloxy)-8-hydroxy-7,11-dimethyldodec-5-en-2-one (II.21)

MW (g/mol): 486.8756

Molecular formula: C₂₆H₅₄O₄Si₂

To a stirred solution of (3S,4R,6S,7S)-6,8-bis-(*tert*-butyldimethylsilanyloxy)-3,7dimethyloct-1-en-4-ol (**II.7**) (1.6 g, 3.84 mmol) and 5-hexene-2-one (**48**) (753 mg, 7.68 mmol) in CH₂Cl₂ (40 mL) was added the Hoveyda-Grubbs catalyst (480 mg, 0.77 mmol), and the resulting reaction mixture was refluxed for 24 h until complete conversion of the starting material (reaction monitored by TLC analysis). The solvent was then removed under reduced pressure and the crude residue was purified by flash column chromatography (PE/Et₂O, 90:10) to afford (*E*)-(7*S*,8*R*,10*S*,11*S*)-10,12-bis(*tert*-butyldimethylsilanyloxy)-8-hydroxy-7,11-dimethyldodec-5-en-2-one (1.3 g, 71%) as a colourless oil. *Mixture of isomers:*

*R*_f (PE/Et₂O, 7:3): 0.54.


IR (neat): 3494, 2956, 2929, 2857, 1717, 1472, 1463, 1361, 1254, 1095, 1046, 836, 775 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) *Major rotamer:* δ 5.58-5.29 (m, 2H, H₅, H₆), 3.93 (m, 1H, H₈), 3.57 (dd, J = 9.5, 5.8 Hz, 1H, H₁₂), 3.48-3.35 (m, 2H, H₁₀, H₁₂), 2.51-2.43 (m, 2H, H₃), 2.32-2.21 (m, 2H, H₄), 2.10 (m, 1H, H₇), 2.09 (s, 3H, H₁), 1.78 (m, 1H, H₁₁), 1.59 (m, 1H, H₉), 1.45 (m, 1H, H₉), 0.95 (d, J = 7.0 Hz, 3H, H₁₃), 0.85 (*s*, 18H, H₁₈, H₂₁), 0.80 (d, J = 6.9 Hz, 3H, H₁₅), 0.04 (s, 3H, H₁₆ or H₁₉), 0.03 (s, 3H, H₁₆ or H₁₉), 0.00 (s, 3H, H₁₆ or H₁₉), -0.01 (s, 3H, H₁₆ or H₁₉).

¹³**C NMR** (100 MHz, CDCl₃) *Major rotamer:* δ 208.2/207.0 (s, C₂), 136.7 and 132.9 (d, C₆), 129.9/123.2 (d, C₅), 73.2 (d, C₈), 72.2 (d, C₁₀), 65.1 (t, C₁₂), 43.4 (d, C₇), 43.2 (t, C₃), 40.3 (d, C₁₁), 37.7 (t, C₄), 29.9 (q, C₁), 26.9 (t, C₉), 26.0 (q, 3C, C₁₈), 25.9 (q, 3C, C₁₇ or C₂₁), 18.3 (s, C₁₇ or C₂₁), 18.0 (s, C₂₀), 16.3 (q, C₁₃), 11.3 (q, C₁₅), -4.3 (q, C₁₆ or C₁₉), -4.5 (q, C₁₆ or C₁₉), -5.4 (q, 2C, C₁₆ or C₁₉).

HRMS (ESI) m/z: calculated for C₂₆H₅₄O₄NaSi₂ [M+Na]⁺: 509.3453, found: 509.3444.

II.4.2.1.11. Synthesis of (7S,8R,10S,11S)-10,12-bis-(tertbutyldimethylsilanyloxy)-8-hydroxy-7,11-dimethyldodecan-2-one (II.23)

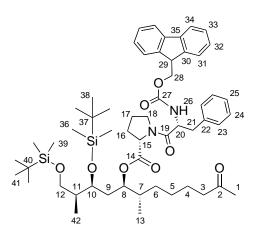
MW (g/mol): 488.8914

Molecular formula: C₂₆H₅₆O₄Si₂

To a stirred solution of (E)-(7S,8R,10S,11S)-10,12-bis-(tert-butyldimethylsilanyloxy)-8hydroxy-7,11-dimethyldodec-5-en-2-one (**II.21**) (1.2 g, 2.46 mmol) in EtOAc (10 mL) at rt under an argon atmosphere was added 10% Pd/C (120 mg). The resulting reaction mixture was stirred under a hydrogen atmosphere (1 atm) at rt until complete conversion of the starting material (reaction monitored by TLC analysis). The crude reaction mixture was then filtered over Celite[©], the solvent was removed under reduced pressure, and the residue was finally purified by column chromatography (PE/Et₂O, 80:20) to afford (7S,8R,10S,11S)-10,12-bis-(*tert*-butyldimethylsilanyloxy)-8-hydroxy-7,11-dimethyldodecan-2-one (**II.68**) (1.08 g, 90%) as a colourless oil.

*R*_{*f*} (PE/Et₂O, 8:2): 0.28.

 $[\alpha]_{D}^{20}$ –4.73 (*c* 1.1, CHCl₃).


IR (neat): 3481, 2955, 2928, 2857, 1716, 1463, 1361, 1253, 1094, 1045, 835, 775 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) *Major rotamer:* δ 3.89 (m, 1H, H₈), 3.60 (dd, J = 9.5, 5.5 Hz, 1H, H₁₂), 3.52-3.38 (m, 2H, H₁₀, H₁₂), 2.38 (t, J = 7.3 Hz, 2H, H₃), 2.09 (s, 3H, H₁), 1.81 (m, 1H, H₇), 1.64-1.32 (m, 8H, H₄, H₅, H₉, H₁₁, H₁₄), 1.14-0.98 (m, 2H, H₆), 0.86 (s, 9H, H₁₈ or H₂₁), 0.85-0.79 (m, 15H, H₁₃, H₁₅, H₁₈ or H₂₁), 0.06 (s, 3H, H₁₆ or H₁₉), 0.04 (s, 3H, H₁₆ or H₁₉), 0.00 (s, 3H, H₁₆ or H₁₉), -0.01 (s, 3H, H₁₆ or H₁₉).

¹³**C NMR** (100 MHz, CDCl₃) *Major rotamer:* δ 209.3 (s, C₂), 74.6 (d, C₈), 74.1 (d, C₁₀), 64.4 (t, C₁₂), 43.7 (t, C₃), 40.9 (d, C₁₁), 38.9 (d, C₇), 35.9 (t, C₉), 31.8 (t, C₆), 29.9 (q, C₁), 26.9 (t, C₅), 26.0 (q, 3C, C₁₈ or C₂₁), 25.9 (q, 3C, C₁₈ or C₂₁), 24.1 (t, C₄), 18.3 (s, C₁₇ or C₂₀), 18.0 (s, C₁₇ or C₂₀), 15.0 (q, C₁₃), 12.2 (q, C₁₅), -4.3 (q, C₁₆ or C₁₉), -4.4 (q, C₁₆ or C₁₉), -5.3 (q, C₁₆ or C₁₉), -5.4 (q, C₁₆ or C₁₉).

HRMS (ESI) m/z: calculated for C₂₆H₅₆O₄NaSi₂ [M+Na]⁺: 511.3609, found: 511.3599.

II.4.2.1.12. Synthesis of (R)-1-[(R)-2-(9H-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]-pyrrolidine-2-carboxylic acid (1R,2S)-1-[(2S,3S)-2,4-bis-(tert-butyldimethylsilanyloxy)-3-methylbutyl]-2-methyl-7-oxooctyl ester (II.24)

MW (g/mol): 955.4192

Molecular formula: C₅₅H₈₂N₂O₈Si₂

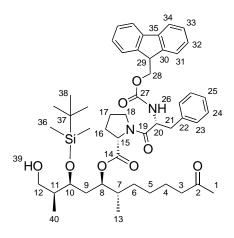
To a solution of (7S,8R,10S,11S)-10,12-bis-(*tert*-butyldimethylsilanyloxy)-8-hydroxy-7,11-dimethyldodecan-2-one (**II.23**) (1.0 g, 2.0 mmol) and L-Pro-D-Phe **II.12** (1.09 g, 2.2 mmol) in toluene (40 mL) at rt was added DMAP (498 mg, 4.1 mmol). The reaction mixture was then cooled to -78 °C before DIEA (1.2 mL, 7.4 mmol) was added followed by 2,4,6-trichlorobenzoyl chloride (0.94 mL, 6.1 mmol). The resulting slurry was slowly warmed to rt over 2 h, stirred for an additional 6 h at the same temperature, and quenched with a saturated aqueous NaHCO₃ solution (30 mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 30 mL), and the combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash chromatography (PE/EtOAc, 80:20) to afford (*R*)-1-[(*R*)-2-(9*H*-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]-pyrrolidine-2-

carboxylic acid (1R,2S)-1-[(2S,3S)-2,4-bis-(*tert*-butyldimethylsilanyloxy)-3methylbutyl]-2-methyl-7-oxooctyl ester (**II.24**) (1.32 g, 75%) as a viscous oil. *Mixture of rotamers:*

*R*_f (PE/EtOAc, 8:2): 0.33.

 $[\alpha]_{\mathbf{D}}^{20}$ –12.9 (*c* 0.83, CHCl₃).

IR (neat): 3294, 2954, 2927, 2856, 1716, 1642, 1449, 1250, 1187, 1099, 1040, 835, 774, 739 cm⁻¹.


¹**H NMR** (400 MHz, CDCl₃) *Major rotamer:* δ 7.81-7.71 (d, J = 7.5 Hz, 2H, H₃₄), 7.64-7.56 (t_{app}, J = 8.0 Hz, 2H, H₃₁), 7.44-7.36 (m, 2H, H₃₃), 7.35-7.26 (m, 2H, H₃₂), 7.25-7.14 (m, 5H, H₂₃, H₂₄, H₂₅), 5.77 (m, 1H, H₂₆), 4.78 (m, 1H, H₈), 4.70 (m, 1H, H₂₀), 4.39 (m, 1H, H₂₈), 4.35-4.25 (m, 2H, H₁₅, H₂₈), 4.21 (m, 1H, H₂₉), 3.75 (m, 1H, H₁₀), 3.54-3.42 (m, 2H, H₁₂, H₁₈), 3.37 (m, 1H, H₁₂), 3.10 (dd, J = 12.5, 5.0 Hz, 1H, H₂₁), 2.96 (m, 1H, H₂₁), 2.54 (m, 1H, H₁₈), 2.46-2.30 (m, 2H, H₃), 2.09 (s, 3H, H₁), 1.99-1.62 (m, 8H, H₄, H₇, H₉, H₁₁, H₁₆), 1.60-1.47 (m, 2H, H₁₇), 1.43-1.08 (m, 4H, H₅, H₆), 0.92 (d, J = 7.3 Hz, 3H, H₄₂), 0.86 (s, 9H, H₃₈ or H₄₁), 0.85 (s, 9H, H₃₈ or H₄₁), 0.76 (d, J = 6.5 Hz, 3H, H₁₃), 0.04 (s, 3H, H₃₆ or H₃₉), 0.01 (s, 3H, H₃₆ or H₃₉), 0.00 (s, 3H, H₃₆ or H₃₉), -0.01 (s, 3H, H₃₆ or H₃₉).

¹³C NMR (100 MHz, CDCl₃) *Major rotamer:* δ 209.2 (s, C₂), 171.2 (s, C₁₄), 169.6 (s, C₁₉), 155.5 (s, C₂₇), 144.0 (s, C₃₀), 143.8 (s, C₃₀), 141.3 (s, 2C, C₃₅), 136.3 (s, C₂₂), 129.6 (d, 2C, C₂₃), 128.4 (d, 2C, C₂₄), 127.7 (d, C₂₅), 127.1 (d, 2C, C₃₂), 127.0 (d, 2C, C₃₃), 128.4 (d, 2C, C₃₄), 127.7 (d, C₃₅), 127.1 (d, 2C, C₃₅), 127.0 (d

C₃₃), 125.2 (d, 2C, C₃₁), 119.9 (d, 2C, C₃₄), 75.6 (d, C₈), 68.2 (d, C₁₀), 67.0 (t, C₂₈), 65.8 (t, C₁₂), 58.7 (d, C₁₅), 54.1 (d, C₂₀), 47.2 (d, C₁₁), 46.8 (t, C₁₈), 43.7 (t, C₃), 40.4 (t, C₂₁), 38.9 (d, C₇), 36.3 (d, C₂₉), 34.9 (t, C₉), 31.8 (t, C₁₆), 29.9 (q, C₁), 29.0 (t, C₁₇), 26.7 (t, C₅), 26.0 (q, 3C, C₃₈ or C₄₁), 25.9 (q, 3C, C₃₈ or C₄₁), 24.4 (t, C₆), 24.1 (t, C₄), 18.4 (s, C₃₇ or C₄₀), 18.1 (s, C₃₇ or C₄₀), 14.7 (q, C₄₂), 9.4 (q, C₁₃), -4.0 (q, C₃₆ or C₃₉), -4.8 (q, C₃₆ or C₃₉), -5.3 (q, C₃₆ or C₃₉), -5.4 (q, C₃₆ or C₃₉).

HRMS (ESI) m/z: calculated for C₅₅H₈₂O₈N₂NaSi₂ [M+Na]⁺: 977.5502, found: 977.5500.

II.4.2.1.13. Synthesis of (R)-1-[(R)-2-(9H-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]-pyrrolidine-2-carboxylic acid (1R,2S)-1-[(2S,3S)-2-(tertbutyldimethylsilanyloxy)-4-hydroxy-3-methylbutyl]-2-methyl-7-oxooctyl ester (II.25)

MW (g/mol): 841.1582

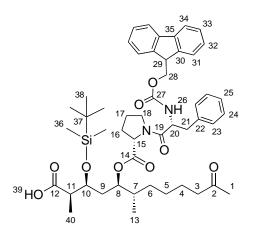
Molecular formula: C₄₉H₆₈N₂O₈Si

SnCl₂ (60 mg, 0.3 mmol) was added to a 6:1 EtOH/water (7 mL) mixture at rt. Once the reaction mixture became homogenous, (*R*)-1-[(*R*)-2-(9*H*-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]-pyrrolidine-2-carboxylic acid (1*R*,2*S*)-1-[(2*S*,3*S*)-2,4-bis-(*tert*-butyldimethylsilanyloxy)-3-methylbutyl]-2-methyl-7-oxooctyl ester (**II.24**) (600 mg, 0.6 mmol) was added, and the resulting reaction mixture was stirred for 2 h at rt. CH₂Cl₂ (10 mL) and water (4 mL) were then added, and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 10 mL), and the combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash chromatography

(PE/EtOAc, 80:20) to afford (R)-1-[(R)-2-(9H-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]-pyrrolidine-2-carboxylic acid (1R,2S)-1-[(2S,3S)-2-(*tert*-butyldimethylsilanyloxy)-4-hydroxy-3-methylbutyl]-2-methyl-7-oxooctyl ester (**II.25**) (418 mg, 79%). *Mixture of rotamers:*

 R_f (PE/EtOAc, 7:3): 0.27.

 $[\alpha]_{D}^{20}$ –14.91 (*c* 1.63, CHCl₃).


IR (neat): 3430, 2955, 2926, 2855, 1716, 1643, 1450, 1250, 1189, 1094, 1042, 837 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) *Major rotamer:* δ 7.79-7.68 (d, J = 7.6 Hz, 2H, H₃₁ or H₃₄), 7.61-7.52 (dd, J = 7.6 Hz, 2H, H₃₂ or H₃₃), 7.39-7.31 (t_{app}, J = 7.6 Hz, 2H, H₃₂ or H₃₃), 7.30-7.24 (t_{app}, J = 7.3 Hz, 2H, H₃₁ or H₃₄), 7.23-7.10 (m, 5H, H₂₃, H₂₄, H₂₅), 5.87 (m, 1H, H₂₆), 4.79 (m, 1H, H₈), 4.68 (m, 1H, H₂₀), 4.39 (m, 1H, H₂₈), 4.30-4.20 (m, 2H, H₁₅, H₂₈), 4.15 (m, 1H, H₂₉), 3.80 (t_{app}, J = 8.0 Hz, 2H, H₁₀), 3.52-3.44 (m, 2H, H₁₂, H₁₈), 3.41 (d_{app}, J = 6.8 Hz, 1H, H₁₂), 3.07 (dd, J = 12.7, 5.1 Hz, 1H, H₂₁), 2.93 (dd, J = 12.7, 9.6 Hz, 1H, H₂₁), 2.65 (m, 1H, H₁₈), 2.41-2.32 (m, 2H, H₃), 2.08 (s, 3H, H₁), 1.93-1.62 (m, 8H, H₄, H₇, H₉, H₁₁, H₁₆), 1.61-1.43 (m, 2H, H₁₇), 1.39-1.08 (m, 4H, H₅, H₆), 0.92-0.73 (m, 12H, H₃₈, H₄₀), 0.72 (d, J = 7.1 Hz, 3H, H₁₃), 0.01 (s, 3H, H₃₆), 0.00 (s, 3H, H₃₆).

¹³C NMR (100 MHz, CDCl₃) *Major rotamer:* δ 209.0 (s, C₂), 171.6 (s, C₁₄), 169.8 (s, C₁₉), 155.6 (s, C₂₇), 144.0 (s, C₃₀), 143.8 (s, C₃₀), 141.3 (s, 2C, C₃₅), 136.3 (s, C₂₂), 129.5 (d, 2C, C₂₃), 128.4 (d, 2C, C₂₄), 127.7 (d, C₂₅), 127.1 (d, 2C, C₃₂), 127.0 (d, 2C, C₃₃), 125.2 (d, 2C, C₃₁), 119.9 (d, 2C, C₃₄), 75.5 (d, C₈), 68.1 (d, C₁₀), 67.0 (t, C₂₈), 65.4 (t, C₁₂), 59.1 (d, C₁₅), 54.2 (d, C₂₀), 47.2 (d, C₁₁), 46.9 (t, C₁₈), 43.6 (t, C₃), 40.3 (t, C₂₁), 38.2 (d, C₇), 36.6 (d, C₂₉), 34.7 (t, C₉), 31.9 (t, C₁₆), 29.6 (q, C₁), 29.0 (t, C₁₇), 26.6 (t, C₅), 25.8 (q, 3C, C₃₈), 24.3 (t, C₆), 23.9 (t, C₄), 18.0 (s, C₃₇), 14.7 (q, C₄₀), 9.2 (q, C₁₃), -4.2 (q, C₃₆), -4.9 (q, C₃₆).

HRMS (ESI) m/z: calculated for C₄₉H₆₈O₈N₂NaSi [M+Na]⁺: 863.4637, found: 863.4623.

II.4.2.1.14. Synthesis of (R)-1-[(R)-2-(9H-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]-pyrrolidine-2-carboxylic acid (1R,2S)-1-[(2S,3R)-2-(tertbutyldimethylsilanyloxy)-3-carboxybutyl]-2-methyl-7-oxooctyl ester (II.26)

MW (g/mol): 855.1418

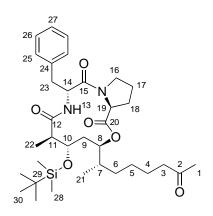
Molecular formula: C₄₉H₆₆N₂O₉Si

To a solution of (*R*)-1-[(*R*)-2-(9*H*-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]pyrrolidine-2-carboxylic acid (1*R*,2*S*)-1-[(2*S*,3*S*)-2-(*tert*-butyldimethylsilanyloxy)-4hydroxy-3-methylbutyl]-2-methyl-7-oxooctyl ester (**II.25**) (420 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) at 0 °C were added TEMPO (117 mg, 0.7 mmol), KBr (0.25 mL of a 0.2M solution in water, 0.05 mmol) and NaOCl (0.26 mL of a 13% solution in water, 0.5 mmol). After stirring for 30 min at the same temperature, the organic layer was dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The resulting crude aldehyde was used in the next step without further purification.

The crude aldehyde (0.5 mmol), t-BuOH (25 mL), 2-methyl-2-butene (3.7 mL, 35 mmol), water (5 mL), NaClO₂ (337 mg, 3 mmol) and NaH₂PO₄ (180 mg, 1.5 mmol) were combined at 0 °C and the reaction mixture was stirred at rt for 30 min. t-BuOH was then removed under reduced pressure and EtOAc (35 mL) was added. The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 15 mL). The combined organic layers were combined and dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash (PE/acetone, 90:10) afford (*R*)-1-[(*R*)-2-(9*H*-fluoren-9chromatography to vloxycarbonylamino)-3-phenylpropionyl]-pyrrolidine-2-carboxylic (1R, 2S)-1acid [(2*S*,3*R*)-2-(*tert*-butyldimethylsilanyloxy)-3-carboxybutyl]-2-methyl-7-oxooctyl ester (II.27) (375 mg, 90%) as a viscous oil. *Mixture of rotamers:*

 R_f (PE/acetone, 7:3): 0.5.

 $[\alpha]_{D}^{20}$ –25.2 (*c* 1.2, CHCl₃).


IR (neat): 3292, 2930, 1712, 1650, 1616, 1450, 1250, 1186, 1094, 837 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) *Major rotamer:* δ 7.79-7.73 (d, J = 7.5 Hz, 2H, H₃₁ or H₃₄), 7.64-7.56 (t_{app}, J = 7.5 Hz, 2H, H₃₂ or H₃₃), 7.44-7.35 (m, 2H, H₃₂ or H₃₃), 7.34-7.28 (m, 2H, H₃₂), 7.27-7.16 (m, 5H, H₂₃, H₂₄, H₂₅), 5.84 (m, 1H, H₂₆), 4.81 (m, 1H, H₈), 4.73 (m, 1H, H₂₀), 4.46-4.27 (m, 3H, H₁₅, H₂₈), 4.26-4.05 (m, 2H, H₁₁, H₂₉), 3.55 (m, 1H, H₁₀), 3.10 (dd, J = 12.7, 5.3 Hz, 1H, H₂₁), 2.99 (m, 1H, H₂₁), 2.75-2.59 (m, 2H, H₁₈), 2.46-2.37 (m, 2H, H₃), 2.10 (s, 3H, H₁), 2.01-1.65 (m, 6H, H₉, H₁₇, H₁₆), 1.63-1.49 (m, 3H, H₄, H₇), 1.45-1.23 (m, 4H, H₅, H₆), 1.09 (d, J = 7.0 Hz, 3H, H₄₀), 1.00-0.88 (m, 3H, H₁₃), 0.86 (s, 9H, H₃₈), 0.06 (s, 3H, H₃₆), 0.00 (s, 3H, H₃₆).

¹³**C NMR** (100 MHz, CDCl₃) *Major rotamer:* δ 209.2 (s, C₂), 179.2 (s, C₁₂), 171.4 (s, C₁₄), 169.8 (s, C₁₉), 155.6 (s, C₂₇), 144.0 (s, C₃₀), 143.8 (s, C₃₀), 141.3 (s, 2C, C₃₅), 136.3 (s, C₂₂), 129.5 (d, 2C, C₂₃), 128.4 (d, 3C, C₂₄, C₂₅), 127.7 (d, 2C, C₃₁), 127.1 (d, 2C, C₃₂), 125.2 (d, 2C, C₃₃), 119.9 (d, 2C, C₃₄), 74.9 (d, C₈), 69.7 (d, C₁₀), 67.0 (t, C₂₈), 58.9 (d, C₁₅), 54.1 (d, C₂₀), 47.2 (d, C₁₁), 46.8 (t, C₁₈), 43.6 (t, C₃), 42.8 (t, C₇), 40.2 (d, C₂₁), 36.7 (d, C₂₉), 35.1 (t, C₉), 31.8 (t, C₁₆), 29.8 (q, C₁), 28.9 (t, C₁₇), 26.6 (t, C₅), 25.7 (q, 3C, C₃₈), 24.2 (t, C₆), 23.9 (t, C₄), 17.9 (s, C₃₇), 14.7 (q, C₄₀), 8.8 (q, C₁₃), -4.2 (q, C₃₆), -5.0 (q, C₃₆).

HRMS (ESI) m/z: calculated for C₄₉H₆₆O₉N₂NaSi [M+Na]⁺: 877.4430, found: 877.4418.

II.4.2.1.15. Synthesis of (5R,8R,9S,11R,13aR)-5-benzyl-9-(tertbutyldimethylsilanyloxy)-8-methyl-11-((S)-1-methyl-6-oxoheptyl)-decahydro-12-oxa-3a,6-diazacyclopentacyclododecene-4,7,13-trione (II.27)

MW (g/mol): 614.8879

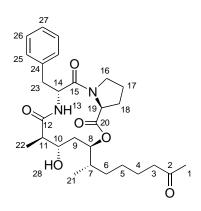
Molecular formula: C₃₄H₅₄N₂O₆Si

To a solution of (*R*)-1-[(*R*)-2-(9*H*-fluoren-9-yloxycarbonylamino)-3-phenylpropionyl]pyrrolidine-2-carboxylic acid (1*R*,2*S*)-1-[(2*S*,3*R*)-2-(*tert*-butyldimethylsilanyloxy)-3carboxybutyl]-2-methyl-7-oxooctyl ester (**II.26**) (360 mg, 0.4 mmol) in MeCN (15 mL) at rt, was added Et₂NH (7.6 mL), and the reaction mixture was stirred at rt until complete conversion of the starting material (reaction monitored by TLC analysis). The solvent was then removed under reduced pressure and the resulting crude amino acid was used in the next step without further purification.

To a solution of amino acid (0.4 mmol) in CH₂Cl₂ (50 mL) at 0 °C were added EDCl (153 mg, 0.8 mmol), HOBt (108 mg, 0.8 mmol) and DIEA (0.3 mL, 1.8 mmol), and the resulting reaction mixture was stirred for 3 h at rt. The reaction was then quenched with a saturated aqueous NH₄Cl solution (30 mL), and the organic phase was separated. The aqueous layer was then extracted with CH₂Cl₂ (2 x 30 mL), and the combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash chromatography (PE/acetone, 90:10) to afford (5*R*,8*R*,9*S*,11*R*,13a*R*)-5-benzyl-9-(*tert*-butyldimethylsilanyloxy)-8-methyl-11-((*S*)-1-methyl-6-oxoheptyl)-decahydro-12-oxa-3a,6-diazacyclopentacyclo dodecene-4,7,13-trione (**II.27**) (150 mg, 60%). *Mixture of rotamers:*

 R_f (PE/acetone, 7:3): 0.7.

 $[\alpha]_{D}^{20}$ –28.9 (*c* 1.25, CHCl₃).


IR (neat): 3263, 2931, 1721, 1661, 1622, 1541, 1439, 1256, 1080, 1052, 835 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) *Major rotamer:* δ 7.34-7.14 (m, 5H, H₂₅, H₂₆, H₂₇), 5.36 (m, 1H, H₁₃), 5.23 (dd, J = 8.5, 3.5 Hz, 1H, H₁₄), 4.89 (m, 1H, H₁₉), 4.04 (d_{app}, J = 8.0 Hz, 1H, H₈), 3.86 (m, 1H, H₁₀), 3.65 (m, 1H, H₁₆), 3.54 (m, 1H, H₁₆), 3.21 (dd, J = 14.5, 4.8 Hz, 1H, H₂₃), 2.95 (dd, J = 14.5, 10.5 Hz, 1H, H₂₃), 2.43-2.34 (m, 2H, H₃), 2.21 (m, 1H, H₁₈), 2.14-2.02 (m, 6H, H₁, H₇, H₁₁, H₁₈), 1.91 (m, 1H, H₁₇), 1.70 (m, 1H, H₁₇), 1.59-1.42 (m, 4H, H₄, H₉), 1.39-1.12 (m, 4H, H₅, H₆), 0.96 (d, J = 7.0 Hz, 3H, H₂₁), 0.85 (s, 9H, H₃₀), 0.79 (d, J = 6.8 Hz, 3H, H₂₂), 0.00 (s, 6H, H₂₈).

¹³**C NMR** (100 MHz, CDCl₃) *Major rotamer:* δ 208.7 (s, C₂), 174.8 (s, C₁₂), 172.3 (s, C₁₅), 170.5 (s, C₂₀), 135.9 (s, C₂₄), 129.0 (d, 2C, C₂₆), 128.7 (d, 2C, C₂₅), 127.4 (d, C₂₇), 74.6 (d, C₈), 71.3 (d, C₁₀), 60.3 (d, C₁₉), 55.9 (d, C₁₄), 48.0 (t, C₁₆), 43.9 (d, C₁₁), 43.5 (t, C₃), 38.7 (d, C₈), 36.2 (t, C₂₃), 35.3 (t, C₉), 33.1 (t, C₇), 31.8 (t, C₅), 29.8 (q, C₁), 26.8 (t, C₆), 25.8 (q, 3C, C₃₀), 23.8 (t, C₄), 21.5 (t, C₁₇), 17.9 (s, C₂₉), 17.4 (q, C₂₁), 14.4 (q, C₂₂), -3.8 (q, C₂₈), -4.8 (q, C₂₈).

HRMS (ESI) m/z: calculated for C₃₄H₅₄O₆N₂SiNa [M+Na]⁺: 637.3643, found: 637.3627.

II.4.2.1.16. Synthesis of (5R,8R,9S,11R,13aR)-5-benzyl-9-hydroxy-8methyl-11-((S)-1-methyl-6-oxo-heptyl)-decahydro-12-oxa-3a,6-diazacyclopenta cyclododecene-4,7,13-trione - epi-acremolide B (II.28)

MW (g/mol): 500.6270

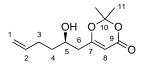
Molecular formula: C₂₈H₄₀N₂O₆

To a solution of (5R,8R,9S,11R,13aR)-5-benzyl-9-(*tert*-butyldimethylsilanyloxy)-8methyl-11-((*S*)-1-methyl-6-oxoheptyl)-decahydro-12-oxa-3a,6-diazacyclopentacyclodo decene-4,7,13-trione (**II.27**) (75 mg, 0.12 mmol) in THF (4.7 mL) at 0 °C was added TBAF (0.1 mL, 0.4 mmol), and the resulting reaction mixture was stirred at the same temperature until complete conversion of the starting material (reaction monitored by TLC analysis). The solvent was then removed under reduced pressure and the resulting crude residue was purified by flash chromatography (PE/acetone, 70:30) to afford *epi*-acremolide B (**II.28**) as a colorless solid (46 mg, 75%). *Mixture of rotamers:*

 R_f (PE/acetone, 7:3): 0.4.

 $[\alpha]_{D}^{20}$ -65.2 (*c* 0.02, MeOH).

IR (neat): 3307, 2933, 1714, 1659, 1622, 1524, 1454, 1426, 1272, 733, 700 cm⁻¹.


¹**H NMR** (400 MHz, *d*₆-DMSO) *Major rotamer:* δ 8.20 (d, J = 7.0 Hz, 1H, H₁₃), 7.35-7.15 (m, 5H, H₂₅, H₂₆, H₂₇), 5.11 (m, 1H, H₁₉), 4.81 (m, 1H, H₈), 4.72 (m, 1H, H₂₈), 4.35 (m, 1H, H₁₄), 3.58-3.41 (m, 2H, H₁₀, H₁₆), 3.23 (m, 1H, H₁₆), 2.97 (dd, J = 14.0, 10.3 Hz, 1H, H₂₃), 2.85 (dd, J = 14.0, 5.3 Hz, 1H, H₂₃), 2.41 (t_{app}, J = 7.3 Hz, 2H, H₃), 2.21-2.12 (m, 2H, H₉), 2.07 (s, 3H, H₁), 2.03-1.94 (m, 2H, H₇, H₁₈), 1.89 (m, 1H, H₁₈), 1.58-1.38 (m, 5H, H₄, H₁₁, H₁₇), 1.32-1.14 (m, 4H, H₅, H₆), 1.00 (d, J = 7.0 Hz, 3H, H₂₁), 0.73 (d, J = 6.8 Hz, 3H, H₂₂).

¹³**C NMR** (100 MHz, d_6 -DMSO) *Major rotamer:* δ 208.4 (s, C₂), 174.6 (s, C₁₂), 171.3 (s, C₂₀), 169.9 (s, C₁₅), 138.0 (s, C₂₄), 128.9 (d, 2C, C₂₅), 128.0 (d, 2C, C₂₆), 126.3 (d, C₂₇), 73.3 (d, C₈), 69.1 (d, C₁₀), 59.4 (d, C₁₉), 57.3 (d, C₁₄), 46.9 (t, C₁₆), 42.7 (d, C₁₁), 42.6 (t, C₃), 37.2 (d, C₇), 35.2 (t, C₂₃), 33.5 (t, C₉), 32.4 (t, C₁₈), 31.6 (t, C₆), 29.6 (q, C₁), 26.0 (t, C₄), 23.3 (t, C₅), 20.9 (t, C₁₇), 17.1 (q, C₂₁), 14.0 (q, C₂₂).

HRMS (ESI) m/z: calculated for C₂₈H₄₀O₆N₂Na [M+Na]⁺: 523.2779, found: 523.2758.

II.4.2.2. Synthesis of lyngbouilloside aglycon

II.4.2.2.1. Synthesis of 6-[(2R)-2-hydroxyhex-5-en-1-yl]-2,2-dimethyl-2,4dihydro-1,3-dioxin-4-one (II.48)

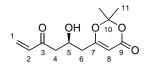
MW (g/mol): 226.2689

Molecular formula: C₁₂H₁₈O₄

A mixture of (*S*)-BINOL (410 mg, 1.4 mmol), Ti(O*i*-Pr)₄ (420 µL, 1.4 mmol) and 4 Å molecular sieves (6 g) in anhydrous THF (10 mL) was stirred vigorously at rt for 1 h. The resulting heterogeneous orange solution was then cooled to -78 °C before 1.5 g of aldehyde **II.46** (17.8 mmol) dissolved in 60 mL of THF was added by cannula. After stirring at the same temperature for 30 min, the enol silane (6.9 g, 32.2 mmol) was added drop-wise and the resulting reaction mixture was stirred vigorously for an additional 2 h. The cold bath was then removed and stirring was continued overnight. After cooling back the reaction to -78 °C, TFA (3 mL) was added and the mixture was allowed to warm to rt under continuous stirring. The reaction mixture was diluted with EtOAc (30 mL) and a saturated aqueous solution of NaHCO₃ (50 mL) was added drop-wise until gas evolution ceased. The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/EtOAc, 85:15) to afford **II.48** as a colourless oil (1.16 g, 31%, 86% ee).

*R*_{*f*} (Et₂O/PE: 3:7) 0.45.

[α]_D²⁰ –19.5 (*c* 1.0, CHCl₃).


IR (neat): 3435, 2999, 1708, 1632, 1390, 1376, 1274, 1256, 1202, 1012, 904, 805 cm⁻¹.

¹**H NMR** (400 MHz, CHCl₃) δ 5.81-5.71 (m, 1H, H₂), 5.25 (s, 1H, H₈), 5.03-4.93 (m, 2H, H₁), 3.87 (m, 1H, H₅), 2.37-2.25 (m, 2H, H₃), 2.20-2.07 (m, 2H, H₆, OH), 1.63 (s, 6H, H₁₁), 1.57-1.52 (m, 3H, H₄, H₆).

¹³**C NMR** (100 MHz, CHCl₃) δ 169.1 (s, C₇), 161.0 (s, C₉), 137.8 (d, C₂), 115.5 (t, C₁), 106.6 (s, C₁₀), 95.1 (d, C₈), 68.4 (d, C₅), 41.7 (t, C₆), 36.3 (t, C₄), 29.8 (t, C₃), 25.3 (q, C₁₁), 24.9 (q, C₁₁).

HRMS (ESI) m/z: calculated for C₁₂H₁₈NaO₄ [M+Na]⁺: 249.1097, found: 249.1098.

II.4.2.2.2. Synthesis of 6-[(2S)-2-hydroxy-4-oxohex-5-en-1-yl]-2,2-dimethyl-2,4-dihydro-1,3-dioxin-4-one (II.49)

MW (g/mol): 240.2524

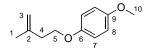
Molecular formula: C₁₂H₁₆O₅

To a solution of **II.48** (1.1 g, 5.1 mmol) in CH₂Cl₂ (17 mL) at rt was added SeO₂ (1.14 g, 10.2 mmol) followed by *t*-BuOOH (6.5 ml of a 5.5 M solution in decane, 35.7 mmol) and the mixture was stirred for 24 h at reflux. After addition of H₂O (10 mL) and vigorous stirring for 30 min, the aqueous phase was extracted with CH₂Cl₂ (3 x 20 mL) and the combined organic phases were dried over anhydrous Na₂SO₄. Evaporation of the solvent left a residue, which was dissolved in CH₂Cl₂ and filtered through a short pad of silica. Elution with Et₂O and evaporation of the solvent under reduced pressure gave 700 mg of the crude diol, which were dissolved in CH₂Cl₂ (55 ml) and treated with MnO₂ (1.2 g, 14 mmol) for 2 h at reflux. A second portion of MnO₂ (1.2 g, 14 mmol) was then added and the resulting reaction mixture was then diluted with CH₂Cl₂ (30 mL) and filtered through Celite[©]. Evaporation of the solvent and purification of the residue by flash column chromatography (CH₂Cl₂/acetone, 95:5) afforded **II.49** (380 mg, 56%) as a yellowish viscous oil.

 R_f (acetone/CH₂Cl₂, 1:4): 0.60.

 $[\alpha]_{\mathbf{D}}^{\mathbf{20}} + 19.0 \ (c \ 1.0, \ CHCl_3).$

IR (neat): 3436, 2999, 1714, 1633, 1391, 1377, 1274, 1256, 1202, 1013, 904, 805 cm⁻¹.


¹**H** NMR (400 MHz, CDCl₃) δ 6.30 (dd, J = 17.8, 10.3 Hz, 1H, H₂), 6.19 (d, J = 17.8 Hz, 1H, H₁), 5.88 (d, J = 10.3 Hz, 1H, H₂), 5.29 (s, 1H, H₈), 4.34 (m, 1H, H₅),

2.80-2.67 (m, 2H, H₄), 2.44-2.29 (m, 2H, H₆), 1.64 (s, 3H, H₁₁), 1.63 (s, 3H, H₁₁), 1.50 (br s, 1H, OH).

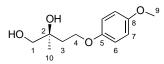
¹³**C NMR** (100 MHz, CDCl₃) δ 200.3 (s, C₃), 168.3 (s, C₇), 161.0 (s, C₉), 136.4 (d, C₂), 129.8 (t, C₁), 106.7 (s, C₁₀), 95.5 (d, C₈), 64.7 (d, C₅), 45.1 (t, C₄), 40.5 (t, C₆), 25.5 (q, C₁₁), 24.6 (q, C₁₁).

HRMS (ESI) m/z: calculated for C₁₂H₁₆NaO₅ [M + Na]⁺: 263.0890, found: 263.0885.

II.4.2.2.3. Synthesis of 1-methoxy-4-[(3-methylbut-3-en-1-yl)oxy]benzene (II.62)²¹³

MW (g/mol): 192.2500

Molecular formula: C₁₂H₁₆O₂


To a solution of 3-methylbut-3-en-1-ol (**II.61**) (12 mL, 116 mmol), 4-methoxyphenol (21.6 g, 174 mmol) and triphenylphosphine (39.5 g, 150 mmol) in anhydrous THF (400 mL) at 0 °C was added DIAD (29.3 mL, 150 mmol) drop-wise, and the resulting mixture was stirred at reflux for 3 h. The solvent was then evaporated under reduced pressure and the salts were precipitated by addition of Et₂O (200 mL) and filtered through a plug of Celite[©]. The Et₂O was evaporated under reduced pressure and the sufficient by flash column chromatography (Et₂O/PE, 10:90) to afford 1-methoxy-4-[(3-methylbut-3-en-1-yl)oxy]benzene (**II.62**) (18.8 g, 84%) which spectroscopic and physical data matched the ones reported in the literature.²¹³

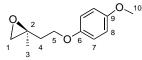
¹**H NMR** (400 MHz, CDCl₃) δ 6.87 (m, 4H, H₇, H₈), 4.87 (s, lH, H₁), 4.83 (s, lH, H₁), 4.05 (t, J = 6.8 Hz, 2H H₄), 3.78 (s, 3H, H₁₀), 2.51 (t, J = 6.8 Hz, 2H, H₅), 1.83 (s, 3H, H₃).

¹³C NMR (400 MHz, CDCl₃) δ153.8 (s, C₉), 153.1 (s, C₆), 142.3 (s, C₂), 115.6 (d, C₇),
114.6 (d, C₈), 111.9 (t, C₁), 67.1 (t, C₅), 55.6 (q, C₁₀), 37.3 (t, C₄), 22.8 (q, C₃).

²¹³ Corey, E. J.; Guzman-Perez, A.; Noe, M. J. Am. Chem. Soc., **1995**, 117, 10805-10816.

II.4.2.2.4. Synthesis of (2S)-4-(4-Methoxyphenoxy)-2-methylbutane-1,2-diol (*II.63*)²¹³

MW (g/mol): 226.27


Molecular formula: C₁₂H₁₈O₄

To a solution of **II.62** (7.95 g, 41.3 mmol) in *t*-BuOH (205 mL) at 0 °C was added a solution of AD-mix α (57.8 g, 1.4 g/mmol) and (DHQ)₂PHAL (150 mg, 0.19 mmol) in water (205 mL). After stirring for 24 h at the same temperature, Na₂S₂O₃ (2.0 g) was added and the mixture was stirred for an additional 20 min. The crude residue was then extracted three times with an EtOAc/hexanes (2:1) mixture (3 x 100 mL) and the combined organic phases were washed with brine (100 mL). The organic layer was finally dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure, and the residue was purified by flash column chromatography (EtOAc, 100%) to afford (*S*)-4-(4-methoxyphenoxy)-2-methylbutane-1,2-diol (**II.63**) (9.30 g, 100%) as a white solid which spectroscopic and physical data matched the ones reported in the literature.²¹³

¹**H NMR** (400 MHz, CDC1₃) δ 6.82 (m, 4H, H₇, H₈), 4.13 (ddd, J = 9.7, 7.5, 4.9 Hz, IH, H₅), 4.06 (ddd, J = 9.6, 6.4, 5.3 Hz, IH, H₅), 3.74 (s, 3H, H₁₀), 3.51 (dd, J = 11.1, 4.9 Hz, IH, H₁), 3.45 (dd, J = 11.1, 5.3 Hz, IH, H₁), 3.19 (br s, IH, OH), 3.05 (br s, IH, OH), 2.06 (ddd, J = 14.7, 7.5, 5.2 Hz, IH, H₄), 1.89 (ddd, J = 14.7, 6.4, 5.1 Hz, IH, H₄), 1.23 (s, 3H, H₃).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 154.0 (s, C₉), 152.4 s, C₆), 115.5 (d, C₇), 114.6 (d, C₈), 72.4 (t, C₁), 69.9 (t, C₂), 65.2(t, C₅), 55.6 (q, C₁₀), 37.4 (t, C₄), 23.9 (q, C₃).

II.4.2.2.4. Synthesis of (2S)-2-[2-(4-methoxyphenoxy)ethyl]-2-methyloxirane (II.64)

MW (g/mol): 208.2536

Molecular formula: C₁₂H₁₆O₃

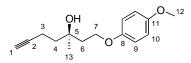
To a solution of diol **II.63** (13.5 g, 59.6 mmol) and triethylamine (10.0 mL, 71.5 mmol) in CH₂Cl₂ (100 mL) at 0 °C was added MsCl (4.9 mL, 62.6 mmol) drop-wise. After stirring for 45 min at 0 °C, most of the CH₂Cl₂ was evaporated under reduced pressure (T_{bath} < 20 °C). The salts were precipitated by addition of Et₂O (200 mL) and the organic fraction was washed with water (3 x 50 mL) and brine (50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated. The crude residue was then dissolved in MeOH (100 mL) before K₂CO₃ (24.7 g, 179 mmol) was added in one portion at 0 °C, and the reaction mixture was allowed to stir at rt for 30 min. Most of the MeOH was then evaporated (T_{bath} < 20 °C), and the residue was extracted with Et₂O (300 mL). The organic phase was eventually washed with water (3 x 100 mL) and brine (100 mL), dried over anhydrous Na₂SO₄, filtered and evaporated in devaporated under reduced pressure. The crude residue was finally purified by flash column chromatography (EtOAc/PE, 20:80) to afford **II.64** (10.9 g, 88%) as a white solid.

Mp: 51-53 °C.

*R*_f (PE/EtOAc, 7:3): 0.62.

Chiral SFC: Conditions: OD-H column, 100 bar, 5 mL/min, 5% MeOH; t₁: 1.7 min (3%); t₂: 2.0 min (97%).

 $[\alpha]_{D}^{20}$ +13.2 (*c* 2.0, CHCl₃, 94% ee).


IR (neat): 1507, 1219, 1034, 872, 824, 797, 730 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 6.83 (s, 4H, H₇, H₈), 4.09-3.91 (m, 2H, H₅), 3.76 (s, 3H, H₁₀), 2.73 (d, *J* = 4.8 Hz, 1H, H₁), 2.63 (d, *J* = 4.8 Hz, 1H, H₁), 2.13-1.94 (m, 2H, H₄), 1.40 (s, 3H, H₃).

¹³C NMR (100 MHz, CDCl₃) δ 153.8 (s, C₉), 152.7 (s, C₆), 115.3 (d, 2C, C₇), 114.6 (d, 2C, C₈), 64.8 (t, C₅), 55.6 (q, C₁₀), 55.2 (s, C₂), 53.9 (t, C₁), 36.1 (t, C₄), 21.5 (q, C₃).

HRMS (ESI) m/z: calculated for C₁₂H₁₆NaO₃ [M + Na]⁺: 231.0992, found: 231.0989.

II.4.2.2.5. Synthesis of (3R)-1-(4-methoxyphenoxy)-3-methylhept-6-yn-3-ol (II.65)

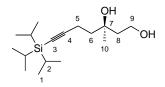
MW (g/mol): 248.3175

Molecular formula: C₁₅H₂₀O₃

In a three necked flask equipped with a dropping funnel and a thermometer was added magnesium (3.9 g, 158.4 mmol), HgCl₂ (15 mg, 0.053 mmol) and Et₂O (10 mL). Grignard formation was initiated by adding a few drops of propargyl bromide (80 % wt solution in toluene) and gentle heating. As soon as the exotherm was observed, the media was cooled to 0 °C, and the rest of the Et₂O (110 mL) was added followed by propargyl bromide (11 mL of a 80 wt% solution in toluene, 176 mmol) at a rate such that the internal temperature did not exceed 10 °C. The epoxide II.64 (11 g, 53 mmol) was then added at 0 $^{\circ}$ C as a solution in Et₂O (45 mL) and the resulting reaction mixture was stirred for 30 min at the same temperature plus an additional 30 min at rt. The mixture was then poured into a cold 2M aqueous HCl solution, extracted with with Et₂O (3 x 50 mL). The combined organic fractions were washed with water (50 mL) and brine (50 mL), dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. To facilitate the isolation of the product from the side side product (corresponding bromohydrin), the crude residue was dissolved in MeOH (100 mL) and K_2CO_3 (2 g) was added in one portion. The resulting mixture was stirred at rt for 30 min before the solvent was removed and a 1:1 Et₂O/H₂O (200 mL) mixture was added. The organic layer was separated and the aqueous phase was extracted with Et₂O (100 mL) twice. The combined organic layers were washed with brine (100 mL), dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (EtOAc/PE, 5:95) to afford II.65 (10.8 g, 82%) as colourless oil.

 R_f (PE/EtOAc, 7:3): 0.48.

 $[\alpha]_{D}^{20}$ -6.45 (*c* 1.01, CHCl₃, 94% ee).


IR (neat): 3450, 3291, 2933, 1507, 1225, 1036, 825, 735, 634 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 6.84 (s, 4H, H₉, H₁₀), 4.13 (t_{*app*}, J = 6.1 Hz, 2H, H₇), 3.76 (s, 3H, H₁₂), 2.67 (s, 1H, OH), 2.41-2.26 (m, 2H, H₃), 2.05-1.89 (m, 2H, H₆), 1.97 (t, J = 2.8 Hz, 1H, H₁), 1.90-1.72 (m, 2H, H₄), 1.26 (s, 3H, H₁₃).

¹³**C NMR** (100 MHz, CDCl₃) δ 154.1 (s, C₁₁), 152.5 (s, C₈), 115.4 (d, 2C, C₉), 114.6 (d, 2C, C₁₀), 84.7 (s, C₂), 71.8 (s, C₅), 68.5 (d, C₁), 65.5 (t, C₇), 55.7 (q, C₁₂), 40.7 (t, C₄), 39.9 (t, C₆), 26.5 (q, C₁₃), 13.2 (t, C₃).

HRMS (ESI) m/z: calculated for C₁₅H₂₀NaO₃ [M + Na]⁺: 271.1305, found: 271.1306.

II.4.2.2.6. Synthesis of (3R)-3-methyl-7-[tris(propan-2-yl)silyl]hept-6-yne-1,3-diol (II.67)

MW (g/mol): 298.5361

Molecular formula: C₁₇H₃₄O₂Si

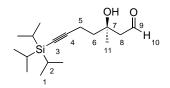
In a round-bottom flask equipped with a condenser and a gas outlet was dissolved alkyne **II.65** (10.0 g, 41.0 mmol) in 150 mL of anhydrous THF. The solution was then cooled to 0 °C and 36 mL of MeMgBr (3M solution in Et₂O, 105 mmol) were gently added. After complete addition of the MeMgBr, the reaction mixture was stirred for 6 h at 70 °C, cooled to 0 °C and treated with TIPSCl (14 mL, 65.6 mmol). The reaction mixture was then stirred at 75 °C for an additional 5 h, time after which it was cooled and poured into a cold 2M aqueous HCl solution. The product was then extracted with Et₂O (3 x 100 mL), and the combined organic layers were evaporated under reduced pressure.

The crude residue was dissolved in acetonitrile (100 mL), cooled to 0 °C and treated with a solution of cerium ammonium nitrate (47 g, 86.1 mmol) in water (100 mL). After stirring for 30 min at rt, the product was extracted with Et₂O (3 x 100 mL) and the combined organic layers were washed twice with a 1M aqueous solution of NaOH (2 x 100 mL, in the absence of light) and once with brine (100 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue

was finally purified by flash column chromatography (PE/Et₂O, 25:75) to afford **II.67** as a pale yellow oil (8.95 g, 75%).

 R_f (Et₂O): 0.50.

 $[\alpha]_{D}^{20}$ -3.14 (*c* 0.88, CHCl₃, 94% ee).


IR (neat): 3345, 2942, 2865, 2171, 1462, 1017, 996, 882, 660 cm⁻¹.

¹**H NMR** (400 MHz, CHCl₃) *δ* 3.95-3.79 (m, 2H, H₉), 3.38 (br s, 1H, OH), 3.25 (br s, 1H, OH), 2.42-2.34 (m, 2H, H₅), 1.89-1.59 (m, 4H, H₆, H₈), 1.25 (s, 3H, H₁₀), 1.06-0.98 (m, 21H, H₁, H₂).

¹³**C NMR** (100 MHz, CHCl₃) *δ* 108.0 (s, C₃), 81.3 (s, C₄), 73.6 (s, C₇), 59.5 (t, C₉), 41.7 (t, C₈), 40.6 (t, C₆), 26.2 (q, C₁₀), 18.5 (q, 6C, C₁), 14.7 (t, C₅), 11.2 (d, 3C, C₂).

HRMS (ESI) m/z: calculated for C₁₇H₃₄NaO₂Si [M + Na]⁺: 321.2220, found: 321.2211.

II.4.2.2.7. Synthesis of (3R)-3-hydroxy-3-methyl-7-[tris(propan-2-yl)silyl] hept-6-ynal (II.68)

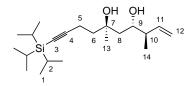
MW (g/mol): 298.5361

Molecular formula: C₁₇H₃₄O₂Si

To a solution of alcohol **II.67** (3.0 g, 10.0 mmol) in CH_2Cl_2 (100 mL) at 0 °C were added TEMPO (2 g, 12.8 mmol), KBr (5 mL of a 0.2 M solution in water, 1.0 mmol) and NaOCl (5 mL of a 13% solution in water, 11.0 mmol). After stirring for 30 min at the same temperature, brine was added and the organic layer was separated. The aqueous phase was extracted twice with EtOAc (50 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/Et₂O, 70:30) to afford aldehyde **II.68** (3.0 g, quant.) as a colourless oil.

R_f (PE/Et₂O, 1:1): 0.53.

 $[\alpha]_{D}^{20}$ -8.19 (*c* 0.57, CHCl₃, 94% ee).


IR (neat): 3434, 2942, 2865, 2171, 1719, 1463, 883, 676, 661 cm⁻¹.

¹**H NMR** (400 MHz, CHCl₃) δ 9.82 (t, J = 2.0 Hz, 1H, H₁₀), 3.14 (br s, 1H, OH), 2.65 (dd, J = 16.3, 1.8 Hz, 1H, H₈), 2.53 (dd, J = 16.3, 2.3 Hz, 1H, H₈), 2.42-2.30 (m, 2H, H₅), 1.85-1.70 (m, 2H, H₆), 1.28 (s, 3H, H₁₁), 1.03-0.93 (m, 21H, H₁, H₂).

¹³C NMR (100 MHz, CHCl₃) δ 202.8 (d, C₉), 108.3 (s, C₃), 81.6 (s, C₄), 71.6 (s, C₇), 53.9 (t, C₈), 40.4 (t, C₆), 27.0 (q, C₁₁), 18.5 (q, 6C, C₁), 14.5 (t, C₅), 11.1 (d, 3C, C₂).

HRMS (ESI) m/z: calculated for C₁₇H₃₂NaO₂Si [M + Na]⁺: 319.2064, found: 319.2066.

II.4.2.2.8. Synthesis of (3R,4S,6R)-3,6-Dimethyl-10-[tris(propan-2-yl)silyl]dec-1-en-9-yne-4,6-diol (II.69)

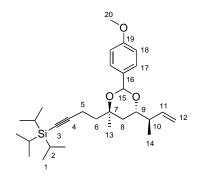
MW (g/mol): 352.6266

Molecular formula: C₂₁H₄₀O₂Si

To a stirred solution of cyclopentadienyl[(4*R*,*trans*)-2,2-dimethyl- α , α , α ', α '-tetraphenyl-1,3-dioxolane-4,5-dimethanolato-*O*,*O*']titanium chloride (8.0 g, 13.4 mmol) in anhydrous Et₂O (130 mL) at -78 °C, was added 2-butenylmagnesium chloride (25 mL of a 0.5 M solution in THF, 12.6 mmol) drop-wise. After stirring 2 h at 0 °C, the dark-orange solution was cooled back to -78 °C at which temperature a solution of aldehyde **II.68** (2.4 g, 8.0 mmol) in Et₂O (15 mL) was added dropwise. After 5 h stirring at -78 °C, the reaction was quenched by addition of H₂O (30 mL) and stirring was continued over-night at rt. The reaction mixture was then filtered over Celite[©] and the layers were separated. The aqueous phase was eventually extracted with Et₂O (3 × 100 mL) and the combined organic layers were washed with brine (100 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography (EtOAc/toluene, 2:98) provided the desired homoallylic alcohol **II.69** (2.2 g, 78%) as colourless oil.

R_f (PE/Et₂O, 1:1): 0.36.

 $[\alpha]_{D}^{20}$ –3.34 (*c* 0.95, CHCl₃).


IR (neat): 3337, 2942, 2865, 2171, 1462, 997, 915, 882, 660 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.75 (ddd, J = 18.5, 10.5, 8.0 Hz, 1H, H₁₁), 5.14-5.04 (m, 2H, H₁₂), 3.81 (m, 1H, H₉), 3.60 (br s, 1H, OH), 3.13 (br s, 1H, OH), 2.46-2.29 (m, 2H, H₅), 2.19 (m, 1H, H₁₀), 2.00 (m, 1H, H₈), 1.76-1.51 (m, 3H, H₆, H₈), 1.23 (s, 3H, H₁₃), 1.07-0.97 (m, 24H, H₁, H₂, H₁₄).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.1 (d, C₁₁), 116.3 (t, C₁₂), 108.9 (s, C₃), 81.3 (s, C₄), 73.0 (s, C₇), 71.8 (d, C₉), 44.8 (d, C₁₀), 44.0 (t, C₆), 38.6 (t, C₈), 28.1 (q, C₁₃), 18.6 (q, 6C, C₁), 15.6 (q, C₁₄), 15.1 (t, C₅), 11.2 (d, 3C, C₂).

HRMS (ESI) m/z: calculated for C₂₁H₄₀NaO₂Si [M + Na]⁺: 375.2690, found: 375.2692.

II.4.2.2.9. Synthesis of {4-[(4R,6S)-6-[(2R)-but-3-en-2-yl]-2-(4methoxyphenyl)-4-methyl-1,3-dioxan-4-yl]but-1-yn-1-yl}tris(propan-2-yl)silane (II.70)

MW (g/mol): 470.7592

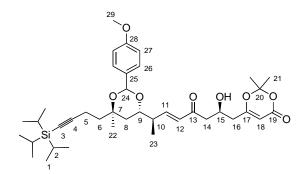
Molecular formula: C₂₉H₄₆O₃Si

To a solution of diol **II.69** (1.9 mg, 5.4 mmol) in CH_2Cl_2 (50 mL) was added *p*-anisaldehyde dimethylacetal (1.3 mL, 7.6 mmol) followed by *p*-TSOH (51.3 mg, 0.27 mmol). The resulting pink solution was stirred for 2 h at rt and filtered over alumina. The solvent was then removed under reduced pressure and the resulting crude residue was purified flash column chromatography (PE/Et₂O, 95:5) to afford the desired acetal **II.70** (2.56 g, 98%) as a colourless oil.

*R*_{*f*} (PE/Et₂O, 9:1): 0.59.

 $[\alpha]_{\mathbf{D}}^{20}$ –43.0 (*c* 1.0, CHCl₃).

IR (neat): 2943, 2865, 2171, 1517, 1463, 1248, 1075, 1037, 1004, 677, 663 cm⁻¹.


¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (d, J = 8.5 Hz, 2H, H₁₇), 6.88 (d, J = 8.5 Hz, 2H, H₁₈), 5.92 (m, 1H, H₁₁), 5.61 (s, 1H, H₁₅), 5.10-5.04 (m, 2H, H₁₂), 3.86 (m, 1H, H₉),

3.80 (s, 3H, H₂₀), 2.47 (m, 1H, H₈), 2.38-2.33 (m, 3H, H₅, H₁₀), 1.73-1.60 (m, 2H, H₆, H₈), 1.45 (dd, J = 13.6, 2.5 Hz, 1H, H₆), 1.28 (s, 3H, H₁₃), 1.10-1.01 (m, 24H, H₁, H₂, H₁₄).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.7 (s, C₁₉), 140.2 (d, C₁₁), 131.8 (s, C₁₆), 127.3 (d, 2C, C₁₇), 114.8 (t, C₁₂), 113.5 (d, 2C, C₁₈), 108.8 (s, C₃), 94.3 (d, C₁₅), 80.2 (s, C₄), 75.7 (d, C₉), 73.4 (s, C₇), 55.2 (q, C₂₀), 42.5 (d, C₁₀), 38.0 (t, C₆), 33.7 (t, C₈), 28.3 (q, C₁₃), 18.6 (q, 6C, C₁), 15.4 (q, C₁₄), 14.0 (t, C₅), 11.3 (d, 3C, C₂).

HRMS (ESI) m/z: calculated for C₂₉H₄₆NaO₂Si [M + Na]⁺: 493.3108, found: 493.3102.

II.4.2.2.10. Synthesis of 6-[(2S,5E,7R)-2-hydroxy-7-[(4S,6R)-2-(4methoxyphenyl)-6-methyl-6-{4-[tris(propan-2-yl)silyl]but-3-yn-1-yl}-1,3-dioxan -4-yl]-4-oxooct-5-en-1-yl]-2,2-dimethyl-2,4-dihydro-1,3-dioxin-4-one (II.71)

MW (g/mol): 682.9585

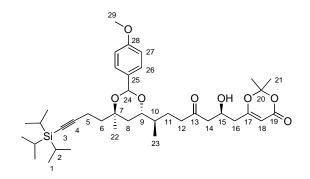
Molecular formula: C₃₉H₅₈O₈Si

To a solution of olefin **II.70** (900 mg, 1.77 mmol) and enone **II.49** (600 mg, 2.47 mmol) in CH₂Cl₂ (10 mL) was added Hoveyda-Grubbs 2^{nd} Generation catalyst (220 mg, 0.35 mmol) and the resulting mixture was stirred for 3 days at reflux. The solvent was then removed under reduced pressure and the crude residue was purified by flash column chromatography (EtOAc/PE, 20:80) to afford the corresponding enone **II.71** (1.0 g, 78%) as colourless oil.

*R*_f (PE/EtOAc, 1:1): 0.48.

 $[\alpha]_{D}^{20}$ –10.5 (*c* 0.2, CHCl₃).

IR (neat): 3468, 2942, 2864, 2170, 1726, 1376, 1248, 1012, 731, 676, 662 cm⁻¹.


¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (d, J = 8.8 Hz, 2H, H₂₆), 6.95 (dd, J = 16.3, 7.9 Hz, 1H, H₁₁), 6.88 (d, J = 8.8 Hz, 2H, H₂₇), 6.12 (d, J = 16.3 Hz, 1H, H₁₂), 5.61 (s, 1H, H₂₄),

5.34 (s, 1H, H₁₈), 4.37 (m, 1H, H₁₅), 3.93 (m, 1H, H₉), 3.80 (s, 3H, H₂₉), 3.31 (br s, 1H, OH), 2.84-2.68 (m, 2H, H₁₄), 2.53-2.40 (m, 3H, H₁₀, H₁₆), 2.39-2.32 (m, 3H, H₅, H₈), 1.69 (m, 1H, H₈), 1.68 (s, 3H, H₂₁), 1.67 (s, 3H, H₂₁), 1.60-1.51 (m, 2H, H₆), 1.28 (s, 3H, H₂₂), 1.16 (d, J = 6.8 Hz, 3H, H₂₃), 1.08-1.00 (m, 21H, H₁, H₂).

¹³**C NMR** (100 MHz, CDCl₃) δ 200.0 (s, C₁₃), 168.3 (s, C₁₇), 160.9 (s, C₁₉), 159.9 (s, C₂₈), 150.4 (d, C₁₁), 131.2 (s, C₂₅), 130.6 (d, C₁₂), 127.2 (d, 2C, C₂₆), 113.6 (d, 2C, C₂₇), 108.5 (s, C₃), 106.6 (s, C₂₀), 95.4 (d, C₁₈), 94.4 (d, C₂₄), 80.5 (s, C₄), 75.2 (d, C₉), 73.4 (s, C₇), 64.8 (d, C₁₅), 55.3 (q, C₂₉), 45.3 (t, C₁₄), 42.0 (d, C₁₀), 40.5 (t, C₁₆), 39.0 (t, C₆), 33.6 (t, C₈), 28.3 (q, C₂₂), 25.5 (q, C₂₁), 24.5 (q, C₂₁), 18.6 (q, 6C, C₁), 15.6 (q, C₂₃), 14.0 (t, C₅), 11.3 (d, 3C, C₂).

HRMS (ESI) m/z: calculated for C₃₉H₅₈NaO₈Si [M + Na]⁺: 705.3793, found: 705.3801.

II.4.2.2.11. Synthesis of 6-[(2S,7R)-2-hydroxy-7-[(4S,6R)-2-(4methoxyphenyl)-6-methyl-6-{4-[tris(propan-2-yl)silyl]but-3-yn-1-yl}-1,3-dioxan -4-yl]-4-oxooctyl]-2,2-dimethyl-2,4-dihydro-1,3-dioxin-4-one (II.72)

MW (g/mol): 684.9744

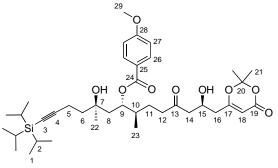
Molecular formula: C₃₉H₆₀O₈Si

In a two-neck round-bottom flask was added lithium chloride (811 mg, 19.1 mmol, flame-dried under vacuum), copper iodide (932 mg, 4.8 mmol) and THF (7 mL). After complete dissolution of the solids, the reaction mixture was cooled to -40 °C and *n*-Bu₃SnH (1.6 mL, 5.8 mmol) was added drop-wise followed by a solution of enone **II.71** (650 mg, 0.95 mmol) in anhydrous THF (7 mL). The orange-red solution was then stirred for 4 h, time during which the temperature was allowed to reaching 0 °C. The reaction was then quenched with a saturated aqueous solution of NH₄Cl (10 mL) and the aqueous phase was extracted with EtOAc (3 x 10 mL). The combined organic layers were then dried over anhydrous Na₂SO₄, filtered and concentrated under reduced

pressure, and the crude residue was finally purified by flash column chromatography (PE/EtOAc, 70:30) to afford ketone **II.72** (521 mg, 80%) as pale yellow oil.

 R_f (PE/EtOAc, 1:1): 0.53.

 $[\alpha]_{D}^{20}$ -12.4 (*c* 0.5, CHCl₃).


IR (neat): 3467, 2943, 2865, 2171, 1727, 1391, 1377, 1249, 1014 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (d, J = 8.8 Hz, 2H, H₂₆), 6.87 (d, J = 8.8 Hz, 2H, H₂₇), 5.56 (s, 1H, H₂₄), 5.31 (s, 1H, H₁₈), 4.28 (m, 1H, H₁₅), 3.78 (s, 3H, H₂₉), 3.70 (q_{app}, *J* = 7.0 Hz, 1H, H₉), 3.17 (br s, 1H, OH), 2.58-2.40 (m, 6H, H₅, H₈, H₁₂, H₁₄), 2.39-2.30 (m, 3H, H₅, H₈, H₁₆), 2.24 (dd, J = 14.5, 4.5 Hz, 1H, H₁₆), 1.95 (m, 1H, H₁₁), 1.68 (s, 3H, H_{21}), 1.67 (s, 3H, H_{21}), 1.59 (m, 1H, H_{10}), 1.54(d_{app} , J = 7.2 Hz, 2H, H_6), 1.47 (m, 1H, H_{11}), 1.27 (s, 3H, H_{22}), 1.08-1.00 (m, 21H, H_1 , H_2), 0.90 (d, J = 6.8 Hz, 3H, H_{23}).

¹³C NMR (100 MHz, CDCl₃) δ 211.4 (s, C₁₃), 168.3 (s, C₁₇), 160.9 (s, C₁₉), 159.8 (s, C₂₈), 131.6 (s, C₂₅), 127.3 (d, 2C, C₂₆), 113.6 (d, 2C, C₂₇), 108.7 (s, C₃), 106.6 (s, C₂₀), 95.3 (d, C₁₈), 94.5 (d, C₂₄), 80.3 (s, C₄), 76.6 (d, C₉), 73.4 (s, C₇), 64.6 (d, C₁₅), 55.3 (q, C₂₉), 48.0 (t, C₁₄), 41.4 (t, C₁₂), 40.3 (t, C₁₆), 38.5 (t, C₆), 37.5 (d, C₁₀), 33.6 (t, C₈), 28.4 $(q, C_{22}), 26.4 (t, C_{11}), 25.5 (q, C_{21}), 24.5 (q, C_{21}), 18.6 (q, 6C, C_1), 15.1 (q, C_{23}), 13.9 (t, C_{21}), 18.6 (q, 6C, C_{21}), 15.1 (q, C_{23}), 13.9 (t, C_{21}), 18.6 (q, 6C, C_{$ C₅), 11.2 (d, 3C, C₂).

HRMS (ESI) m/z: calculated for C₃₉H₆₀NaO₈Si [M + Na]⁺: 707.3950, found: 707.3956.

II.4.2.2.12. **Synthesis** of (5R,7S,8R,13S)-14-(2,2-dimethyl-6-oxo-2,6dihydro-1,3-dioxin-4-yl)-5,13-dihydroxy-5,8-dimethyl-11-oxo-1-[tris(propan-2yl)silyl]tetradec-1-yn-7-yl 4-methoxybenzoate (II.73)

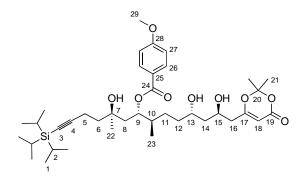
MW (g/mol): 700.9738

Molecular formula: C₃₉H₆₀O₉Si

In a round-bottom flask containing acetal **II.72** (510 mg, 0.74 mmol), CH_2Cl_2 (7 mL) and a pH 7.2 phosphate buffered solution (0.5 mL) was added DDQ (252 mg, 1.11 mmol). After 1 h stirring, a second equivalent of DDQ was added and the reaction mixture was stirred for an additional hour. The solvent was then removed under reduced pressure and the crude residue was purified by column chromatography (PE/EtOAc, 50:50) to afford hydroxyester **II.73** (391 mg, 75%) as colourless oil.

 R_f (PE/EtOAc, 1:1): 0.36.

 $[\alpha]_{D}^{20}$ +5.8 (*c* 0.5, CHCl₃).


IR (neat): 3468, 2941, 2864, 2170, 1707, 1606, 1378, 1256, 1167, 1101, 1016 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 2H, H₂₆), 6.90 (d, J = 8.8 Hz, 2H, H₂₇), 5.34 (s, 1H, H₁₈), 5.27 (m, 1H, H₉), 4.36 (m, 1H, H₁₅), 3.84 (s, 3H; H₂₉), 3.37 (br s, 1H, OH), 2.69-2.56 (m, 3H, H₁₂, H₁₄), 2.51 (m, 1H, H₁₂), 2.49-2.42 (m, 4H, H₅, H₁₆), 1.92-1.83 (m, 2H, H₈, H₁₀), 1.76-1.64 (m, 4H, H₆, H₈, H₁₁), 1.69 (s, 3H, H₂₁), 1.68 (s, 3H, H₂₁), 1.53 (m, 1H, H₁₁), 1.16 (s, 3H, H₂₂), 1.06-0.97 (m, 21H, H₁, H₂), 0.93 (d, J = 6.8 Hz, 3H, H₂₃).

¹³**C NMR** (100 MHz, CDCl₃) δ 210.8 (s, C₁₃), 168.3 (s, C₁₇), 166.1 (s, C₂₄), 163.5 (s, C₂₈), 161.0 (s, C₁₉), 131.5 (d, 2C, C₂₆), 122.5 (s, C₂₅), 113.7 (d, 2C, C₂₇), 108.8 (s, C₃), 106.6 (s, C₂₀), 95.4 (d, C₁₈), 81.1 (s, C₄), 73.6 (d, C₉), 71.6 (s, C₇), 64.8 (d, C₁₅), 55.4 (q, C₂₉), 48.6 (t, C₁₄), 41.5 (t, C₁₂), 41.1 (t, C₁₆), 40.7 (t, C₆), 40.5 (t, C₈), 36.7 (d, C₁₀), 26.2 (q, C₂₂), 25.6 (t, C₁₁), 25.5 (q, C₂₁), 24.5 (q, C₂₁), 18.5 (q, 6C, C₁), 14.8 (q, C₂₃), 14.7 (t, C₅), 11.2 (d, 3C, C₂).

HRMS (ESI) m/z: calculated for C₃₉H₆₀NaO₉Si [M + Na]⁺: 723.3899, found: 723.3910.

II.4.2.2.13. Synthesis of (5R,7S,8R,11S,13R)-14-(2,2-dimethyl-6-oxo-2,6dihydro-1,3-dioxin-4-yl)-5,11,13-trihydroxy-5,8-dimethyl-1-[tris(propan-2-yl) silyl]tetradec-1-yn-7-yl 4-methoxybenzoate (II.74)

MW (g/mol): 702.9897

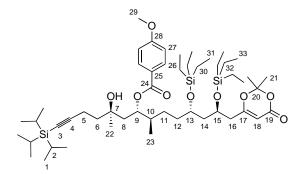
Molecular formula: C₃₉H₆₂O₉Si

To a solution of ketone **II.73** (350 mg, 0.50 mmol) in a 1:1 MeCN/AcOH mixture (8 mL) at $-30 \,^{\circ}$ C was added tetramethylammonium triacetoxyborohydride (1.3 g, 5.0 mmol) in one portion. After stirring at the same temperature for 20 h, the reaction mixture was poured in a saturated aqueous solution of NaHCO₃ (10 mL), stirred for 30 min, and extracted with EtOAc (3 x 15 mL). The combined organic fractions were washed twice with a saturated aqueous solution of NaHCO₃ (2 x 10 mL) and once with brine (10 mL), dried over anhydrous Na₂SO₄ and filtered. The solvents were then removed under reduced pressure and the resulting crude residue was purified by flash column chromatography (PE/EtOAc, 40:60) to afford the desired triol **II.74** (320 mg, 91%) as a colourless oil.

*R*_f (PE/EtOAc, 3:7): 0.20.

 $[\alpha]_{D}^{20}$ –1.8 (*c* 0.5, CHCl₃).

IR (neat): 3401, 2940, 2864, 2170, 1707, 1606, 1378, 1257, 1167, 1102, 1015 cm⁻¹.


¹**H NMR** (400 MHz, CHCl₃) δ 7.94 (d, J = 8.8 Hz, 2H, H₂₆), 6.89 (d, J = 8.8 Hz, 2H, H₂₇), 5.33 (s, 1H, H₁₈), 5.30 (m, 1H, H₉), 4.23 (m, 1H, H₁₅), 3.91 (m, 1H, H₁₃), 3.83 (s, 3H, H₂₉), 3.23 (br s, 3H, OH), 2.46-2.30 (m, 4H, H₅, H₁₆), 1.95-1.81 (m, 2H, H₈, H₁₀), 1.77-1.48 (m, 9H, H₆, H₈, H₁₁, H₁₂, H₁₄), 1.67 (s, 6H, H₂₁), 1.05 (s, 3H, H₂₂), 1.05-0.96 (m, 21H, H₁, H₂), 0.92 (d, J = 6.8 Hz, 3H, H₂₃).

¹³**C NMR** (100 MHz, CHCl₃) δ 169.5 (s, C₁₇), 166.2 (s, C₂₄), 163.4 (s, C₂₈), 161.5 (s, C₁₉), 131.5 (d, 2C, C₂₆), 122.6 (s, C₂₅), 113.7 (d, 2C, C₂₇), 108.8 (s, C₃), 106.6 (s, C₂₀),

94.8 (d, C_{18}), 80.7 (s, C_4), 73.9 (d, C_9), 71.7 (s, C_7), 68.9 (d, C_{13}), 65.9 (d, C_{15}), 55.4 (q, C_{29}), 42.9 (t, C_{14}), 41.9 (t, C_{16}), 41.5 (t, C_6), 40.2 (t, C_8), 37.1 (d, C_{10}), 35.0 (t, C_{12}), 28.9 (t, C_{11}), 25.6 (q, C_{22}), 25.2 (q, C_{21}), 24.7 (q, C_{21}), 18.5 (q, 6C, C_1), 14.7 (t, C_5), 14.6 (q, C_{23}), 11.1 (d, 3C, C_2).

HRMS (ESI) m/z: calculated for C₃₉H₆₂NaO₉Si [M + Na]⁺: 725.4055, found: 725.4062.

II.4.2.2.14. Synthesis of (5R,7S,8R,11S,13R)-14-(2,2-dimethyl-6-oxo-2,6dihydro-1,3-dioxin-4-yl)-5-hydroxy-5,8-dimethyl-11,13-bis[(triethylsilyl)oxy]-1-[tris(propan-2-yl)silyl]tetradec-1-yn-7-yl 4-methoxybenzoate (II.75)

MW (g/mol): 931.5114

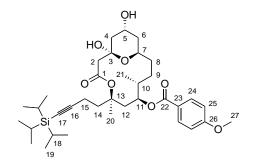
Molecular formula: C₅₁H₉₀O₉Si₃

To a solution of triol **II.74** (120 mg, 0.17 mmol) and imidazole (46 mg, 0.68 mmol) in CH_2Cl_2 (5 mL) at 0 °C was added TESCl (0.06 mL, 0.36 mmol). After stirring for 30 min at rt, the solution was diluted with CH_2Cl_2 , washed once with a saturated aqueous solution of NaHCO₃ (5 mL) and once with brine (5 mL), dried over anhydrous Na₂SO₄ and filtered. The solvent was then evaporated under reduced pressure and the crude residue was purified by flash column chromatography (PE/EtOAc, 85:15) to afford **II.75** (147 mg, 92%) as colourless oil.

 R_f (PE/EtOAc, 8:2): 0.55.

 $[\alpha]_{D}^{20}$ +2.4 (*c* 1.0, CHCl₃).

IR (neat): 3471, 2955, 2876, 2171, 1711, 1256, 1101, 1013, 741 cm⁻¹.


¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 8.8 Hz, 2H, H₂₆), 6.90 (d, J = 8.8 Hz, 2H, H₂₇), 5.27 (s, 1H, H₁₈), 5.25 (m, 1H, H₉), 4.06 (quint_{*app*}, J = 6.0 Hz, 1H, H₁₅), 3.85 (s, 3H, H₂₉), 3.77 (m, 1H, H₁₃), 2.45-2.32 (m, 4H, H₅, H₁₆), 1.92 (dd, J = 15.1, 9.6 Hz, 1H, H₈), 1.83-1.64 (m, 4H, H₆, H₈, H₁₀), 1.67 (s, 3H, H₂₁), 1.66 (s, 3H, H₂₁), 1.62-1.53 (m,

3H, H₁₂, H₁₄), 1.52-1.40 (m, 2H, H₁₁, H₁₂), 1.21 (m, 1H, H₁₁), 1.19 (s, 3H, H₂₂), 1.06-0.96 (m, 21H, H₁, H₂), 0.94-0.92 (m, 21H, H₂₃, H₃₁, H₃₃), 0.59 (q, J = 8.0 Hz, 6H, H₃₀, H₃₂), 0.58 (q, J = 8.0 Hz, 6H, H₃₀, H₃₂).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.1 (s, C₁₇), 166.0 (s, C₂₄), 163.4 (s, C₂₈), 161.1 (s, C₁₉), 131.5 (d, 2C, C₂₆), 122.7 (s, C₂₅), 113.7 (d, 2C, C₂₇), 108.9 (s, C₃), 106.3 (s, C₂₀), 95.2 (d, C₁₈), 81.0 (s, C₄), 74.4 (d, C₉), 71.6 (s, C₇), 69.9 (d, C₁₃), 67.5 (d, C₁₅), 55.4 (q, C₂₉), 45.3 (t, C₁₄), 42.8 (t, C₁₆), 41.4 (t, C₆), 41.0 (t, C₈), 37.8 (d, C₁₀), 35.6 (t, C₁₂), 27.4 (t, C₁₁), 26.6 (q, C₂₂), 25.6 (q, C₂₁), 24.5 (q, C₂₁), 18.5 (q, 6C, C₁), 14.9 (q, C₂₃), 14.7 (t, C₅), 11.2 (d, 3C, C₂), 6.9 (q, 3C, C₃₁, C₃₃), 6.8 (q, 3C, C₃₁, C₃₃), 5.3 (t, 3C, C₃₀, C₃₂), 5.2 (t, 3C, C₃₀, C₃₂).

HRMS (ESI) m/z: calculated for C₅₁H₉₀NaO₉Si₃ [M + Na]⁺: 953.5785, found: 953.5781.

II.4.2.2.15. Synthesis of (1R,5R,7S,8R,11R,13R)-1,13-dihydroxy-5,8dimethyl-3-oxo-5-{4-[tris(propan-2-yl)silyl]but-3-yn-1-yl}-4,15-dioxabicyclo [9.3.1]pentadecan-7-yl 4-methoxybenzoate (II.78)

MW (g/mol): 644.9105

Molecular formula: C₃₆H₅₆O₈Si

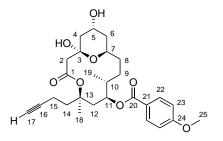
To a round-bottom flask containing a pre-heated (110 $^{\circ}$ C) solution of dry toluene (1 L) was added **II.75** (115 mg, 0.11 mmol in 4 mL of toluene) drop-wise. The reaction mixture was then stirred at reflux until complete consumption of the starting material (reaction monitored by TLC). The solvent was then removed under reduced pressure and the crude residue was used in the next step without further purification.

The crude residue was thus dissolved in a 2:1 THF/H₂O (6 mL) mixture. *p*-TsOH (24 mg, 0.11 mmol) was added and the resulting reaction mixture was stirred for 1 h at rt. A saturated aqueous solution of NaHCO₃ was then added with care to quench the

reaction, and the mixture was extracted with EtOAc ($2 \times 10 \text{ mL}$). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography (EtOAc/PE, 30:70) to afford **II.78** (69 mg, 75%) as colourless oil.

*R*_f (EtOAc/PE, 1:1): 0.5.

 $[\alpha]_{D}^{20}$ –6.8 (*c* 0.57, CHCl₃).


IR (neat): 3475, 2940, 2865, 2172, 1706, 1607, 1462, 1322, 1279, 1257, 1230, 1167, 1101, 1031 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 9.0 Hz, 2H, H₂₄), 6.91 (d, J = 9.0 Hz, 2H, H₂₅), 5.43 (d, J = 10.0 Hz, 1H, H₁₁), 4.56 (br s, 1H, OH), 4.14 (m, 1H, H₅), 3.85 (s, 3H, H₂₇), 3.65 (t, J = 10.9 Hz, 1H, H₇), 2.80-2.66 (m, 2H, H₄, H₁₂), 2.59 (d, J = 12.6 Hz, 1H, H₂), 2.49 (d, J = 12.6 Hz, 1H, H₂), 2.31 (m, 1H, H₄), 2.24-2.10 (m, 2H, H₄, H₁₄), 1.97 (m, 1H, H₁₅), 1.92 (m, 1H, H₆), 1.84-1.61 (m, 4H, H₈, H₁₀, H₁₂), 1.42 (m, 1H, H₉), 1.35-1.23 (m, 3H, H₆, H₉, H₁₄), 1.19 (br s, 3H, H₂₀), 1.06-1.01 (m, 21H, H₁₈, H₁₉), 0.88 (d, J = 7.2 Hz, 3H, H₂₁).

¹³C NMR (100 MHz, CDCl₃) δ 172.4 (s, C₁), 165.7 (s, C₂₂), 163.3 (s, C₂₆), 131.4 (d, 2C, C₂₄), 123.2 (s, C₂₃), 113.6 (d, 2C, C₂₅), 108.0 (s, C₁₇), 96.3 (s, C₃), 84.8 (s, C₁₃), 80.4 (s, C₁₆), 71.9 (d, C₁₁), 69.2 (d, C₇), 64.9 (d, C₅), 55.4 (q, C₂₇), 47.1 (t, C₂), 43.4 (t, C₆), 40.5 (t, C₁₄), 38.8 (d, C₁₀), 34.2 (t, C₁₂), 32.3 (t, C₈), 28.8 (t, C₉), 24.0 (q, C₂₀), 18.6 (q, 6C, C₁₉), 14.6 (t, C₁₅), 11.2 (d, 3C, C₁₈). The C₄ (38.9, t) and C₂₁ (15.3, q) chemical shifts have been determined by HMQC correlation.

HRMS (ESI) m/z: calculated for C₃₆H₅₆NaO₈Si [M + Na]⁺: 667.3642, found: 667.3639.

II.4.2.2.16. Synthesis of (1R,5R,7S,8R,11R,13R)-5-(but-3-yn-1-yl)-1,13dihydroxy-5,8-dimethyl-3-oxo-4,15-dioxabicyclo[9.3.1]pentadecan-7-yl 4-methoxybenzoate (II.79)

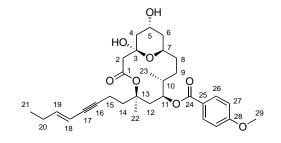
MW (g/mol): 488.5699

Molecular formula: C₂₇H₃₆O₈

To a stirred solution of **II.78** (50 mg, 0.07 mmol) in MECN (1.4 mL) at rt was added AgF (49 mg, 0.39 mmol) and the resulting reaction mixture was stirred in the absence of light for 5 h. A 1M aqueous solution of HCl (0.25 mL) was then added to the reaction, which was stirred for an additional 5 min and diluted with EtOAc (3 mL). The organic phase was then separated and the aqueous layer was extracted with EtOAc (3 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography (EtOAc/PE, 40:60) to afford **II.79** (28 mg, 80%) as colourless oil.

*R*_{*f*} (EtOAc/PE, 1:1): 0.33.

 $[\alpha]_{D}^{20}$ –25.79 (*c* 1.3, CHCl₃).


IR (neat): 3476, 3299, 2932, 1703, 1606, 1279, 1257, 1168, 1101, 1030, 773 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 8.8 Hz, 2H, H₂₂), 6.92 (d, J = 8.8 Hz, 2H, H₂₃), 5.44 (d, J = 9.3 Hz, 1H, H₁₁), 4.56 (br s, 1H, OH), 4.14 (m, 1H, H₅), 3.86 (s, 3H, H₂₇), 3.67 (m, 1H, H₇), 2.81-2.67 (m, 2H, H₄, H₁₂), 2.61 (d, J = 12.6 Hz, 1H, H₂), 2.50 (d, J = 12.6 Hz, 1H, H₂), 2.31-2.10 (m, 3H, H₆, H₁₅), 1.97-1.85 (m, 3H, H₄, H₁₄, H₁₇), 1.82-1.61 (m, 4H, H₈, H₁₀, H₁₂), 1.49-1.25 (m, 4H, H₆, H₉, H₁₄), 1.18 (br s, 3H, H₁₈), 0.89 (d, J = 6.8 Hz, 3H, H₁₉).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.5 (s, C₁), 165.7 (s, C₂₀), 163.3 (s, C₂₄), 131.4 (d, 2C, C₂₂), 123.2 (s, C₂₁), 113.7 (d, 2C, C₂₃), 96.4 (s, C₃), 84.7 (s, C₁₃), 83.7 (s, C₁₆), 77.2 (d, C₁₇), 69.3 (d, C₁₁), 68.5 (d, C₇), 65.0 (d, C₅), 55.4 (q, C₂₇), 47.1 (t, C₂), 43.4 (t, C₆), 40.6 (t, C₁₄), 34.3 (t, C₁₂), 32.4 (t, C₈), 29.7 (t, C₉), 23.9 (q, C₁₈), 18.6 (q, C₁₉), 13.1 (t, C₁₅). The C₄ (38.1, t) and C₁₀ (38.8, d) chemical shifts have been determined by HMQC correlation.

HRMS (ESI) m/z: calculated for C₂₇H₃₆NaO₈ [M + Na]⁺: 511.2302, found: 511.2298.

II.4.2.2.17. Synthesis of (1R,5R,7S,8R,11R,13R)-1,13-dihydroxy-5,8dimethyl-5-[(5E)-oct-5-en-3-yn-1-yl]-3-oxo-4,15-dioxabicyclo[9.3.1]pentadecan -7-yl 4-methoxybenzoate (II.81)

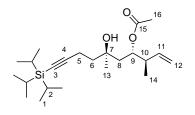
MW (g/mol): 542.6604

Molecular formula: C₃₁H₄₂O₈

To a solution of **II.79** (40 mg, 0.08 mmol) and vinyl iodide **II.80** (90 mg, 0.5 mmol) in a degassed Et₃N/DMF mixture (1:1, 3 mL) were added CuI (2 mg, 8.1 μ mol) and Pd(PPh₃)₂Cl₂ (3 mg, 4.0 μ mol). The resulting reaction mixture was stirred at rt for 2 h and diluted with EtOAc (3 mL). The organic layer was then separated and the aqueous phase was extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography (EtOAc/PE, 30:70) to afford **II.81** (28 mg, 63%) as colourless oil.

 R_f (EtOAc/PE, 1:1): 0.41.

 $[\alpha]_{\mathbf{D}}^{20}$ –17.4 (*c* 0.4, CHCl₃).


