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Signatura
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Abstract

Computer graphic applications are demanding more challenging requirements. The com-

plexity of geometric models used in interactive applications is constantly increasing due to

the advances in the data acquisition systems and the need for a convincing level of real-

ism. In this context, geometry processing techniques have become essential for the efficient

management of such models by allowing a trade-off between complexity and performance.

The central focus of this thesis is the simplification, approximation and deformation of large

models. We propose new robust and efficient techniques that represent a step forward with

respect to the state of the art.

First, we present an edge-collapse-based simplification method that provides an accurate

low-resolution approximation from a multi-chart textured model that guarantees geometric

fidelity and correct preservation of the appearance attributes. Then, we introduce a new

mesh structure called Compact Model (CM) that approximates dense triangular meshes of

arbitrary topology. Sharp features are well preserved, adaptive reconstructions are possible,

textured models are supported and the whole approximation process can be completely

parallelized. The requirement of a flexible framework for easier mesh editing leads us to

design a new space deformation technique based on a multi-level system of cages enclosing

the model. The proposed deformation scheme, called ∗Cages, preserves the smoothness

of the mesh between neighbouring cages and is extremely versatile, allowing the use of

heterogeneous sets of coordinates and different levels of deformation thus obtaining fast

evaluations and a reduced memory footprint. Finally, a hybrid approach for the deformation

of large meshes that takes advantage of the previously developed methods. We provide a

CM with the ability to be deformable, making it possible to apply any of the existing

deformation techniques on large models. This powerful and valuable system leads to high

quality approximations of deformed models with a reduced memory footprint and a high

performance.
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Resum

Les aplicacions de gràfics per computador tenen requisits cada vegada més exigents. La

complexitat dels models geomètrics utilitzats en aplicacions interactives és cada vegada més

gran degut als avenços en els sistemes d’adquisició de dades i la necessitat de tenir un nivell

de realisme convincent. En aquest context, les tècniques de processat de geometria són

essencials per a la gestió eficient d’aquests models, permetent aconseguir un equilibri entre

complexitat i rendiment. L’enfoc central d’aquesta tesis és la simplificació, l’aproximació i

la deformació de models de grans dimensions. Proposem noves tècniques robustes i eficients

que representin un pas endavant respecte l’estat de l’art.

En primer lloc, presentem un mètode de simplificació basat en la contracció d’arestes

que proporciona una aproximació precisa de baixa resolució d’un model amb un atles de

textures que garanteix fidelitat geomètrica i una correcta preservació de la seva aparença. A

continuació, introdüım una nova estructura de dades per malles anomenada Compact Model

(CM) que permet aproximar malles triangulars denses de tipologia arbitraria. El mètode

desenvolupat preserva correctament els trets més distintius del model, permet reconstruc-

cions adaptatives, suporta models texturats i, a més a més, tot el procés d’aproximació

pot ser paral·lelitzable per complet. L’exigència d’un entorn flexible que faciliti l’edició de

malles ens va portar a dissenyar una nova tècnica de deformació de l’espai basada en un

sistema de caixes multi-nivell que engloba al model. L’esquema de deformació proposat,

denominat ∗Cages, conserva la suavitat de la malla entre caixes vëınes i és extremadament

versàtil, ja que permet l’ús de conjunts heterogenis de coordenades i diferents nivells de

deformació, obtenint, per tant, temps d’execució baixos i un consum de memòria redüıt.

Per últim, proposem un mètode h́ıbrid per la deformació de models complexos a partir dels

mètodes desenvolupats anteriorment. Dotem a un CM de la capacitat de ser deformable

permetent que es pugui aplicar qualsevol de les tècniques de deformació existents. Aquesta

poderosa i valuosa eina permet obtenir aproximacions d’alta qualitat dels models deformats

amb una memòria redüıda i un alt rendiment.
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Resumen

Las aplicaciones de gráficos por computador tienen requisitos cada vez más exigentes. La

complejidad de los modelos geométricos utilizados en aplicaciones interactivas es cada vez

mayor debido a los avances en los sistemas de adquisición de datos y la necesidad de un

nivel de realismo convincente. En este contexto, las técnicas de procesado de geometŕıa son

esenciales para la gestión eficiente de dichos modelos, permitiendo conseguir un equilibrio

entre complejidad y rendimiento. El enfoque central de esta tesis es la simplificación, la

aproximación y la deformación de modelos de gran tamaño. Proponemos nuevas técnicas

robustas y eficientes que representan un paso adelante respecto al estado del arte.

En primer lugar, presentamos un método de simplificación basado en la contracción de

aristas que proporciona una aproximación precisa de baja resolución de un modelo con atlas

de texturas que garantiza fidelidad geométrica y una correcta preservación de su apariencia.

A continuación, introducimos una nueva estructura de datos para mallas llamada Compact

Model (CM) que permite aproximar mallas triangulares densas de topoloǵıa arbitraria. El

método desarrollado conserva correctamente los rasgos más distintivos del modelo, permite

reconstrucciones adaptativas, soporta modelos texturados y, además, todo el proceso de

aproximación puede ser paralelizado por completo. La exigencia de un entorno flexible

que facilite la edición de mallas nos llevó a diseñar una nueva técnica de deformación del

espacio basada en un sistema de cajas multi-nivel que engloba al modelo. El esquema de

deformación propuesto, denominado ∗Cages, conserva la suavidad de la malla entre cajas

vecinas y es extremadamente versátil, ya que permite el uso de conjuntos heterogéneos

de coordenadas y diferentes niveles de deformación, obteniendo, por tanto, tiempos de

ejecución bajos y un consumo de memoria reducido. Por último, proponemos un método

h́ıbrido para la deformación de modelos complejos a partir de los métodos desarrollados

anteriormente. Dotamos a un CM la capacidad de ser deformable permitiendo que se

pueda aplicar cualquiera de las técnicas de deformación existentes. Esta poderosa y valiosa

herramienta permite obtener aproximaciones de alta calidad de los modelos deformados con

una memoria reducida y un alto rendimiento.
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vos les gràcies per haver fet més amens i distesos els dies de treball. Com a “company” i

membre del grup, no em voldria oblidar de mencionar a en Gus que, amb les seves xerrades

representatives, el seu toc distintiu i la seva “hiperactivitat” caracteŕıstica, ha sigut una de
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Chapter 1

Introduction

Geometry processing emerged to solve geometric modelling problems that arose during the

manipulating of complex meshes. The efficient acquisition, representation, optimization,

editing, and simulation of geometric objects are the main focus of this huge area of research.

For decades, computer graphic designers have created digital 3D models by using com-

plex interactive tools to reproduce real-world objects or imaginary ones. Nowadays, digital

representations of real surfaces can be obtained automatically with various acquisition de-

vices such as 3D scanners. These new fast and accurate data sources increase the surface

resolution by several orders of magnitude, providing higher precision to applications that

require digital surfaces (see Figure 1.1). Fundamental advances in 3D modelling, sim-

ulation, and data capture technologies continually increase the complexity of geometric

models used in interactive applications. Industrial CAD models of airplanes, ships, pro-

duction plants, and buildings; geographic information systems; oil and gas exploration;

medical imaging; virtual prototyping; scanned 3D models; games and movies; unorganized

information spaces; and high-end scientific simulations are domains that create highly com-

plex digital models which provide vast databases. Moreover, current applications with these

complex geometrical models are demanding a number of challenging requirements, like real-

time interaction, mainly with respect to geometry but increasingly in terms of appearance,

illumination, visibility, and other features that create a convincing level of realism.

Unfortunately, the richness of the geometry produced by these media represents even

more complex models and very densely sampled meshes containing hundreds of millions

and, even, billions of 3D primitives that cannot be used directly in real-time visualization

or complex numerical simulation. Moreover, the representation of such models results

in files of substantial size, which are expensive to store and slow to transmit. In recent

1
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Figure 1.1: Polygonal mesh obtained from the scanning of the Max Planck bust.

years, hardware devices and computer architectures have evolved enormously. However,

the complexity of these highly detailed digital models grows faster than the ability of our

graphics hardware to process, edit, and render them interactively. The capacity of the mesh

rendering pipeline is a limited resource in many graphic applications, which has motivated

researchers to find suitably compact mesh representations. A trade-off exists between the

accuracy with which a surface is modeled and the amount of time required to process it. In

general terms, there is tension between realism and speed, between fidelity and frame rate,

between complexity and performance. Despite many advances in interactive modelling,

the management of high quality geometric models is still a very time-consuming task that

requires technical skills.

Therefore, all major computer graphic applications can benefit from geometry pro-

cessing techniques, including: computer-aided design, shape editing, physical simulation,

virtual reality, medical imaging, architecture, engineering, archaeological study, special ef-

fects, computer animation and video games. Since many problems arising in these highly

diverse fields follow the same fundamental geometric principles, geometry processing plays

an important role in a large variety of applications and it has become a fascinating re-

search field with a high potential impact. Consequently, a lot of research in recent years

has focused on the creation of new efficient data structures and algorithms for geometry

processing.

Although many advances have been made in the geometry processing field, the interac-

tive visualization and handling of such large models is still a challenge in computer graphics

and visualization. Geometric models, often acquired using 3D scanning techniques, have to

undergo post-processing and shape optimization techniques before being used in produc-

tion. Scalable algorithms for geometry processing have been explored to solve the involved
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non-trivial numerical problems in an efficient manner. In some cases, GPU architectures

are used for their efficient implementation. An extensive survey of geometry modelling and

processing techniques can be found in [BPR+06]. In the next paragraphs we summarize

some of the main geometry processing techniques.

Surface Representation. The design of suitable data structures is needed for the ef-

ficient processing of different kinds of geometric objects. The data to be processed

are geometric shapes, so each specific problem requires the use of the best shape

representation to enable efficient access to the most relevant information. Surface

representations can be classified in two main classes: explicit surface representations

and implicit surface representations. Both representations have their own strengths

and weaknesses, such that for each geometric problem the better suited one should

be chosen.

Model Repair. Model repair techniques consist of removing artefacts from a geometric

model to produce an output model suitable for further processing by subsequent ap-

plications which require certain quality requirements as an input. A single algorithm

cannot be applicable since depending on the problem addressed, the model, the arte-

fact and suitable concepts have to be redefined. Most model repair algorithms can

roughly be classified as being either surface oriented or volumetric. On one hand,

surface-oriented algorithms operate directly on the input data and try to explicitly

identify and resolve artefacts on the surface. Removing gaps, closing holes and locat-

ing and resolving intersections are some surface repair operations that allow meshes

to be clean. On the other hand, volumetric algorithms convert the input model into

an intermediate volumetric representation from which the output model is then ex-

tracted. In general terms, model repair is needed in a wide range of applications.

Mesh Smoothing. Mesh smoothing is a key tool in geometry processing with many

applications. Smoothing methods distinguish between two different goals: denoising

and fairing. The first one consists of smoothing out the high frequency noise usually

present in scanned models, such as small perturbations of the vertex positions, in such

a way that global shapes, or the low frequency components, are preserved. Addition-

ally, certain surface features like sharp edges and corners have to be preserved without

“blurring”. The second one corresponds to the design of high-quality fair surfaces.

The fairing process results in surfaces that must satisfy certain aesthetic requirements.

In general terms, smoothing techniques are used to reduce noise in scanned surfaces.

After they are applied more regular triangulations are usually obtained.
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Figure 1.2: Different levels of detail of the Max Planck model obtained after applying a

mesh simplification method.

Parameterization. The main goal of parameterization techniques consists in establishing

bijective mappings between surfaces and parametric domains. Parameterization is

behind a large number of applications in computer graphics and geometry processing

such as texturing, compression, scattered data approximation, and remeshing. The

main focus of parameterization methods is the reduction of parametric distortion, a

property used to classify them. Angles, areas, and distances are measures used to

prove the quality of the resulting parametrizations.

Mesh Simplification. Mesh simplification also known as mesh decimation, is a popular,

much researched topic in geometry processing. It describes a set of algorithms that,

given a polygonal mesh, reduces the number of geometric elements used to repre-

sent it, while still retaining important geometric and topological characteristics (see

Figure 1.2). The vertex positions of the simplified mesh can be obtained as a sub-

set of the original set of vertex positions, as a set of weighted averages of original

vertex positions, or by resampling the original piecewise linear surface. The various

approaches in the literature can be classified into vertex clustering, incremental and

resampling decimation algorithms, respectively. The preservation of specific proper-

ties of the original model is usually controlled by some user-defined quality criteria,

typically geometric distance or visual appearance. There are many applications for

decimation algorithms. Due to the enormous complexity of meshes acquired by 3D

scanning, mesh decimation techniques can be used to adjust the complexity of a ge-

ometric dataset with a controlled error. In this way, complex models can be used on

computers with varying computing performance.

Remeshing. The shape of the geometry elements present in a model is an important as-

pect in different applications. Remeshing is a key technique for mesh quality preserva-
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Figure 1.3: Approximations of the Max Planck at different resolutions. Adding appearance

attributes to the mesh allows more realistic approximations to be obtained.

tion in many geometric modelling algorithms, for instance animation, shape editing,

morphing and numerical simulation. Given a mesh, remeshing consists of computing

another mesh whose elements satisfy some quality requirements. The goal of such

techniques is to reduce the complexity of an input mesh subject to certain quality

criteria and improve the quality of a model according to the downstream application.

Depending on the application, different quality criteria and requirements can be used.

Mesh Approximation. Mesh approximation techniques are useful to obtain different

versions of a given model (see Figure 1.3). According to the applications, they can be

used to obtain a given geometric complexity with the best geometric approximation,

to bound the maximum geometric deviation or to preserve the local or global volume.

Shape Deformation. Mesh editing is an active research field in computer graphics. It

often requires that the global shape deform in a user-specified way while geometric de-

tails are well preserved (see Figure 1.4). Intuitive and interactive shape deformation is

a useful tool in a variety of applications in computer modelling and animation. Several

deformation schemes have been proposed, from global to local. Existing mesh defor-

mation methods include: free-form deformation, multiresolution, RBF-based mesh

deformation, curve-based deformation, skeleton and physical simulation. Freeform

deformations allow a given surface to be deformed smoothly. Concerning global de-

formations, fine surface details are not deformed in a natural manner. Multiresolution

hierarchies provide intuitive detail handling, which can enhance any freeform defor-

mation technique. Interactive shape editing is achievable for large models since the

reduced model and the harmonic fields can be computed previously and reused during

an editing session. In short, mesh deformation is a valuable tool for geometry mod-
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Figure 1.4: Different deformed versions of the Max Planck model obtained after applying

a mesh deformation method.

elling and computer animation, since it provides a convenient way to edit the original

mesh to meet various design requirements.

In this thesis, we propose new algorithms for the geometry processing of large models,

designed to obtain a trade-off between accuracy, versatility, and time and memory efficiency.

1.1 Contributions

Throughout our research work, we treated and solved various problems related to geometry

processing. Focusing on the simplification, approximation and deformation of large models,

we present several original contributions in the fields of efficient processing, management

and editing techniques. Next, we classify them according to the corresponding geometry

processing field:

Simplification. The highly detailed surface meshes produced by scanning and acquisi-

tion methods need multi-chart parameterizations to reduce stretching and distortion.

From these complex shape surfaces, high-quality approximations are automatically

generated by using surface simplification techniques. Multi-chart textures hinder the

quality of the simplification of these techniques for two reasons: either the chart

boundaries cannot be simplified leading to a lack of geometric fidelity; or texture

distortions and artefacts appear near the simplified boundaries. We present an edge-

collapse based simplification method that provides an accurate, low-resolution ap-

proximation from a multi-chart textured model. For each collapse, the model is

reparameterized by local bijective mappings to avoid texture distortions and chart
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boundary artefacts on the simplified mesh due to the geometry changes. To better

apply the appearance attributes and to guarantee geometric fidelity and thereby pre-

serve the curved features of the model, we drive the simplification process with the

quadric error metrics weighted by a local area distortion measure.

Approximation. Development of approximation techniques for highly detailed surfaces

is one of the challenges faced today. We introduce a new mesh structure that allows

dense triangular meshes of arbitrary topology to be approximated. The structure

is constructed from the information gathered during a simplification process. Each

vertex of the simplified model collects a neighbourhood of input vertices. Then,

each neighbourhood is fitted by a set of local surfaces taking into account the sharp

features detected. The simplified model plus the parameters of these local surfaces,

conveniently stored in a file, is what we call a Compact Model (CM). The input model

can be approximated from its CM by refining each triangle of the simplified model.

The main feature of our approach is that each triangle is refined by blending the local

surfaces at its vertices, which can be done independently of the others. Consequently,

adaptive reconstructions are possible, textured models are supported and the whole

approximation process can be completely parallelized.

Deformation. Cage-based deformation has been one of the main approaches for mesh

deformation in recent years, with a lot of interesting and active research. The main

advantages of cage-based deformation techniques are their simplicity, relative flexibil-

ity and speed. However, up to now there is no widely accepted solution that provides

both user control at different levels of detail, and high quality deformations. We

present ∗Cages (star-cages), a work obtained as a result of a very close collaboration

with Francisco Gonzalez and Gustavo Patow, two fellow research group members.

∗Cages is a multi-level cage system which allows the use of multiple cages enclosing

the model for easier manipulation while preserving the smoothness of the mesh in the

transitions between them. It represents a significative step forward with respect to

traditional coordinate systems. The proposed deformation scheme is extremely flexi-

ble and versatile, allowing the use of heterogeneous sets of coordinates and different

levels of deformation, going from a whole-model deformation to a very localized one.

This allows faster evaluation and a much reduced memory footprint.

Deformation of large models. Finally, we propose a hybrid approach that represents

a very useful tool for the deformation of large meshes by taking advantage of the

previously developed methods. We provide the CM with the ability to generate de-

formed approximations. The resulting representation combines the accuracy of the
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simplification method, the versatility of the CM representation and the wide defor-

mation knowledge obtained after developing ∗Cages. We make possible to apply any

of the existing deformation techniques on large models. High-quality approximations

of deformed models with a reduced memory footprint and a high performance can

be obtained. Several applications can take advantage of this powerful and valuable

representation.

All the methods developed in this thesis were integrated into a framework designed

using object-oriented techniques.

1.2 Overview of the thesis

The rest of the thesis is organized as follows:

Chapter 2: Background

An introduction to the most relevant background related with the geometry process-

ing techniques studied throughout the thesis is presented. It introduces context of

simplification, approximation and deformation of polygonal models.

Chapter 3: Simplification of Multi-chart Textured Models

The accurate surface simplification approach developed for multi-chart textured mod-

els is presented. Previous work on simplification of surface meshes is reviewed. The

performance of the proposed method is described in detail and their good behaviour

is proved by providing different experimental results.

Chapter 4: Compact Models

Surface approximation of large models is reviewed by introducing related work. Next,

we present our new mesh representation by describing both the generation and the

reconstruction processes. An exhaustive analysis is performed by giving a wide range

of results and a detailed quantitative analysis.

Chapter 5: ∗Cages for Mesh Deformation

In this chapter, we introduce ∗Cages, the work resulting from a close research col-

laboration. The multi-level cage-based approach developed for the manipulation of

surface meshes is described here. The flexibility and versatility provided by the pro-

posed deformation scheme are described and proved.
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Chapter 6: Deformable Compact Models

A hybrid solution resulting of the combination from the previously developed methods

culminates the dissertation. The versatile representation proposed allows large models

to be manipulated by applying any of the existing deformation methods easily and

efficiently.

Chapter 7: Conclusions and Future work

Finally, we conclude by providing the conclusions of the thesis, some final remarks

and future work proposals.





Chapter 2

Background

This chapter provides an overview of some background material related to the mesh pro-

cessing field that is used throughout the rest of the dissertation. First, an introduction

to surface meshes is given by defining some basic concepts, notations and terminologies

(Section 2.1). Then, the pipeline of the graphics hardware is described before presenting

the main detailed mapping applications and the required mesh parametrization techniques

(Section 2.2). After providing surface and graphics hardware definitions, the need to use

level of detail techniques for the management of complex surface models is examined (Sec-

tion 2.3). Mesh simplification and mesh refinement techniques are introduced as two of the

bases for the obtention of multiresolution models. Finally, mesh deformation, a widely used

mesh processing technique, is reviewed, focusing on cage-based approaches such as main

space deformation methods (Section 2.4).

2.1 Surface Meshes

This section reviews the main definitions related to surface meshes. First, the basic concepts

related to surfaces and meshes are given. Then, a data structure commonly used for the

management of surface meshes is summarized. Finally, the sharp features that can be

present in surface meshes are classified. These have to be taken into account when working

with mesh processing techniques.

11
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2.1.1 Surfaces

A two-dimensional manifold is a closed set of points S included in R3 satisfying that for each

point p ∈ S there exists an open ball Bp centred at p and a homeomorphism (continuous

and bijective map) ϕp : B0 −→ Bp with ϕp(D0) = Bp ∩ S, where B0 is the open ball

centred at the origin of R3 and D0 is the disk B0 ∩ (R2 × {0}). Informally it is equivalent

to say that all points of S have a neighbourhood which is topologically equivalent to a

disk (see Figure 2.1). Otherwise, a two-dimensional manifold with boundary, also called

open two-dimensional manifold, is a closed set included in R3 all of whose points have a

neighbourhood which is topologically equivalent to either a disk or a half-disk. When a

surface non-possesses boundary, it can be emphasized by calling it a closed two-dimensional

manifold.

Figure 2.1: Two-dimensional manifold definition.