IR (neat): 3475, 2961, 2933, 1704, 1606, 1511, 1322, 1279, 1257, 1230, 1167, 1101, 1030, 772 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 8.8 Hz, 2H, H₂₆), 6.92 (d, J = 8.8 Hz, 2H, H₂₇), 6.08 (dt, J = 15.8, 6.8 Hz, 1H, H₁₉), 5.49-5.37 (m, 2H, H₁₁, H₁₈), 4.58 (br s, 1H, OH), 4.13 (m, 1H, H₅), 3.86 (s, 3H, H₂₉), 3.67 (m, 1H, H₇), 2.77-2.66 (m, 2H, H₄, H₁₂), 2.6 (d, J = 12.5 Hz, 1H, H₂), 2.49 (d, J = 12.5 Hz, 1H, H₂), 2.33 (m, 1H, H₁₅), 2.26 (m, 1H, H₁₅), 2.18 (dd, J = 12.0, 3.9 Hz, 1H, H₆), 2.09 (t, J = 8.0 Hz, 2H, H₂₀), 2.00-1.87 (m, 2H, H₄, H₁₄), 1.81-1.66 (m, 4H, H₈, H₁₀, H₁₂), 1.41(m, 1H, H₆), 1.37-1.22 (m, 3H, H₉, H₁₄), 1.19 (br s, 3H, H₂₂), 0.98 (t, J = 7.4 Hz, 3H, H₂₁), 0.88 (d, J = 6.8 Hz, 3H, H₂₃).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.5 (s, C₁), 165.7 (s, C₂₄), 163.3 (s, C₂₈), 145.1 (d, C₁₉), 131.4 (d, 2C, C₂₆), 123.2 (s, C₂₅), 113.7 (d, 2C, C₂₇), 108.7 (d, C₁₈), 96.4 (s, C₃), 87.6 (s, C₁₇), 84.8 (s, C₁₃), 79.6 (s, C₁₆), 71.5 (d, C₁₁), 69.2 (d, C₇), 65.0 (d, C₅), 55.4 (q, C₂₉), 47.1 (t, C₂), 43.4 (t, C₆), 40.6 (t, C₁₄), 38.8 (d, C₁₀), 38.4 (t, C₄), 34.3 (t, C₁₂), 32.4 (t, C₈), 29.7 (t, C₉), 26.0 (t, C₂₀), 23.9 (q, C₂₂), 15.3 (q, C₂₃), 14.1 (t, C₁₅), 13.0 (q, C₂₁).

HRMS (ESI) m/z: calculated for C₃₁H₄₂NaO₈ [M + Na]⁺: 565.2772, found: 565.2758.

II.4.2.2.18. Synthesis of (3R,4S,6R)-6-hydroxy-3,6-dimethyl-10-[tris(propan-2-yl)silyl]dec-1-en-9-yn-4-yl acetate (II.83)

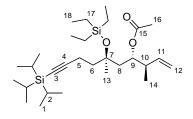
MW (g/mol): 394.6632

Molecular formula: C₂₃H₄₂O₃Si

A solution of diol **II.69** (1.7 g, 4.82 mmol) in CH₂Cl₂ (10 mL) and pyridine (8 mL), was treated with DMAP (24 mg, 0.2 mmol) and acetyl chloride (1.8 mL, 19.3 mmol) at 0 °C. The resulting mixture reaction was stirred for 1 h at rt, and then H₂O was added. The two layers were separated and the aqueous fraction was extracted with CH₂Cl₂ (25 mL x 2). The combined organic fractions were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The obtained residue was purified by flash chromatography (Et₂O/PE, from 15:85 to 30:70) to give pure product **II.83** as colourless oil (1.9 g, quant.).

R_f (PE/Et₂O, 7:3): 0.45.

[α]_D²⁰ -4.43 (*c* 0.87, CHCl₃).


IR (neat): 3468, 2942, 2865, 2171, 1740, 1717, 1463, 1376, 1239, 1020, 883 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.72 (m, 1H, H₁₁), 5.08-5.02 (m, 2H, H₉, H₁₂), 2.41 (dd, J = 12.2, 6.9 Hz, 1H, H₁₀), 2.35 (t, J = 7.6 Hz, 2H, H₅), 2.23 (br s, 1H, OH), 2.03 (s, 3H, H₁₆), 1.76-1.61 (m, 4H, H₆, H₈), 1.17 (s, 3H, H₁₃), 1.06-1.02 (m, 21H, H₁, H₂), 0.99 (d, J = 6.9 Hz, 3H, H₁₄).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.0 (s, C₁₅), 139.0 (d, C₁₁), 115.9 (t, C₁₂), 108.9 (s, C₃), 81.2 (s, C₄), 73.5 (d, C₉), 71.6 (s, C₇), 42.6 (d, C₁₀), 42.2 (t, C₈), 40.8 (t, C₆), 26.8 (q, C₁₆), 21.3 (q, C₁₃), 18.6 (q, 6C, C₁), 15.2 (q, C₁₄), 14.7 (t, C₅), 11.2 (q, 3C, C₂).

HRMS (ESI) m/z: calculated for C₂₃H₄₂NaO₃Si [M + Na]⁺: 417.2795, found: 417.2790.

II.4.2.2.19. Synthesis of (3R,4S,6R)-3,6-dimethyl-6-[(triethylsilyl)oxy]-10-[tris(propan-2-yl)silyl]dec-1-en-9-yn-4-yl acetate (II.84)

MW (g/mol): 508.9241

Molecular formula: C₂₉H₅₆O₃Si₂

To a solution of acetate **II.83** (1.8 g, 4.56 mmol) in CH₂Cl₂ (15 mL), was added 2,6-lutidine (1.05 mL, 9.12 mmol). Then, the mixture was cooled down to -10 °C and TESOTf (1.55 mL, 6.84 mmol) was added dropwise. The resulting mixture was stirred for 1 h at -10 °C. A saturated aqueous solution of NaHCO₃ was added to quench the reaction. The two layers were separated and the aqueous fraction was extracted with Et₂O (2 x 25 mL). The combined organic fractions were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The obtained residue was purified by flash chromatography (Et₂O/PE, 2:98) to give pure product **II.84** as colourless oil (1.9 g, 83%).

*R*_{*f*} (PE/Et₂O, 19:1): 0.60.

 $[\alpha]_{D}^{20}$ +0.91 (*c* 1.56, CHCl₃).

IR (neat): 3302, 2943, 2866, 2171, 1742, 1462, 1376, 1236, 1125, 1019, 1000, 883, 725 cm⁻¹.

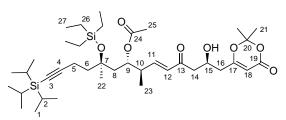
¹**H NMR** (400 MHz, CDCl₃) δ 5.70 (m, 1H, H₁₁), 5.06 (s, 1H, H₉), 5.05-4.97 (m, 2H, H₁₂), 2.41 (dd, J = 11.8, 6.9 Hz, 1H, H₁₀), 2.32-2.26 (m, 2H, H₅), 2.02 (s, 3H, H₁₆), 1.71-1.58 (m, 4H, H₆, H₈), 1.20 (s, 3H, H₁₃), 1.07-1.02 (m, 21H, H₁, H₂), 0.98-0.91 (m, 12H, H₁₄, H₁₈), 0.57 (q, J = 7.8 Hz, 6H, H₁₇).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.6 (s, C₁₅), 139.4 (d, C₁₁), 115.6 (t, C₁₂), 109.5 (s, C₃), 79.6 (s, C₄), 74.3 (s, C₇), 73.6 (d, C₉), 42.7 (t, C₈), 42.5 (d, C₁₀), 41.9 (t, C₆), 27.4 (q, C₁₆), 21.5 (q, C₁₃), 18.6 (q, 6C, C₁), 14.8 (t, C₅), 14.7 (t, C₁₄), 11.3 (q, 3C, C₂), 7.1 (q, 3C, C₁₈), 6.8 (t, 3C, C₁₇).

HRMS (ESI) m/z: calculated for C₂₉H₅₆NaO₃Si₂ [M + Na]⁺: 531.3660, found: 531.3660.

II.4.2.2.20. Synthesis of (5R,7S,8R,9E,13S)-14-(2,2-dimethyl-6-oxo-2,6dihydro-1,3-dioxin-4-yl)-13-hydroxy-5,8-dimethyl-11-oxo-5-[(triethylsilyl)oxy]-1-[tris(propan-2-yl)silyl] tetradec-9-en-1-yn-7-yl acetate (II.85)

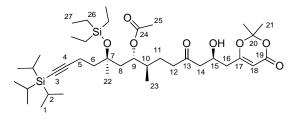
MW (g/mol): 721.1234


Molecular formula: C₃₉H₆₈O₈Si₂

To a solution of olefin **II.84** (900 mg, 1.77 mmol) and enone **II.49** (600 mg, 2.47 mmol) in CH₂Cl₂ (9 mL), was added Hoveyda-Grubbs 2^{nd} Generation catalyst (220 mg, 0.35 mmol). The resulting mixture was stirred for 3 days at reflux. Then, the reaction mixture was concentrated under reduced pressure and the obtained residue was purified by flash chromatography (EtOAc/PE, from 20:80 to 30:70) to give the pure product **II.85** as a colourless oil (1.03 g, 81%).

*R*_{*f*} (EtOAc/PE, 1:1): 0.55.

IR (neat): 3467, 2943, 2866, 2171, 1731, 1634, 1376, 1237, 1013, 725 cm⁻¹.


¹**H NMR** (400 MHz, CDCl₃) δ 6.72 (dd, J = 15.9, 7.5 Hz, 1H, H₁₁), 6.06 (d, J = 15.9 Hz, 1H, H₁₂), 5.33 (s, 1H, H₁₈), 5.06 (m, 1H, H₉), 4.36 (oct, J = 4.0 Hz, 1H, H₁₅), 3.34 (d, J = 3.4 Hz, 1H, H₂₈), 2.79-2.66 (m, 2H, H₁₄), 2.59 (m, 1H, H₁₀), 2.42 (dd, J = 14.8, 8.8 Hz, 1H, H₁₆), 2.34 (dd, J = 14.8, 4.6 Hz, 1H, H₁₆), 2.28-2.22 (m, 2H, H₅), 2.00 (s, 3H, H₂₅), 1.68 (s, 3H, H₂₁), 1.67 (s, 3H, H₂₁), 1.68-1.57 (m, 4H, H₆, H₈), 1.18 (s, 3H, H₂₂), 1.05-0.96 (m, 24H, H₁, H₂, H₂₃), 0.91 (t, J = 7.9 Hz, 9H, H₂₇), 0.55 (q, J = 7.9 Hz, 6H, H₂₆).

¹³**C NMR** (100 MHz, CDCl₃) δ 199.6 (s, C₁₃), 170.5 (s, C₂₄), 168.3 (s, C₁₇), 160.9 (s, C₁₉), 149.1 (d, C₁₁), 130.8 (d, C₁₂), 108.9 (s, C₃), 106.6 (s, C₂₀), 95.3 (d, C₁₈), 80.0 (s, C₄), 74.1 (d, C₉), 72.8 (s, C₇), 64.6 (d, C₁₅), 45.3 (t, C₁₄), 42.9 (t, C₈), 42.5 (t, C₆), 41.9 (d, C₁₀), 40.4 (t, C₁₆), 27.1 (q, C₂₂), 25.4 (q, C₂₁), 24.4 (q, C₂₁), 21.1 (q, C₂₅), 18.5 (q, 6C, C₁), 14.9 (q, C₂₃), 14.7 (t, C₅), 11.1 (d, 3C, C₂), 7.0 (q, 3C, C₂₇), 6.6 (t, 3C, C₂₆).

HRMS (ESI) m/z: calculated for C₃₉H₆₈NaO₈Si₂ [M + Na]⁺: 743.4345, found: 743.4364.

II.4.2.2.21. Synthesis of (5R,7S,8R,13S)-14-(2,2-dimethyl-6-oxo-2,6dihydro-1,3-dioxin-4-yl)-13-hydroxy-5,8-dimethyl-11-oxo-5-[(triethylsilyl)oxy]-1-[tris (propan-2-yl)silyl]tetradec-1-yn-7-yl acetate (II.86)

MW (g/mol): 723.1393

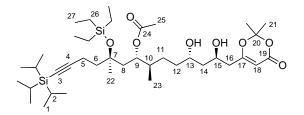
Molecular formula: C₃₉H₇₀O₈Si₂

A solution of enone **II.85** (620 mg, 0.86 mmol) in degassed toluene (10 mL) was transferred via syringe to a flask containing the Stryker's reagent (1 g, 0.51 mmol) in toluene (30 mL). The resulting mixture was stirred for 30 min at rt. Then, the reaction mixture was exposed to air and hexane was added. The stirring was continued for 20 min. The solvent was removed under reduced pressure and the obtained residue was purified by flash chromatography (EtOAc/PE, from 25:85 to 35:75) to give the pure product **II.86** as a colourless oil (516 mg, 83%).

*R*_f (EtOAc/PE, 2:3): 0.44.

 $[\alpha]_{D}^{20}$ +4.11 (*c* 0.72, CHCl₃, 86% ee).

IR (neat): 3468, 2956, 2866, 2171, 1730, 1635, 1462, 1377, 1242, 1016, 725 cm⁻¹.


¹**H NMR** (400 MHz, CDCl₃) δ 5.29 (s, 1H, H₁₈), 4.89 (dd, J = 8.6, 3.7 Hz, 1H, H₉), 4.30 (sept, *J* = 4.0 Hz, 1H, H₁₅), 3.38 (br s, 1H, OH), 2.64-2.51 (m, 3H, H₁₄, H₁₂), 2.43-2.24 (m, 5H, H₅, H₁₄, H₁₆), 2.00 (s, 3H, H₂₅), 1.65 (s, 3H, H₂₁), 1.64 (s, 3H, H₂₁), 1.69-1.55 (m, 4H, H₆, H₈), 1.53-1.38 (m, 3H, H₁₀, H₁₁), 1.15 (s, 3H, H₂₂), 1.01-0.99 (m, 21H, H₁)

H₂), 0.90 (t, J = 8.0 Hz, 9H, H₂₇), 0.80 (d, J = 6.7 Hz, 3H, H₂₃), 0.54 (q, J = 8.0 Hz, 6H, H₂₆).

¹³**C NMR** (100 MHz, CDCl₃) δ 210.6 (s, C₁₃), 170.7 (s, C₂₄), 168.2 (s, C₁₇), 160.9 (s, C₁₉), 109.2 (s, C₃), 106.6 (s, C₂₀), 95.4 (d, C₁₈), 79.9 (s, C₄), 74.2 (d, C₉), 73.5 (s, C₇), 64.8 (d, C₁₅), 48.5 (t, C₁₄), 42.9 (t, C₈), 41.0 (t, C₆), 40.5 (t, C₁₂), 40.4 (t, C₁₆), 36.5 (d, C₁₀), 27.8 (q, C₂₂), 25.8 (t, C₁₁), 25.5 (q, C₂₁), 24.5 (q, C₂₁), 21.4 (q, C₂₅), 18.6 (q, 6C, C₁), 14.8 (t, C₅), 14.3 (q, C₂₃), 11.2 (d, 3C, C₂), 7.1 (q, 3C, C₂₇), 6.8 (t, 3C, C₂₆).

HRMS (ESI) m/z: calculated for C₃₉H₇₀NaO₈Si₂ [M + Na]⁺: 745.4501, found: 745.4519.

II.4.2.2.22. Synthesis of (5R,7S,8R,11S,13R)-14-(2,2-dimethyl-6-oxo-2,6dihydro-1,3-dioxin-4-yl)-11,13-dihydroxy-5,8-dimethyl-5-[(triethylsilyl)oxy]-1-[tris(propan-2-yl)silyl] tetradec-1-yn-7-yl acetate (II.87)

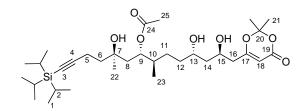
MW (g/mol): 725.1551

Molecular formula: C₃₉H₇₂O₈Si₂

To a solution of ketone **II.86** (350 mg, 0.48 mmol) in MeCN (3.7 mL) and AcOH (3.7 mL) at -30 °C, was added Me₄NBH(OAc)₃ (1.2 g, 4.8 mmol) in one portion. Then, the solution was diluted with EtOAc (5 mL) and poured in a NaHCO₃ solution under stirring. The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The obtained residue was purified by flash chromatography (EtOAc/PE, 30:70) to afford the product **II.87** (290 mg, 84%) as a colourless oil.

Rf (EtOAc/PE, 1:1): 0.42.

 $[\alpha]_{D}^{20}$ –3.5 (*c* 0.72, CHCl₃, 86% ee).


IR (neat): 3437, 2943, 2866, 2171, 1733, 1716, 1634, 1377, 1243, 1016 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.33 (s, 1H, H₁₈), 4.91 (m, 1H, H₉), 4.23 (m, 1H, H₁₅), 3.94 (m, 1H, H₁₃), 2.49-2.36 (m, 2H, H₁₆), 2.35-2.26 (m, 2H, H₅), 2.03 (s, 3H, H₂₅), 1.80-1.38 (m, 9H, H₆, H₈, H₁₀, H₁₂, H₁₄), 1.69 (s, 6H, H₂₁), 1.36-1.28 (m, 2H, H₁₁), 1.19 (s, 3H, H₂₂), 1.07-0.98 (m, 21H, H₁, H₂), 0.94 (t, J = 8.0 Hz, 9H, H₂₇), 0.85 (d, J = 6.9 Hz, 3H, H₂₃), 0.57 (q, J = 8.0 Hz, 6H, H₂₆).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.8 (s, C₂₄), 169.1 (s, C₁₇), 161.1 (s, C₁₉), 109.3 (s, C₃), 106.6 (s, C₂₀), 95.1 (d, C₁₈), 79.8 (s, C₄), 74.3 (d, C₉), 74.1 (s, C₇), 69.0 (d, C₁₃), 66.2 (d, C₁₅), 42.9 (t, C₈), 42.8 (t, C₁₆), 41.7 (t, C₆), 40.4 (t, C₁₄), 36.9 (d, C₁₀), 34.9 (t, C₁₂), 28.5 (t, C₁₁), 27.4 (q, C₂₅), 25.3 (q, C₂₁), 24.7 (q, C₂₁), 21.4 (q, C₂₂), 18.6 (q, 6C, C₁), 14.8 (t, C₅), 14.4 (q, C₂₃), 11.2 (d, 3C, C₂), 7.1 (q, 3C, C₂₇), 6.8 (t, 3C, C₂₆).

HRMS (ESI) m/z: calculated for C₃₉H₇₂NaO₈Si₂ [M + Na]⁺: 747.4658, found: 747.4668.

II.4.2.2.23. Synthesis of (5R,7S,8R,11S,13R)-14-(2,2-dimethyl-6-oxo-2,6dihydro-1,3-dioxin-4-yl)-5,11,13-trihydroxy-5,8-dimethyl-1-[tris(propan-2-yl) silyl]tetradec-1-yn-7-yl acetate

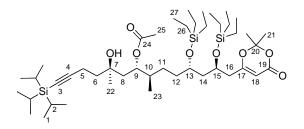
MW (g/mol): 610.8943

Molecular formula: C₃₃H₅₈O₈Si

A solution of TES ether **II.87** (280 mg, 0.38 mmol) in MeOH (1.3 mL), was added $FeCl_3$ (H₂O)₆ (4 mg, 0.015 mmol). The resulting mixture was stirred overnight at rt. The solvent was removed under reduced pressure and the obtained residue was purified by flash chromatography (EtOAc/PE, from 50:50 to 70:30) to give pure product as colourless oil (215 mg, 92%).

*R*_f (EtOAc/PE, 1:1): 0.15.

 $[\alpha]_{D}^{20}$ –3.06 (*c* 0.70, CHCl₃).


IR (neat): 3412, 2942, 2865, 2170, 1712, 1633, 1377, 1248, 1204, 1016 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 5.29 (s, 1H, H₁₈), 5.02 (d, J = 6.4 Hz, 1H, H₉), 4.15 (m, 1H, H₁₅), 3.89 (br s, 1H, OH), 3.82 (m, 1H, H₁₃), 3.60 (br s, 1H, OH), 3.06 (br s, 1H, OH), 2.44-2.24 (m, 4H, H₅, H₁₆), 1.98 (s, 3H, H₂₅), 1.73-1.59 (m, 4H, H₈, H₁₄), 1.63 (s, 6H, H₂₁), 1.57-1.37 (m, 5H, H₆, H₁₀, H₁₂), 1.17-1.10 (m, 2H, H₁₁), 1.08 (s, 3H, H₂₂), 1.04-0.90 (m, 21H, H₁, H₂), 0.82 (d, J = 6.4 Hz, 3H, H₂₃).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.0 (s, C₂₄), 169.6 (s, C₁₇), 161.6 (s, C₁₉), 108.8 (s, C₃), 106.5 (s, C₂₀), 94.7 (d, C₁₈), 80.5 (s, C₄), 73.6 (d, C₉), 71.5 (s, C₇), 68.6 (d, C₁₃), 65.7 (d, C₁₅), 42.9 (t, C₈), 41.8 (t, C₁₆), 41.5 (t, C₆), 39.9 (t, C₁₄), 36.8 (d, C₁₀), 34.9 (t, C₁₂), 28.7 (t, C₁₁), 25.5 (q, C₂₂), 25.1 (q, C₂₁), 24.6 (q, C₂₁), 21.3 (q, C₂₅), 18.5 (q, 6C, C₁), 14.5 (t, C₅), 14.3 (q, C₂₃), 11.1 (d, 3C, C₂).

HRMS (ESI) m/z: calculated for C₃₃H₅₈NaO₈Si [M + Na]⁺: 633.3793, found: 633.3795.

II.4.2.2.24. Synthesis of (5R,7S,8R,11S,13R)-14-(2,2-dimethyl-6-oxo-2,6dihydro-1,3-dioxin-4-yl)-5-hydroxy-5,8-dimethyl-11,13-bis[(triethylsilyl)oxy]-1-[tris(propan-2-yl)silyl] tetradec-1-yn-7-yl acetate (II.88)

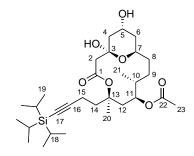
MW (g/mol): 839.4160

Molecular formula: C₄₅H₈₆O₈Si₃

A solution of triol (120 mg, 0.19 mmol) in CH_2Cl_2 (3.8 mL), was added imidazole (53 mg, 0.78 mmol) followed by TESCl (72 µl, 0.43 mmol) at 0 °C. The resulting mixture was stirred for 30 min at 0 °C. NaHCO₃ (5 mL) was added to quench the reaction. The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (2 x 5 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The obtained residue was purified by flash chromatography (EtOAc/PE, 10:90) to give pure product **II.88** as colourless oil (149 mg, 90%).

 R_f (EtOAc/PE, 1:9): 0.3.

 $[\alpha]_{D}^{20}$ –2.3 (*c* 1.01, CHCl₃).


IR (neat): 3469, 2955, 2875, 2171, 1733, 1635, 1376, 1243, 1015, 741 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.26 (s, 1H, H₁₈), 4.99 (dd, J = 8.0, 3.7 Hz, 1H, H₉), 4.04 (quint, J = 5.9 Hz, 1H, H₁₅), 3.74 (quint, J = 5.9 Hz, 1H, H₁₃), 2.43-2.32 (m, 4H, H₅, H₁₆), 2.23 (br s, 1H, H₂₈), 2.01 (s, 3H, H₂₅), 1.78-1.62 (m, 4H, H₈, H₁₄), 1.66 (s, 3H, H₂₁), 1.65 (s, 3H, H₂₁), 1.59-1.28 (m, 7H, H₆, H₁₀, H₁₁, H₁₂), 1.16 (s, 3H, H₂₂), 1.04-0.99 (m, 21H, H₁, H₂), 0.93 (t, J = 8.0 Hz, 9H, H₂₆), 0.92 (t, J = 8.0 Hz, 9H, H₂₆), 0.85 (d, J = 7.0 Hz, 3H, H₂₃), 0.56 (q, J = 8.0 Hz, 12H, H₂₇).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.8 (s, C₂₄), 169.1 (s, C₁₇), 161.1 (s, C₁₉), 108.8 (s, C₃), 106.3 (s, C₂₀), 95.2 (d, C₁₈), 80.9 (s, C₄), 74.1 (d, C₉), 71.6 (s, C₇), 69.8 (d, C₁₃), 67.4 (d, C₁₅), 45.2 (t, C₈), 42.8 (t, C₁₆), 40.9 (t, C₆), 40.8 (t, C₁₄), 37.5 (d, C₁₀), 35.5 (t, C₁₂), 29.6 (t, C₁₁), 26.7 (q, C₂₅), 25.5 (q, C₂₁), 24.4 (q, C₂₁), 21.3 (q, C₂₅), 18.5 (q, 6C, C₁), 14.6 (t, C₅), 14.5 (q, C₂₃), 11.1 (d, 3C, C₂), 6.9 (q, 3C, C₂₇), 6.8 (q, 3C, C₂₇), 5.3 (t, 3C, C₂₆), 5.1 (t, 3C, C₂₆).

HRMS (ESI) m/z: calculated for C₄₅H₈₆NaO₈Si₃ [M + Na]⁺: 861.5523, found: 861.5542.

II.4.2.2.25. Synthesis of (1R,5R,7S,8R,11R,13R)-1,13-dihydroxy-5,8dimethyl-3-oxo-5-{4-[tris(propan-2-yl)silyl]but-3-yn-1-yl}-4,15-dioxabicyclo [9.3.1]pentadecan-7-yl acetate (II.89)

MW (g/mol): 552.8152

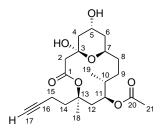
Molecular formula: C₃₀H₅₂O₇Si

A solution of TES ether **II.88** (130 mg, 0.15 mmol) in toluene (5 mL) was added to preheated dry toluene (800 mL) dropwise. The resulting mixture was stirred 2 h at reflux. The solvent was removed under reduced pressure and the obtained residue was placed in a plastic culture tube in THF (2 mL). A solution of HF·Py (0.5 mL) in THF/pyridine (3:2; 3.2 mL) was added dropwise at 0 °C. The resulting mixture was

stirred for 30 min at 0 °C. NaHCO₃ solution was added with care to quench the reaction. The mixture was extracted with EtOAc (2 x 5 mL), and the combined organic layers were washed with NaCl and concentrated *in vacuo*. The obtained residue was purified by flash chromatography (EtOAc/PE, from 50:50 to 70:30) to give pure product **II.89** as colourless oil (55 mg, 65%).

 R_f (EtOAc/PE, 1:1): 0.5.

 $[\alpha]_{D}^{20}$ –19.97 (*c* 1.1, CHCl₃).


IR (neat): 3479, 2941, 2865, 2173, 1731, 1707, 1365, 1244, 1086, 1012, 883, 677 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.18 (d, J = 9.5 Hz, 1H, H₁₁), 4.51 (br s, 1H, OH), 4.11 (sept, J = 4.5 Hz, 1H, H₅), 3.61 (t, J = 10.9 Hz, 1H, H₇), 2.69-2.59 (m, 2H, H₄, H₁₂), 2.57 (d, J = 12.7 Hz, 1H, H₂), 2.48 (d, J = 12.7 Hz, 1H, H₂), 2.30 (m, 1H, H₁₅), 2.21-2.12 (m, 2H, H₆, H₁₅), 2.00 (s, 3H, H₂₃), 1.94 (m, 1H, H₄), 1.87 (m, 1H, H₁₄), 1.75-1.48 (m, 6H, H₈, H₉, H₁₀, H₁₂), 1.32-1.24 (m, 2H, H₆, H₁₄), 1.20 (s, 3H, H₂₀), 1.08-1.02 (m, 21H, H₁₈, H₁₉), 0.82 (d, J = 7.2 Hz, 3H, H₂₁).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.3 (s, C₁), 170.5 (s, C₂₂), 108.0 (s, C₁₇), 96.3 (s, C₃), 84.8 (s, C₁₃), 80.5 (s, C₁₆), 69.2 (d, C₇), 65.0 (d, C₅), 47.1 (t, C₂), 43.4 (t, C₆), 40.5 (t, C₁₄), 38.7 (t, C₄), 38.5 (d, C₁₀), 33.9 (t, C₁₂), 32.2 (t, C₈), 28.7 (t, C₉), 23.8 (q, C₂₀), 21.6 (q, C₂₃), 18.6 (q, 6C, C₁₉), 15.1 (q, C₂₁), 14.6 (t, C₁₅), 11.2 (d, 3C, C₁₈). C₁₁ (71.5, d) was determined by HMQC.

HRMS (ESI) m/z: calculated for C₃₀H₅₂NaO₇Si [M + Na]⁺: 575.3374, found: 575.3363.

II.4.2.2.26. Synthesis of (1R,5R,7S,8R,11R,13R)-5-(but-3-yn-1-yl)-1,13dihydroxy-5,8-dimethyl-3-oxo-4,15-dioxabicyclo[9.3.1]pentadecan-7-yl acetate

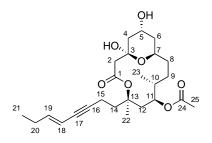
MW (g/mol): 396.4746

Molecular formula: C₂₁H₃₂O₇

To a stirred solution of TIPS alkyne **II.89** (50 mg, 0.09 mmol) in MeCN (1.8 mL), was added AgF (57 mg, 0.45 mmol) in the dark. The resulting mixture was stirred at rt for 5 h. Then, 1M HCl solution (0.3 mL) was added. The resulting mixture was stirred for 5 min, and then, diluted with EtOAc. The organic phase was separated and the aqueous phase extracted with EtOAc (2 x 5 mL), and the combined organic layers were washed with NaCl, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The obtained residue was purified by flash chromatography (EtOAc/PE, from 25:75 to 40:60) to give pure product as colourless oil (30 mg, 85%).

*R*_f (EtOAc/PE, 1:1): 0.33.

 $[\alpha]_{D}^{20}$ –16.3 (*c* 0.9, CHCl₃).


IR (neat): 3470, 3296, 2928, 1728, 1706, 1366, 1245, 1231, 1087, 1022, 913, 744 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.19 (d, *J* = 9.8 Hz, 1H, H₁₁), 4.52 (br s, 1H, OH), 4.11 (sept, *J* = 4.9 Hz, 1H, H₅), 3.61 (t, *J* = 11.4 Hz, 1H, H₇), 2.75-2.68 (m, 1H, H₄), 2.63 (d_{app}, *J* = 15.2 Hz, 1H, H₁₂), 2.57 (d, *J* = 12.5 Hz, 1H, H₂), 2.48 (d, *J* = 12.4 Hz, 1H, H₂), 2.25 (m, 1H, H₁₅), 2.19-2.06 (m, 2H, H₆, H₁₅), 2.00 (s, 3H, H₂₁), 1.95 (t, *J* = 2.6 Hz, 1H, H₁₇), 1.92-1.84 (m, 2H, H₄, H₁₄), 1.72-1.47 (m, 4H, H₈, H₁₀, H₁₂), 1.32-1.22 (m, 4H, H₆, H₉, H₁₄), 1.18 (s, 3H, H₁₈), 0.81 (d, *J* = 6.7 Hz, 3H, H₁₉).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.4 (s, C₁), 170.5 (s, C₂₀), 96.3 (s, C₃), 84.6 (s, C₁₃), 83.7 (s, C₁₆), 69.2 (d, C₇), 68.5 (d, C₁₇), 64.9 (d, C₅), 47.1 (t, C₂), 43.4 (t, C₆), 40.5 (t, C₁₄), 38.1 (t, C₄), 32.2 (t, C₈), 29.7 (t, C₉), 23.6 (q, C₁₈), 21.6 (q, C₂₁), 15.1 (q, C₁₉), 13.1 (t, C₁₅). C₁₀ (38.1, d), C₁₁ (71.3, d) and C₁₂ (34.1, t) were determined by HMQC.

HRMS (ESI) m/z: calculated for C₂₁H₃₂NaO₇ [M + Na]⁺: 419.2040, found: 419.2029.

II.4.2.2.27. Synthesis of (1*R*,5*R*,7*S*,8*R*,11*R*,13*R*)-1,13-dihydroxy-5,8dimethyl-5-[(5E)-oct-5-en-3-yn-1-yl]-3-oxo-4,15-dioxabicyclo[9.3.1]pentadecan -7-yl acetate (II.90)

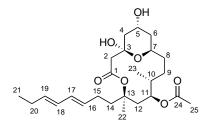
MW (g/mol): 450.5650

Molecular formula: C₂₅H₃₈O₇

To a solution of alkyne (27 mg, 0.07 mmol) and vinyl iodide **II.80** (74 mg, 0.4 mmol) in degassed Et₃N/DMF (1:1, 2.3 mL) were added CuI (1.3 mg, 7 μ mol) and Pd(PPh₃)₂Cl₂ (2.4 mg, 3.5 μ mol). The resulting mixture was stirred at rt for 2 h. H₂O and EtOAc was added. The organic phase was separated and the aqueous phase extracted with EtOAc (2 x 5 mL), and the combined organic layers were washed with NaCl, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The obtained residue was purified by flash chromatography (EtOAc/PE, 25:75) to give pure product **II.90** as colourless oil (21 mg, 68%).

*R*_f (EtOAc/PE, 1:1): 0.41.

 $[\alpha]_{D}^{20}$ –27.46 (*c* 0.5, CHCl₃).


IR (neat): 3470, 2962, 2933, 1730, 1700, 1382, 1244, 1197, 1163, 1011, 960 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 6.09 (dt, J = 16.0, 6.8 Hz, 1H, H₁₉), 5.42 (d, J = 16.0 Hz, 1H, H₁₈), 5.20 (d, J = 9.9 Hz, 1H, H₁₁), 4.54 (br s, 1H, OH), 4.11 (m, 1H, H₅), 3.61 (t, J = 11.1 Hz, 1H, H₇), 2.70-2.58 (m, 2H, H₄, H₁₂), 2.57 (d, J = 12.6 Hz, 1H, H₂), 2.47 (d, J = 12.6 Hz, 1H, H₂), 2.35 (m, 1H, H₁₅), 2.24 (m, 1H, H₁₅), 2.16 (dd, J = 12.0, 4.6 Hz, 1H, H₆), 2.09 (t, J = 7.1 Hz, 2H, H₂₀), 2.00 (s, 3H, H₂₅), 1.94-1.84 (m, 2H, H₄, H₁₄), 1.70-1.49 (m, 4H, H₈, H₁₀, H₁₂), 1.32-1.14 (m, 4H, H₆, H₉, H₁₄), 1.18 (s, 3H, H₂₂), 0.98 (t, J = 7.4 Hz, 3H, H₂₁), 0.81 (d, J = 7.1 Hz, 3H, H₂₃).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.4 (s, C₁), 170.5 (s, C₂₄), 145.1 (d, C₁₉), 108.7 (d, C₁₈), 96.3 (s, C₃), 87.5 (s, C₁₇), 84.8 (s, C₁₃), 79.5 (s, C₁₆), 69.2 (d, C₇), 65.0 (d, C₅), 47.1 (t, C₂), 43.4 (t, C₆), 40.5 (t, C₁₄), 38.3 (t, C₄), 34.1 (t, C₁₂), 32.2 (t, C₈), 28.8 (t, C₉), 26.0 (t, C₂₀), 23.6 (q, C₂₂), 21.7 (q, C₂₅), 14.1 (t, C₁₅), 13.0 (q, C₂₁). C₁₀ (38.4, d), C₁₁ (71.4, d) and C₂₃ (15.0, q) were determined by HMQC.

HRMS (ESI) m/z: calculated for C₂₅H₃₈NaO₇ [M + Na]⁺: 473.2510, found: 473.2501.

II.4.2.2.28. Synthesis of (1R,5R,7S,8R,11R,13R)-1,13-dihydroxy-5,8dimethyl-5-[(3E,5E)-octa-3,5-dien-1-yl]-3-oxo-4,15-dioxabicyclo[9.3.1]penta decan-7-yl acetate (II.91)

MW (g/mol): 452.5809

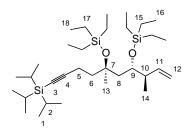
Molecular formula: C₂₅H₄₀O₇

To a solution of alkyne **II.91** (12 mg, 26 μ mol) in CH₂Cl₂ (0.3 mL)) at 0 °C was added (EtO)₃SiH (5 μ L, 53 μ mol) followed by Cp*Ru(MeCN)₃PF₆ (0.1 mg, 0.26 μ mol). The flask was immediately allowed to warm to rt and stirred for 1 h. Then, the solvent was removed and a mixture of THF/MeOH/H₂O (2:1:1, 4 mL) was added followed by AgF (16 mg, 130 μ mol). The resulting mixture was stirred under dark for 1 h. After that, the reaction mixture was filtered through Celite[®], the solvent was removed and the obtained residue was purified by flash chromatography (EtOAc/PE, 25:75) to give the pure product **II.91** as a colourless oil (5.2 mg, 45%).

*R*_{*f*} (EtOAc/PE, 50/50): 0.57.

 $[\alpha]_{D}^{20}$ –25.1 (*c* 0.4, CHCl₃).

IR (neat): 3469, 2960, 2930, 1730, 1704, 1381, 1244, 1198, 1164, 1011 cm⁻¹.


¹**H NMR** (400 MHz, CDCl₃) δ 6.09-5.91 (m, 2H, H₁₇, H₁₈), 5.62 (m, 1H, H₁₉), 5.53 (m, 1H, H₁₆), 5.38 (br s, 1H, OH), 5.20 (d, J = 9.4 Hz, 1H, H₁₁), 4.57 (br s, 1H, OH), 4.11 (m, 1H, H₅), 3.62 (t, J = 11.4 Hz, 1H, H₇), 2.59 (m, 1H, H₁₂), 2.57 (d, J = 12.5 Hz, 1H, H₂), 2.47 (d, J = 12.5 Hz, 1H, H₂), 2.45 (m, 1H, H₄), 2.20-2.15 (m, 2H, H₆, H₁₅), 2.11-2.01 (m, 2H, H₂₀), 2.00 (s, 3H, H₂₅), 1.90-1.84 (m, 2H, H₄, H₁₄), 1.77-1.44 (m, 5H, H₈, H₁₀, H₁₂, H₁₅), 1.38-1.12 (m, 4H, H₆, H₉, H₁₄), 1.17 (s, 3H, H₂₂), 0.97 (dt, J = 7.3, 2.0 Hz, 3H, H₂₁), 0.82 (d, J = 6.8 Hz, 3H, H₂₃).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.4 (s, C₁), 170.6 (s, C₂₄), 134.5 (d, C₁₉), 130.9 (d, C₁₆), 130.8 (d, C₁₇), 129.1 (d, C₁₈), 96.3 (s, C₃), 85.3 (s, C₁₃), 69.2 (d, C₇), 65.0 (d, C₅), 47.1 (t, C₂), 43.4 (t, C₄), 40.6 (t, C₁₄), 39.1 (t, C₂₀), 38.5 (d, C₁₀), 34.1 (t, C₁₂), 32.2 (t,

 C_8), 29.7 (t, C_9), 26.6 (t, C_{20}), 25.6 (t, C_{15}), 23.4 (q, C_{22}), 21.7 (q, C_{25}), 15.0 (q, C_{23}), 13.6 (q, C_{21}). C_{11} (71.6, d) was determined by HMQC.

HRMS (ESI) m/z: calculated for C₂₅H₄₀NaO₇ [M + Na]⁺: 475.2666, found: 475.2661.

II.4.2.2.29. Synthesis of (5**R**,7**S**)-7-[(2**R**)-but-3-en-2-yl]-3,3,9,9-tetraethyl-5methyl-5-{4-[tris(propan-2-yl)silyl]but-3-yn-1-yl}-4,8-dioxa-3,9-disilaundecane (*II.93*)

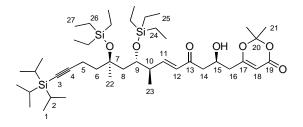
MW (g/mol): 565.0735

Molecular formula: C₃₄H₆₈O₂Si₂

To a stirred solution of diol **II.69** (1.5 g, 4.26 mmol) in CH₂Cl₂ (50 mL) at -78 °C was added 2,6-lutidine (4 mL, 34 mmol) followed by TESOTF (3.8 mL, 17 mmol). The resulting reaction mixture was stirred for 30 min at the same temperature, time after which a saturated aqueous solution of NaHCO₃ was added. The two layers were separated and the aqueous fraction was extracted with Et₂O (2 x 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography (PE, 100%) to afford **II.93** (2.3 g, quant.) as a colourless oil.

*R*_{*f*} (PE, 100%): 0.43.

 $[\alpha]_{D}^{20}$ –4.3 (*c* 0.46, CHCl₃).


IR (neat): 2956, 2876, 2172, 1121, 1050, 1003, 723, 675 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.73 (m, 1H, H₁₁), 5.06-4.99 (m, 2H, H₁₂), 3.84 (m, 1H, H₉), 2.41 (m, 1H, H₁₀), 2.33-2.29 (m, 2H, H₅), 1.83-1.64 (m, 2H, H₆), 1.54 (dd, J = 14.1, 3.6 Hz, 1H, H₈), 1.41 (dd, J = 14.1, 7.3 Hz, 1H, H₈), 1.20 (s, 3H, H₁₃), 1.09-1.01 (m, 21H, H₁, H₂), 0.99 (d, J = 6.6 Hz, 3H, H₁₄), 0.97 (t, J = 7.7 Hz, 9H, H₁₆ or H₁₈), 0.94 (t, J = 7.7 Hz, H₁₆ or H₁₈), 0.64 (q, J = 7.7 Hz, 6H, H₁₅ or H₁₇), 0.56 (q, J = 7.7 Hz, 6H, H₁₅ or H₁₇).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.7 (d, C₁₁), 114.7 (t, C₁₂), 110.0 (s, C₃), 79.2 (s, C₄), 74.8 (s, C₇), 72.7 (d, C₉), 44.2 (d, C₁₀), 43.7 (t, C₈), 42.9 (t, C₆), 27.7 (q, C₁₃), 18.6 (q, 6C, C₁), 14.8 (t, C₅), 12.8 (q, C₁₄), 11.3 (d, 3C, C₂), 7.1 (q, 3C, C₁₆ or C₁₈), 7.0 (q, 3C, C₁₆ or C₁₈), 6.8 (t, 3C, C₁₅ or C₁₇), 5.4 (t, 3C, C₁₅ or C₁₇).

HRMS (ESI) m/z: calculated for C₃₃H₆₈NaO₂Si₃ [M + Na]⁺: 603.4419, found: 603.4415.

II.4.2.2.30. Synthesis of 6-[(2S,5E,7R,8S,10R)-2-hydroxy-7,10-dimethyl-4oxo-8,10-bis[(triethylsilyl)oxy]-14-[tris(propan-2-yl)silyl]tetradec-5-en-13-yn-1yl]-2,2-dimethyl-2,4-dihydro-1,3-dioxin-4-one (II.94)

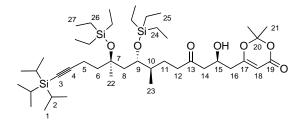
MW (g/mol): 793.3476

Molecular formula: C₄₃H₈₀O₇Si₃

To a solution of olefin **II.93** (1.5 g, 2.56 mmol) and enone **II.49** (800 mg, 3.32 mmol) in CH_2Cl_2 (10 mL) was added Hoveyda-Grubbs 2nd Generation catalyst (320 mg, 0.35 mmol) and the resulting mixture was stirred for 3 days at reflux. The solvent was then removed under reduced pressure and the crude residue was purified by flash column chromatography (EtOAc/CH₂Cl₂, 2:98) to afford the corresponding enone **II.94** (1.6 g, 81%) as colourless oil.

 R_f (EtOAc/CH₂Cl₂, 1:9): 0.6.

IR (neat): 3468, 2955, 2875, 2171, 1730, 1634, 1376, 1204, 1010, 724, 675 cm⁻¹.


¹**H NMR** (400 MHz, CDCl₃) δ 6.84 (dd, J = 16.5, 7.7 Hz, 1H, H₁₁), 6.07 (dd, J = 16.5, 1.4 Hz, 1H, H₁₂), 5.34 (s, 1H, H₁₈), 4.37 (m, 1H, H₁₅), 3.93 (m, 1H, H₉), 3.41 (m, 1H, OH), 2.78 (dd, J = 17.8, 3.2 Hz, 1H, H₁₄), 2.68 (dd, J = 17.8, 8.4 Hz, 1H, H₁₄), 2.63 (m, 1H, H₁₀), 2.43 (dd, J = 14.6, 8.4 Hz, 1H, H₁₆), 2.34 (dd, J = 14.6, 4.5 Hz, 1H, H₁₆), 2.26-2.22 (m, 2H, H₅), 1.76-1.70 (m, 2H, H₆), 1.68 (s, 3H, H₂₁), 1.67 (s, 3H, H₂₁), 1.49 (dd, J = 14.1, 5.3 Hz, 1H, H₈), 1.38 (dd, J = 14.1, 5.3 Hz, 1H, H₈), 1.22 (s, 3H, H₂₂), 1.07-1.00 (m, 24H, H₁, H₂, H₂₃), 0.95 (t, J = 7.9 Hz, 9H, H₂₅ or H₂₇), 0.91 (t, J = 7.9 Hz,

9H, H₂₅ or H₂₇), 0.61 (q, J = 7.9 Hz, 6H, H₂₄ or H₂₆), 0.55 (q, J = 7.9 Hz, 6H, H₂₄ or H₂₆).

¹³**C NMR** (100 MHz, CDCl₃) δ 199.8 (s, C₁₃), 168.3 (s, C₁₇), 160.9 (s, C₁₉), 151.0 (d, C₁₁), 130.3 (d, C₁₂), 109.1 (s, C₃), 106.6 (s, C₂₀), 95.3 (d, C₁₈), 79.8 (s, C₄), 74.5 (s, C₇), 72.2 (d, C₉), 64.7 (d, C₁₅), 45.2 (t, C₁₄), 45.1 (t, C₈), 43.4 (t, C₆), 43.2 (d, C₁₀), 40.4 (t, C₁₆), 27.5 (q, C₂₂), 25.5 (q, C₂₁), 24.4 (q, C₂₁), 18.5 (q, 6C, C₁), 14.9 (t, C₅), 14.5 (q, C₂₃), 11.2 (d, 3C, C₂), 7.1 (q, 3C, C₂₅ or C₂₇), 6.9 (q, 3C, C₂₅ or C₂₇), 6.7 (t, 3C, C₂₄ or C₂₆), 5.2 (t, 3C, C₂₄ or C₂₆).

HRMS (ESI) m/z: calculated for C₄₃H₈₀NaO₇Si₃ [M + Na]⁺: 815.5104, found: 815.5113.

II.4.2.2.31. Synthesis of 6-[(2S,7R,8S,10R)-2-hydroxy-7,10-dimethyl-4-oxo-8,10-bis[(triethylsilyl)oxy]-14-[tris(propan-2-yl)silyl]tetradec-13-yn-1-yl]-2,2dimethyl-2,4-dihydro-1,3-dioxin-4-one (II.95)

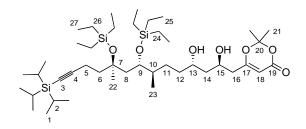
MW (g/mol): 795.3635

Molecular formula: C₄₃H₈₂O₇Si₃

A solution of enone **II.94** (1.1 g, 1.38 mmol) in degassed toluene (85 mL) was added to a solution of Stryker's reagent (2.1 g, 0.71 mmol) in toluene (35 mL) at rt. The resulting reaction mixture was stirred for 30 min at the same temperature until complete conversion of the starting material (reaction monitored by TLC). The solution was the exposed to air and diluted with hexane (50 mL). Stirring was then continued for an additional 20 min, time after which the solvent was removed under reduced pressure. The crude residue was finally purified by flash column chromatography (EtOAc/PE, 20:80) to afford **II.95** (893 mg, 83%) as colourless oil.

*R*_f (EtOAc/PE, 1:3): 0.43.

 $[\alpha]_{D}^{20}$ –1.32 (*c* 0.6, CHCl₃, 86% ee).


IR (neat): 3436, 2955, 2875, 2171, 1715, 1636, 1461, 1376, 1048, 1011, 723 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.33 (s, 1H, H₁₈), 4.33 (sept_{app}, J = 4.1 Hz, 1H, H₁₅), 3.77 (m, 1H, H₉), 3.24 (br s, 1H, OH), 2.67-2.57 (m, 2H, H₁₂, H₁₄), 2.50-2.37 (m, 3H, H₁₂, H₁₄, H₁₆), 2.35-2.27 (m, 3H, H₅, H₁₆), 1.85-1.65 (m, 2H, H₆), 1.69 (s, 3H, H₂₁), 1.68 (s, 3H, H₂₁), 1.62-1.48 (m, 2H, H₈), 1.44-1.40 (m, 2H, H₁₀, H₁₁), 1.32 (m, 1H, H₁₁), 1.22 (s, 3H, H₂₂), 1.05-1.00 (m, 21H, H₁, H₂), 0.94 (t, J = 7.9 Hz, 9H, H₂₅ or H₂₇), 0.93 (t, J = 7.9 Hz, 9H, H₂₅ or H₂₇), 0.84 (d, J = 6.6 Hz, 3H, H₂₃), 0.62-0.53 (m, 12H, H₂₄, H₂₆).

¹³**C NMR** (100 MHz, CDCl₃) δ 210.9 (s, C₁₃), 168.2 (s, C₁₇), 160.9 (s, C₁₉), 109.7 (s, C₃), 106.6 (s, C₂₀), 95.4 (d, C₁₈), 79.4 (s, C₄), 74.7 (s, C₇), 72.6 (d, C₉), 64.6 (d, C₁₅), 48.2 (t, C₁₄), 43.2 (t, C₈), 43.1 (t, C₆), 41.7 (t, C₁₂), 40.4 (t, C₁₆), 39.4 (d, C₁₀), 27.7 (q, C₂₂), 26.4 (t, C₁₁), 25.5 (q, C₂₁), 24.5 (q, C₂₁), 18.8 (q, 6C, C₁), 14.8 (t, C₅), 13.4 (q, C₂₃), 11.2 (d, 3C, C₂), 7.1 (q, 3C, C₂₅ or C₂₇), 7.0 (q, 3C, C₂₅ or C₂₇), 6.8 (t, 3C, C₂₄ or C₂₆), 5.4 (t, 3C, C₂₄ or C₂₆).

HRMS (ESI) m/z: calculated for C₄₃H₈₂NaO₇Si₃ [M + Na]⁺: 817.5261, found: 817.5261.

II.4.2.2.32. Synthesis of 6-[(2R,4S,7R,8S,10R)-2,4-dihydroxy-7,10-dimethyl-8,10-bis[(triethylsilyl)oxy]-14-[tris(propan-2-yl)silyl]tetradec-13-yn-1-yl]-2,2dimethyl-2,4-dihydro-1,3-dioxin-4-one (II.96)

MW (g/mol): 797.3794

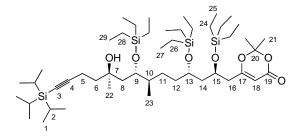
Molecular formula: C43H84O7Si3

To a solution of ketone **II.95** (650 mg, 0.81 mmol) in a 1:1 MeCN/AcOH mixture (12 mL) at -30 °C was added tetramethylammonium triacetoxyborohydride (2.1 g, 8.1 mmol) in one portion. After stirring at the same temperature for 20 h, the reaction mixture was poured in a saturated aqueous solution of NaHCO₃ (10 mL), stirred for 30 min, and extracted with EtOAc (3 x 15 mL). The combined organic fractions were washed twice with a saturated aqueous solution of NaHCO₃ (2 x 10 mL) and once with brine (10 mL), dried over anhydrous Na₂SO₄ and filtered. The solvents were then

removed under reduced pressure and the resulting crude residue was purified by flash column chromatography (PE/EtOAc, 30:70) to afford the desired diol **II.96** (550 mg, 85%) as a colourless oil.

Rf (EtOAc/PE, 1:3): 0.25.

 $[\alpha]_{D}^{20}$ –3.78 (*c* 3.0, CHCl₃, 86% ee).


IR (neat): 3434, 2955, 2939, 2875, 2171, 1714, 1634, 1377, 1046, 1014, 724 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.33 (s, 1H, H₁₈), 4.24 (m, 1H, H₁₅), 3.91 (m, 1H, H₁₃), 3.77 (m, 1H, H₉), 3.00 (br s, 1H, H_{OH}), 2.44 (dd, *J* = 14.6, 8.6 Hz, 1H, H₁₆), 2.39-2.25 (m, 3H, H₅, H₁₆), 1.85-1.67 (m, 2H, H₁₄), 1.69 (br s, 6H, H₂₁), 1.65-1.57 (m, 3H, H₆, H₁₂), 1.52 (m, 1H, H₆), 1.43 (d, J = 5.3 Hz, 2H, H₈), 1.39 (m, 1H, H₁₀), 1.28-1.17 (m, 2H, H₁₁), 1.21 (s, 3H, H₂₂), 1.08-1.00 (m, 21H, H₁, H₂), 0.94 (t, *J* = 8.0 Hz, 9H, H₂₅ or H₂₇), 0.93 (t, *J* = 8.0 Hz, 9H, H₂₅ or H₂₇), 0.86 (d, *J* = 6.8 Hz, 3H, H₂₃), 0.63-0.52 (m, 12H, H₂₄, H₂₆).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.1 (s, C₁₇), 161.2 (s, C₁₉), 109.9 (s, C₃), 106.6 (s, C₂₀), 95.0 (d, C₁₈), 79.3 (s, C₄), 74.8 (s, C₇), 72.7 (d, C₉), 69.5 (d, C₁₃), 66.2 (d, C₁₅), 43.1 (t, C₈), 43.0 (t, C₁₆), 42.4 (t, C₆), 41.7 (t, C₁₄), 40.2 (d, C₁₀), 35.8 (t, C₁₂), 29.7 (t, C₁₁), 27.7 (q, C₂₂), 25.2 (q, C₂₁), 24.8 (q, C₂₁), 18.6 (q, 6C, C₁), 14.8 (t, C₅), 13.6 (q, C₂₃), 11.3 (d, 3C, C₂), 7.2 (q, 3C, C₂₅ or C₂₇), 7.1 (q, 3C, C₂₅ or C₂₇), 6.8 (t, 3C, C₂₄ or C₂₆), 5.4 (t, 3C, C₂₄ or C₂₆).

HRMS (ESI) m/z: calculated for C₄₃H₈₄NaO₇Si₃ [M + Na]⁺: 819.5417, found: 819.5418.

II.4.2.2.33. Synthesis of 6-[(2R,4S,7R,8S,10R)-10-hydroxy-7,10-dimethyl-2,4,8-tris[(triethylsilyl)oxy]-14-[tris(propan-2-yl)silyl]tetradec-13-yn-1-yl]-2,2dimethyl-2,4-dihydro-1,3-dioxin-4-one (II.97)

MW (g/mol): 911.6402

Molecular formula: C₄₉H₉₈O₇Si₄

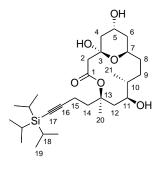
To a solution of **II.96** (400 mg, 1.0 mmol) in MeOH (3 mL) at rt was added FeCl₃·6H₂O (8 mg, 0.03 mmol) and the resulting reaction mixture was stirred overnight at the same temperature. The solvent was then removed under reduced pressure and the crude residue was subsequently dissolved with EtOAc and filtered through a pad of Celite[©]. The solvent was removed once again and the crude residue was used in the next step without further purification.

The latter was thus diluted in CH₂Cl₂ (20 mL) and cooled to 0 °C. Imidazole (408 mg, 6.0 mmol) was then added followed by TESCl (570 μ L, 3.4 mmol) and the resulting reaction mixture was stirred for 30 min at the same temperature. A saturated aqueous solution of NaHCO₃ was then added, and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 20 mL) and the combined organic layers were dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash chromatography (Et₂O/PE, 10:90) to afford **II.97** (268 mg, 60%) as colourless oil.

R_f (Et₂O/PE, 3:9): 0.47.

 $[\alpha]_{D}^{20}$ -8.5 (*c* 0.65, CHCl₃).

IR (neat): 3505, 2955, 2915, 2877, 2171, 1736, 1637, 1461, 1376, 1102, 1049, 1013, 741 cm⁻¹.


¹**H NMR** (400 MHz, CDCl₃) δ 5.28 (s, 1H, H₁₈), 4.12-4.03 (m, 2H, H₉, H₁₅), 3.99 (s, 1H, OH), 3.73 (m, 1H, H₁₃), 2.46-2.38 (m, 3H, H₅, H₁₆), 2.27 (m, 1H, H₁₆), 1.93 (m, 1H, H₁₄), 1.70 (m, 1H, H₁₄), 1.68 (s, 3H, H₂₁), 1.67 (s, 3H, H₂₁), 1.63-1.58 (m, 4H, H₆, H₈), 1.52 (m, 1H, H₁₂), 1.40 (m, 1H, H₁₂), 1.33-1.14 (m, 3H, H₁₀, H₁₁), 1.12 (s, 3H, H₂₂), 1.07-1.03 (m, 21H, H₁, H₂), 0.99-0.93 (m, 27H, H₂₅, H₂₇, H₂₉), 0.90 (d, J = 6.6 Hz, 3H, H₂₃), 0.71-0.54 (m, 18H, H₂₄, H₂₆, H₂₈).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.9 (s, C₁₇), 161.0 (s, C₁₉), 109.4 (s, C₃), 106.4 (s, C₂₀), 95.3 (d, C₁₈), 79.7 (s, C₄), 73.8 (d, C₉), 71.4 (s, C₇), 70.1 (d, C₁₃), 67.5 (d, C₁₅), 45.4 (t, C₈), 42.9 (t, C₁₆), 40.1 (d, C₁₀), 39.7 (t, C₆), 39.0 (t, C₁₄), 36.5 (t, C₁₂), 29.2 (t, C₁₁), 27.6 (q, C₂₂), 25.6 (q, C₂₁), 24.6 (q, C₂₁), 18.6 (q, 6C, C₁), 14.9 (t, C₅), 12.9 (q, C₂₃), 11.2 (d, 3C, C₂), 7.0 (q, 3C, C₂₅ or C₂₇ or C₂₉), 6.9 (q, 3C, C₂₅ or C₂₇ or C₂₉), 6.8

(q, 3C, C_{25} or C_{27} or C_{29}), 5.4 (t, 3C, C_{24} or C_{26} or C_{28}), 5.3 (t, 3C, C_{24} or C_{26} or C_{28}), 5.2 (t, 3C, C_{24} or C_{26} or C_{28}).

HRMS (ESI) m/z: calculated for C₄₉H₉₈NaO₇Si₄ [M + Na]⁺: 933.6282, found: 933.6263.

II.4.2.2.34. Synthesis of (1R,5R,7S,8R,11R,13R)-1,7,13-trihydroxy-5,8dimethyl-5-{4-[tris(propan-2-yl)silyl]but-3-yn-1-yl}-4,15-dioxabicyclo[9.3.1] pentadecan-3-one (II.98)

MW (g/mol): 510.7785

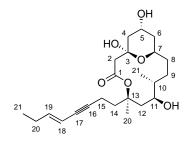
Molecular formula: C₂₈H₅₀O₆Si

To a round-bottom flask containing a pre-heated (110 °C) solution of dry toluene (500 mL) was added **II.97** (50 mg, 0.15 mmol in 2 mL of toluene) drop-wise and the reaction mixture was stirred at reflux until complete consumption of the starting material (reaction monitored by TLC). The solvent was then removed under reduced pressure and the crude residue was used in the next step without further purification.

The crude macrolactone was thus dissolved in THF (2 mL) and placed in a plastic culture tube. A solution of HF·Py (500 mL) in a 2:1 THF/pyridine (3 mL) mixture was then added dropwise at 0 °C and the resulting reaction mixture was stirred for 30 min at the same temperature. A saturated aqueous solution of NaHCO₃ was then added with care in order to quench the reaction and the mixture was extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography (EtOAc/PE, 20:80) to afford **II.98** (18 mg, 62%) as colourless oil.

*R*_{*f*} (EtOAc/PE, 3:2): 0.45.

 $[\alpha]_{\mathbf{D}}^{\mathbf{20}}$ -16.84 (*c* 1.1, CHCl₃).


IR (neat): 3401, 2941, 2891, 2865, 2173, 1703, 1462, 1325, 1230, 1195, 1088, 1010, 883, 677 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 4.66 (br s, 1H, H_{OH}), 4.18-4.07 (m, 2H, H₅, H₁₁), 3.64 (t, J = 11.4 Hz, 1H, H₇), 2.70 (m, 1H, H₄), 2.56 (d, J = 12.6 Hz, 1H, H₂), 2.55 (m, 1H, H₁₂), 2.50 (d, J = 12.6 Hz, 1H, H₂), 2.32 (m, 1H, H₁₅), 2.21-2.13 (m, 2H, H₆, H₁₅), 1.94-1.86 (m, 2H, H₄, H₁₄), 1.76 (m, 1H, H₈), 1.43 (s, 3H, H₂₀), 1.30-1.11 (m, 7H, H₆, H₈, H₉, H₁₀, H₁₂, H₁₄), 1.06-1.03 (m, 21H, H₁₈, H₁₉), 0.85 (d, J = 7.0 Hz, 3H, H₂₁).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.3 (s, C₁), 108.3 (s, C₁₇), 96.3 (s, C₃), 86.0 (s, C₁₃), 80.4 (s, C₁₆), 68.9 (d, C₇), 64.9 (d, C₁₁), 47.0 (t, C₂), 43.4 (t, C₆), 40.7 (t, C₁₄), 39.1 (t, C₄), 33.6 (t, C₈), 28.5 (t, C₉), 24.9 (q, C₂₀), 18.6 (q, 6C, C₁₉), 14.6 (t, C₁₅), 11.3 (d, 3C, C₁₈). The C₅ (67.5, d), C₁₀ (35.3, d), C₁₂ (37.3, t) and C₂₁ (15.1, q) chemical shifts have been determined by HMQC correlation.

HRMS (ESI) m/z: calculated for C₂₈H₅₀NaO₆Si [M + Na]⁺: 533.3269, found: 533.3268.

II.4.2.2.35. Synthesis of (1R,5R,7S,8R,11R,13R)-1,7,13-trihydroxy-5,8dimethyl-5-[(5E)-oct-5-en-3-yn-1-yl]-4,15-dioxabicyclo[9.3.1]pentadecan-3-one (*II.82*)

MW (g/mol): 408.5283

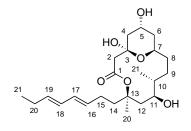
Molecular formula: C₂₃H₃₆O₆

To a stirred solution of **II.98** (25 mg, 0.05 mmol) in MECN (1 mL) at rt was added AgF (31.3 mg, 0.25 mmol) and the resulting reaction mixture was stirred in the absence of light for 5 h. A 1M aqueous solution of HCl (0.2 mL) was then added to the reaction which was stirred for an additional 5 min and diluted with EtOAc (3 mL). The organic phase was then separated and the aqueous layer was extracted with EtOAc (3 mL). The combined organic layers were then washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the desired terminal alkyne, which was used in the next step without further purification.

To a solution of the crude terminal alkyne (40 mg, 0.08 mmol) and vinyl iodide **II.80** (55 mg, 0.3 mmol) in a degassed Et₃N/DMF mixture (2:1, 3 mL) were added CuI (1.0 mg, 5 μ mol) and Pd(PPh₃)₂Cl₂ (1.7 mg, 2.5 μ mol). The resulting reaction mixture was stirred at rt for 2 h and diluted with EtOAc (3 mL). The organic layer was then separated and the aqueous phase was extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography (EtOAc/PE, 25:75) to afford **II.82** (12 mg, 60%) as colourless oil.

*R*_f (EtOAc/PE, 3:2): 0.31.

 $[\alpha]_{D}^{20}$ –16.2 (*c* 0.5, CHCl₃).


IR (neat): 3445, 2926, 2854, 1702, 1453, 1325, 1230, 1195, 1087, 1009, 958 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 6.08 (dt, J = 15.8, 6.5 Hz, 1H, H₁₉), 5.42 (d, J = 15.8 Hz, 1H, H₁₈), 4.68 (d, J = 2.2 Hz, 1H, H_{OH}), 4.18-4.08 (m, 2H, H₅, H₁₁), 3.64 (t, J = 11.3 Hz, 1H, H₇), 2.70 (m, 1H, H₄), 2.55 (d, J = 12.5 Hz, 1H, H₂), 2.53 (m, 1H, H₁₂), 2.49 (d, J = 12.5 Hz, 1H, H₂), 2.35 (m, 1H, H₁₅), 2.24 (m, 1H, H₁₅), 2.17 (m, 1H, H₆), 2.12-2.03 (m, 2H, H₂₀), 1.93-1.86 (m, 2H, H₄, H₁₄), 1.77 (m, 1H, H₈), 1.41 (s, 3H, H₂₂), 1.31-1.24 (m, 4H, H₆, H₁₀, H₁₂, H₁₄), 1.21 (m, 1H, H₈), 1.17-1.08 (m, 2H, H₉), 0.98 (t, J = 7.4 Hz, 3H, H₂₁), 0.85 (d, J = 7.1 Hz, 3H, H₂₃).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.3 (s, C₁), 145.0 (d, C₁₉), 108.8 (d, C₁₈), 96.3 (s, C₃), 87.7 (s, C₁₇), 85.8 (s, C₁₃), 79.4 (s, C₁₆), 68.9 (d, C₇), 64.9 (d, C₁₁), 47.0 (t, C₂), 43.4 (t, C₄), 40.7 (t, C₆), 38.6 (t, C₁₄), 37.4 (t, C₁₂), 33.5 (t, C₈), 29.7 (t, C₉), 26.0 (t, C₂₀), 24.6 (q, C₂₂), 14.1 (t, C₁₅), 13.1 (q, C₂₁). The C₅ (67.0, d) and C₂₃ (14.7, q) chemical shifts have been determined by HMQC correlation. C₁₀ could not be observed.

HRMS (ESI) m/z: calculated for C₂₃H₃₆NaO₆ [M + Na]⁺: 431.2404, found: 431.2408.

II.4.2.2.36. Synthesis of (1R,5R,7S,8R,11R,13R)-1,7,13-trihydroxy-5,8dimethyl-5-[(3E,5E)-octa-3,5-dien-1-yl]-4,15-dioxabicyclo[9.3.1]pentadecan-3one – lyngbouilloside aglycon (II.92)

MW (g/mol): 410.5442

Molecular formula: C₂₃H₃₈O₆

To a solution of **II.82** (8 mg, 19 μ mol) in CH₂Cl₂ (250 mL) at 0 °C was added (EtO)₃SiH (8 μ L, 38 μ mol) followed by Cp*Ru(MeCN)₃PF₆ (0.1 mg, 0.19 μ mol). The flask was immediately allowed to warm to rt and the reaction mixture was stirred for 1 h. The solvent was then removed under reduced pressure and a THF/MeOH/H₂O mixture (1:2:2, 800 mL) was added followed by AgF (12 mg, 95 μ mol). Stirring was continued in the absence of light for an additional hour, time after which the reaction mixture was filtered over Celite[®]. The solvent was then removed under reduced pressure and the crude residue was purified by flash column chromatography (EtOAc/PE, 30:70) to afford **II.92** (2.5 mg, 47%) as colourless oil.

*R*_f (EtOAc/PE, 1:1): 0.44.

 $[\alpha]_{D}^{20}$ –31.2 (*c* 0.1, CHCl₃).

IR (neat): 3356, 2957, 2928, 2873, 2360, 2342, 1703, 1325, 1230, 1195, 1166, 1084, 1011 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 6.10-5.92 (m, 2H, H₁₇, H₁₈), 5.66-5.49 (m, 2H, H₁₆, H₁₉), 5.37 (m, 1H, OH), 4.71 (br s, 1H, OH), 4.19-4.05 (m, 2H, H₅, H₁₁), 3.64 (t, J = 11.6 Hz, 1H, H₇), 2.55 (d, J = 12.3 Hz, 1H, H₂), 2.52 (m, 1H, H₁₂), 2.49 (d, J = 12.3 Hz, 1H, H₂), 2.18 (m, 1H, H₄), 2.12-1.93 (m, 5H, H₁₄, H₁₅, H₂₀), 1.89 (m, 1H, H₆), 1.77 (m, 1H, H₈), 1.49 (m, 1H, H₁₀), 1.40 (s, 3H, H₂₂), 1.39 (m, 1H, H₁₄), 1.33-1.20 (m, 5H, H₄, H₈, H₉, H₁₂), 1.10 (m, 1H, H₆), 0.98 (t, J = 7.4 Hz, 3H, H₂₁), 0.85 (d, J = 6.8 Hz, 3H, H₂₃).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.3 (s, C₁), 134.4 (d, C₁₉), 131.1 (d, C₁₆), 130.7 (d, C₁₇), 129.1 (d, C₁₈), 96.3 (s, C₃), 86.4 (s, C₁₃), 68.9 (d, C₇), 67.4 (d, C₅), 64.9 (t, C₁₁),

47.1 (t, C_2), 43.6 (t, C_{12}), 43.4 (t, C_4), 40.7 (t, C_6), 39.4 (t, C_{14}), 37.6 (d, C_{10}), 33.5 (t, C_8), 26.7 (t, C_{20}), 25.6 (t, C_{15}), 14.6 (q, C_{23}), 13.6 (q, C_{21}), The C_{22} (24.9, q) chemical shifts has been determined by HMQC correlation. C_9 could not be observed.

HRMS (ESI) m/z: calculated for C₂₃H₃₈NaO₆ [M + Na]⁺: 433.2561, found: 433.2561.

CHAPTER III

Total synthesis of (–)-bitungolide F

III.1. INTRODUCTION

In the course of our endeavour toward the synthesis of biologically active natural products, we became particularly interested in a new family of polyketides bearing an unusual γ -ethyl substituted α , β -unsaturated δ -lactone moiety which is only present in a few natural products, namely the leustroducsins, the phoslactomycins, and pironetin.

III.1.1. ISOLATION, STRUCTURE AND BIOLOGICAL PROPERTIES OF BITUNGOLIDES A-F

III.1.1.1. Isolation

Bitungolides A-F (Figure III.1) were isolated in 2002 by Tanaka and co-workers²¹⁴ from *Theonella* cf. *swinhoei*, a specimen of sponge collected in North Sulawesi in Indonesia, which produced a wide range of interesting biologically active compounds with fascinating structures.²¹⁵

²¹⁴ Sirirath, S.; Tanaka, J.; Ohtani, I. I.; Ichiba, T.; Rachmat, R.; Ueda, K.; Usui, T.; Osada, H.; Higa, T. *J. Nat. Prod.* **2002**, *65*, 1820-1823.

²¹⁵ (a) Carmenly, S.; Kashman, Y. *Tetrahedron Lett.* **1985**, *26*, 511-514. (b) Kobayashi, M.; Tanaka, J.; Katori, T.; Matsuura, M.; Yamashira, M.; Kitagawa, I. *Chem. Pharm. Bull.* **1990**, *38*, 2409-2418.

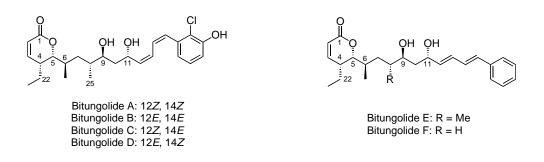


Figure III.1. Structures of bitungolides A-F

III.1.1.2. Biological properties of the bitungolides A-F

The bitungolides are the first γ -ethyl-substituted α , β -unsaturated δ -lactone-containing polyketides isolated from a marine sponge. They share the same structural elements as the microbial metabolite pironetin, which is a known microtubule-targeting drug,²¹⁶ the phosphate inhibitor phoslactomycin A, which was isolated from a soil bacteria species,²¹⁷ and the franklinolides A–C, a new family of cytotoxic metabolites recently isolated from an Australian sponge (Figure III.2).²¹⁸

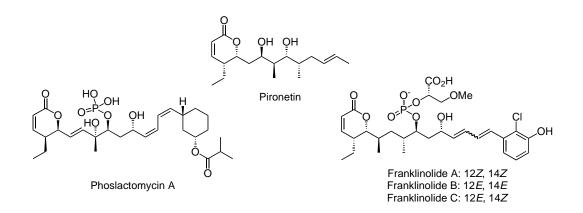


Figure III.2. Structure of pironetin, phoslactomycin A and franklinolides A-C

In biological assays with phosphatases, bitungolides showed weak activity against dual-specificity phosphatase (VHR),²¹⁹ while no activity was observed against

²¹⁶ Kondoh, M.; Usui, T.; Kobayashi, S.; Tsuchiya, K.; Nishikawa, K.; Nishikiori, T.; Mayumi, T.; Osada, H. *Cancer Lett.* **1998**, *126*, 29-32.

²¹⁷ Fushimi, S.; Nishikawa, S.; Shimazu, A.; Seto, H. J. Antibiotics **1989**, 42, 1019-1025.

²¹⁸ Zhang, H.; Conte, M. M.; Capon, R. J. Angew. Chem. Int. Ed. 2010, 49, 9904-9906.

²¹⁹ Dual-specificity phosphatases are an emerging subclass of the protein tyrosine phosphatase (PTP) gene superfamily, which appears to be selective for dephosphorylating MAP kinases. Hence, natural products that inhibit these enzymes might serve as biologically validated starting points for the development of new and selective phosphatase inhibitors, see: (a) Camps, M.; Nichols, A.; Arkinstall, S.

serine/threonine phosphatase (PP1 and PP2A) or tyrosine phosphatase (PTP-S2). In addition, the bitungolides were shown to exhibit a cytotoxic effect against 3Y1 rat normal fibroblast cells (10 μ g/mL). On the other hand, these compounds did not act on cytoskeletons (microtubules and actin) and no morphological change on nuclei was observed.²¹⁴ Considering the various structural elements present in the bitungolides such as the 5,6-dihydropyran-2-one unit, the *anti*-1,3-diol and two conjugated double bonds attached to a substituted arene, these natural products and their analogues could offer a wide range of applications, such as plant growth inhibitors, pheromones, antifeedal, antifungal, antibacterial, and antitumor agents.²²⁰

III.1.1.3. Bitungolides structural assignment

Among all the bitungolides, the structure of bitungolide A was the first one to be elucidated using spectroscopic data and X-ray diffraction analysis. Hence, while mass spectroscopy revealed pseudomolecular ions at m/z 447 and 449 (ratio 3:1) indicating the presence of a chlorine atom, IR and NMR spectra suggested the presence of an unsaturated lactone, two secondary hydroxyl groups, two secondary methyl groups and an ethyl together with 12 sp² carbons, which were assigned to a 1,2,3-trisubstitued benzene, a (Z,Z)-diene ($J_{12,13} = 11.5$ Hz, $J_{14,15} = 11.3$ Hz) and a double bond conjugated to the lactone. Finally, the gross structure of bitungolide A was secured by a single crystal X-ray diffraction study, which also allowed to confirm the absolute stereochemistry of the natural product.²²¹ Bitungolide B, on the other hand, was shown to have the same molecular formula as bitungolide A along with similar NMR signals except in the olefinic region where larger coupling constants were observed $(J_{12,13} = 15.3 \text{ Hz}, J_{14,15} = 15.5 \text{ Hz})$ indicating a diene of (E,E)-configuration. Similarly, bitungolides C and D differ from the two previous congeners only by the configuration of their diene moiety. Hence, bitungolide C bears a (Z,E)-diene $(J_{12,13} = 11.3 \text{ Hz},$ $J_{14,15} = 15.3$ Hz) whereas bitungolide D displays a (E,Z)-diene ($J_{12,13} = 15.3$ Hz, $J_{14,15} = 11.3$ Hz). The structure of bitungolides E and F were also elucidated using HRMS, IR and exhaustive NMR analysis. Thus, both natural products were shown to lack the chlorine atom as well as one of the oxygens found in bitungolides A-D. In

FAEBS, 2000, 14, 6-16. (b) Brohm, D.; Metzger, S.; Bhargava, A.; Müller, O.; Lieb, F.; Waldman, H. Angew. Chem. Int. Ed. 2002, 41, 307-311.

²²⁰ Davies-Coleman, M. T.; Rivett, D. E. A. Fortschr. Chem. Org. Naturst. 1989, 55, 1-35.

²²¹ Crystallographic data for the structure have been deposited at the Cambridge Crystallographic Data Center (Deposition number CCDC 191268).

addition, the NMR spectra showed the presence of a mono-substituted benzene instead of the 2,3-disubstituted phenol, confirming that the main structural differences between bitungolides A–D and bitungolides E–F were to be found on the aromatic ring. Finally, bitungolide F was shown to have two methyls and four methylenes instead of three methyls and three methylenes, with the demethylation occurring on carbon C8 according to NMR correlation studies (Figure III.1).

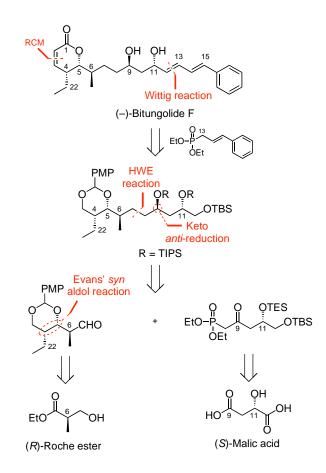
III.1.2. REPORTED TOTAL SYNTHESES OF (-)-BITUNGOLIDE F

Two substantial works directed toward the synthesis of bitungolide F have been documented from the research groups of $Ghosh^{222}$ and $She.^{223}$ The former was the first to report the total synthesis of the natural product and therefore to assign its absolute stereochemistry as (4*R*,5*R*,6*R*,9*R*,11*S*).

III.1.2.1. Total synthesis of (-)-bitungolide F by Ghosh et al.

Ghosh *et al.* reported the first total synthesis of bitungolide F in 22 steps and 4.7% overall yield starting from (*S*)-Roche ester and (*S*)-malic acid.²²² The key steps included a Wittig olefination to introduce the (*E*,*E*)-conjugated diene, a Horner-Wadsworth-Emmons (HWE) olefination²²⁴ to construct the C7-C8 bond and a ring-closing metathesis (RCM)²²⁵ to build the six-membered ring α , β -unsaturated δ -lactone. The stereochemistry at C9 was controlled by means of a hydroxy-directed reduction using Evans' protocol [Me₄NBH(OAc)₃, AcOH/MeOH, -20 °C],²²⁶ while a modified Evans' *syn*-aldol reaction using Crimmins' protocol²²⁷ [*N*-propionyl oxazolidinone, TiCl₄ and (–)-sparteine] enabled the control of the C4 and C5 stereogenic centers (Scheme III.1).

²²² Ghosh, S.; Kumar, S. U.; Shashidhar, J. J. Org. Chem. 2008, 73, 1582-1585.


²²³ Su, Y.; Xu, Y.; Han, J.; Zheng, J.; Qi, J.; Jiang, T.; Pan, X.; She, X. J. Org. Chem. **2009**, 74, 2743-2749.

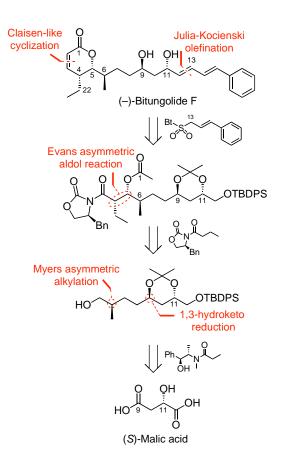
²²⁴ Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. *Tetrahedron Lett.* **1984**, *25*, 2183-2186.

²²⁵ (a) Fürstner, A. Angew. Chem. Int. Ed. 2000, 39, 3012-3043. (b) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-19. (c) Love, J. A. Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; 296-322. (d) Grubbs, R. H. Tetrahedron 2004, 60, 7117-7140. (e) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199-2238. (f) Gradillas, A.; Pérez-Castells, J. Angew. Chem. Int. Ed. 2006, 45, 6086-6101.

²²⁶ Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560-3578.

²²⁷ Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894-902.

Scheme III.1. Ghosh's retrosynthetic analysis of (-)-bitungolide F


III.1.2.2. Total synthesis of (-)-bitungolide F by She et al.

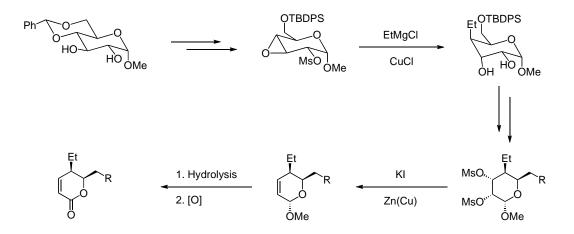
More recently, She *et al.* completed the total synthesis of (–)-bitungolide F in 18 steps and 20.1% overall yield starting from commercially available (*S*)-malic acid.²²³ The key steps included a Julia-Kocienski olefination to assemble the conjugated diene moiety and a Claisen-like cyclization²²⁸ to construct the α , β -unsaturated δ -lactone. In addition, the ethyl side chain at C4 and the alcohol at C5 were installed in a *syn* fashion *via* an asymmetric aldol reaction²²⁹ using Evans' chiral oxazolidinone, while a Myers

²²⁸ (a) Brandänge, S.; Leijonmarck, H. *Tetrahedron Lett.* **1992**, *33*, 3025-3028. (b) Vanderwal, C. D.;
Vosburg, D. A.; Weiler, S.; Sorensen, E. J. Org. Lett. **1999**, *1*, 645-648. (c) Hinterding, K.; Singhanat, S.;
Oberer, L. *Tetrahedron Lett.* **2001**, *42*, 8463-8465. (d) Vanderwal, C. D.; Vosburg, D. A.; Weiler, S.;
Sorensen, E. J. J. Am. Chem. Soc. **2003**, *125*, 5393-5407.
²²⁹ (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. **1981**, *103*, 2127-2129. (b) Evans, D. A.;

²²⁹ (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129. (b) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3099-3111. (c) Evans, D. A.; Nelson, J. V.; Taber, T. R. Top. Stereochem. 1982, 13, 1-115. (d) Evans, D. A. Aldrichimica Acta 1982, 15, 23-32.

asymmetric alkylation²³⁰ and a hydroxy-directed ketone reduction²²⁶ allowed to control the stereogenic centers C6 and C9, respectively (Scheme III.2).

Scheme III.2. She's retrosynthetic analysis of (-)-bitungolide F

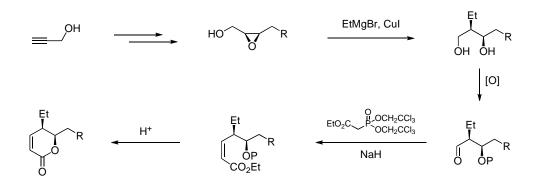

III.1.3. ASYMMETRIC METHODS TOWARDS ETHYL SUBSTITUTED α,β -UNSATURATED δ -LACTONES

The optically active 5-ethyl-5,6-dihydro-2*H*-pyran-2-one moiety is an important structural motif present in all the bitungolides as well as in a few other natural products with interesting biological properties, which renders its synthesis a challenge for synthetic organic chemists. Hence, prior to describing our synthesis of bitungolide F, we will give a brief overview of all the existing methods that have been developed to access this scaffold.

²³⁰ (a) Myers, A. G.; Yang, B.; Chen, H.; Mckinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. **1997**, *119*, 6496-6511. (b) Myers, A. G.; Yang, B. H.; Chen, H.; Kopecky, D. J. Synlett **1997**, 457-459.

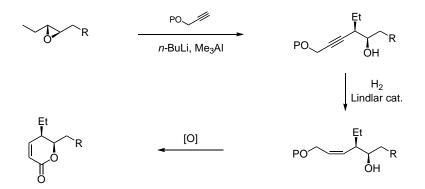
III.1.3.1. Epoxide ring-opening strategy

Kawada *et al.*²³¹ reported the first total synthesis of the natural product (–)-PA-48153C also referred to as pironetin, an immunosuppressive agent which contains the ethyl substituted α , β -unsaturated δ -lactone motif. Their strategy is based on a key copper(I) chloride-catalyzed ring-opening of a chiral epoxy mesylate with ethyl magnesium chloride to introduce the ethyl group onto the axial C5-position of a starting glycopyranoside derivative, followed by a double mesylate elimination,²³² a selective hydrolysis of the protected δ -lactol and a final oxidation to afford the corresponding δ lactone (Scheme III.3).


Scheme III.3. Kawada's epoxide ring-opening strategy

Later, Gurjar and co-workers²³³ reported another route towards the total synthesis of pironetin which also involved a regioselective ring-opening alkylation of a chiral epoxide to introduce the ethyl side-chain. In contrast to the previous approach, the construction of the α , β -unsaturated δ -lactone ring involved a modified HWE to set the α , β -unsaturated ester followed by an acid-mediated lactonization to complete the synthesis (Scheme III.4).

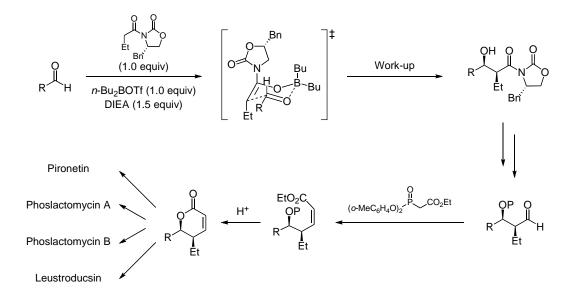
²³¹ Yasui, K.; Tamura, Y.; Nakatani, T.; Kawada, K.; Ohtani, M. J. Org. Chem. **1995**, 60, 7567-7574.


²³² Tipson, R. S.; Cohen, **A.** *Carbohydr. Res.* **1965**, *1*, 338.

²³³ Gurjar, M.; Chakrabarti, A.; Rao, A. V. R. *Heterocycles* **1997**, *45*, 7-10.

Scheme III.4. Gurjar's epoxide ring-opening strategy

A similar strategy was also used by Kitahara *et al.* in their synthesis of pironetin²³⁴ and, more recently, leustrodicsin B.²³⁵ However, in contrast to Gurjar's approach, the epoxide ring-opening alkylation was used to introduce a protected propargylic alcohol moiety with the proper configuration. Lindlar reduction of the alkyne then furnished the corresponding (*Z*)-alkene, while a final oxidation step provided the α , β -unsaturated δ -lactone (Scheme III.5).


Scheme III.5. Kitahara's epoxide ring-opening strategy

III.1.3.2. Asymmetric aldol/olefination strategy

An other method used for the synthesis of the optically active 5-ethyl-5,6-dihydro-2*H*-pyran-2-one motif is based on the use of an asymmetric aldolization to install the ethyl side-chain, a HWE to introduce the (Z)- α , β -unsaturated carbonyl, and a lactonization to build the six-membered ring.

 ²³⁴ Watanabe, H.; Watanabe, H.; Bando, M.; Kido, M.; Kitahara, T. *Tetrahedron* 1999, *55*, 9755-9776.
 ²³⁵ (a) Miyashita, K.; Tsunemi, T.; Hosokawa, T.; Ikejiri, M.; Imanishi, T. *Tetrahedron Lett.* 2007, *48*, 3829-3833. (b) Miyashita, K.; Tsunemi, T.; Hosokawa, T.; Ikejiri, M.; Imanishi, T. *J. Org. Chem.* 2008, *73*, 5360-5370.

In the example depicted in Scheme III.6, the aldol condensation takes place under Evans' protocol²³⁶ using (*S*)-*N*-butanoyloxazolidinone in the presence of dibutylborontriflate (*n*-Bu₂BOTf, 1.0 equiv) to afford the *syn*-aldol product with a high level of diastereoselectivity, which is explained by a Zimmerman-Traxler transition state model. After a few trivial transformations, the aldehyde was then subjected to a modified HWE *cis*-olefination,²³⁷ and the resulting conjugated ester was eventually hydrolyzed to afford the desired lactone. It is worth pointing out that this strategy was successfully used by various groups in the synthesis of pironetin,²³⁸ phoslactomycin A,²³⁹ phoslactomycin B²⁴⁰ and leustroducsin B.²⁴¹

Scheme III.6. Asymmetric aldol/olefination strategy

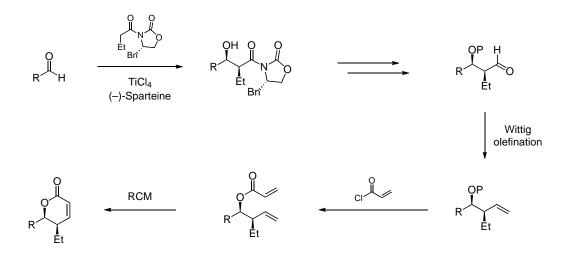
A particularly interesting alternative to the previous strategy involves the use of a ring-closing metathesis to form the α , β -unsaturated δ -lactone. This approach, which was used by Ghosh *et al.* in their synthesis of bitungolide F²²² and, more recently, bitungolide E,²⁴² featured a modified Evans asymmetric aldol under Crimmins' protocol combined to a Wittig olefination to introduce the terminal alkene, and an acylation with

²³⁶ Review: D. A. Evans *Aldrichim. Acta* **1982**, *15*, 23-32.

²³⁷ (a) Reddy, M. A.; Gopal, R. J.; Rao, V. J. *Indian J. Chem.* **1996**, *35*B, 312. (b) Ando, K. *J. Org. Chem.* **1997**, *62*, 1934-1939.

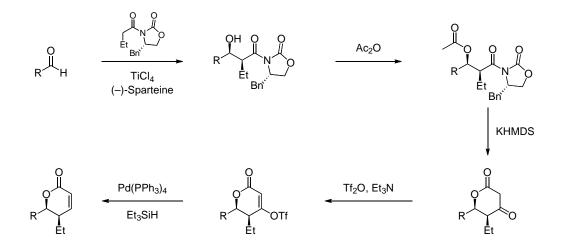
²³⁸ (a) Gurjar, M. K.; Henri Jr., J. T.; Bose, S. D.; Rao, A. V. R. *Tetrahedron Lett.* **1996**, *37*, 6615-6618.
(b) Días, L. C.; Oliveira, L. G. Sousa, M. A. Org. Lett. **2003**, *5*, 265-268. (c) Días, L. C.; Oliveira, L. G.

Sousa, M. A.; Ellensohn, R. M. ARKIVOC 2005, vi, 62-87.

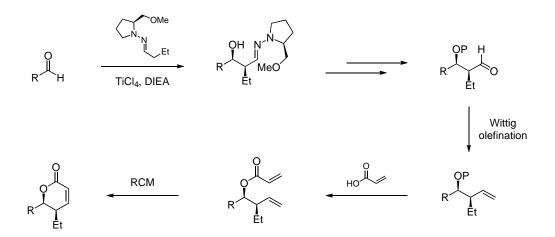

²³⁹ Gebhardt, B.; König, C.; Schleth, C.; Dauber, M.; Koert, U. Chem. Euro. J. 2010, 16, 5934-5941.

²⁴⁰ Wang, Y.-G.; Takeyama, R.; Kobayashi, Y. Angew. Chem., Int. Ed. 2006, 45, 3320-3323.

²⁴¹ Shimada, K.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. **2003**, 125, 4048-4049.


²⁴² Shashidhar, J.; Reddy, K. M.; Ghosh, S. Tetrahedron Lett. **2011**, *52*, 3106-3109.

acryloyl chloride followed by a final RCM to complete the synthesis of the conjugated lactone (Scheme III.7).


Scheme III.7. Asymmetric aldol/RCM strategy

In their synthesis of bitungolide F, She and co-workers²²³ also exploited the modified asymmetric Evans aldolisation to set the ethyl side-chain, however, instead of using an olefination/lactonization or an acylation/RCM sequence to generate the α , β -unsaturated δ -lactone, they performed an uncommon potassium hexamethyldisilazide-mediated Claisen-like cyclization to afford a β -keto lactone which was subsequently converted first to the corresponding enol triflate then to the desired lactone in the presence of Pd(PPh₃)₄ and Et₃SiH (Scheme III.8).

Scheme III.8. Asymmetric aldol/Claisen-like cyclization strategy

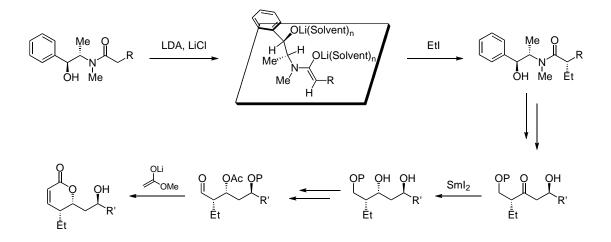
Enders *et al.*²⁴³ reported a modification of the aldol condensation in their synthesis of the optically active 5-ethyl-5,6-dihydro-2*H*-pyran-2-one motif of pironetin. Indeed, in order to control the C4 and C5 stereogenic centers of the lactone, they used their SAMP-/RAMP-hydrazone method. This synthetic tool, a *syn*-selective asymmetric aldol, involves a chelated titanium azaenolate derived from (*R*)- or (*S*)-1-amino-2-methoxymethylpyrrolidine hydrazone.²⁴⁴ Hence, after cleavage of the chiral auxiliary, Wittig olefination of the resulting aldehyde, esterification with acrylic acid and final RCM, Enders *et al.* were able to isolate the desired lactone (Scheme III.9).

Scheme III.9. SAMP-/RAMP-hydrazone strategy

III.1.3.3. Pseudoephedrin-mediated alkylation/lactone annulation strategy

In 2001, Keck *et al.*²⁴⁵ reported the total synthesis of pironetin employing a synthetic route, which featured a key Myers asymmetric alkylation^{230a} to set the ethyl side-chain. The high diastereoselectivity observed for this kind of alkylation is explained by a proposed model in which one of the faces of the enolate is blocked by the solvent, allowing the electrophiles to approach from the opposite face. In order to complete the synthesis, a samarium-mediated *anti*-reduction²⁴⁶ of a β -hydroxy ketone set the C5 stereogenic center of the lactone, while a lactone annulation procedure²⁴⁷ involving an initial aldol condensation between the lithium enolate derived from methyl acetate and a

²⁴³ Enders, D.; Dhulut, S.; Steinbusch, D.; Herrbach, A. Chem. Eur. J. 2007, 13, 3942-3949.

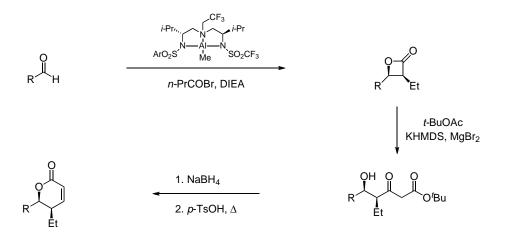

²⁴⁴ Review: Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. *Tetrahedron* **2002**, *58*, 2253-2329.

²⁴⁵ Keck, G. E.; Knutson, C. E.; Wiles, S. A. Org. Lett. **2009**, *3*, 707-710.

²⁴⁶ Keck, G. E.; Wager, C. A.; Sell, T.; Wager, T. T. J. Org. Chem. **1999**, 64, 2172-2173.

²⁴⁷ Keck, G. E.; Li, X.-Y.; Knutson, C. E. Org. Lett, **1999**, *1*, 411-414.

 β -acetoxy aldehyde with concomitant acyl migration, lactonization and a final β -elimination (Scheme III.10).

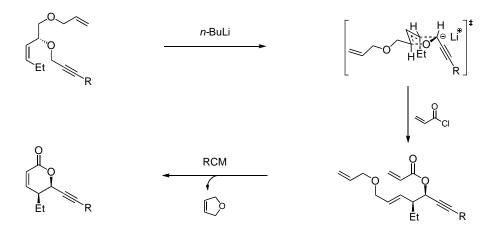

Scheme III.10. Pseudoephedrin-mediated alkylation/lactone annulation strategy

III.1.3.4. Acyl halide-aldehyde cyclocondensation strategy

Nelson and co-workers extended the use of the alkaloid-catalyzed acyl halidealdehyde cyclocondensation $(AAC)^{248}$ to the asymmetric synthesis of the 5-ethyl-5,6dihydro-2*H*-pyran-2-one motif present in pironetin.²⁴⁹ Hence, the required aldehyde was engaged in a Lewis acid-catalyzed AAC homologation employing butyryl bromide as a butanoate enolate equivalent to afford the corresponding β -lactone with complete control of the newly formed stereogenic centers. Ring-opening with the magnesium enolate derived from *tert*-butylacetate, followed by ketone reduction and a subsequent thermal *p*-TsOH treatment induced the *tert*-butyl ester cleavage as well as the lactonization and the dehydration to generate the requisite 2-pyranone unit (Scheme III.11).

²⁴⁸ Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352-5353.

²⁴⁹ Shen, X.; Wasmuth, A. S.; Zhao, J.; Zhu, C.; Nelson, S. G. J. Am. Chem. Soc. 2006, 128, 7438-7439.



Scheme III.11. Acyl halide-aldehyde cyclocondensation strategy

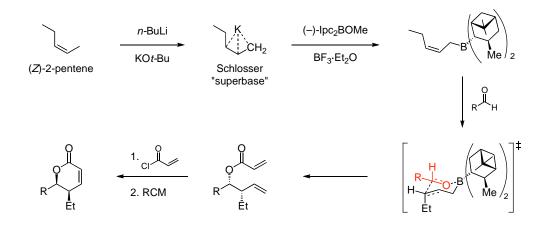
III.1.3.5. Wittig rearrangement/RCM strategy

A different strategy was used by Cossy and Meyer and co-workers to construct the 5-ethyl-5,6-dihydro-2*H*-pyran-2-one moiety present in both the phoslactomycins and the leustroducsins.²⁵⁰ It involved a highly diastereoselective [2,3]-Wittig rearrangement to control the C4 and C5 stereogenic centers, followed by a relay RCM to build the lactone ring. Hence, optically active propargylic ether was treated with *n*-BuLi to initiate the [2,3]-Wittig rearrangement through a five-membered-ring envelope conformation transition state wherein the allyloxymethyl chain preferentially occupies a pseudo-equatorial position, thus leading to a single diastereoisomer. The formation of the α , β -unsaturated δ -lactone was finally achieved by a relay ring-closing metathesis during which dihydrofuran is released (Scheme III.12).

²⁵⁰ (a) Druais, V.; Hall, M. J.; Corsi, C.; Wenderborn, S. V.; Meyer, C.; Cossy, J. Org. Lett. 2009, 11, 935-938. (b) Druais, V.; Hall, M. J.; Corsi, C.; Wenderborn, S. V.; Meyer, C.; Cossy, J. Tetrahedron 2010, 66, 6358-6375.

Scheme III.12. Wittig rearrangement/RCM strategy

III.1.3.6. Asymmetric pentenylation/RCM strategy


Inspired by the chiral crotylboron reagent developed by Brown *et al.*²⁵¹ in the early the boron-mediated pentenylation of aldehydes was developed quasi 80's. simultaneously by Hatekayama et al.²⁵² and Cossy et al.²⁵³ This highly diastereo- and enantioselective transformation relies on the use of a chiral pentenylating agent derived from diisopinocampheylborane and either (Z)- or (E)-2-pentene, generated in situ following Brown's procedure.²⁵¹ Hence, in the presence of Schlosser's base,²⁵⁴ the chiral reagent reacts with the aldehydes via a rigid chair-like Zimmerman-Traxler transition state, which ensures a high stereochemical transfer of the reagent's olefinic geometry thus allowing a direct access to both the syn- and the anti-ethyl-substituted homoallylic alcohols. In order to afford the α,β -unsaturated δ -lactone, the latter was eventually acylated with acryloyl chloride and subsequently engaged into a RCM (Scheme III.13).

²⁵¹ (a) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. **1983**, 105, 2092-2093. (b) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1988, 110, 1535-1538.

⁽a) Shibahara, S.; Fujino, M.; Tashiro, Y.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Org. Lett. 2008, 10, 2139-2142. (b) Shibahara, S.; Fujino, M.; Tashiro, Y.; Okamoto, N.; Esumi, T.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Synthesis 2009, 17, 2935-2953. (c) Sarkar, S. M.; Wanzala, E. N.; Shibahara, S.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. *Chem. Commun.* **2009**, 5907-5909.

Sonawane, R. P.; Joolakanti, S. R.; Arseniyadis, S.; Cossy, J. Synlett 2009, 213-216.

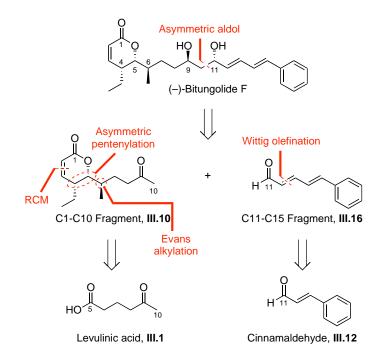
²⁵⁴ (a) Schlosser, A.; Hartmann, J. J. Am. Chem. Soc. 1976, 98, 4674-4676. (b) Roush, W.; Adam, M.; Walts, A.; Harris, D. J. Am. Chem. Soc. 1986, 108, 3422-3434. (c) Schlosser, A.; Despond, O.; Lehmann, R.; Moret, E.; Rauchschwalbe, G. Tetrahedron 1993, 49, 10175-10203.

Scheme III.13. Synthesis of syn-ethyl substituted homoallylic alcohol

This method was successfully applied in natural product synthesis, first by Hatakeyama *et al.* in their synthesis of phoslactomycin B,²⁵² then by Cossy *et al.* in their synthesis of pironetin²⁵⁵ and leustroducsin B.²⁵⁶

 ²⁵⁵ Bressy, C.; Vors, J.-P.; Hillebrand, S.; Arseniyadis, S.; Cossy, J. Angew. Chem. Int. Ed. 2008, 47, 10137-10140.
 ²⁵⁶ Moïse, J.; Sonawane, R. P.; Corsi, C.; Wendeborn, S. V.; Arseniyadis, S.; Cossy, J. Synlett, 2008,

²³⁰ Moïse, J.; Sonawane, R. P.; Corsi, C.; Wendeborn, S. V.; Arseniyadis, S.; Cossy, J. *Synlett*, **2008**, 2617-2620.

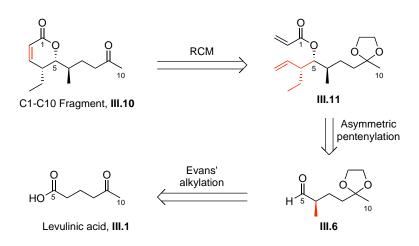

III.2. RESULTS & DISCUSSION

III.2.1. TOTAL SYNTHESIS OF (-)-BITUNGOLIDE F

The unique biological profile of the bitungolides combined with their challenging molecular architecture stimulated our interest. We therefore decided to develop a highly straightforward and flexible route that would not only allow an expedient access to the natural product, but also to various analogues thereof.

III.2.1.1. First retrosynthetic analysis

Our first strategy for the synthesis of (–)-bitungolide F relied on a few key steps which included a chiral boron-mediated aldol to link the two major subunits (**III.10** and **III.16**) together and control the configuration of the stereogenic center at C11, a stereoselective pentenylation to introduce the ethyl side chain at C4 and set the *syn* relationship between the substituents at C4 and C5, an asymmetric Evans type alkylation to control the stereogenic center at C6, and a RCM to introduce the α , β -unsaturated- δ -lactone moiety (Scheme III.14).

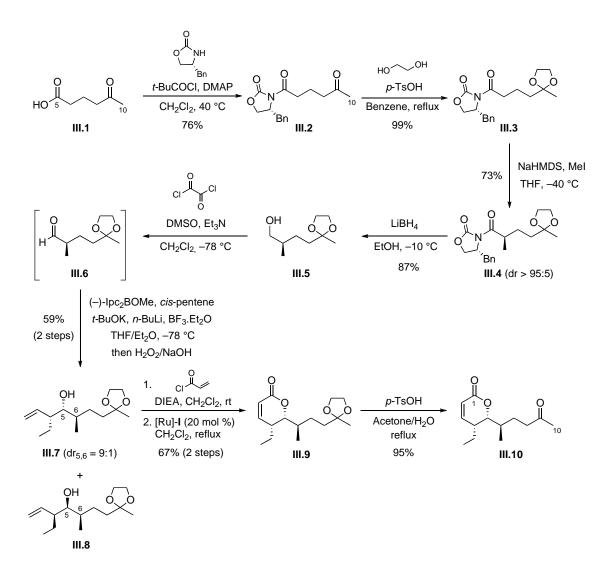


Scheme III.14. First retrosynthetic analysis

III.2.1.2. Synthesis of the C1-C10 fragment

III.2.1.2.1. Retrosynthetic analysis

The first strategy that was envisioned for the synthesis of the C1-C10 fragment **III.10** was based upon the implementation of a RCM applied to olefin **III.11**, which would arise from an asymmetric pentenylation previously developed in the Laboratory on aldehyde **III.6**. The latter would be obtained by subjecting commercially available levulinic acid **III.1** to an Evans asymmetric alkylation (Scheme III.15).

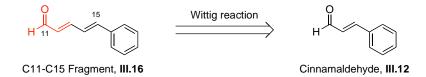

Scheme III.15. Retrosynthetic analysis of the C1-C10 fragment

III.2.1.2.1. Synthesis of the C1-C10 fragment

The synthesis of the C1-C10 fragment **III.10** of bitungolide F began by converting levulinic acid III.1 to the corresponding chiral N-acyloxazolidinone III.2 via the in situ formation of a mixed anhydride (Scheme III.16). The ketone moiety was then protected using ethylene glycol and *p*-toluenesulfonic acid (*p*-TsOH), and the resulting ketal **III.3** was subsequently engaged into a highly diastereoselective Evans alkylation^{229d,257} to afford the corresponding C6 methylated product III.4 (73% yield) as a unique diastereoisomer as confirmed by ¹H NMR analysis of the crude reaction mixture (dr > 95:5). The chiral auxiliary was then removed using a LiBH₄-mediated reduction²⁵⁸ to afford the primary alcohol III.5 (87% yield), which was subsequently oxidized under standard Swern conditions to afford the corresponding aldehyde III.6. The latter was next subjected to the boron-mediated asymmetric pentenylation discussed above. Hence, the chiral (Z)-pentenylborane reagent, which was generated in situ from (Z)-2-pentene, Schlosser's base and BF_3 ·Et₂O, was added to aldehyde **III.6** to afford the corresponding homoallylic alcohol **III.7** in 59% yield over two steps. ¹H NMR analysis of the crude reaction mixture suggested the formation of two diastereoisomers in a 9:1 ratio (anti/syn versus syn/syn). The two diastereoisomers III.7 and III.8 were then separated by flash column chromatography over silica gel and the major isomer was engaged in a two-step sequence involving an acylation with acryloyl chloride followed by a Grubbs second generation catalyst-mediated RCM to afford the desired α,β -unsaturated δ -lactone **III.9** in 59% yield over two steps. The latter was finally treated with a catalytic amount of p-TsOH in an acetone/water mixture²⁵⁹ in order to deprotect the ketone and thus complete the synthesis of the C1-C10 fragment III.10. Hence, fragment C1-C10 (III.10) was synthesized in six steps and 28.2% overall yield starting from levulinic acid.

²⁵⁷ (a) Ager, D. J.; Prakash, I.; Schaad, D. R. Aldrichimica Acta 1997, 30, 3-12. (b) Evans, D. A.; Kim, A. S. Handbook of Reagents for Organic Synthesis: Reagents, Auxiliaries, and Catalysts for C-C bond Formation; Coates, R. M.; Denmark, S. E., Eds.; John Wiley and Sons: New York, 1999; 91-101. (c) Smith, T. E.; Richardson, D. P.; Truran, G. A.; Belecki, K.; Onishi, M. J. Chem. Ed. 2008, 85, 695-697.
²⁵⁸ Smith, A. B., III; Lee, D. J. Am. Chem. Soc. 2007, 129, 10957-10962.

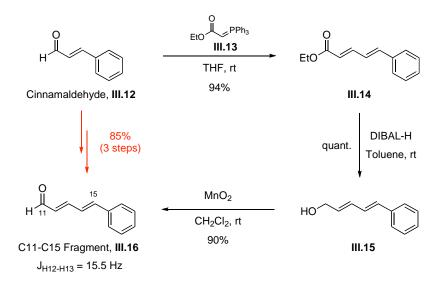
²⁵⁹ Meissner, R. S.; Perkins, J. J.; Duong, L. T.; Hartman, G. D.; Hoffman, W. F.; Huff, J. R.; Ihle, N. C.; Leu, C.-T.; Nagy, R. M.; Naylor-Olsen, A.; Rodan, G. A.; Whitman, D. B.; Wesolowski, G. A.; Duggan, M. E. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 25-29.



Scheme III.16. Synthesis of C1-C10 fragment

III.2.1.3. Synthesis of C11-C15 fragment

III.2.1.3.1. Retrosynthetic analysis


The synthesis of the C11-C15 fragment **III.16** bearing the (E,E)-diene moiety was envisioned through a key Wittig olefination between commercially available cinnamaldehyde **III.12** and a stabilized phosphorus ylide (Scheme III.17).

Scheme III.17. Retrosynthetic analysis of C11-C15 fragment

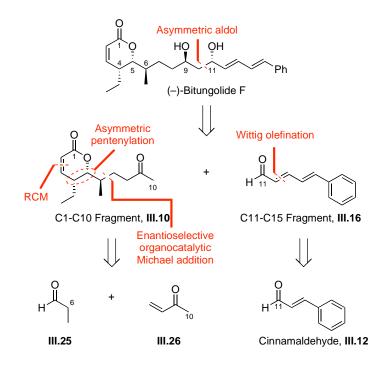
III.2.1.3.2. Synthesis of the C11-C15 fragment

The synthesis of the C11-C15 fragment started with a Wittig olefination between cinnamaldehyde **III.12** and ethyl (triphenylphosphoranylidene)acetate (**III.13**) which afforded the expected (*E*,*E*)-unsaturated ester **III.14** in 94% yield (Scheme III.18). The stereochemistry of the diene moiety was secured by the values of the coupling constant for H12 in agreement to an *E*-alkene (J = 15.5 Hz).²⁶⁰ The latter was subsequently reduced to the corresponding alcohol **III.15** using DIBAL-H and oxidized to the α , β , γ , δ -unsaturated aldehyde **III.16** in the presence of MnO₂. The C11-C15 fragment of bitungolide F was thus obtained in three steps and 85% overall yield starting from commercially available cinnamaldehyde.²⁶¹

Scheme III.18. Synthesis of C11-C15 fragment

III.2.1.4. Synthesis of (–)-bitungolide F

With the two subunits **III.10** and **III.16** in hand, the stage was set for the key asymmetric aldol that would allow a direct access to the entire carbon backbone of (–)-bitungolide F and control the C11 stereogenic center.


²⁶⁰ The (*E*,*Z*) unsaturated ester was isolated in 6% yield.

²⁶¹ Cao, X.-P. *Tetrahedron* **2002**, *58*, 1301-1307.

As shown by Patterson *et al.*,²⁶² enol diisopinocampheylborinates, generated from achiral ketones in the presence of a tertiary amine base such as Et_3N or DIEA, induce a highly enantio- and diastereoselective aldolization when reacted with an aldehyde. Accordingly, ketone III.10 was treated with (+)-(Ipc)₂BCl in presence of Et₃N to afford the chiral boron enolate intermediate, which was then reacted with aldehyde III.16. In this case, the reaction proceeds through a boat-like transition state. The resulting β -hydroxy ketone **III.17**, whose crude ¹H NMR indicated a moderate diastereoisomeric ratio of 5:1, was directly engaged in a hydroxy-assisted ketone reduction using Evans' conditions²²⁶ [Me₄NBH(OAc)₃ in an acetic acid/acetonitrile mixture at -20 °C] in order to prevent a partial elimination that could occur with such conjugated systems. Under these conditions, the corresponding 1,3-anti diol was isolated as a single diastereoisomer in 82% overall yield after purification by flash column chromatography over silica gel (Scheme III.19). The absolute and relative configuration of the newly formed C9 and C11 stereogenic centers were determined by comparison of the spectroscopic data of the synthetic product with those reported for the natural product.²¹⁴

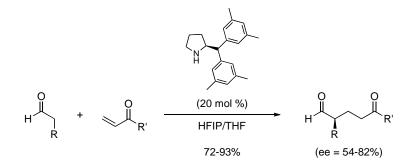
The spectroscopic and physical data of the synthetic bitungolide were identical with those reported for the natural product except for the optical rotation, which was of opposite sign: $[\alpha]_{D}^{20}$ –51.6 (*c* 1.56, CHCl₃) instead of $[\alpha]_{\text{lit.}}^{22}$ +43.0 (*c* 0.85, CHCl₃).²¹⁴

²⁶² (a) Patterson, I.; Goodman, J. M. *Tetrahedron Lett.* **1989**, *30*, 997-1000. (b) Patterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. *Tetrahedron* **1990**, *46*, 4663-4684.

Scheme III.20. Second retrosynthetic analysis of (-)-bitungolide F

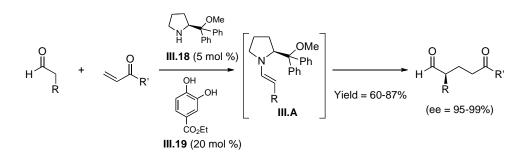
III.2.1.5.2. Introduction to enantioselective organo-catalyzed Michael addition

The first organo-catalyzed Michael reactions were developed using highly activated Michael acceptors such as nitroalkenes or alkylidenemalonates,²⁶³ or highly activated nucleophiles such as malonate diesters²⁶⁴ or nitroalkanes.²⁶⁵ As a general trend, the Michael adducts were obtained in excellent yields and high enantiomeric excess. In 2003, Jørgensen *et al.*²⁶⁶ were the first to develop an enantioselective organo-catalytic Michael addition of simple aldehydes to enones catalyzed by chiral proline-derived


²⁶³ (a) Betancort, J. M.; Barbas, C. F., III. Org. Lett. 2001, 3, 3737-3740. (b) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Barbas, C. F., III. Tetrahedron Lett. 2001, 42, 4441-4444. (c) Enders, D.; Seki, A. Synlett 2002, 26-28. (d) Andrey, O.; Alexakis, A.; Bernardinelli, G. Org. Lett. 2003, 5, 2559-2561. (e) Mase, N.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III. Org. Lett. 2004, 6, 2527-2530. (f) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III. Synthesis 2004, 1509-1521. (g) Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558-9559. (h) Wang, W.; Wang, J.; Li, H. Angew. Chem., Int. Ed. 2005, 44, 1369-1371.

²⁶⁴ (a) Kawara, A.; Taguchi, T. *Tetrahedron Lett.* 1994, 35, 8805-8808. (b) Hanessian, S.; Pham, V. Org. Lett. 2000, 2, 2975-2978. (c) Halland, N.; Hansen, K. A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2003, 42, 4955-4957. (d) Halland, N.; Aburel, P. S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2003, 42, 661-665.

 ²⁶⁵ (a) Yamaguchi, M.; Shiraishi, T.; Hirama, M. J. Org. Chem. **1996**, 61, 3520-3530. (b) Corey, E. J.;
 Zhang, F.-Y. Org. Lett. **2000**, 2, 4257-4259. (c) Halland, N.; Hazell, R. G.; Jørgensen, K. A. J. Org.
 Chem. **2002**, 67, 8331-8338.


²⁶⁶ Melchiorre, P.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 4151-4152.

amines, affording the corresponding Michael adducts in high yields (up to 93%) and moderate to good enantioselectivities ranging from 53% to 82% (Scheme III.21).

Scheme III.21. Jørgensen's organo-catalyzed conjugated addition

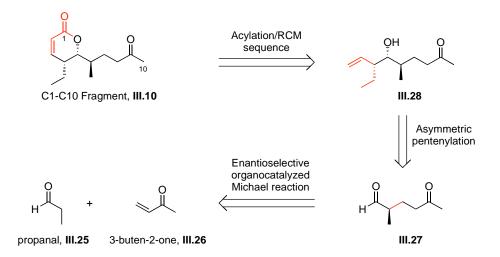
More recently, Gellman *et al.* reported that diphenylprolinol methyl ether **III.18** in conjunction with catechol co-catalyst **III.19** could catalyze the enantioselective conjugate addition of aldehydes to simple enones with unprecedented levels of selectivity (Scheme III.22).²⁶⁷ Concerning the mechanism, the authors suggest that the aldehyde is most probably converted to the corresponding enamine **III.A**, while the catechol electrophilically activates the enone by a hydrogen bonding with the carbonyl oxygen. It is worth pointing out, however, that other mechanisms of activation such as catechol catalysis of initial enamine formation cannot be ruled out at this time.²⁶⁸

Scheme III.22. Gellman's organo-catalyzed Michael addition

²⁶⁷ Chi, Y.; Gellman, S. H. Org. Lett. 2005, 19, 4523-4256.

²⁶⁸ Peelen, T. J.; Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2005, 127, 11598-11599.

III.2.1.6. Second synthesis of the C1-C10 fragment

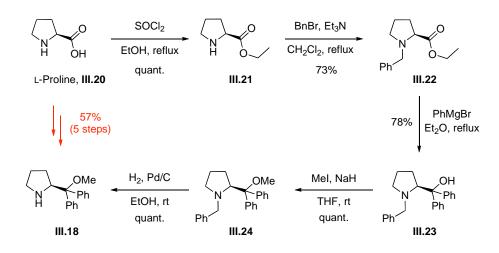

III.2.1.6.1. Second retrosynthetic analysis

As mentioned previously, the second strategy for the synthesis of the C1-C10 fragment of bitungolide F relies on three key transformations (Scheme III.23):

- an enantioselective diphenylprolinol methyl ether-catalyzed conjugate addition of propanal (**III.25**) to 3-buten-2-one (**III.26**) to form the required aldehyde **III.27**,

- an asymmetric chiral boron-mediated pentenylation to introduce the ethyl side chain and control the stereogenic centers at C4 and C5,

- an acylation/RCM sequence to construct the α , β -unsaturated δ -lactone.

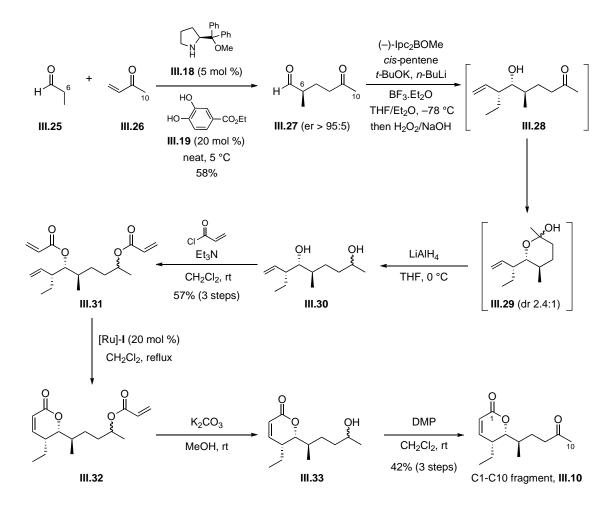

Scheme III.23. Second retrosynthetic analysis of the C1-C10 fragment

III.2.1.6.2. Synthesis of organocatalyst III.18

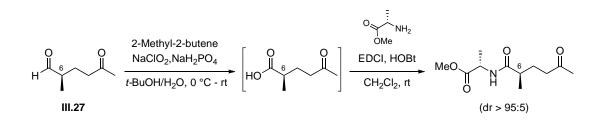
Diphenylpropinol methyl ether **III.18** was synthesized in five steps following the protocol reported by Enders *et al.*²⁶⁹ starting from commercially available L-proline. L-Proline was thus subjected to an esterification with thionyl chloride in refluxing ethanol and the resulting amino ester **III.21** was alkylated using benzyl bromide to afford the corresponding *N*-benzyl protected proline **III.22** in 73% overall yield (Scheme III.24). The ester moiety was then converted to the corresponding methyl ether **III.23** by addition of phenylmagnesium bromide (2 equiv) and alkylation of the

²⁶⁹ Enders, D.; Kipphardt, H.; Gerdes, P.; Brena-Valle, L. J. Bull. Soc. Chim. Belg. 1988, 97, 691-704.

resulting tertiary alcohol **III.23** with methyl iodide (NaH, THF, rt, 78% yield over two steps). Finally, the *N*-benzyl protected diphenylprolinol methyl ether was engaged in a hydrogenation over Pd/C to afford diphenylprolinol methyl ether **III.18** in five steps and 57% overall yield starting from L-proline **III.20**.



Scheme III.24. Synthesis of catalyst III.18

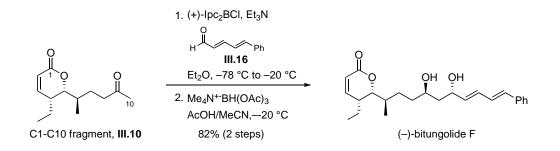

III.2.1.6.3. Second synthesis of the C1-C10 fragment

The synthesis of the C1-C10 fragment of bitungolide F started with the conjugate addition of commercially available propanal (**III.25**) to 3-buten-2-one (**III.26**) catalyzed by diphenylpropinol methyl ether **III.18** (5 mol %) and catechol **III.19** (20 mol %) according to the procedure reported by Gellman and Chi (Scheme III.25).²⁶⁷ As pyrrolidine **III.18** could potentially catalyze both the conjugate addition²⁶⁶ and the epimerization of the product *via* enamine formation,²⁷⁰ we decided to separate the catalyst from the reaction mixture before reaching completion. Consequently, the reaction furnished aldehyde **III.27** in a slightly moderate yield of 58% however with an excellent enantioselectivity (er > 95:5). The absolute configuration of the resulting stereogenic center was confirmed by comparison of its optical rotation { $[\alpha]_D^{20} +1.77$ (*c* 0.8, CHCl₃)} with the one reported in the literature²⁶⁶ { $[\alpha]_D^{20} +5.4$ (*c* 1.2, CHCl₃, 64% ee)} while the enantiomeric excess was determined by ¹H NMR analysis of a diastereisomeric ester derivative obtained after oxidation of the aldehyde to the corresponding acid followed by a peptide coupling with L-alanine methyl ester (Scheme III.26).

²⁷⁰ List, B. J. Am. Chem. Soc. **2002**, 124, 5656-5657.

Scheme III.25. Second synthesis of the C1-C10 fragment III.10

Scheme III.26. Synthesis of the diastereoisomeric ester derivative of III.27

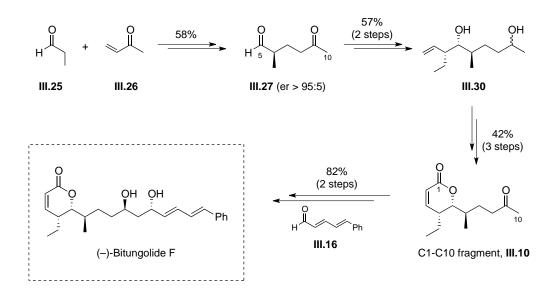

Aldehyde **III.27** was then engaged in the same asymmetric boron-mediated pentenylation as previously to afford the corresponding homoallylic alcohol **III.28** which underwent spontaneous hemiketalization.²⁷¹ Unfortunately, due to overlapping signals in the crude ¹H NMR, the determination of the selectivity pertaining to the boron-mediated pentenylation appeared impossible. In addition, although hemiketals are usually in equilibrium with their corresponding hydroxy ketones, all our attempts to

²⁷¹ The two diastereoisomeric hemiketals were obtained in 2.4:1 mixture according to ¹H NMR analysis.

selectively acylate the homoallylic alcohol failed. Therefore, we decided to directly reduce the crude reaction mixture with LiAlH₄ and bis-acylate the resulting diol with acryloyl chloride in presence of Et_3N (57% yield over three steps) to produce **III.31**. A RCM catalyzed by the Grubbs second generation catalyst followed by the saponification of the remaining acrylate under mild conditions (K₂CO₃, MeOH) and a final oxidation using Dess-Martin periodinane (DMP) provided the desired ketone **III.10** in 42% overall yield. The C1-C10 fragment **III.10** was thus synthesized in seven steps and 13.9% overall yield starting from simple and commercially available propanal (**III.25**) and 3-buten-2-one (**III.26**).

III.2.1.7. Second synthesis of (-)-bitungolide F

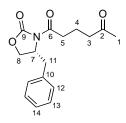
After completing the synthesis of the C1-C10 fragment, the latter was engaged in the same chiral boron-mediated aldol/*anti*-reduction sequence as previously to afford (–)-bitungolide F in 82% yield over the two-step sequence (Scheme III.27).



Scheme III.27. Second synthesis of (-)-bitungolide F

III.3. CONCLUSIONS

We have completed the synthesis of the dual-specificity phosphatase inhibitor (–)-bitungolide F using two highly convergent routes, which featured an asymmetric boron-mediated pentenylation, a stereoselective aldol and a hydroxyl-directed 1,3-*anti*-reduction to control all five stereogenic centers of the natural product. While the first strategy relied on an Evans type asymmetric alkylation and was achieved in 11 steps and 14.6% overall yield, the second strategy featured a key enantioselective organo-catalytic Michael addition and was completed in only nine steps and 11.4% overall yield. It is worth mentioning that while both syntheses are considerably shorter than the ones reported so far in the literature,²⁷² the second approach is particularly appealing as it is highly flexible, it does not involve the use of any protecting group, and is therefore amenable to a wide variety of potentially useful synthetic analogues.


 $^{^{272}}$ She's synthesis of (–)-bitungolide F was achieved in 18 steps and 20.1% overall yield starting from (–)-malic acid, while Ghosh's synthesis was completed in 22 steps and 4.7% overall yield starting from the same starting material.

III.4. EXPERIMENTAL PART OF CHAPTER III

III.4.1. EXPERIMENTAL PROCEDURES

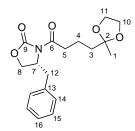
III.4.1.1. Synthesis of 1-((R)-4-benzyl-2-oxo-oxazolidin-3-yl)-hexane-1,5dione (III.2)

MW (g/mol): 289.3264

Molecular formula: C₁₆H₁₉NO₄

To a solution of levulinic acid (III.1) (2.0 g, 15.3 mmol) in CH_2Cl_2 (150 mL) was added Et_3N (5.1 mL, 36.7 mmol) and pivaloyl chloride (2.2 mL, 18.4 mmol) at rt and the reaction mixture stirred for 3 h at the same temperature. (*S*)-4-Phenyloxazolidinone (2.3 g, 13.0 mmol) and DMAP (130.8 mg, 1.07 mmol) were then added and the solution was stirred at 45 °C for 7 h until complete conversion of the starting material (reaction monitored by TLC). After cooling to rt, water was added and the organic layer was separated. The aqueous layer was washed with CH_2Cl_2 (3 x 100 mL), and the combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/EtOAc, 75:25) to afford 1-((*R*)-4-benzyl-2-oxo-oxazolidin-3-yl)-hexane-1,5-dione (III.2) as an amorphous solid (3.2 g, 73%).

 R_f (PE/EtOAc, 1:1): 0.5.


 $[\alpha]_{D}^{20}$ –51.4 (*c* 0.78, CHCl₃).

IR (neat): 2923, 1774, 1698, 1386, 1352, 1287, 1250, 1210, 1161, 1112, 1077, 1052, 995, 762, 751, 703 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35-7.16 (m, 3H, H₁₃, H₁₄), 7.14-7.12 (m, 2H, H₁₂), 4.59 (m, 1H, H₇), 4.18-4.07 (m, 2H, H₈), 3.22 (dd, J = 13.5, 3.3 Hz, 1H, H₁₁), 2.87 (td, J = 7.1, 2.7 Hz, 2H, H₅), 2.69 (dd, J = 13.5, 9.7 Hz, 1H, H₁₁), 2.49 (t, J = 7.1 Hz, 2H, H₃), 2.09 (s, 3H, H₁), 1.90 (quintd, J = 7.1, 1.7 Hz, 2H, H₄). ¹³**C NMR** (100 MHz, CDCl₃) δ 208.0 (s, C₂), 172.7 (s, C₅), 153.5 (s, C₉), 135.3 (s, C₁₀), 129.4 (d, 2C, C₁₃), 129.0 (d, 2C, C₁₂), 127.4 (d, C₁₄), 66.3 (t, C₈), 55.2 (d, C₇), 42.5 (t, C₁₁), 37.9 (t, C₅), 34.7 (t, C₃), 29.9 (q, C₁), 18.2 (t, C₄).

HRMS (ESI) m/z: calculated for C₁₆H₁₉O₄NNa [M+Na]⁺ 312.1206, found 312.1195.

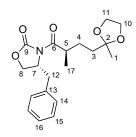
III.4.1.2. Synthesis of (R)-4-benzyl-3-[4-(2-methyl-1,3-dioxolan-2-yl)butyryl]-oxazolidin-2-one (III.3)

MW (g/mol): 333.3789

Molecular formula: C₁₈H₂₃NO₅

To a stirred solution of 1-((*R*)-4-benzyl-2-oxo-oxazolidin-3-yl)-hexane-1,5-dione (**III.2**) (2.5 g, 8.6 mmol) in benzene (90 mL) were added ethylene glycol (1.92 mL, 34.5 mmol) and *p*-TsOH (16.3 mg, 0.086 mmol), and the resulting reaction mixture was heated at reflux for 3 h using a Dean-Stark trap to remove water. The solution was then cooled to rt and washed with water (2 x 50 mL) and brine (50 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography (PE/EtOAc, 75:25) to afford (*R*)-4-benzyl-3-[4-(2-methyl-1,3-dioxolan-2-yl)-butyryl]-oxazolidin-2-one (**III.3**) as a white solid (2.8 g, 99%).

 R_f (PE/EtOAc, 1:1): 0.46.


 $[\alpha]_{\mathbf{D}}^{20}$ -45.1 (*c* 1.0, CHCl₃).

IR (neat): 2980, 2881, 1775, 1697, 1454, 1384, 1351, 1209, 1140, 1098, 1051, 948, 860, 762, 749, 702 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.29-7.17 (m, 3H, H₁₅, H₁₆), 7.16-7.11 (m, 2H, H₁₄), 4.59 (m, 1H, H₇), 4.21-4.00 (m, 2H, H₈), 3.90-3.82 (m, 4H, H₁₀, H₁₁), 3.22 (dd, J = 13.5, 3.2 Hz, 1H, H₁₂), 3.01-2.81 (m, 2H, H₅), 2.69 (dd, J = 13.5, 9.7 Hz, 1H, H₁₂), 1.81-1.71 (m, 4H, H₃, H₄), 1.27 (s, 3H, H₁). ¹³C NMR (100 MHz, CDCl₃) δ173.0 (s, C₆), 153.5 (s, C₉), 135.3 (s, C₁₃), 129.4 (d, 2C, C₁₅), 129.0 (d, 2C, C₁₄), 127.3 (d, C₁₆), 109.8 (s, C₂), 66.2 (t, C₈), 64.7 (t, 2C, C₁₀, C₁₁), 55.1 (d, C₇), 38.2 (t, C₃), 37.9 (t, C₁₂), 35.4 (t, C₅), 23.8 (q, C₁), 18.8 (t, C₄).

HRMS (ESI) m/z: calculated for C₁₈H₂₃O₅NNa [M+Na]⁺ 356.1468, found 356.1468.

III.4.1.3. Synthesis of (R)-4-benzyl-3-[(R)-2-methyl-4-(2-methyl-1,3dioxolan-2-yl)-butyryl]-oxazolidin-2-one (III.4)

MW (g/mol): 347.4055

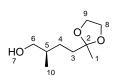
Molecular formula: C₁₉H₂₅NO₅

To a solution of (*R*)-4-benzyl-3-[4-(2-methyl-1,3-dioxolan-2-yl)-butyryl]-oxazolidin-2one (**III.3**) (2.52 g, 7.5 mmol) in THF (75 mL) was added NaHMDS (15 mL of a 1M solution in THF), and the reaction mixture was stirred at -78 °C for 30 min. MeI (9.4 mL, 75 mmol) was then added and the stirring was continued for an extra 90 min at -40 °C. The reaction was quenched with H₂O and allowed to warm up to rt. The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/EtOAc: 75:25) to afford (*R*)-4-benzyl-3-[(*R*)-2-methyl-4-(2methyl-1,3-dioxolan-2-yl)-butyryl]-oxazolidin-2-one (**III.4**) as a viscous oil (1.88 g, 73%, dr > 95:5).

 R_f (PE/EtOAc, 1:1): 0.5.

 $[\alpha]_{D}^{20}$ –49.8 (*c* 0.81, CHCl₃).

IR (neat): 2980, 2879, 1778, 1696, 1455, 1386, 1350, 1210, 1102, 1070, 972, 949, 858, 762, 747, 703 cm⁻¹.


¹**H** NMR (400 MHz, CDCl₃) δ 7.24-7.13 (m, 3H, H₁₅, H₁₆), 7.12-7.07 (m, 2H, H₁₄), 4.56 (m, 1H, H₇), 4.12-4.02 (m, 2H, H₈), 3.89-3.73 (m, 4H, H₁₀, H₁₁), 3.59 (m, 1H, H₅),

3.14 (dd, J = 13.2, 2.8 Hz, 1H, H₁₂), 2.65 (dd, J = 13.2, 9.7 Hz, 1H, H₁₂), 1.74 (m, 1H, H₄), 1.58-1.50 (m, 2H, H₃), 1.43 (m, 1H, H₄), 1.20 (s, 3H, H₁), 1.11 (d, J = 6.7 Hz, 3H, H₁₇).

¹³**C NMR** (100 MHz, CDCl₃) δ 177.0 (s, C₆), 153.0 (s, C₉), 135.3 (s, C₁₃), 129.5 (d, 2C, C₁₅), 128.9 (d, 2C, C₁₄), 127.3 (d, C₁₆), 109.8 (s, C₂), 66.0 (t, C₈), 64.7 (t, C₁₁), 64.6 (t, C₁₀), 55.3 (d, C₇), 37.9 (t, C₁₂), 37.6 (d, C₅), 36.4 (t, C₃), 27.6 (t, C₄), 23.8 (q, C₁), 17.6 (q, C₁₇).

HRMS (ESI) m/z: calculated for C₁₉H₂₆O₅N [M+H]⁺ 348.1806, found 348.1809; calculated for C₁₉H₂₅O₅NNa [M+Na]⁺ 370.1625, found 370.1625.

III.4.1.4. Synthesis of (R)-2-methyl-4-(2-methyl-1,3-dioxolan-2-yl)-butan-1ol (III.5)

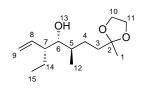
MW (g/mol): 174.2374

Molecular formula: C₉H₁₈O₃

To a solution of (*R*)-4-benzyl-3-[(*R*)-2-methyl-4-(2-methyl-1,3-dioxolan-2-yl)-butyryl]oxazolidin-2-one (**III.4**) (1.8 g, 5.18 mmol) in Et₂O (90 mL) at -10 °C were added EtOH (0.36 mL, 6.2 mmol) and LiBH₄ (147 mg, 6.2 mmol). The solution was stirred at -10 °C for 1.5 h and quenched by addition of a 1M aqueous solution of NaOH (30 mL). After stirring for an additional 15 min at 0 °C, the reaction mixture was poured into a 1:1 Et₂O/brine solution (100 mL). The phases were separated, and the aqueous layer was extracted with Et₂O (3 x 50 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/EtOAc, 70;30) to afford (*R*)-2-methyl-4-(2-methyl-1,3-dioxolan-2-yl)-butan-1-ol (**III.5**) as a colourless oil (750 mg, 87%).

*R*_f (PE/EtOAc: 7/3): 0.18.

 $[\alpha]_{D}^{20}$ +7.6 (*c* 3.1, CHCl₃).


IR (neat): 3427, 2951, 2876, 1460, 1378, 1345, 1251, 1220, 1124, 1091, 1039, 988, 948, 858, 785 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 3.89-3.75 (m, 4H, H₈, H₉), 3.36 (dd, *J* = 10.5, 5.9 Hz, 1H, H₆), 3.29 (dd, *J* = 10.5, 5.9 Hz, 1H, H₆), 2.39 (m, 1H, H₇), 1.67-1.34 (m, 4H, H₃, H₄, H₅), 1.20 (s, 3H, H₁), 1.09 (m, 1H, H₄), 0.80 (d, *J* = 6.8 Hz, 3H, H₁₀).

¹³C NMR (100 MHz, CDCl₃) δ 110.2 (s, C₂), 67.7 (t, C₆), 64.5 (t, 2C, C₁₀), 36.3 (t, C₃), 35.7 (d, C₅), 27.1 (t, C₄), 23.7 (q, C₁), 16.6 (q, C₈).

HRMS (ESI) m/z: calculated for C₉H₁₈O₃Na [M+Na]⁺ 197.1148, found 197.1148.

III.4.1.5. Synthesis of (3R,4R,5R)-3-ethyl-5-methyl-7-(2-methyl-1,3dioxolan-2-yl)-hept-1-en-4-ol (III.7)

MW (g/mol): 242.3544

Molecular formula: C₁₄H₂₆O₃

DMSO (1 mL, 12 mmol) was added slowly to an oxalyl chloride solution (0.53 mL, 6 mmol) in CH₂Cl₂ (20 mL) at -78 °C and the reaction mixture was stirred for 30 min. (*R*)-2-methyl-4-(2-methyl-1,3-dioxolan-2-yl)-butan-1-ol (**III.5**) (520 mg, 3.0 mmol) was then added dropwise and the reaction was stirred for 30 min at the same temperature. Et₃N (2.5 mL, 18 mmol) was then added and the reaction mixture was allowed to stir at rt before the reaction was quenched with a saturated aqueous NH₄Cl solution (10 mL). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. Hexane was then added and the resulting crude aldehyde **III.6** was used in the next step without further purification.

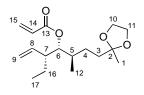
To a stirred suspension of *t*-BuOK (400 mg, 3.3 mmol) and *cis*-butene (0.7 mL, 6.6 mmol) in THF (3.5 mL) at -78 $^{\circ}$ C was added *n*-BuLi (1.9 mL of a 2.5 M solution in hexane) dropwise. After complete addition, the reaction mixture was stirred for 5 min at

-50 °C. The resulting orange solution was then cooled to -78 °C and to it, was added (–)-Ipc₂BOMe (1.4 g, 4.2 mmol) in diethyl ether (3.2 mL). After stirring for 30 min at -78 °C, BF₃·Et₂O (0.6 mL, 4.5 mmol) was added followed by the aldehyde **III.6** (3.0 mmol) in THF (3.2 mL). The reaction mixture was then stirred overnight at the same temperature before it was treated with a 3M aqueous solution of NaOH and H₂O₂, and refluxed for 1 h. The reaction mixture was then extracted with EtOAc, washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/EtOAc, 95:5) to afford (3*R*,4*R*,5*R*)-3-ethyl-5-methyl-7-(2-methyl-1,3-dioxolan-2-yl)-hept-1-en-4-ol (**III.7**) along with its minor diastereoisomer (dr = 91:9) in 59% yield (428 mg) as a colorless oil.

Major isomer:

*R*_f (PE/EtOAc, 8:2): 0.33.

 $[\alpha]_{D}^{20}$ +10.4 (*c* 0.99, CHCl₃).


IR (neat): 3452, 3073, 2959, 2933, 2875, 1641, 1514, 1460, 1377, 1319, 1249, 1223, 1175, 1143, 1114, 1067, 1037, 997, 986, 946, 912 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.60 (ddd, J = 17.1, 10.0, 9.3 Hz, 1H, H₈), 5.15-5.03 (m, 2H, H₉), 4.02-3.92 (m, 4H, H₁₀, H₁₁), 3.28 (dd, J = 10.5, 4.8 Hz, 1H, H₆), 2.10 (m, 1H, H₇), 1.82-1.58 (m, 5H, H₃, H₄, H₁₃, H₁₄), 1.51 (m, 1H, H₄), 1.32 (s, 3H, H₁), 1.29-1.12 (m, 2H, H₅, H₁₄), 0.93 (d, J = 7.0 Hz, 3H, H₁₂), 0.87 (t, J = 7.5 Hz, 3H, H₁₅).

¹³**C NMR** (100 MHz, CDCl₃) δ 139.8 (d, C₈), 116.1 (t, C₉), 110.3 (s, C₂), 78.9 (d, C₆), 64.6 (t, 2C, C₁₀, C₁₁), 49.4 (d, C₇), 36.6 (t, C₃), 35.7 (d, C₅), 24.3 (t, C₄), 23.7 (q, C₁), 21.8 (t, C₁₄), 16.8 (q, C₁₂), 11.8 (q, C₁₅).

HRMS (ESI) m/z: calculated for C₁₄H₂₆O₃Na [M+Na]⁺ 265.1774, found 265.1778.

III.4.1.6. Synthesis of acrylic acid (1R,2R)-2-ethyl-1-[(R)-1-methyl-3-(2-methyl-1,3-dioxolan-2-yl)-propyl]-but-3-enyl ester

MW (g/mol): 296.4018

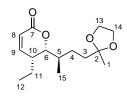
Molecular formula: C₁₇H₂₈O₄

To a solution of (3R,4R,5R)-3-ethyl-5-methyl-7-(2-methyl-1,3-dioxolan-2-yl)-hept-1en-4-ol (**III.7**) (290 mg, 1.2 mmol) in CH₂Cl₂ (6.5 mL) at 0 °C was added dropwise DIEA (1.2 mL, 7.2 mmol) followed by acryloyl chloride (0.3 mL, 3.6 mmol). The resulting reaction mixture was stirred at rt for 2 h and quenched with water (10 mL). The phases were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/EtOAc, 98:2) to afford acrylic acid (1*R*,2*R*)-2-ethyl-1-[(*R*)-1-methyl-3-(2-methyl-1,3-dioxolan-2-yl)-propyl]-but-3-enyl ester) along with its minor diastereoisomer (dr = 91:9) in 99% yield (355 mg) as a colorless oil.

Major isomer:

 R_f (PE/EtOAc, 1:1): 0.45.

 $[\alpha]_{D}^{20}$ –1.88 (*c* 1.54, CHCl₃).


IR (neat): 3076, 2962, 2936, 2877, 1723, 1637, 1460, 1404, 1378, 1294, 1268, 1192, 1148, 1117, 1067, 1043, 984, 970, 917 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 6.40 (d_{app}, J = 17.3 Hz, 1H, H₁₅), 6.14 (dd_{app}, J = 17.3, 10.4 Hz, 1H, H₁₄), 5.83 (d_{app}, J = 10.4 Hz, 1H, H₁₅), 5.48 (td, J = 16.9, 9.5 Hz, 1H, H₈), 5.14-5.02 (m, 2H, H₉), 4.89 (dd, J = 8.6, 3.8 Hz, 1H, H₆), 4.01-3.86 (m, 4H, H₁₀, H₁₁), 2.28 (m, 1H, H₇), 1.78 (m, 1H, H₅), 1.73-1.56 (m, 2H, H₃), 1.54-1.40 (m, 2H, H₄, H₁₆), 1.30 (s, 3H, H₁), 1.24-1.11 (m, 2H, H₄, H₁₆), 0.87 (d, J = 6.9 Hz, 3H, H₁₂), 0.81 (t, J = 7.5 Hz, 3H, H₁₇).

¹³**C NMR** (100 MHz, CDCl₃) δ 166.2 (s, C₁₃), 138.3 (d, C₈), 130.6 (t, C₁₅), 128.6 (d, C₁₄), 117.0 (t, C₉), 110.1 (s, C₂), 79.8 (d, C₆), 64.5 (t, 2C, C₁₀, C₁₁), 48.0 (d, C₇), 36.7 (t, C₃), 34.9 (d, C₅), 24.0 (t, C₄), 23.6 (q, C₁), 22.8 (t, C₁₆), 16.7 (q, C₁₂), 11.5 (q, C₁₇).

HRMS (ESI) m/z: calculated for C₁₇H₂₈O₄Na [M+Na]⁺ 319.1880, found 319.1875.

III.4.1.7. Synthesis of (5R,6R)-5-ethyl-6-[(R)-1-methyl-3-(2-methyl-1,3dioxolan-2-yl)-propyl]-5,6-dihydro-pyran-2-one (III.9)

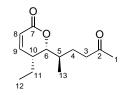
MW (g/mol): 268.3487

Molecular formula: C₁₅H₂₄O₄

To a stirred solution of acrylic acid (1R,2R)-2-ethyl-1-[(R)-1-methyl-3-(2-methyl-1,3-dioxolan-2-yl)-propyl]-but-3-enyl ester (200 mg, 0.67 mmol) in CH₂Cl₂ (10 mL) was added Grubbs second generation catalyst (57 mg, 0.067 mmol), and the resulting reaction mixture was refluxed for 24 h. The solvent was then removed under reduced pressure and the crude residue was purified by flash column chromatography (PE/EtOAc, 75:25) to afford (5R,6R)-5-ethyl-6-[(R)-1-methyl-3-(2-methyl-1,3-dioxolan-2-yl)-propyl]-5,6-dihydro-pyran-2-one (**III.9**) (117 mg, 67%) as a colorless oil.

*R*_f (PE/EtOAc, 7:3): 0.28.

 $[\alpha]_{D}^{20}$ –157.8 (*c* 0.68, CHCl₃).


IR (neat): 2965, 2932, 2877, 1717, 1463, 1379, 1290, 1251, 1134, 1099, 1060, 1028, 984, 823 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.07 (m, 1H, H₉), 6.03 (dd, J = 9.7, 2.4 Hz, 1H, H₈), 3.98 (dd, J = 10.4, 2.4 Hz, 1H, H₆), 3.94-3.88 (m, 4H, H₁₃, H₁₄), 2.32 (m, 1H, H₁₀), 2.02 (m, 1H, H₄), 1.88 (m, 1H, H₅), 1.82-1.53 (m, 3H, H₃, H₁₁), 1.47 (m, 1H, H₁₁), 1.31 (s, 3H, H₁), 1.18 (m, 1H, H₄), 0.95 (t, J = 7.5 Hz, 3H, H₁₂), 0.88 (d, J = 6.7 Hz, 3H, H₁₅).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.8 (s, C₇), 151.0 (d, C₉), 120.9 (d, C₈), 110.0 (s, C₂), 84.4 (d, C₆), 64.6 (t, C₁₄), 64.5 (t, C₁₃), 36.6 (d, C₁₀), 35.8 (t, C₃), 33.5 (d, C₅), 26.7 (t, C₄), 23.8 (q, C₁), 20.1 (t, C₁₁), 14.7 (q, C₁₅), 11.0 (q, C₁₂).

HRMS (ESI) m/z: calculated for C₁₅H₂₄O₄Na [M+Na]⁺ 291.1567, found 291.1558.

III.4.1.8. Synthesis of (5R,6R)-5-ethyl-6-((R)-1-methyl-4-oxo-pentyl)-5,6dihydro-pyran-2-one (III.10)

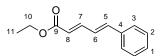
MW (g/mol): 224.2961

Molecular formula: C₁₃H₂₀O₃

A stirred solution of (5R,6R)-5-ethyl-6-[(R)-1-methyl-3-(2-methyl-1,3-dioxolan-2-yl)propyl]-5,6-dihydro-pyran-2-one (**III.9**) (110 mg, 0.4 mmol) and PPTS (41.2 mg, 0.16 mmol) in a 5:1 acetone/H₂O mixture (10 mL) was heated at reflux for 4 h. The reaction mixture was allowed to cool down to rt and was extracted with EtOAc. The combined organic layers were washed with H₂O (10 mL) and brine (10 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/EtOAc, 75:25) to afford (5R,6R)-5ethyl-6-((R)-1-methyl-4-oxo-pentyl)-5,6-dihydro-pyran-2-one (**III.10**) (85 mg, 95%) as a colourless oil.

 R_f (PE/EtOAc, 1:1): 0.36.

 $[\alpha]_{D}^{20}$ –228.2 (*c* 0.57, CHCl₃).


IR (neat): 2967, 2935, 2878, 1712, 1463, 1379, 1288, 1251, 1166, 1148, 1111, 1085, 1060, 1025, 983, 936, 864, 823 cm⁻¹.

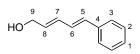
¹**H NMR** (400 MHz, CDCl₃) δ 7.01 (dd, *J* = 9.7, 6.5 Hz, 1H, H₉), 5.97 (d, *J* = 9.7 Hz, 1H, H₈), 3.95 (dd, *J* = 10.4, 3.0 Hz, 1H, H₆), 2.55-2.37 (m, 2H, H₃), 2.26 (m, 1H, H₁₀), 2.09 (s, 3H, H₁), 2.05 (m, 1H, H₄), 1.81 (m, 1H, H₅), 1.59 (m, 1H, H₁₁), 1.50-1.32 (m, 2H, H₄, H₁₁), 0.89 (t, *J* = 7.5 Hz, 3H, H₁₂), 0.83 (d, *J* = 6.8 Hz, 3H, H₁₃).

¹³**C NMR** (100 MHz, CDCl₃) δ 208.9 (s, C₂), 164.6 (s, C₇), 151.0 (d, C₉), 120.8 (d, C₈), 84.4 (d, C₆), 41.2 (t, C₃), 36.5 (d, C₁₀), 33.1 (d, C₅), 29.8 (q, C₁), 27.1 (t, C₄), 20.1 (t, C₁₁), 15.0 (q, C₁₃), 10.9 (q, C₁₂).

HRMS (ESI) m/z: calculated for C₁₃H₂₀O₃Na [M+Na]⁺ 247.1305, found 247.1299.

III.4.1.9. Synthesis of ethyl 5-phenylpenta-(2E,4E)-dienoate (III.14)²⁷³

MW (g/mol): 202.2491


Molecular formula: $C_{13}H_{14}O_2$

To a stirred solution of ethyl (triphenylphosphoranylidene)acetate (9.6 g, 27.6 mmol) in anhydrous THF (60 mL) was added cinnamaldehyde (2.1 mL, 15.9 mmol). The reaction mixture was stirred at rt for 20 h (TLC monitoring). The reaction was quenched with H_2O (50 mL) and the organic phase was separated. The aqueous phase was extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with brine (50 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/EtOAc, from 98:2 to 95:5) to afford compound **III.14** (3.0 g, 94%) as a colourless oil. Its spectroscopic and physical data matched the ones reported in the literature.²⁷³

¹**H** NMR (400 MHz, CDCl₃) δ 7.49-7.28 (m, 6H, H₁, H₂, H₃, H₇), 6.88 (m, 2H, H₅, H₆), 5.99 (d, J = 15.5 Hz, 1H, H₈), 4.24 (q, J = 7.1 Hz, 2H, H₁₀), 1.32 (t, J = 7.1 Hz, 3H, H₁₁).

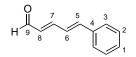
¹³**C NMR** (100 MHz, CDCl₃) δ 167.1 (s, C₉), 144.5 (d, C₇), 140.4 (d, C₅), 136.1 (s, C₄), 129.0 (d, 2C, C₂ or C₃), 128.8 (d, 2C, C₂ or C₃), 127.1 (d, C₁), 126.3 (d, C₆), 121.4 (d, C₈), 60.3 (t, C₁₀), 14.3 (q, C₁₁).

III.4.1.10. Synthesis of (2E,4E)-5-phenyl-2,4-pentadiene-1-ol (III.15)²⁶¹

MW (g/mol): 160.2124

Molecular formula: C₁₁H₁₂O

To a stirred solution of **III.14** (1.81 g, 8.94 mmol) in anhydrous toluene (30 mL) was added a solution of DIBAL-H in toluene (1 M, 22.5 mL, 22.37 mmol) dropwise at 0 °C. The reaction mixture was stirred at rt for 2 h (TLC monitoring). The reaction was quenched with saturated aqueous solution of Rochelle salt (50 mL) and the stirred


²⁷³ Concellón, J. M.; Concellón, C.; Méjica, C. J. Org. Chem. **2005**, 70, 6111-6113.

vigorously for 90 min. The organic phase was separated and the aqueous phase was extracted with EtOAc (50 mL). The combined organic layers were washed with brine (40 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/EtOAc, 85:15) to afford compound **88** (1.4 g, quant.) as a white solid. Its spectroscopic and physical data matched the ones reported in the literature.²⁶¹

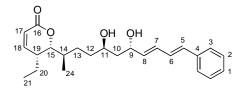
¹**H NMR** (400 MHz, CDCl₃) δ 7.47-7.30 (m, 4H, H₂, H₃), 7.23 (m, 1H, H₁), 6.79 (dd, J = 15.7, 10.5 Hz, 1H, H₆), 6.56 (d, J = 15.7 Hz, 1H, H₅), 6.43 (dd_{app}, J = 15.2, 10.5 Hz, 1H, H₇), 5.95 (dt, J = 15.2, 5.9 Hz, 1H, H₈), 4.17 (dd, J = 5.9, 1.5 Hz, 2H, H₉), 1.49 (br s, 1H, OH).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 137.1 (s, C₄), 132.8 (d, C₅), 132.5 (d, C₈), 131.6 (d, C₆), 128.6 (d, 2C, C₂ or C₃), 128.2 (d, C₇), 127.7 (d, C₁), 126.4 (d, 2C, C₂ or C₃), 63.4 (t, C₉).

III.4.1.11. Synthesis of (2E,4E)-5-phenyl-penta-2,4-dien-1-al (III.16)²⁷⁴

MW (g/mol): 158.1965

Molecular formula: C₁₁H₁₀O


To a stirred solution of **III.15** (1.4 g, 8.4 mmol) in CH_2Cl_2 (50 mL) was added activated MnO₂ (5.9 g, 68 mmol). The reaction mixture was stirred at rt for 20 h (reaction monitored by TLC). The reaction mixture was filtered over Celite[®] and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/EtOAc, from 90:10 to 85:15) to afford compound **76** (1.24 g, 90%) as a yellow solid. Its spectroscopic and physical data matched the ones reported in the literature.²⁷⁴

¹**H NMR** (400 MHz, CDCl₃) δ 9.64 (d, *J* = 8.0 Hz, 1H, H₉), 7.53 (m, 2H, H₃), 7.45-7.36 (m, 3H, H₁, H₂), 7.29 (m, 1H, H₇), 7.04 (m, 2H, H₅, H₆), 6.30 (dd, *J* = 15.2, 8.0 Hz, 1H, H₈).

²⁷⁴ Macía, F.; García-Díaz, M.; Massanet, G. M.; Gómez-Madero, J.; Fronczek, F. R.; Galindo, J. C. G. *Tetrahedron* **2008**, *64*, 10996-11006.

¹³C NMR (100 MHz, CDCl₃) δ 193.6 (d, C₉), 152.1 (d, C₇), 142.5 (d, C₅), 135.6 (s, C₄),
131.6 (d, C₈), 129.7 (d, 2C, C₂ or C₃), 129.0 (d, C₂ or C₃), 127.6 (d, C₁), 126.2 (d, C₆).

III.4.1.12. Synthesis of (5R,6R)-6-((7E,9E)-(1R,4R,6S)-4,6-Dihydroxy-1methyl-10-phenyl-deca-7,9-dienyl)-5-ethyl-5,6-dihydro-pyran-2-one. (-)-Bitungolide F

MW (g/mol): 384.5085

Molecular formula: C₂₄H₃₂O₄

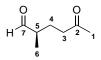
To a cooled (-78 °C) solution of (+)-Ipc₂BCl (70 mg, 0.22 mmol) in Et₂O (1.5 mL) were added a solution of Et₃N (0.1 mL, 0.44 mmol) afford (5R,6R)-5-ethyl-6-((R)-1methyl-4-oxo-pentyl)-5,6-dihydro-pyran-2-one (III.10) (25 mg, 0.11 mmol) in Et₂O (1 mL) dropwise. The resulting reaction mixture was stirred at -78 °C for 30 min before the temperature was brought to -40 °C. After stirring at -40 °C for 1 h, the reaction mixture was cooled back to -78 °C and a solution of aldehyde III.16 (45 mg, 0.28 mmol) in Et₂O (1 mL) was added via cannula. The reaction mixture was then stirred at -78 °C for 2 h and stored at -20 °C for 14 h. To the cooled reaction mixture (0 °C) was added a premixed solution of MeOH (3.9 mL) and pH 7 buffer (1.2 mL) and stirring was continued for 10 min. A premixed solution of pH 7 buffer (3 mL) and 30% H₂O₂ (1.5 mL) was then added dropwise and the resulting reaction mixture was stirred vigorously at 0 °C for 2.5 h before being diluted with H₂O (10 mL). Et₂O was then added and the layers were separated. The aqueous phase was extracted with Et₂O (20 mL) and the combined organic extracts were washed with NaHCO₃ (20 mL) and brine (20 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was used in the next step without further purification.

To a -40 °C precooled solution of the crude aldol product in acetonitrile (1 mL) were added tetramethylammonium triacetoxyborohydride (290 mg, 1.1 mmol) and glacial acetic acid (1 mL) dropwise. The resulting mixture was stirred at -20 °C for 10 h. A saturated aqueous solution of sodium potassium tartrate and EtOAc was added and the reaction mixture was stirred vigorously at rt for an additional 30 min. The mixture

was extracted with EtOAc and the combined organic layers was washed with water, NaHCO₃ and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (PE/EtOAc, 1:1) to afford (–)-bitungolide F (35 mg, 82%) as a pale yellow solid.

 R_f (PE/EtOAc, 1:1): 0.32.

 $[\alpha]_{\mathbf{D}}^{20}$ -51.5 (*c* 1.56, CHCl₃); (lit.²¹⁴ $[\alpha]^{22}_{\mathbf{D}}$ +43.0 (*c* 0.85, CHCl₃).


IR (neat): 3392, 3024, 2965, 2933, 2876, 1707, 1596, 1492, 1448, 1383, 1289, 1256, 1116, 1060, 1025, 988, 910, 823 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ7.39 (d, J = 7.3 Hz, 2H, H₃), 7.30 (t, J = 7.3 Hz, 2H, H₂), 7.21 (m, 1H, H₁), 7.07 (dd, J = 9.7, 6.5 Hz, 1H, H₁₈), 6.78 (dd, J = 15.6, 10.5 Hz, 1H, H₆), 6.53 (d, J = 15.6 Hz, 1H, H₅), 6.45 (dd, J = 15.2, 10.5 Hz, 1H, H₇), 6.03 (d, J = 9.7 Hz, 1H, H₁₇), 5.89 (dd, J = 15.2, 5.9 Hz, 1H, H₈), 4.59 (m, 1H, H₉), 3.99 (dd, J = 10.4, 3.0 Hz, 1H, H₁₅), 3.96 (m, 1H, H₁₁), 3.28-2.98 (2brs, 2H, OH), 2.32 (m, 1H, H₁₉), 2.01-1.82 (m, 2H, H₁₃, H₁₄), 1.80-1.72 (m, 2H, H₁₀), 1.71-1.52 (m, 2H, H₁₂, H₂₀), 1.51-1.33 (m, 2H, H₁₂, H₂₀), 1.29 (m, 1H, H₁₃), 0.94 (t, J = 7.5 Hz, 3H, H₂₁), 0.89 (d, J = 6.8 Hz, 3H, H₂₄).

¹³**C NMR** (100 MHz, CDCl₃) δ 165.1 (s, C₁₆), 151.4 (d, C₁₈), 137.3 (s, C₄), 136.4 (d, C₈), 132.4 (d, C₅), 130.1 (d, C₇), 128.6 (d, 2C, C₂), 128.4 (d, C₆), 127.5 (d, C₁), 126.4 (d, 2C, C₃), 120.8 (d, C₁₇), 84.5 (d, C₁₅), 70.1 (d, C₉), 69.1 (d, C₁₁), 42.7 (t, C₁₀), 36.5 (d, C₁₉), 34.4 (t, C₁₂), 33.5 (d, C₁₄), 28.5 (t, C₁₃), 20.1 (t, C₂₀), 14.9 (q, C₂₄), 11.0 (q, C₂₁).

HRMS (ESI) m/z: calculated for C₂₄H₃₂O₄Na [M+Na]⁺ 407.2193, found 407.2194.

III.4.1.13. Synthesis of (R)-2-methyl-5-oxo-hexanal (III.27)²⁶⁷

MW (g/mol): 128.1690

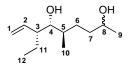
Molecular formula: C₇H₁₂O₂

Propanal **III.25** (0.95 mL, 13.24 mmol) and 3-buten-2-one **III.26** (1.61 mL, 19.86 mmol) were added at 0 °C to a mixture of diphenylprolinol methyl ether (**III.18**) (177 mg, 0.662 mmol) and ethyl 3,4-dihydroxybenzoate (**III.19**) (482 mg, 2.64 mmol) in a sealed vial. The reaction mixture was stirred at 4 °C for 36 h, time after which it

was filtered over a short plug of silica eluting with an 8:2 pentane/Et₂O mixture to afford (*R*)-2-methyl-5-oxo-hexanal (**III.27**) as a colorless oil (972 mg, 58%, er > 95:5). The spectroscopic and physical data of the product were identical with those reported in the literature.²⁶⁷

 R_f (Pentane/Et₂O, 8:2): 0.29.

 $[\alpha]_{D}^{20}$ +1.77 (*c* 1.8, CHCl₃).


IR (neat): 2969, 2934, 1713, 1456, 1413, 1357, 1167, 972, 926 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 9.61 (d, J = 1.8 Hz, 1H, H₇), 2.49 (m, 2H, H₃), 2.38 (qd_{app}, J = 7.3, 1.8 Hz, 1H, H₅), 2.15 (s, 3H, H₁), 1.96 (hex_{app}, J = 7.3 Hz, 1H, H₄), 1.67 (m, 1H, H₄), 1.12 (d, J = 7.3 Hz, 3H, H₆).

¹³**C NMR** (100 MHz, CDCl₃) δ 207.8 (s, C₂), 204.4 (d, C₇), 45.5 (d, C₅), 40.5 (t, C₃), 29.9 (q, C₁), 24.0 (t, C₄), 13.5 (q, C₆).

HRMS (ESI) m/z: calculated for C₂₄H₃₂O₄Na [M+Na]⁺ 407.2193, found 407.2194.

III.4.1.14. Synthesis of (5R,6R,7R)-7-ethyl-5-methyl-non-8-ene-2,6-diol (III.30)

MW (g/mol): 200.3178

Molecular formula: $C_{12}H_{24}O_2$

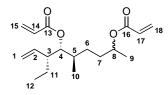
To a stirred suspension of *t*-BuOK (693 mg, 6.1 mmol) and *cis*-2-pentene (1.33 mL, 12.3 mmol) in THF (5.6 mL) at -78 °C was added *n*-BuLi (3.8 mL of a 1.6 M solution in hexane, 6.1 mmol) dropwise. After complete addition, the reaction mixture was stirred for 5 min at -50 °C and the resulting orange solution was cooled to -78 °C. To this reaction mixture was added a solution of (–)-Ipc₂BOMe (2.4 g, 7.5 mmol) in diethyl ether (5.9 mL). After stirring for 30 min at -78 °C, BF₃·Et₂O (1.1 mL, 8.4 mmol) was added followed by (*R*)-2-methyl-5-oxo-hexanal (**III.27**) (720 mg, 5.6 mmol) in THF (4.7 mL). The reaction mixture was then stirred overnight at the same temperature before it was treated with a 3M aqueous solution of NaOH (4.6 mL, 13.8 mmol) and H₂O₂ (1.9 mL of a 35% solution in water, 30.1 mmol) and refluxed for 1 h. The phases

were then separated and the aqueous layer was extracted with EtOAc (2 x 20 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure.

The crude residue was then dissolved in THF (18 mL) and cooled to 0 °C before LiAlH₄ (533 mg, 11.23 mmol) was added in portions. The resulting reaction mixture was stirred at rt for 2 h until complete conversion of the starting material (reaction monitored by TLC) and quenched by adding EtOAc (20 mL) and water (20 mL). The reaction mixture was then filtered through Celite[®], the organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography (PE/EtOAc, 80:20) to afford (5*R*,6*R*,7*R*)-7-ethyl-5-methyl-non-8-ene-2,6-diol (**III.30**) along with its diastereoisomer in 57% yield (600 mg) as a colorless oil.

Mixture of two diastereoisomers:

*R*_{*f*} (Pentane/EtOAc, 8:2): 0.07.


IR (neat): 3340, 2965, 2931, 2874, 2361, 2342, 1459, 1420, 1376, 1128, 998, 984, 912 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 5.53 (m, 1H, H₂), 5.09-5.03 (m, 2H, H₁), 3.71 (m, 1H, H₈), 3.22 (m, 1H, H₄), 2.01 (m, 1H, H₃), 1.75-1.16 (m, 9H, H₅, H₆, H₇, H₁₁, OH), 1.12/1.11 (d, *J* = 6.3 Hz, 3H, H₉), 0.87/0.86 (d, *J* = 6.8 Hz, 3H, H₁₀), 0.80 (t, *J* = 7.3 Hz, 3H, H₁₂).

¹³**C NMR** (100 MHz, CDCl₃) δ 139.9/139.8 (t, C₁), 116.2/116.1 (d, C₂), 78.9/78.8 (d, C₄), 68.6/67.9 (d, C₈), 49.4 (d, C₃), 36.9/36.5 (t, C₇), 35.7/35.2 (d, C₅), 26.2/26.0 (t, C₆), 23.5/23.4 (q, C₉), 21.8/21.7 (t, C₁₁), 16.9/16.8 (q, C₁₀), 11.8 (q, C₁₂).

HRMS (ESI) m/z: calculated for C₁₂H₂₄O₂Na [M+Na]⁺ 223.1668, found 223.1670.

III.4.1.15. Synthesis of acrylic acid (1R,2R)-5-acryloyloxy-1-((R)-1-ethylallyl)-2-methyl-hexyl ester (III.31)

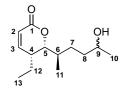
MW (g/mol): 308.4125

Molecular formula: C₁₈H₂₈O₄

To a solution of (5R,6R,7R)-7-ethyl-5-methyl-non-8-ene-2,6-diol (**III.30**) (600 mg, 2.9 mmol) in CH₂Cl₂ (15 mL) at 0 °C was added diisopropylethylamine (3 mL, 18.0 mmol) and acryloyl chloride (0.73 mL, 8.9 mmol) dropwise. The resulting reaction mixture was stirred at rt for 2 h until complete conversion of the starting material (reaction monitored by TLC) and quenched by addition of water (20 mL). The phases were separated, the aqueous layer was extracted with CH₂Cl₂ (2 x 20 mL) and the combined organic layers were washed with brine (20 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography (PE/EtOAc, 98:2) to afford acrylic acid (1*R*,2*R*)-5-acryloyloxy-1-((*R*)-1-ethyl-allyl)-2-methyl-hexyl ester (**III.31**) along with its diastereoisomer quantitatively (922 mg) as a colorless oil.

Mixture of two diastereoisomers:

 R_f (PE/EtOAc, 8:2): 0.82.


IR (neat) 2968, 1721, 1638, 1619, 1405, 1270, 1194, 1047, 985, 809 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 6.48-6.35 (m, 2H, H₁₅ or H₁₈), 6.20-6.06 (m, 2H, H₁₄ or H₁₇), 5.89-5.77 (m, 2H, H₁₅ or H₁₈), 5.48 (m, 1H, H₂), 5.18-5.00 (m, 2H, H₁), 4.99-4.86 (m, 2H, H₄, H₈), 2.28 (m, 1H, H₃), 1.82 (m, 1H, H₅), 1.75-1.35 (m, 4H, H₆, H₇, H₁₁), 1.26/1.25 (d, J = 6.3 Hz, 3H, H₉), 1.23-1.06 (m, 2H, H₆, H₁₁), 0.90/0.89 (d, J = 6.8 Hz, 3H, H₁₀), 0.83 (t, J = 7.3 Hz, 3H, H₁₂).

¹³**C NMR** (100 MHz, CDCl₃) δ 166.2/166.1 (q, C₁₃ or C₁₆), 165.8 (s, C₁₃ or C₁₆), 138.2 (d, C₂), 130.6/130.5 (t, C₁₅ or C₁₈), 130.2/130.1 (t, C₁₅ or C₁₈), 129.1 (d, C₁₄ or C₁₇), 128.6/128.5 (d, C₁₄ or C₁₇), 117.1 (t, C₁), 79.8/79.7 (d, C₄), 71.5/71.1 (d, C₈), 48.0 (d, C₃), 34.6/34.5 (d, C₅), 33.5/33.4 (t, C₇), 25.5/25.1 (t, C₆ or C₁₁), 22.9/22.8 (t, C₆ or C₁₁), 19.9/19.8 (q, C₉), 16.6 (q, C₁₀), 11.5 (q, C₁₂).

HRMS (ESI) m/z: calculated for C₁₈H₂₈O₄Na [M+Na]⁺ 331.1880, found 331.1880.

III.4.1.16. Synthesis of (5R,6R)-5-ethyl-6-((R)-4-hydroxy-1-methyl-pentyl)-5,6-dihydro-pyran-2-one (III.33)

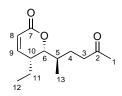
MW (g/mol): 226.3120

Molecular formula: C₁₃H₂₂O₃

To a solution of acrylic acid (1R,2R)-5-acryloyloxy-1-((R)-1-ethyl-allyl)-2-methylhexyl ester (**III.31**) (370 mg, 1.2 mmol) in CH₂Cl₂ (15 mL) was added Grubbs second generation catalyst (101 mg, 0.2 mmol) and the resulting reaction mixture was refluxed for 24 h. The solvent was then removed under reduced pressure and the crude residue was filtered over a plug of silica.

The crude ester was then dissolved in MeOH (13 mL) and cooled to 0 °C. K_2CO_3 (852 mg, 6.0 mmol) was then added and the resulting reaction mixture was stirred at rt for 2 h. EtOAc and water were added and the organic phase was separated. The aqueous layer was extracted with EtOAc (2 x 30 mL) and the combined organic layers were washed with brine (30 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography (PE/EtOAc, 60:40) to afford (5*R*,6*R*)-5-ethyl-6-((*R*)-4-hydroxy-1-methyl-pentyl)-5,6-dihydro-pyran-2-one (**III.33**) as a pale yellow oil (136 mg, 50%).

 R_f (PE/EtOAc, 1:1): 0.20.


IR (neat): 3413, 2966, 2924, 1715, 1463, 1382, 1256, 1091, 1062, 1024, 910, 825, 731 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (dd, J = 9.5, 6.5 Hz, 1H, H₃), 5.97 (d, J = 9.8 Hz, 1H, H₂), 3.93 (dd, J = 10.5, 3.0 Hz, 1H, H₅), 3.75 (m, 1H, H₉), 2.25 (m, 1H, H₄), 1.96-1.70 (m, 2H, H₆, H₇), 1.69-1.25 (m, 6H, H₇, H₈, H₁₂, OH), 1.15/1.13 (d, J = 6.3 Hz, 3H, H₁₀), 0.89 (t, J = 7.5 Hz, 3H, H₁₃), 0.84 (d, J = 6.8 Hz, 3H, H₁₁).

¹³**C NMR** (100 MHz, CDCl₃) δ 165.0 (s, C₁), 151.2 (d, C₃), 120.8 (d, C₂), 84.4/84.3 (d, C₅), 68.4/68.2 (d, C₉), 36.6/36.5 (d, C₄), 36.0/35.9 (t, C₈), 33.6 (d, C₆), 28.6/28.5 (t, C₇), 23.8/23.6 (q, C₁₀), 20.1 (t, C₁₂), 14.8 (q, C₁₁), 11.0 (q, C₁₃).

HRMS (ESI) m/z: calculated for C₁₃H₂₂O₃Na [M+Na]⁺ 249.1461, found 249.1463.

III.4.1.17. Synthesis of (5R,6R)-5-ethyl-6-((R)-1-methyl-4-oxo-pentyl)-5,6dihydro-pyran-2-one (III.10)

To a solution of alcohol **III.33** (51 mg, 0.2 mmol) in CH_2Cl_2 (5 mL) at 0 °C was added Dess-Martin periodinane (143 mg, 0.3 mmol). The resulting reaction mixture was stirred at rt for 2 h and quenched by addition of a saturated aqueous NaHCO₃ solution (10 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (2 x 20 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (CH₂Cl₂/EtOAc, 98:2) to afford (5*R*,6*R*)-5-ethyl-6-((*R*)-1-methyl-4-oxo-pentyl)-5,6-dihydro-pyran-2-one (**III.10**) (42 mg, 84%) as a colourless oil. The spectroscopic and physical data of the product were identical with those reported previously.

GENERAL CONCLUSIONS

According to the main objective of this thesis which was the synthesis of biologically active compounds, we can conclude that:

- We have successfully synthesized three types of pyrimidinyl α -amino acids including N^{α} -Fmoc-pyrimidin-2-yl α -amino acids, N^{α} -Fmoc-pyrimidin-4-yl α -amino acids and N^{α} -Fmoc-pyrimidin-2-one α -amino acids *via* either a key phosphonium coupling or a nucleophilic aromatic substitution.

- We have demonstrated the use of these pyrimidinyl α -amino acids as building blocks in the preparation of antimicrobial **BP100**-analogues.

- We have found three peptide sequences, **BP295**, **BP299** and **BP303** that present a good balance between antimicrobial and hemolytic activities.

- We have synthesized the (2R,3S,5R,6S)-isomer of natural product acremolide B in 16 steps and 7.6% overall yield using a highly flexible and particularly straightforward strategy starting from commercially available (*S*)-Roche ester.

- We have finalized the first synthesis of the proposed structure of lyngbouilloside aglycon in 21 steps and 2.1% overall yield starting from 3-methylbut-3-enol and 4-pentenal.

- We have completed the synthesis of the dual-specificity phosphatase inhibitor (–)-bitungolide F using two very convergent routes. While the first synthesis was achieved in 11 steps and 14.6% overall yield starting from levulinic acid, the second one, entirely protecting group free, was accomplished in only nine steps and 11.4% overall yield starting from two simple and readily available compounds; such as propanal and 3-buten-2-one.

References

¹ Lloyd-Williams, P.; Albericio, F.; Giralt, E. *Chemical approaches to the synthesis of peptides and proteins*, Florida, CRC Press, **1997**.

² Bhat, S. V.; Nagasampagi, B. A.; Sivakumar, M. *Chemistry of Natural Products*, Berlin; New York, Springer, **2005**.

³ The three-letter and one-letter codes for each amino acid are given below the chemical name.

⁴ Cahn, R. S.; Ingold, C.; Prelog, V. Angew. Chem. Int. Ed. Engl. 1966, 5, 385-415.

⁵ Hughes, A. B. Amino Acids, Peptides and Proteins in Organic Chemistry. Vol. 1-Origins and Synthesis of Amino Acids, Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA, **2009**.

⁶ (a) Lipmann, F. Science **1971**, 173, 875-884. (b) Kleinkauf, H.; Von Döhren, Eur. J. Biochem. **1996**, 236, 335-351.

⁷ Wagner, I.; Musso, H. Angew. Chem. Int. Ed. Engl. 1983, 22, 816-828.

⁸ Kingston, D. G. I. J. Nat. Prod. 2000, 63, 726-734.

⁹ Ordoñez, M.; Ctiviela, C. Tetrahedron: Asymmetry 2007, 18, 3-99.

¹⁰ Stratmann, K.; Burgoyne, D. L.; Moore, R. E.; Patterson, G. M. L. J. Org. Chem. **1994**, 59, 7219-7226.

¹¹ Pettit, G. R.; Kamano, Y.; Herald, C. L.; Tuinman, A. A.; Boettner, F. E.; Kizu, H.; Schmidt, J. M.; Baczynskyj, L.; Tomer, K. B.; Bontems, R. J. Am. Chem. Soc. **1987**, 109, 6883-6885.

¹² (a) Willians, R. M.; Hendrix, J. A. *Chem. Rev.* **1992**, *92*, 889-917. (b) Beenen, M. A.; Weix, D. J.; Ellman, J. A. *J. Am. Chem. Soc.* **2006**, *128*, 6304-6305. (c) Shang, G.; Yang, Q.; Zhang, X. *Angew. Chem. Int. Ed.* **2006**, *45*, 6360-6362.

¹³ Vogt, H.; Bräse, S. Org. Biomol. Chem. 2007, 5, 406-430.

¹⁴ (a) Van Esseveldt, B. C. J.; Vervoort, P. W. H.; Van Delft, F. L.; Rutjes, F. P. J. T. J. Org. Chem. 2005, 70, 1791-1795. (b) Onomura, O.; Kirira, P. G.; Tanaka, T.; Tsukada, S.; Matsumura, Y.; Demizu, Y. Tetrahedron 2008, 64, 7498-7503.

¹⁵ Feliu, L.; Planas, M. Int. J. Pept. Res. Ther. 2005, 11, 53-97.

¹⁶ (a) Meyer, U.; Bisel, P.; Bräuner-Osborne, H.; Madsen, U.; Höfner, G.; Wanner, K. TH.; Frahm, A. W. *Chirality* **2005**, *17*, 99-107. (b) Trabocchi, A.; Scarpi, D.; Guarna, A. *Amino Acids* **2008**, *34*, 1-24.

¹⁷ Takita, S.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2011, 13, 2068-2070.

¹⁸ Cyclosporin is an immunosuppressant drug widely used in post-allogeneic organ transplant.

¹⁹ Kolar, P.; Petric, A.; Tisler, M. J. Heterocyclic Chem. 1997, 34, 1067-1098.

²⁰ (a) Ye, B.; Burke, T. R. J. Org. Chem. 1995, 60, 2640-2641. (b) Adamczyk, M.; Akireddy, S. R.; Reddy, R. E. Org. Lett. 2001, 3, 3157-3159. (c) Wang, H. P.; Hwang, T. L.; Lee, O.; Tseng, Y. J.; Shu, C. Y.; Lee, S. J. Bioorg. Med. Chem. Lett. 2005, 15, 4272-4274.

²¹ (a) Nomura, T.; Tanaka, Y.; Abe, H.; Uchiyama, M. *Phytochemistry* **1977**, *16*, 1819-1820. (b) Son, J. K.; Ramaligam, K.; Woodard, R. W. *Synthesis* **1988**, 240-242.