A homeomorphism ϕp assigns a sign to all points q ∈ Bp − S in the following way. If

ϕ−1p (q) ∈ R2 × R+ the sign of q is +, otherwise it is −. Two homeomorphisms ϕp and ϕp′

are said to be compatible if they assign the same sign to all points in Bp ∩ Bp′ . A two-

dimensional manifold S is said to be orientable if it is possible to find a set of compatible

homeomorphisms ϕp. Most two-dimensional manifolds encountered in the physical world

are orientable. Spheres, planes, and tori are some orientable examples. Otherwise, Möbius

strips are non-orientable (see Figure 2.2).

Figure 2.2: Möbius strip: a non-orientable two-dimensional manifold.
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A surface is a fitted, connected and orientable two-dimensional manifold that can be

closed or open depending on the manifold type [O’N66]. Complicated surfaces can be anal-

ysed by defining maps from the surface to R2 [ST67, Lef49]. Each of these homeomorphisms,

called chart, takes an open disk of the surface down to an open disk in the plane. An atlas

of a surface is a finite collection of charts. The collection of chart domains must completely

cover the surface, i.e., every point on the surface must be in the domain of one or more

charts. The inverse homeomorphism is called the parameterization of the chart domain, or

simply the chart parameterization.

Given two surfaces S1 and S2 the connected sum S1#S2 is constructed by removing a

disc from each one and then joining them along the boundaries of the holes. The classi-

fication theorem of closed surfaces, first proved by Dehn and Heergaard in 1907 [DH07],

states that any (orientable) surface is homeomorphic to a sphere or the connected sum of g

tori, for g ≥ 1. The number g of tori involved is called the genus of the surface. The genus

can be seen as the “number of handles” or the “number of holes” present in a surface (see

Figure 2.3).

Figure 2.3: Genus of a surface with the generation scheme at the top.

2.1.2 Tangent plane and normal vector

Let φ : D −→ φ(D) ⊂ S be a chart parameterization of surface S, where φ(u, v) =

(x(u, v), y(u, v), z(u, v)) and the parameters (u, v) vary within a certain domain D ⊂ R2.

Let p0 = φ(u0, v0), then a surface S is of class Ck at a point p0 if a chart parameterization

φ of class Ck at p0 can be find, i.e., functions x(u, v), y(u, v) and z(u, v) are of class Ck at

(u0, v0). If k > 0, it is said that S is differentiable at p0 or p0 is a differentiable point of S.

Suppose that S is differentiable at p0. The parameterization φ defines two curves passing
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though p0 as follows:

φ(u, v0) = (x(u, v0), y(u, v0), z(u, v0), φ(u0, v) = (x(u0, v), y(u0, v), z(u0, v) ,

and their corresponding tangent vectors at p0:

φu(u0, v0) =
∂φ

∂u
(u0, v0) =

(
∂x

∂u
(u0, v0),

∂y

∂u
(u0, v0),

∂z

∂u
(u0, v0)

)
,

φv(u0, v0) =
∂φ

∂v
(u0, v0) =

(
∂x

∂v
(u0, v0),

∂y

∂v
(u0, v0),

∂z

∂v
(u0, v0)

)
.

If the parameterization φ is regular at p0, that is, if φu 6= 0 and φv 6= 0, the plane

through p0 and parallel to the vectors φu(u0, v0) and φv(u0, v0) is called the tangent plane

of S at p0 (Tp0). Moreover, the vector defined over the tangent plane

n(u0, v0) = φu(u0, v0)× φv(u0, v0)/ ‖ φu(u0, v0)× φv(u0, v0) ‖

is called the unit normal vector of S at p0 (see Figure 2.4).

Figure 2.4: Tangent plane Tp0 and normal vector ~n of a surface point.

2.1.3 Surface curvature

One way to describe a surface visually is to describe it by telling how curly it is. In

mathematics, curvature refers to a number of loosely related concepts in different areas of

geometry and can be seen as a local measure of surface shape. Intuitively, curvature is the

amount by which a geometric object deviates from being flat.

The osculating circle C(p) of a curve α at a given point p ∈ α is the circle that best

approximates the curve at p (see the left image of the Figure 2.5). Then, the osculating

circle C(p) is given by

C(p) = lim
p′,p′′→p

C(p, p′, p′′) ,
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where p′ and p′′ are points on α and C(p, p′, p′′) is the circle that passes through p, p′ and

p′′. The radius of curvature r(p) of α at p is defined as the radius of C(p), and the curvature

is defined as

k(p) =
1

r(p)
.

If α is given by a regular parameterization (α′(t) 6= 0) α(t) = (x(t), y(t), z(t)) of class

C2 with p = (x(t), y(t), z(t)), the curvature k(p) can be computed by

k(p) =
‖ α′(t)× α′′(t) ‖
‖ α′(t) ‖3

,

where α′(t) = (x′(t), y′(t), z′(t)) and α′′(t) = (x′′(t), y′′(t), z′′(t)).

Let φ(u, v) = (x(u, v), y(u, v), z(u, v) be a chart parameterization of class C2 of surface

S. Let t be a unit vector in the tangent plane at p = φ(u, v). The normal curvature kn(t) is

the curvature of the planar curve that results from intersecting S with the plane π(t) through

p spanned by n and t. The minimal normal curvature k1 and the maximal normal curvature

k2 are called principal curvatures (see the right-hand image of Figure 2.5). The associated

tangent vectors e1 and e2 are called principal directions and are always perpendicular to

each other (if k1 = k2, it is sufficient to pick two arbitrary orthogonal tangent vectors). The

normal curvature function kn(t) is a quadratic form and satisfies

kn(t) = cos2(θ)k1 + sin2(θ)k2 ,

where θ is the angle between t and e1. Moreover, in the coordinate frame with origin at p

and axes determined by the principals directions e1, e2 and the surface normal n, surface

S can be locally parameterized by(
x, y,

k1x
2 + k2y

2

2

)
.

The mean curvature of S at p is defined by H = k1+k2
2 , and the Gaussian curvature

of S at p is defined by K = k1k2. The mean curvature is zero only for points on locally

flat surfaces, while the Gaussian curvature can be zero for surfaces whose restriction into

a plane is locally a straight line. For example, the mean and the Gaussian curvatures

of a flat plane are zero, while for a cylinder of radius r the mean curvature is 1/r and

the Gaussian curvature is zero. Gauss’s Theorema Egregium states that the Gaussian

curvature of a smooth surface in R3 is invariant under the local isometries. For example,

since a sphere of radius r has constant Gaussian positive curvature 1/r2 and a flat plane

has constant Gaussian curvature zero, these two surfaces are not isometric, even locally.

Thus any planar representation of even a part of a sphere must distort the distances and
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Figure 2.5: From left to right: curvature of a point in a curve and principal curvatures of

a surface point.

no cartographic projection is perfect. On the contrary, perfect cartographic projections of

cylinders do exist. Figure 2.6 shows a comparison between mean and Gaussian curvatures

computed over a car bodywork model.

Figure 2.6: Mean and Gaussian curvature comparison.

2.1.4 Surface mesh representation

In computer science, polygonal meshes remain the most common and flexible way to ap-

proximate surfaces. A polygonal surface model, also known as a mesh, is a piecewise

linear surface in three-dimensional Euclidean space R3. Without loss of generality, it can

be assumed that the set of planar polygons defining a mesh consists entirely of triangu-

lar faces, since any non-triangular polygon may be triangulated in a pre-processing step

([Sei91, NM95]).

A mesh M = (V, F ) is a pair containing a list of vertices V and a list of triangular faces

F . The vertex list V = (v1, v2, ..., vm) is an ordered sequence where each vertex may be

identified by a unique integer i. The face list F = (f1, f2, ..., fn) is also ordered, assigning a
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unique integer to each face. Every vertex vi = (xi, yi, zi) is a vector in the Euclidean space

R3. Each triangle fi = (j, k, l) is an ordered list of three indices identifying the corners

(vj , vk, vl) of fi. Different surface mesh examples are shown in Figure 2.7.

Figure 2.7: From left to right a sphere, a torus and a cube surfaces with their associated

triangular meshes.

Extending the surface manifold definition, a polygonal surface is said to be a manifold

mesh, called closed mesh, if every edge in the mesh is shared by exactly two faces and the

neighbourhood of every vertex consists of a closed loop of faces. In exception, in a manifold

mesh with boundary, called open mesh, boundary edges must have only one incident face

and the neighbourhood of boundary vertices consists of a single fan of faces. Figure 2.8

illustrates different vertex neighbourhood configurations in a polygonal model.

Figure 2.8: Neighbourhoods of a given vertex (in pink). On the left, two manifold neigh-

bourhoods. On the right, two non-manifold neighbourhoods.

The orientation of a face is a cyclic order of the incident vertices. A manifold mesh is

orientable if any two adjacent faces have consistent orderings. Let fi and fj be adjacent

faces sharing the edge (vi, vj). If vi and vj occurs in this order for fi, then they must occur

in fj in the order vj followed by vi. In Figure 2.9 consistent and inconsistent orderings are

illustrated. The typical choice in computer graphic applications is based on visibility of the

mesh from the camera location. The vertices are ordered counterclockwise in the plane of
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Figure 2.9: Consistency of the possible orderings of two incident faces. On the left, two

consistent orderings. On the right, two inconsistent orderings.

the face viewed from outside the mesh. This assumption defines the normal vectors directed

toward the eye point.

2.1.5 Mesh data structure: DCEL

Data structures play an important role in both numerical computations and geometric

algorithms. A data structure is defined as a way of storing data in a computer for efficient

search and retrieval. The efficiency of most of the geometric modelling algorithms crucially

depends on the underlying mesh data structures and therefore have to be carefully chosen.

A well-designed data structure allows a variety of critical operations to be performed using

as few resources as possible. In geometry processing, all these available operations enable

local and global mesh traversal. When using mesh data structures that can serve both

numerical and geometric computations on parallel computers it is desirable to meet the

following requirements: efficient in both time and space, neutral of programming languages,

convenient for I/O, and easily extensible to support partitioned meshes.

Working with polygonal surfaces often requires information about the topological rela-

tions between vertices, edges and faces. Mesh data structures make it possible to iterate

through the entities of a mesh, performe queries on incidence, adjacency, and classification

(in particular, boundary classification) of entities, and modify the mesh efficiently. A vari-

ety of data structures has been described in the literature, and different implementations

are available [Ket99]. One of the most convenient and flexible data structures in geometry

processing is the doubly-connected edge list (DCEL) [M8̈7]. A DCEL is used to explicitly

store information from representations such as planar subdivisions, polyhedral surfaces and

polytopes in R3. [PS85, dBvKOS97]. This data structure supports operations such as ob-
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taining the adjacent regions, edges or vertices from a given region. In the DCEL structure,

edges in the subdivision are represented by two directed half-edges such that one of the

half-edges bounds one face incident to the edge and the other half-edge bounds the other

face. If e is a half-edge, then Twin(e) denotes the opposite half-edge that is part of the

same edge. Every half-edge is oriented in such a way that the face to which it is incident

lies to its left, following a consistent ordering. In this way, the incident half-edges for all

bounded faces of a connected subdivision form a counterclockwise cycle around each face.

The half-edges that bound the one unbounded face (the outer face) form a clockwise cycle.

An example of the face, half-edge and vertex instances of a given subdivision is shown on

the right in Figure 2.10.

A DCEL contains a record for each face, half-edge, and vertex of the subdivision stored

in three tables, one for each of them. A vertex record stores the coordinates of the vertex

position (Point(v)) and a single reference to a half-edge record (IncidentEdge(v)) that has

the vertex as its origin. For any half-edge e (see Figure 2.10) its record stores one reference

to the record of its vertex origin (Origin(e)), a reference to the record of the incident face

which lies to its left (IncidentFace(e)), a reference to the half-edge that precedes e in the

cycle of edges around the incident face (Prev(e)), a reference to the record of the half-edge

that follows e in this cycle (Next(e)), and a reference to the record of the complementary

half-edge (Twin(e)). The content of each face record depends on their connectivity. For

a bounded face, a reference to a half-edge record of one of the half-edges incident to it

is stored (IncidentEdge(f)). For an unbounded face a clockwise half-edge of its incident

half-edges is stored.

The geometric and topological information stored in a DCEL makes it possible to per-

form basic operations like: walking around a face in counterclockwise order, accessing one

Figure 2.10: On the left, half-edge record for a hexagonal and a triangular configurations.

On the right, an irregular subdivision with the corresponding face, half-edge and vertex

instances.
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face from an adjacent one given the common edge, and visiting all the edges around a given

vertex. Besides the default information each record may also store additional information

depending on the application needs.

2.1.6 Sharp features

Features are characterized by the way in which the unit surface normal varies along the

surface. A smooth surface is a surface that has a tangent plane at each point, and for which

the direction of its unit normal is a continuous function of the point of tangency. A point

on a piecewise smooth surface is called a sharp feature point if the surface has no tangent

plane at this point. The locus of the sharp feature points on a piecewise smooth surface has

the structure of a graph whose edges are maximal smooth (at least C1) curves. The edges

of this graph are called crease or sharp edges. A crease edge where the surface terminates

is called a boundary edge. A vertex of the graph is classified according to the number s of

crease edges meeting it ([Ma05]):

� A sharp vertex has no meeting crease edge (s = 0). If the directional tangent of

the limit surface at the vertex position does not vanish, the vertex is classified as a

cone-type vertex. Otherwise, if the directional tangents of the limit surface at the

vertex position vanish to a single vector, it is classified as a cusp vertex.

� A dart vertex is one where a crease edge terminates (s = 1).

� A crease or boundary vertex is located on the junction of two creases or two boundary

edges, respectively (s = 2).

� A corner vertex has s > 3.

On the left side of Figure 2.11, a surface with different sharp features is illustrated.

For discrete representations like triangular meshes, we assume that they are linear ap-

proximations to piecewise smooth surfaces. Then, mesh vertices and edges inherit charac-

teristics from their original sources. Notice that sharp features could be classified differently

if the original surface was not taken into account to compute them. This can be seen with

the cone mesh illustrated on the right of the Figure 2.11.
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Figure 2.11: Illustration of sharp features (depicted in pink) over a surface model. On

the right, the sharp vertex of the cone approximation is classified as a corner vertex or a

cone-type vertex depending on the reference surface used to classify it.

2.2 Graphics Hardware

Graphics processing units (GPU) have long been used to accelerate gaming and 3D graph-

ics applications. The increasing programmability and high computational rates of GPUs

make them attractive as an alternative to CPUs for parallel general-purpose computing

(GPGPU). In computational geometry several application fields take advantage of this

powerful tool.

In this section, an introduction to the graphics hardware pipeline is given. A closely

related concept, called mesh parameterization, is also summarized. Different mesh param-

eterization techniques are reviewed and some detail mapping applications are presented.

2.2.1 Graphics pipeline

The visualization of a mesh is achieved by sending basic primitives like points, segments

or polygons as a set of vertices and indices and by setting the lights and the perspective

desired through a graphic environment. The graphics, taking into account the parameters

previously chosen, card is responsible for rendering all this primitives. In fact, the GPU

could be seen as a black box with some basic controls providing an input for the geometry

and an output for its visualization. As a result of the technical advancements in graphics

cards, some areas of 3D graphics programming have become quite complex. New features

were added to graphics cards to simplify the process. The GPU is a graphics accelerator

that allows computations to be parallelized thanks to its parallel processing units. It obtains

better real-time graphics and faster computations in non-real-time applications. Moreover,

the ability to modify the rendering pipelines in programmable stages makes arbitrary com-
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putations possible. So, if a problem can be transformed to an image-based algorithm, it

can be solved (usually an approximated solution is obtained) by taking advantage of the

GPU capabilities.

The graphics pipeline [FK03, SA04] is divided into several stages, which are implemented

as separate pieces of hardware on the GPU. With a graphics application programming

interface (API) it is possible to define objects using different 3D geometric primitives in

CPU: points, segments, polygons, polygon strips, etc. The input to the graphics pipeline

is a set of these geometric primitives expressed as vertices (and indices for face definitions)

with associated attributes such as 3D coordinates, colour, etc., which enter the graphics

engine one at time. The output is an image in the frame buffer, which is a collection of

hardware buffers corresponding to two-dimensional grids whose cells are called pixels. Each

pixel in the frame buffer is a set of some number of bits grouped together. Different buffers

exist; the stencil buffer, the depth buffer and the colour buffer store stencil, depth, and

RGB colour values, respectively. In order to store information in those images or textures,

arrays in GPU are used. So, the use of textures is made possible by the graphics hardware.

The texture coordinates associated with each vertex allow access to the information stored

in the corresponding position. The maximal size of a texture, called resolution, and the

number of textures that can be simultaneously used depend on the graphics card. The

types of textures differ according to the number of channels stored per position and the

size of these channels. For example, colour textures use RGBA textures consisting of four

channels of a maximum of 16 bits for each one while depth textures store a single number

per position, which can be up to 32 bits in current graphics cards. Then, each graphics

pipeline stage is summarized.

The first stage of the graphics pipeline consists of per-vertex operations. Each input

vertex is transformed from 3D coordinates to window coordinates (screen-space). Then,

entire primitives as triangles or lines are processed in the geometry stage. In the third

stage, rasterization takes place. It receives a set of fragments that, according to their x

and y values, have to be attached to the appropriate pixels. Fragment attributes such as

depth, colour, texture coordinates, etc., are obtained from the attributes associated with

the vertices by linear interpolation. The next stage, called the fragment stage, computes

the colour for each pixel according to the fragments falling on it. For that purpose, each

fragment passes a series of tests (scissor, alpha, stencil, depth) and per-fragment operations

(updating, blending, logical operations, etc.) to avoid rendering or to modify the appearance

of some fragments before they are placed into their corresponding pixel of the frame buffer.

Per-fragment operations can use values from textures to modify their depth, colour, etc.
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Finally, the fragments that pass the tests and the operations of the previous stage are drawn

or rendered on the screen or on a specified texture with the resulting colour. The graphics

pipeline is schematically represented in Figure 2.12.

Figure 2.12: Graphics pipeline. The programable stages of the graphics hardware (vertex-

shader, geometry-shader and pixel-shader) are depicted in dark blue.

Vertex, geometry and fragment shaders define the programmable parts of the graphics

pipeline. Vertex shaders are executed on a per-vertex basis and allow 3D vertex coordinates

to be modified. Geometry shaders are executed on full primitives and allow vertices to be

instanced from the GPU. Fragment shaders, also called pixel shaders, are executed on a

per-fragment basis and allow the appearance of the pixels to be changed by combining

fragment values, such as colour and depth, with values stored in the fragment attributes or

in textures, which can be sent to them as parameters.

2.2.2 Detail mapping applications

The representation of a detailed object without a significant increment in the time con-

sumption has been an interesting area of research. Texture management together with the

programmable capability of the graphics cards opens a wide range of possibilities in this

area. In fact, different detail mapping applications that take advantage of the graphics

hardware capabilities have become commonly used tools. The first detail mapping tech-

nique was introduced in computer graphics as a method for mapping textures onto surfaces

[BVI91, MYV93]. This technique, known as texture mapping, enhances the visual quality of

polygonal models by initially using colour textures (see Figure 2.13). Detailed objects can

be efficiently represented by a coarse geometric shape with the details corresponding to each

triangle stored in a separate 2D array. In traditional texture mapping the details are the

colours of the respective pixels. Moreover, texture maps alone can enrich the appearance
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Figure 2.13: From a surface mesh and a texture, the texture mapping technique allows to

obtain a textured model.

of a surface in a static picture, but since neighbouring pixels will have similar shadowing,

objects may still look flat in animations with varying lighting conditions.

Later, new detail mapping techniques appeared and the rendering effects of the meshes

improved. The computational cost of these techniques was improved by taking advantage

of the programmable stages of the graphics pipeline, which was becoming more efficient.

Next, three common techniques are summarized:

Bump mapping is used for simulating bumps and wrinkles on the surface of an object

[Bli78]. This is achieved by storing small deviations of the point-wise normal from the

original surface to the smooth underlying surface and perturbing the surface normals

during shading. The result is an apparently bumpy surface rather than a perfectly

smooth surface although the surface of the underlying object is not actually changed.

Normal mapping [SLMB05] is similar to bump mapping in that it replaces the normals

directly rather than storing a perturbation. As the light direction changes, the shading

variations produced by the normal perturbations simulate the shadows caused by

small pits and dimples in the surface. Since the actual geometry of the object is not

modified, the silhouettes still look polygonal or smooth.

Displacement mapping [Coo84, CCC87] addresses this problem by storing small local

deformations of the surface, typically in the direction of the normal. In a vertex

shader, the position of the points over the surface are displaced giving a great sense

of depth and detail.

A comparison between the results obtained by these three detail mapping techniques is

shown in Figure 2.14. As can be seen, displacement mapping is the only one that makes it

possible to represent the surface details of the silhouette.
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Figure 2.14: Comparison between detail mapping techniques (bump mapping, normal map-

ping and displacement mapping) applied on the Teapot model.

2.2.3 Mesh parameterization

The graphics hardware is used to totally or partially map two-dimensional arrays, called

textures, onto the meshes to provide them with rendering effects. But, how are techniques

such as detail mapping made possible? The mesh parametrization technique provides the

solution.