²² (a) Li, C.; Oberlines, N. H. *Life Sci.* 2005, 78, 532-538. (b) Jørgensen, C. G.; Clausen, P. R.; Hansen, K. B.; Bräuner-Osborne, H.; Nielsen, B; Metzler, B.; Kehler, J.; Krogsgaard-Larsen, P.; Madsen, U. *Org. Biomol. Chem.* 2007, 5, 463-471.

²³ (a) Jane, D.; Hoo, K.; Kamboj, R.; Deverill, M.; Bleakman, D.; Mandelzys, A. J. Med. Chem. 1997, 40, 3645-3650. (b) Dolman, N. P.; More, J. C. A.; Alt, A.; Knauss, J. L.; Pentikäinen, T. O.; Glasser, R. C.; Bleakman, D.; Mayer, M. L.; Collingridge, G. L.; Jane, D. E. J. Med. Chem. 2007, 50, 1558-1570.

²⁴ (a) Brown, E. G.; Turan, Y. *Phytochemistry* **1996**, *43*, 1029-1031. (b) Adlington, R. M.; Baldwin, J. E.; Catterick, D.; Pritchard, G. J. *Chem. Commun.* **1997**, 1757-1758.

²⁵ (a) Kaiser, J.; Kinderman, S. S.; Van Esseveldt, B. C. J.; Van Delft, F. L.; Schoemaker, H. E.; Blaauw, R. H.; Rutjes, F. P. *Org. Biomol, Chem.* **2005**, *3*, 3435-3467. (b) Scott, W. L; Alsina, J.; Audu, C. O.; Babaev, E.; Cook, L.; Dage, J. L.; Goodwin, L. A.; Martynow, J. G.; Matosiuk, D.; Royo, M.; Smith, J. G.; Strong, A. T.; Wickizer, K.; Woerly, E. M.; Zhou, Z.; O'Donnell, M. J. *J. Comb. Chem.* **2009**, *11*, 14-23.

²⁶ (a) Duthaler, R. O. *Tetrahedron* 1994, 50, 1539-1650. (b) Myers, A. G.; Gleason, J. L.; Yoon, T.; Kung, D. J. Am. Chem. Soc. 1997, 119, 656-673. (c) Hruby, V. J.; Soloshonok, V. A. Asymmetric synthesis of novel sterically constrained amino acids. Symposia-in-print; Tetrahedron; Eds.; 2001, 57, 6329-6650. (d) Perdih, A.; Sollner, M. D. Curr. Org. Chem. 2007, 11, 801-832. (e) Nájera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584-4671. (f) Haldar, D. Curr. Org. Synth. 2008, 5, 61-80.

²⁷ Blayo, A.-L.; Brunel, F.; Martinez, J.; Fehrentz, J.-A. Eur. J. Org. Chem. 2011, 4293-4297.

²⁸ Krebs, A.; Ludwig, V.; Pfizer, J.; Dürner, G.; Göbel, M. W. Chem. Eur. J. 2004, 10, 544-553.

²⁹ Ge, J.; Wu, H.; Yao, S. Q. Chem. Commun. 2010, 46, 2980-2982.

³⁰ (a) Von Angerer, S. Science of Synthesis. Six-Membered Hetarenes with Two Identical Heteroatoms: Pyrimidines, Thieme, Stuttgart, **2003**, *16*, 379-572. (b) Rewcastle, G. W. Comprehensive Heterocyclic Chemistry III: Pyrimidines and their Benzo Derivatives, Elsevier, **2008**, *8*, 117-272.

³¹ Lagoja, I. M. Chemistry & Biodiversity 2005, 2, 1-50.

³² Jain, K. S.; Chitre, T. S.; Miniyar, P. B.; Kathiravan, M. K.; Bendre, V. S.; Veer, V. S.; Shahane, S. R.; Shishoo, C. J. *Curr. Sci.* **2006**, *90*, 793-803.

³³ Laimberth, C. *Heterocycles* **2006**, *68*, 561-603.

³⁴ (a) Stanovnik, B.; Tisler, M.; Katritzky, A. R.; Denisko, O. V. Advances in Heterocyclic Chemistry, San Diego, Elsevier, **2006**. (b) Freeman, F.; Po, H. N. J. Phys. Chem. A **2006**, 110, 7904-7912.

³⁵ Eicher, T.; Hauptmann, S. *The chemistry of heterocycles*, Weinheim, Wiley-VCH, 2003.

³⁶ (a) Font, D.; Heras, M.; Villalgordo, J. M. *Synthesis* 2002, 1833-1842. (b) Font, D.; Heras, M.; Villalgordo, J. M. *J. Comb. Chem.* 2003, *5*, 311-321. (c) Font, D.; Linden, A.; Heras, M.; Villalgordo, J. M. *Tetrahedron* 2006, *62*, 1433-1443. (d) Font, D.; Heras, M.; Villalgordo, J. M. *Tetrahedron* 2008, *64*, 5226-5235.

³⁷ (a) Jonak, J. P.; Hopkins, G. C.; Minnemeyer, H. J.; Tieckelmann, H. J. Org. Chem. **1970**, *35*, 2512-2516. (b) Gambacorta, A.; Farah, M. E.; Tofani, D. *Tetrahedron* **1999**, *55*, 12615-12628.

³⁸ (a) Barlin, G. B.; Brown, W. V. J. Chem. Soc. (B) **1967**, 648-650. (b) Barlin, G. B.; Brown, W. V. J. Chem. Soc. (B) **1967**, 736-740.

³⁹ Mitsunobu, O. Synthesis **1981**, 1-28.

⁴⁰ Cherney, R. J.; Wang, L. J. Org. Chem. **1996**, 61, 2544-2546.

⁴¹ Agrios, G. N. *Plant Pathology*, 5th Ed., London: Elseiver Academic Press; 2005.

⁴² (a) McManus, P. S.; Stockwell, V. O.; Sundin, V. O.; Jones, A. L. Annu. Rev. Phytopathol. **2002**, 40, 443-465. (b) Vidaver, A. K. Clin. Infect. Dis. **2002**, 34, S107-110.

⁴³ Karabelas, A. J.; Plakas, K. V.; Solomou, E. S.; Drossou, V. O.; Sarigiannis, D. A. *Environ. Int.* **2009**, *35*, 1096-1107.

⁴⁴ Loper, J. E.; Henkels, M. Plant. Dis. 1991, 75, 287-290.

⁴⁵ (a) Hancock, R. E. W.; Sahl, H. G. Nat. Biotechnol. **2006**, 24, 1551-1557. (b) Montesinos, E. FEMS Microbiol. Lett. **2007**, 270, 1-11.

⁴⁶ García-Olmedo, F.; Molina, A.; Alamillo, J. M.; Rodríguez-Plalenzuela, P. *Biopolymers (Peptide Science)* **1998**, *47*, 479-491.

⁴⁷ Hancock, R. E. W.; Sahl, K. L.; Mookherjee, N. Immunobiology **2006**, 211, 315-322.

⁴⁸ Jenssen, H.; Hamill, P.; Hancock, R. E. W. Clin. Microbiol. Rev. 2006, 19, 491-511.

49 Ganz, T. Nat. Rev. Immunol. 2003, 3, 710-720.

⁵⁰ (a) Yeaman, M. R.; Yount, N. Y. *Pharmacol. Rev.* **2003**, *55* (1), 27-55. (b) Brogden, K. A. *Nat. Rev. Microbiol.* **2005**, *3*, 238-250.

⁵¹ Melo, M. N.; Ferre, R.; Castanho, M. A. R. B. Nat. Rev. Microbiol. 2009, 7, 245-250.

⁵² Zaloff, M. Nature 2002, 415, 389-395.

⁵³ Matsuzaki, K. Biochim. Biophys. Acta 2009, 1788, 1687-1692.

⁵⁴ Merrifield, R. B. J. Am. Chem. Soc. **1963**, 85, 2149-2154.

⁵⁵ Kate, S. A.; Albericio, F. *Solid-phase synthesis a practical guide*, New York, Marcel Dekker, Inc. **2000**.

⁵⁶ Carpino, L. A.; Han, G. Y. J. Am. Chem. Soc. **1970**, 92, 5748-5749.

⁵⁷ (a) Valeur, E.; Bradley, M.; *Chem. Soc. Rev.* **2009**, *38*, 606-631. (b) Han, S-Y.; Kim, Y-A. *Tetrahedron* **2004**, *60*, 2447-2467.

⁵⁸ Marco, J. F.; Muñoz, A.; Perez-Payá, E.; Misra, S.; López-Garcia, B. Annuv. Rev. Phytopathol. 2008, 46, 273-301.

⁵⁹ (a) Vanneste, J. *Fire blight: the disease and its causative agent Erwinia amylovora*. New York: CABI Publishing; **2000**. (b) Cabrefiga, J.; Montesinos, E. *Phytopathology* **2005**, *95*, 1430-1437.

⁶⁰ Leyns, F.; De Cleene, M.; Swings, J.; De Ley, J. Bot. Rev. **1984**, 50, 305-355.

⁶¹ Moragrega, C.; Llorente, I.; Manceau, C.; Montesinos, E. Eur. J. Plant. Pathol. 2003, 109, 319-326.

⁶² (a) Ferre, R.; Badosa, E.; Feliu, L.; Planas, M.; Montesinos, E.; Bardají, E. *Appl. Environ. Microbiol.* **2006**, *72*, 3302-3308. (b) Badosa, E.; Ferre, R.; Planas, M.; Feliu, L.; Besalú, E.; Cabrefiga, J.; Bardají, E.; Montesinos, E. *Peptides* **2007**, *28*, 2276-2285.

⁶³ Adessi, C.; Soto, C. Curr. Med. Chem. 2002, 9, 963-978.

⁶⁴ (a) Hicks, R. P.; Bhnsle, J. B.; Venugopal, D.; Koser, B. W.; Magill, A. L. J. Med. Chem. 2007, 50, 3026-3036. (b) Jones, M. A.; Notta, J. K.; Cobbold, M.; Palendira, M.; Hislop, A. D.; Wilkie, J.; Snaith, J. S. J. Pept. Sci. 2008, 14, 313-320. (c) Karstad, R.; Isaksen, G.; Brandsdal, B-O.; Svendsen, J. S.; Svenson, J. J. Med. Chem. 2010, 53, 5558-5566.

⁶⁵ Pritz, S.; Pätzel, M.; Szeimies, G.; Dathe, M.; Bienert, M. Org. Biomol. Chem. 2007, 5, 1789-1794.

⁶⁶ Radi, M.; Schenoneb, S.; Botta, M. Org. Biomol. Chem. 2009, 7, 2841-2847.

⁶⁷ Hill, M. D.; Movassaghi, M. Chem. Eur. J. 2008, 14, 6836-6844.

⁶⁸ (a) Maruenda, H.; Chenna, A.; Liem, L.-K.; Singer, B. J. Org. Chem. **1998**, 63, 4385-4389. (b) Van Brocklin, H. F.; Lim, J. K.; Coffing, S. L.; Hom, D. L.; Negash, K.; Ono, M. Y.; Gilmore, J. L.; Bryant, I.; Riese, D. J. I. I. J. Med. Chem. **2005**, 48, 7445-7456. (c) Al-Abdullah, E. S.; Al-Obaid, A-R. M.; Al-Deeb, O. A.; Habib, E. E.; El-Emam, A. A. Eur. J. Med. Chem. **2011**, 46, 4642-4647.

⁶⁹ Capek, P.; Pohl, R.; Hocek, M. J. Org. Chem. 2005, 70, 8001-8008.

⁷⁰ For recent reviews on phosphonium coupling, see: (a) Kang, F-A.; Sui, Z.; Murray, W. V. *Eur. J. Org. Chem.* **2009**, 461-479. (b) Mansour, T. S.; Bardhan, S.; Wan, Z-K. *Synlett* **2010**, 1143-1169.

⁷¹ Kang, F-A.; Kodah, J.; Guan, Q.; Li, X.; Murray, W. V. J. Org. Chem. 2005, 70, 1957-1960.

⁷² Wan, Z. K.; Binnun, F.; Wilson, D. P.; Lee, Y. Org. Lett. 2005, 7, 5877-5880.

⁷³ (a) Lakshman, M. K.; Frank, J. *Org. Biomol. Chem.* **2009**, *7*, 2933-2940. (b) Wan, Z-K.; Wacharansindhu, S.; Levins, C. G.; Lin, M.; Tabei, K.; Mansour, T. S. J. Org. Chem. **2007**, *72*, 10194-10210.

⁷⁴ Planellas, M.; Díaz. E.; Pascual, M.; Bardají, E.; Heras, M "Synthesis of new non-proteinogenic α-amino acids" (poster presented at the Third West Mediterranean Chemistry Meeting, La Grande Motte, France, June 14–15, **2007**).

⁷⁵ The determination of the optical purity was assessed by the HPLC method described in Section I.2.1.4.

⁷⁶ Lapatsanis, L.; Milias, G.; Froussios, K.; Kolovos, M. Synthesis 1998, 671-673.

⁷⁷ (a) Bambal, R.; Hanzlik, R. P. J. Org. Chem. **1994**, 59, 729-732. (b) Jain, R.; Cohen, L. A. Tetrahedron **1996**, 52, 5363-5370.

⁷⁸ Ashton, T. D.; Scammells, P. J. Aust. J. Chem. 2008, 61, 49-58.

⁷⁹ Gholap, A. R.; Toti, K. S.; Shirazi, F.; Deshpande, M. V.; Srinivasan, K. V. *Tetrahedron* **2008**, *64*, 10214-10223.

⁸⁰ Sheperd, R. G.; Fedrick, J. Adv. Heterocycl. Chem. 1965, 4, 145-423.

⁸¹ The determination of the optical purity was assessed by the HPLC method described in Section I.2.1.4.

⁸² (a) Wang, S.-S. J. Am. Chem. Soc. **1973**, 95, 1328-1333. (b) James, I. W. Tetrahedron **1999**, 55, 4855-4946.

⁸³ Chin-Tan, T. M.; Yang, F.; Fu, H.; Raghavendra, M. S.; Lam, Y. J. Comb. Chem. **2007**, *9*, 210-218.

⁸⁴ Regioisomer ratio determined by HPLC analysis of the crude reaction mixture.

 85 The optical purity of compounds **I.39** was verified mediated the HPLC method described in Section I.2.1.4.

⁸⁶ Shiffer, M.; Edmunson, A. B. *Biophysical J.* 1967, 7, 121-135.

⁸⁷ Tachi, T.; Epand, R. F.; Epand, R. M.; Matsuzaki, K. *Biochemistry* **2002**, *41*, 10723-10731.

⁸⁸ Meng, H.; Kumar, K. J. Am. Chem. Soc. 2007, 129, 15615-15622.

⁸⁹ Alsina, J.; Barany, G.; Albericio, F.; Kates, S. A. Lett. Peptide Sci. 1999, 6, 243-245.

⁹⁰ Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Anal. Biochem. 1970, 34, 595.

⁹¹ Compound **I.20a** and amino ester **I.18a** have the same R_f in TLC. Without this work-up the purification of compound **I.20a** proved to be problematic.

⁹² Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2010, 27, 165-237.

93 Faulkner, D. J. Nat. Prod. Rep. 2000, 17, 1-6.

⁹⁴ (a) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2004, 67, 1216-1238. (b) Molinski, T. F.; Dalisay, S. L.;
Lievens, S. L.; Saludes, J. P. Nat. Rev. Drug Discovery 2009, 8, 69-85. (c) Mayer, A. M. S.; Glaser, K. B.; Cuevas, C.; Jacobs, R. S.; Kem, W.; Little, R. D.; McInstosh, J. M.; Newman, D. J.; Potts, B. C.; Shuster, D. E. Trends Pharmacol. Sci. 2010, 31, 255-265.

⁹⁵ Bhakuni, D. S.; Dawar, D. S. *Bioactive marine natural products* New York, Springer, 2005.

⁹⁶ Ratnayake, R.; Fremlin, L. J.; Lacey, E.; Gill, J. H.; Capon, R. J. J. Nat. Prod. 2008, 71, 403-408.

⁹⁷ Probst, A.; Tamm, C. Helv. Chim. Acta 1981, 64, 2056-2064.

⁹⁸ Osada, H.; Kakeya, H.; Konno, H.; Kanazawa, S. Japanese Patent 051804, **2003**.

⁹⁹ Marfey's analysis relies on the hydrolysis of a peptide- or amino acid-containing substance followed by *in situ* conversion of the resulting amino acids using a chiral derivatizing agent such as 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide (L-FDDA) to form the corresponding 2,4-dinitrophenyl-5-L-alanine amide (DNP) derivatives. The C18 HPLC retention times of the resulting DNP derivatives monitored by UV at 340 nm are then compared to DNP derivatives obtained from authentic amino acid standards allowing a diagnostic for both a given amino acid and a given stereochemistry, see: Fujii, K.; Ikai, Y.; Oka, H.; Suzuki, M.; Harada, K. A. *Anal. Chem.* **1997**, *69*, 5146-5151.

¹⁰⁰ Amides attached through proline nitrogen are known to be capable of existing as equilibrating rotamers, with literature empirical rules establishing that ¹³C NMR chemical shift differences between proline β and γ carbon resonances are characteristic of *cis* ($\Delta\beta\gamma \sim 8-12$ ppm) vs *trans* ($\Delta\beta\gamma \sim 2-6$ ppm) prolinyl amide rotamers, respectively. See: Siemion, I. Z.; Wieland, T.; Pook, K. H. *Angew. Chem. Int. Ed. Engl.* **1975**, *14*, 702-703.

¹⁰¹ (a) Dale, J. A.; Dull, D. H.; Mosher, H. S. *J. Org. Chem.* **1969**, *34*, 2543-2549. (b) Dale, J. A.; Dull, D. H.; Mosher, H. S. *J. Am. Chem Soc.* **1973**, *95*, 512-519.

¹⁰² Osada, H.; Kakeya, H.; Hayashi, Y.; Shoji, M.; Uchida, S. P. Japanese Patent 101483, **2004**.

¹⁰³ Li, J.; Menche, D. Synthesis **2009**, 2293-2315.

¹⁰⁴ Yamamoto, Y.; Asao, N. Chem. Rev. **1993**, 93, 2207-2293.

¹⁰⁵ (a) Li, Y.; Houk, K. N. J. Am. Chem. Soc. **1989**, 111, 1236-1240. (b) Vulpetti, A.; Gardner, M.; Gennari, C.; Bernardi, A.; Goodman, J. M.; Paterson, I. J. Org. Chem. **1993**, 58, 1711-1718. (c) Gennari, C.; Fioravanzo, E.; Bernardi, A.; Vulpetti, A. Tetrahedron **1994**, 50, 8815-8826. (d) Omoto, K.; Fujimoto, H. J. Org. Chem. **1998**, 63, 8331-8336. (e) Gajewski, J. J.; Bocian, W.; Brichford, N. L.; Henderson, J. L. J. Org. Chem. **2002**, 67, 4236-4240.

¹⁰⁶ (a) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. **2001**, 123, 9488-9489. (b) Denmark, S. E.; Fu, J. Chem. Commun. **2003**, 167-170.

¹⁰⁷ (a) Masse, C. E.; Panek, J. C. *Chem. Rev.* **1995**, *95*, 1293-1316. (b) *Comprehensive Asymmetric Catalysis;* Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, **1999**, 965-982. (c) *Principles and Applications of Asymmetric Synthesis;* Lin, G.-Q.; Li, Y.-M.; Chan, A. S. C., Eds.; John Wiley & Sons: New York, **2001**, 167-178. (d) Denmark, S. E.; Fu, J. *Chem. Rev.* **2003**, *103*, 2763-2794. For a review on Lewis and Brønsted acid catalyzed allylborations of carbonyl compounds, see: Hall, D. G. Synlett **2007**, 1644-1655.

¹⁰⁸ (a) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. **1986**, 108, 293-294. (b) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. **1986**, 108, 5919-5923.

¹⁰⁹ (a) Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc. **1990**, *112*, 6339-6348. (b) Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem. Soc. **1990**, *112*, 6348-6359. (c) Scheidt, K. A.; Tasaka, A.; Bannister, T. D.; Wendt, M. D.; Roush, W. R. Angew. Chem. Int. Ed. **1999**, *38*, 1652-1655.

¹¹⁰ Herold, T.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1978, 17, 768-769.

¹¹¹ Garcia, J.; Kim, B.; Masamune, S. J. Org. Chem. 1987, 52, 4831-4832.

¹¹² Corey, E. J.; Yu, C.-M.; Kim, S. S. J. Am. Chem. Soc. 1989, 111, 5495-5496.

¹¹³ Burgos, C. H.; Canales, E.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2005, 127, 8044-8049.

¹¹⁴ Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2007, 129, 3070-3071.

¹¹⁵ (a) Duthaler, R. O.; Hafner, A.; Riediker, M. *Pure Appl. Chem.* **1990**, *62*, 631-642. (b) Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, J.; Rothe-Streit, P.; Schwarzenbach, F. J. J. Am. Chem. Soc. **1992**, *114*, 2321-2336. (c) Duthaler, R. O.; Hafner, A. Chem. Rev. **1992**, *92*, 807-832.

¹¹⁶ Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem., Int. Ed. 2001, 20, 92-138.

¹¹⁷ (a) BouzBouz, S.; Popkin, M. E.; Cossy, J. *Org. Lett.* **2000**, *2*, 3449-3451. (b) BouzBouz, S.; Cossy, J. *Org. Lett.* **2001**, *3*, 3995-3998.

¹¹⁸ Review: Leighton, J. L. Aldrichimica Acta **2010**, *31*, 3-12.

¹¹⁹ Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X., Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920-7921.

¹²⁰ Omura, K.; Swern, D. Tetrahedron **1978**, *34*, 1651-1660.

¹²¹ Roush, W. R.; Hoong, L. K.; Palmer, M. A.; Straub, J. A.; Palkowitz, A. D. J. Org. Chem. **1990**, 55, 4117-4126.

¹²² Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217-3219.

¹²³ Stüber, W.; Kosina, H.; Heimburger, N. Int. J. Pept. Protein Res. 1988, 31, 63-70.

¹²⁴ Neises, B.; Steglich, W. Angew. Chem. Int. Ed., 1978, 17, 522-524.

¹²⁵ (a) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989-1993. (b) Kawanami, Y.; Dainobu, Y.; Inanaga, J.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1981, 54, 943-944.

¹²⁶ Zhang, W.; Robbins, M. J. Tetrahedron Lett. 1992, 33, 1177-1180.

¹²⁷ Wuts, P. G. M.; Bigelow, S. S. J. Org. Chem. 1988, 53, 5023-5034.

¹²⁸ Crouch, R. D.; Polizzi, J. M.; Cleiman, R. A.; Yi, J.; Romany, C. A. *Tetrahedron Lett.* **2002**, *43*, 7151-7153.

¹²⁹ Kurosawa, K.; Matsuura, K.; Nagase, T.; Chida, N. Bull. Chem. Soc. Jpn. 2006, 6, 921-937.

¹³⁰ Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956.

¹³¹ (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. *J. Am. Chem. Soc.* 2000, *122*, 8168;
(b) Gessler, S.; Randl, S.; Blechert, S. *Tetrahedron Lett.* 2000, *41*, 9973-9976.

¹³² (a) Fürstner, A.; Langemann, K. Synthesis **1997**, 792-803. (b) Fürstner, A. Top. Organomet. Chem. **1998**, 1, 37-72.

¹³³ Ikawa, T.; Hattori, K.; Sajiki, H.; Hirota, K. *Tetrahedron* **2004**, *60*, 6901-6911.

¹³⁴ Hua, J.; Jiang, Z. Y.; Wang, Y. G. Chin. Chem. Lett. 2004, 15, 1430-1432.

 135 The numbering of the atoms has been changed for an easier comparison with the reported data. In addition, C4, C5, C26 and C27 were not included as their corresponding 13 C chemical shift were not described for the natural product.

¹³⁶ Tan, L. T.; Márquez, B. L.; Gerwick, W. H. J. Nat. Prod. 2002, 65, 925-928.

¹³⁷ Hoffmann, L.; Demoulin, V. Belg. J. Bot. **1991**, 124, 82-88.

¹³⁸ Klein, D.; Braekman, J. C.; Daloze, D.; Hoffmann, L.; Castillo, G.; Demoulin, V. *Tetrahedron Lett.* **1999**, 40, 695-696.

¹³⁹ (a) Klein, D.; Braekman, J. C.; Daloze, D.; Hoffmann, L.; Demoulin, V. *Tetrahedron Lett.* **1996**, *37*, 7519-7520. (b) Klein, D.; Braekman, J. C.; Daloze, D.; Hoffmann, L.; Castillo, G.; Demoulin, V. J. Nat. Prod. **1999**, *62*, 934-936.

¹⁴⁰ Klein, D.; Braekman, J. C.; Daloze, D.; Hoffmann, L.; Demoulin, V. J. Nat. Prod. **1997**, 60, 1057-1059.

¹⁴¹ Luesch, H.; Yoshida, W. Y.; Harrigan, G. G.; Doom, J. P.; Moore, R. E.; Paul, V. J. J. Nat. Prod. **2002**, 65, 1945-1948.

¹⁴² Matthew, S.; Salvador, L.; Schupp, P.J.; Paul, V.J.; Luesch, H. J. Nat. Prod. **2010**, 73, 1544-1552.

¹⁴³ Sone, H.; Kigoshi, H.; Yamada, K. J. Org. Chem. **1996**, 61, 8956-8960.

¹⁴⁴ (a) Zampella, A.; Dauria, M. V.; Minale, L.; Debitus, C.; Roussakis, C. J. Am. Chem. Soc. **1996**, 118, 11085-11088. (b) Pettit, G. R.; Xu, J. P.; Doubek, D. L.; Chapuis, J. C.; Schmidt, J. M. J. Nat. Prod. **2004**, 67, 1252-1255.

¹⁴⁵ Webb, D.; Van den Heuvel, A.; Kögl, M.; Ley, S. V. Synlett, **2009**, 2320-2324.

¹⁴⁶ Gebauer, J.; Arseniyadis, S.; Cossy, J. Synlett 2008, 712-714.

¹⁴⁷ Hong, S. H.; Sanders, D. P.; Lee, C. W.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 17160-17161.

¹⁴⁸ (a) Sneddon, H. F.; Gaunt, M. J.; Ley, S. V. *Org. Lett.* **2003**, *5*, 1147-1150. (b) Gaunt, M. J.; Sneddon, H. F.; Hewitt, P. R.; Orsini, P.; Hook, D. F.; Ley, S. V. *Org. Biomol. Chem.* **2003**, *1*, 15-16. (c) Sneddon, H. F.; Van den Heuvel, A.; Hirsch, A. K. H.; Booth, R. A.; Shaw, D. M.; Gaunt, M. J.; Ley, S. V. *J. Org. Chem.* **2006**, *71*, 2715-2725.

¹⁴⁹ Maguire, R. J.; Munt, S. P.; Thomas, E. J. J. Chem. Soc., Perkin Trans. 1 1998, 2853-2864.

¹⁵⁰ Adderley, N. J.; Buchanan, D. J.; Dixon, D. J.; Laine, D. I. Angew. Chem. Int. Ed. 2003, 42, 4241-4244.

¹⁵¹ Bach, T.; Kirsch, S. Synlett 2001, 1474-1476.

¹⁵² (a) Grunwell, J. R.; Karipides, A.; Wigal, C. T.; Heinzman, S. W.; Parlow, J.; Surso, J. A.; Clayton, L.;
Fleitz, F. J.; Daffner, M.; Stevens, J. E. *J. Org. Chem.* **1991**, *56*, 91-95. (b) Sugita, Y.; Sakaki, J.-I.; Sato, M.; Kaneko, C. J. Chem. Soc., Perkin Trans. 1 **1992**, 2855-2861.

¹⁵³ CHIRALPACK AD-H (SFC), MeOH/CO₂ = 8:92.

¹⁵⁴ Sato, M.; Sunami, S.; Sugita, Y.; Kaneko, C. *Heterocycles* **1995**, *41*, 1435-1444.

¹⁵⁵ PMBTCA: *p*-(methoxybenzyl)trichloroacetimidate, see: Nakajima, N.; Horita, K.; Abe, R.; Yonemitsu, O. *Tetrahedron Lett.* **1988**, *29*, 4139–4142.

¹⁵⁶ (a) Reber, K. P.; Tilley, S. D.; Sorensen, E. J. *Chem. Soc. Rev.* **2009**, *38*, 3022-3034. (b) Gebauer, J.; Blechert, S. *J. Org. Chem.* **2006**, *71*, 2021-2025. (c) Hoye, T. R.; Danielson, M. E.; May, A. E.; Zhao, H. *Angew. Chem. Int. Ed.* **2008**, *47*, 9743-9746.

¹⁵⁷ Unpublished results.

¹⁵⁸ For a review, see: Parenty, A.; Moreau, X.; Campagne, J.-M. Chem. Rev. 2006, 106, 911-.

¹⁵⁹ (a) Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. **1974**, 96, 5614-5616. (b) Mukaiyama, T. Angew. Chem., Int. Ed. Engl. **1979**, 18, 707-721.

¹⁶⁰ (a) Nimitz, J. S.; Wollenberg, R. H. *Tetrahedron Lett.* **1978**, *19*, 3523-3526. (b) Schmidt, U.; Heermann, D. *Angew. Chem., Int. Ed. Engl.* **1979**, *18*, 308-309. (c) Corey, E. J.; Clark, D. A. *Tetrahedron Lett.* **1979**, 2875-2878. (d) Hillis, L. R.; Ronald, R. C. *J. Org. Chem.* **1985**, *50*, 470-473.

¹⁶¹ Gerlach, H.; Thalmann, A. Helv. Chim. Acta 1974, 57, 2661-2663.

¹⁶² Masamune, S.; Bates, G. S.; Corcoran, J. W. Angew. Chem., Int. Ed. Engl. 1977, 16, 585-607.

¹⁶³ (a) Venkataraman, K.; Wagle, D. R. *Tetrahedron Lett.* **1979**, *20*, 3037-3040. (b) Venkataraman, K.; Wagle, D. R. *Tetrahedron Lett.* **1980**, *21*, 1893-1896.

¹⁶⁴ Mukaiyama, T.; Usui, M.; Saigo, K. Chem. Lett. **1976**, 49-50.

¹⁶⁵ Yuan, H.; Kingston, D. G. I.; Sackett, D. L.; Hamel, E. *Tetrahedron* **1999**, *55*, 9707-9716.

¹⁶⁶ Smith, A. B.; Malamas, M. S. J. Org. Chem. 1982, 47, 3442-3447.

¹⁶⁷ (a) Shiina, I.; Kubota, M.; Ibuka, R. *Tetrahedron Lett.* 2002, 43, 7535-7539. (b) Shiina, I.; Oshiumi, H.; Hashizume, M.; Yamai, Y.-s.; Ibuka, R.*Tetrahedron Lett.* 2004, 45, 543-547. (c) Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. J. Org. Chem. 2004, 69, 1822-1830. (d) White, J. D.; Johnson, A. T. J. Org. Chem. 1994, 59, 3347-3358. (e) Mukaiyama, T.; Izumi, J.; Miyashita, M.; Shiina, I. Chem. Lett. 1993, 907-910. (f) Mukaiyama, T.; Izumi, J.; Shiina, I. Chem. Lett. 1997, 187-188. (g) Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1996, 61, 4560-4567.

¹⁶⁸ Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. **1979**, 52, 1989-1993.

¹⁶⁹ (a) Hikota, M.; Tone, H.; Horita, K.; Yonemitsu, O. J. Org. Chem. **1990**, 55, 7-9. (b) Evans, D. A.; Ng, H. P.; Rieger, D. L. J. Am. Chem. Soc. **1993**, 115, 11446-11459.

¹⁷⁰ Kaiho, T.; Masamune, S.; Toyoda, T. J. Org. Chem. **1982**, 47, 1612-1614.

¹⁷¹ Corey, E. J.; Hua, D. H.; Pan, B. C.; Seitz, S. P. J. Am. Chem. Soc. 1982, 104, 6818-6820.

¹⁷² Coste, J.; Frerot, E.; Jouin, P.; Castro, B. Tetrahedron Lett. 1991, 32, 1967-1970.

¹⁷³ Wood, J. L.; Porco, J. A., Jr.; Taunton, J.; Lee, A. Y.; Clardy, J.; Schreiber, S. L. J. Am. Chem. Soc. **1992**, *114*, 5898-5900.

¹⁷⁴ Roush, W. R.; Sciotti, R. J. J. Am. Chem. Soc. 1998, 120, 7411-7419.

¹⁷⁵ Steglich, W.; Höfle, G. Angew. Chem., Int. Ed. Engl. 1969, 8, 981.

¹⁷⁶ Boden, E. P.; Keck, G. E. J. Org. Chem. 1985, 50, 2394–2395.

¹⁷⁷ Keck, G. E.; Boden, E. P.; Wiley, M. R. J. Org. Chem. **1989**, 54, 896–906.

¹⁷⁸ Keck, G. E.; Murry, J. A. J. Org. Chem. **1991**, 56, 6606–6611.

¹⁷⁹ Stork, G.; Rychnovsky, S. D. J. Am. Chem. Soc. **1986**, 109, 1565-1567.

¹⁸⁰ Evans, D. A.; Gage, J.; Leighton, J. L. J. Am. Chem. Soc. 1992, 114, 9434-9453.

¹⁸¹ Danishefsky, S. J.; Su, D. S.; Meng, D. F.; Bertinato, P.; Balog, A.; Sorensen, E. J.; Zheng, Y. H.; Chou, T. C.; He, L. F.; Horwitz, S. B. *Angew. Chem., Int. Ed.* **1997**, 36, 757-759.

¹⁸² Patterson, I.; Yeung, K. S.; Ward, R. A.; Smith, J. D.; Cumming, G.; Lamboley, S. *Tetrahedron* **1995**, 51, 6497-9486.

¹⁸³ (a) Boeckman, R. K., Jr.; Weidner, C. H.; Perni, R. B.; Napier, J. J. J. Am. Chem. Soc. **1989**, 111, 8036-8037.

¹⁸⁴ Paquette, L. A.; Macdonald, D.; Anderson, L. G.; Wright, J. J. Am. Chem. Soc. **1989**, 111, 8037-8039.

¹⁸⁵ Boeckman, R. K., Jr.; Pruitt, J. R. J. Am. Chem. Soc. **1989**, 111, 8286-8288.

¹⁸⁶ (a) Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C. P.; Singh, V. K. J. Am. Chem. Soc. **1987**, 109, 7925-7926. (b) Deloux, L.; Srebnik, M. Chem. Rev. **1993**, 93, 763-784.

¹⁸⁷ (a) Evans, D. A.; Murry, J. A.; Kozlowski, M. C. J. Am. Chem. Soc. **1996**, *118*, 5814-5815. (b) Krüger, J.; Carreira, E. M. J. Am. Chem. Soc. **1998**, *120*, 669-685. (c) Pagenkopf, B. L.; Krüger, J.; Stojanovic, A.; Carreira, E. M. Angew. Chem., Int. Ed. **1998**, *37*, 3124-3126. (d) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J. J. Am. Chem. Soc. **1999**, *121*, 837-838. (e) Bluet, G.; Campagne, J.-M. Tetrahedron Lett. **1999**, *40*, 5507-5509. (f) Bluet, G.; Campagne, J.-M. J. Org. Chem. **2001**, *66*, 4293-4298.

¹⁸⁸ (a) Denmark, S. E.; Wynn, T.; Beutner, G. L. *J. Am. Chem. Soc.* **2002**, *124*, 13405-13407. (b) Denmark, S. E.; Beutner, G. L. *J. Am. Chem. Soc.* **2003**, *125*, 7800-7801. (c) Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D. *J. Am. Chem. Soc.* **2005**, *125*, 3774-3789.

¹⁸⁹ De Rosa, M.; Acocella, M. R.; Villano, R.; Soriente, A.; Scettri, A. *Tetrahedron: Asymmetry* **2003**, *14*, 2499-2502.

¹⁹⁰ Mitsunobu, O.; Yamada, Y. Bull. Chem. Soc. Japan 1967, 40, 2380-2382.

¹⁹¹ (a) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. *J. Am. Chem. Soc.* **1988**, *110*, 1968-1970. (b) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483-2547.

¹⁹² The selectivity of the Sharpless dihydroxylation was determined by chiral SFC analysis of the corresponding epoxide **II.64** (CHIRALCEL OD-H, 100 bar, 5 mL.min⁻¹, 5% MeOH). This result was in absolute accordance with the studies performed by Tietze *et al.* who demonstrated that the nature of the protecting group had a strong influence on the enantioselectivity of the dihydroxylation, see : Tietze, L. F.; Görlitzer, J. *Synthesis* **1998**, 873-878.

¹⁹³ (a) Anikin, A.; Maslov, M.; Siele, J.; Blaurock, S.; Baldamus, J.; Hennig, L.; Findeisen, M.; Reinhardt, G.; Oehme, R.; Welzel, P. *Tetrahedron* 2003, *59*, 5295-5306. (b) Sparks, S. M.; Chen, C.-L.; Martin, S. F. *Tetrahedron* 2007, *63*, 8619-8635.

¹⁹⁴ Allenylmagnesium bromide was generated *in situ* from propargyl bromide and metallic magnesium in the presence of a catalytic amount of HgCl₂, see: (a) Nakayama, Y.; Kumar, G. B.; Kobayashi, Y. *J. Org. Chem.* **2000**, *65*, 707-715. (b) Dimitrieva, L. L.; Nikitina, L. P.; Albanov, A. I.; Nedolya, N. A. *Russian J. Org. Chem.* **2005**, *41*, 1583-1593.

¹⁹⁵ The diastereoisomeric ration was determined by ¹H NMR analysis of the crude reaction mixture.

¹⁹⁶ Evans, D. A.; Chapman, K. T. Tetrahedron Letters 1986, 27, 5939-5942.

¹⁹⁷ Fuwa, H.; Noto, K.; Sasaki, M. Org. Lett. 2010, 12, 1636-1639.

¹⁹⁸ Lipshutz, B. H.; Ung, C. S.; Sengupta, S. *Synlett* **1989**, 64-66.

¹⁹⁹ Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. *Tetrahedron Lett.* **1982**, *23*, 889-892.

²⁰⁰ For a recent application of the acylketene dual macrolactonization/pyran hemiketal formation reaction, see: (f) Trost, B. M.; Gunzner, J. L. *J. Am. Chem. Soc.* **2001**, *123*, 9449-9450. (g) Trost, B. M.; Gunzner, J. L.; Dirat, O.; Rhee, Y. H. *J. Am. Chem. Soc.* **2002**, *124*, 10396-10415.

²⁰¹ Wentrup, C.; Heilmayer, W.; Kollenz, G. Synthesis **1994**, 1219-1248.

²⁰² (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* 1975, *16*, 4467-4470. (b) Chinchilla, R.; Nájera, C. *Chem Rev.* 2007, *107*, 874-922.

²⁰³ (a) Trost, B. M.; Ball, Z. T.; Jöge, T. J. Am. Chem. Soc. 2002, 124, 7922-7923. (b) Lacombe, F.; Radkowski, K.; Seidel, G.; Fürstner, A. Tetrahedron 2004, 60, 7315-7324. (c) Kleinbeck, F.; Carreira, E. M. Angew. Chem. Int. Ed. 2009, 48, 578-581.

²⁰⁴ Kim, S.; Kim, B.; In, J. Synthesis **2009**, *12*, 1963-1968.

²⁰⁵ Prepared according to a reported procedure starting from but-1-yne, see: Zneifel, G.; Lewis, W. J. Org. Chem. **1978**, 43, 2739-2744.

²⁰⁶ (a) Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd edition, J. Wiley & Sons, **1991**. (b) Kocienski, P. J. *Protecting Groups*, Georg Thieme Verlag, **1994**.

²⁰⁷ (a) Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem. Soc **1988**, *110*, 291-293.
(b) Paterson, I.; Blakey, S. B.; Cowden, C. J. *Tetrahedron Lett.* **2002**, *43*, 6005-6008.

²⁰⁸ The diastereoisomeric ratio was determined by ¹H NMR of the crude reaction mixture.

²⁰⁹ Yang, Y.-Q.; Cui, J.-R.; Zhu, L.-G.; Sun, Y.-P.; Wu, Y. Synlett **2006**, 1260-1262.

²¹⁰ (a) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. **2001**, 123, 12726-12727. (b) Trost, B. M.; Machacek, M. R.; Ball, Z. T. Org. Lett. **2003**, 5, 1895-1898. (c) Chung, L. W.; Yu, Y.-D.; Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. **2003**, 125, 11578-11582. (d) Bressy, C.; Bargiggia, F.; Guyonnet, M.; Arseniyadis, S.; Cossy, J. Synlett **2008**, 4, 565-568. (d) Bressy, C.; Vors, J.-P.; Hillebrand, S.; Arseniyadis, S.; Cossy, J. Angew. Chem, Int. Ed. **2008**, 47, 10137-10140.

²¹¹ Marshall, J. A.; Blough, B. E. J. Org. Chem. **1990**, 55, 1540–1547.

²¹² Roush, W. R.; Palkowitz, A. D.; Palmer, M. A. J. Org. Chem. 1987, 52, 316–318.

²¹³ Corey, E. J.; Guzman-Perez, A.; Noe, M. J. Am. Chem. Soc., **1995**, 117, 10805-10816.

²¹⁴ Sirirath, S.; Tanaka, J.; Ohtani, I. I.; Ichiba, T.; Rachmat, R.; Ueda, K.; Usui, T.; Osada, H.; Higa, T. J. Nat. Prod. **2002**, 65, 1820-1823.

²¹⁵ (a) Carmenly, S.; Kashman, Y. *Tetrahedron Lett.* **1985**, *26*, 511-514. (b) Kobayashi, M.; Tanaka, J.; Katori, T.; Matsuura, M.; Yamashira, M.; Kitagawa, I. Chem. Pharm. Bull. **1990**, *38*, 2409-2418.

²¹⁶ Kondoh, M.; Usui, T.; Kobayashi, S.; Tsuchiya, K.; Nishikawa, K.; Nishikiori, T.; Mayumi, T.; Osada, H. *Cancer Lett.* **1998**, *126*, 29-32.

²¹⁷ Fushimi, S.; Nishikawa, S.; Shimazu, A.; Seto, H. J. Antibiotics **1989**, 42, 1019-1025.

²¹⁸ Zhang, H.; Conte, M. M.; Capon, R. J. Angew. Chem. Int. Ed. 2010, 49, 9904-9906.

²¹⁹ Dual-specificity phosphatases are an emerging subclass of the protein tyrosine phosphatase (PTP) gene superfamily, which appears to be selective for dephosphorylating MAP kinases. Hence, natural products that inhibit these enzymes might serve as biologically validated starting points for the development of new and selective phosphatase inhibitors, see: (a) Camps, M.; Nichols, A.; Arkinstall, S. *FAEBS*, **2000**, *14*, 6-16. (b) Brohm, D.; Metzger, S.; Bhargava, A.; Müller, O.; Lieb, F.; Waldman, H. *Angew. Chem. Int. Ed.* **2002**, *41*, 307-311.

²²⁰ Davies-Coleman, M. T.; Rivett, D. E. A. Fortschr. Chem. Org. Naturst. 1989, 55, 1-35.

²²¹ Crystallographic data for the structure have been deposited at the Cambridge Crystallographic Data Center (Deposition number CCDC 191268).

²²² Ghosh, S.; Kumar, S. U.; Shashidhar, J. J. Org. Chem. 2008, 73, 1582-1585.

²²³ Su, Y.; Xu, Y.; Han, J.; Zheng, J.; Qi, J.; Jiang, T.; Pan, X.; She, X. J. Org. Chem. **2009**, 74, 2743-2749.

²²⁴ Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. *Tetrahedron Lett.* **1984**, *25*, 2183-2186.

²²⁵ (a) Fürstner, A. Angew. Chem. Int. Ed. **2000**, *39*, 3012-3043. (b) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. **2001**, *34*, 18-19. (c) Love, J. A. Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, Germany, **2003**; 296-322. (d) Grubbs, R. H. Tetrahedron **2004**, *60*, 7117-7140. (e) Deiters, A.; Martin, S. F. Chem. Rev. **2004**, *104*, 2199-2238. (f) Gradillas, A.; Pérez-Castells, J. Angew. Chem. Int. Ed. **2006**, *45*, 6086-6101.

²²⁶ Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560-3578.

²²⁷ Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894-902.

²²⁸ (a) Brandänge, S.; Leijonmarck, H. *Tetrahedron Lett.* **1992**, *33*, 3025-3028. (b) Vanderwal, C. D.; Vosburg, D. A.; Weiler, S.; Sorensen, E. J. Org. Lett. **1999**, *1*, 645-648. (c) Hinterding, K.; Singhanat, S.; Oberer, L. *Tetrahedron Lett.* **2001**, *42*, 8463-8465. (d) Vanderwal, C. D.; Vosburg, D. A.; Weiler, S.; Sorensen, E. J. J. Am. Chem. Soc. **2003**, *125*, 5393-5407.

²²⁹ (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. **1981**, 103, 2127-2129. (b) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. **1981**, 103, 3099-3111. (c) Evans, D. A.; Nelson, J. V.; Taber, T. R. Top. Stereochem. **1982**, 13, 1-115. (d) Evans, D. A. Aldrichimica Acta **1982**, 15, 23-32.

²³⁰ (a) Myers, A. G.; Yang, B.; Chen, H.; Mckinstry, L.; Kopecky, D. J.; Gleason, J. L. *J. Am. Chem. Soc.* **1997**, *119*, 6496-6511. (b) Myers, A. G.; Yang, B. H.; Chen, H.; Kopecky, D. J. Synlett **1997**, 457-459.

²³¹ Yasui, K.; Tamura, Y.; Nakatani, T.; Kawada, K.; Ohtani, M. J. Org. Chem. **1995**, 60, 7567-7574.

²³² Tipson, R. S.; Cohen, A. Carbohydr. Res. 1965, 1, 338.

²³³ Gurjar, M.; Chakrabarti, A.; Rao, A. V. R. *Heterocycles* **1997**, *45*, 7-10.

²³⁴ Watanabe, H.; Watanabe, H.; Bando, M.; Kido, M.; Kitahara, T. *Tetrahedron* **1999**, *55*, 9755-9776.

²³⁵ (a) Miyashita, K.; Tsunemi, T.; Hosokawa, T.; Ikejiri, M.; Imanishi, T. *Tetrahedron Lett.* 2007, 48, 3829-3833. (b) Miyashita, K.; Tsunemi, T.; Hosokawa, T.; Ikejiri, M.; Imanishi, T. *J. Org. Chem.* 2008, 73, 5360-5370.

²³⁶ Review: D. A. Evans Aldrichim. Acta **1982**, 15, 23-32.

²³⁷ (a) Reddy, M. A.; Gopal, R. J.; Rao, V. J. *Indian J. Chem.* **1996**, *35*B, 312. (b) Ando, K. *J. Org. Chem.* **1997**, *62*, 1934-1939.

²³⁸ (a) Gurjar, M. K.; Henri Jr., J. T.; Bose, S. D.; Rao, A. V. R. *Tetrahedron Lett.* **1996**, *37*, 6615-6618.
(b) Días, L. C.; Oliveira, L. G. Sousa, M. A. *Org. Lett.* **2003**, *5*, 265-268. (c) Días, L. C.; Oliveira, L. G. Sousa, M. A.; Ellensohn, R. M. ARKIVOC **2005**, *vi*, 62-87.

²³⁹ Gebhardt, B.; König, C.; Schleth, C.; Dauber, M.; Koert, U. Chem. Euro. J. 2010, 16, 5934-5941.

²⁴⁰ Wang, Y.-G.; Takeyama, R.; Kobayashi, Y. Angew. Chem., Int. Ed. 2006, 45, 3320-3323.

²⁴¹ Shimada, K.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 4048-4049.

²⁴² Shashidhar, J.; Reddy, K. M.; Ghosh, S. Tetrahedron Lett. 2011, 52, 3106-3109.

²⁴³ Enders, D.; Dhulut, S.; Steinbusch, D.; Herrbach, A. Chem. Eur. J. 2007, 13, 3942-3949.

²⁴⁴ Review: Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. *Tetrahedron* **2002**, *58*, 2253-2329.

²⁴⁵ Keck, G. E.; Knutson, C. E.; Wiles, S. A. Org. Lett. 2009, 3, 707-710.

²⁴⁶ Keck, G. E.; Wager, C. A.; Sell, T.; Wager, T. T. J. Org. Chem. **1999**, 64, 2172-2173.

²⁴⁷ Keck, G. E.; Li, X.-Y.; Knutson, C. E. Org. Lett, **1999**, 1, 411-414.

²⁴⁸ Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352-5353.

²⁴⁹ Shen, X.; Wasmuth, A. S.; Zhao, J.; Zhu, C.; Nelson, S. G. J. Am. Chem. Soc. **2006**, *128*, 7438-7439.

²⁵⁰ (a) Druais, V.; Hall, M. J.; Corsi, C.; Wenderborn, S. V.; Meyer, C.; Cossy, J. Org. Lett. 2009, 11, 935-938. (b) Druais, V.; Hall, M. J.; Corsi, C.; Wenderborn, S. V.; Meyer, C.; Cossy, J. Tetrahedron 2010, 66, 6358-6375.

²⁵¹ (a) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. **1983**, 105, 2092-2093. (b) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. **1988**, 110, 1535-1538.

²⁵² (a) Shibahara, S.; Fujino, M.; Tashiro, Y.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. *Org. Lett.* 2008, *10*, 2139-2142. (b) Shibahara, S.; Fujino, M.; Tashiro, Y.; Okamoto, N.; Esumi, T.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. *Synthesis* 2009, *17*, 2935-2953. (c) Sarkar, S. M.; Wanzala, E. N.; Shibahara, S.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. *Chem. Commun.* 2009, 5907-5909.

²⁵³ Sonawane, R. P.; Joolakanti, S. R.; Arseniyadis, S.; Cossy, J. Synlett 2009, 213-216.

²⁵⁴ (a) Schlosser, A.; Hartmann, J. J. Am. Chem. Soc. **1976**, 98, 4674-4676. (b) Roush, W.; Adam, M.; Walts, A.; Harris, D. J. Am. Chem. Soc. **1986**, 108, 3422-3434. (c) Schlosser, A.; Despond, O.; Lehmann, R.; Moret, E.; Rauchschwalbe, G. *Tetrahedron* **1993**, 49, 10175-10203.

²⁵⁵ Bressy, C.; Vors, J.-P.; Hillebrand, S.; Arseniyadis, S.; Cossy, J. Angew. Chem. Int. Ed. 2008, 47, 10137-10140.

²⁵⁶ Moïse, J.; Sonawane, R. P.; Corsi, C.; Wendeborn, S. V.; Arseniyadis, S.; Cossy, J. Synlett, **2008**, 2617-2620.

²⁵⁷ (a) Ager, D. J.; Prakash, I.; Schaad, D. R. *Aldrichimica Acta* **1997**, *30*, 3-12. (b) Evans, D. A.; Kim, A. S. *Handbook of Reagents for Organic Synthesis: Reagents, Auxiliaries, and Catalysts for C-C bond Formation*; Coates, R. M.; Denmark, S. E., Eds.; John Wiley and Sons: New York, **1999**; 91-101. (c) Smith, T. E.; Richardson, D. P.; Truran, G. A.; Belecki, K.; Onishi, M. *J. Chem. Ed.* **2008**, *85*, 695-697.

²⁵⁸ Smith, A. B., III; Lee, D. J. Am. Chem. Soc. 2007, 129, 10957-10962.

²⁵⁹ Meissner, R. S.; Perkins, J. J.; Duong, L. T.; Hartman, G. D.; Hoffman, W. F.; Huff, J. R.; Ihle, N. C.; Leu, C.-T.; Nagy, R. M.; Naylor-Olsen, A.; Rodan, G. A.; Whitman, D. B.; Wesolowski, G. A.; Duggan, M. E. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 25-29.

²⁶⁰ The (E,Z) unsaturated ester was isolated in 6% yield.

²⁶¹ Cao, X.-P. *Tetrahedron* **2002**, *58*, 1301-1307.

²⁶² (a) Patterson, I.; Goodman, J. M. *Tetrahedron Lett.* **1989**, *30*, 997-1000. (b) Patterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. *Tetrahedron* **1990**, *46*, 4663-4684.

²⁶³ (a) Betancort, J. M.; Barbas, C. F., III. Org. Lett. 2001, *3*, 3737-3740. (b) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Barbas, C. F., III. Tetrahedron Lett. 2001, *42*, 4441-4444. (c) Enders, D.; Seki, A. Synlett 2002, 26-28. (d) Andrey, O.; Alexakis, A.; Bernardinelli, G. Org. Lett. 2003, *5*, 2559-2561. (e) Mase, N.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III. Org. Lett. 2004, *6*, 2527-2530. (f) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III. Synthesis 2004, 1509-1521. (g) Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, *126*, 9558-9559. (h) Wang, W.; Wang, J.; Li, H. Angew. Chem., Int. Ed. 2005, *44*, 1369-1371.

²⁶⁴ (a) Kawara, A.; Taguchi, T. *Tetrahedron Lett.* **1994**, *35*, 8805-8808. (b) Hanessian, S.; Pham, V. Org. Lett. **2000**, *2*, 2975-2978. (c) Halland, N.; Hansen, K. A.; Jørgensen, K. A. Angew. Chem., Int. Ed. **2003**, *42*, 4955-4957. (d) Halland, N.; Aburel, P. S.; Jørgensen, K. A. Angew. Chem., Int. Ed. **2003**, *42*, 661-665.

²⁶⁵ (a) Yamaguchi, M.; Shiraishi, T.; Hirama, M. J. Org. Chem. **1996**, 61, 3520-3530. (b) Corey, E. J.; Zhang, F.-Y. Org. Lett. **2000**, 2, 4257-4259. (c) Halland, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. **2002**, 67, 8331-8338.

²⁶⁶ Melchiorre, P.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 4151-4152.

²⁶⁷ Chi, Y.; Gellman, S. H. Org. Lett. 2005, 19, 4523-4256.

²⁶⁸ Peelen, T. J.; Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2005, 127, 11598-11599.

²⁶⁹ Enders, D.; Kipphardt, H.; Gerdes, P.; Brena-Valle, L. J. Bull. Soc. Chim. Belg. 1988, 97, 691-704.

²⁷⁰ List, B. J. Am. Chem. Soc. 2002, 124, 5656-5657.

²⁷¹ The two diastereoisomeric hemiketals were obtained in 2.4:1 mixture according to ¹H NMR analysis.

 272 She's synthesis of (–)-bitungolide F was achieved in 18 steps and 20.1% overall yield starting from (–)-malic acid, while Ghosh's synthesis was completed in 22 steps and 4.7% overall yield starting from the same starting material.

²⁷³ Concellón, J. M.; Concellón, C.; Méjica, C. J. Org. Chem. 2005, 70, 6111-6113.

²⁷⁴ Macía, F.; García-Díaz, M.; Massanet, G. M.; Gómez-Madero, J.; Fronczek, F. R.; Galindo, J. C. G. *Tetrahedron* **2008**, *64*, 10996-11006.

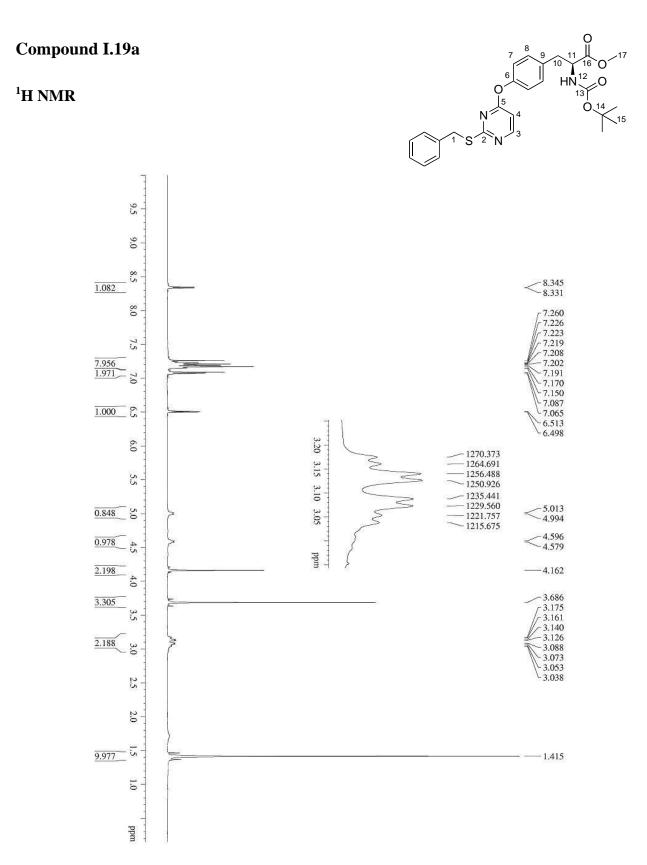
List of Publications

The following publications were completed as outputs from this research:

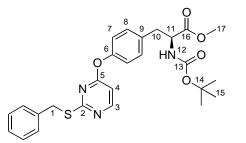
- Design, synthesis and evaluation of antimicrobial peptides by incorporation of pyrimidinyl amino acids. ElMarrouni, A; Badosa, E.; Bardají, E; Montesinos, E.; Heras, M. (Manuscript in preparation).
- Total synthesis of the nominal Lyngbouilloside aglycon. ElMarrouni, A.; Lebeuf, R.; Gebauer, J.; Heras, M.; Arseniyadis, S.; Cossy, J. Org. Lett. 2012, 14, 314–317.
- Coupling reaction promoted by phosphonium salt between an electron-rich 4(3H)-pyrimidinone and α-amino acids. ElMarrouni, A.; Fabrellas, J. M.; Heras, M. Org. Biomol. Chem. 2011, 9, 5967–5977.
- *Expedient synthesis of a stereoisomer of Acremolide B.* ElMarrouni, A.; Fukuda, A.; Heras, M.; Arseniyadis, S.; Cossy, J. J. Org. Chem. **2010**, 75, 8478–8486.
- Two concise total syntheses of (-)-Bitungolide F. ElMarrouni, A.; Joolakanti, S.
 R.; Colon, A.; Heras, M.; Arseniyadis, S.; Cossy, J. Org. Lett. 2010, 12, 4074–4077.
- A simple approach for the synthesis of new pyrimidinyl α-amino acids. ElMarrouni, A.; Güell, M.; Collell, C.; Heras, M. Tetrahedron 2010, 66, 612–623.

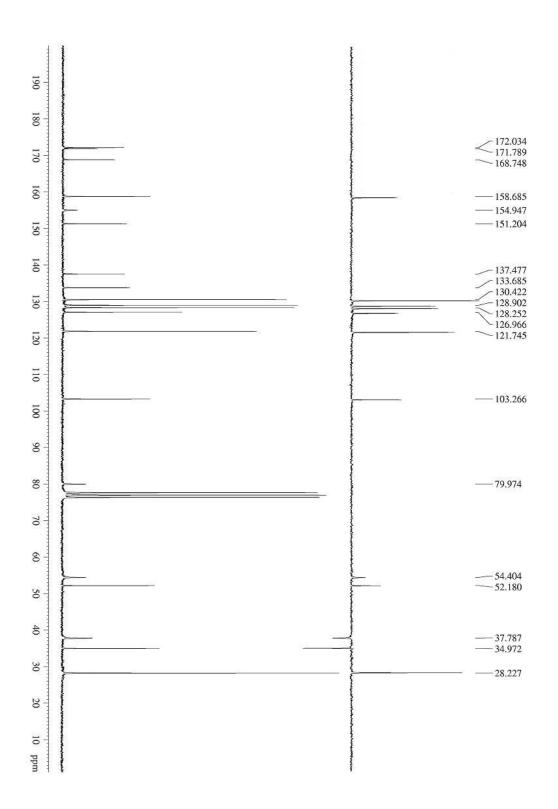
This research was possible thanks to the Agency for Management of University and Research Grants of the Generalitat de Catalunya (AGAUR) for a FI predoctoral fellowship.

ANNEX I

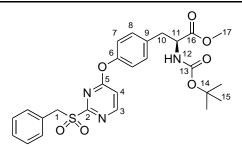

CONTENTS

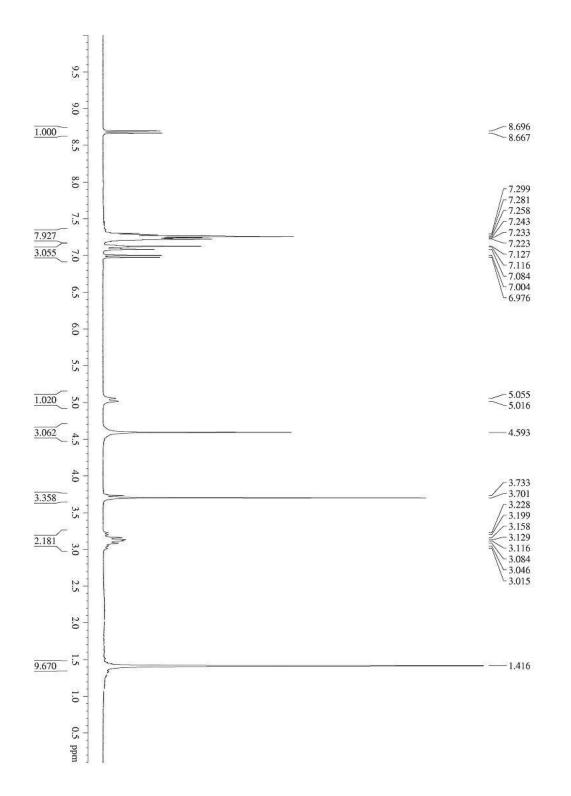
I. COPIES OF NMR SPECTRA	5
I.1. Pyrimidin-4-yl amino acids	5
Compound I.19a	5
Compound I.21a	7
Compound I.29	9
Compound I.28	11
Compound I.30a	13
Compound I.30b	15
Compound I.30c	17
Compound I.30d	19
Compound I.31	21
Compound I.20a	23
Compound I.20b	25
Compound I.20c	27
Compound I.20d	29
Compound I.11a	31
Compound I.11b	33
Compound I.11c	35
I.2. Pyrimidin-2-yl amino acids	37
Compound I.32aa	37
Compound I.32ab	39
Compound I.32ac	41
Compound I.32ba	43
Compound I.32bb	45
Compound I.32bc	47
Compound I.32ca	49
Compound I.32cb	51
Compound I.32cc	53
Compound I.32ea	55
Compound I.32eb	57
Compound I.32ec	59
Compound I.32da	61
Compound I.12a	63
Compound I.12b	65
Compound I.12c	67
Compound I.12d	69

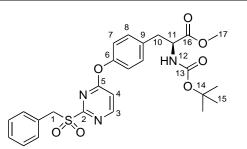

I.3. Pyrimidin-2-one amino acids	71
Compound I.17	71
Compound I.40	73
Compound I.38	75
Compound I.39a	77
Compound I.39b	79
Compound I.39c	81
Compound I.13a	83
Compound I.13b	85
Compound I.13c	87