The central objective of mesh parametrization techniques is to establish bijective map-

pings between surfaces and parametric domains [BVI91, FH05]. Therefore, in order to

reduce distortion, each polygonal face of the mesh is mapped to a polygon in the plane

with approximately the same shape (angles and area). Two different polygons of the mesh

are mapped to the texture without overlapping. Computing a parameterization means

finding the corresponding texture coordinate of each vertex of the mesh.

In recent years, numerous methods for parameterizing meshes have been developed,

targeting diverse parameter domains and focusing on different parameterization proper-

ties. Two recent surveys [FH01, FH05] list more than 20 different planar parameterization

techniques. Both surveys focus on the mathematical aspects of these techniques to avoid

overlaps and study the suitability of the techniques for computer graphics applications in

terms of distortion (type and amount), robustness and efficiency.

The planar parameterization of 3D surfaces inevitably introduces distortion in either

angles or areas, as Gauss’s Theorem Egregium states (see Section 2.1.3). So, a good map-

ping is one that minimizes these distortions in some sense. Planar parameterizations can

be classified into four groups depending on the distortion treatment: ignore distortion,

minimize angular distortion, minimize stretching or minimize area distortion. In addition,

several other techniques provide tools for achieving a trade-off between different types of

distortion.
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Figure 2.15: Two planar parameterizations from a head mesh. On the left, a single chart

parameterization created by using a seam generation technique. On the right, a multi-chart

parameterization created by using a segmentation technique.

In order to achieve parameterizations with acceptable distortion, the surface must be

cut either by introducing seams or by generating charts. Since cuts introduce discontinuities

into the parameterization, a delicate balance between the conflicting goals of small distortion

and short cuts has to be achieved. Seams introduced to the parameterization are an obstacle

for some surface processing techniques such as simplification or approximation. However, it

is possible to use constrained parameterization techniques to reduce cross-cut discontinuities

[KSG03, ZWT+05]. Cutting and chart generation are most commonly used when computing

parameterizations for mapping textures onto the surface (see Figure 2.15). The techniques

for cutting surfaces can be divided into two categories: segmentation techniques which

partition the surface into multiple charts (multi-chart techniques), and seam generation

techniques, which introduce cuts into the surface but keep it as a single chart. Multi-

charts created by segmentation typically have longer boundaries than those created by

seam cutting. However, they can often be more efficiently packed into a compact planar

domain, which usually results in less distortion. A balance between the number of charts

created and the distortion factor obtained has to be achieved. Next, two of the most

common multi-chart parameterization techniques are summarized:

Least square conformal maps (LSCM) [LPRM02] is an automatic texture atlas gen-

eration method for polygonal models. This is a quasi-conformal parameterization

method that minimizes angle deformations. It is proved that the minimum is unique,

independent of a similarity in texture space and independent of the resolution of

the mesh. The segmentation algorithm, driven by detected features, decomposes the

model into charts with natural shapes, corresponding to meaningful geometric entities

(see Figure 2.16).
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Figure 2.16: Least square conformal maps.

Iso-charts [ZSGS04] was the first to consider stretching not only when parameterizing

charts, but also when forming charts. It focuses on the distance distortion, specifically

the geometric stretch defined in [SSGH01] (small texture distances mapped onto large

surface distances), which measures the average and worst-case stretching of local

distances over the surface. The algorithm creates texture atlases quickly, with fewer

charts and lower stretch than previous methods (see Figure 2.17).

Figure 2.17: Iso-charts.

2.3 Level of Detail

Many applications in computer graphics and in related fields require polygonal surface

models, one of the most common surface representations used for both simulation and

display. Advances in technology have made that common data acquisition systems, such as

laser range scanners, medical imaging devices, computer vision or computer-aided design

(CAD) systems, require vast databases to mantain a convincing level of realism (see Figure

2.18). From these datasets, surface reconstruction and isosurface extraction methods can

often produce very densely sampled meshes containing millions of polygons with a uniform
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Figure 2.18: Scanning of the Michelangelo’s David with the corresponding polygonal model

of ≈ 56 million polygons.

distribution of points on the surface. Unfortunately, the complexity of these highly detailed

models grows faster than the ability of our graphics hardware to render them interactively.

Notwithstanding, the full complexity of such models is not always required, and since the

computational cost of using a model is directly related to its complexity, it is useful to have

different levels of detail of complex models. This gap motivated the graphics community

to construct representations that would enable users to visualize and to interact with these

datasets. The resulting hierarchical and multiresolution techniques offer a wide range of

capabilities applicable to a wide variety of surfaces.

In this section, the related problem is introduced by describing the multiresolution mod-

els. The assessment of any method used in a multiresolution approach is always required.

In that sense, some error metrics to measure the good performance of the approximations

are then presented. Next, surface simplification is introduced as one of the bases of level

of detail to obtain coarse meshes. Finally, mesh refinement techniques have to be applied

over simplified models to get full multiresolution systems.

2.3.1 Multiresolution models

Level of detail (LOD) modelling focuses on the trade-off between fidelity and rendering

performance. Its aim is to obtain a sequence of geometric approximations and switch them

during rendering, selecting the best one for the current viewing conditions (see Figure 2.19).

In interactively applications such as videogames, the distance between the object and the

viewer can be a decisive factor for the chosen level. In order to manage the level of detail

of an object maintaining a constant frame rate, a multiresolution model representation

which allows the surface to adapt at run time is needed. A multiresolution model is a
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Figure 2.19: Levels of detail (LODs) of the Bimba model used to reduce the rendering cost

of small, distant, or unimportant geometry.

model representation that captures a wide range of approximations of an object and can

be used to reconstruct any one of these on demand. The multiresolution representation

must have roughly the same size as the most detailed approximation alone and the cost

of reconstructing approximations should be low. There are two kinds of multiresolution

models according to the continuity between different levels:

� Discrete Multiresolution. The simplest method for creating multiresolution sur-

face models is to generate a set of increasingly simpler models. For any given frame,

a renderer could select which model to use from a series of discrete levels of detail and

render that model in the current frame [FS93]. The multiresolution model is defined

by the set of levels and the threshold parameters used to control the switching between

them. Detail blending or geomorphing techniques can be applied to avoid “popping”

artefacts during level-of-detail transitions [FST92, Hop96]. When using a discrete

multiresolution strategy, renderer would be forced to pick one of the pre-generated

models, even if it needed an intermediate level. Thus the renderer would either have

to pick a model without sufficient detail or choose a model with excessive detail, sacri-

ficing quality or wasting unnecessary time. Notwithstanding, if an object is displayed

such that the entire surface is at roughly the same scale, then discrete multiresolution

models are an effective means of controlling level of detail. Walkthrough systems,

commercial rendering systems and radiosity solutions are some examples of discrete

multiresolution applications.

� Continuous Multiresolution. An approximation with a constant level of detail

would either be too dense in the distance or too sparse near the viewpoint. An ap-
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proximation where the level of detail is allowed to vary continuously over the surface is

preferred. In particular, the level of detail of a particular neighbourhood would be like

to be view-dependent. The result is an approximation which is specifically tailored to

the current viewpoint. Thus, we are looking for a multiresolution representation that

continuously adapts the surface at run time based on viewing conditions. The run-

time adaptation can be combined with the geomorphing technique to produce smooth

transitions. The need for adaptive level-of-detail control is particularly pronounced

in terrains or flight simulator systems where a regular subdivision is commonly used.

In short, discrete methods are simpler and require less overhead while continuous meth-

ods are more flexible but have higher overhead. Despite their differences, both types of mul-

tiresolution models can be constructed using surface simplification and surface refinement

methods. In general terms, level of detail is a widely used technique in several application

fields such as games, films, architectural renders or virtual worlds (see Figure 2.20).

Figure 2.20: Application of the level of detail technique in the “I, Robot” film. From left

to right, different views of a scene from a far view distance to a close view inspection. All

images copyright ©2004 20th Century Fox.

2.3.2 Error metrics

In several surface processing techniques required for multiresolution an error measure is

needed to measure the good behaviour of an approach. In order to assess the quality of an

approximation, some means of quantifying the notion of similarity are needed. From a given

polygonal model M and an approximation M ′ is defined an error metric E : M ×M ′ → R
of which the value E(M,M ′) measures the approximation error of M ′. The lower the error

value assigned by E to M ′, the greater its similarity to the original model M .

The approximation error between surfaces can be measured in different ways according

to the criteria chosen. While the preferred criteria are application-dependent, similarity of

appearance is the natural choice for rendering applications. However, similarity of shape
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in geometrical terms is one of the most used criterion for evaluating approximation quality.

Shape-based metrics appear to be more computationally convenient and are also more

appropriate in non-rendering applications.

2.3.2.1 Similarity of appearance

In rendering systems, similarity of appearance should be the ultimate criterion for evaluating

the quality of an approximation.

The appearance of a model M under viewing conditions ξ is determined by the raster

image Iξ produced by the renderer. The similarity of appearance can be seen as an image

error metric that measures the overall difference between two images. In that sense, it may

say that two models M1 and M2 appear identical in view ξ if their corresponding images Iξ1

and Iξ2 are identical. If I1 and I2 are both m×m RGB raster images, the difference between

them can be defined as the average sum of squared differences between all corresponding

pixels

‖I1 − I2‖img =
1

m2

∑
u

∑
v

‖I1(u, v)− I2(u, v)‖2 (2.1)

where ‖I1(u, v)− I2(u, v)‖ is the Euclidean length of the difference of the two RGB vectors

I1(u, v) and I2(u, v). This simple metric makes it possible to measure the visual difference

between a detailed input model and its approximation in a certain view. This can be

viewed as the measure equivalent to human perception. Differential weighting for the colour

channels, non-linear sensitivity to radiance, and spatial filtering are some factors that can

be added to improve the measure. More elaborate metrics for comparing images have been

presented in [RT98]. If M2 is a good approximation of M1 for the given view ξ, then

‖I1 − I2‖img should be small. Given this image metric, the total difference in appearance

between two models can be characterized by integrating ‖Iξ1−I
ξ
2‖img over all possible views

ξ.

The main advantage of an appearance-based metric is that it directly measures similarity

of appearance, which is the interest of preservation in rendering systems. It also allows

occluded details to be discarded. Moreover, these error metrics are useful when some finite

set of viewpoints occurs. Unfortunately, in most cases adequate samples of viewpoints are

not possible. If an incorrect set of samples is evaluated, significant features can be removed.

Furthermore, each sample may involve an expensive rendering step.
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2.3.2.2 Geometric approximation error

Geometric similarity can be used as a proxy for visual similarity. Approximations useful in

application domains other than rendering can be obtained by producing geometrically faith-

ful results. Geometrical measures give more accurate results for global similarity between

whole meshes.

The two most commonly used geometric error metrics are the L∞ and L2 norms [Pre75].

Suppose a real-valued function f(t), an approximation g(t), and an interval of interest

[a, b]. The L∞ norm, which measures the maximum deviation between the original and the

approximation, is defined by

‖f − g‖∞ = max
a≤t≤b

|f(t)− g(t)| (2.2)

The L2 norm, which provides a measure of the average deviation between the two

functions, is defined by

‖f − g‖2 =

√∫ b

a
(f(t)− g(t))2 dt (2.3)

When L2 is divided by b− a it is also called root mean square (RMS).

In practice, neither of these error metrics is completely ideal. On one hand, the L∞ norm

provides strong error bounds, but can be overly influenced by noise and local deviations.

On the other hand, the L2 norm provides a better estimate of the overall fit and is more

tolerant of noise, but it may discount local deviations. Consequently, a combination of

these two metrics is preferable. Usually, they are desired approximations with small L2

error for which the L∞ error is bounded by some known threshold.

Surface-based analogs to L2 and L∞ function approximation norms can be formulated

to evaluate surface approximations. When comparing general surfaces, there is no single

distinguished direction along which to measure distances. Instead, we measure distances

between closest pairs of points. If we denote the set of all points on the surface of a model

M by P (M), the distance from a point v to the model M is defined to be the distance to

the closest point on the model:

dv(M) = min
w∈P (M)

‖v − w‖ (2.4)

where ‖ · ‖ is the usual Euclidean vector length operator.

The Hausdorff distance [PS85], which corresponds closely to the L∞ metric, is one

commonly used geometric error measure. Based on the point-wise distance measure (2.4),



2.3. Level of Detail 33

the Hausdorff error metric Êmax(M1,M2) can be defined as

Êmax(M1,M2) = max

(
max

v∈P (M1)
dv(M2), max

v∈P (M2)
dv(M1)

)
(2.5)

The Hausdorff error measures the maximum deviation between the two models. If

Êmax(M,M ′) is bounded by ε, then we know that every point of the approximation is

within ε of the original surface and that every point of the original is within ε of the

approximation. An analog of the L2 metric can also be defined as a measure of the average

squared distance between the two models.

Êavg(M1,M2) =
1

w1 + w2

(∫
P (M1)

d2v(M2) dv +

∫
P (M2)

d2v(M1) dv

)
(2.6)

where w1, w2 are the surface areas of M1,M2. Instead of normalizing the sum of both

integrals by the combined surface area, one could also consider normalizing each individual

integral by its own corresponding area.

Observe that it is not sufficient to simply consider every point on M1 and find the closest

corresponding point on M2. Closest distances are measured in both directions between M1

and M2 due to the differences in results depending on the direction of the computation

(see Figure 2.21). As the geometric error metric measures the similarity between models

independently of the order of the given models, note that both Êmax and Êavg present a

symmetric construction.

Figure 2.21: Distance between surfaces depending on the direction of the computation.

In practice, these error metrics can be prohibitively expensive to compute exactly. When

working with meshes, it is common to formulate approximations of these ideal metrics based

on sampling the distance dv at a discrete set of points. Given P (M1) and P (M2), we can

select two sets X1 ⊂ P (M1) and X2 ⊂ P (M2) containing m1 and m2 sample points,

respectively. These sets should, at a minimum, contain all the vertices of their respective

models. The reformulation of the geometric error measures 2.5 and 2.6 are

Emax(M1,M2) = max

(
max
v∈X1

dv(M2),max
v∈X2

dv(M1)

)
(2.7)
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and

Eavg(M1,M2) =
1

k1 + k2

∑
v∈X1

d2v(M2) dv +
∑
v∈X2

d2v(M1) dv

 (2.8)

As in the function approximation case, Eavg, also called Emean, generally gives a better

measurement of overall fit than Emax and is less sensitive to noise, even though it may over-

discount localized deviations. Taking into account the two surface error metrics presented,

the most commonly used measure is equivalent to a squared Eavg and is known as Erms

Erms =

[
1

m

∑
k

‖S1
k − V 1

k ‖22

]1/2
(2.9)

As defined before, distance function dv gives the distance of v to the closest point on

M . Depending on the measure used to compute it, the results obtained can differ both in

accuracy and evaluation cost. Next, the two main strategies to compute distance functions

on meshes are summarized (see Figure 2.22):

� Vertex-Vertex. Given a vertex v of M1, it consists of computing the nearest vertex

v′ of M2. This is the faster distance function strategy but it gives the worst results.

The precision of the measure directly depends on the resolution of the given meshes

and is appropriated during topology changes.

� Vertex-Plane. A vertex to plane distance is evaluated for each vertex v to all

defining planes of M2. The nearest distance plane is restricted within the containing

triangle. Although the computational cost increases, low error is obtained.

Figure 2.22: From a vertex, two main strategies to compute distance functions. On the

left, the nearest vertex distance. On the right, the vertex-plane distance which depends on

the projection of the vertex onto the plane with respect to the triangle.
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2.3.3 Surface simplification

The complexity of geometric models used in several applications continues to increase be-

cause of fundamental advances in 3D modelling, simulation and data capture technologies.

Having a model which captures very fine surface detail may be desirable to keep a con-

vincing level of realism and to ensure sufficient and accurate data to process it. However,

many applications will require far less detail than is present in full datasets. In polygonal

surface applications, a trade-off exists between the accuracy with which a surface is mod-

eled and the amount of time required to process it. If a simplified representation of those

models is used, potential gains can be obtained. Eliminating redundant geometry, reducing

model size or improving run-time performance of the scene being rendered are the main

motivations for using surface simplification techniques. Different aspects such as geometry

or visibility can be taken into account when simplifying a model.

Surface simplification approaches can be classified into two different strategies. The first

consists of generating a single and static low-resolution approximation that resembles the

original one but has far fewer faces. In this case, the models are generally acquisitions from

real objects using 3D laser scans. Single approximations of these virtual models, commonly

applied in realistic virtual environments, CAD systems or medicine, are composed of a

fixed set of vertices and a fixed set of faces. Although they provide a single fixed resolution

representation of an object, this single resolution may not be appropriate for all the contexts

in which the model will be used. This restriction gives rise to the second strategy, which

consists of using the surface simplification technique on a level-of-detail approach.

Suppose we have a polygonal model M and we would like an approximation M ′. While

this approximation will has fewer polygons than the original, it should also be as similar as

possible to M and retain all its basic features. The goal of polygonal surface simplification

is to automatically produce such approximations (see Figure 2.23). It is a valuable tool

for tailoring large datasets to the needs of individual applications and for producing more

economical surface models. Surface simplification is naturally targeted towards large and

complex datasets that would be very hard to manipulate manually. So, this is a well-known

problem that has been the subject of a great deal of research.

2.3.3.1 Classification of surface simplification methods

Surface simplification algorithms define a heuristic to find simplified representations that are

close to the optimal. The computation of the minimal-facet approximation within a certain
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Figure 2.23: Simplification of a cow model.

error bound is a NP-hard problem for all objects. A characterization and classification of

surface simplification methods is presented in [And99]. Following it, surface simplification

methods can be classified into two types, depending on how they proceed:

� Decimation - Top-down methods

In a decimation algorithm, unlike in refinement, a face reduction process is followed. It

begins with the original surface and iteratively removes elements at each step using a

face reduction strategy until the desired level of approximation is achieved. In contrast

to refinement algorithms, accurate representations are produced first because coarse

representations require more face reduction steps.

� Refinement - Bottom-up methods

A refinement algorithm is an iterative algorithm that begins with an initial coarse ap-

proximation and uses a refinement strategy to add geometric elements at each step.

Coarse representations are produced before accurate ones because this requires many

more refinement steps. The main difficulty consists of constructing the base approxi-

mation, which must necessarily have the same topology as the original model. Even

so, the sequence of refinement steps does not always lead to the original representa-

tion.

2.3.3.2 Decimation strategies

Most of the existing surface simplification approaches are defined by a decimation algorithm.

In these cases, a face reduction strategy has to be followed during the process. Different

face reduction strategies are summarized bellow:

� Vertex Clustering. The vertex clustering strategy consists of spatially partitioning

the initial vertex set into a set of clusters and unifying all vertices inside a cluster



2.3. Level of Detail 37

by a single vertex, called cluster representant. Vertex clustering often produces rela-

tively poor quality approximations and tends to make substantial alterations to the

topology of the original model. The results of this algorithm can be quite sensitive to

the resolution and the placement of the grid cells, making it incapable of simplifying

features larger than the cell size. Therefore, clustering methods tend to work well if

the original model is highly over-sampled and the required degree of simplification is

not too great. [RB93] is one of the most important methods of clustering simplifica-

tion. The main steps of the approach are: weight computation, triangulation, vertex

grouping, synthesis and elimination.

� Re-tiling. Re-tiling begins by introducing new vertices onto the original represen-

tation. And they are moved over maximal curvature locations. Then, a new trian-

gulation is built, taking into account the original vertices and the newly added ones.

Finally, original vertices are removed from the mesh by some local reduction opera-

tor. [Tur92] presents a surface simplification method that follows an original re-tiling

approach.

� Wavelet decomposition. Simplification based on wavelet decomposition proceeds

through two steps: re-meshing and wavelet parameterization. The surface is decom-

posed into a base mesh plus a sequence of successively finer surface details. Wavelet

decompositions are generally unable to resolve creases on the surfaces and cannot con-

struct approximations with a topology different from the original surface. A method

that overcomes the subdivision connectivity1 limitation is presented in [EDD+95].

� Incremental face reduction. Incremental face reduction strategies consist of the

iterative removal of geometric entities through a local reduction operator chosen ac-

cording to local geometric optimality criteria. In the literature, many incremental

face reduction methods has been proposed. Some of the most important approaches

presented are [HDD+93, CVM+96, GH97].

2.3.3.3 Local operators

Local reduction operators are the basis of the most common surface simplification methods.

The main local operators for triangle meshes can be classified according to their purpose:

reduction operators, which reduce mesh complexity; and fitting operators, which improve

1A mesh has subdivision connectivity when it can be obtained from a simple mesh through the recursive

4-to-1 subdivision.
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the adjustment of the approximation. Next, the most common reduction operators are

summarized:

� Vertex decimation. Vertex decimation operates on a single vertex by deleting that

vertex and re-triangulating the resulting hole (see Figure 2.24). In each step of the

decimation process, a vertex v is selected for removal, the operator eliminates it and all

of their t incident triangles and the resulting hole is reconstructed with t-2 triangles.

The vertex-removal operator preserves the topology of the mesh. The key ingredient

of methods that use vertex decimation as operator is the selection of the vertex that

will be removed.

Figure 2.24: Vertex decimation operator. The elements reduction is: 2 faces, 3 edges

and 1 vertex.

� Edge-collapse or edge-contraction. An edge-collapse takes as a parameter the

edge to be collapsed or, equivalently, a pair of vertices sharing an edge {i, j}. The

two vertices are collapsed in a single vertex h, updating all edges that are previously

incident to i and j to reference h. As a result of the collapse, the triangles sharing the

edge, degenerate in a segment and are removed (see Figure 2.25). The only computed

parameter is the new vertex position, which is usually one of the two old vertices or

a weighted average. Note that collapsing a vertex to one of the ends of an edge is

equivalent to a vertex decimation operation without needing a re-triangulation step.