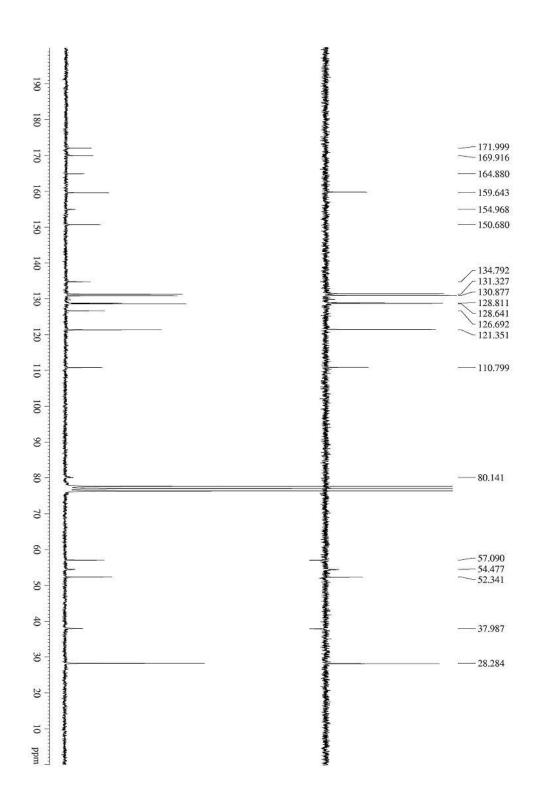

I. COPIES OF NMR SPECTRA

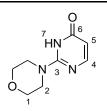
I.1. Pyrimidin-4-yl amino acids

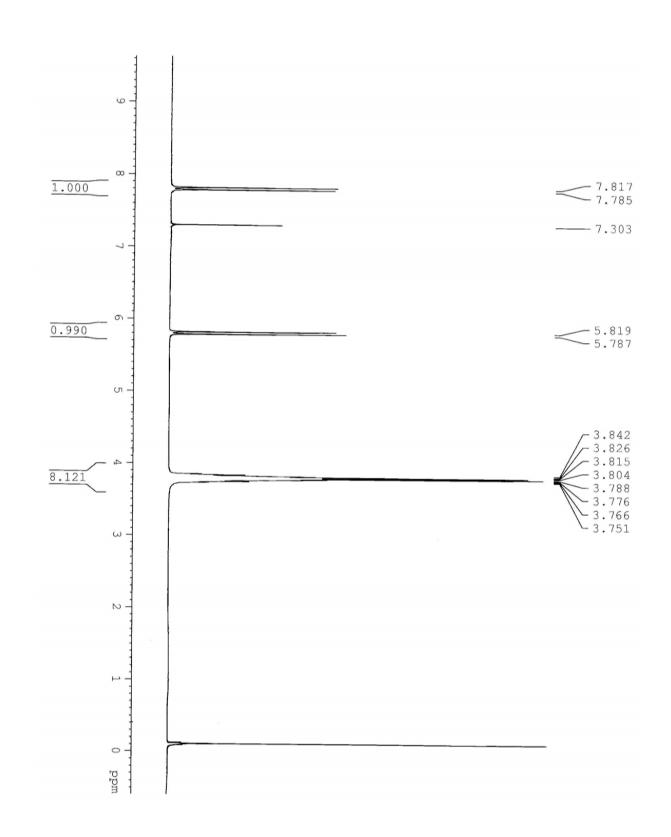


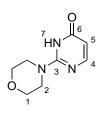

Compound I.19a

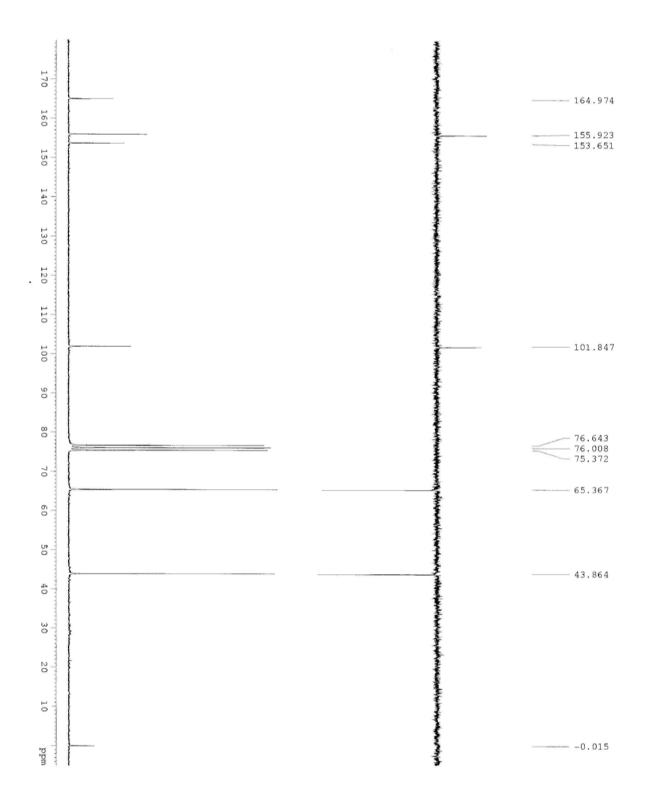



Compound I.21a

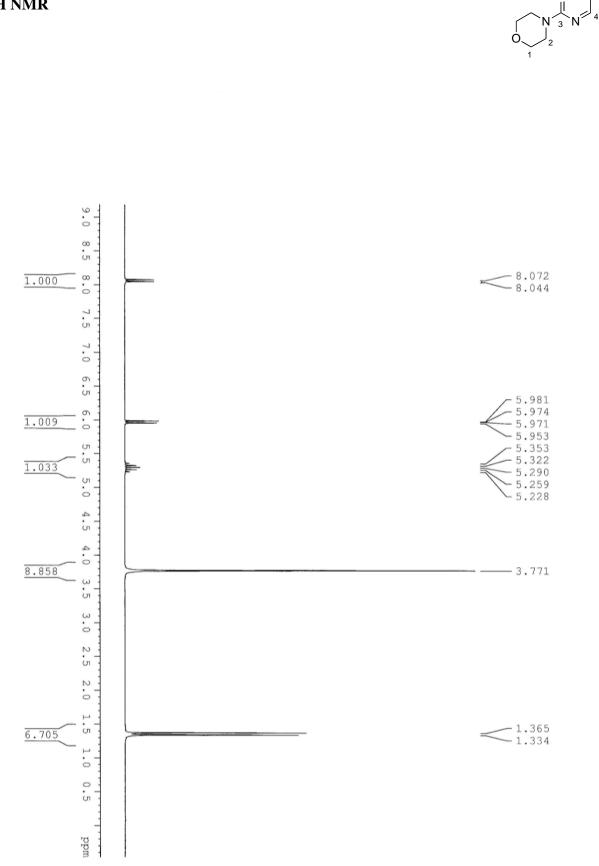



Compound I.21a

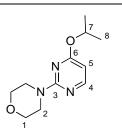


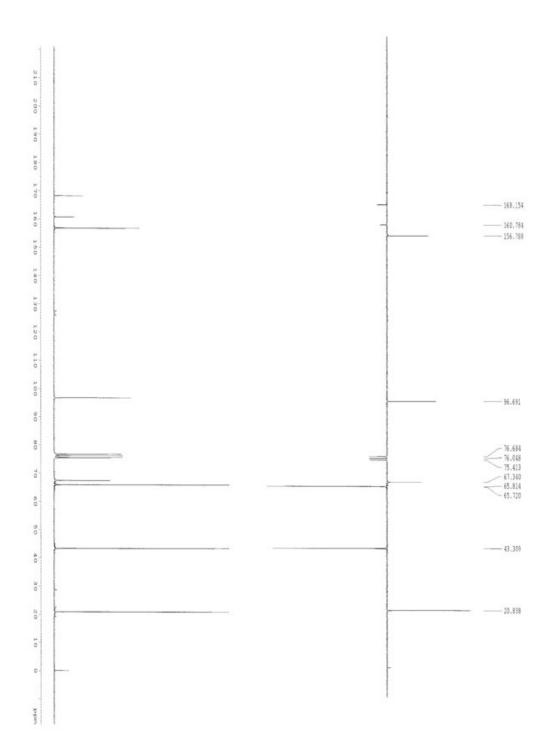

Compound I.29

Compound I.29

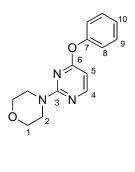

8

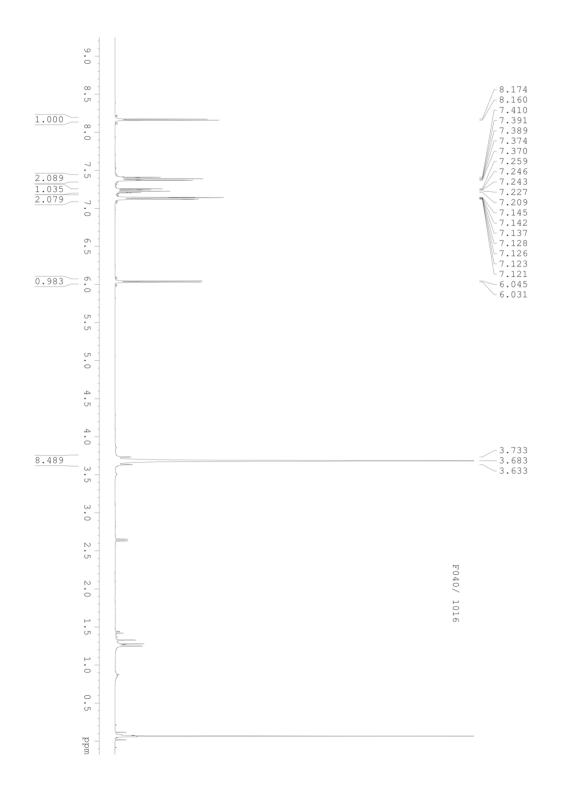
7

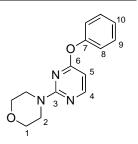

5

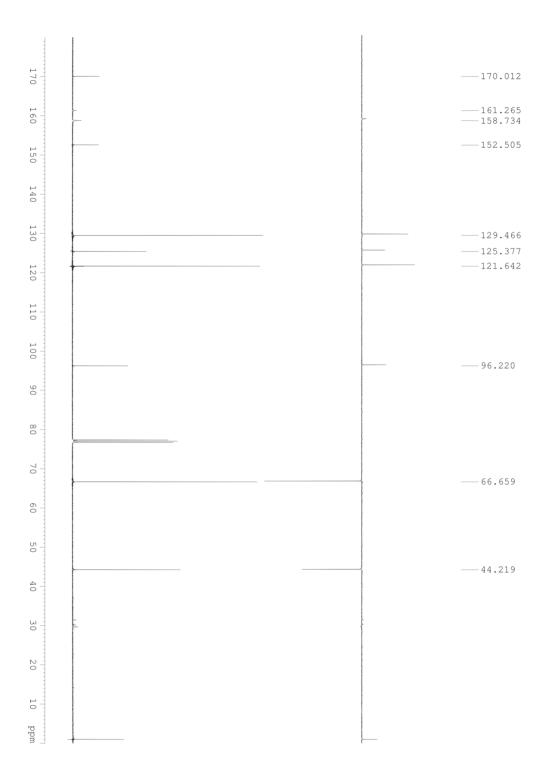

O_6

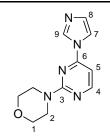
Compound I.28

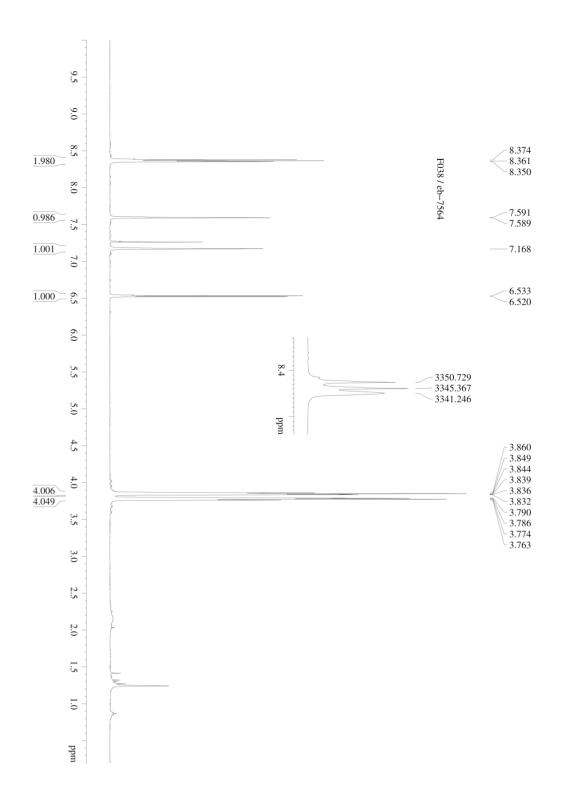


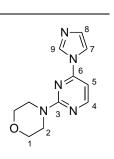

Compound I.28

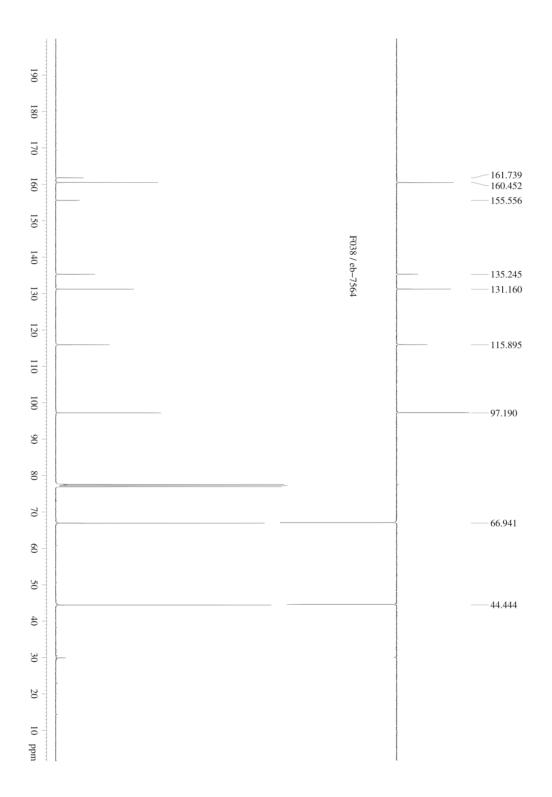


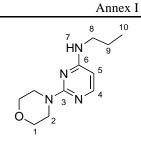

Compound I.30a

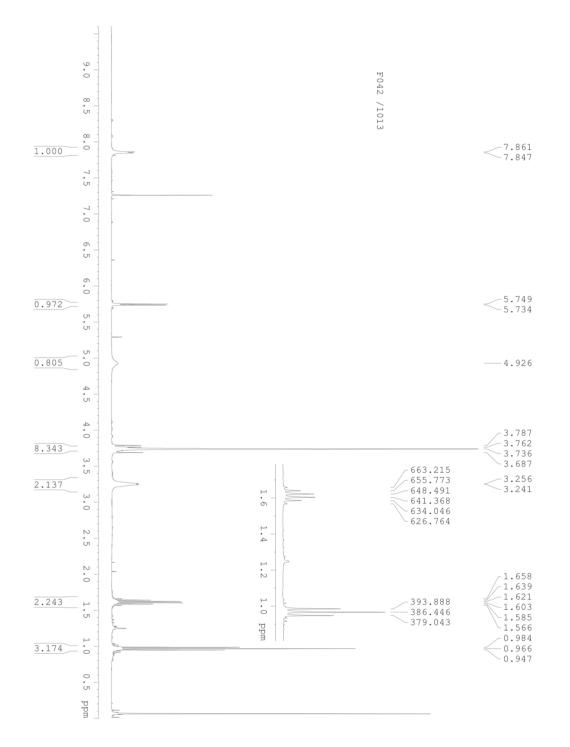



Compound I.30a

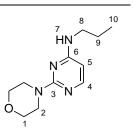


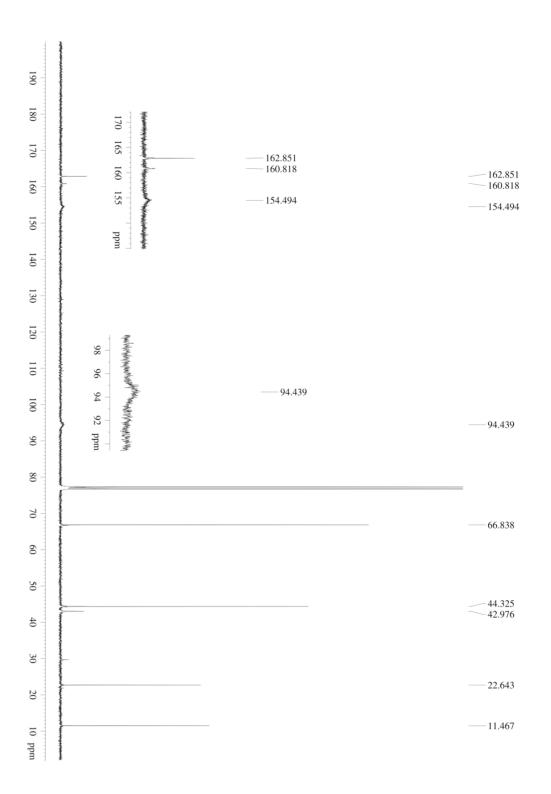

Compound I.30b





Compound I.30b





Compound I.30c

¹³C / DEPT135 NMR

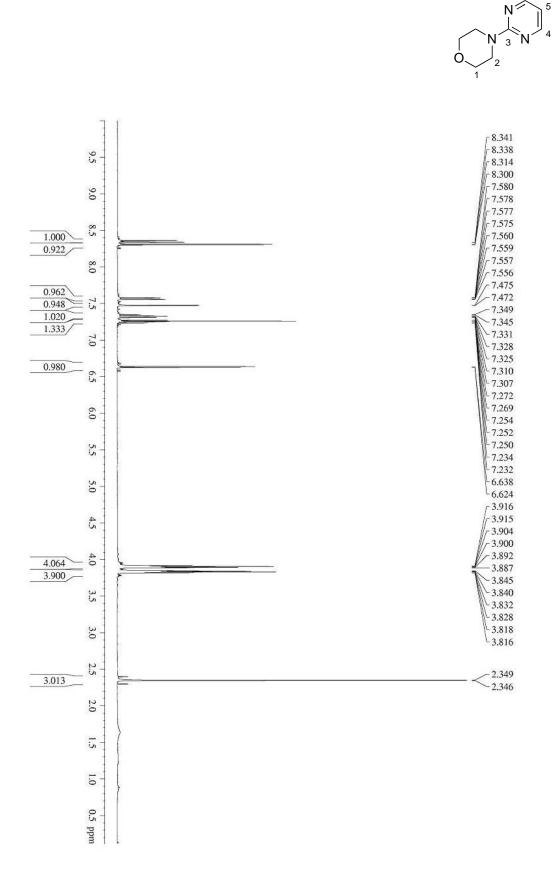
9

8

11 10

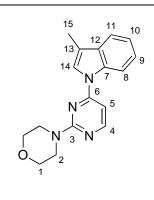
12

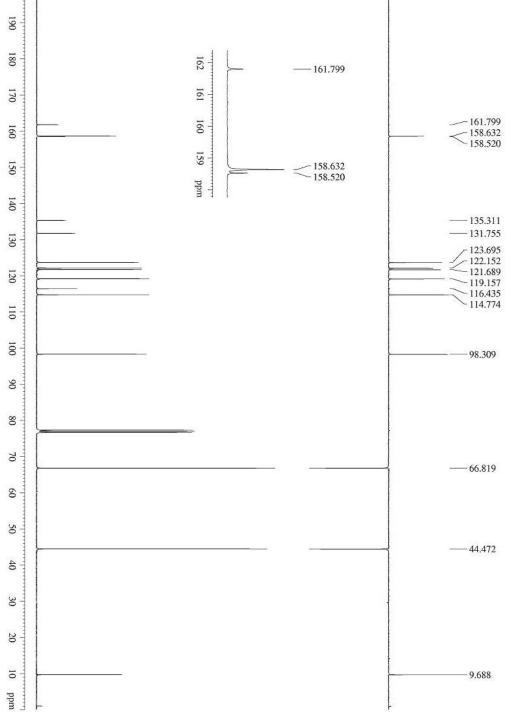
6

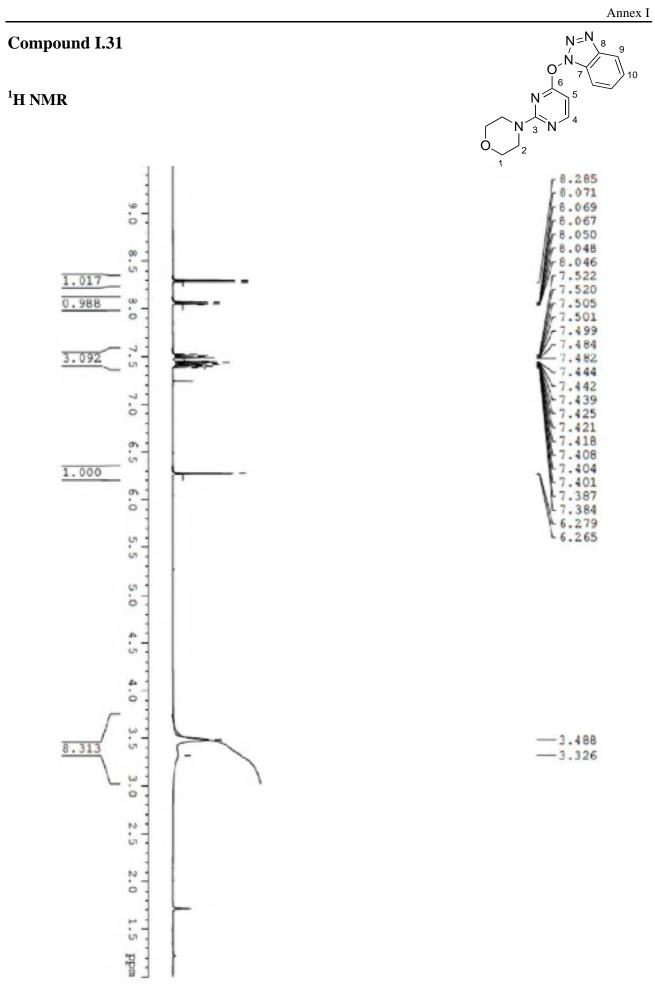

15

13

14

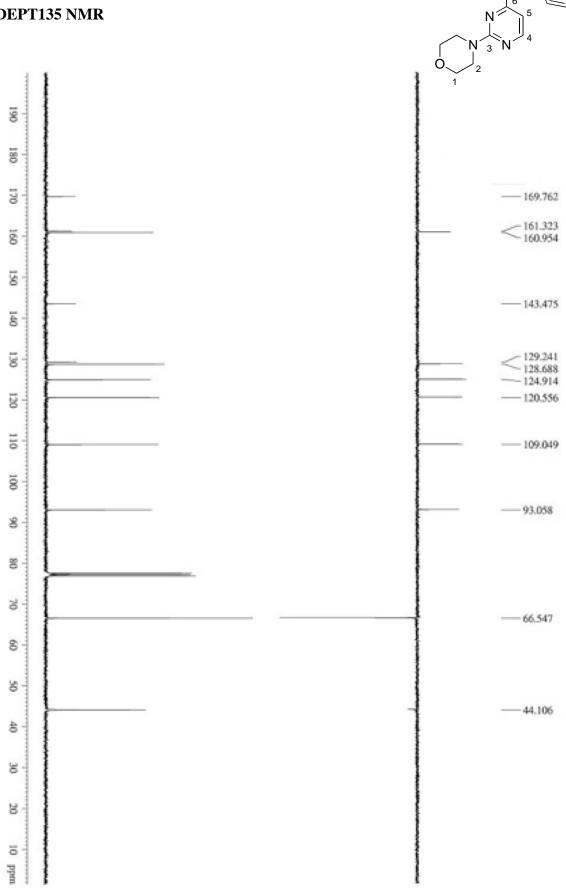

Compound I.30d


¹H NMR



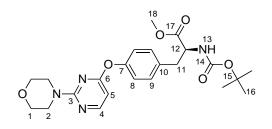
Compound I.30d

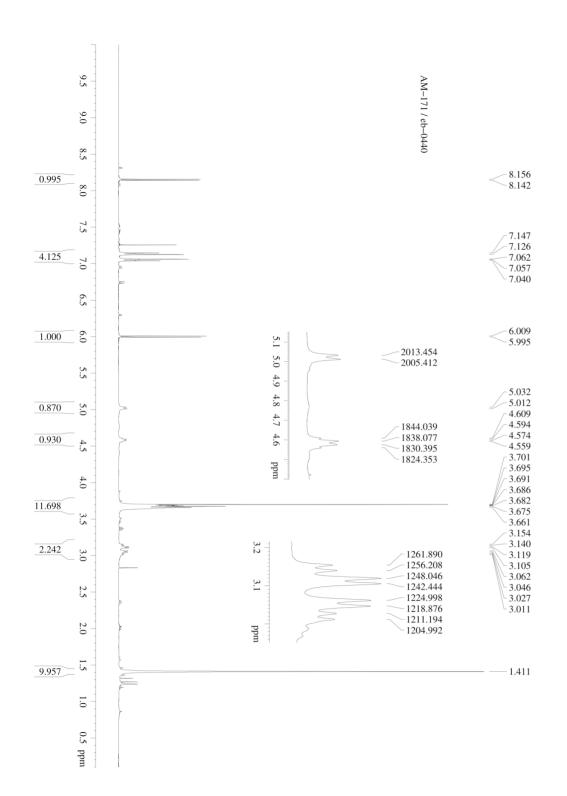
¹³C NMR



Compound I.31

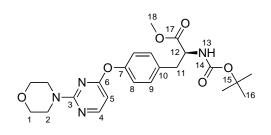
¹³C / DEPT135 NMR

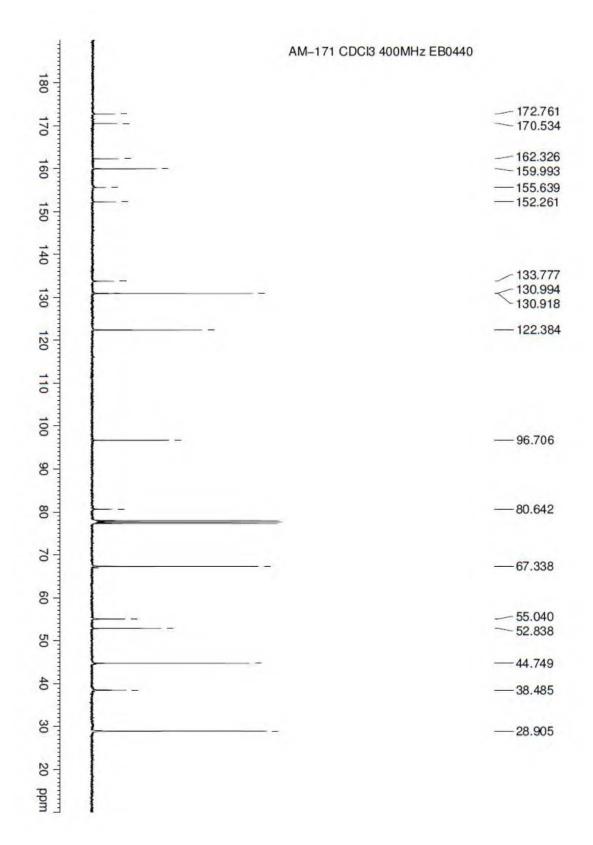

N=N 8

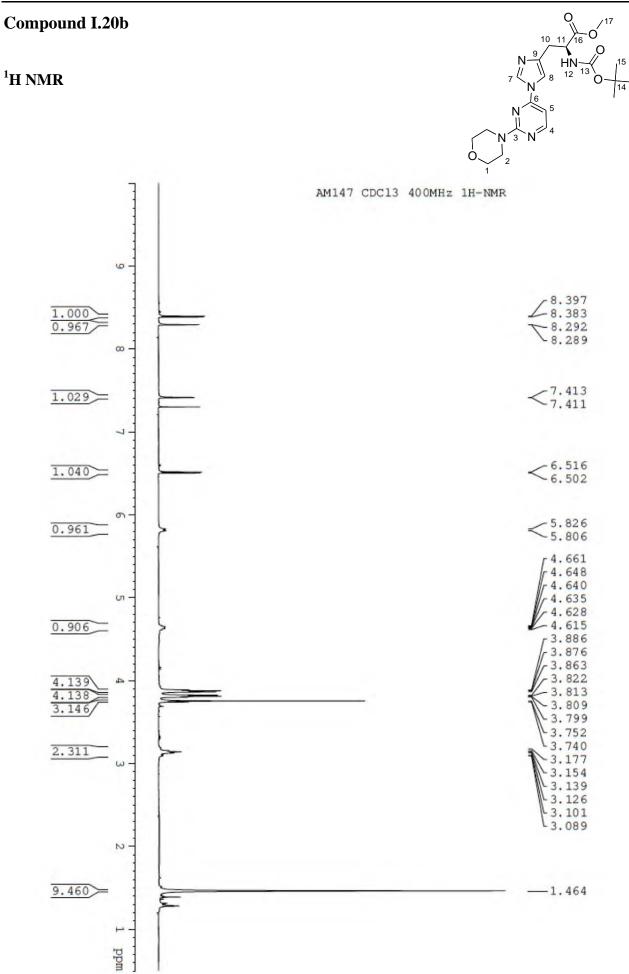

0^{_Ń} ↓6

9

Compound I.20a

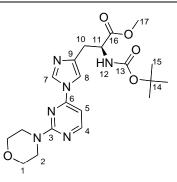

¹H NMR

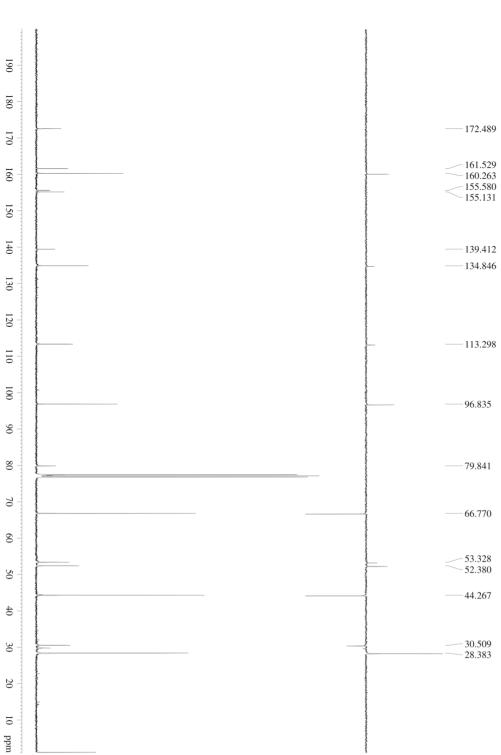


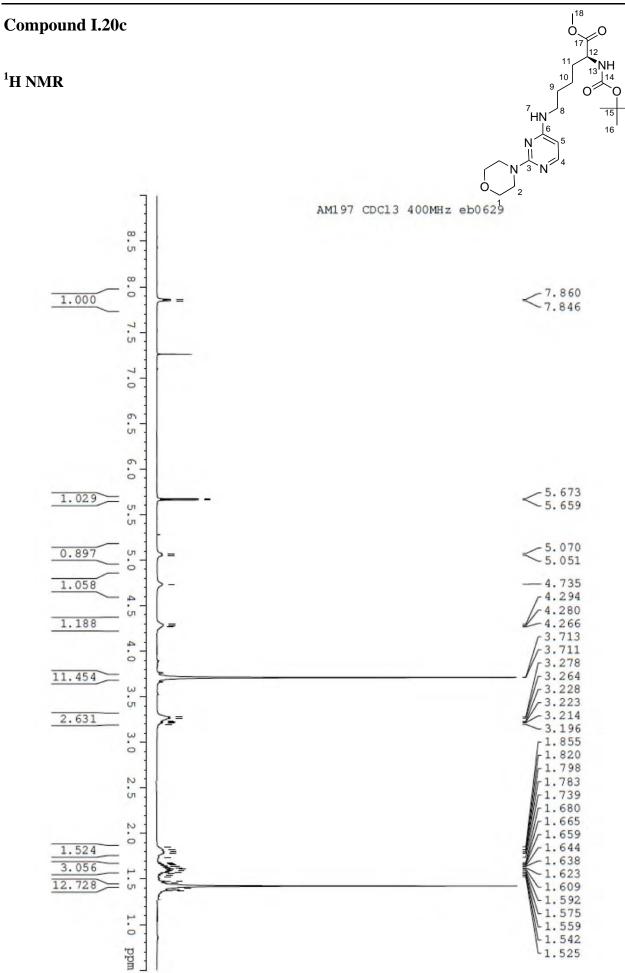


Compound I.20a

¹³C NMR

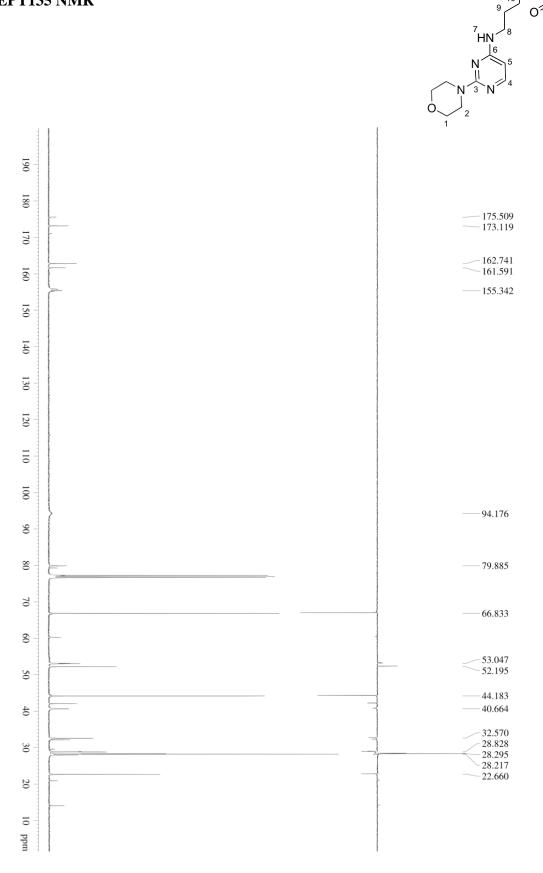






Compound I.20b

¹³C / DEPT135 NMR



A27

Compound I.20c

¹³C / DEPT135 NMR

18

Ò

1

10

0

16

20

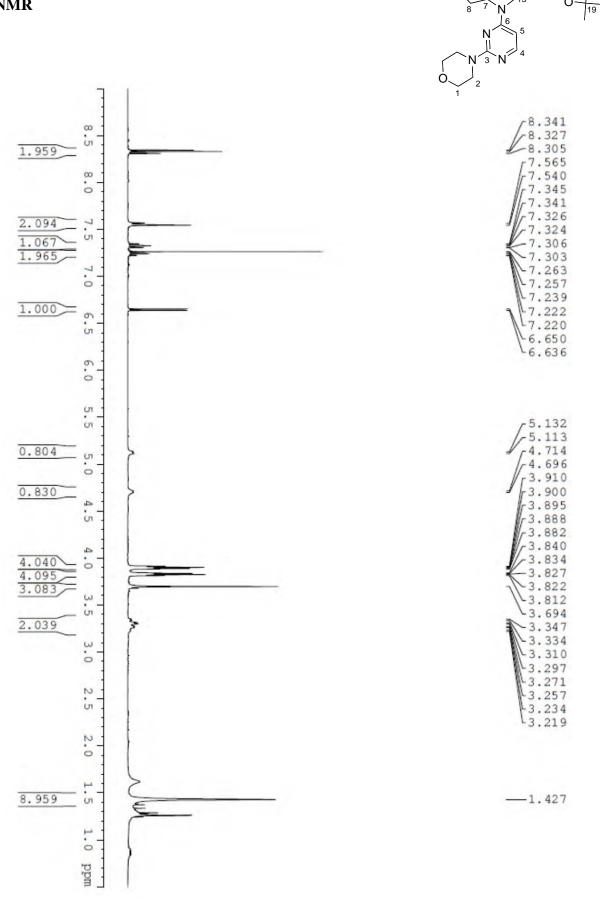
22

۰Ó

Ő

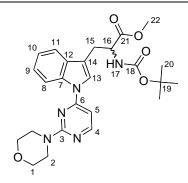
/21 14 HN 17 18

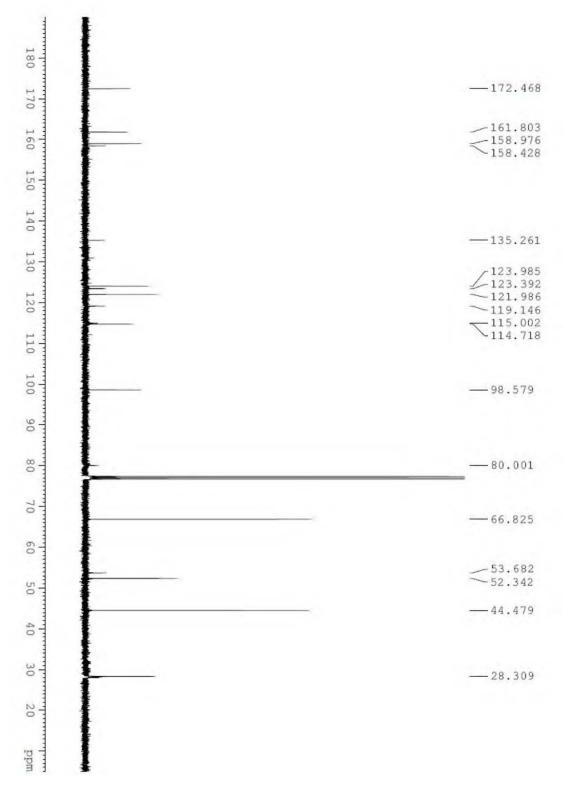
15 16

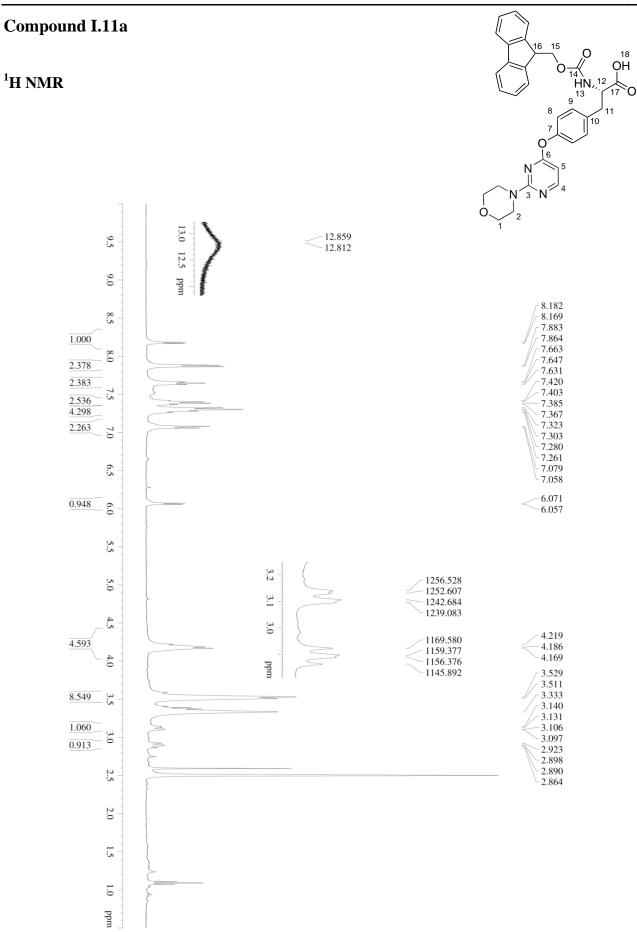

11

12

10

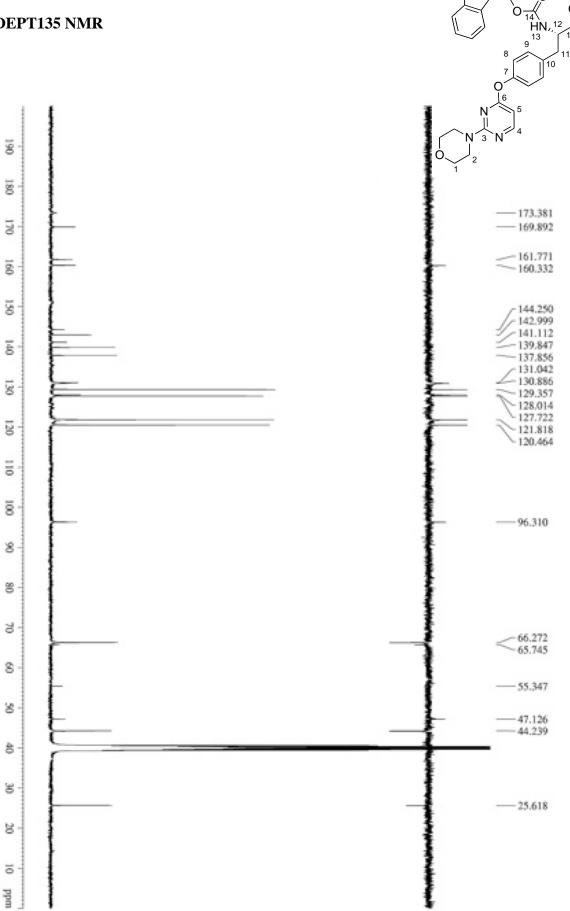



¹H NMR



Compound I.20d

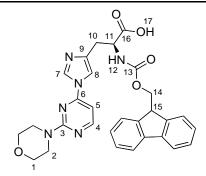
¹³C NMR

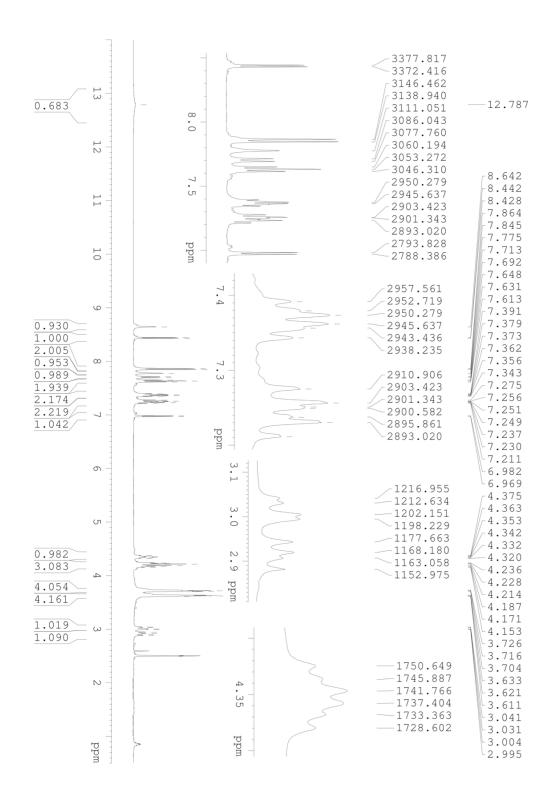


Compound I.11a

¹³C / DEPT135 NMR

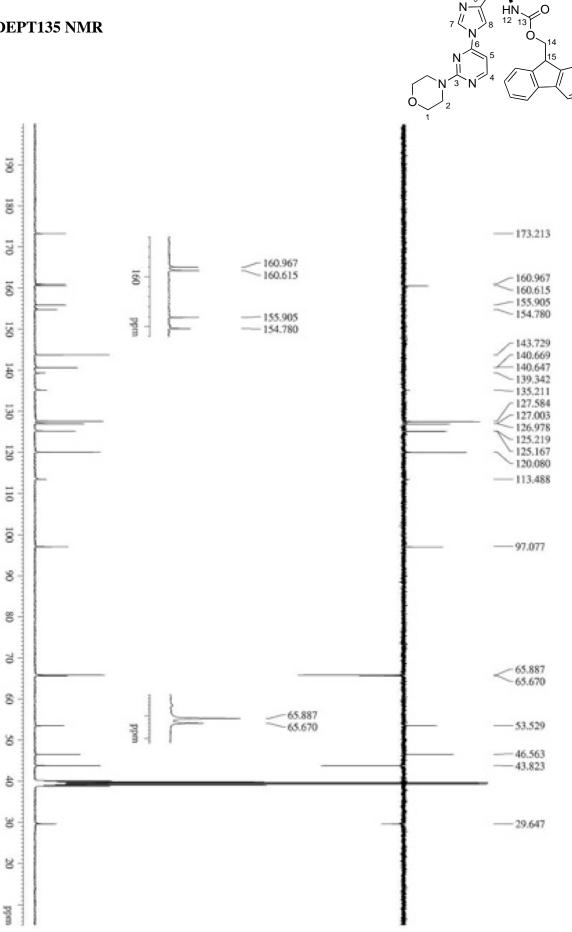
15 16


 \cap

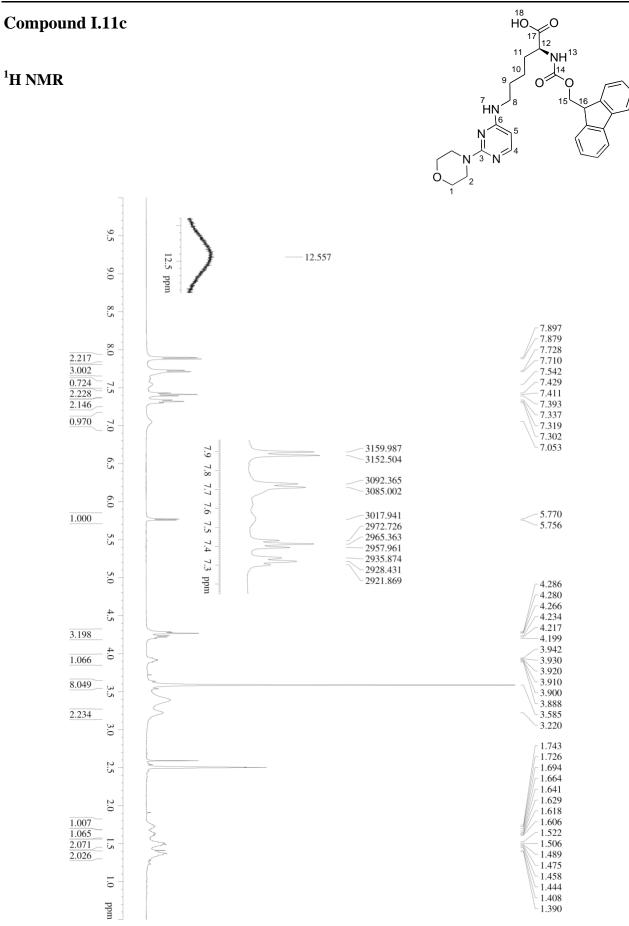

18 OH

Ò 17

Compound I.11b


¹H NMR

Compound I.11b


¹³C / DEPT135 NMR

C

10 q

17 OH

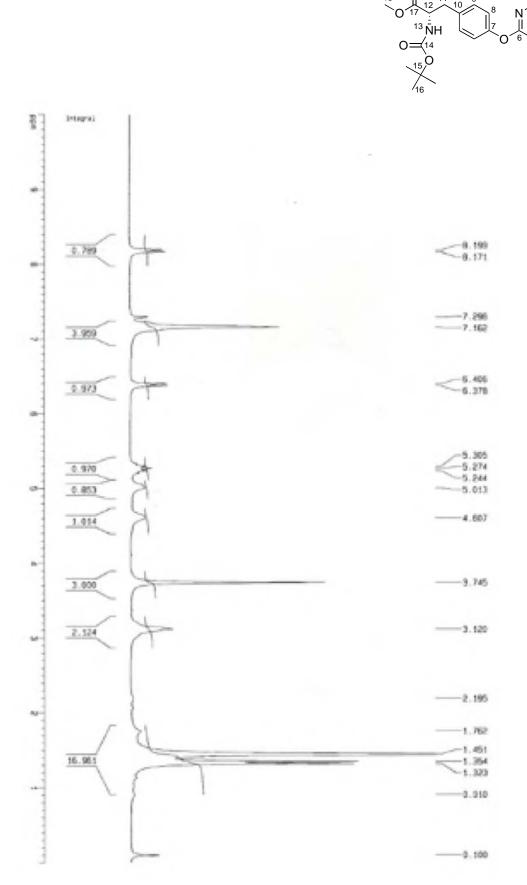
Compound I.11c

¹³C / DEPT135 NMR

18 HO

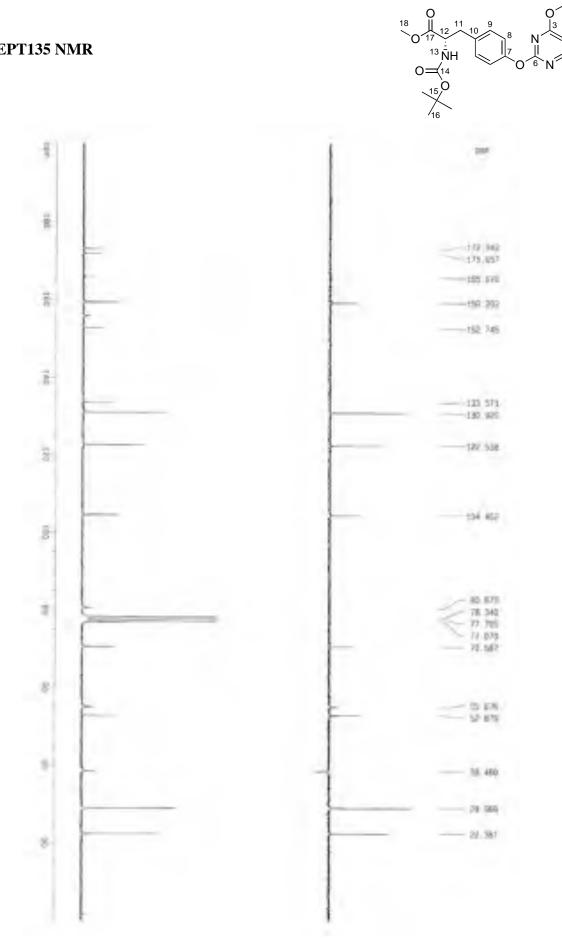
11

-0 17 12


 \cap

11

I.2. Pyrimidin-2-yl amino acids


Compound I.32aa

¹H NMR

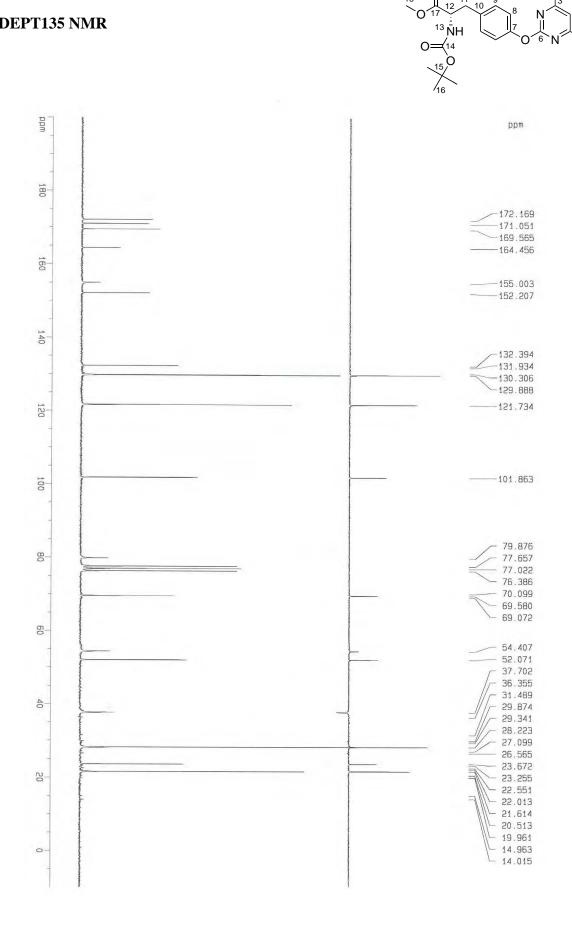
Compound I.32aa

¹³C / DEPT135 NMR

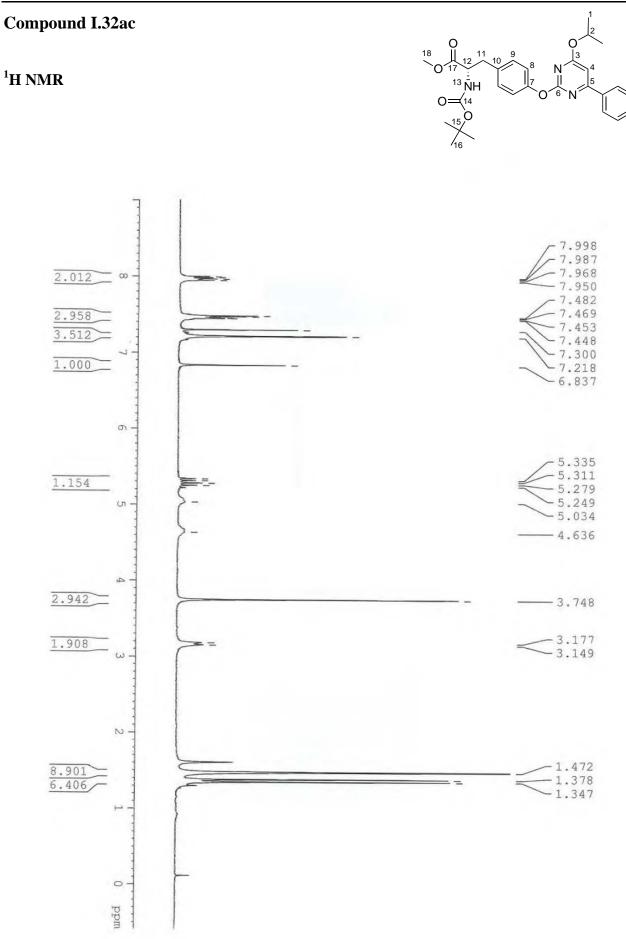
2

5

18

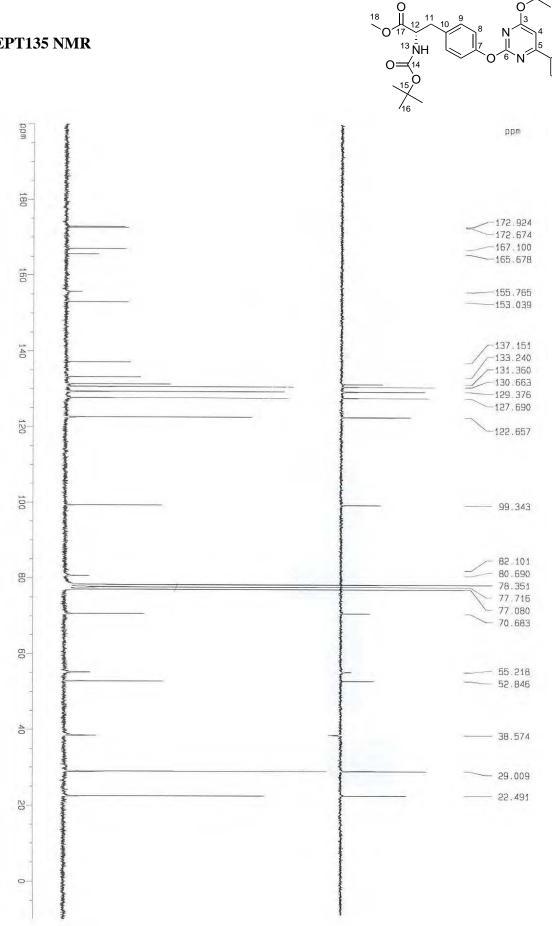

19

2

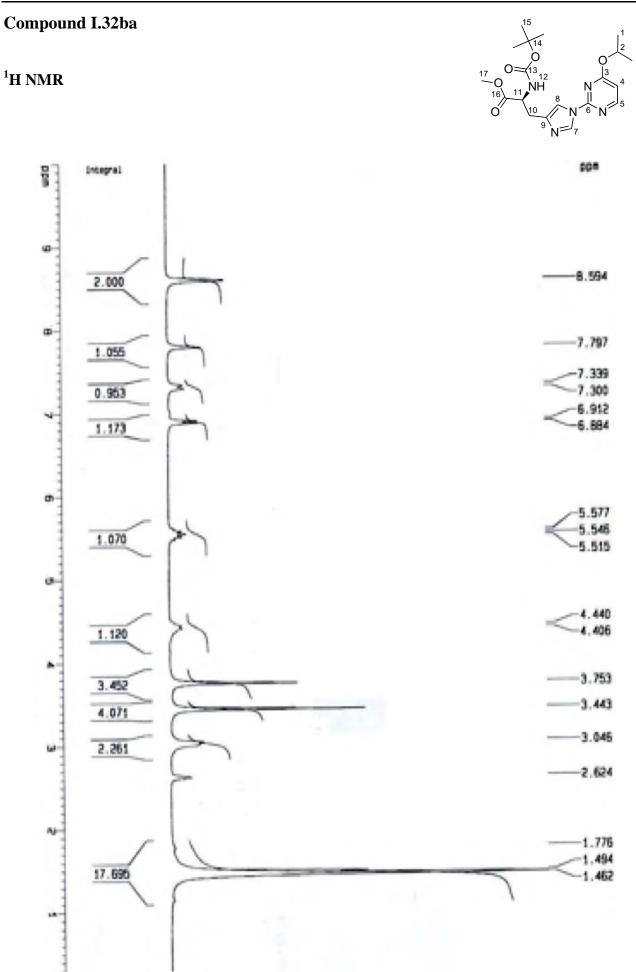

Compound I.32ab $\begin{array}{c} 0 \\ 12 \\ 13 \\ \hline NH \\ 0 \\ 14 \\ 15 \\ 5 \end{array}$ 0 9 10 ¹H NMR റ ppm Integral ppm ш--00 -7.299 4.2100 -7.131 1.0000 -6.222 5-5.299 -5.137 -5.106 1.9462 -5.076 17--5.045 -5.014 -4.609 1.0573 -4 -3.715 -3.707 3.1969 -3.119 2.1266 -3.095 w--2.954 -2.882 0.0541 -2.345 3.2487 -1.943 2 -1.527 -1.431 -1.359 9.8488 -1.327 ş 1.262 6.6935 -1.254 -1.231 -1.223 -1.111 -0.886

Compound I.32ab

¹³C / DEPT135 NMR

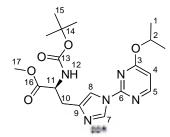


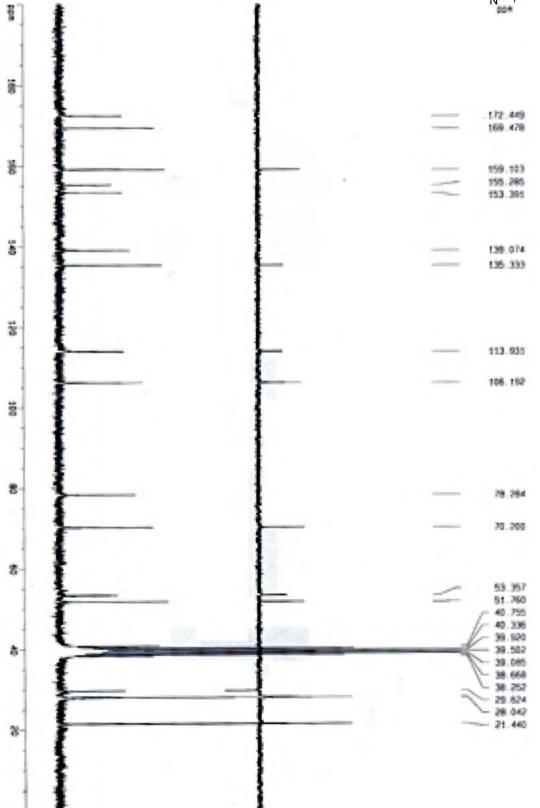
18



Compound I.32ac

¹³C /DEPT135 NMR

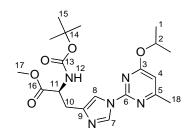

18

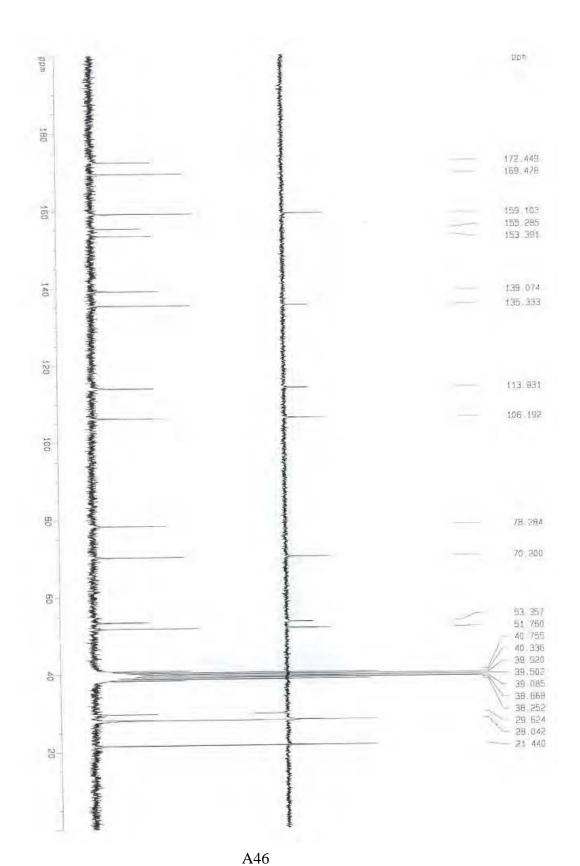


A43

Compound I.32ba

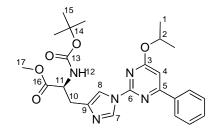
¹³C / DEPT135 NMR

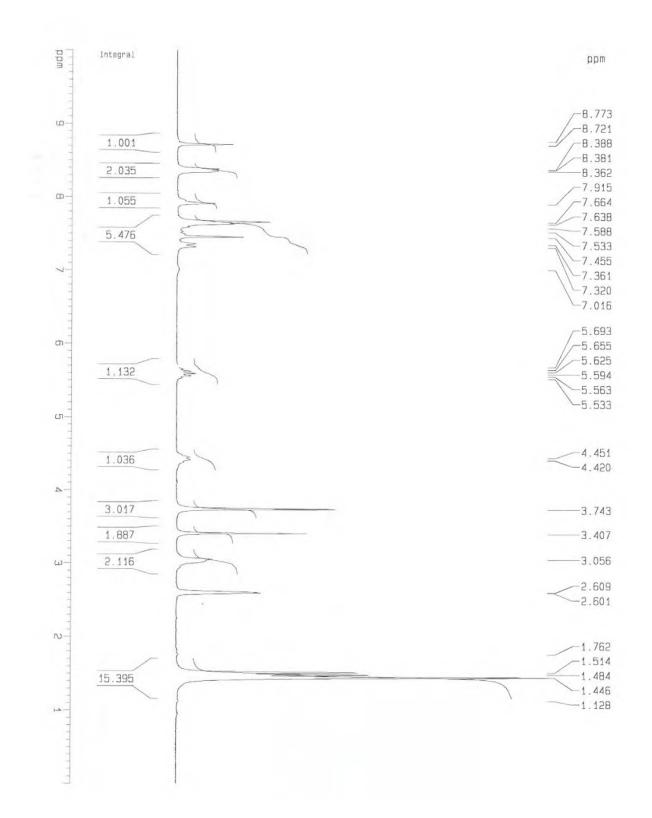




15 Compound I.32bb Ô 0= ¹³12 NH 17 -0 16 0 ¹H NMR 18 9 N=17 ppm ppm Integral ω 8.594 2.000 0 7.797 1.055 7.339 7.300 0.953 6.912 1 6.884 1.173 0 5.577 5.546 1.070 5.515 U1-4.440 4.406 1.120 4 3.753 3.452 3.443 4.071 3.046 2.261 ω--2.624 N--1.776 1.494 17.695 1.462 12

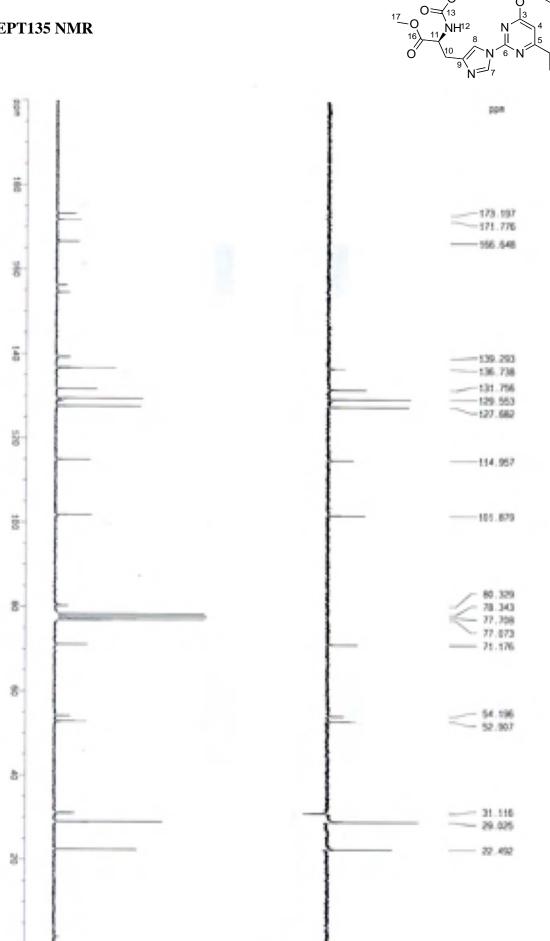
Compound I.32bb


¹³C / DEPT135 NMR



Compound I.32bc

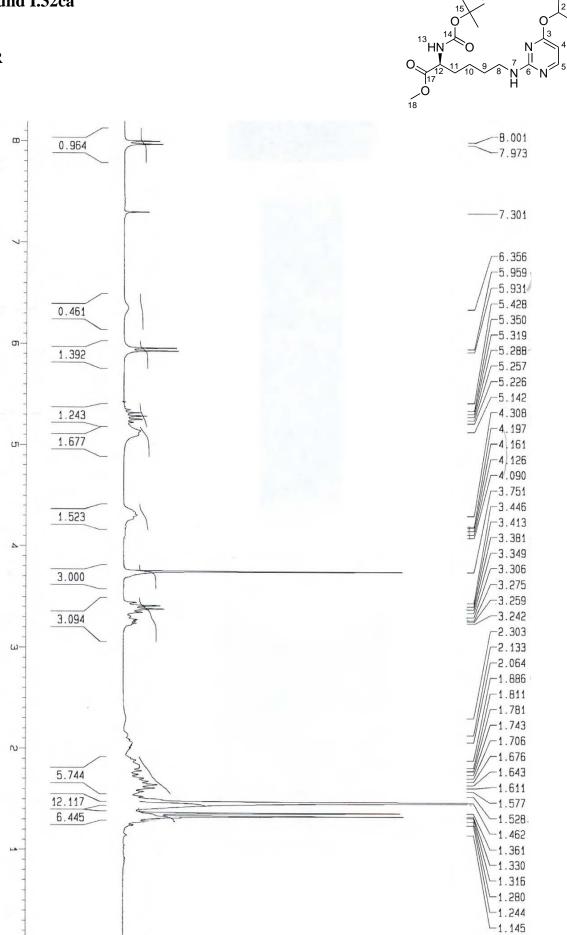
¹H NMR



A47

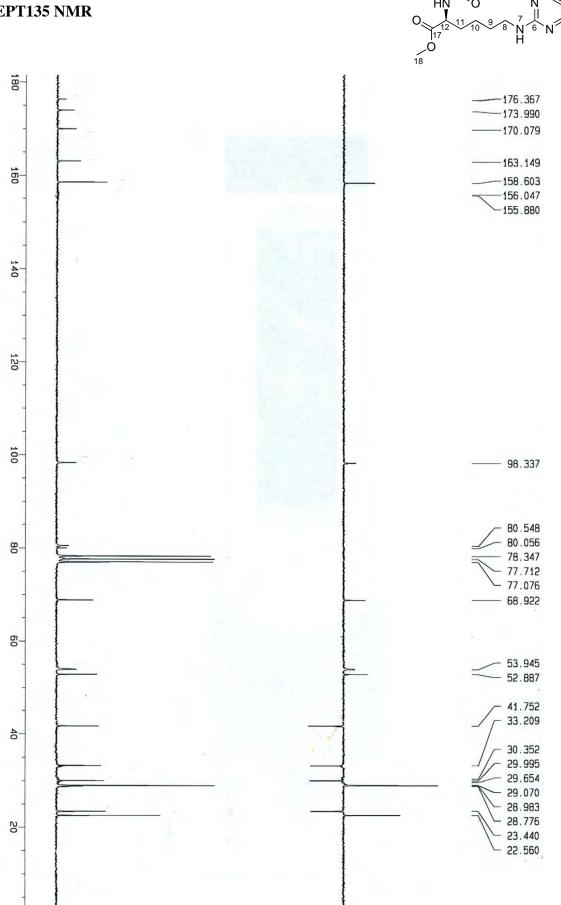
Compound I.32bc

¹³C / DEPT135 NMR


15

(14 0

Compound I.32ca

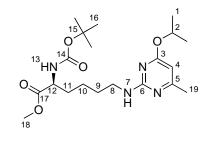

¹H NMR

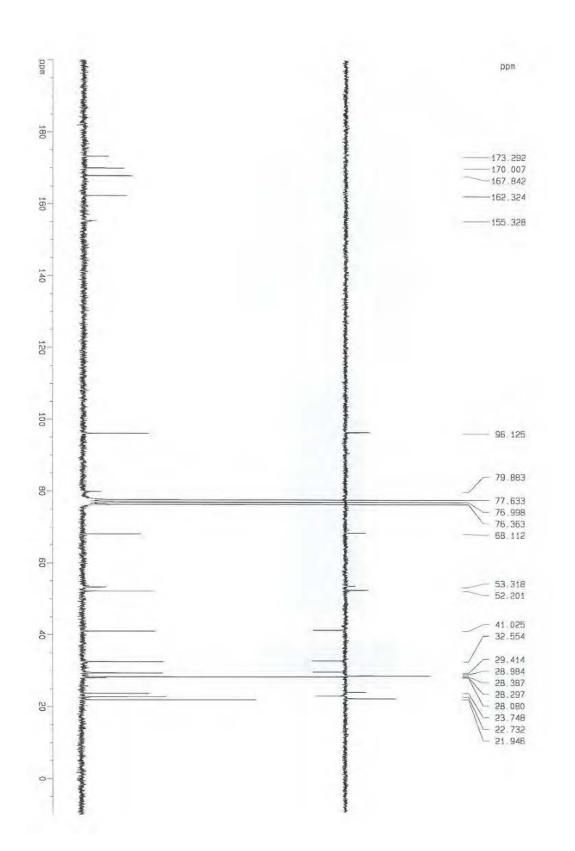
Compound I.32ca

¹³C / DEPT135 NMR

16

19

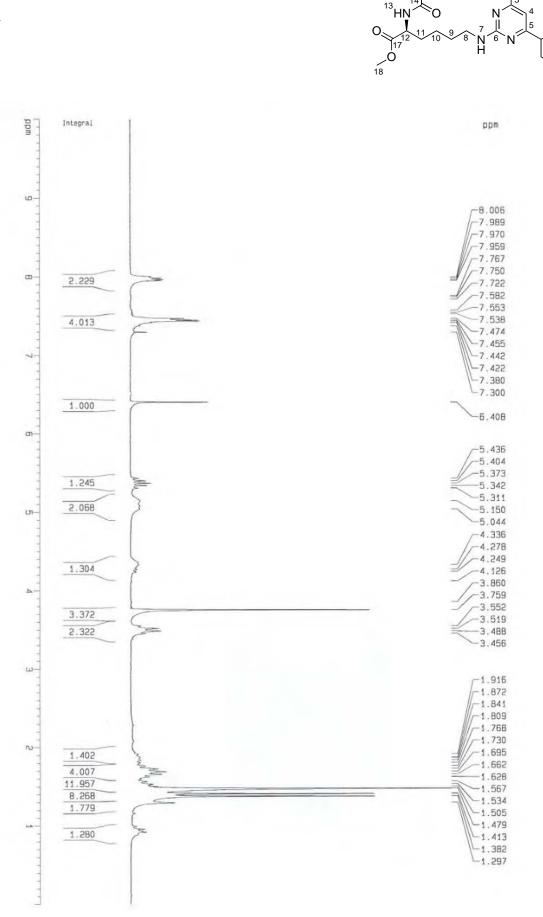

2


Compound I.32cb 16 ¹³HN 14 ¹H NMR 7 N H 6) 17 .0 18 ppm Integral ppm 6-0 -00 -7.300 -7.296 -5.836 -5.347 **m**-1.000 -5.318 -5.287 -5.256 -5.225 1.010 4.973 **L**n-1.717 -4.338 -4.309 -3.762 -3.759 -3.456 1.139 -3.424 -3.392 4 -3.360 2.874 2.026 -2.298 -2.247 -2.202 ω-2.198 -2.076 -1.860 -1.786 2.894 -1.746 -1.710 N -1.672 2.753 1.638 3.882 1.604 12.958 -1.570 6.429 -1.526 -1.474 -1.454 1.410 -1.363 -1.361 1.332 -1.291 -0.104

A51

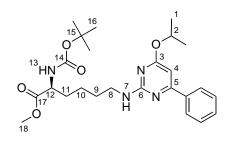
Compound I.32cb

¹³C / DEPT135 NMR



14

Compound I.32cc

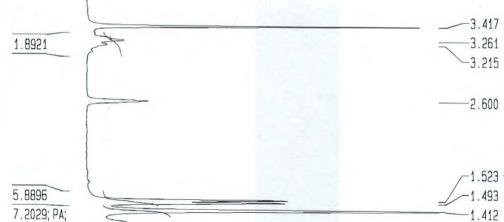

¹H NMR

A53

Compound I.32cc

¹³C / DEPT135 NMR

ppm ppm 180 -173.405 -170.880 170.661 165.673 162.698 160 155.461 138.139 137.985 140 -130.960 -129.959 128.900 128.599 120 128.084 -126.942 -122.152 100 93.599 93.231 80.002 77.764 77.129 76.494 68.481 08 68,258 67,567 60 53,461 52,315 41,298 32,735 40 30.479 30.479 30.055 29.787 29.534 29.031 28.415 20 23.074 22.925 22.105 0

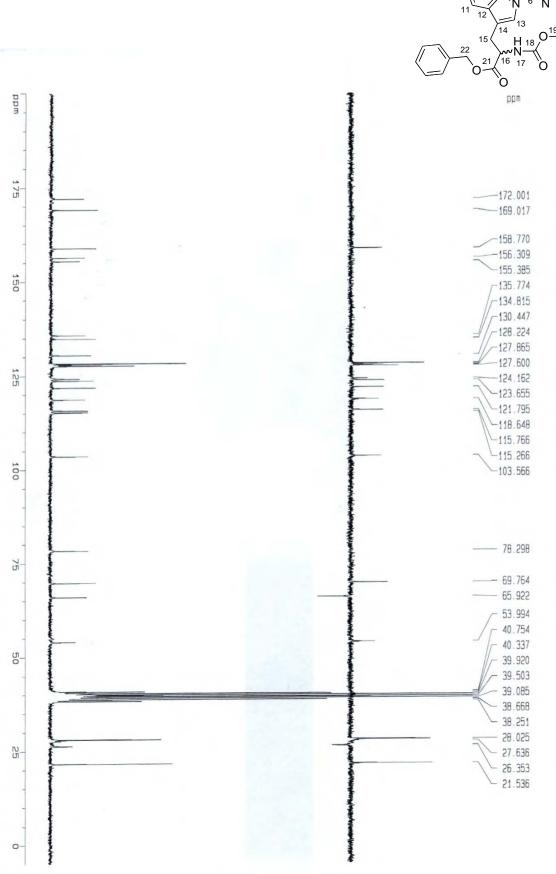

5

0

-1.286

20

Compound I.32ea ¹H NMR 10 11 12 13 [−] H 18 O¹⁹ 14 1522 21 16 17 ò Э ò -8.788 -8.748 1.0215 8.610 0.9634 -8.582 -8.237 0.9599 -7.719 ∞--7.681/ 1.0451 -7.566 0.8416 -7.527 6.6947 -7.470 -7.434 -7.374 0.9394 -7.332 -7.298 6.761 6.733 **o**--5.585 -5.554 0.9896 -5.523 1.9228 -5.493 -5.192 0.0056 -4.483 1.0000 -4.452 4



N-

A55

Compound I.32ea

¹³C / DEPT135 NMR

10

Compound I.32eb

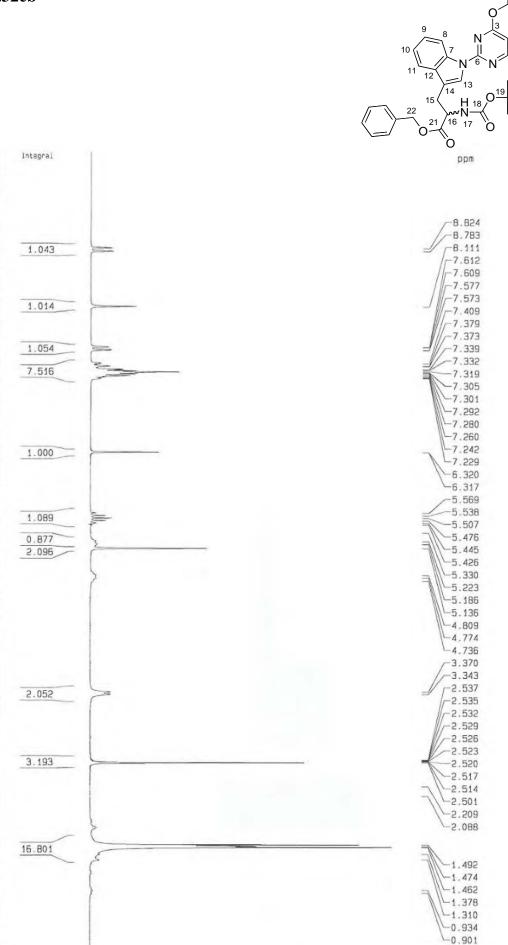
ppm

6-0

-

5

5


4

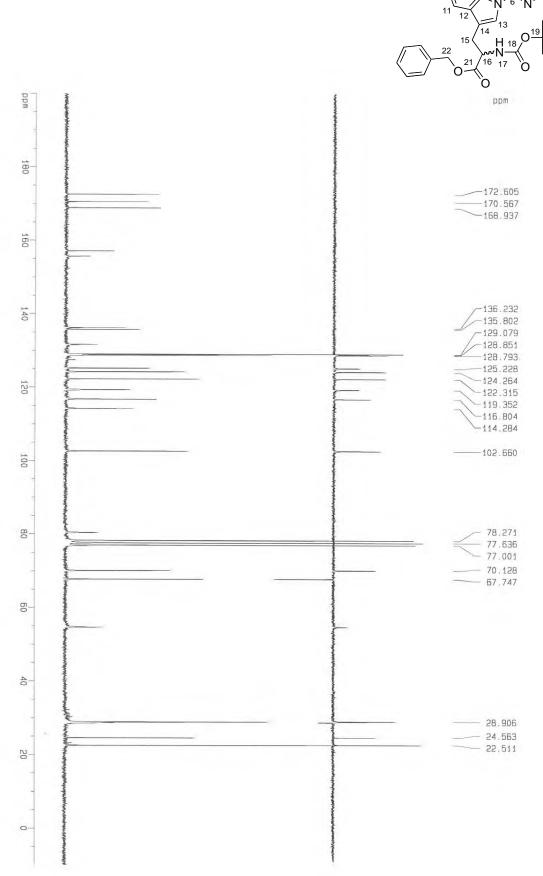
w

nu-

-

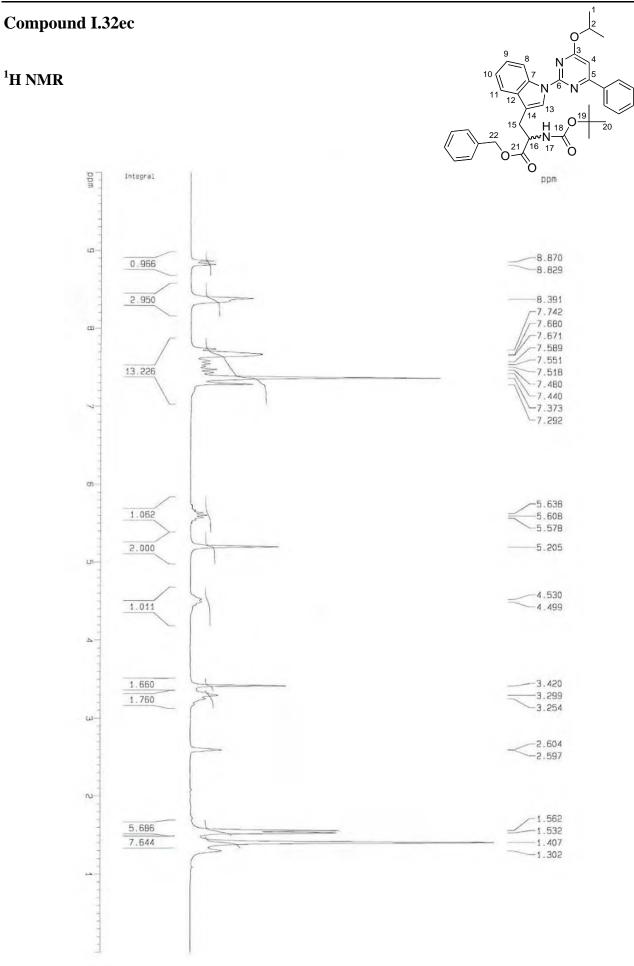
¹H NMR

23

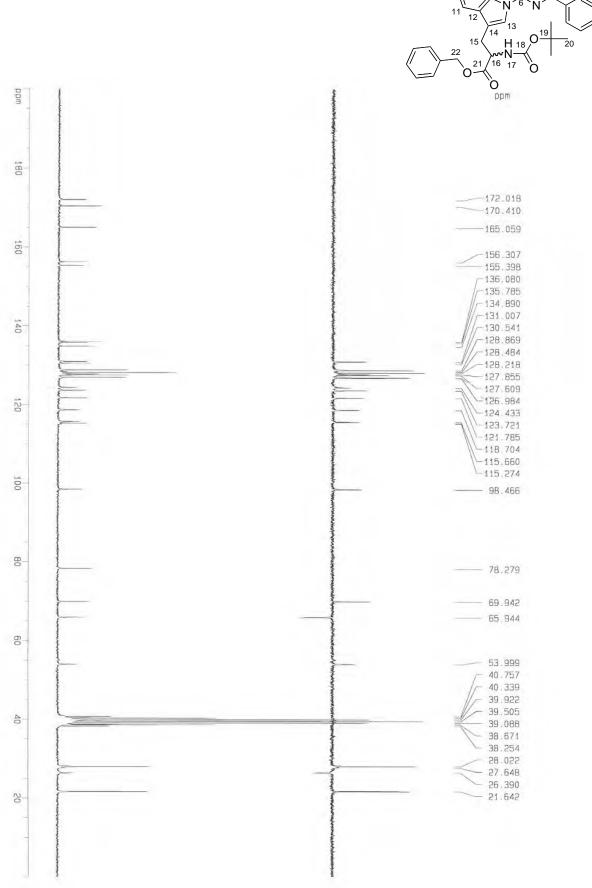

20

-0.130

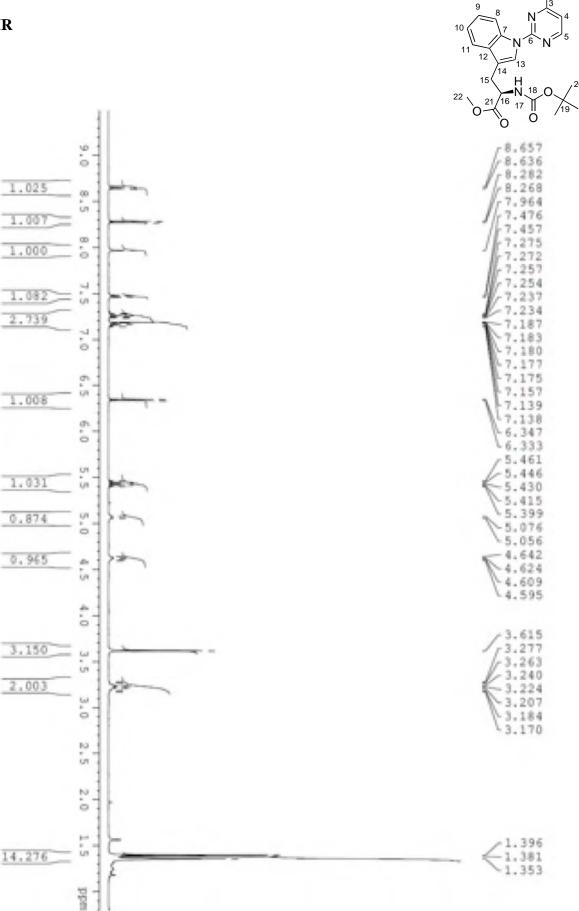
1


Compound I.32eb

¹³C / DEPT135 NMR


10

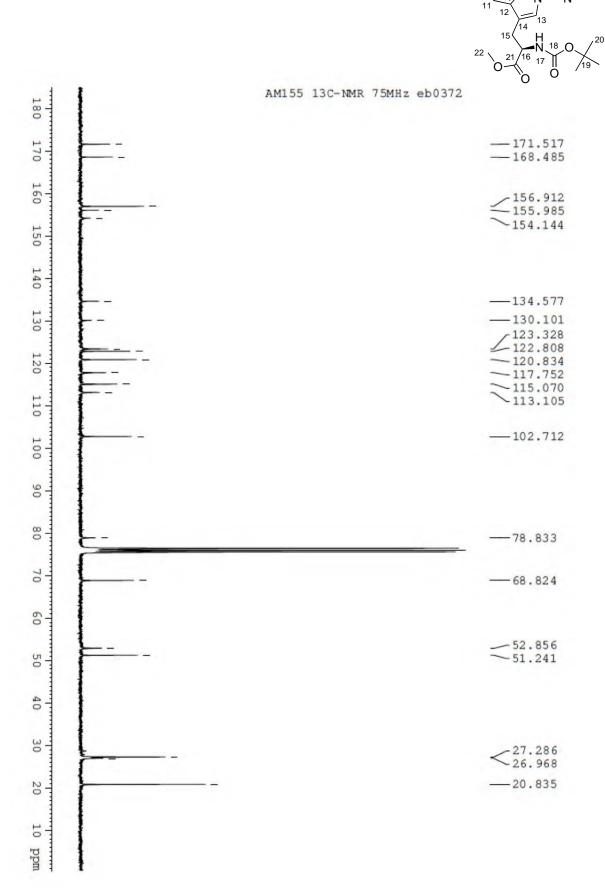
23



Compound I.32ec

¹³C / DEPT135 NMR

¹H NMR

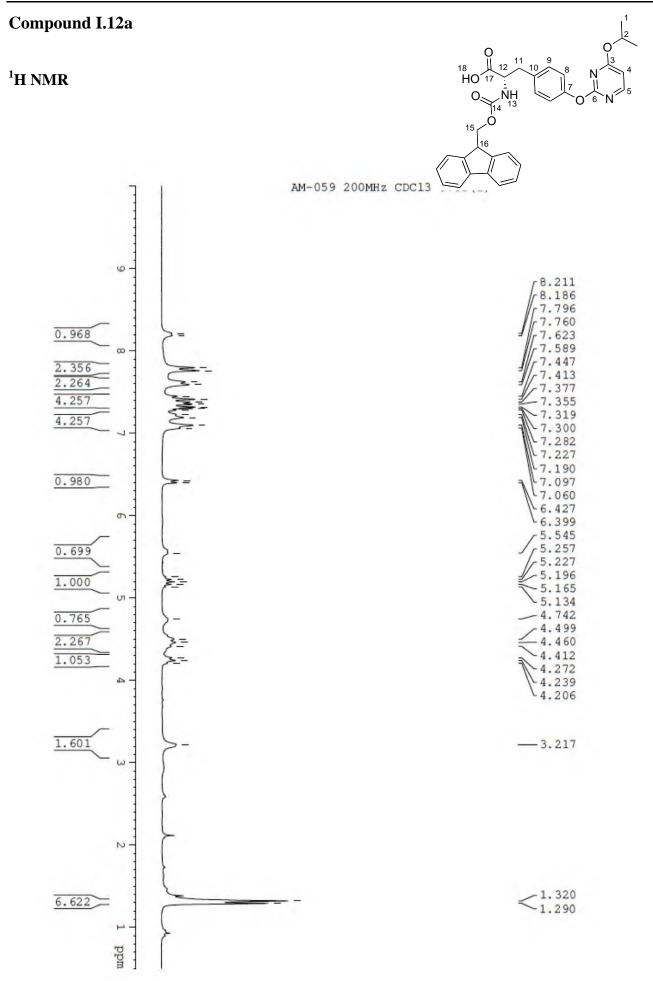

2

5

,20

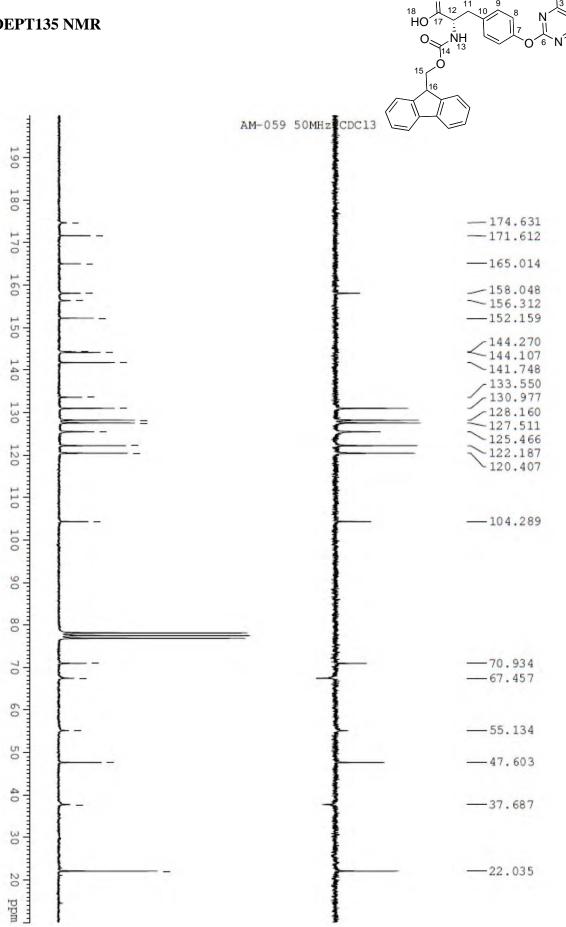
Compound I.32da

¹³C NMR



9

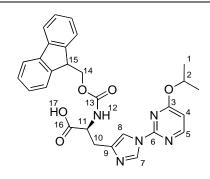
5

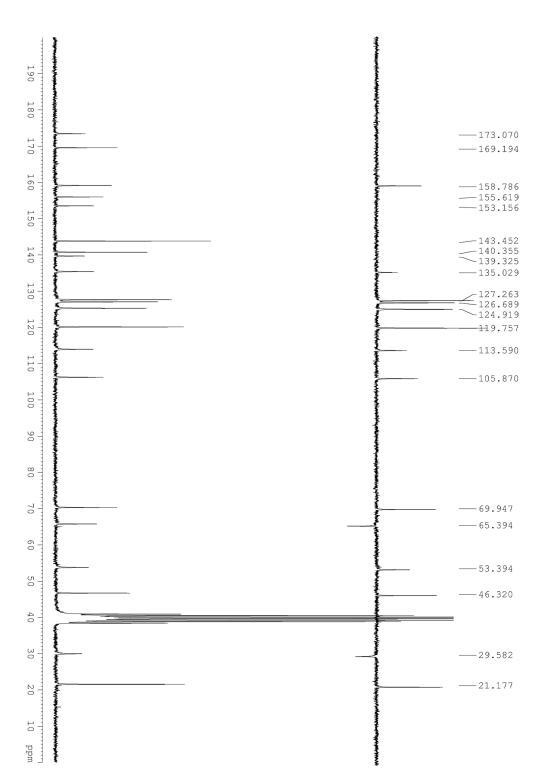

10

A62

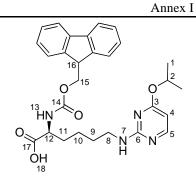
Compound I.12a

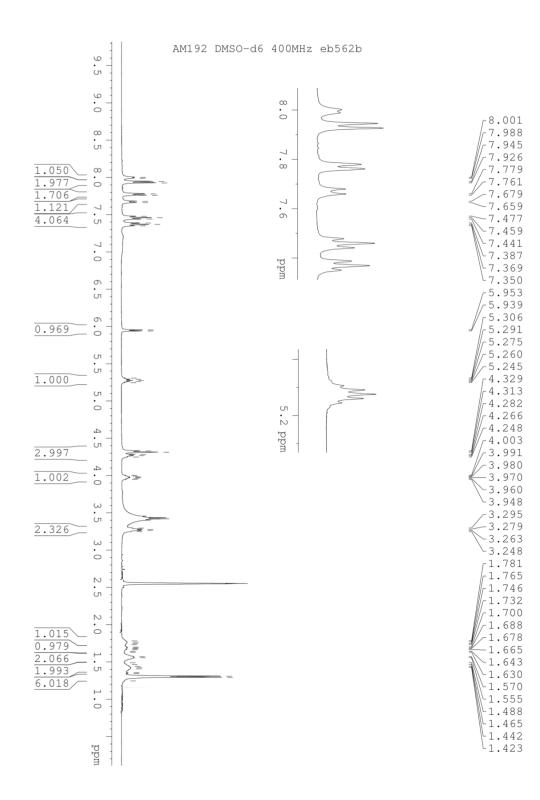
¹³C / DEPT135 NMR

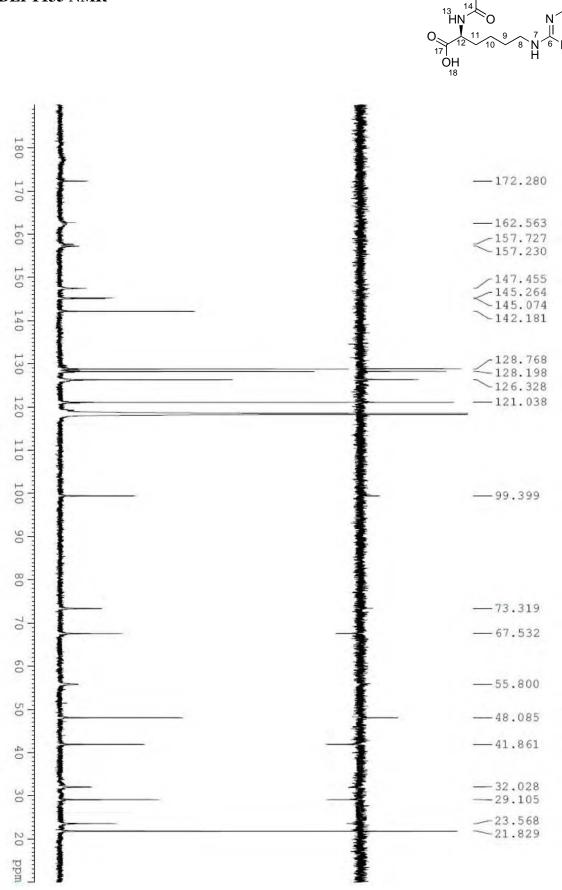


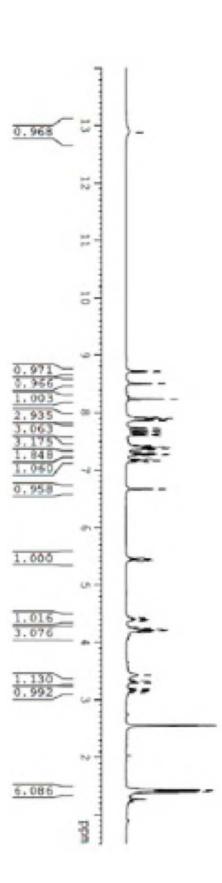

0

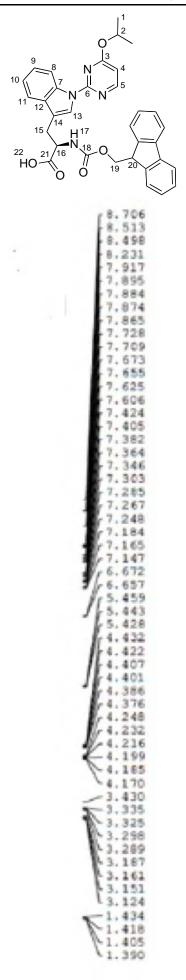
11


Compound I.12b ¹H NMR റ NH¹² 17 HO 16 13 11 ó 10 9 N=17 AM072 DMSO-d6 300MHz 25ºC eb0789 8.482 9.0 8.458 8.438 7.861 8.5 7.836 1.899 7.687 7.640 8.0 7.625 2.060 7.616 7.601 4.019 7.5 7.385 2.166 7.362 2.071 7.344 7.0 7.320 7.264 0.989 7.237 6.5 7.207 7.182 6.771 6.0 6.752 5.381 5.359 5.5 5.339 1.000 5.319 5.298 5.0 4.293 4.279 4.265 4.5 4.254 4.248 4.000 4.232 4.0 4.209 4.191 4.172 3.5 3.063 3.052 3.039 3.0 1.091 3.016 1.029 3.003 2.954 2.5 2.922 2.904 2.883 2.0 2.873 1.5 1.320 6.203 1.298 1.275 1.0 ppm

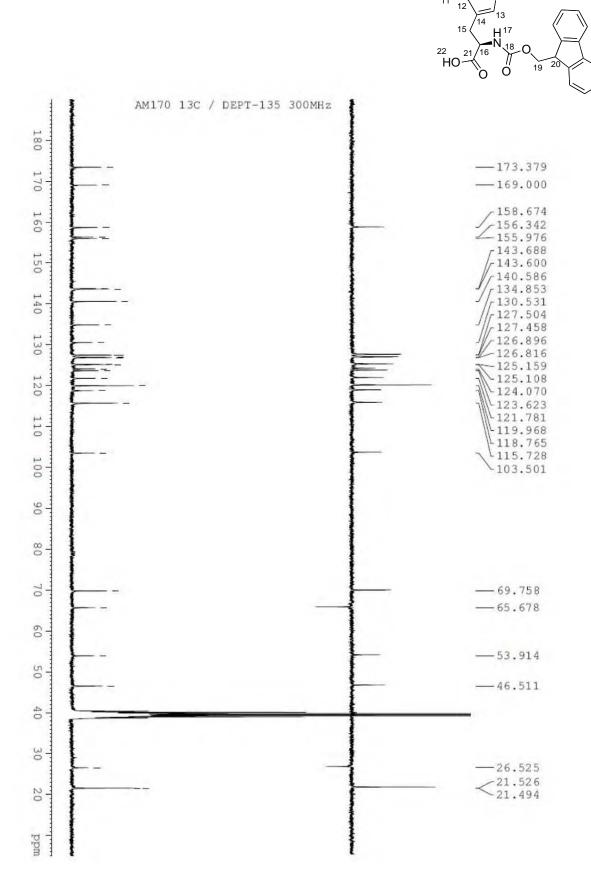

Compound I.12b


Compound I.12c



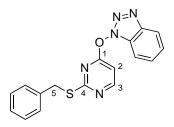

Compound I.12c

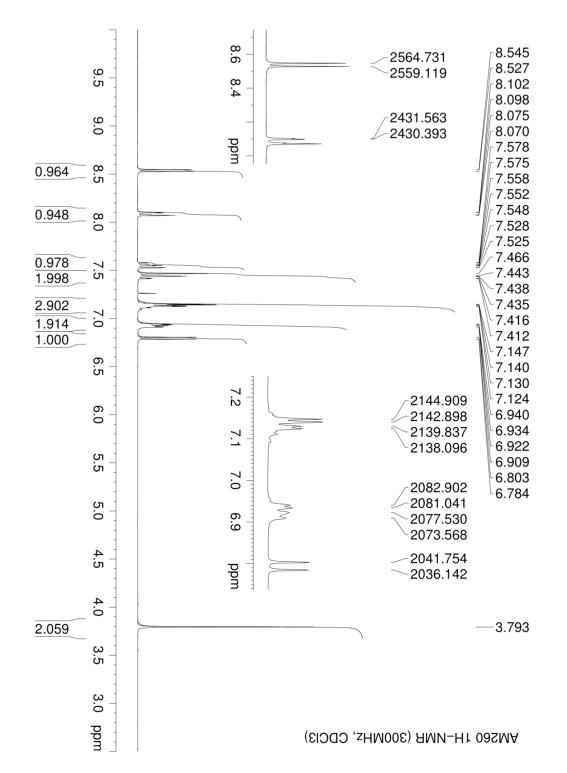
¹³C / DEPT135 NMR


15

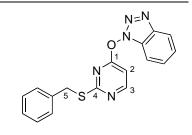
Compound I.12d

¹³C NMR

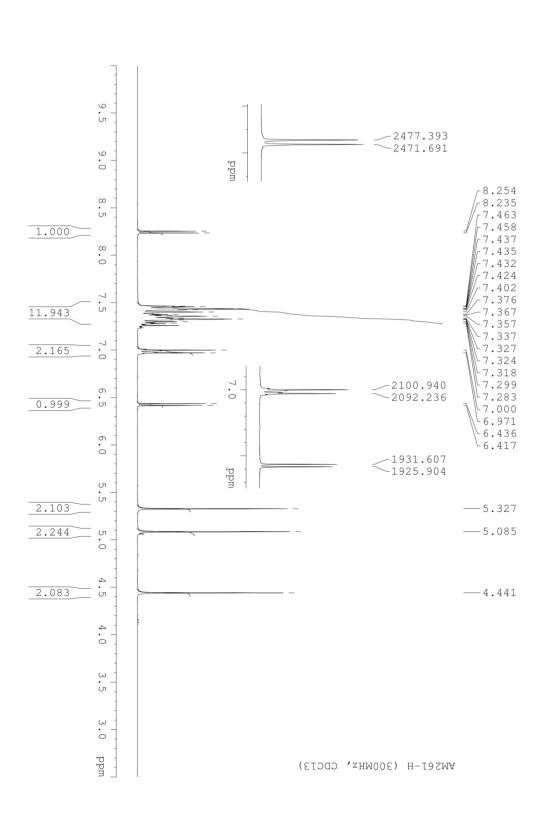



10

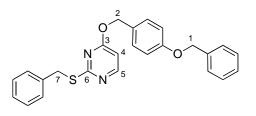
11

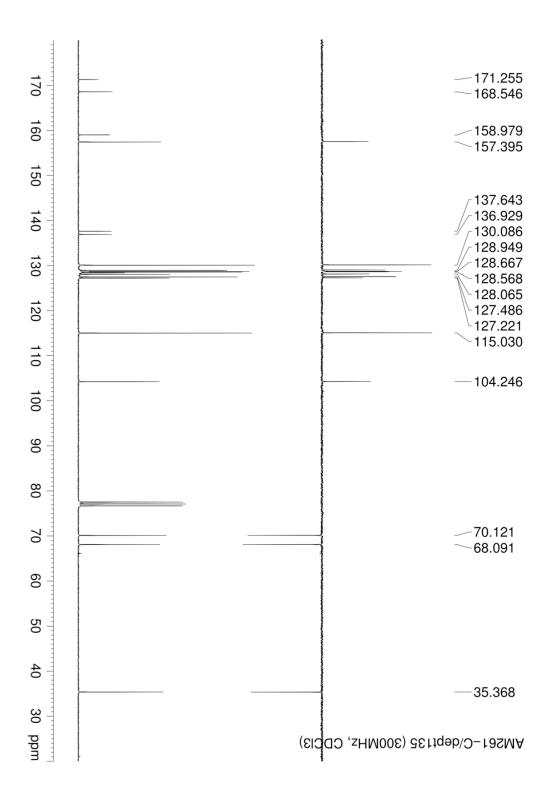

I.3. Pyrimidin-2-one amino acids


Compound I.17


2

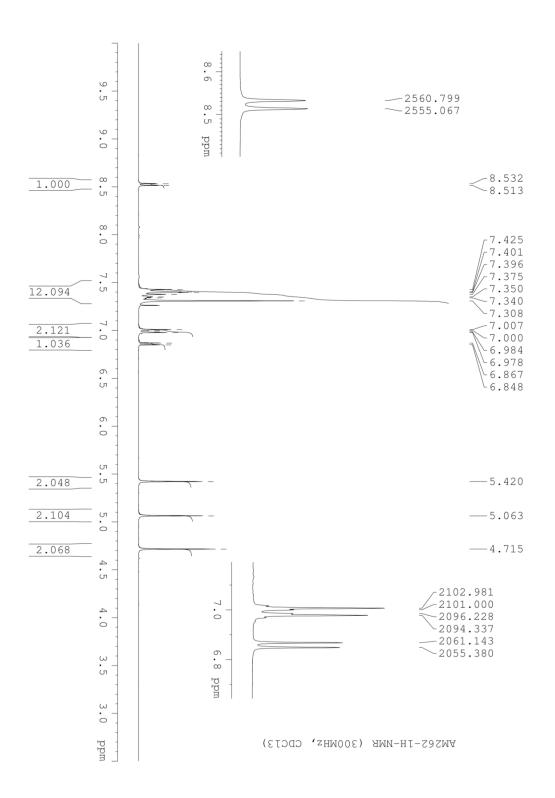
5


0 |3

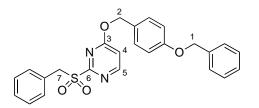

7 S 6 N

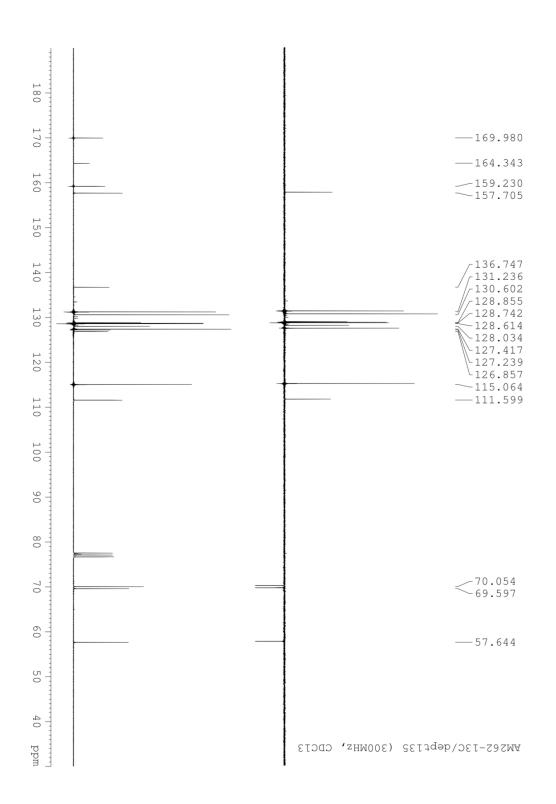
Compound I.40

Compound I.40

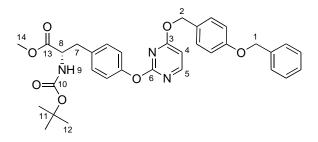

2

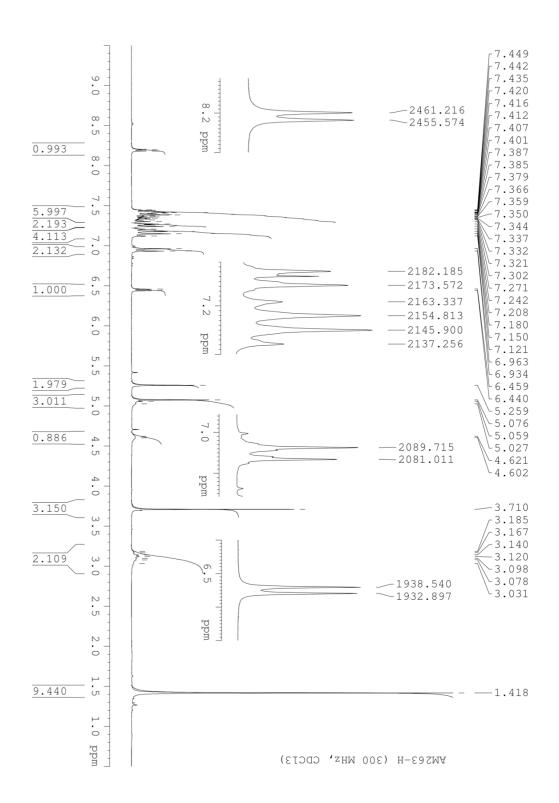
5

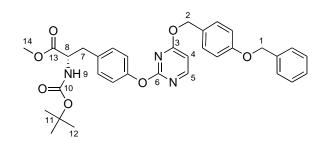

Ń

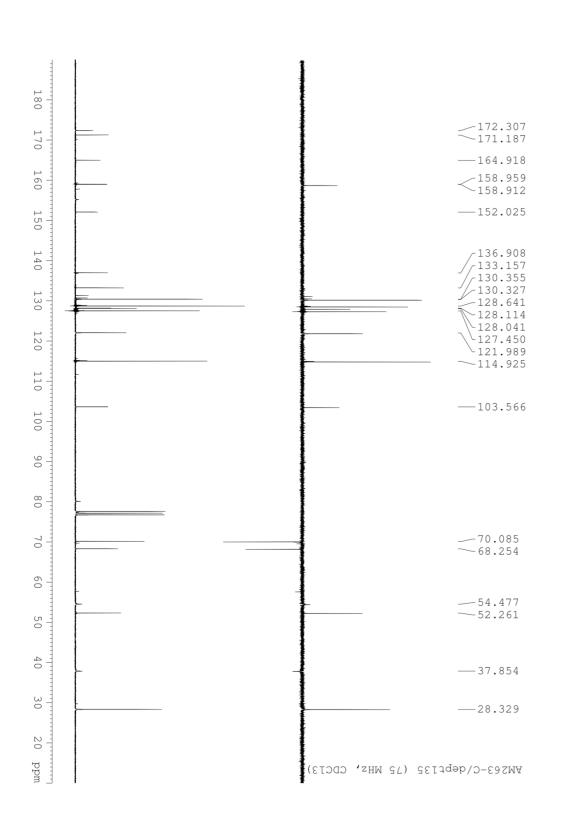

7 S 6 0 0 0

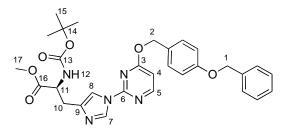
Compound I.38

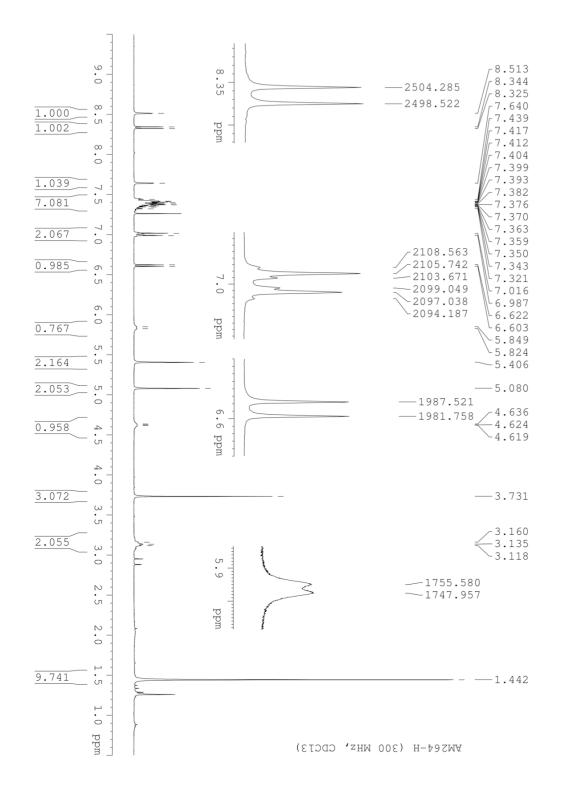


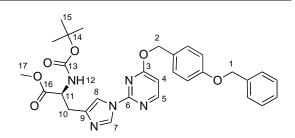

Compound I.38

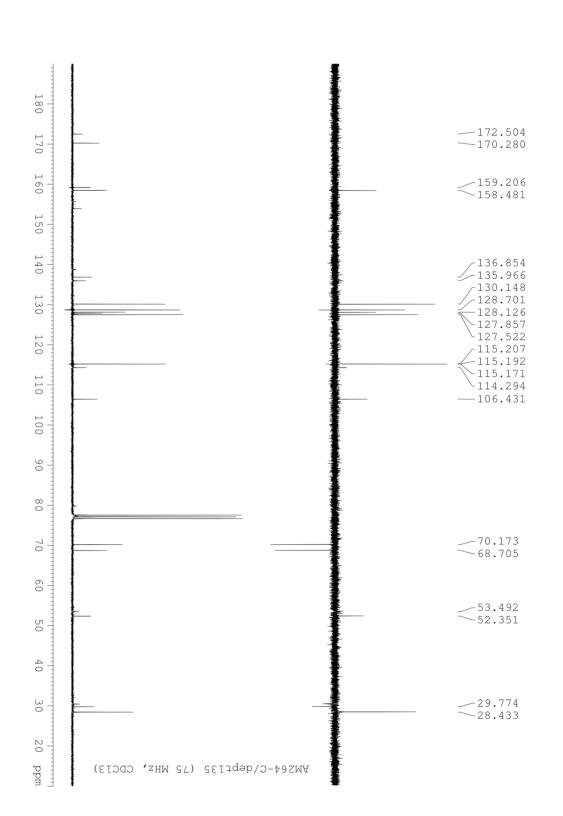



Compound I.39a

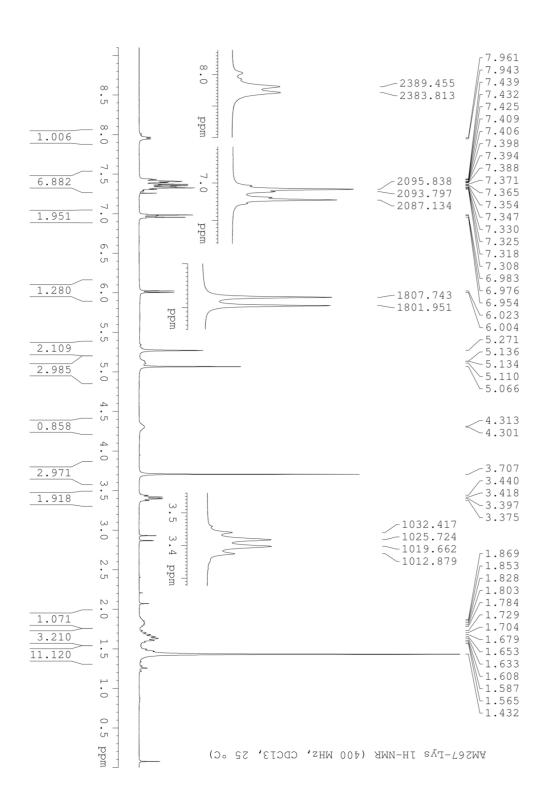


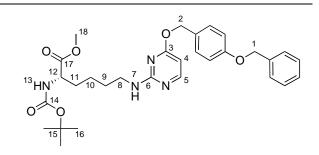

Compound I.39a

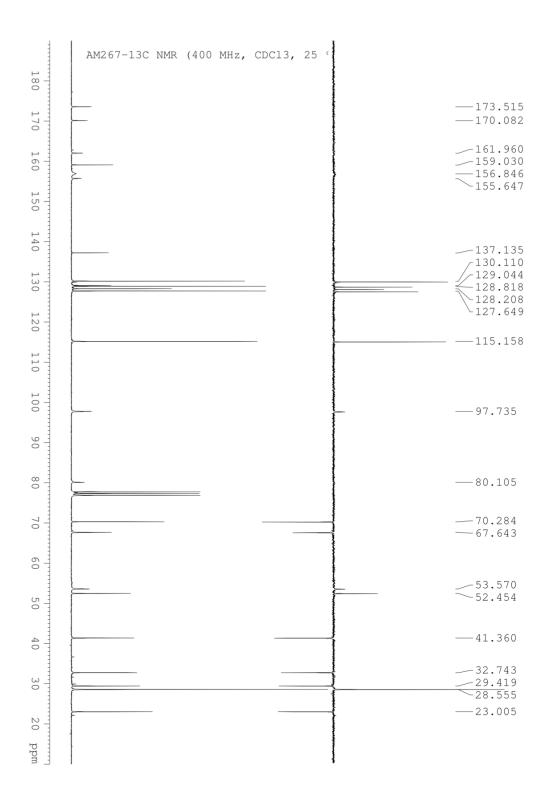



Compound I.39b

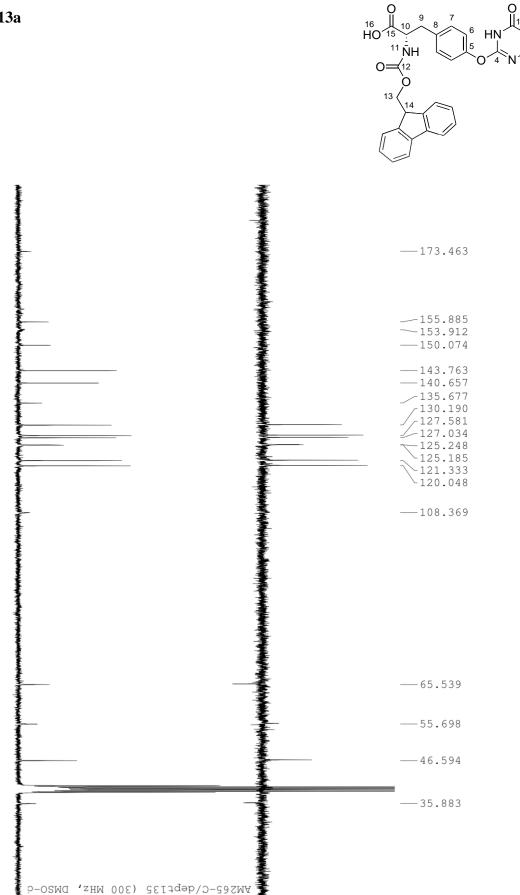



Compound I.39b




Compound I.39c

Compound I.39c

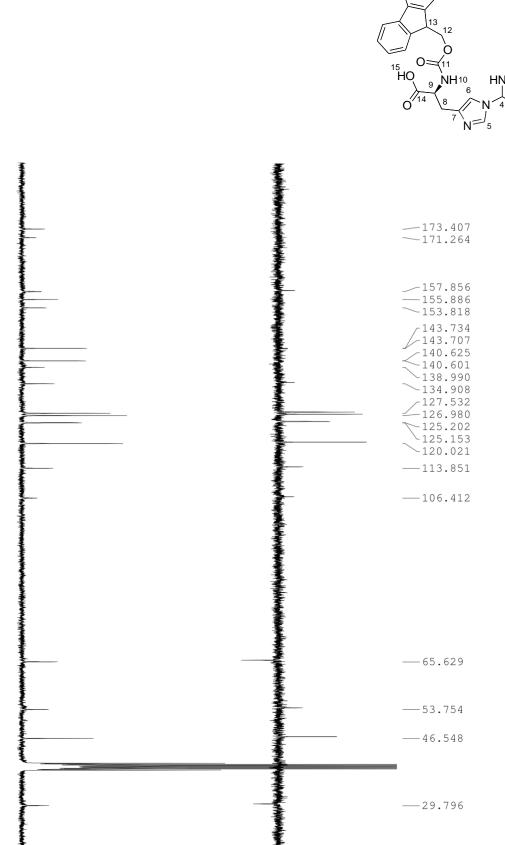


2

Compound I.13a

mdd

3

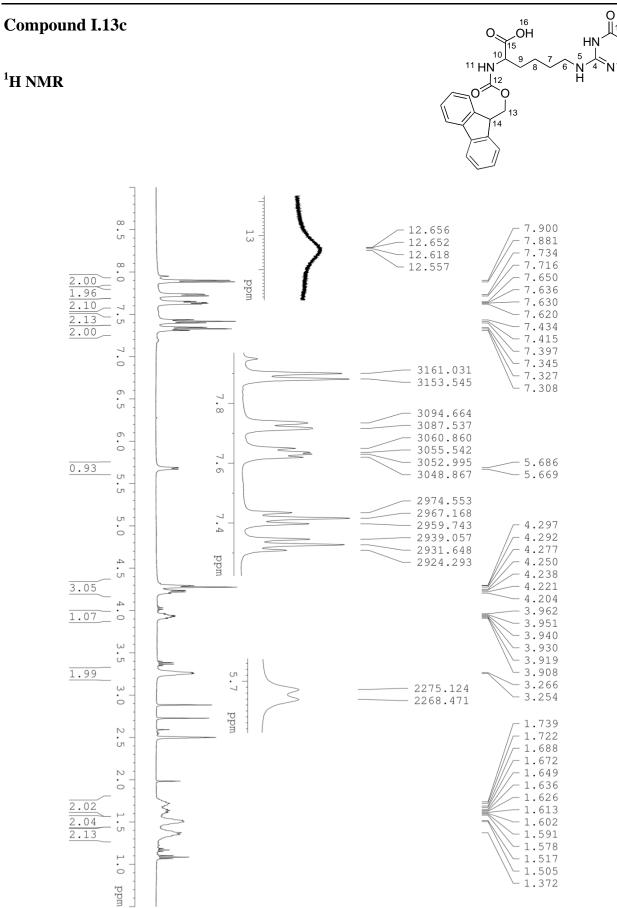

Compound I.13b 13 12 ¹H NMR 0 0: ¹⁵ HO 11 9 NH10 6 HN 0/14 8 7 N=5 -~ 2477.003 2471.270 \leq 9.0 mdd --8.373 -8.253 -8.234 7.9 ∞ . თ 0.976 7.869 -2361.813 7.844 -2354.340 ∞ mdd • 7.638 2.209 1 7.605 7.577 4.234 7.5 4.583 7.374 7.350 7.0 7.264 7.4 -2220.752 -2213.279 -7.243 6.5 1.000 <mdd 2205.865 6.494 6.474 6.0 თ • თ 6.5 ppm -1948.954 -1943.162 5. 0 4.5 4.296 -4.290 -4.281 -4.254 -4.235 -4.218 5.063 4.0 4.199 ω • 5 3.035 3.021 2.987 ω. 0 -2.973 2.527 2.916 -2.898 2.5 2.0 mdd (3b-O2MG , zHM 00E) H-332MA