Edge-contractions can alter the topology of a mesh, since repeatedly contracting edges

can eventually close holes or join unconnected regions. Nonetheless, in most cases,

the edge-collapse operator preserves the topology of the mesh. The selection of the

edge that will be collapsed is the key ingredient in edge collapse methods. One of

the benefits of iterative contraction is the hierarchical structure created. This quite

naturally leads to a useful multiresolution surface representation.

� Vertex clustering or region merging. This can be seen as a sequence of pair-

contraction operations. The pair-contraction operator takes as a parameter the two

vertices to be collapsed. When these two vertices define an edge, this operation is

equivalent to an edge collapse. Otherwise, when vertices (v1, v2) are disconnected, the
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Figure 2.25: Edge-collapse operator. The element reduction is: 3 faces, 2 edges and

1 vertex.

process consists of moving the implied vertices to the new position, then connecting all

the incident edges of one of the vertices to another and finally removing the vertex that

was not actualized and edges or faces that have become degenerated (see Figure 2.26).

The pair-contraction does not preserve the topology of the mesh because a sequence

of these contractions can both close holes and connect regions originally disconnected.

The key ingredient of methods that use vertex clustering is the selection of vertices

to be collapsed.

Figure 2.26: Pair-contraction operator. The element reduction is: 0-2 faces, 0-3 edges

and 1 vertex.

� Face decimation. The face removal takes as a parameter a face F to be removed.

This triangle and all its neighbours sharing one vertex with F are removed. The

resulting hole is triangulated with the help of a new vertex (see Figure 2.27). The

number of faces and edges which can be reduced with this operator is bigger than the

others. Except in degenerate cases, the face decimation preserves the topology of the

mesh.

Figure 2.27: Face decimation operator. The element reduction is: 4 faces, 6 edges

and 2 vertices.
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In all face reduction operators, additional geometric tests for consistency checks are

required to avoid fold-overs or self-intersections. Most surface simplification methods are

based on the iterative contraction of edges, so they use the edge-collapse to perform the

process.

As previously mentioned, in addition to reduction operators that reduce the number of

geometric entities of the mesh, fitting operators allow the approximation to better match

the original mesh. These operators preserve the topology of the mesh and the incident

graph and also need additional geometric tests to avoid self-intersections. Next, two fitting

operators are explained:

� Edge flip or edge swap. From two triangles sharing an edge, the non-planar

quadrilateral result of merging together both triangles is triangulated using the op-

posite diagonal (see Figure 2.28). The edge flip operator is used for two purposes:

– To improve the adjustment of the simplified model to the original surface espe-

cially in non-flat regions, and reduce the error that can be produced by other

reduction operators previously applied.

– To create well-shaped triangles, in flat regions.

Figure 2.28: Edge flip operator.

� Vertex displacement. The operator that takes as a parameter the vertex to be

moved and that only needs the new assigned coordinates, usually given as an offset

vector (see Figure 2.29). Vertex displacement is used to improve the fitting of the

simplification to the original model locally.

Figure 2.29: Vertex displacement operator.
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All reduction operators that preserve topology can be derived from a series of edge-

collapses and edge-flips and, moreover, they are the most commonly used.

2.3.4 Subdivision surfaces

Geometric mesh simplification is not the only form of LOD management. Subdivision

surfaces are an alternative which have become a valuable tool in geometric modelling for

computer graphics and computer aided geometric design (CAGD) due to their simplicity,

efficiency and ease of implementation. The subdivision surface itself is defined as the limit of

repeated recursive refinements (see Figure 2.30). The shape of the refined surface obtained

from an iterative process is determined by a structured mesh of control points and a set of

subdivision rules. A survey of subdivision surfaces can be found in [ZS00].

Figure 2.30: Recursive subdivision of a control mesh resulting in a subdivision surface.

The recursive nature of their definition makes subdivision surfaces suitable for many

applications fields, such as animation (see Figure 2.31). These flexible modelling operators

for two-manifold surfaces are used to construct smooth surfaces, multiresolution repre-

sentations, model editors and mesh compression tools. Subdivision surfaces are ideal for

interactive multiresolution mesh editing, where the overall shape of an object is controlled

by a coarse mesh, while details are added by modifying the control points of a refined mesh.

The computational efficiency, the use of arbitrary topology and the support of surface fea-

tures and complex geometry are the main advantages from traditional splines. In addition

to smooth surfaces, the management of boundaries and sharp features presented by some

subdivision approaches allows more realistic objects to be represented.

In the literature several subdivision schemes have been proposed. One way to classify

these schemes is based on their properties:

� Mesh type. Meshes can be of arbitrary topology but most subdivision schemes

operate on triangular or quadrilateral meshes. A vertex is said to be ordinary if its
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Figure 2.31: Subdivision surface model for Geri’s Game [DKT98]. All images copyright

©1997 Pixar/Walt Disney Records.

valence is six in a triangular mesh or four in a quadrilateral mesh. A mesh, triangular

or quadrilateral, is said to be regular if all their vertices are ordinary.

� Refinement rule. There are two main approaches used to generate a refined mesh:

face split (vertex insertion) and vertex split (corner cutting). The schemes using face

split can be applied to triangular and quadrilateral meshes. Each face is split into

four faces of the same type (see the left-hand image of Figure 2.32). The schemes

using vertex split can be applied to meshes of arbitrary topology. A new vertex is

created for each old corner of each old face, as a linear combination of the old corners

of that face. New faces are created linking these new vertices inside the old faces and

across the old edges (see the right-hand image of Figure 2.32).

Figure 2.32: Face split and vertex split refinement rules according to the mesh type (trian-

gles or quadrilaterals).
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� Approximation vs. interpolation. A subdivision scheme is interpolating if all the

control points in the original mesh are also control points in the subdivided meshes

obtained. Otherwise, the scheme is approximating. Interpolation, the most commonly

used, simplifies the computation and also allows the limit surface generation to be

controlled more intuitively. Unfortunately, with respect to approximation schemes,

the quality of the resulting surfaces is not as high and does not convergence as fast

to the limit surface (see Figure 2.33).

Figure 2.33: Comparison between interpolation and approximation schemes. In interpola-

tion, the resulting mesh overcomes the control mesh while it is contained in approximation.

Tables illustrated in Figure 2.34 show a classification of the most popular subdivi-

sion schemes, taking into account the previous properties. The refinement technique used

together with the placement of new vertices are the key points of a subdivision surface

approach. Next, for each method, an analysis of the continuity for the generated surfaces

is presented:

Figure 2.34: Classification of the subdivision schemes.

Doo-Sabin Scheme [DS98]. The subdivision is conceptually quite simple since there is

only one mask used to compute the new vertices. Let pi, i = 0..n, be the vertices of

a face. The new vertex in the corner i is computed by
∑

j ajpj where ai = n+5
4n and

ai = 3+2cos(2π(i−j)/n)
4n for j 6= i. In [PR98] is proved the C1 continuity limit surface.
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A special rule is required only for boundaries, where the limit curve is a quadratic

spline.

Catmull-Clark Scheme [CC78]. The rules of this scheme are: a new face point is

computed as the average of the vertices of the face; a new edge point as the average of

the endpoints of the edge and the new face points of the adjacent faces; a new vertex

point is computed by F+2E+(n−3)V
n where V is the old vertex, n is the valence of V ,

F is the average of the new face points of all faces incident to V and E is the average

of the midpoints of all edges incident to V . Special rules are needed for boundary

points. The scheme produces surfaces that are C2 continuous everywhere except at

extraordinary vertices, where they are C1 ( [BS88] and [PR98]).

Loop Scheme [Loo87]. The rules are: a new edge point is computed by 3E+E′

4 where

E is the midpoint of the edge and E′ the midpoint of the opposite edge; a new

vertex point is computed by (1 − nβ)V + βP where V is the old vertex, n is the

valence of V , P is the sum of all n neighbours of V and β = 3
16 for n = 3, or,

β = 1
n(58 − (38 + 1

4 cos(2π/n))2) for n > 3. Special rules are needed for boundary

points. Loop surfaces are C2 at ordinary vertices and C1 at the others. The original

scheme was extended by [HDD+94] to incorporate sharp creases, darts and corner

points. Next, [Sch96] further extended the scheme with conical and cusp points.

Butterfly Scheme [DLG90]. A new edge point is computed by E + E′

4 + P
16 , where

E is the midpoint of the edge, E′ the midpoint of the opposite edge and P is the

sum of the four opposite vertices of the two faces adjacent to the edge. A special

rule is needed for new boundary edge points. The original Butterfly scheme proposed

by Dyn et al. is C1 on regular meshes and is defined on arbitrary triangular meshes

although the limit surface is not C1 continuous at extraordinary vertices of valence

n = 3 and n > 7 [Zor98]. In [ZSS96] a modified Butterfly scheme was presented which

guarantees that C1 continuous surfaces for arbitrary meshes are produced.

Kobbelt Scheme [Kob96]. The new points are computed in two steps. First, all new

edge points are computed. Next, all new face points are computed by the same

edge rule applied to the edge connecting new edge points on two opposite edges of

the face. The edge rule for regular meshes of valence four is as follows. All mesh

vertices are indexed by Vi,j . Then, the point on the edge Vi,jVi+1,j is computed by
9
16(Vi,j+Vi+1,j)− 1

16(Vi−1,j+Vi+2,j). When vertices Vi,j or Vi+1,j are not ordinary, this

rule needs to be modified. See [Kob96] for more details of this scheme. C1 continuity

for interior vertices for all valences is proven in [Zor00].
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2.4 Mesh Deformation

Mesh deformation is a valuable tool for editing techniques such as geometric modelling and

computer animation (see Figure 2.35), since it provides a convenient way to edit the original

mesh to meet various design requirements. In this section, an introduction to the shape

deformation concept is first given by describing the main differences between surface-based

and space-based deformations. Then, cage-based deformation methods are introduced as

some of the most important space-based methods. The four main cage-driven approaches

are described by giving a summary of their properties.

Figure 2.35: Mesh deformation applied to obtain different poses of the Nemo model. All

images copyright ©2003 Pixar/Walt Disney Records.

2.4.1 Surface vs. space deformations

The wide range of applications such as industrial and artistic design makes mesh deforma-

tion an active area of research in geometric modelling. In recent years a wealth of research

has been devoted to the deformation and manipulation of surfaces, specially those that are

represented by triangular meshes [BS08, SB09].