Compound I.13b

ω

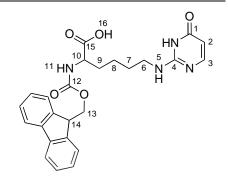
mdd

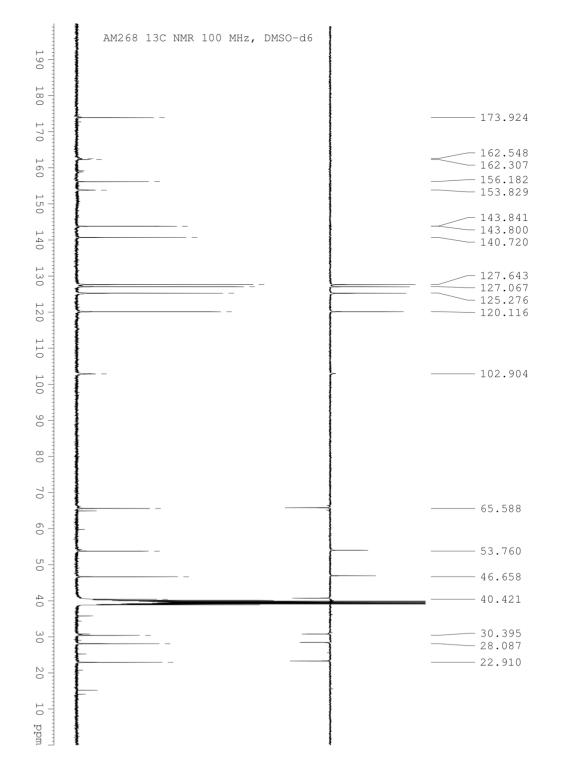
¹³C NMR


耋

MZ66-C/deptiss (75 MHz, DMSO-d6)

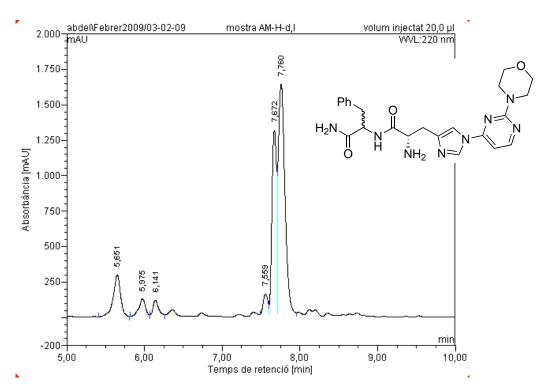
2


3


1

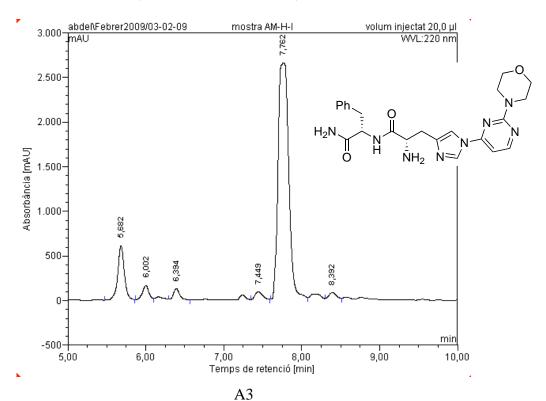
A87

Compound I.13c

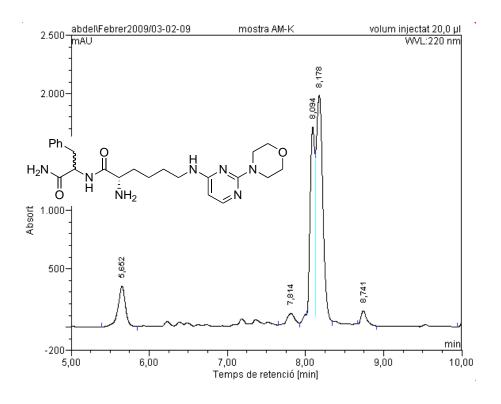

ANNEX II

A.II.1. EXAMPLES OF DIPEPTIDES

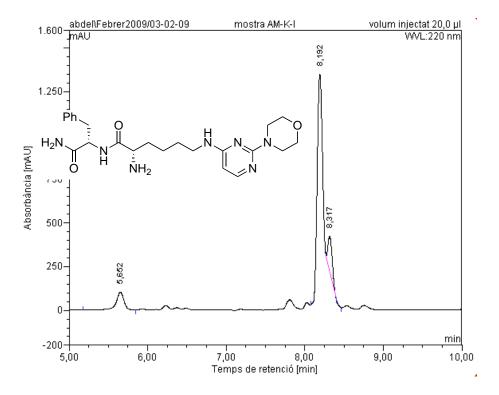
A.II.1.1. Examples of dipeptides for the determination of the optical purity


HPLC of dipeptide (I.20b)

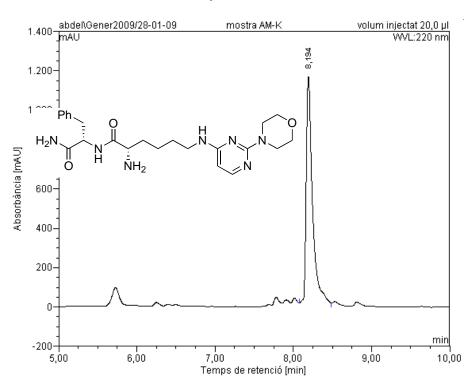
Reactions described at Table I.6


HPLC of dipeptide (I.20b)

Reaction performed with K₂CO₃ (entries 3 and 4, Table I.6)

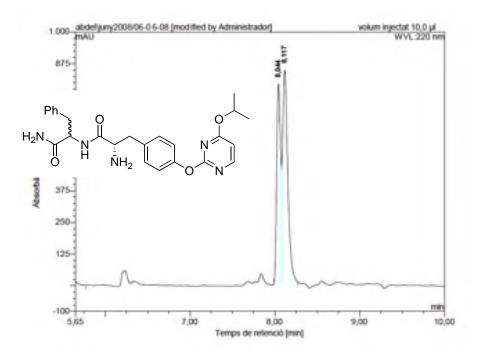

HPLC of dipeptide (I.20c)

Reactions described at Table I.7

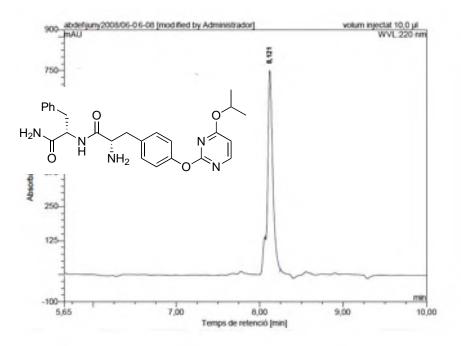


HPLC of dipeptide (I.20c)

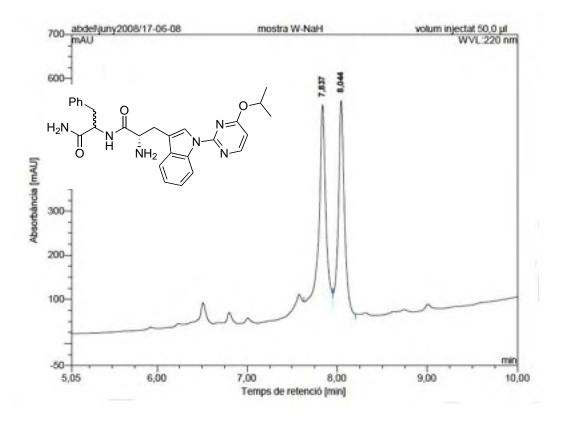
Reaction performed with K₂CO₃ at 50°C (entry 1, Table I.7)



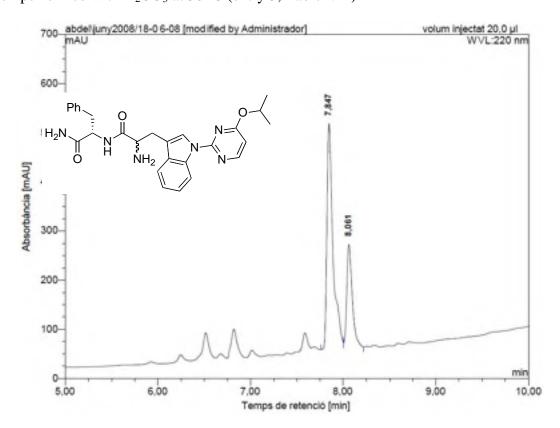
HPLC of dipeptide (I.20c) Reaction performed with K₂CO₃ at 40°C (entry 4, Table I.7)


HPLC of dipeptide (I.32aa)

Reaction described at Table I.9


HPLC of dipeptide (I.32aa)

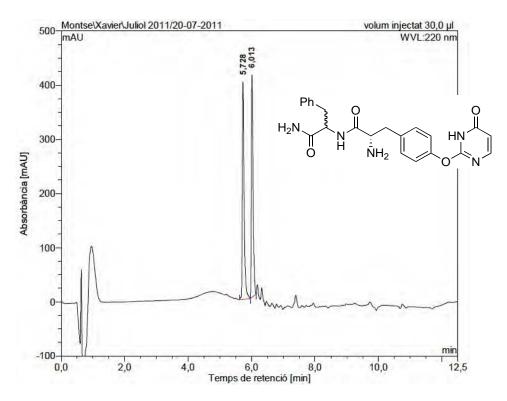
Reaction performed with K₂CO₃ at 50 °C(entry 3, Table I.9)



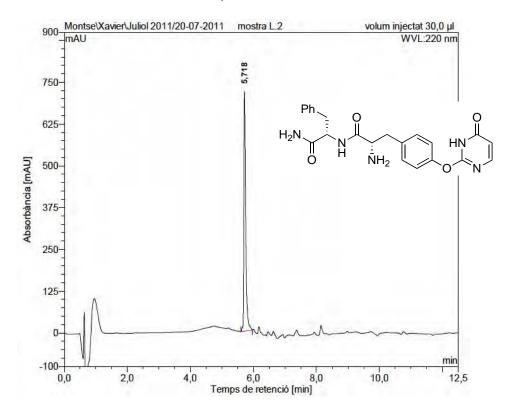
HPLC of dipeptide (I.32ea)


Reaction described at Table I.12

HPLC of dipeptide (I.32ea) Reaction performed with K₂CO₃ at 50 °C (entry 5, Table I.12)

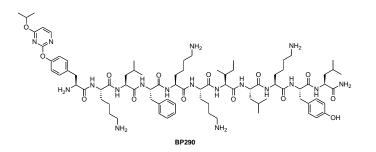


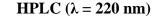
HPLC of dipeptide (I.32da) Reaction performed with K₂CO₃ at 40 °C (entry 9, Table I.12)

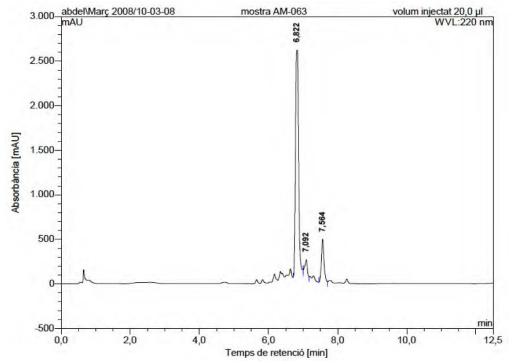


HPLC of dipeptide (I.39a)

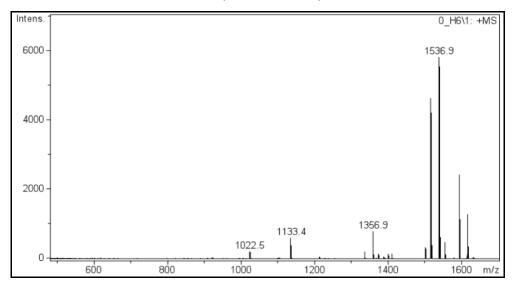
Reaction described at Table I.13

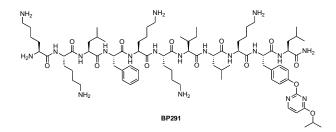


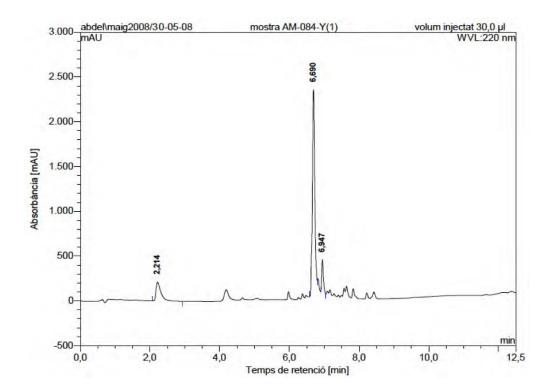

HPLC of dipeptide (I.39a) Reaction performed with K₂CO₃ at 50 °C (entry 1, Table I.13)



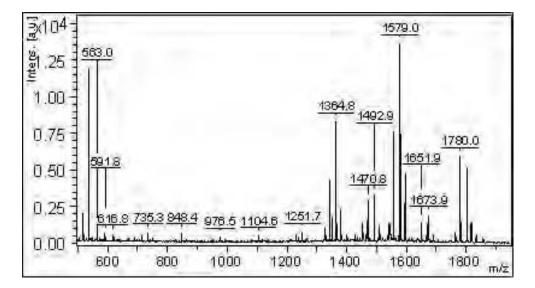
A.II.2. LIBRARY OF BP290-BP303

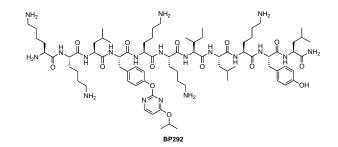

H-Tyr(Py)-K-L-F-K-K-I-L-K-Y-L-NH₂ (BP290)

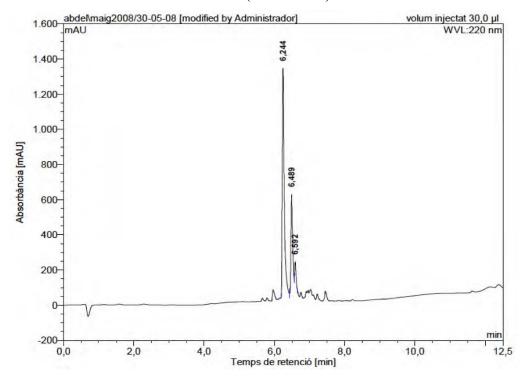


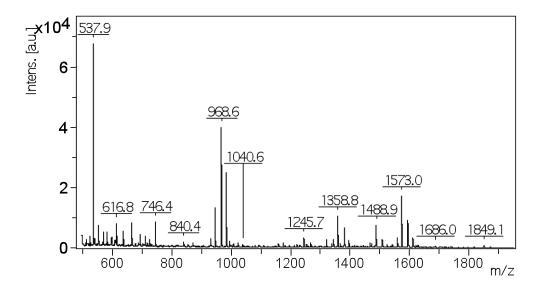


A10

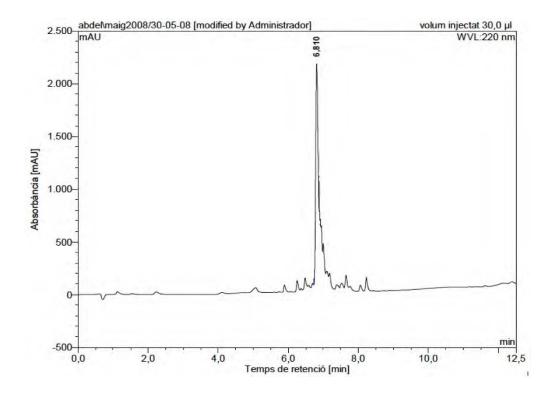

H-K-K-L-F-K-K-I-L-K-Tyr(Py)-L-NH₂ (BP291)

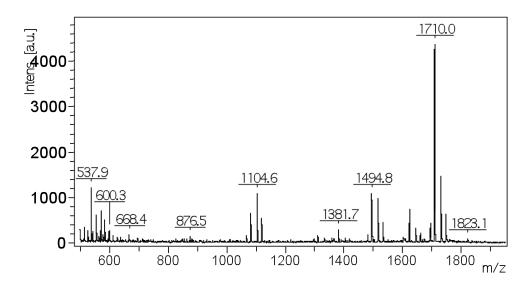

HPLC ($\lambda = 220 \text{ nm}$)

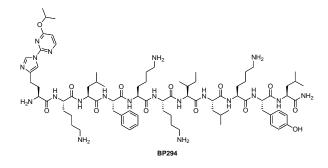

MS (MALDI-TOF)

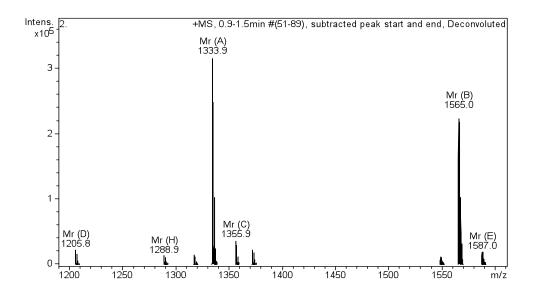

H-K-K-L-Tyr(Py)-K-K-I-L-K-Y-L-NH₂ (BP292)


HPLC ($\lambda = 220 \text{ nm}$)

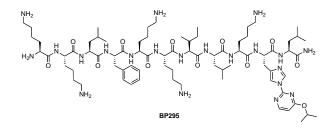

MS (MALDI-TOF)


$H\text{-}K\text{-}K\text{-}L\text{-}Tyr(Py)\text{-}K\text{-}K\text{-}I\text{-}L\text{-}K\text{-}Tyr(Py)\text{-}L\text{-}NH_2 \ (BP293)$

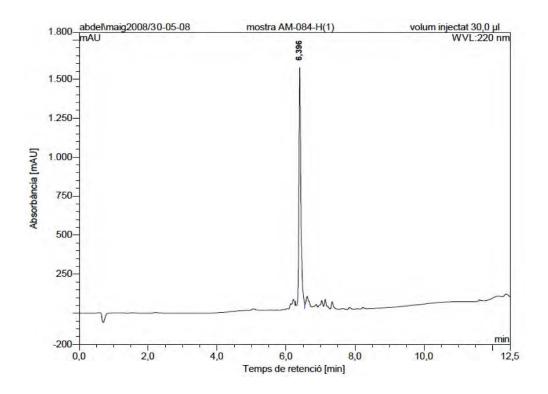

HPLC ($\lambda = 220$ nm)

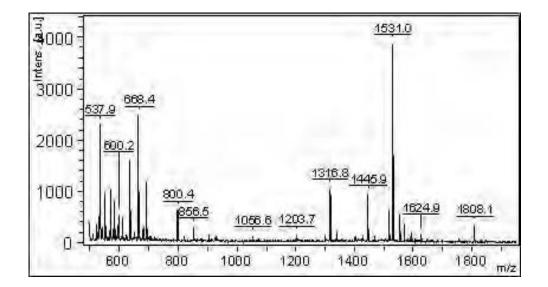


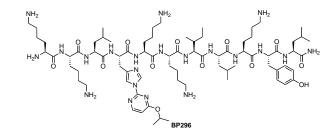
H-His(Py)-K-L-F-K-K-I-L-K-Y-L-NH₂ (BP294)

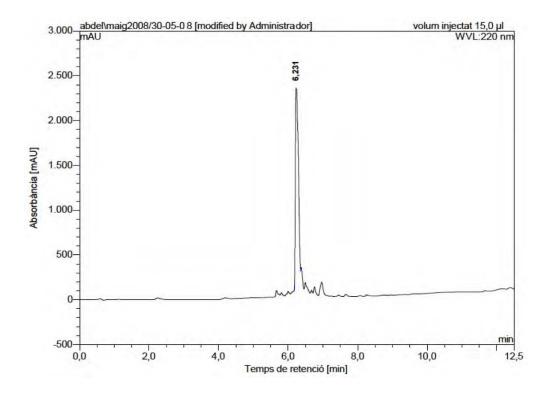


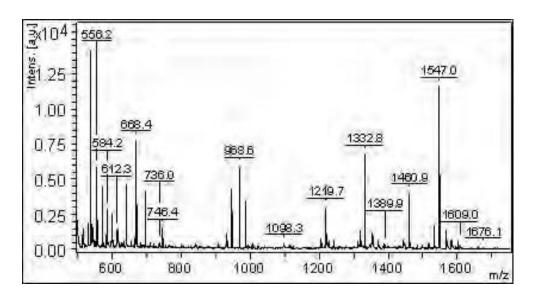
HPLC (λ = 220 nm): t_R = 6.85 min (73%).

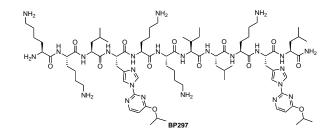


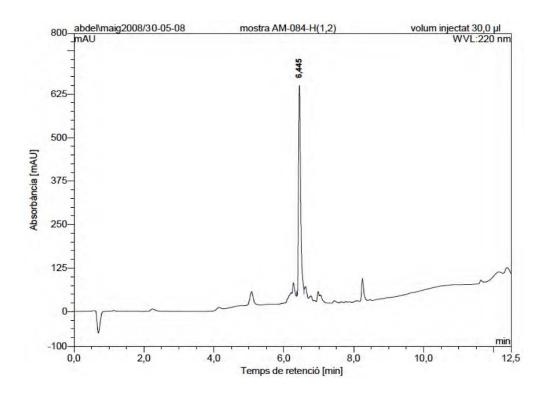

H-K-K-L-F-K-K-I-L-K-His(Py)-L-NH₂ (BP295)

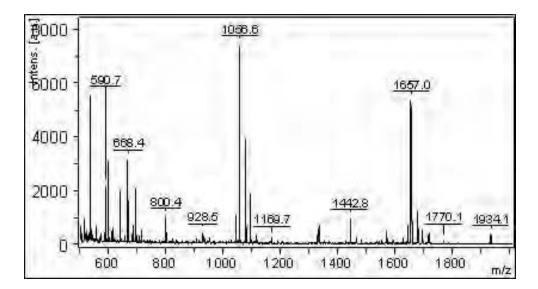

HPLC ($\lambda = 220 \text{ nm}$)

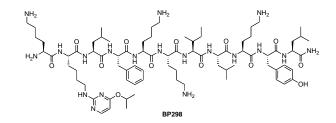

MS (ESI+)


H-K-K-L-His(Py)-K-K-I-L-K-Y-L-NH₂ (BP296)

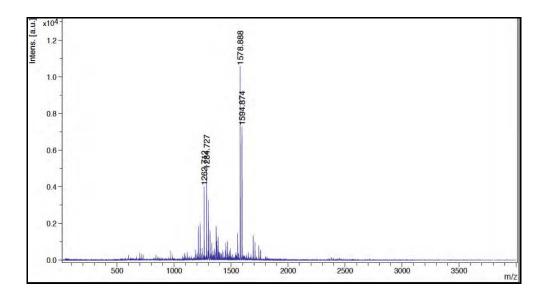

HPLC ($\lambda = 220 \text{ nm}$)

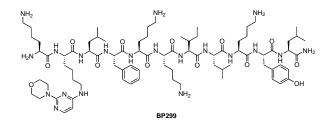


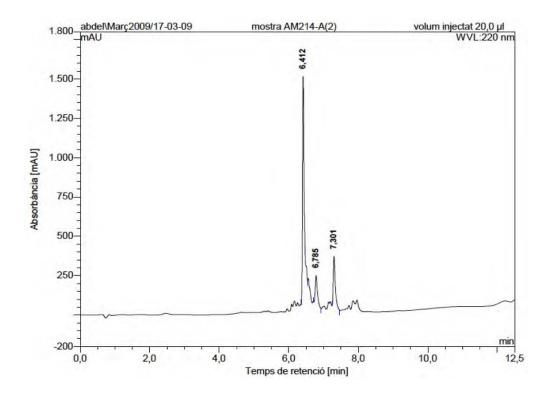

$H\text{-}K\text{-}L\text{-}His(Py)\text{-}K\text{-}K\text{-}I\text{-}L\text{-}K\text{-}His(Py)\text{-}L\text{-}NH_2\ (BP297)$

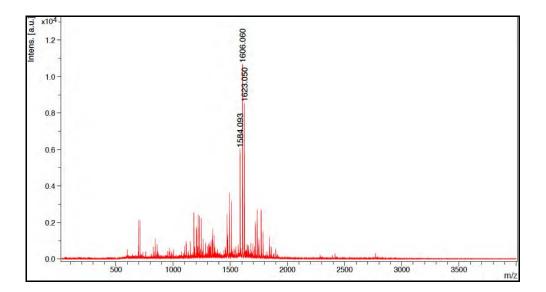

HPLC ($\lambda = 220 \text{ nm}$)

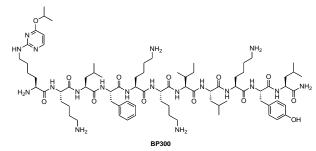
MS (ESI+)

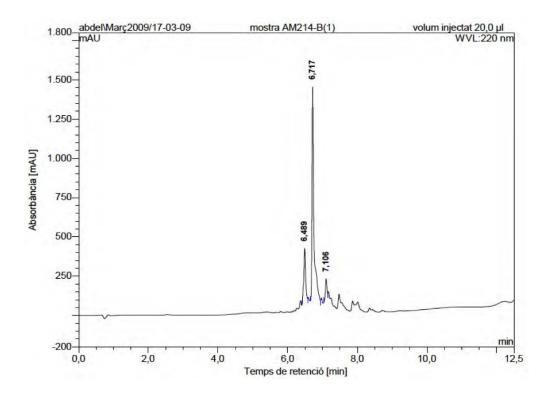

H-K-Lys(Py)-L-F-K-K-I-L-K-Y-L-NH₂ (BP298)

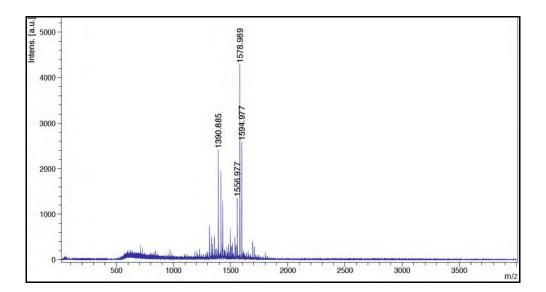

HPLC ($\lambda = 220$ nm)

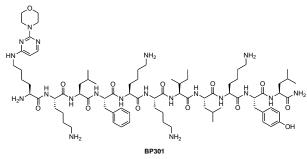


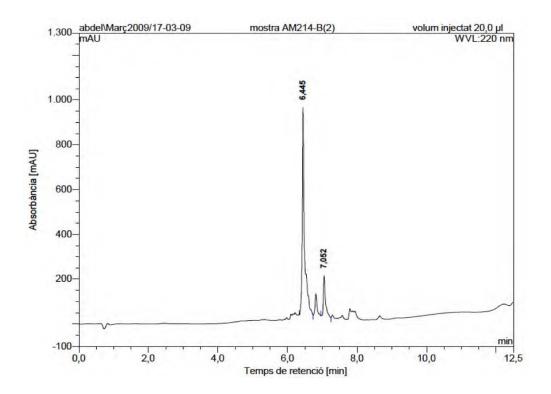

H-K-Lys(Mor)-L-F-K-K-I-L-K-Y-L-NH₂ (BP299)

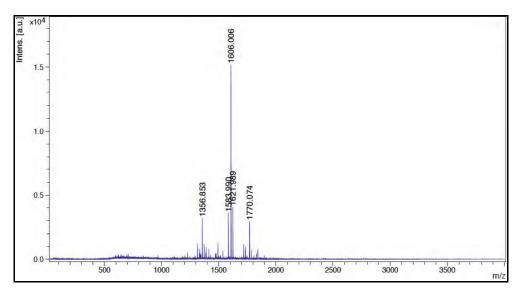

HPLC ($\lambda = 220$ nm)



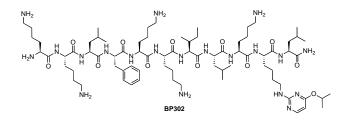

H-Lys(Py)-K-L-F-K-K-I-L-K-Y-L-NH₂ (BP300)

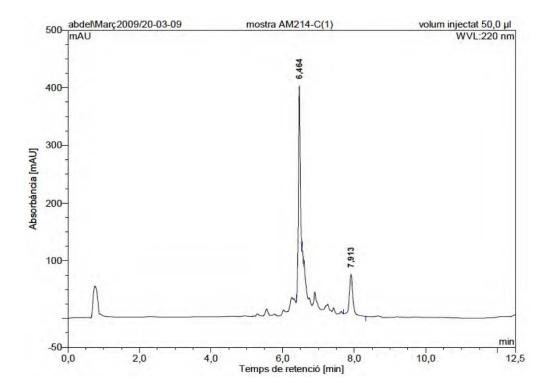

HPLC ($\lambda = 220 \text{ nm}$)




H-Lys(Mor)-K-L-F-K-K-I-L-K-Y-L-NH₂ (BP301)

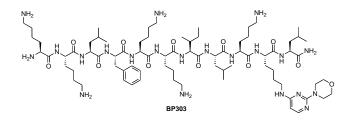
HPLC ($\lambda = 220$ nm)



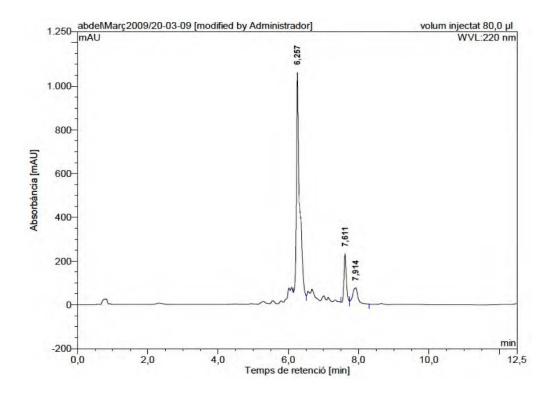


A21

H-K-K-L-F-K-K-I-L-K-Lys(Py)-L-NH₂ (BP302)

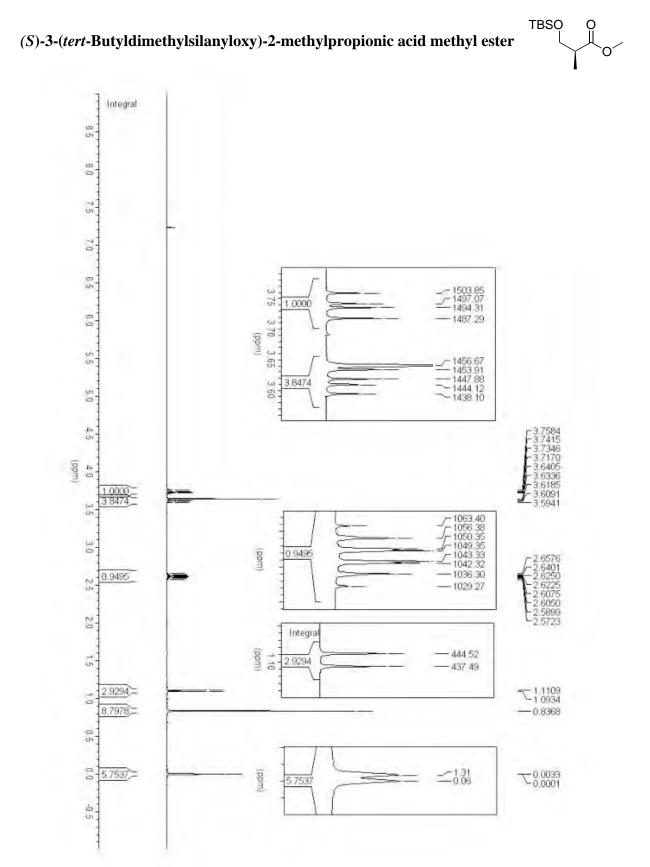


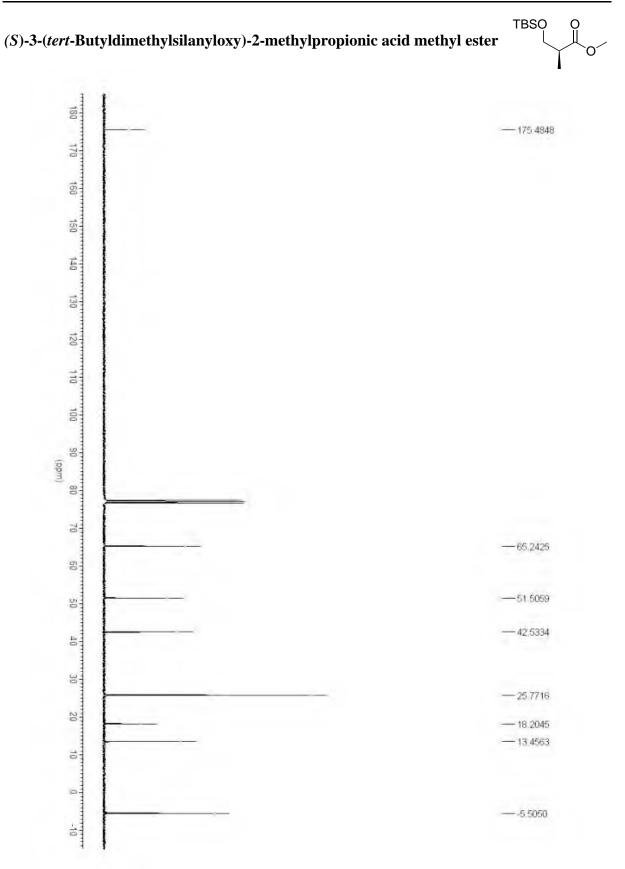
HPLC ($\lambda = 220 \text{ nm}$)



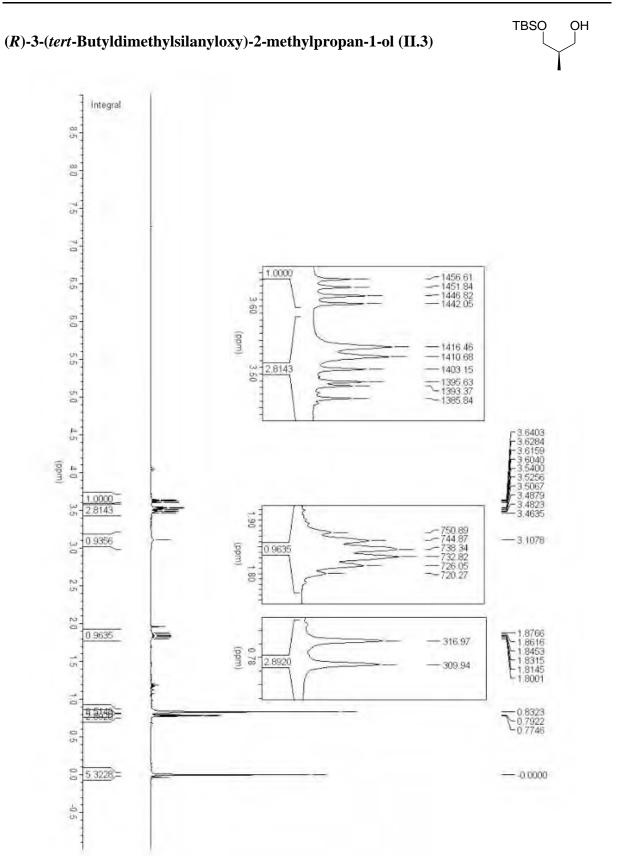
MS (ESI+) *m/z*: 1523.20 [M+H]⁺, 761.6 [M+2H]²⁺.

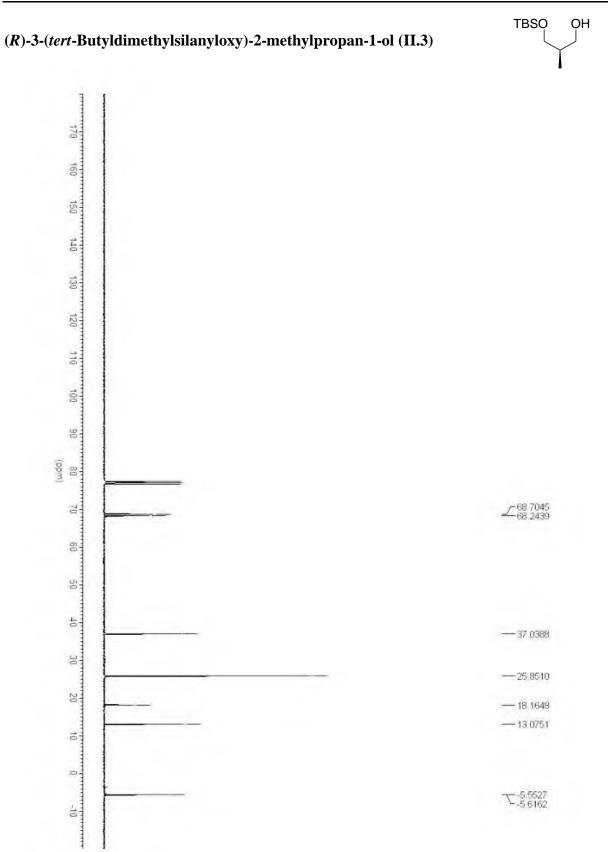
H-K-K-L-F-K-K-I-L-K-Lys(Mor)-L-NH₂ (BP303)

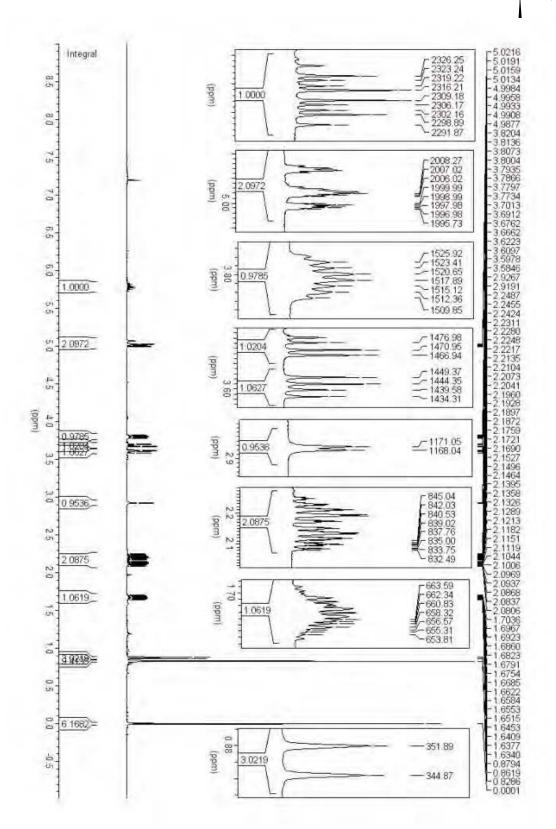

HPLC ($\lambda = 220$ nm)

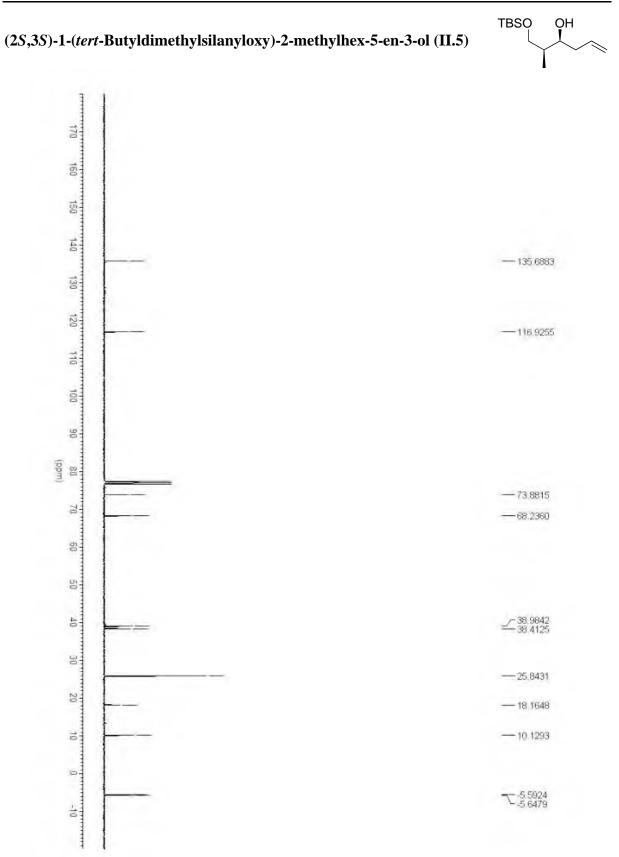


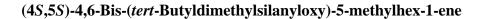
MS (ESI+) *m/z*: 1549.20 [M+H]⁺, 775.5 [M+2H]²⁺.

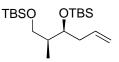

ANNEX III

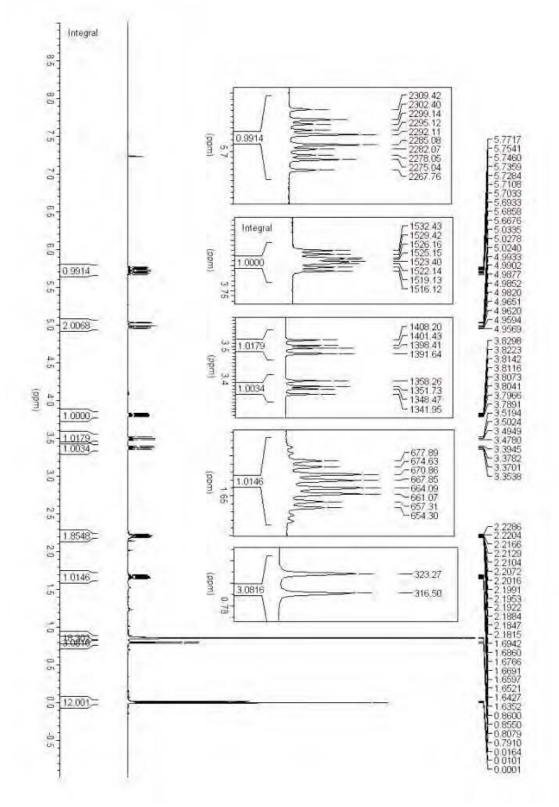

Copies of ¹H NMR & ¹³C NMR

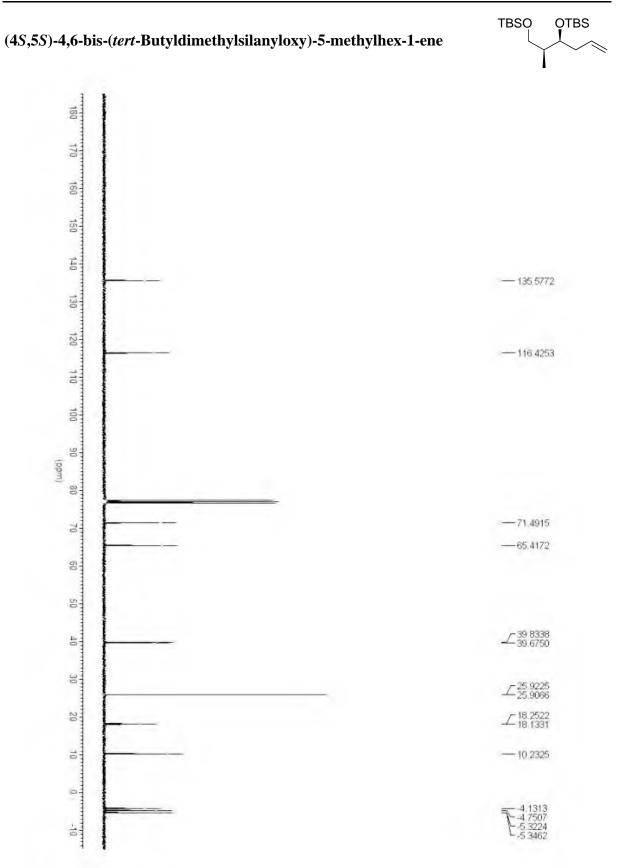

A4




OH

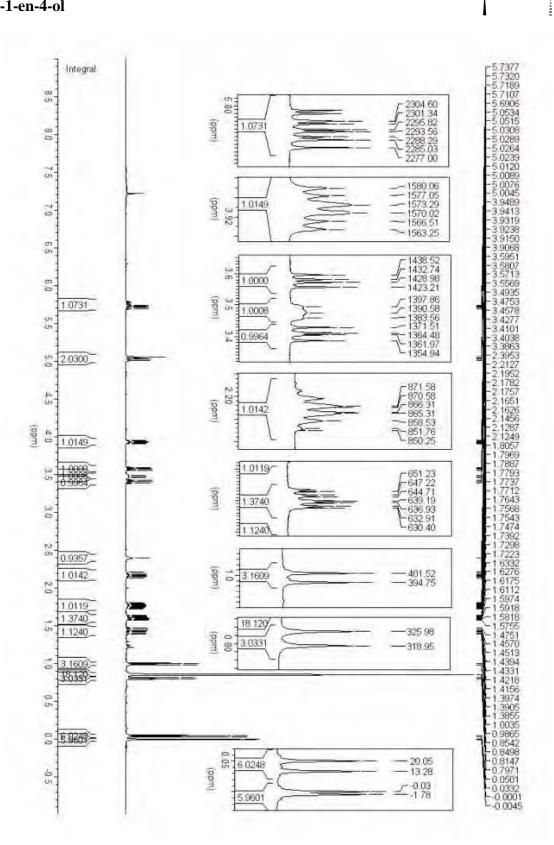


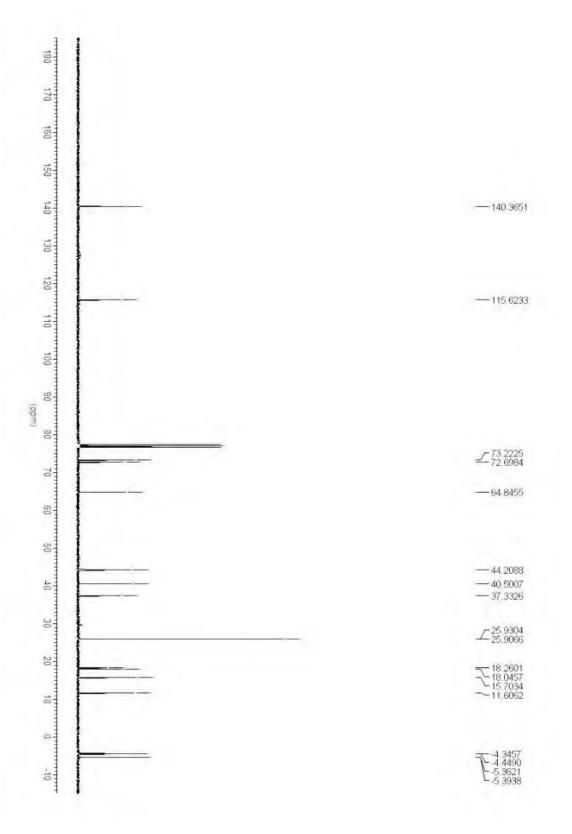


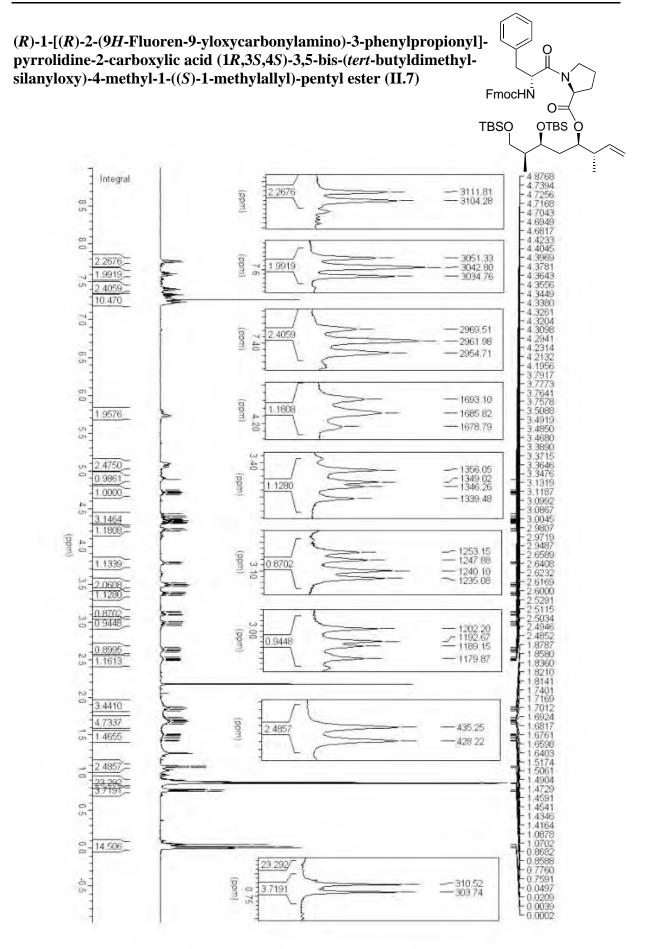


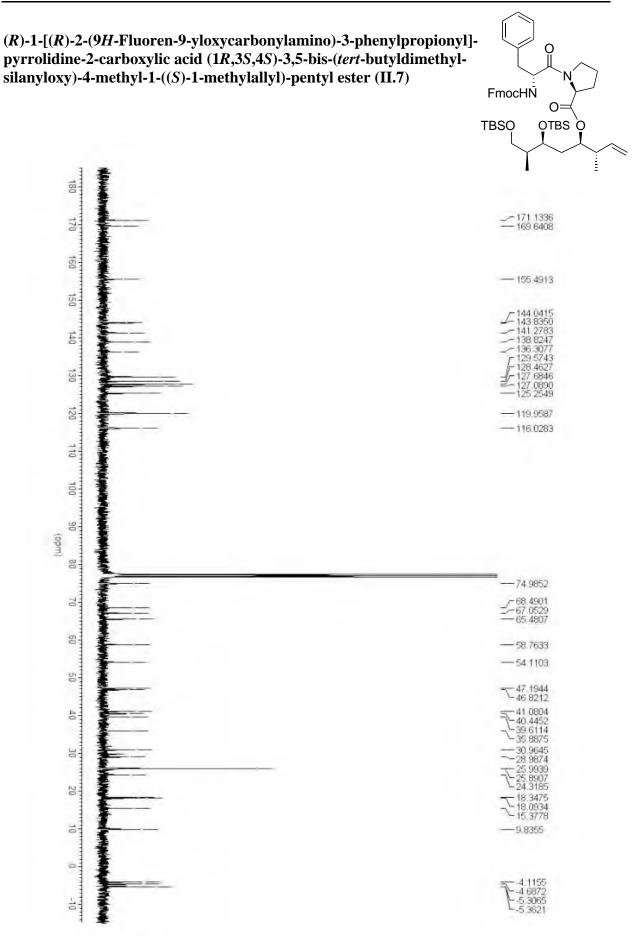
A8

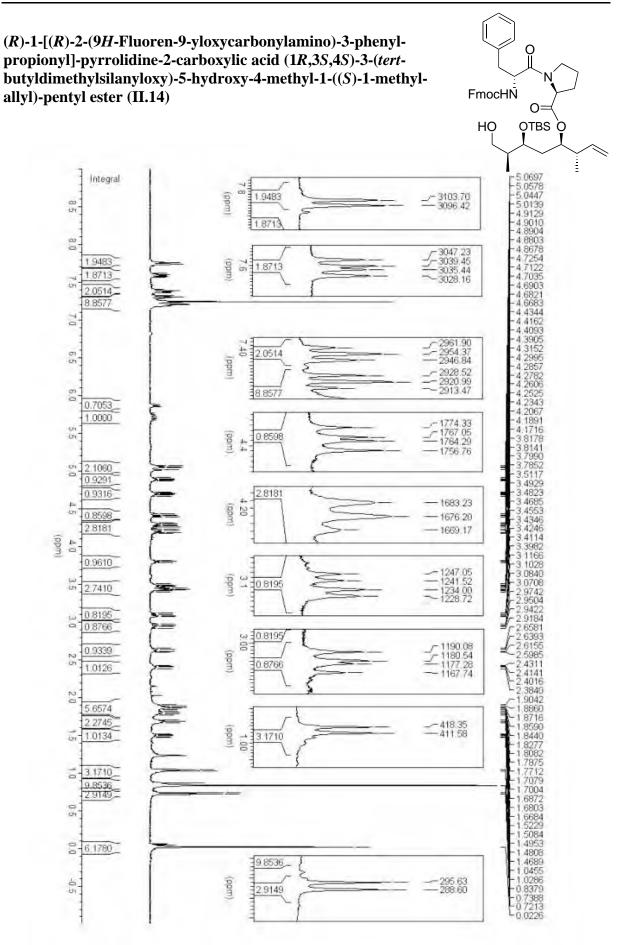


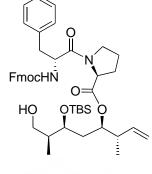


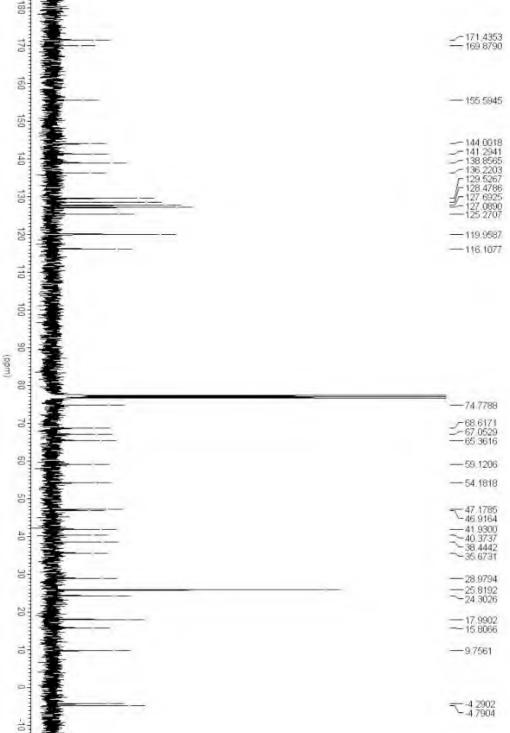


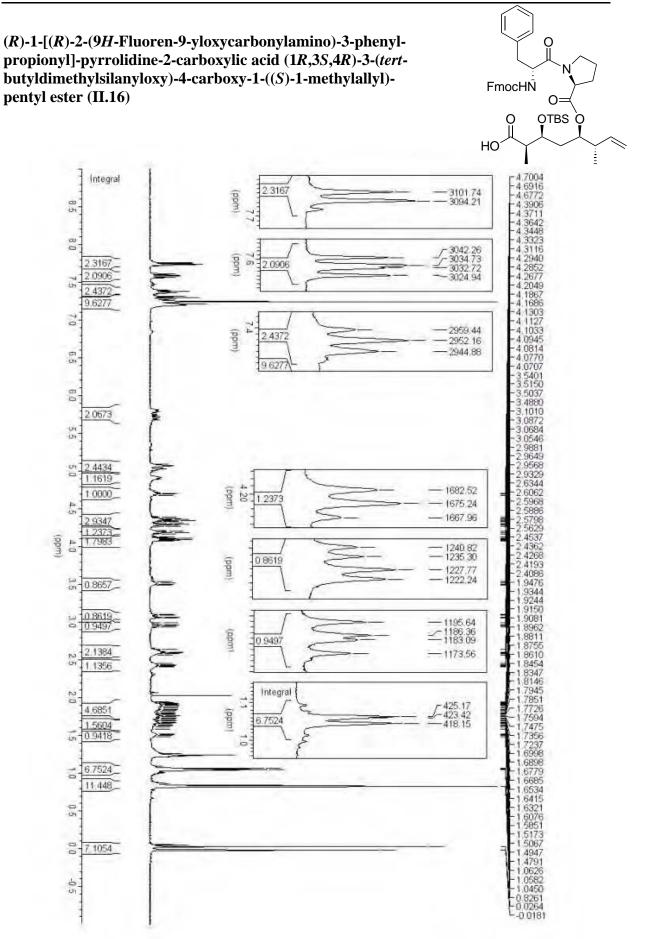

OTBS OH

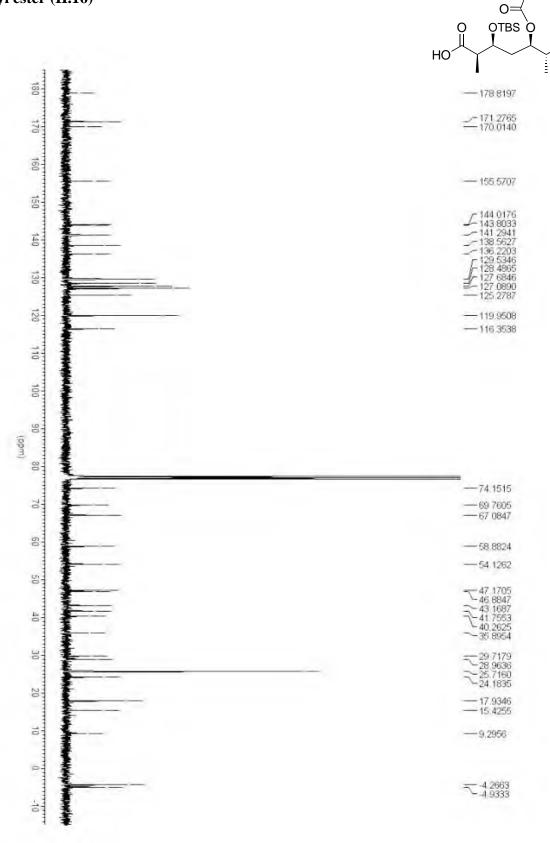


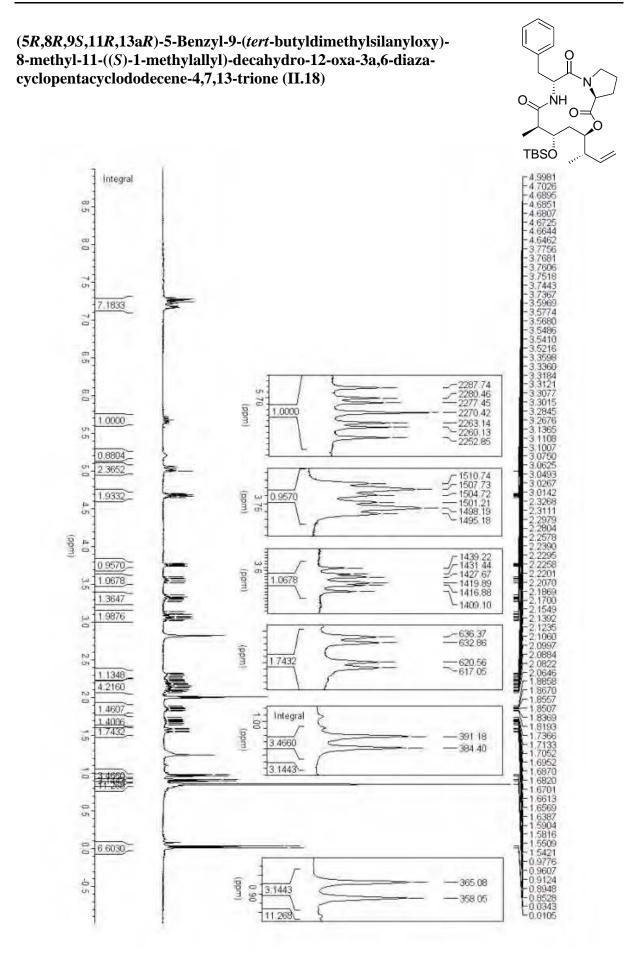


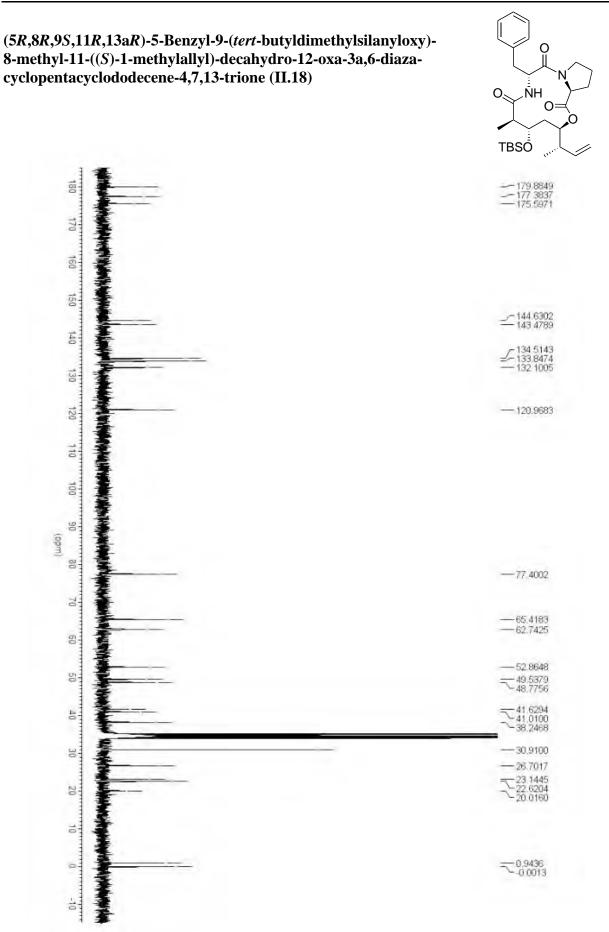


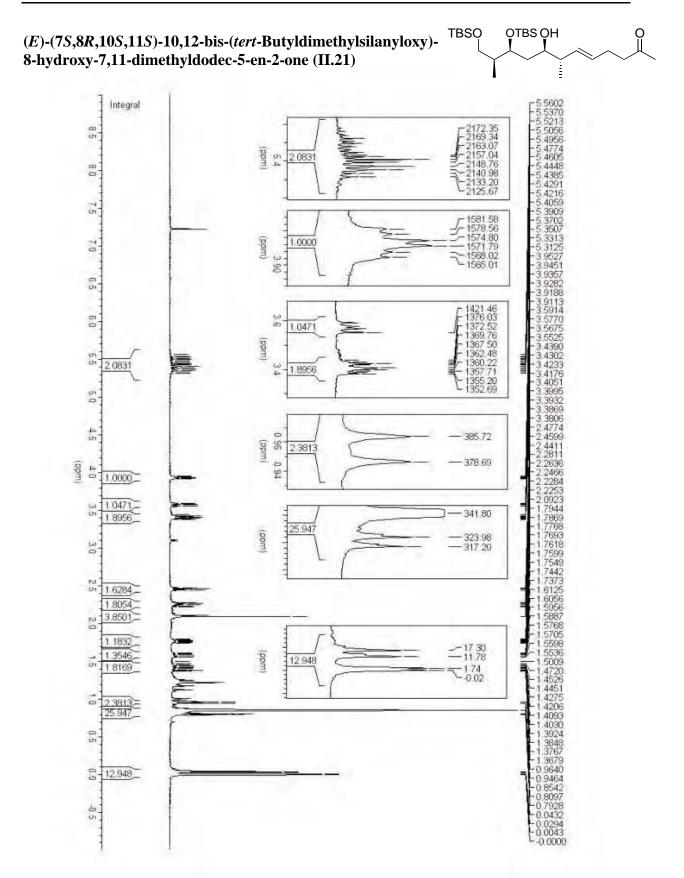


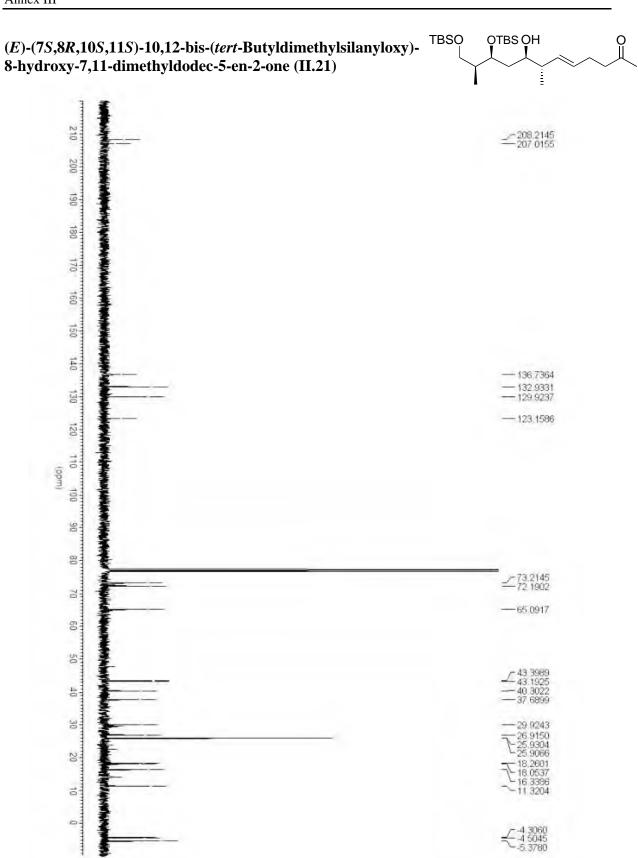


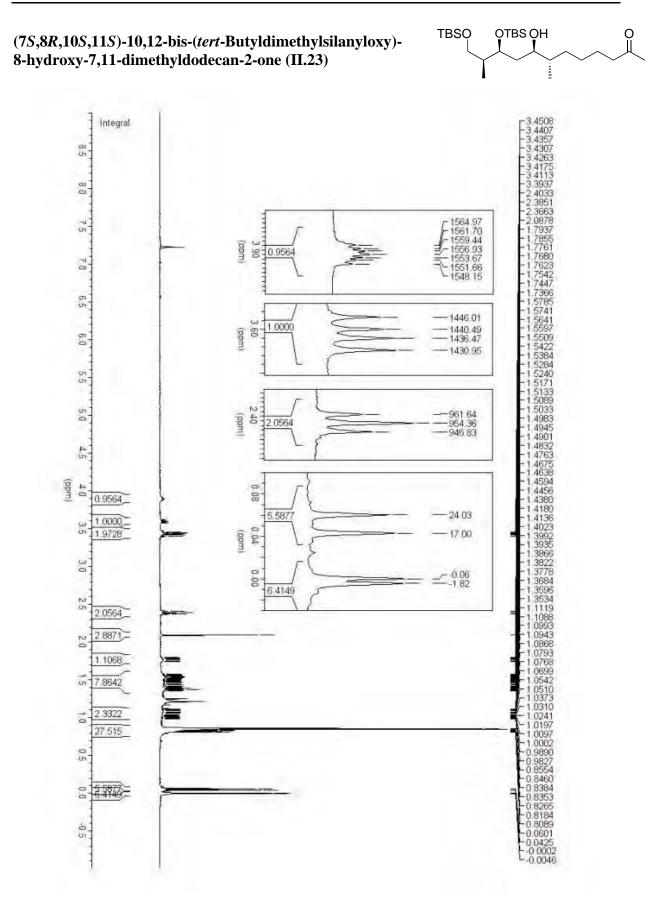

(R) - 1 - [(R) - 2 - (9H - Fluoren - 9 - yloxy carbonylamino) - 3 - phenyl-propionyl] - pyrrolidine - 2 - carboxylic acid (1R, 3S, 4S) - 3 - (tert-butyldimethylsilanyloxy) - 5 - hydroxy - 4 - methyl - 1 - ((S) - 1 - methyl-allyl) - pentyl ester (II.14)

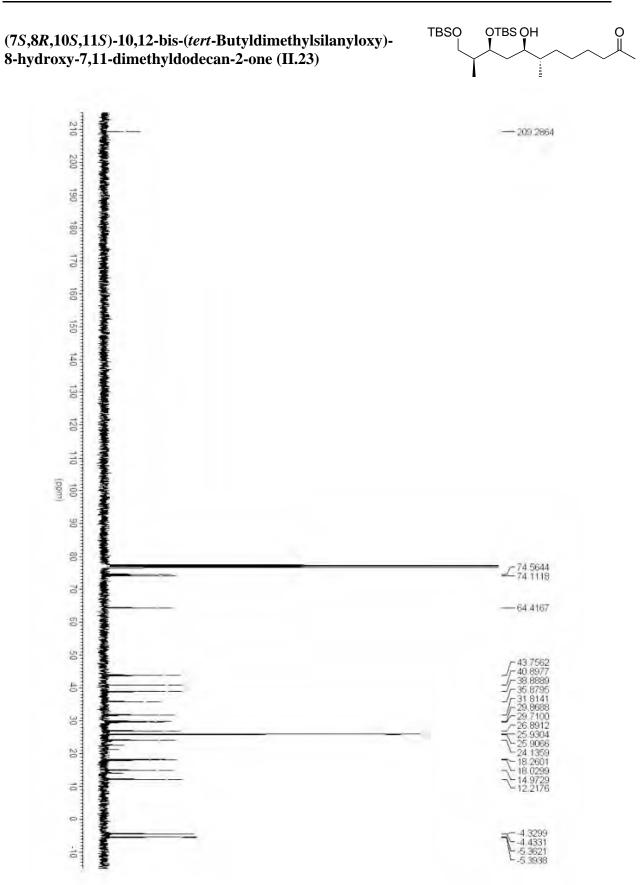


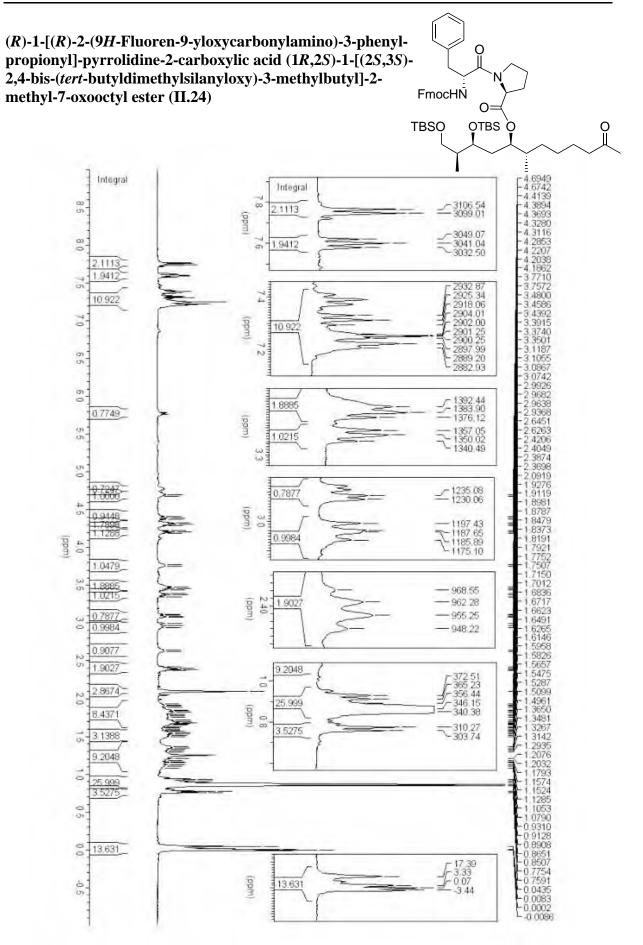

(R) - 1 - [(R) - 2 - (9H - Fluoren - 9 - yloxycarbonylamino) - 3 - phenyl-propionyl] - pyrrolidine - 2 - carboxylic acid (1R, 3S, 4R) - 3 - (tert-butyldimethylsilanyloxy) - 4 - carboxy - 1 - ((S) - 1 - methylallyl) - pentyl ester (II.16)

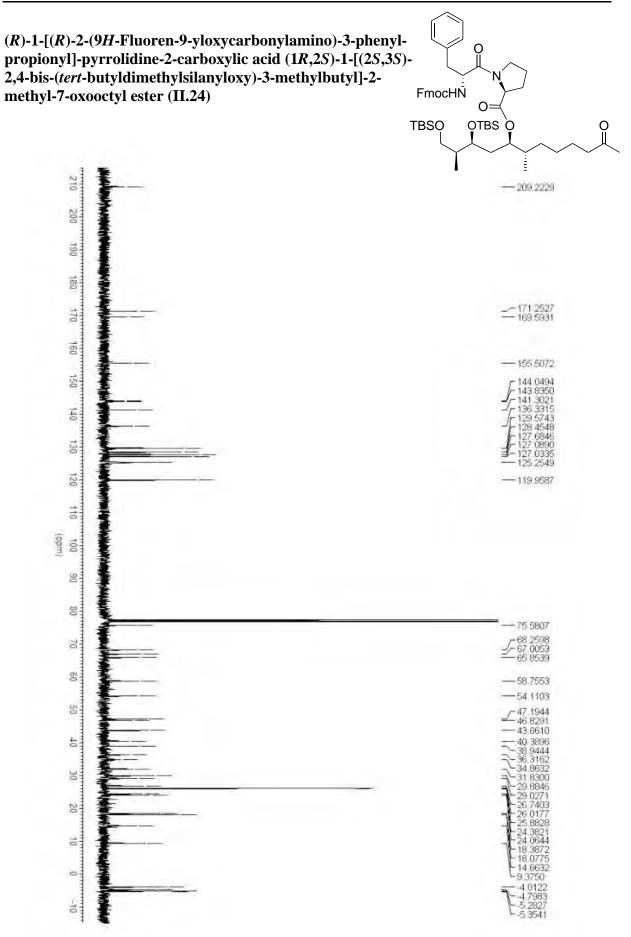


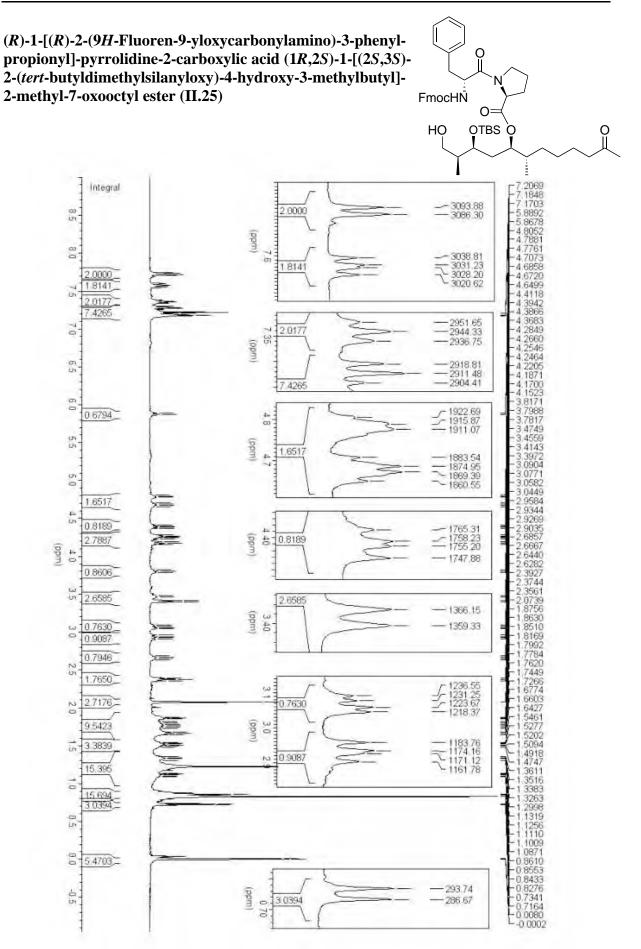

0

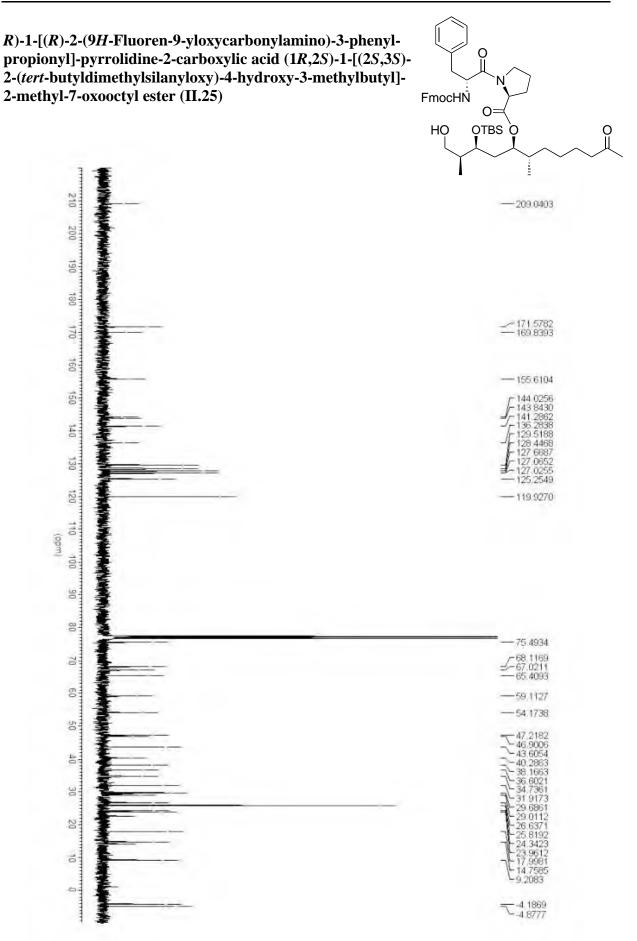

FmocHN

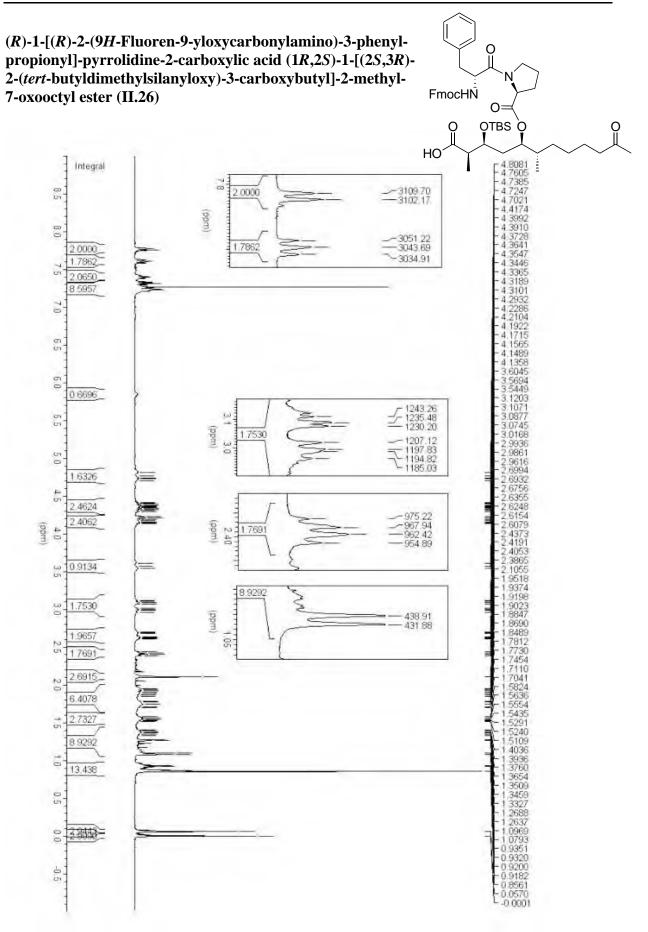


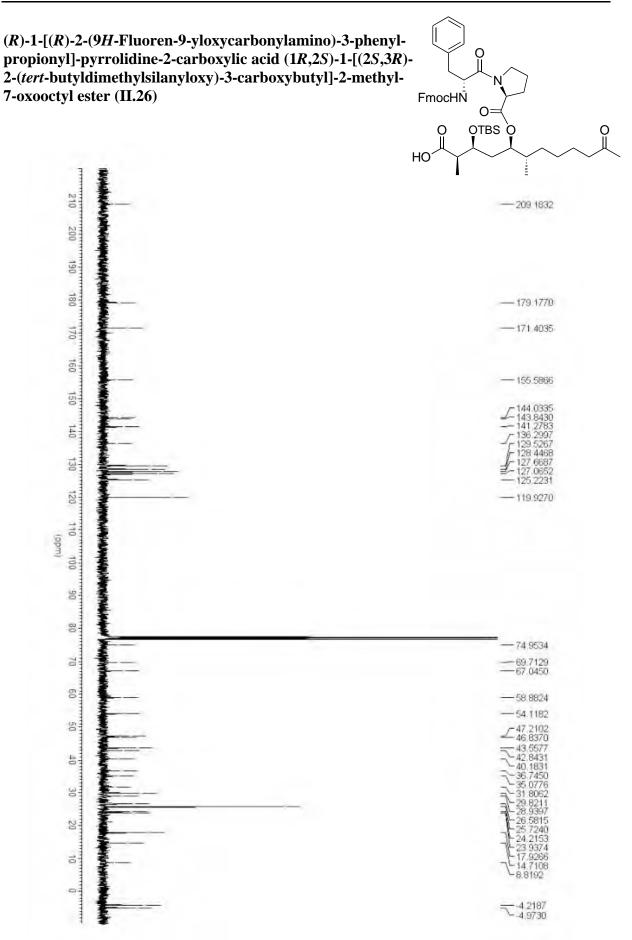


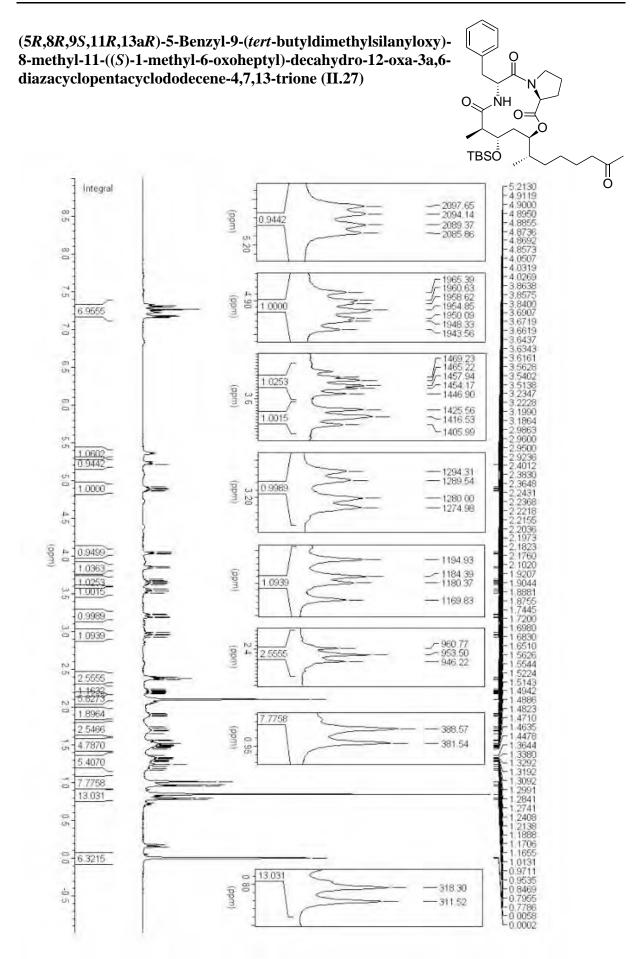


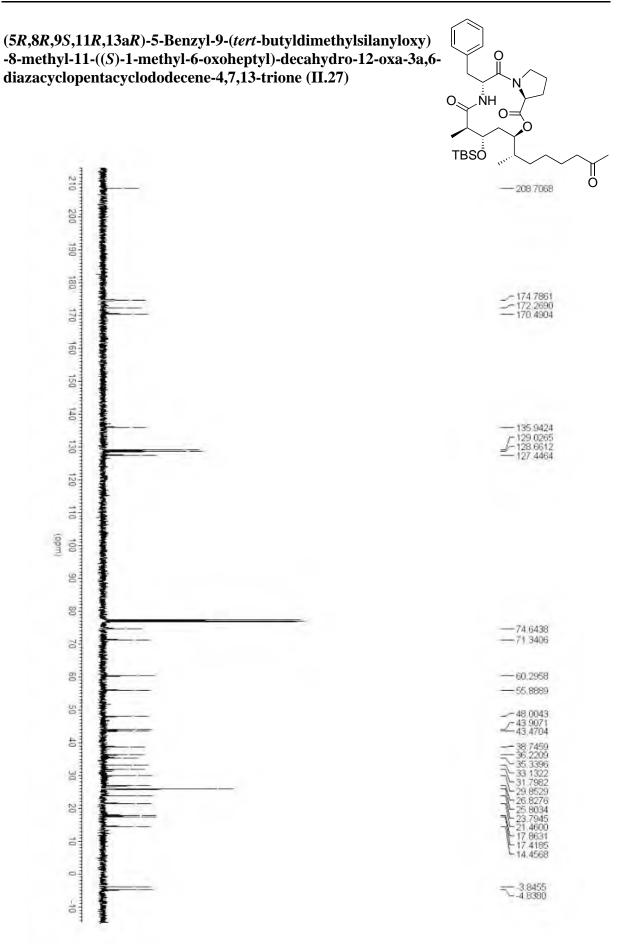


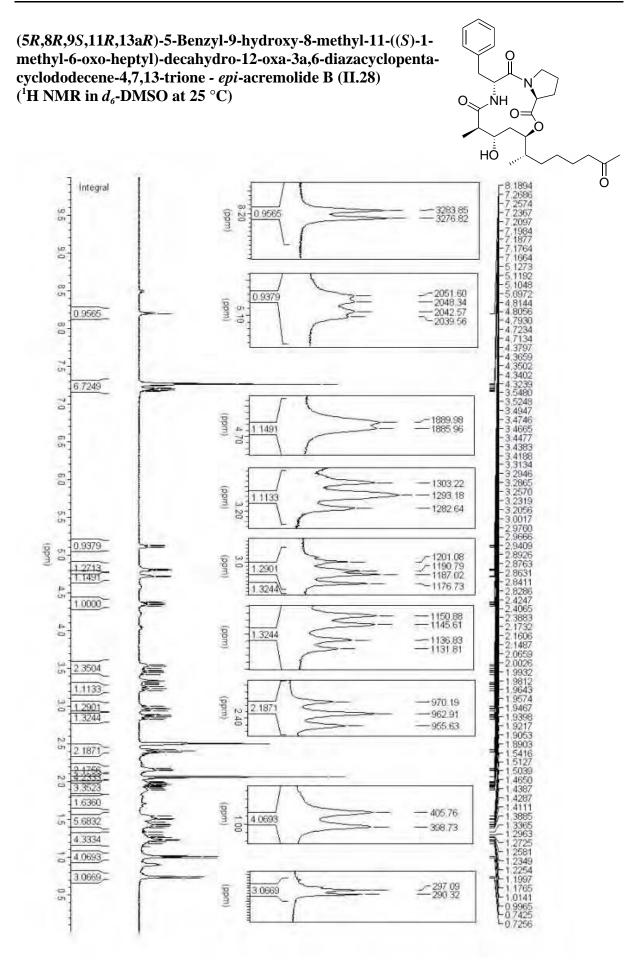


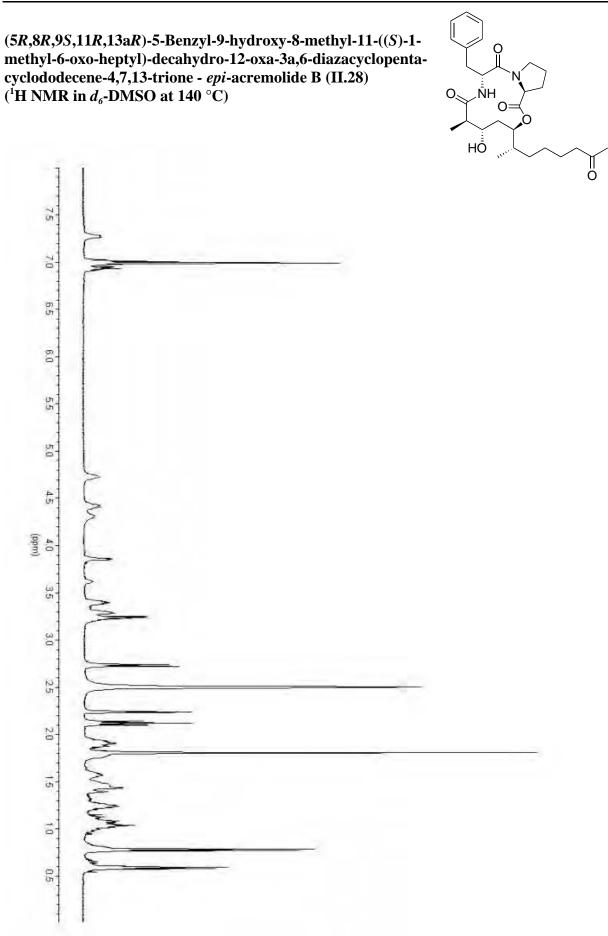


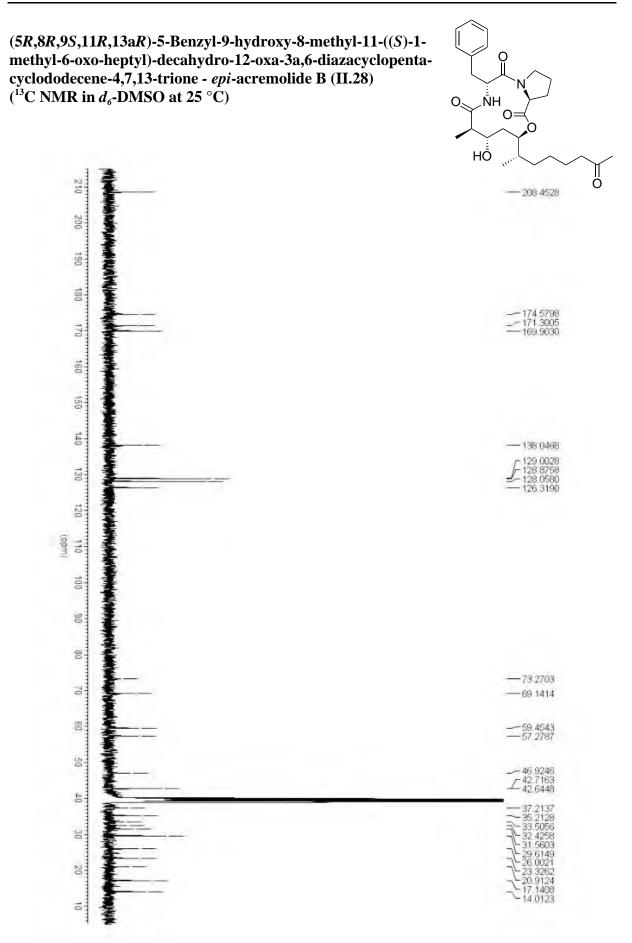


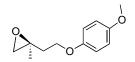


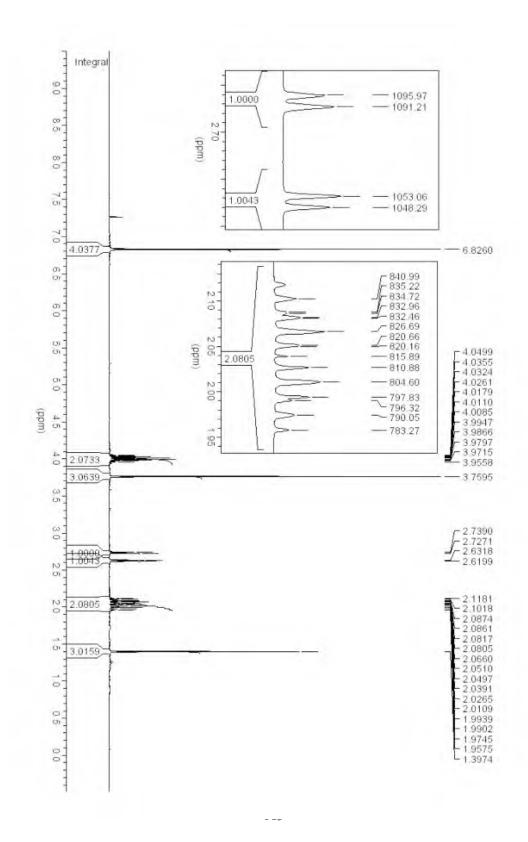



39



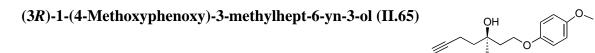


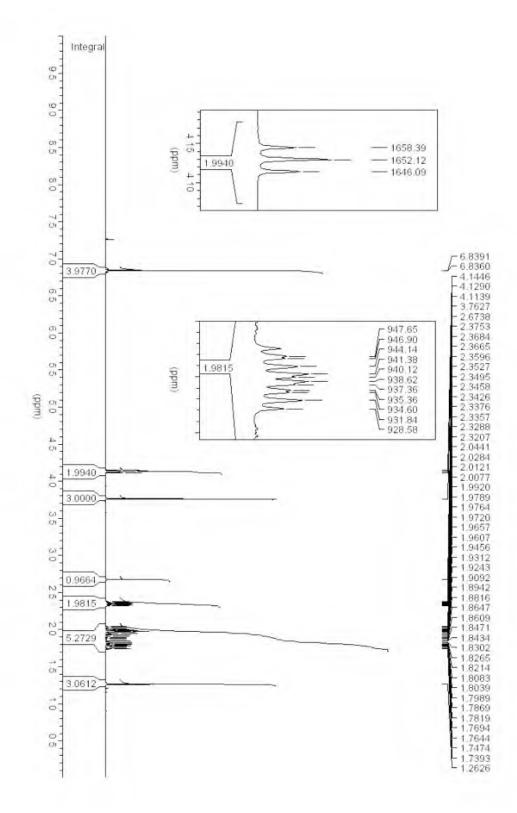


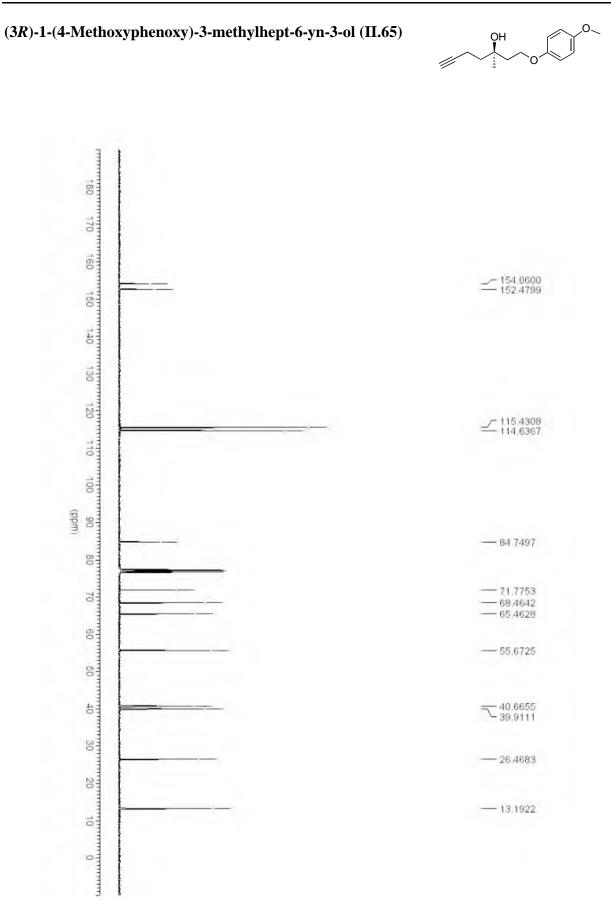


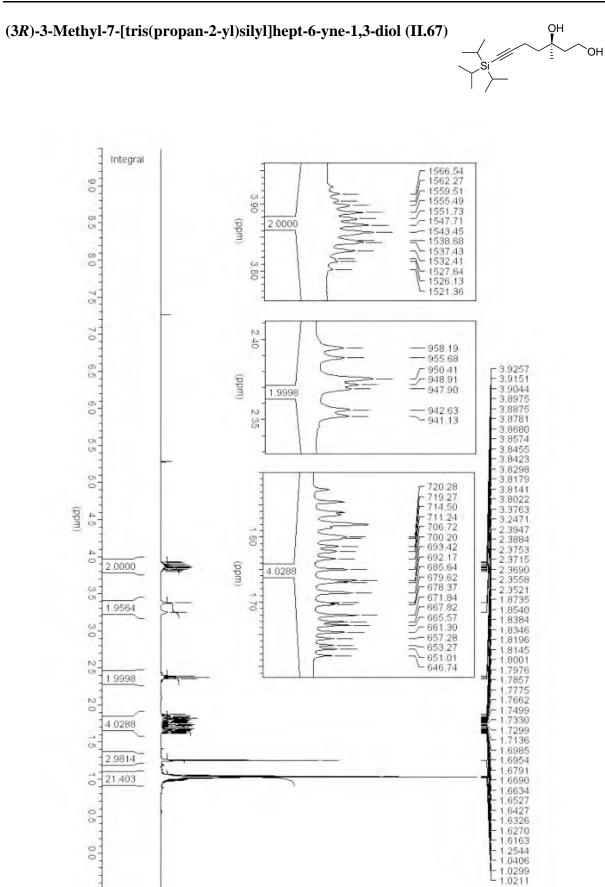
ANNEX IV

A.IV.1. Copies of ¹H NMR & ¹³C NMR

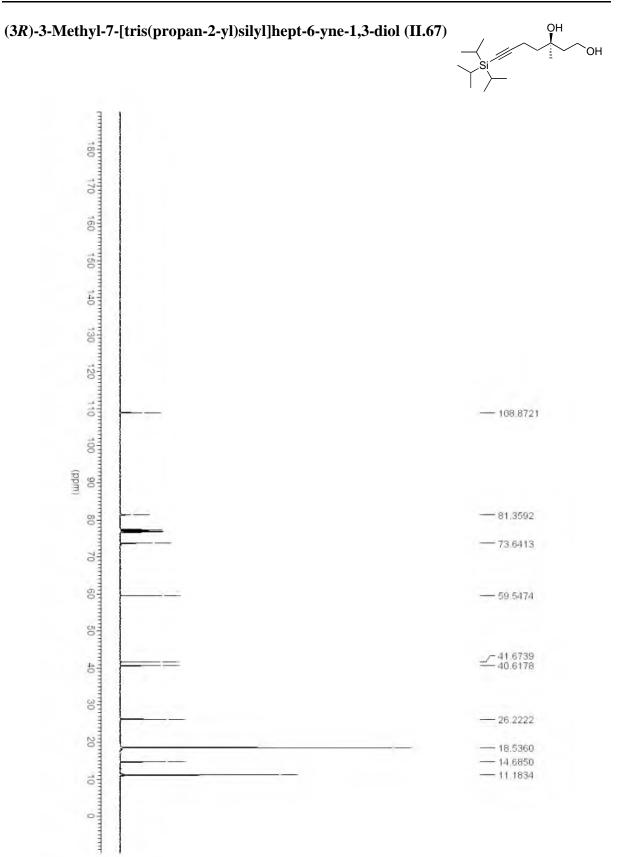

(2S)-2-[2-(4-Methoxyphenoxy)ethyl]-2-methyloxirane (II.64)

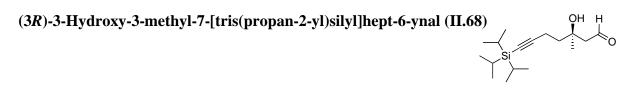


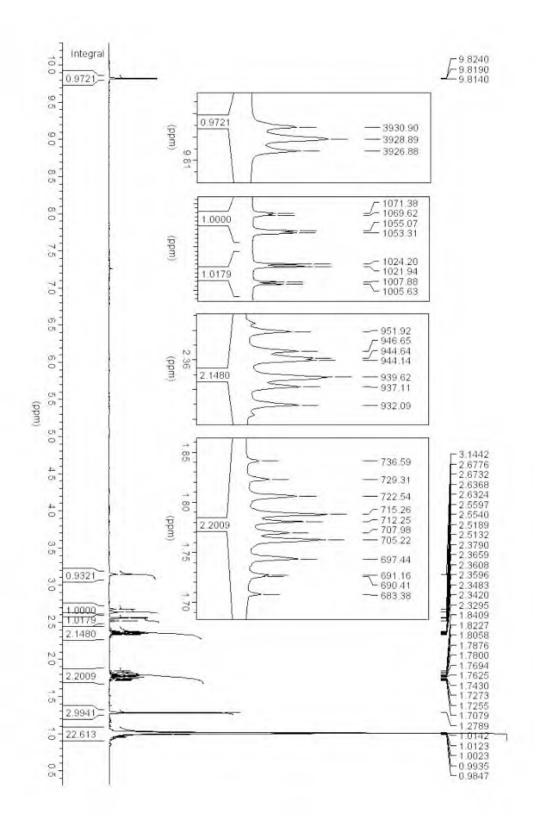


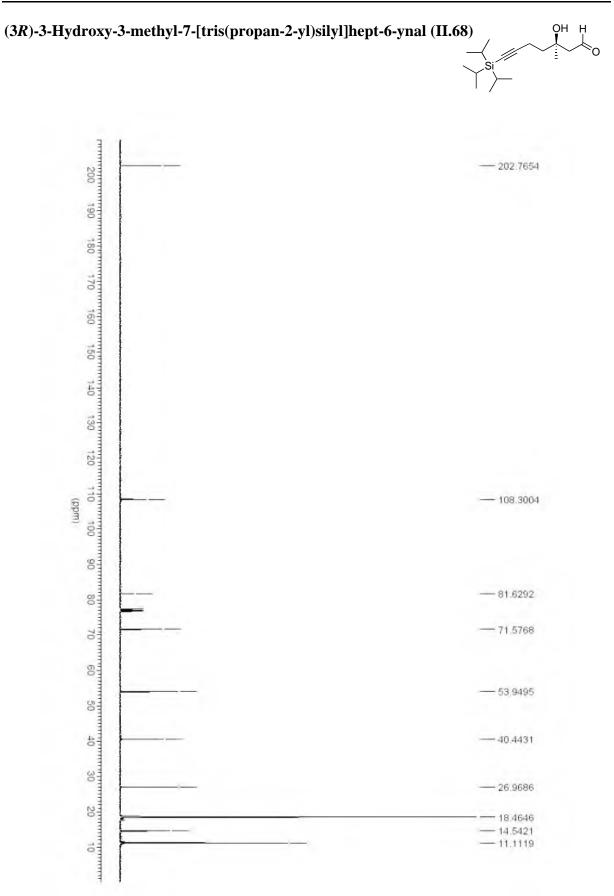


A4

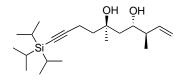


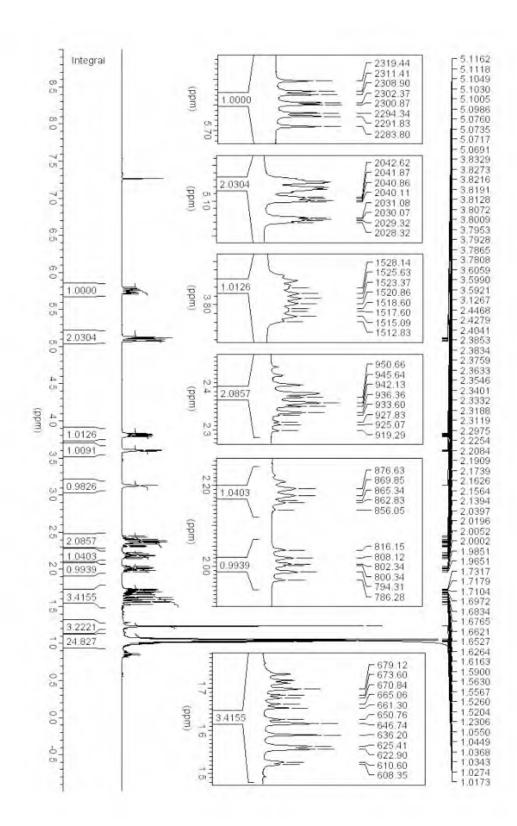


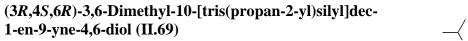


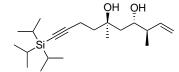

A7

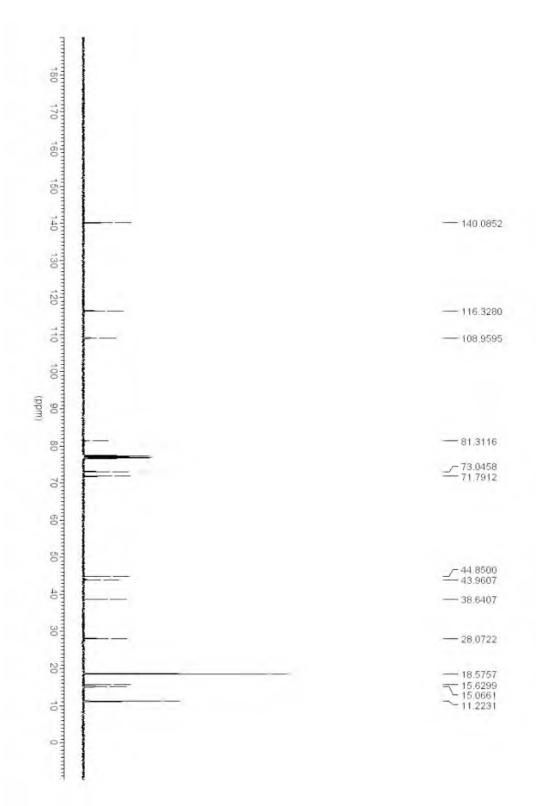
-

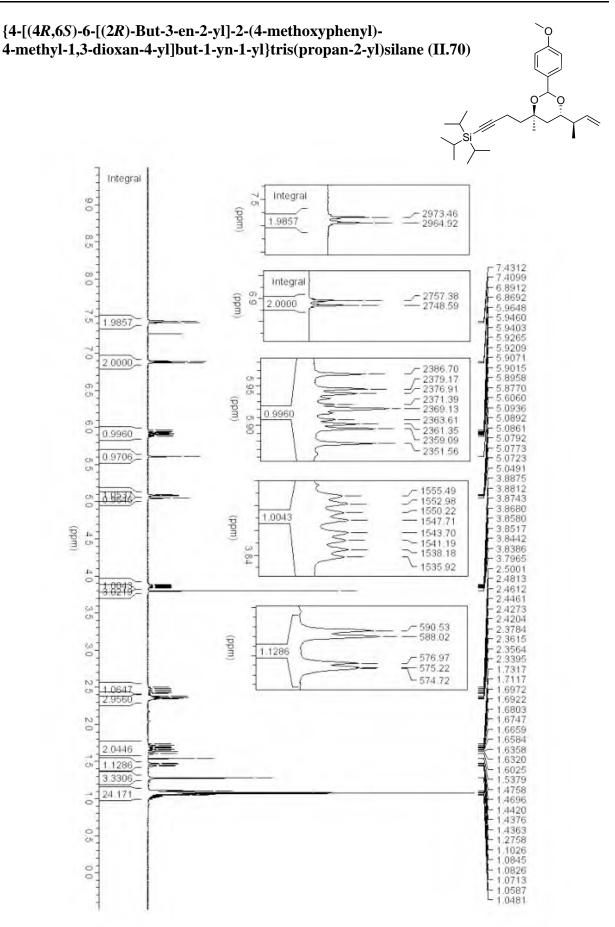


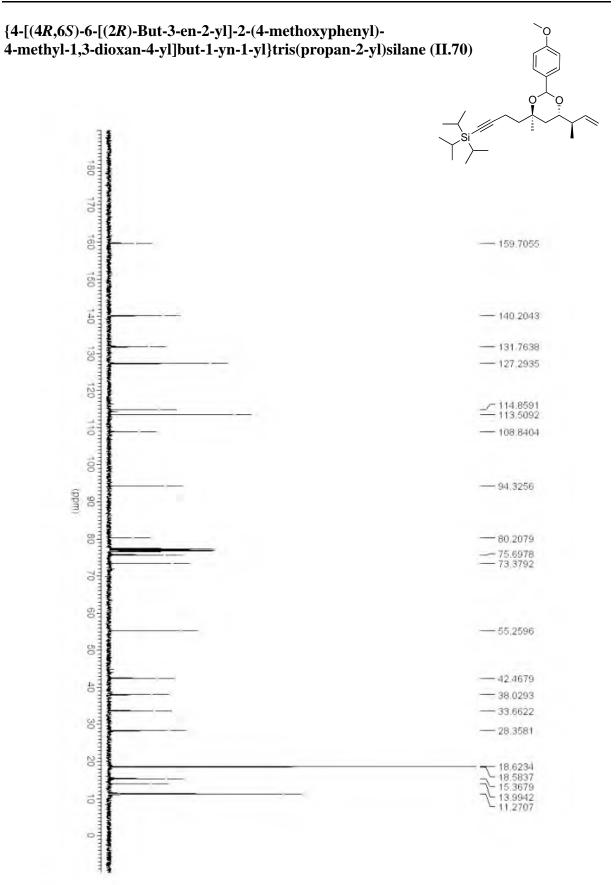


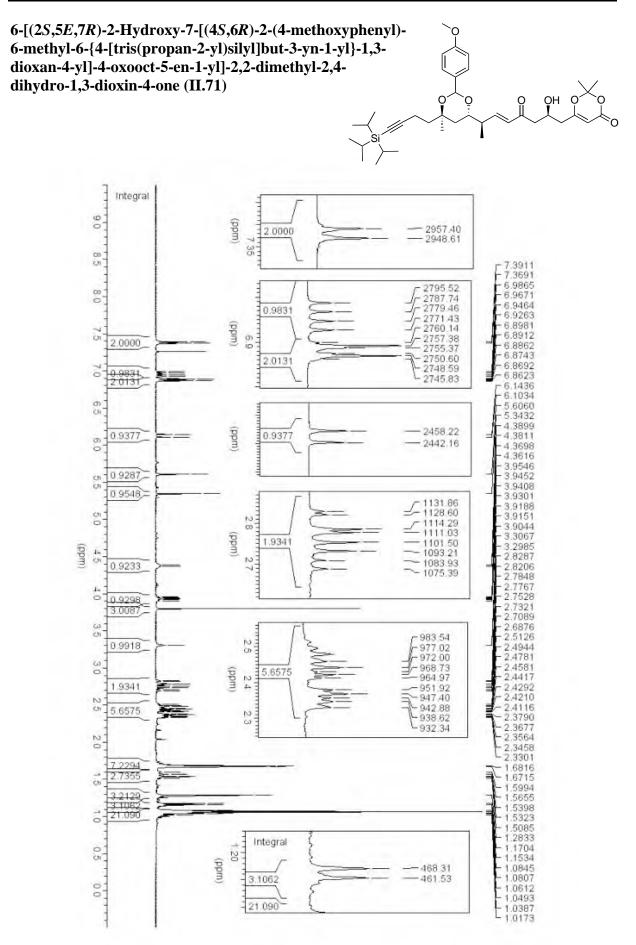


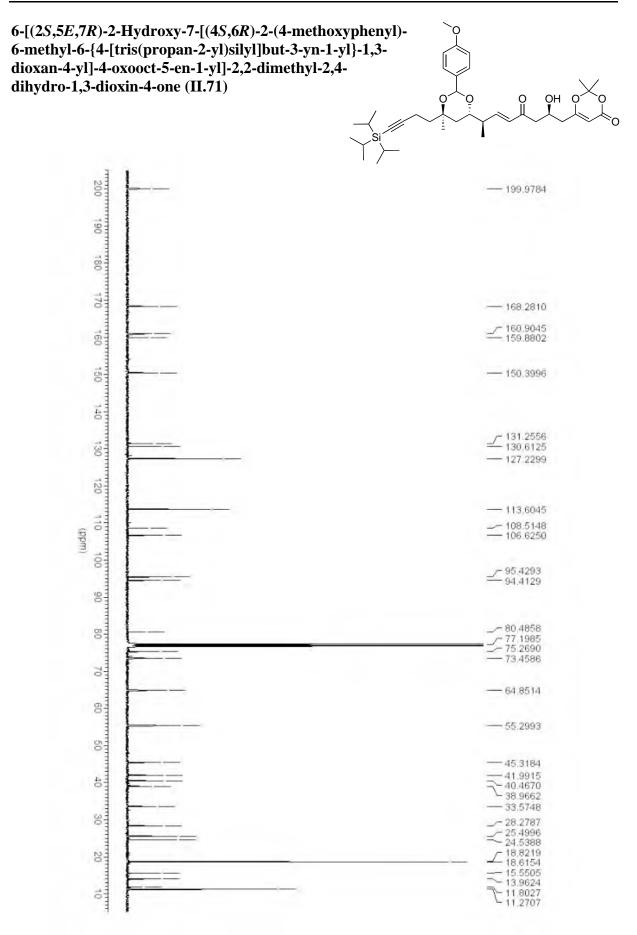


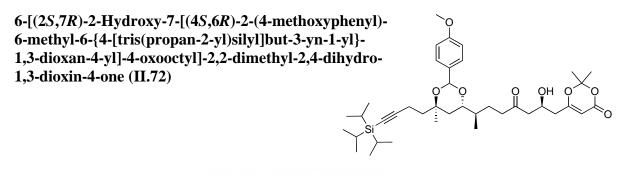

(3*R*,4*S*,6*R*)-3,6-Dimethyl-10-[tris(propan-2-yl)silyl]dec-1-en-9-yne-4,6-diol (II.69)

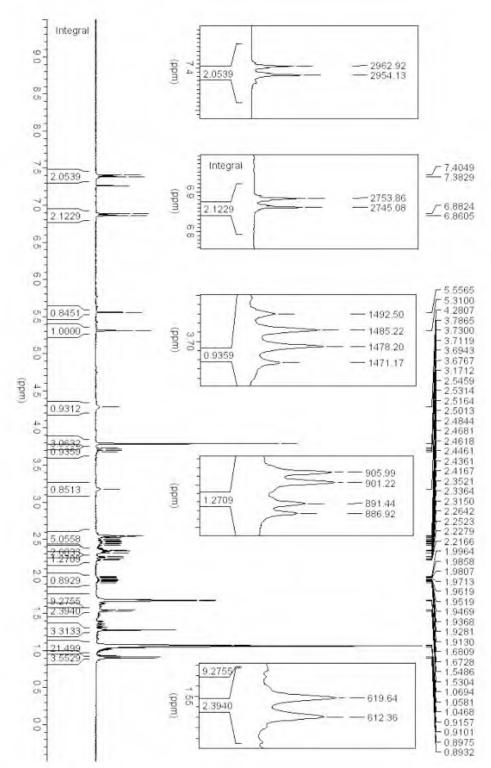


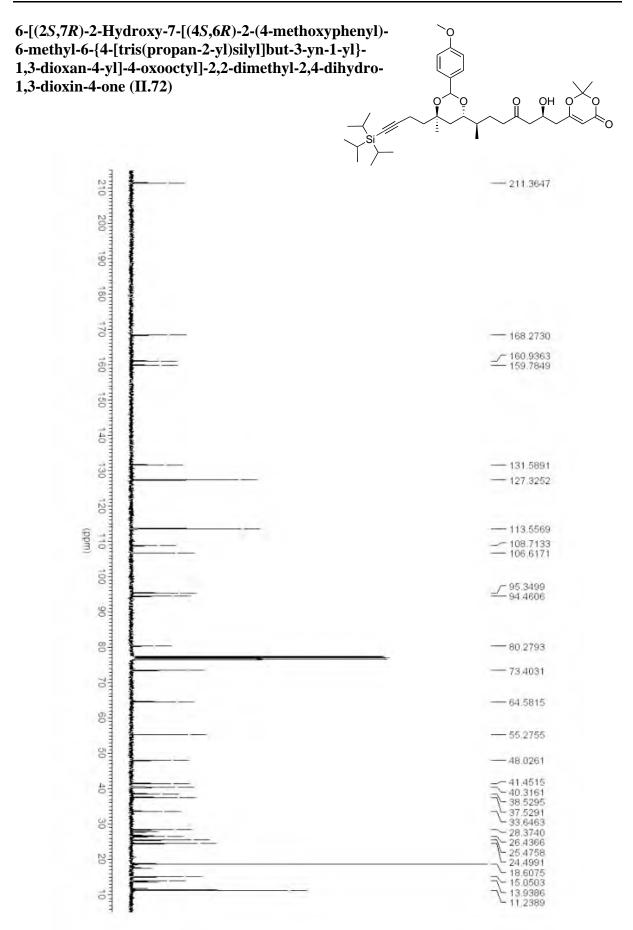


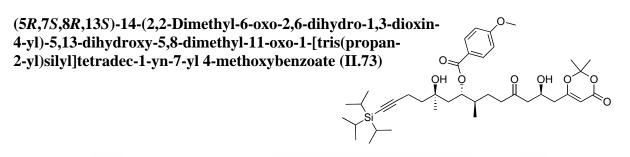


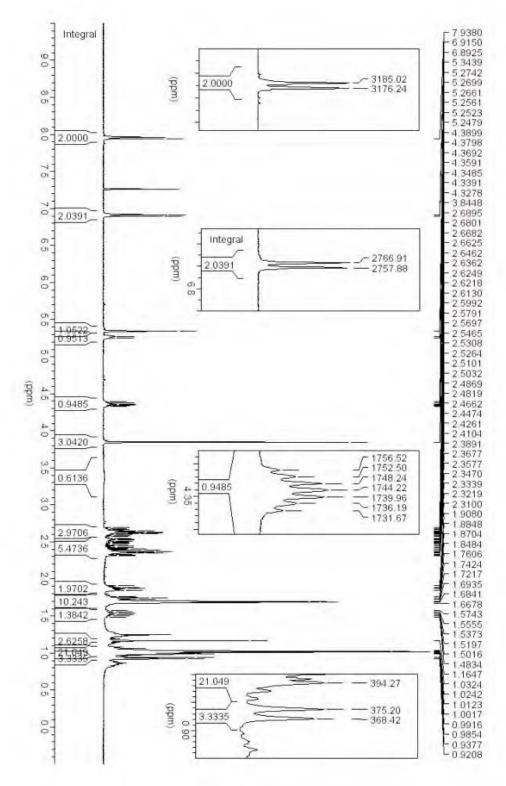


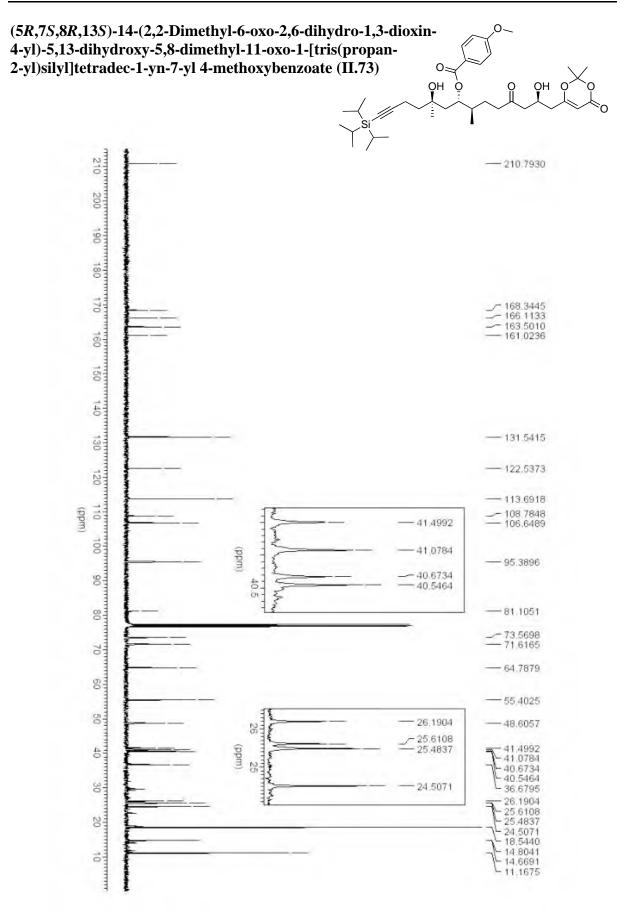


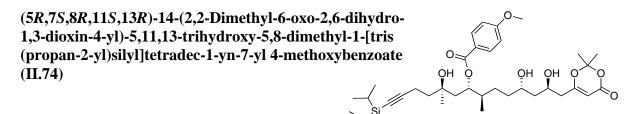


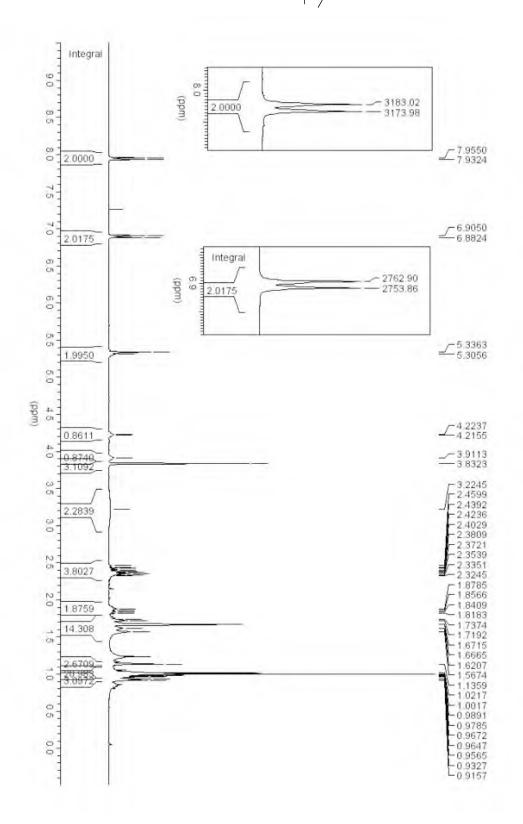


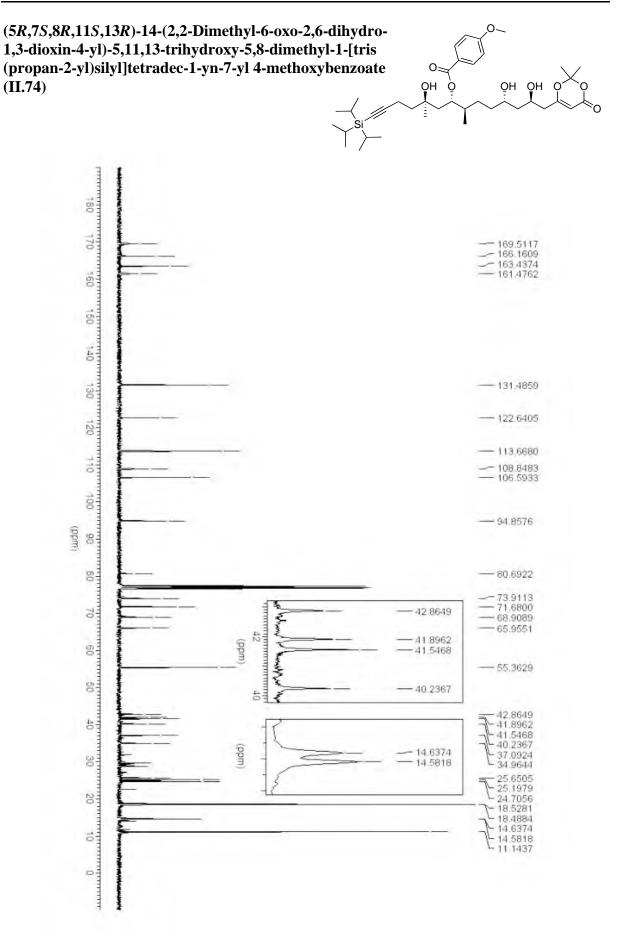


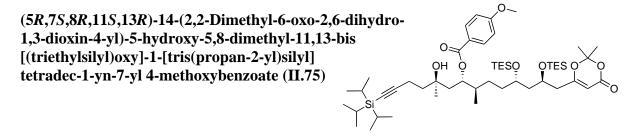


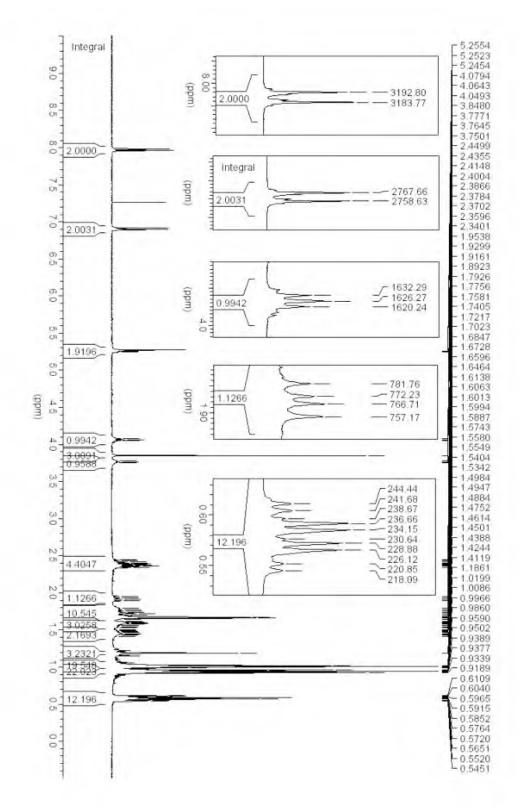


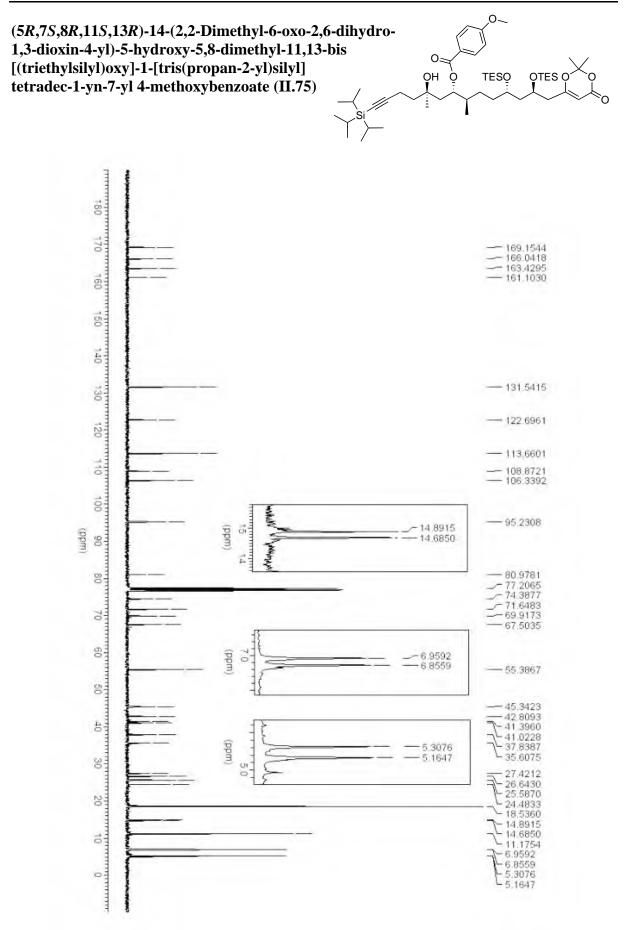


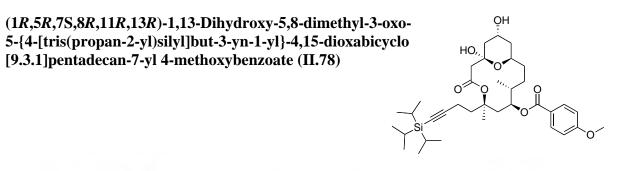


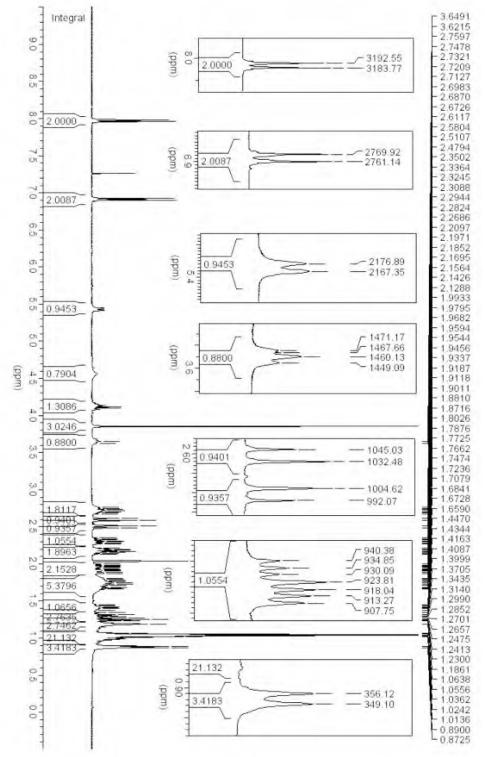


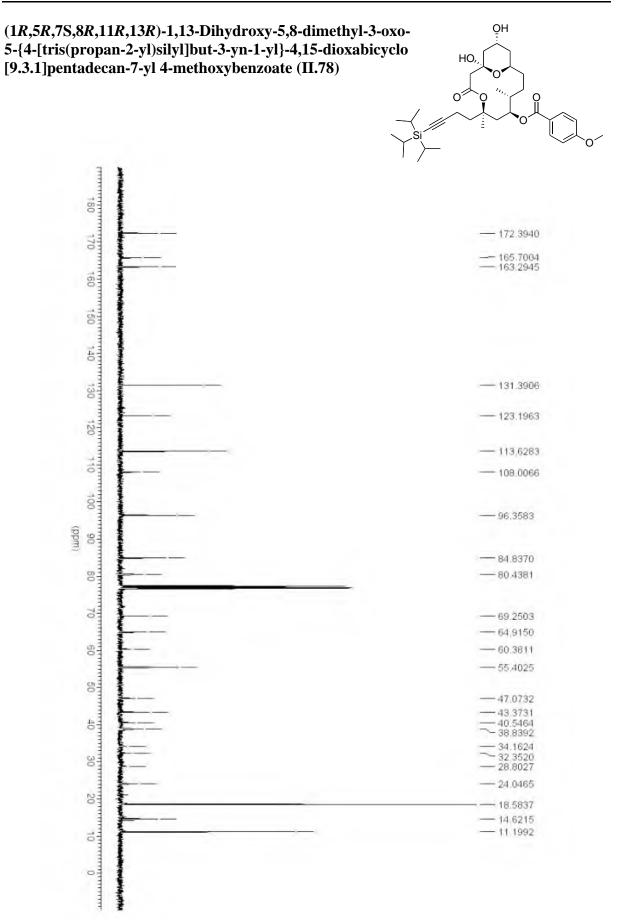


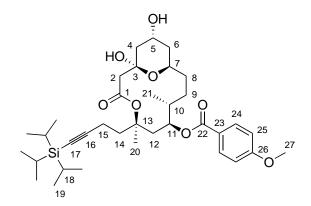


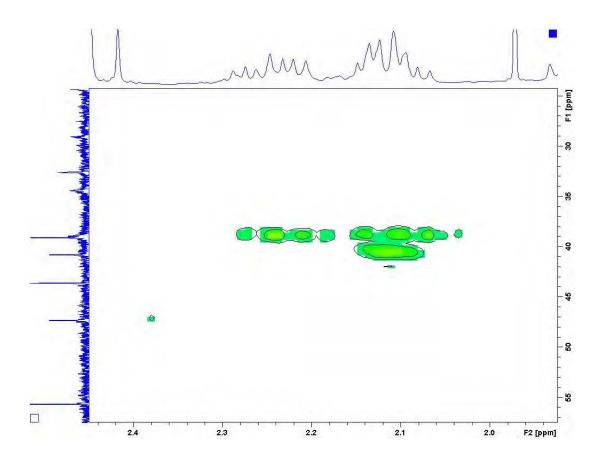


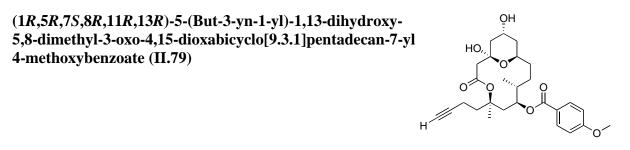


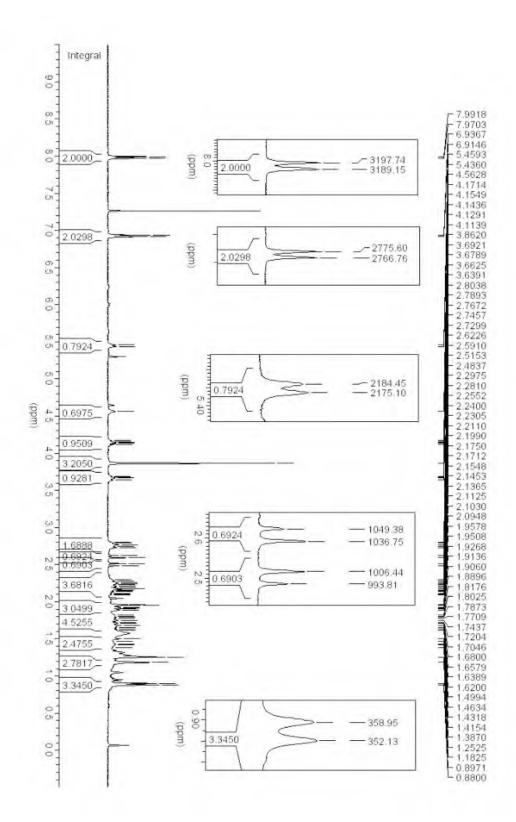


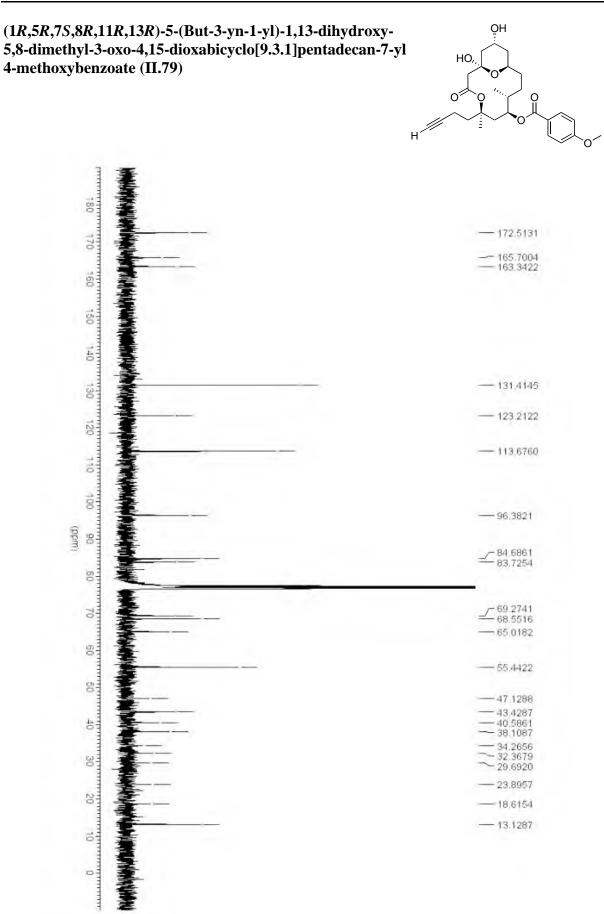


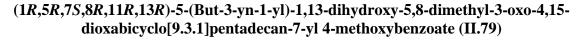


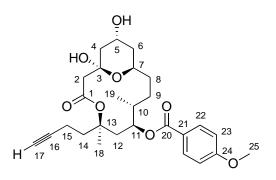


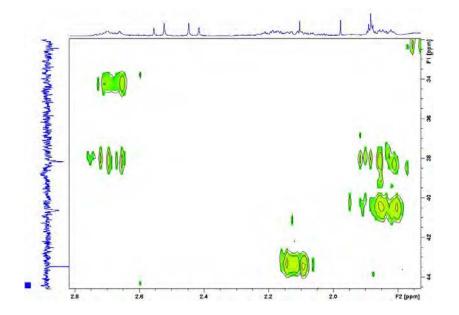


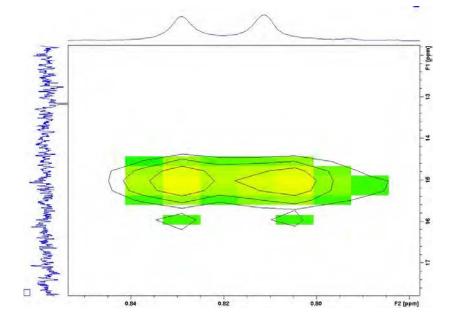

(1R,5R,7S,8R,11R,13R)-1,13-Dihydroxy-5,8-dimethyl-3-oxo-5-{4-[tris(propan-2-yl)silyl]but-3-yn-1-yl}-4,15-dioxabicyclo[9.3.1]pentadecan-7-yl 4-methoxybenzoate (II.78)

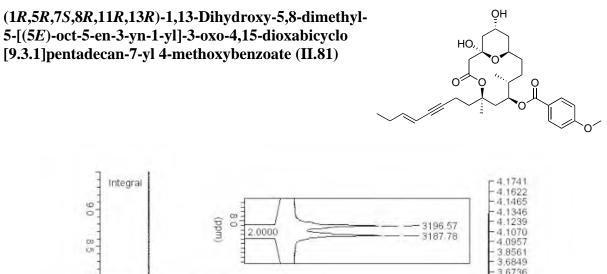


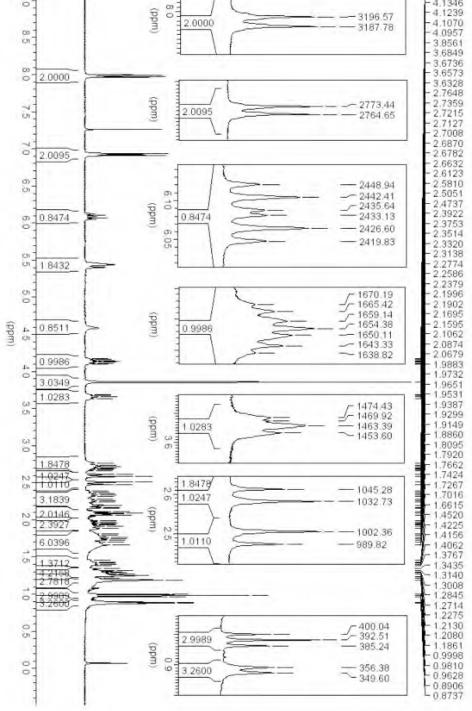

HMQC experiment: amplification of spectra for C4

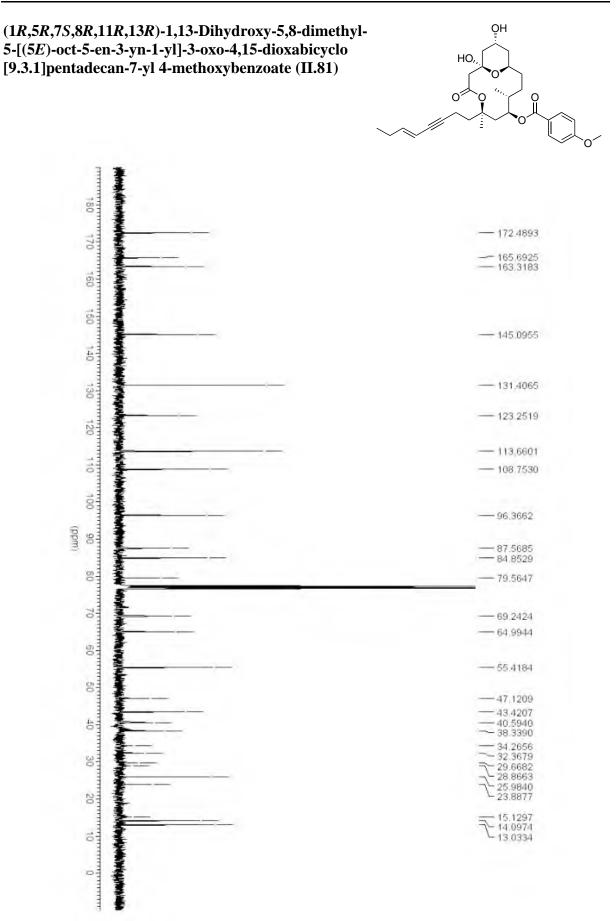




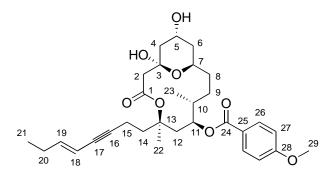


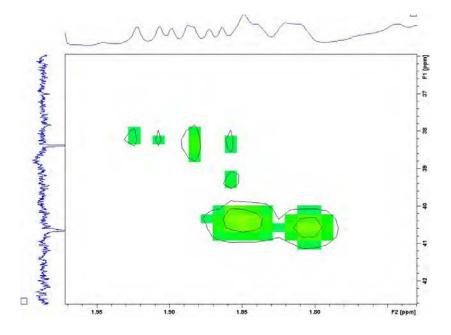


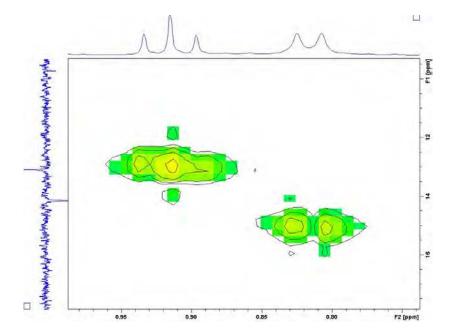

HMQC experiment: amplification of spectra for C4

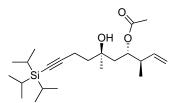


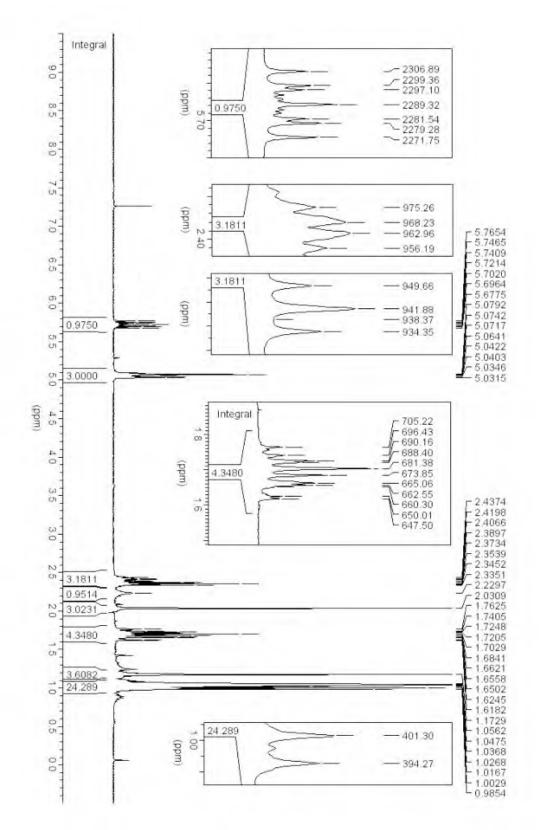
HMQC experiment: amplification of spectra for C19

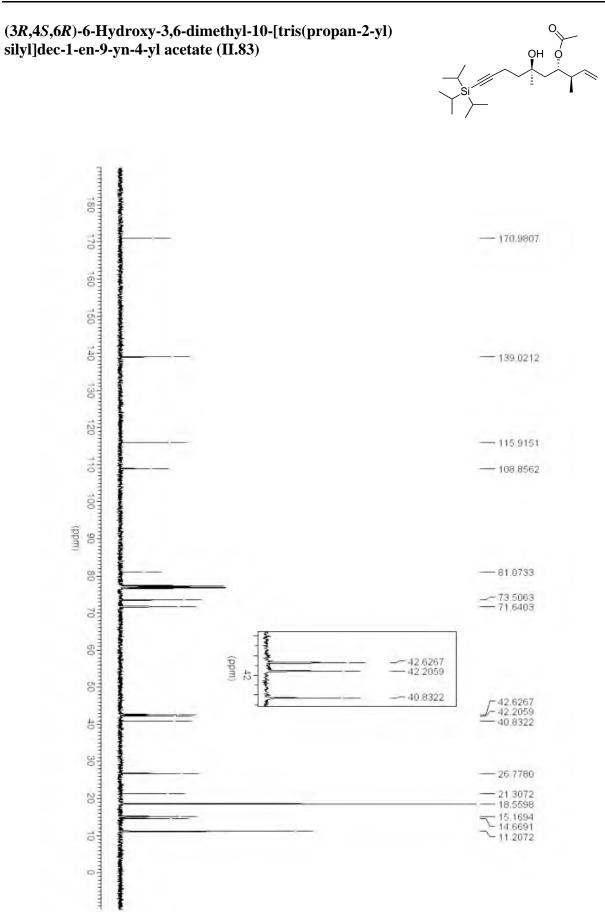


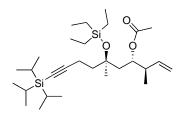


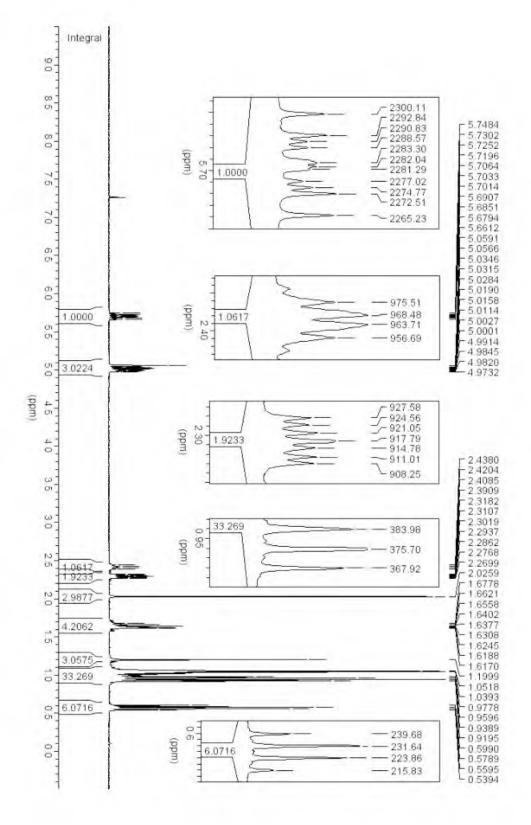

(1R,5R,7S,8R,11R,13R)-1,13-Dihydroxy-5,8-dimethyl-5-[(5E)-oct-5-en-3-yn-1-yl]-3-oxo-4,15-dioxabicyclo[9.3.1]pentadecan-7-yl 4-methoxybenzoate (II.81)

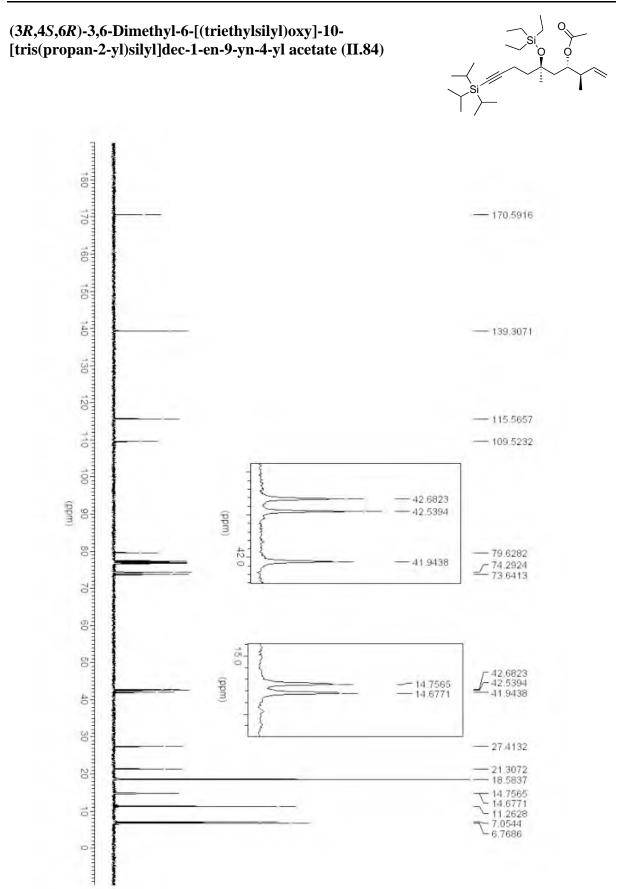

HMQC experiment: amplification of spectra for C10

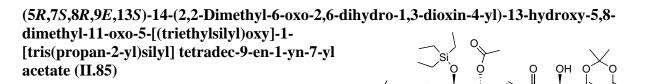


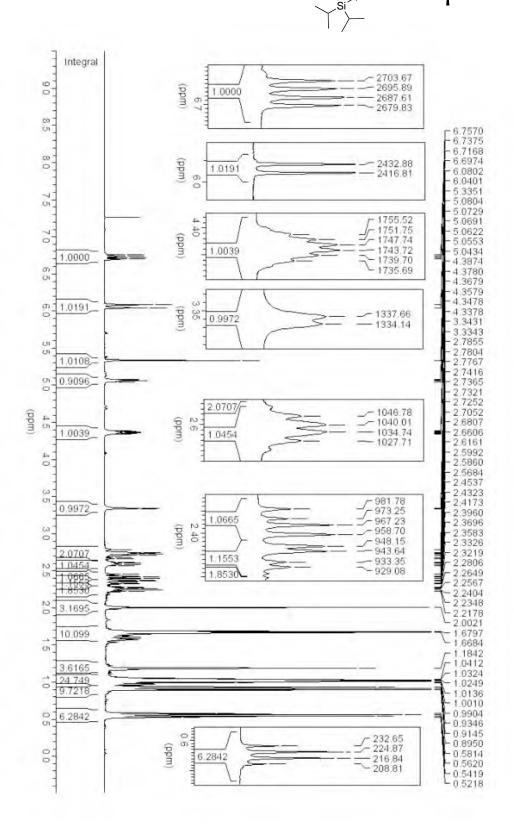

HMQC experiment: amplification of spectra for C23

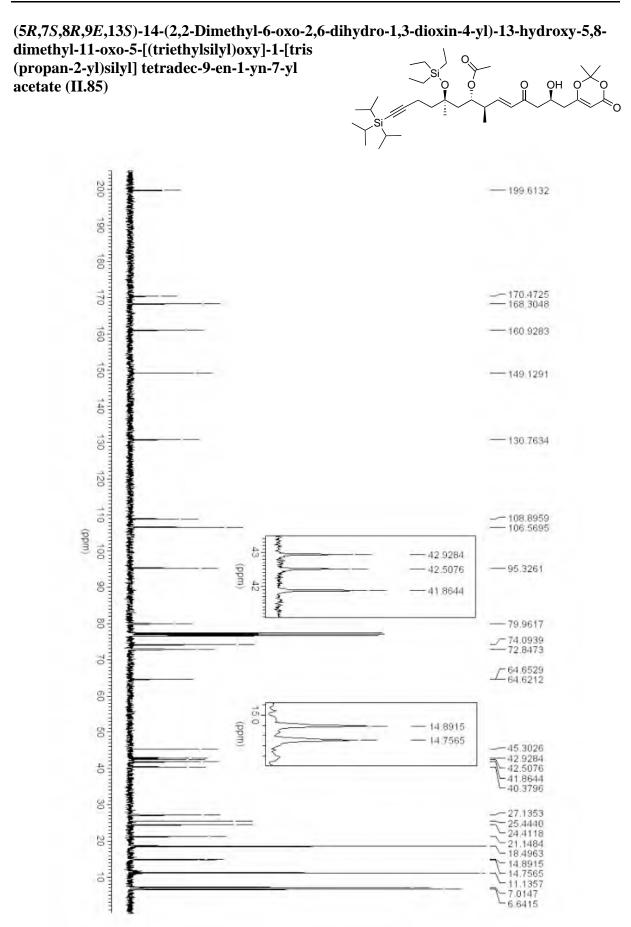

(3R,4S,6R)-6-Hydroxy-3,6-dimethyl-10-[tris(propan-2-yl) silyl]dec-1-en-9-yn-4-yl acetate (II.83)

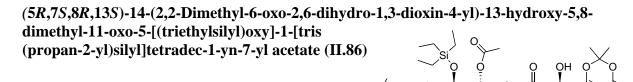


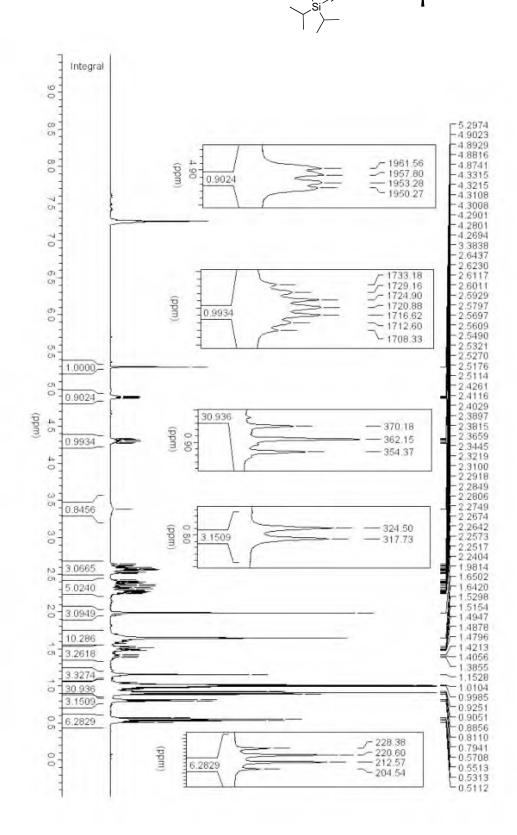


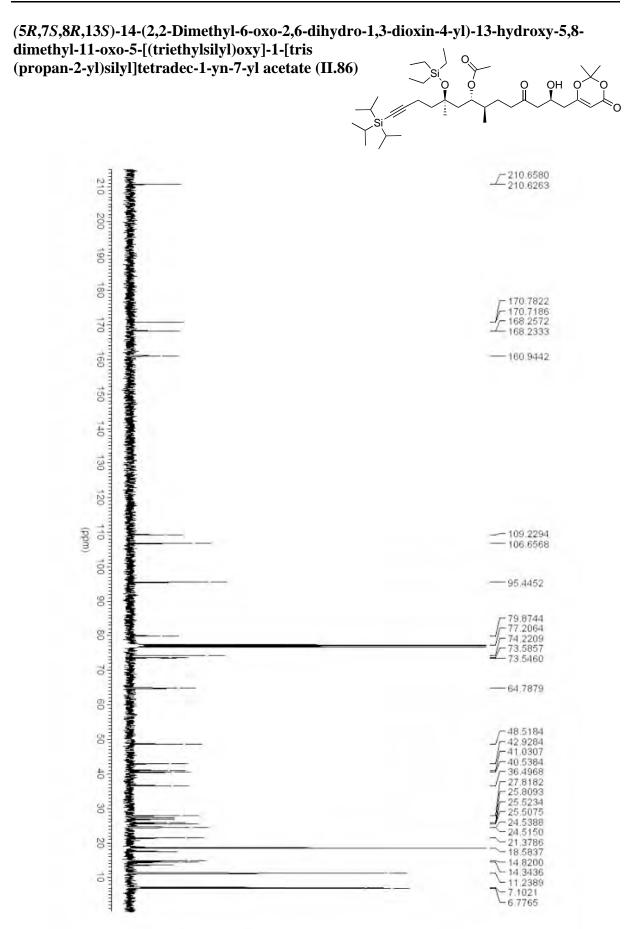


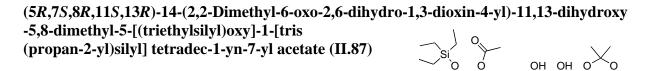

(3R,4S,6R)-3,6-Dimethyl-6-[(triethylsilyl)oxy]-10-[tris(propan-2-yl)silyl]dec-1-en-9-yn-4-yl acetate (II.84)



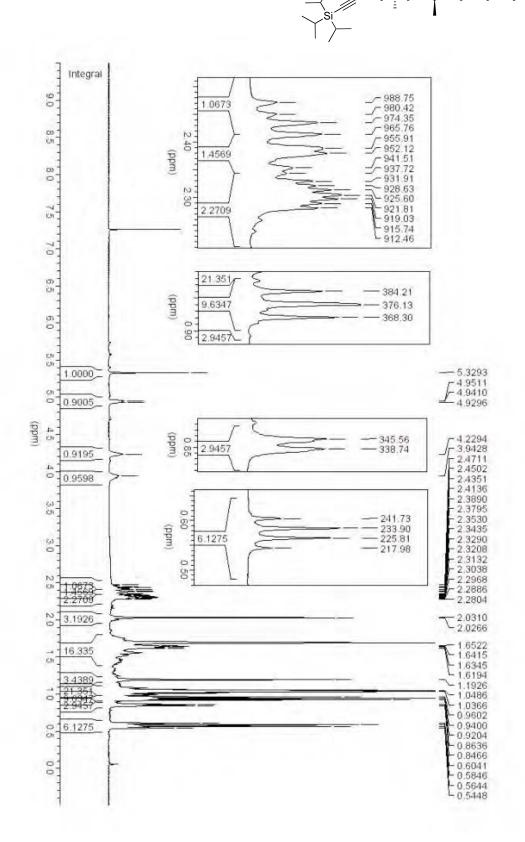


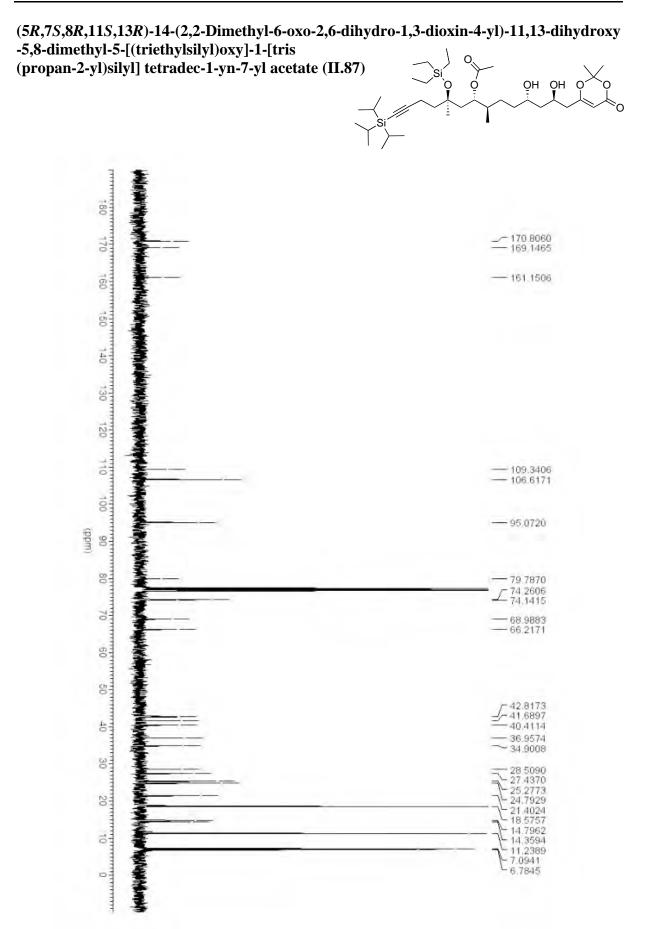


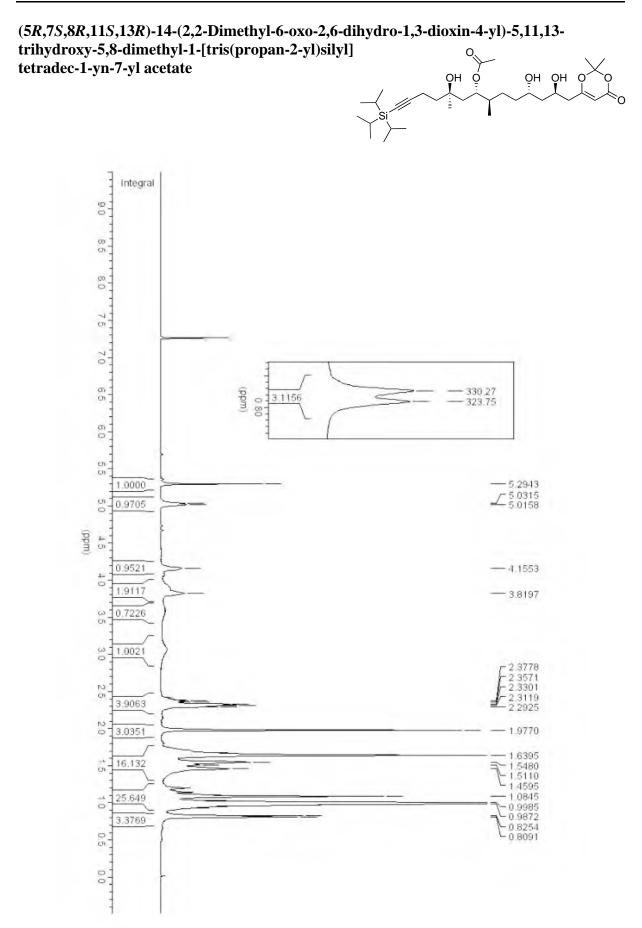


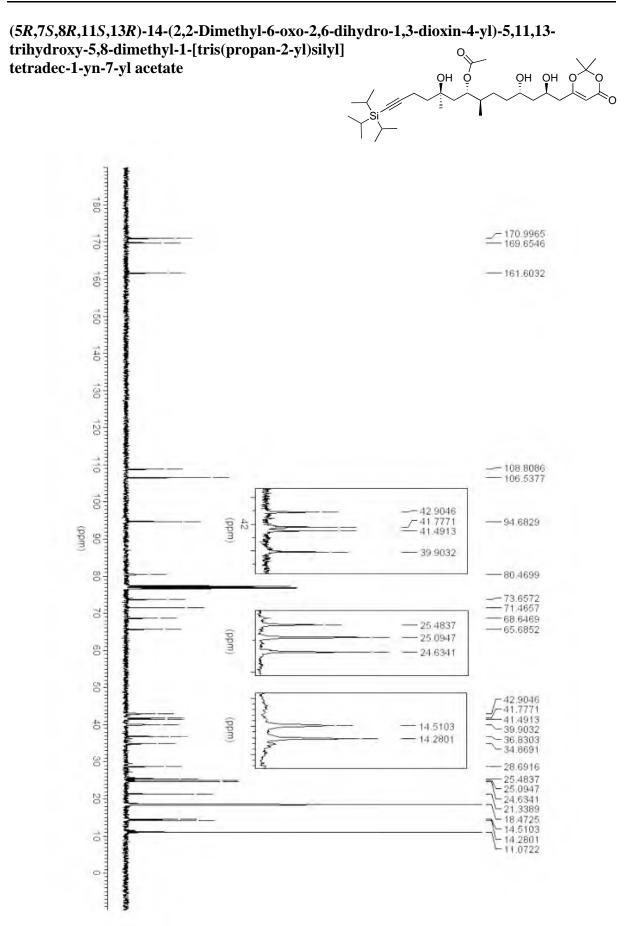


Ē

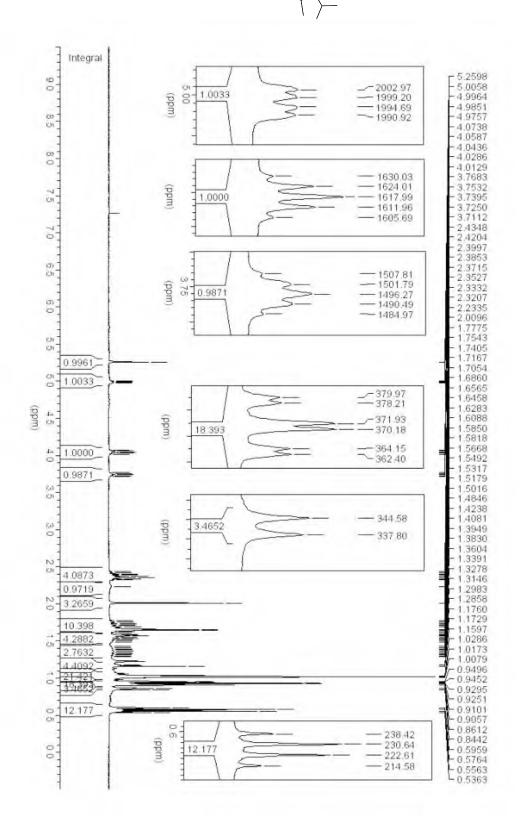


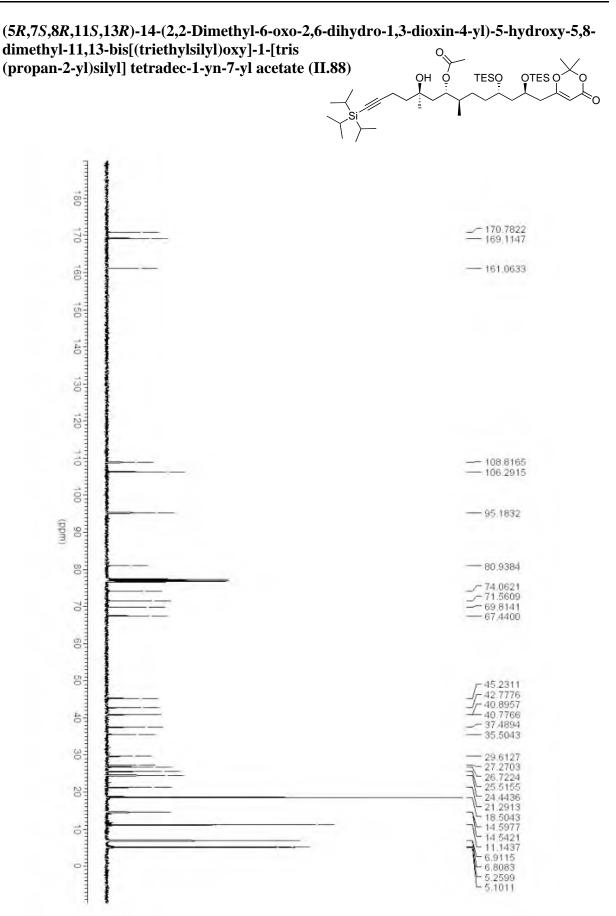

Ó

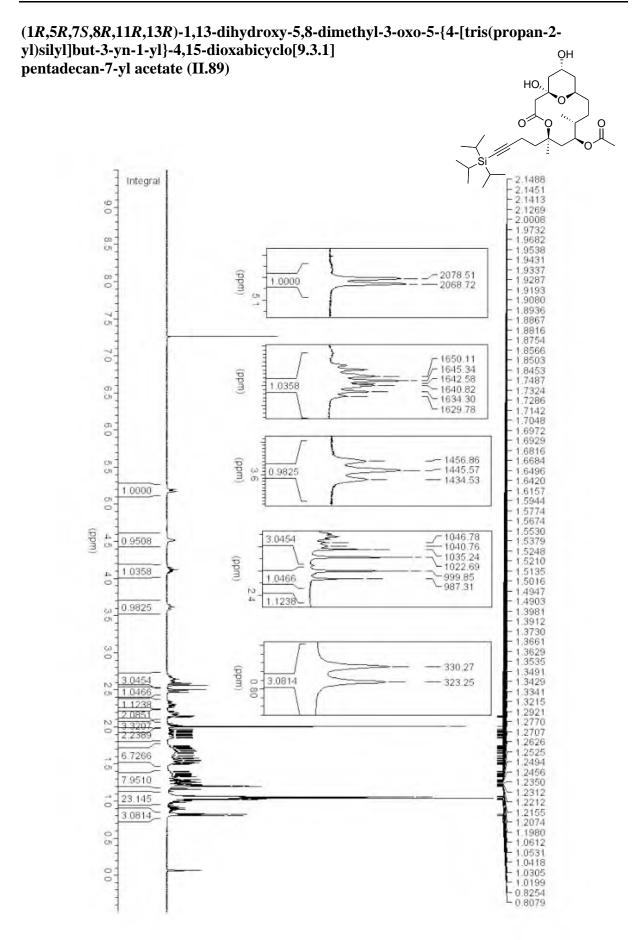

ŌН

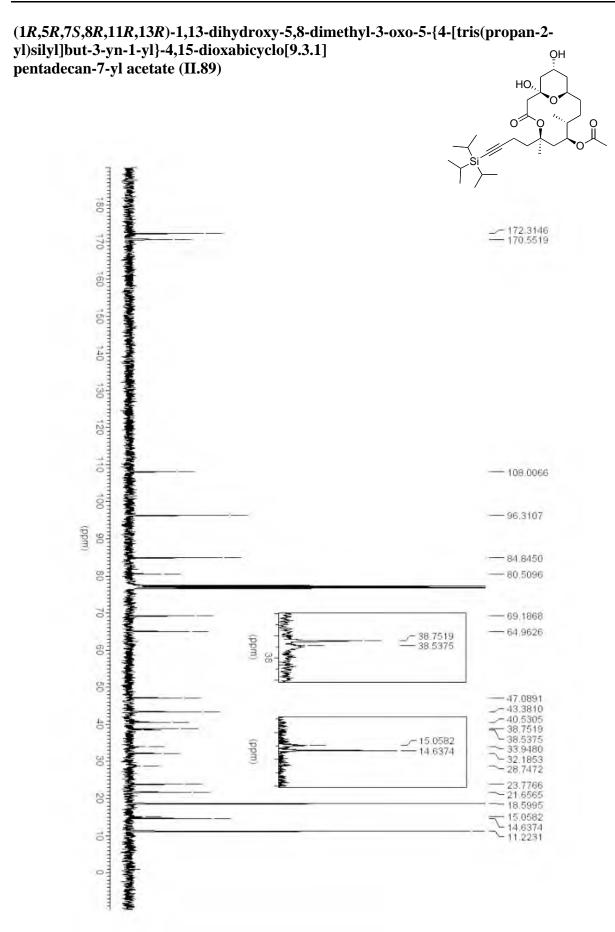

0

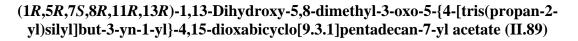
C

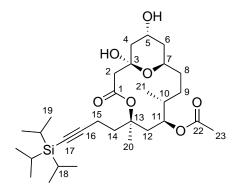


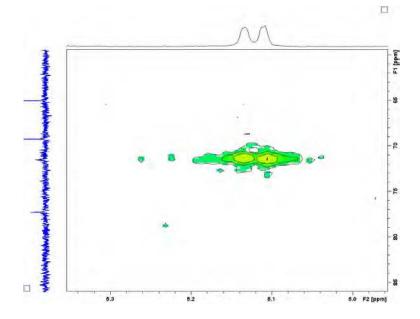


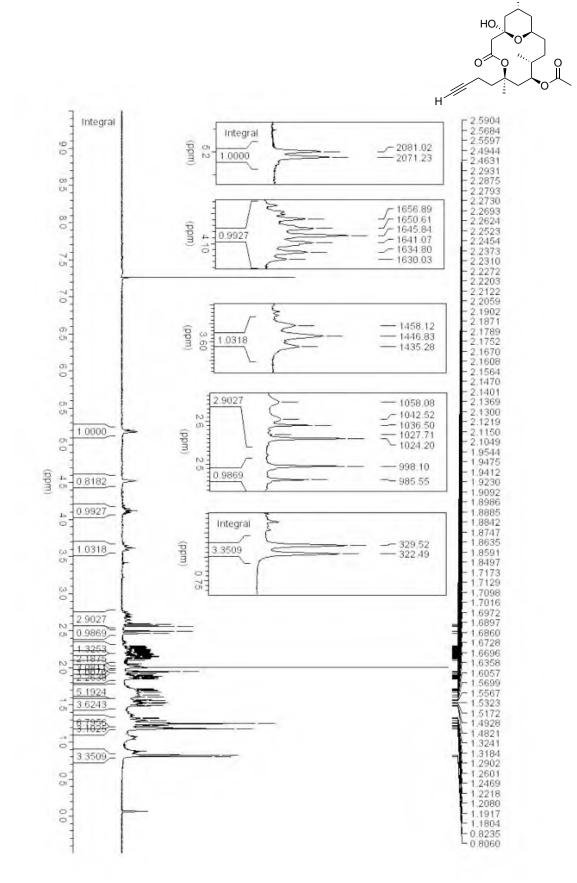



Ē

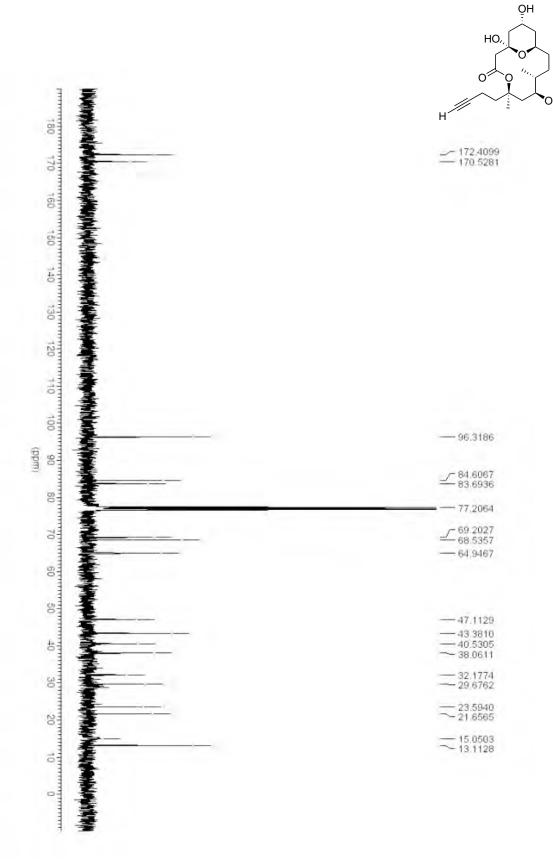

Ò

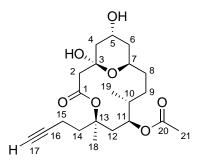




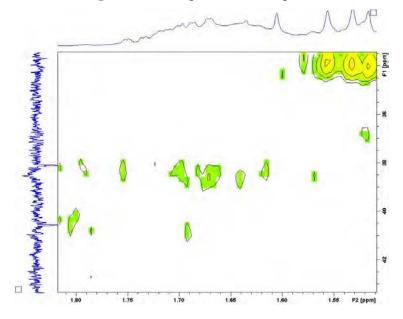


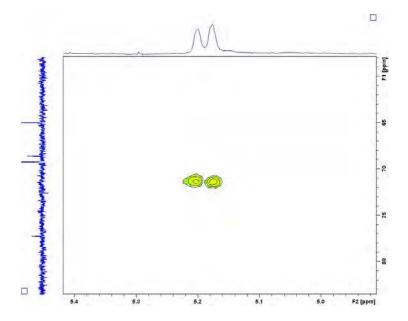
HMQC experiment: amplification of spectra for C11

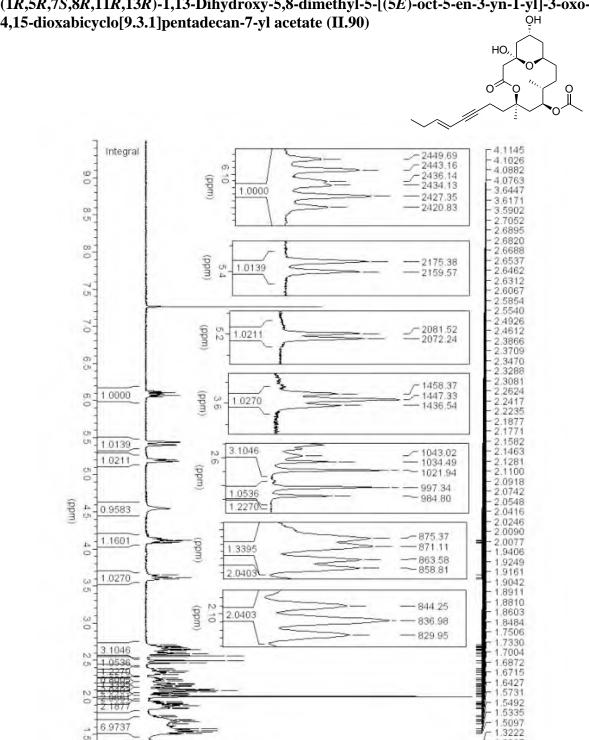



 $(1R, 5R, 7S, 8R, 11R, 13R) - 5 - (But - 3 - yn - 1 - yl) - 1, 13 - dihydroxy - 5, 8 - dimethyl - 3 - oxo - 4, 15 - dioxabicyclo[9.3.1] pentadecan - 7 - yl acetate <math display="inline">$_{\rm QH}$$

(1*R*,5*R*,7*S*,8*R*,11*R*,13*R*)-5-(But-3-yn-1-yl)-1,13-dihydroxy-5,8-dimethyl-3-oxo-4,15-dioxabicyclo[9.3.1]pentadecan-7-yl acetate


0 ∐


(1R,5R,7S,8R,11R,13R)-5-(but-3-yn-1-yl)-1,13-dihydroxy-5,8-dimethyl-3-oxo-4,15dioxabicyclo[9.3.1]pentadecan-7-yl acetate



HMQC experiment: amplification of spectra for C10

HMQC experiment: amplification of spectra for C11

(1R,5R,7S,8R,11R,13R)-1,13-Dihydroxy-5,8-dimethyl-5-[(5E)-oct-5-en-3-yn-1-yl]-3-oxo-4,15-dioxabicyclo[9.3.1]pentadecan-7-yl acetate (II.90)

7.5949 0 3.2898

3.0299

0.5

00

-

(ppm) 0.9 3.2898

3.0299

.2927 .2720

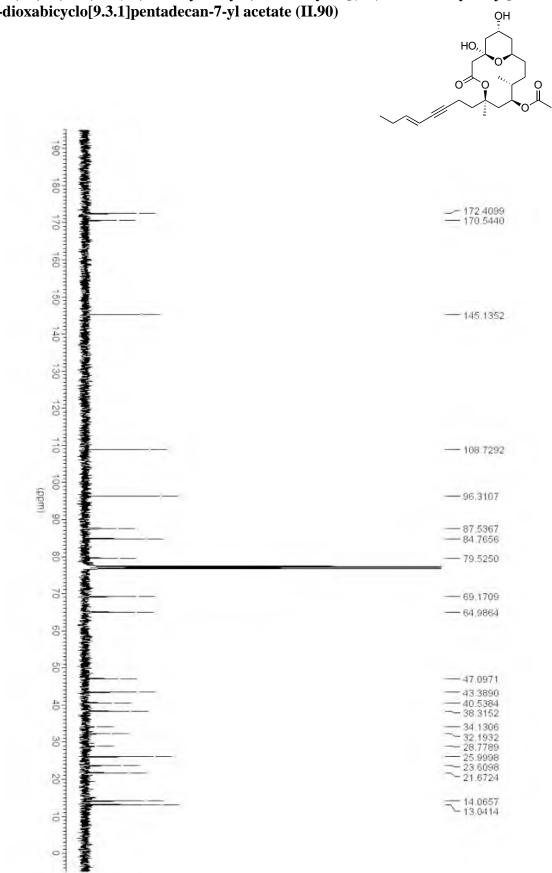
.2494 .2224

1854

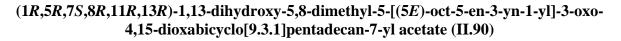
.1629

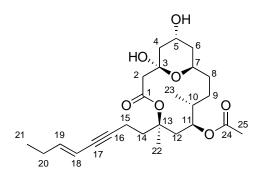
1610

1.0035

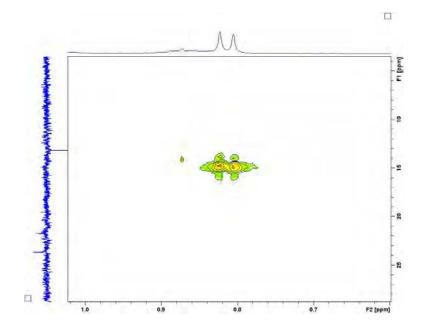

0.9854 0.9665

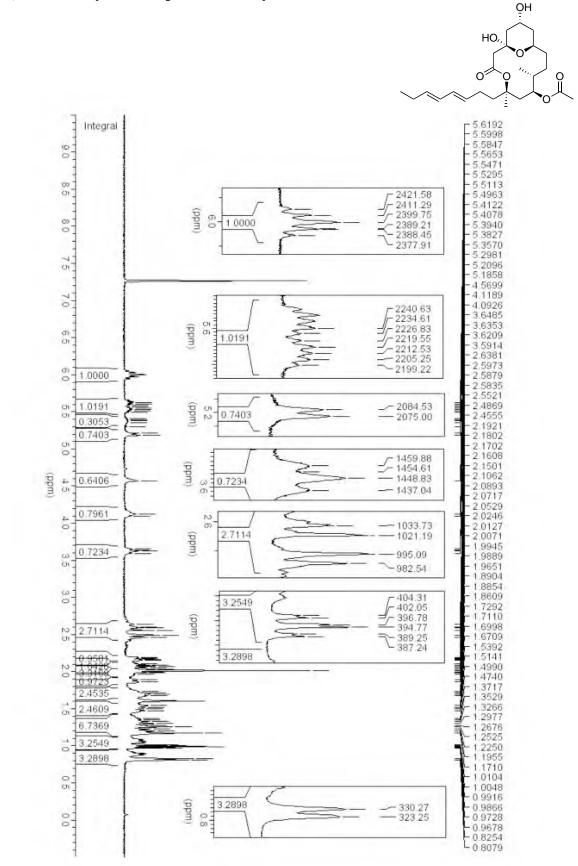
L0.821. 0.8041

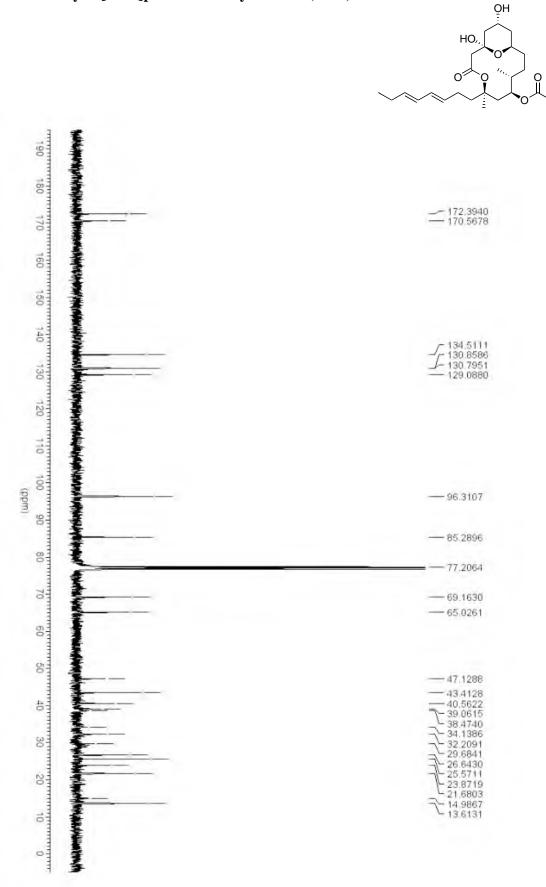

401.55

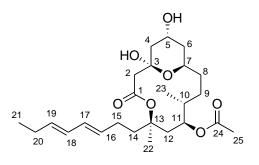

386.74

- 328.77 ~ 321.74

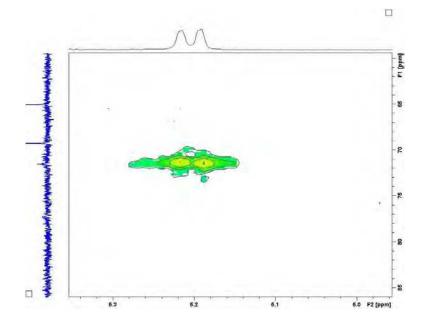


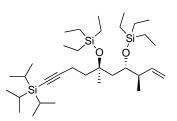

(1*R*,5*R*,7*S*,8*R*,11*R*,13*R*)-1,13-Dihydroxy-5,8-dimethyl-5-[(5*E*)-oct-5-en-3-yn-1-yl]-3-oxo-4,15-dioxabicyclo[9.3.1]pentadecan-7-yl acetate (II.90) OH

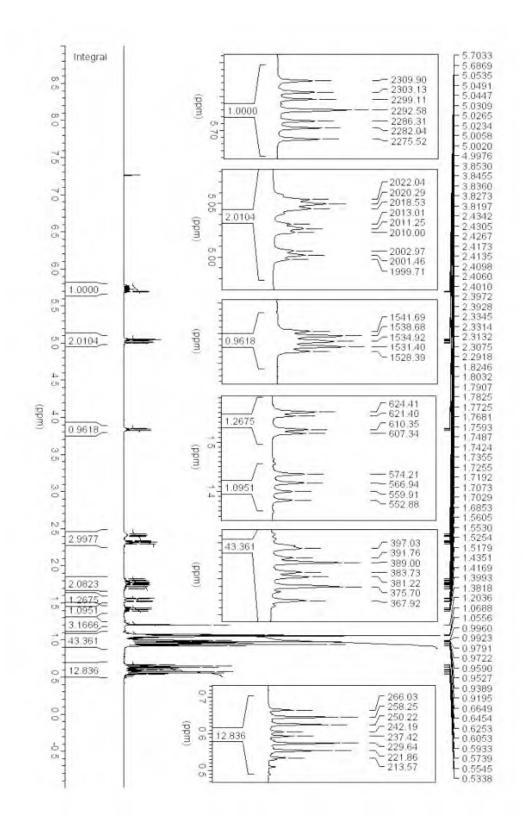

HMQC experiment: amplification of spectra for C23



(1*R*,5*R*,7*S*,8*R*,11*R*,13*R*)-1,13-Dihydroxy-5,8-dimethyl-5-[(3*E*,5*E*)-octa-3,5-dien-1-yl]-3-oxo-4,15-dioxabicyclo[9.3.1]pentadecan-7-yl acetate (II.91)

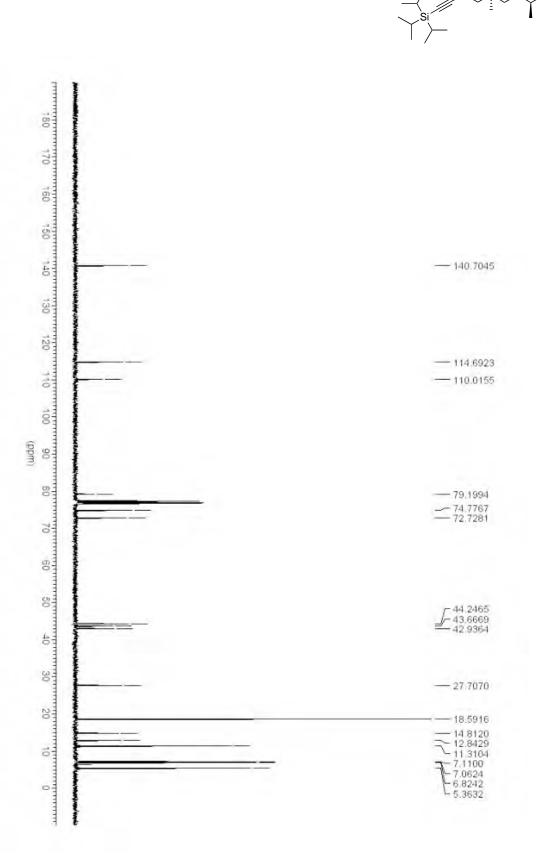

(1*R*,5*R*,7*S*,8*R*,11*R*,13*R*)-1,13-Dihydroxy-5,8-dimethyl-5-[(3*E*,5*E*)-octa-3,5-dien-1-yl]-3-oxo-4,15-dioxabicyclo[9.3.1]pentadecan-7-yl acetate (II.91)

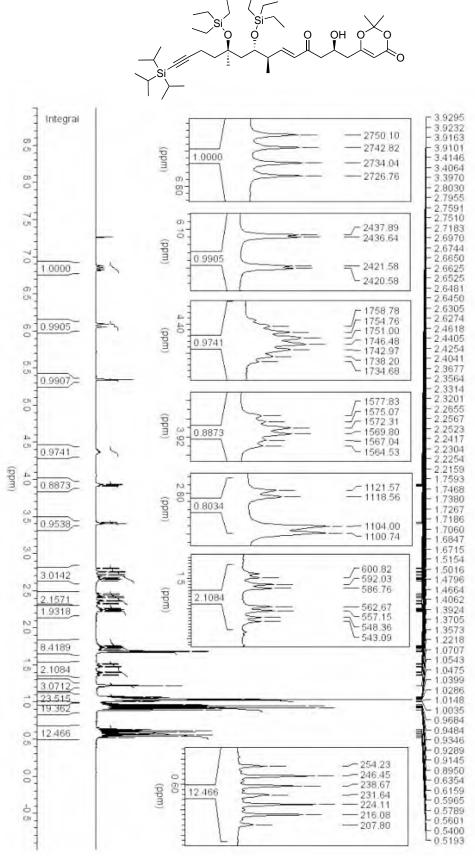

(1*R*,5*R*,7*S*,8*R*,11*R*,13*R*)-1,13-Dihydroxy-5,8-dimethyl-5-[(3*E*,5*E*)-octa-3,5-dien-1-yl]-3oxo-4,15-dioxabicyclo[9.3.1]pentadecan-7-yl acetate (II.91)



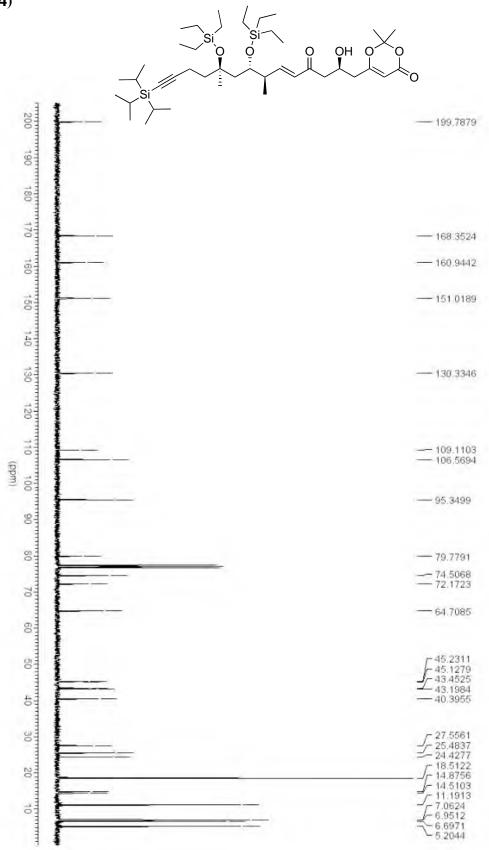
HMQC experiment: amplification of spectra for C11

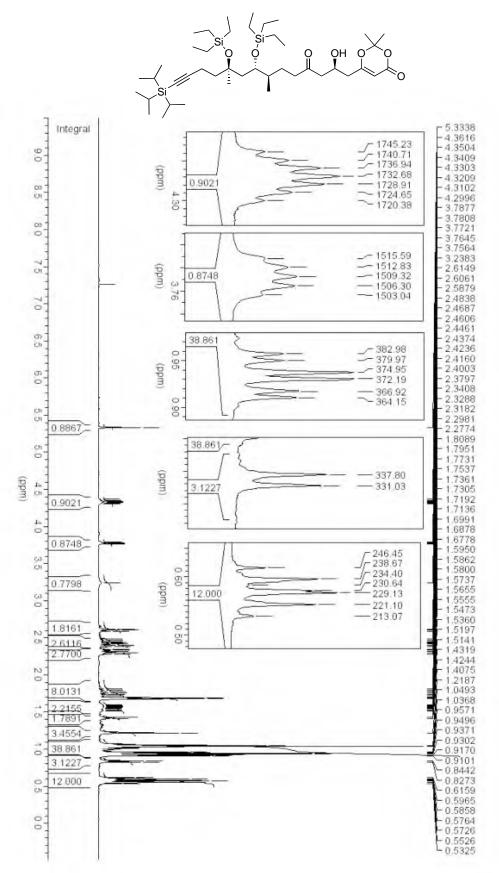
(5*R*,7*S*)-7-[(2*R*)-But-3-en-2-yl]-3,3,9,9-tetraethyl-5-methyl-5-{4-[tris(propan-2-yl)silyl]but-3-yn-1-yl}-4,8-dioxa-3,9-disilaundecane (II.93)

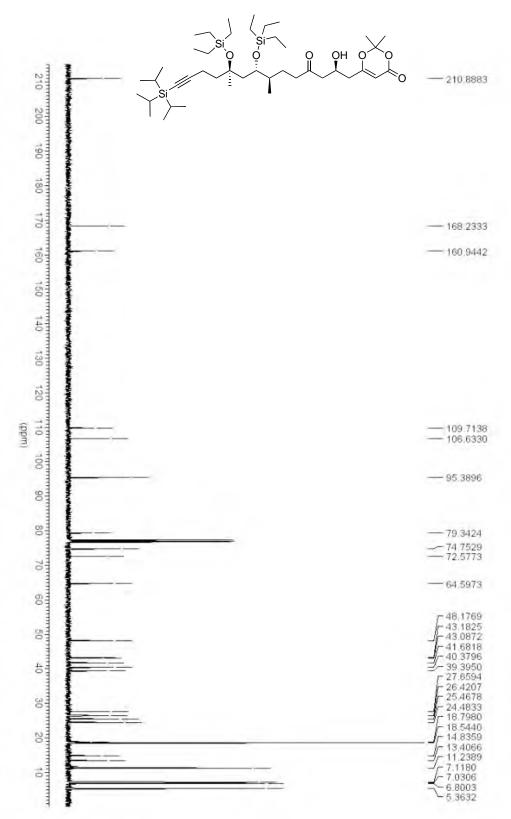



`Şi Q

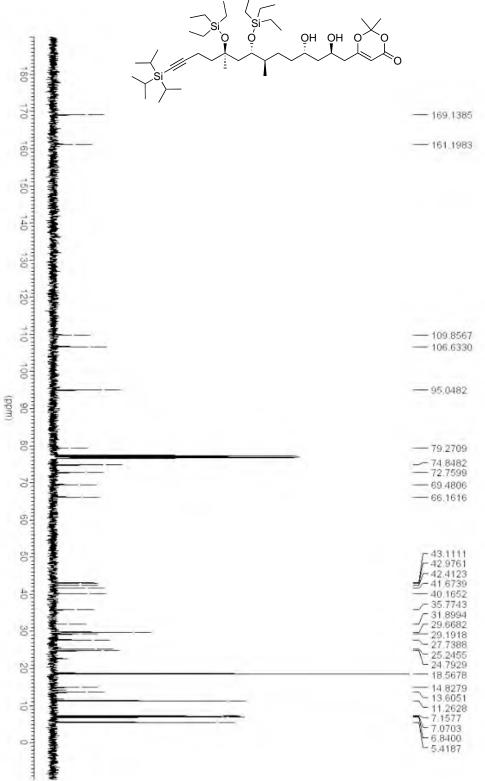
ò

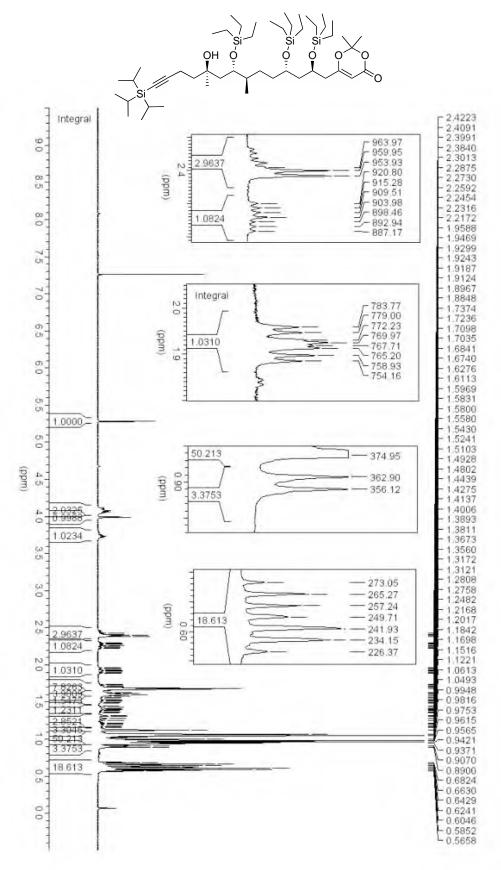

```
(5R,7S)-7-[(2R)-But-3-en-2-yl]-3,3,9,9-tetraethyl-5-methyl-5- \\ \{4-[tris(propan-2-yl)silyl]but-3-yn-1-yl\}-4,8- \\ dioxa-3,9-disila
undecane (II.93)
```

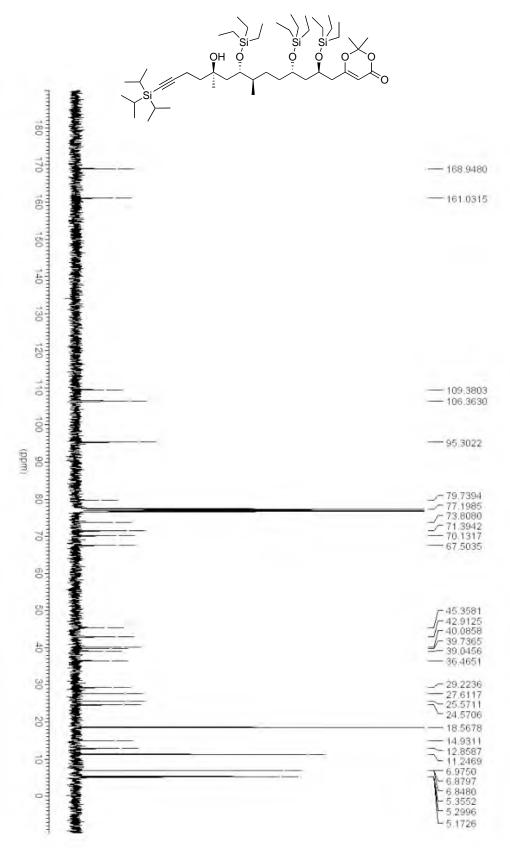


6-[(2*S*,5*E*,7*R*,8*S*,10*R*)-2-Hydroxy-7,10-dimethyl-4-oxo-8,10-bis[(triethylsilyl)oxy]-14-[tris(propan-2-yl)silyl]tetradec-5-en-13-yn-1-yl]-2,2-dimethyl-2,4-dihydro-1,3-dioxin-4one (II.94)

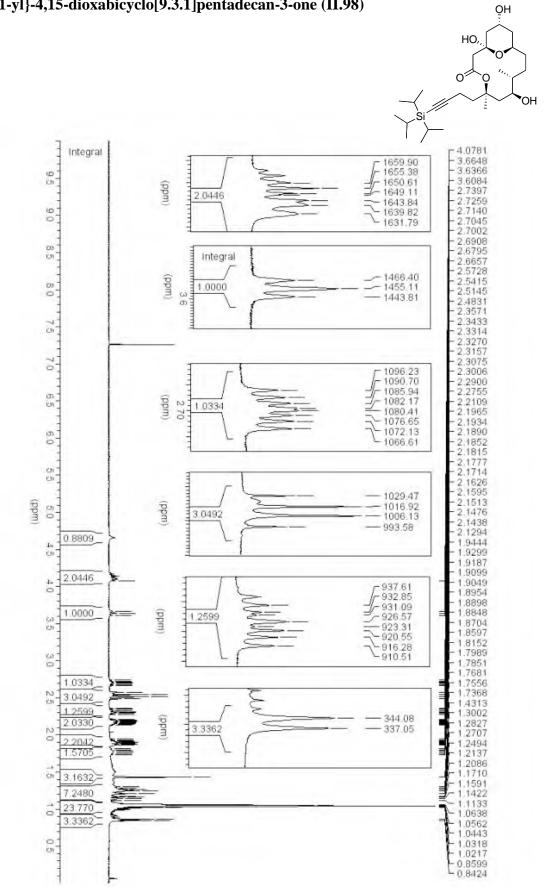

6-[(2*S*,5*E*,7*R*,8*S*,10*R*)-2-Hydroxy-7,10-dimethyl-4-oxo-8,10-bis[(triethylsilyl)oxy]-14-[tris(propan-2-yl)silyl]tetradec-5-en-13-yn-1-yl]-2,2-dimethyl-2,4-dihydro-1,3-dioxin-4one (II.94)

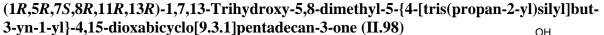

6-[(2*S*,7*R*,8*S*,10*R*)-2-Hydroxy-7,10-dimethyl-4-oxo-8,10-bis[(triethylsilyl)oxy]-14-[tris(propan-2-yl)silyl]tetradec-13-yn-1-yl]-2,2-dimethyl-2,4-dihydro-1,3-dioxin-4-one (II.95)

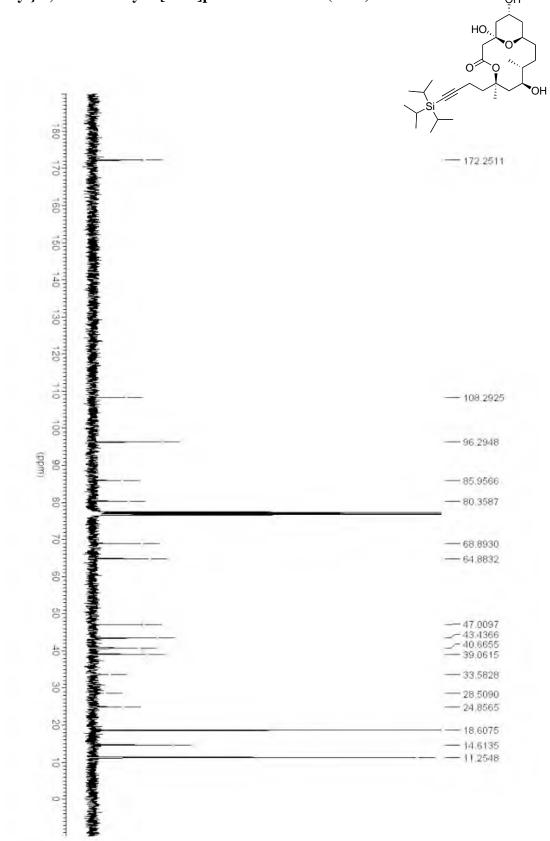

6-[(2*S*,7*R*,8*S*,10*R*)-2-Hydroxy-7,10-dimethyl-4-oxo-8,10-bis[(triethylsilyl)oxy]-14-[tris(propan-2-yl)silyl]tetradec-13-yn-1-yl]-2,2-dimethyl-2,4-dihydro-1,3-dioxin-4-one (II.95)


 $\label{eq:constraint} \begin{array}{l} 6-[(2R,\!4S,\!7R,\!8S,\!10R)\!-\!2,\!4\text{-Dihydroxy-7,}10\text{-dimethyl-8,}10\text{-bis}[(triethylsilyl)oxy]\!-\!14\text{-}\\ [tris(propan-2-yl)silyl]tetradec-13\text{-}yn-1\text{-}yl]\!-\!2,\!2\text{-}dimethyl\!-\!2,\!4\text{-}dihydro\!-\!1,\!3\text{-}dioxin-4\text{-}one\\ (II.96) \end{array}$

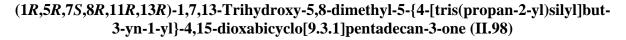

6-[(2*R*,4*S*,7*R*,8*S*,10*R*)-2,4-Dihydroxy-7,10-dimethyl-8,10-bis[(triethylsilyl)oxy]-14-[tris(propan-2-yl)silyl]tetradec-13-yn-1-yl]-2,2-dimethyl-2,4-dihydro-1,3-dioxin-4-one (II.96)

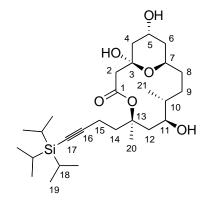


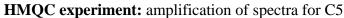

 $\label{eq:constraint} \begin{array}{l} 6-[(2R,\!4S,\!7R,\!8S,\!10R)\!-\!10\!-\!Hydroxy\!-\!7,\!10\!-\!dimethyl\!-\!2,\!4,\!8\!-\!tris[(triethylsilyl)oxy]\!-\!14\!-\![tris(propan-2\!\cdot\!yl)silyl]tetradec\!-\!13\!-\!yn\!-\!1\!-\!yl]\!-\!2,\!2\!-\!dimethyl\!-\!2,\!4\!-\!dihydro\!-\!1,\!3\!-\!dioxin\!-\!4\!-\!one\ (II.97) \end{array}$

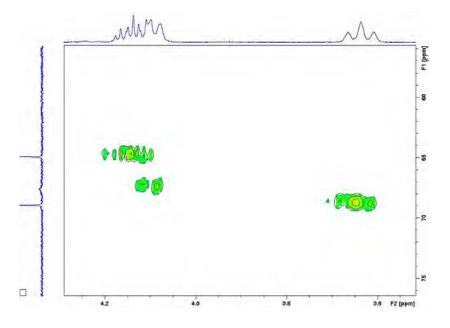


 $\label{eq:constraint} \begin{array}{l} 6-[(2R,\!4S,\!7R,\!8S,\!10R)\!-\!10\!-\!Hydroxy\!-\!7,\!10\!-\!dimethyl\!-\!2,\!4,\!8\!-\!tris[(triethylsilyl)oxy]\!-\!14\!-\![tris(propan-2-yl)silyl]tetradec\!-\!13\!-\!yn\!-\!1\!-\!yl]\!-\!2,\!2\!-\!dimethyl\!-\!2,\!4\!-\!dihydro\!-\!1,\!3\!-\!dioxin\!-\!4\!-\!one\ (II.97) \end{array}$

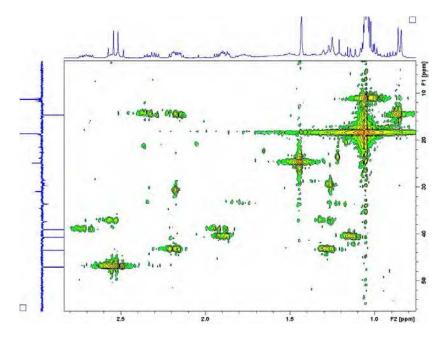


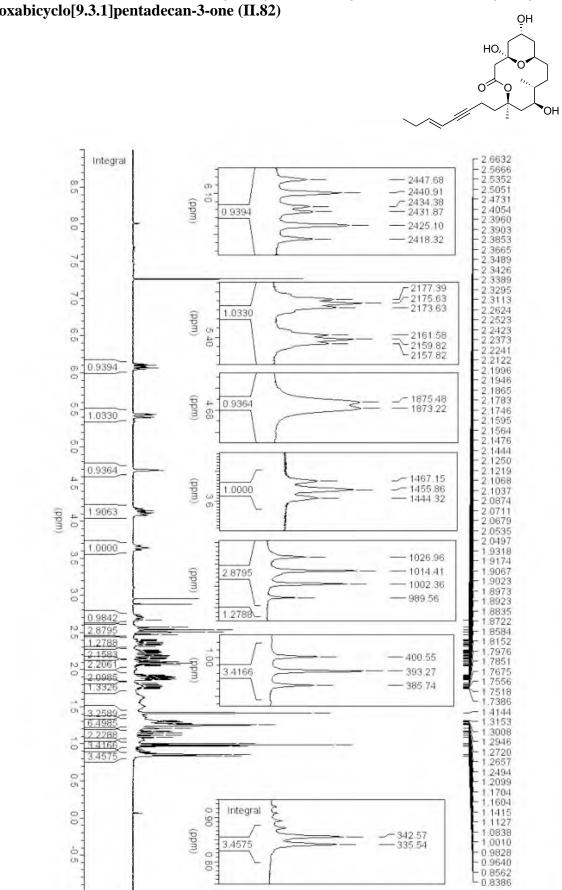


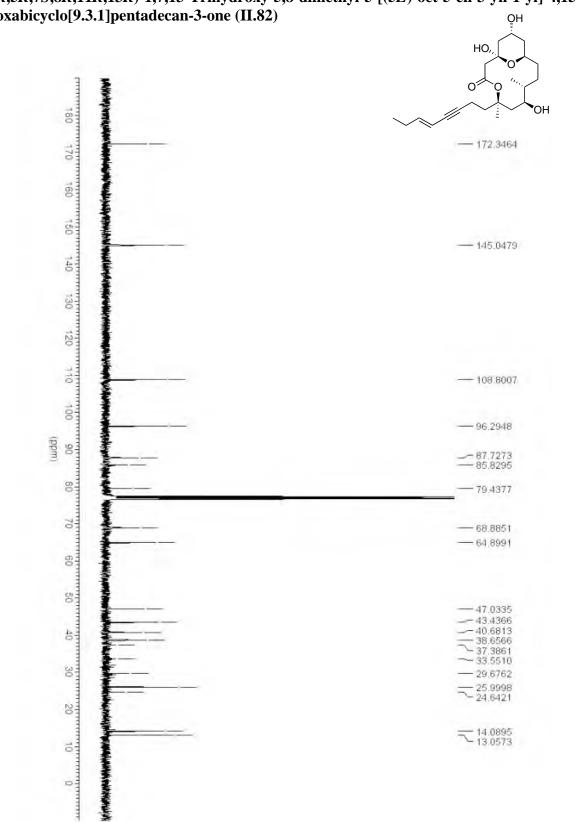


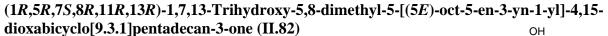


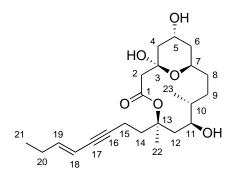
 $(1R, 5R, 7S, 8R, 11R, 13R) - 1, 7, 13 - Trihydroxy - 5, 8 - dimethyl - 5 - \{4 - [tris(propan - 2 - yl)silyl] but - 3 - yn - 1 - yl\} - 4, 15 - dioxabicyclo[9.3.1] pentadecan - 3 - one (II.98) ______ OH$



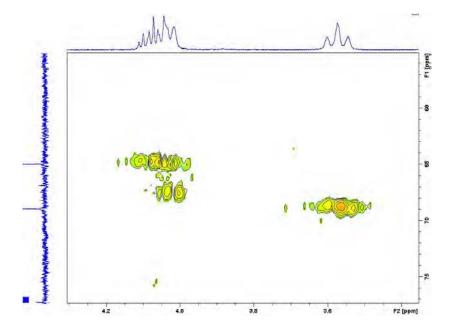


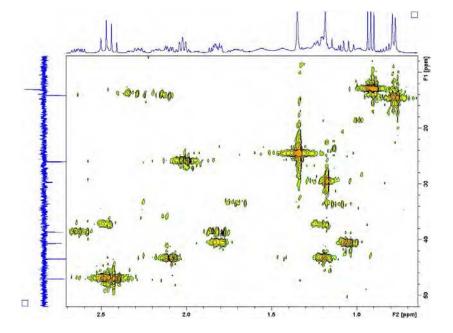


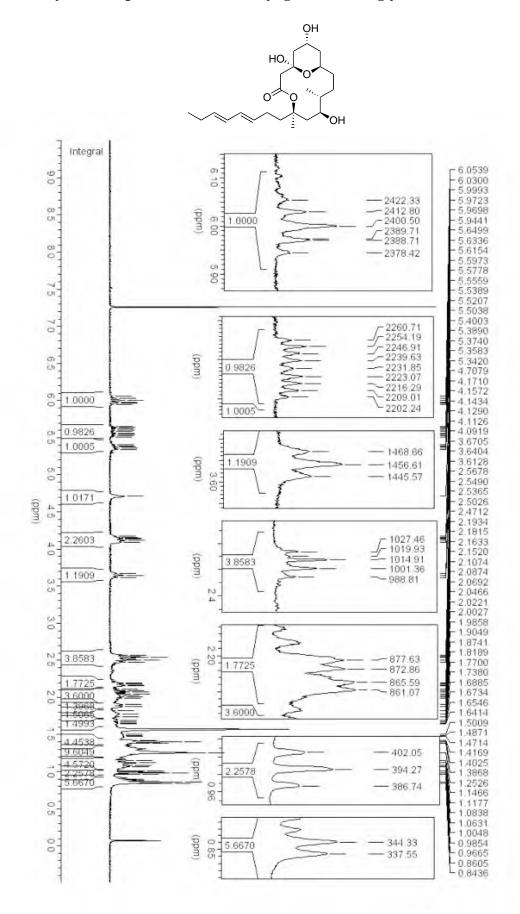

HMQC experiment: amplification of spectra for C10, C12 and C21

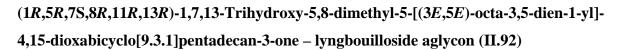


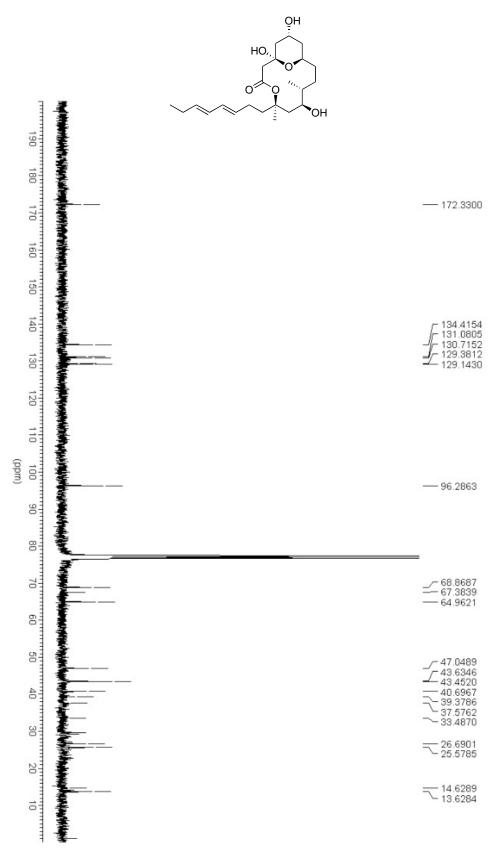
(1*R*,5*R*,7*S*,8*R*,11*R*,13*R*)-1,7,13-Trihydroxy-5,8-dimethyl-5-[(5*E*)-oct-5-en-3-yn-1-yl]-4,15dioxabicyclo[9.3.1]pentadecan-3-one (II.82)

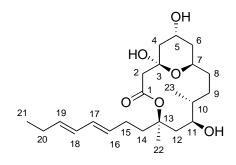


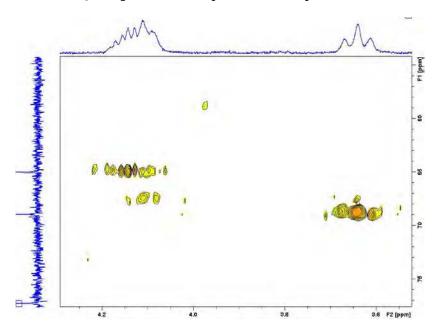

(1*R*,5*R*,7*S*,8*R*,11*R*,13*R*)-1,7,13-Trihydroxy-5,8-dimethyl-5-[(5*E*)-oct-5-en-3-yn-1-yl]-4,15dioxabicyclo[9.3.1]pentadecan-3-one (II.82)

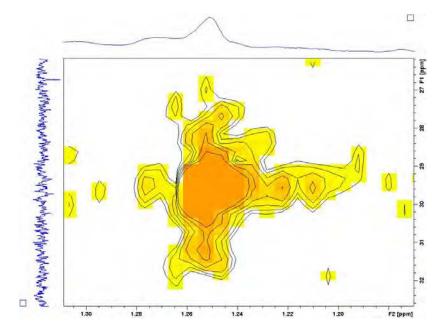

HMQC experiment: amplification of spectra for C5

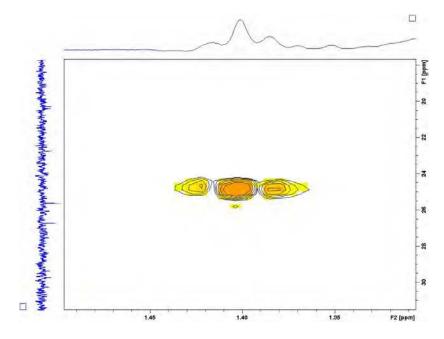



HMQC experiment: amplification of spectra for C23

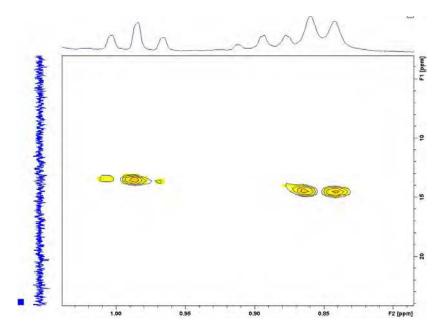

(1*R*,5*R*,7S,8*R*,11*R*,13*R*)-1,7,13-Trihydroxy-5,8-dimethyl-5-[(3*E*,5*E*)-octa-3,5-dien-1-yl]-4,15-dioxabicyclo[9.3.1]pentadecan-3-one – lyngbouilloside aglycon (II.92)

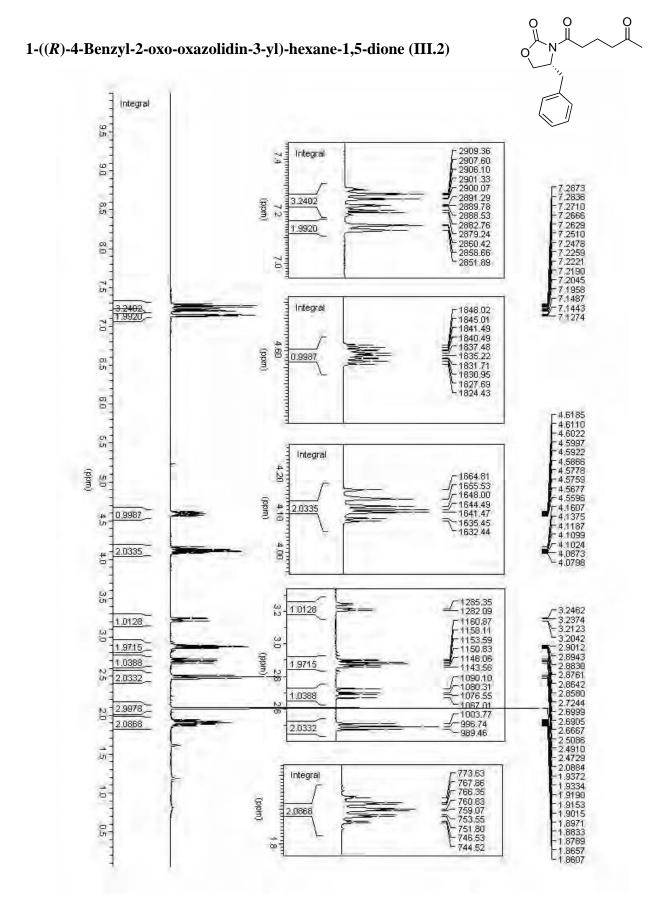


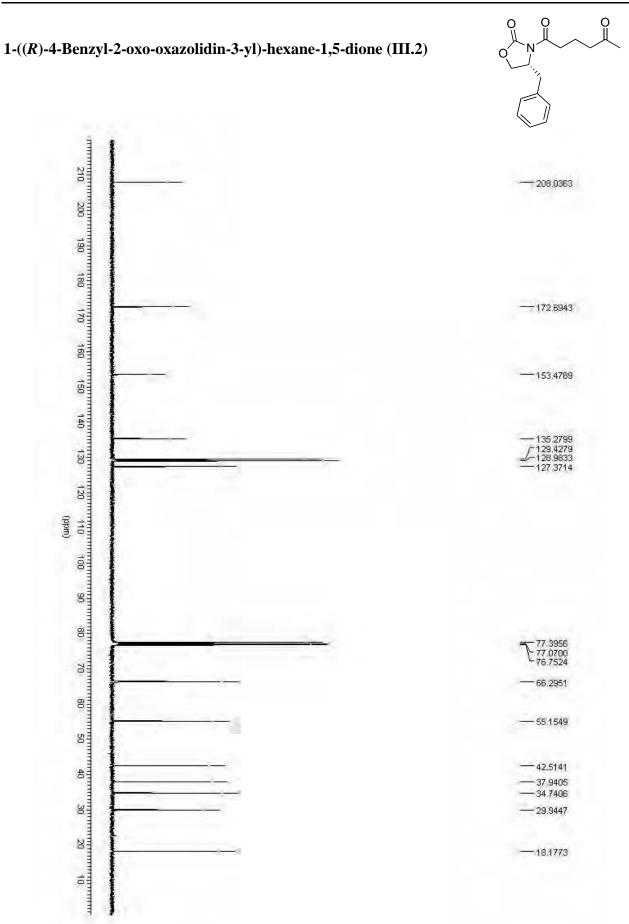

(1R,5R,7S,8R,11R,13R)-1,7,13-Trihydroxy-5,8-dimethyl-5-[(3E,5E)-octa-3,5-dien-1-yl]-4,15-dioxabicyclo[9.3.1]pentadecan-3-one – lyngbouilloside aglycon (II.92)

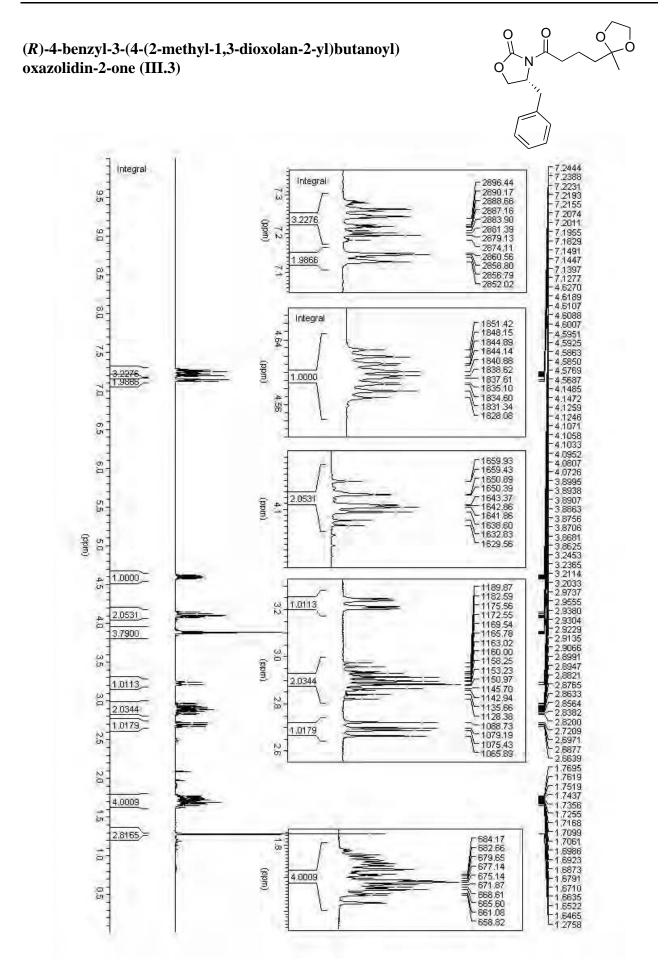


HMQC experiment: amplification of spectra for C5

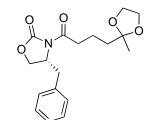

HMQC experiment: amplification of spectra for C9

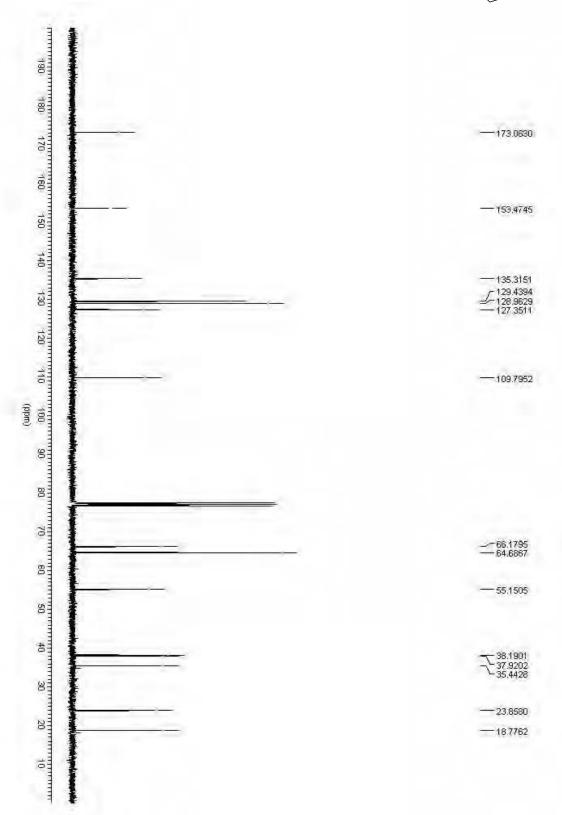

HMQC experiment: amplification of spectra for C22

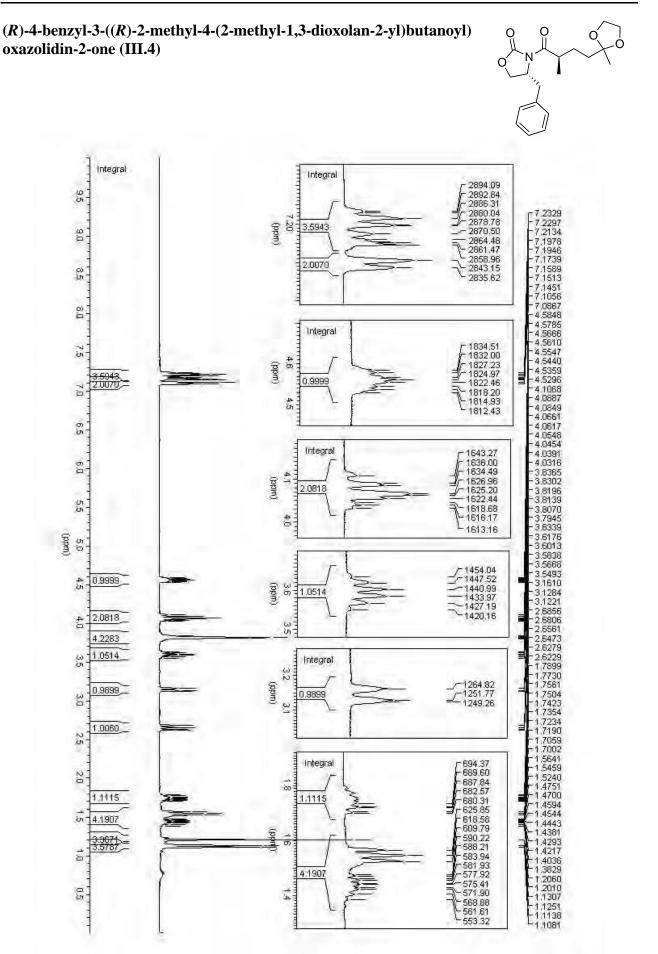

HMQC experiment: amplification of spectra for C21 and C23

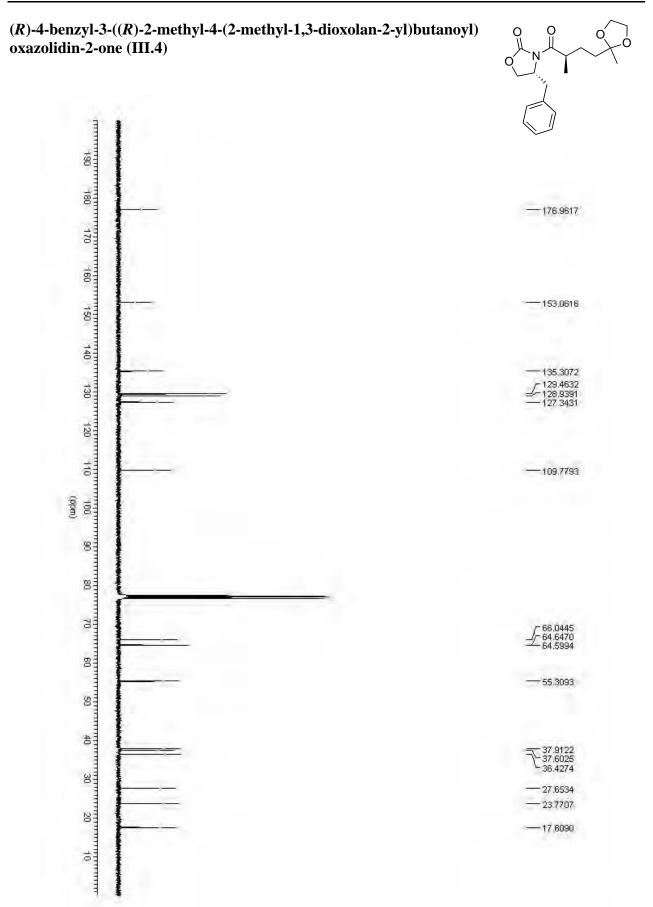


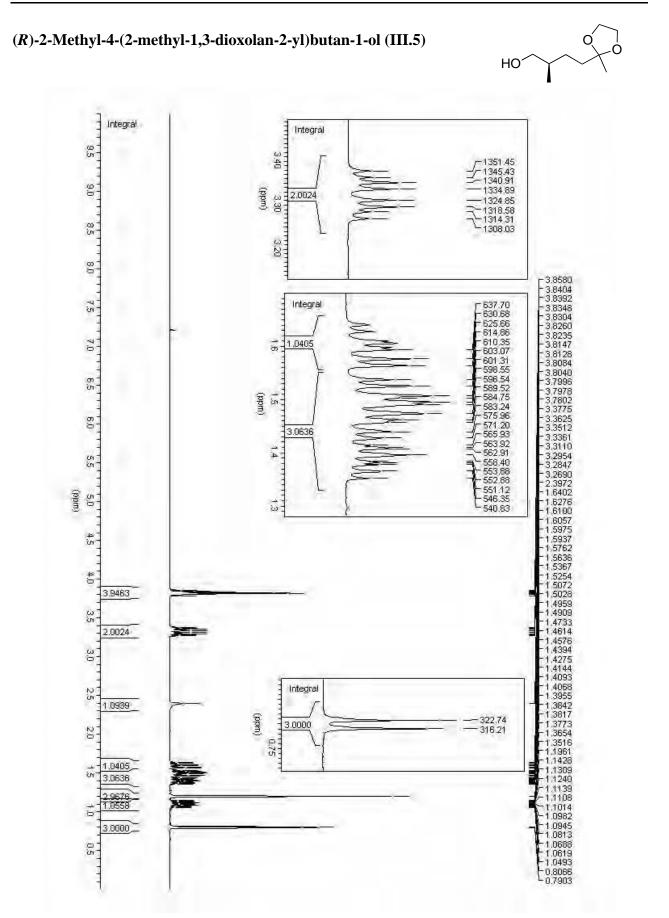
ANNEX V

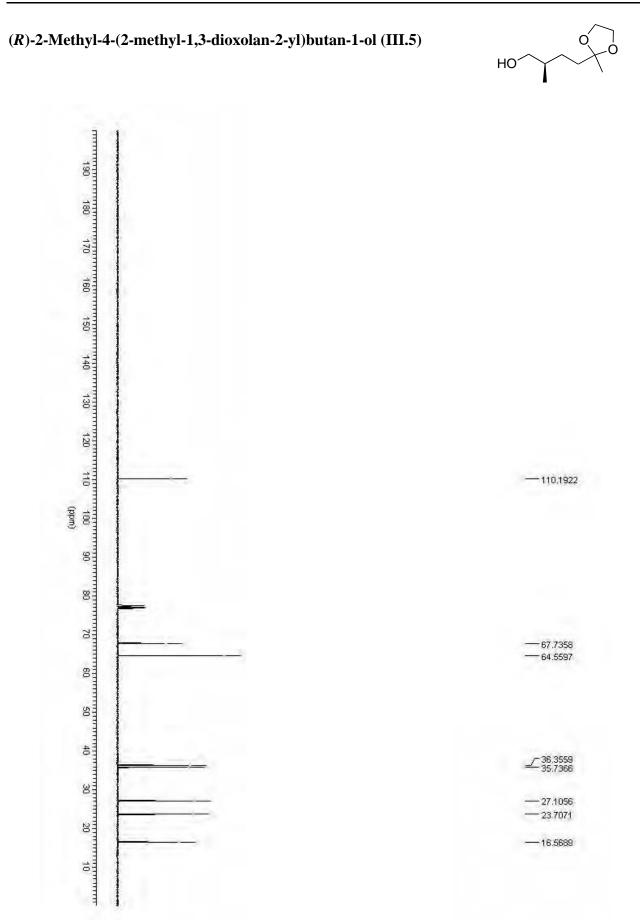

Copies of ¹H NMR & ¹³C NMR

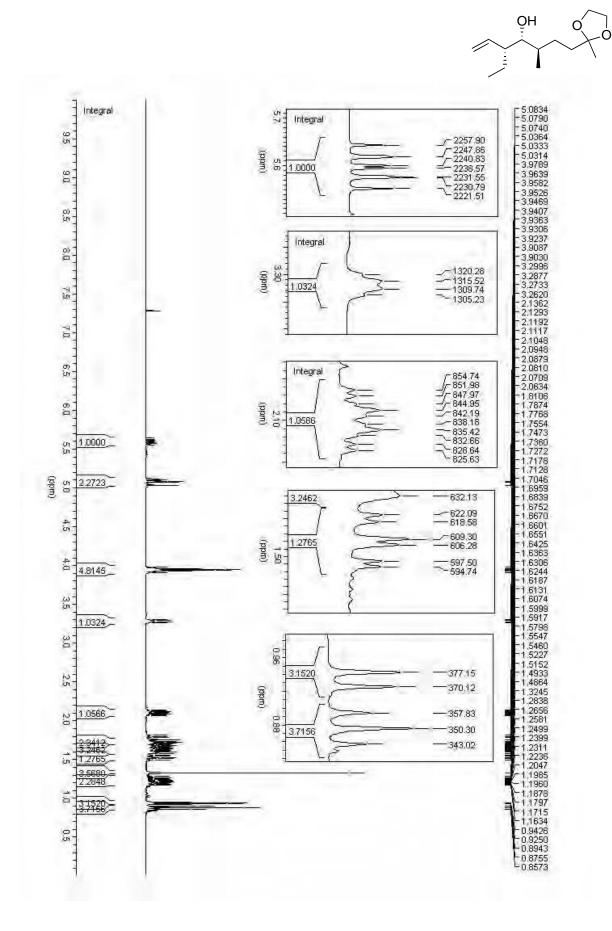


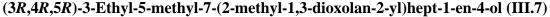


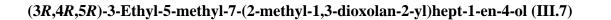


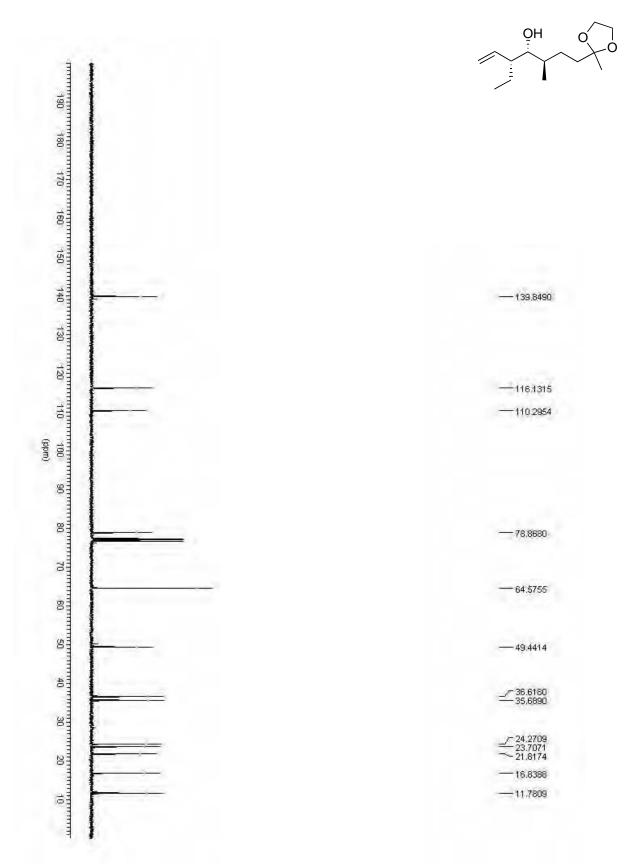

(*R*)-4-benzyl-3-(4-(2-methyl-1,3-dioxolan-2-yl)butanoyl) oxazolidin-2-one (III.3)

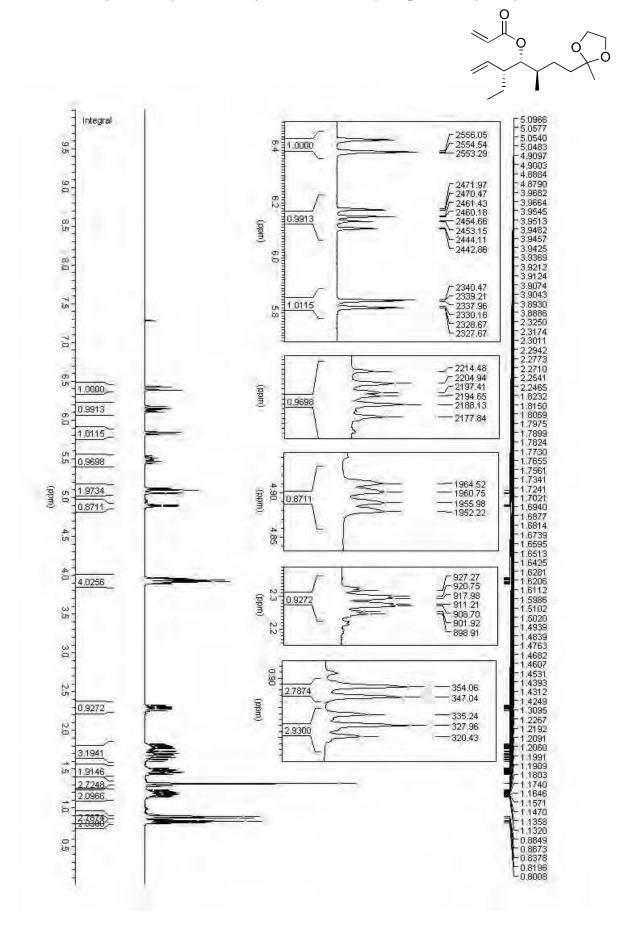


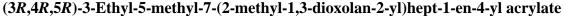


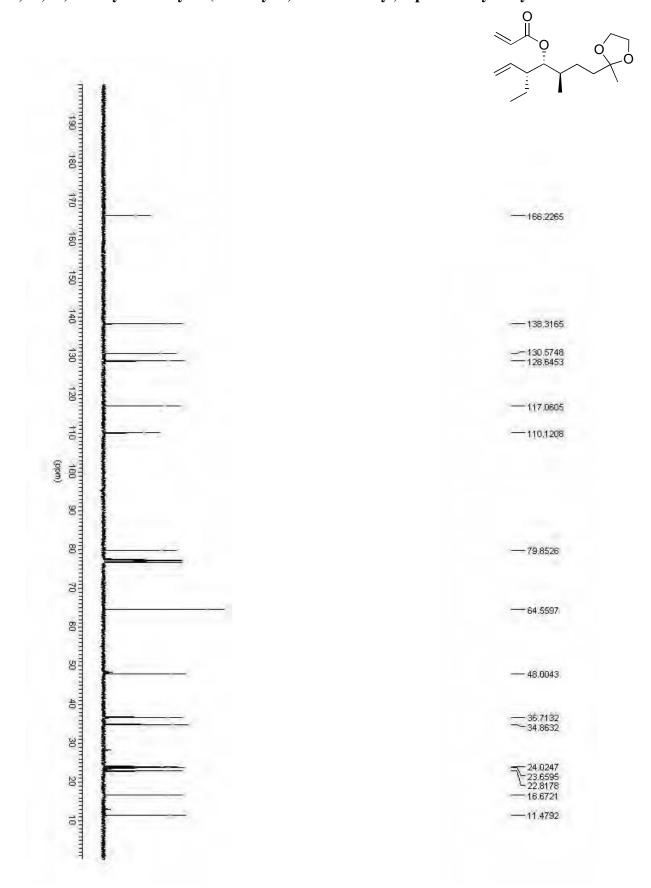


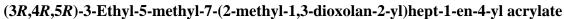

A9

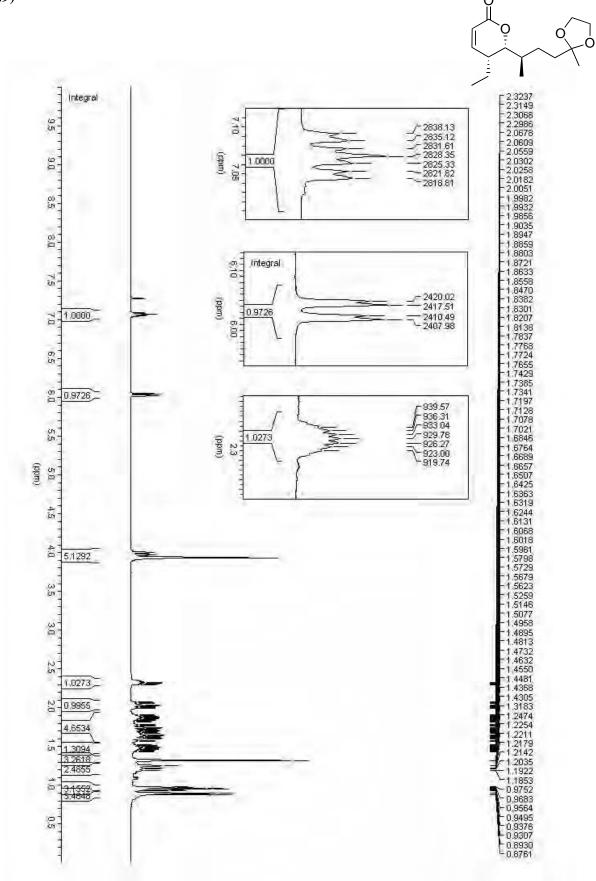

Annex V

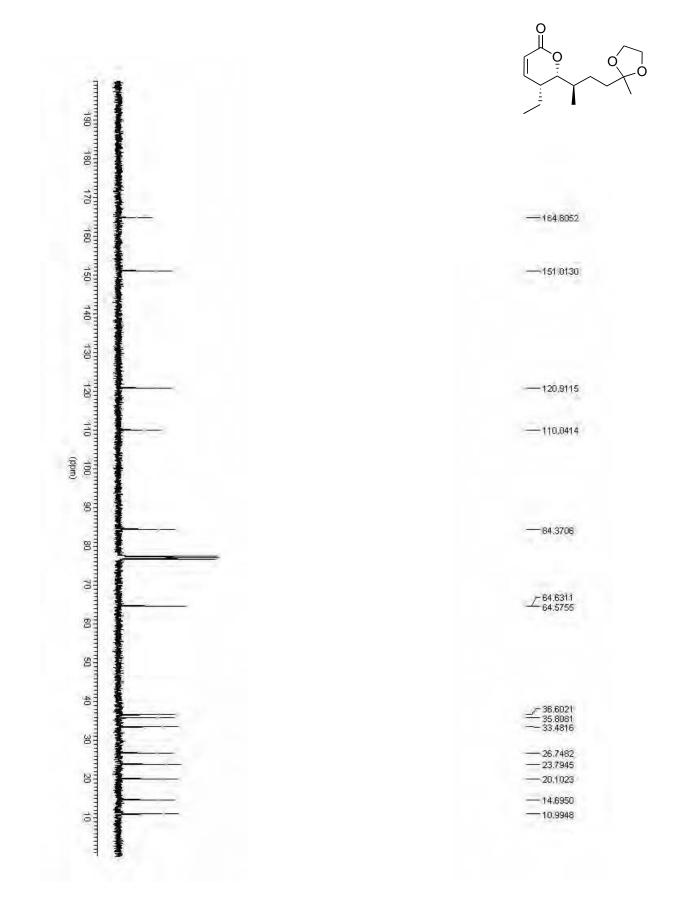


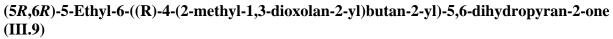


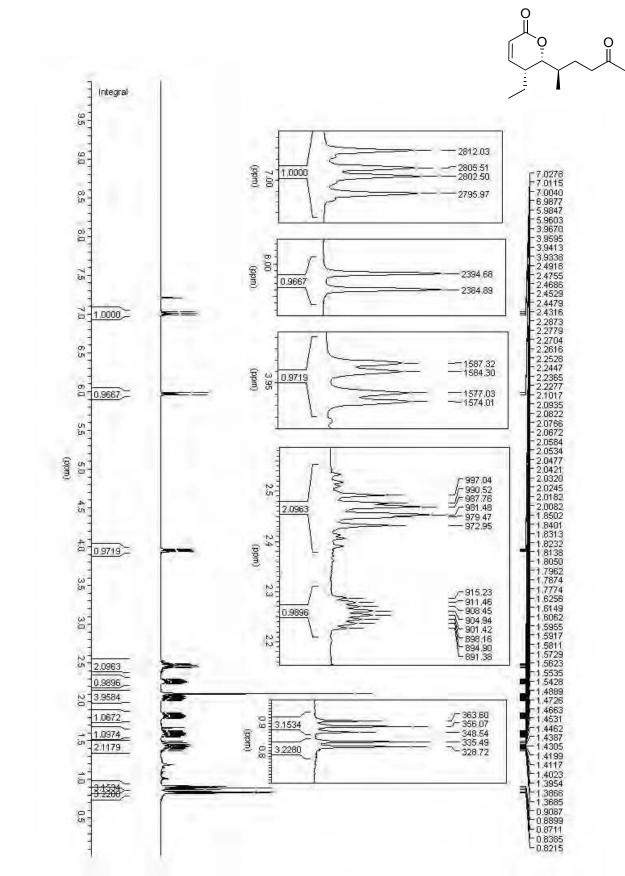


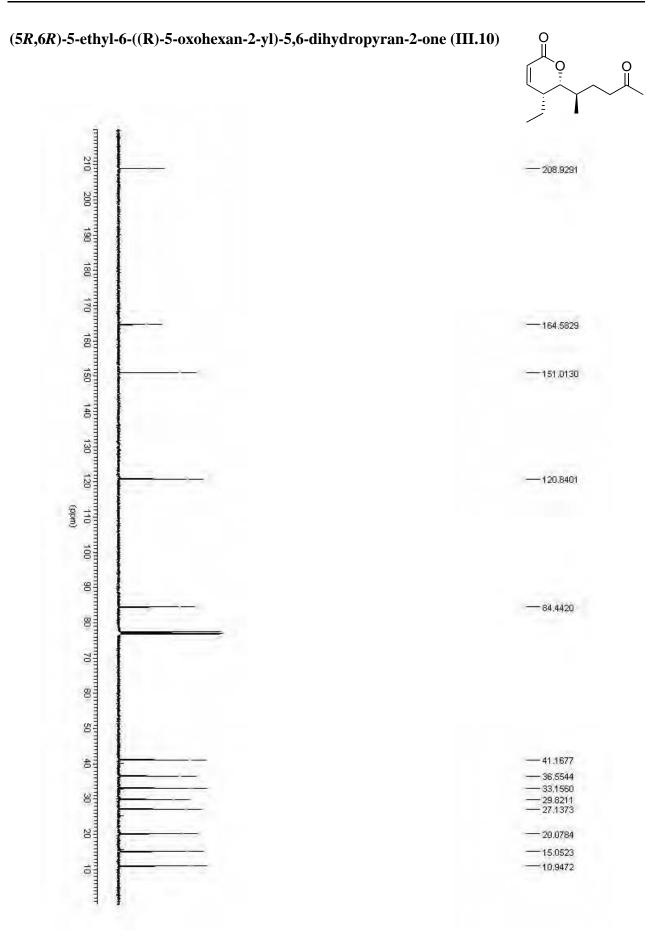


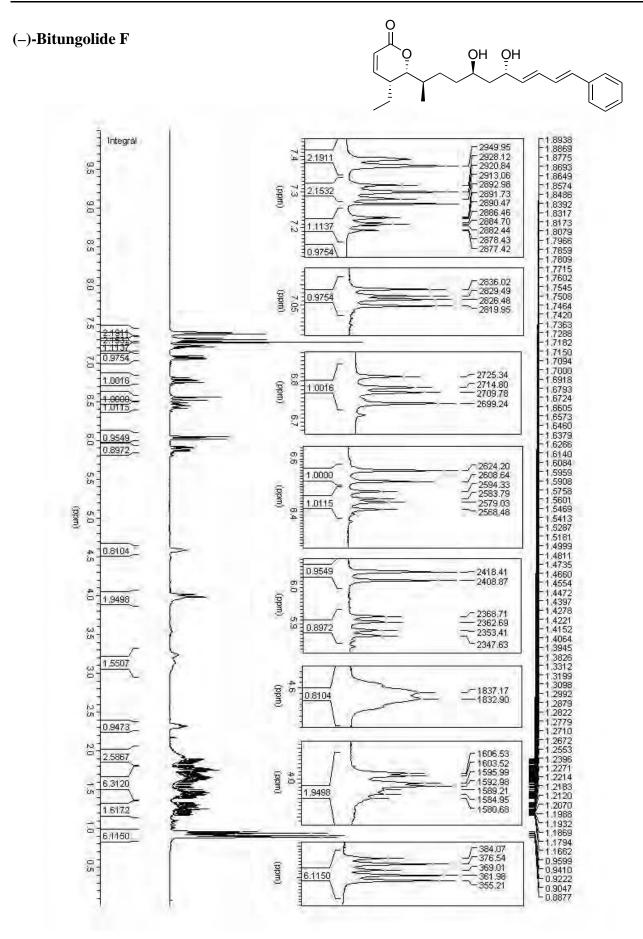


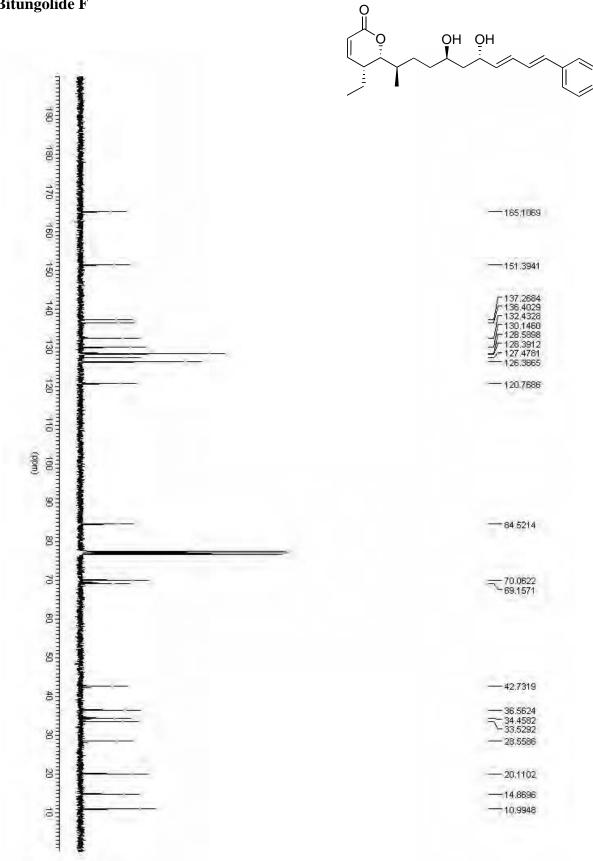




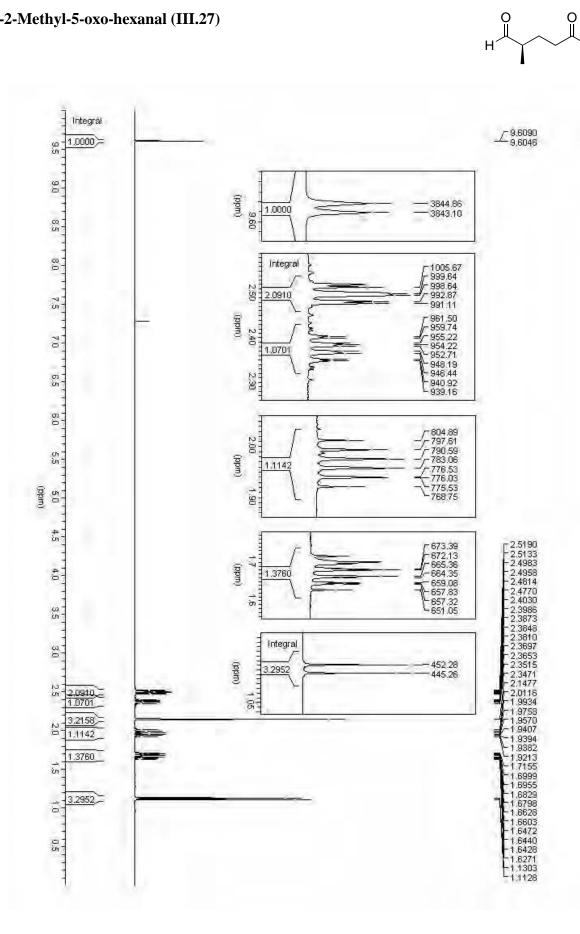


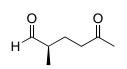

(5*R*,6*R*)-5-ethyl-6-((R)-4-(2-methyl-1,3-dioxolan-2-yl)butan-2-yl)-5,6-dihydropyran-2-one (III.9) O

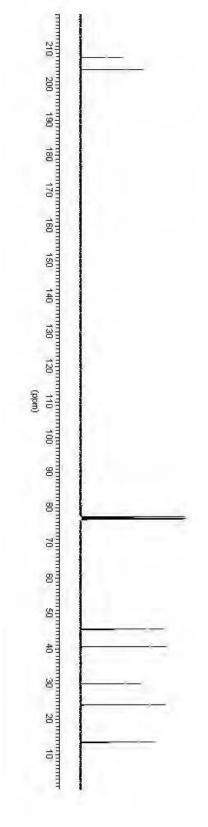




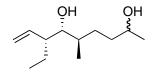
(5R,6R)-5-Ethyl-6-((R)-5-oxohexan-2-yl)-5,6-dihydropyran-2-one (III.10)

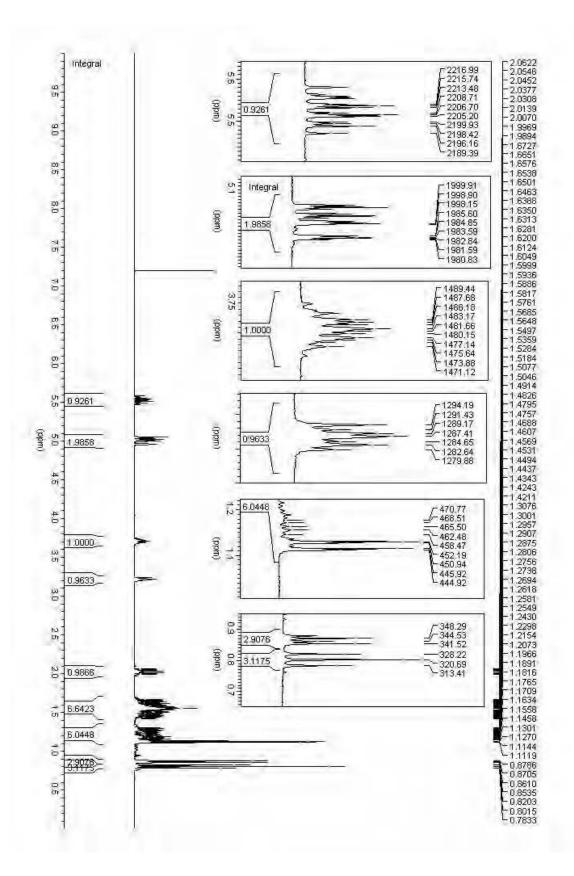


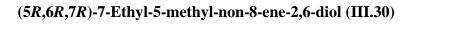

(–)-Bitungolide F

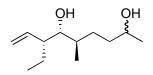

(R)-2-Methyl-5-oxo-hexanal (III.27)

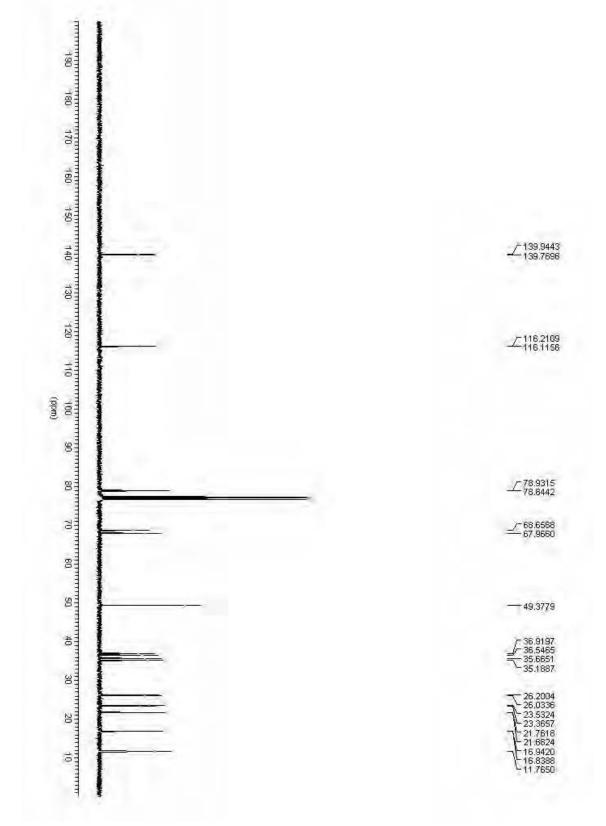
(R)-2-Methyl-5-oxo-hexanal (III.27)










(5*R*,6*R*,7*R*)-7-Ethyl-5-methyl-non-8-ene-2,6-diol (III.30)