Shape deformation techniques can be divided into two main groups: surface deformation

and space deformation. Surface-based algorithms directly deform the surface. Because of

their ability to develop detail-preserving techniques, they have been closely studied in the

literature. In contrast, space deformation techniques, also known as free-form deformations,

have received less attention in recent years. The deformation, in this case, is applied over a

volume or some defined space. Nowadays, these methods have started to gain interest due

to all the advantages presented with respect to surface-based techniques. An interesting

discussion about the potential of these two approaches was presented in [CO09].

The main challenge in surface deformation techniques is handling non-trivial transfor-

mations while preserving the visual characteristics of the shape as much as possible at
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interactive rates. Surface-based approaches achieve high quality shape-preserving deforma-

tion. However, these methods require solving large, often non-linear, systems of equations,

making them hard to compute.

Space deformation techniques were introduced by Sedeberg and Parry [SP86] and further

extended by Coquillart [Coq90], among others. The basic space deformation technique

defines a lattice with too few control points enclosing the subject model. Manipulating the

control points induces a smooth deformation of the space enclosed in the lattice, and hence

the geometry of the enclosed model. Space deformation techniques can handle arbitrary

inputs such as meshes, point sets or polygonal soups due to the deformation that can be

applied over a volumetric space. The complexity depends mainly on the control object, not

on the surface, making it easier to analyze. In fact, the deformation is only loosely aware

of the shape that is being edited. Actually, some of the most important space deformation

techniques are cage-based deformation methods [Flo03, JMD+07, LKCOL07, LLCO08].

Recently, in addition to these two mesh deformation techniques, hybrid methods have

begun to emerge. They fuse both surface deformation and space deformation techniques in

an efficient way. [SSP07], [XWXC08] or [HSL+06] are some examples of hybrid methods

that combine the advantages of these two techniques.

2.4.2 Cage-based deformation methods

Cage-based deformation methods are space deformation approaches which define a general

control polyhedron that encloses the model to gain more control over the whole interior (see

Figure 2.36). This control element, called cage, is a rather low polygon-count polyhedron

that typically has a topology and geometry similar to the enclosed object to obtain more

accurate deformations. The deformation is performed by manipulating the cage vertices.

Smooth deformations are therefore induced in all the volume inside the cage. The main

advantages of these space deformation methods are their simplicity and speed. An enclosed

mesh can be manipulated at a rather small computational cost since the deformation of

its vertices involves only a linear combination of the cage geometry and the precalculated

coordinates. Therefore, these techniques are independent of the surface representation and

also free of discretization errors.

The points inside the cage are represented by affine sums of the cage elements (vertices or

faces) multiplied by special weight functions called cage coordinates. Let V = (v1, v2, . . . vm)

be the vertex set of the cage C. Most of the existing cage-based deformation methods
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Figure 2.36: The original model enclosed by a control mesh in a cage-based deformation

method.

express a point p ∈ C as an affine combination of its vertices:

p =
∑
v∈C

w(v, p)v , (2.10)

where w(v, p) are the coordinate basis functions, which are computed in different ways

depending on the cage-based deformation method used. Then, the natural way to define a

deformation in the cage C is by:

T (p) =
∑
v∈C

w(v, p)T (v) , (2.11)

where T (v) are the deformed control cage vertices (see Figure 2.37). In this manner, trans-

formations T can reproduce linear transformations. However, the resulting transformations,

which are not shape-preserving, generate possible distortions on local surface details. Next,

the three main cage coordinates, defined according to the previous nomenclature s a gen-

eralizations of the barycentric coordinates, are summarized:

Figure 2.37: Two different deformations obtained by modifying the control mesh vertices.

Mean Value Coordinates [Flo03]. MVC are a simple and powerful method for creating

functions that interpolate values assigned to the vertices of a closed mesh (see Figure



48 Chapter 2. Background

2.38). The coordinates w(v, p) are computed as follows. Denote by F the set of the

triangle faces of C and by Nv the union of the triangle faces T ∈ F in the 1-ring

neighbourhood of a vertex v of C. Let Φv(x) be the piecewise linear function defined

on the boundary ∂C of C such that Φv(v) = 1 and Φv(v
′) = 0 for every vertex v′ 6= v

of C. Given a point p ∈ C, let Sp be the unit sphere centred at p. The weight wv(p)

is defined as follows:

wv(p) =
∑
T∈Nv

∫
x∈T

Φv(p(x))

|p(x)− p|
dT ,

where T is the projection of the triangle T onto Sp, and p(x) is the projection of point

x onto T in the direction x− p. Finally, the weight function w(v, p) is computed by:

w(v, p) =
wv(p)∑

u∈V
wu(p)

.

Then, MVC have a closed-form formulation and are C∞ continuous and well defined

both inside and outside of the control mesh but only C0 continuous across the cage

faces. Linear precision, interpolation and interior smoothness are the main properties

related to MVC. However, MVC can be negative for non-convex cages and, conse-

quently, can produce unacceptable deformations (see the left image of Figure 2.40).

Figure 2.38: Mean value coordinates.

Harmonic Coordinates [JMD+07]. HC introduced were guaranteed to be non-negative

on the interior of the cage, even in strongly concave situations (see Figure 2.39). A

coordinate w(v, p) satisfies:

∇2w(v, p) = 0, p ∈ Int(C)

w(v, p) = Φv(p), p ∈ ∂C .

Since these coordinates are solutions to the Laplace equation and these kinds of

solutions are generically referred to as harmonic functions, these coordinates are called
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harmonic coordinates, and the deformations they generate harmonic deformations.

HC are non-negative, C∞ continuous inside the cage, C0 continuous on the boundary

and have no definition outside the cage. However, the main limitation of the approach

is the lack of a closed formed expression meaning a multi-grid finite difference must

be used to compute the coordinates. The approximate nature of the method makes

the accuracy of the results obtained depend on the cell size used in the computation.

The computations and the memory required make it one of the costliest cage-based

approaches.

Figure 2.39: Harmonic coordinates.

Positive Mean Value Coordinates [LKCOL07]. PMVC are alternative non-negative

coordinates which are computed numerically by using a GPU-friendly approach. Only

the visible portion of the cage with respect to a point p is considered to guarantee,

like HC, that coordinates w(v, p) are always positive. Although PMVC and HC

perform similarly, the PMVC are computed much faster (see Figure 2.40). The main

inconvenience of this approach is that PMVC are discontinuous on the visibility graph

of the cage. Moreover, the quality of the results depends on the cage resolution used

for the visibility computation carried out on the GPU.

Figure 2.40: Positive mean value coordinates.
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To preserve the shape and details of the enclosed surface, Lipman et al. [LLCO08]

presented green coordinates (GC). In contrast to the previous work, this new cage-based

approach induces conformal mappings in 2D that become quasi-conformal mappings in 3D

(see Figure 2.41). Unlike the other methods presented before, the shape-preserving property

is obtained because the cage face normals, rather than just vertex positions, are also taken

into account to compute the cage coordinates. A point p ∈ C is expressed by:

p =
∑
v∈V

w(v, p)v +
∑
T∈F

Ψ(T, p)n(T ) ,

where n(T ) is oriented outward normal to T . Let G(x, p) be a fundamental solution of the

Laplace equation in Rd (d = 2, 3), which has the following expression:

G(x, p) =


−1

4π|x− p|
d = 3

ln |x− p|
2π

d = 2
.

The vertex coordinate w(v, p) is computed by:

w(v, p) =
∑
T∈Nv

∫
x∈T

Φv(x)
∂G(x, p)

∂n(T )
dT ,

while the face coordinate w(T, p) is computed by:

Ψ(T, p) = −
∫
x∈T

G(x, p)dT .

Figure 2.41: Green Coordinates.

GC are simple coordinates with a closed-form expression that achieves similar high

quality shape-preserving deformations as surface-based approaches. The coordinates are

C1 continuous inside and outside the cage but discontinuous at the boundary. However,

the deformation is not interpolatory, which can be considered a limitation in applications

that require interpolation of the boundary of the cage.
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Figure 2.42: Scheme of coordinates continuity between cage boundaries for each cage coor-

dinate function.

In general terms, the main drawback of cage-based deformation methods is the need

to construct a cage or other structure around the surface to be manipulated. Moreover,

the manipulation of the model could be limited by the geometry and the flexibility of the

designed cage. All these cage coordinates are defined smoothly over the whole interior of

the cage (see Figure 2.42). Besides this common point, the different properties of each one

allow it to obtain different deformation results. The choice of which coordinate function to

use depends on the application needs.





Chapter 3

Simplification of Multi-chart

Textured Models

In this chapter we present the first stage of our study based on surface simplification tech-

niques, previously introduced in Section 2.3.3, dealing with textured models. We have de-

veloped an accurate surface simplification method for the automatic reduction of a highly

detailed multi-chart textured model into a single faithful approximation containing fewer

polygons. The method consists on reparameterizing the model at each edge-collapse by

local bijective mappings to avoid texture distortions and chart boundary artefacts on the

simplified mesh due to the geometry changes. These mappings are performed on the GPU

by using the standard hardware capabilities. Moreover, the simplification process is driven

by a quadric error metrics weighted by a local area distortion measure not only to guarantee

geometric fidelity, but also to better apply the appearance attributes. The main benefit of

our approach is that realistic and accurate approximations of complex textured models can

be generated.

3.1 Introduction

The surface simplification for automatically generating high-quality, appearance-preserving

approximations of original models has been deeply studied in the last years. There are two

different strategies in the simplification field. First, there is level-of-detail modelling, which

focuses on the trade-off between fidelity and rendering performance (see Section 2.3.1). The

aim is to obtain a sequence of geometric approximations that share the same texture map

and switch them during rendering, depending on the distance between the object and the

53
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viewer. The second strategy consists of generating a single, low-resolution approximation

that resembles the original one but has far fewer faces. In this case, the models are generally

acquisitions from real objects using 3D laser scans. Single approximations of these virtual

models are commonly applied in several fields, such as realistic virtual environments. We

present a new approach to this second strategy. The method proposed generates a single

and accurate, low-resolution approximation of a multi-chart textured model that preserves

geometric fidelity while avoiding texture distortions and artefacts.

3.1.1 Related work

In recent years, several simplification algorithms have been proposed. Most of the existing

methods follow a face-reduction strategies that are commonly based on the edge-collapse

operator. Edges are ordered according to a cost and in each iteration, the lowest-cost edge

is contracted and the cost of its neighbouring edges is updated.

Geometric simplification of meshes was the first topic studied in this field. The sim-

plification process was guided only by a geometric error, without taking into account the

appearance attributes of the model. An extensive review of all existing methods proposed

before 2002 can be found in [LWC+02]. Some of the main references are [HDD+93, Hop96,

CVM+96, GH97, EM99, LT98].

More recently, simplifying meshes with appearance attributes has become the main area

of interest. In this case, the local simplification operators try to generate faithful geometric

approximations while minimizing texture deviation. The texture deviation of a mapped

attribute is defined as the deviation of its position on the final surface from its position on

the original surface. In [GH98], Garland and Heckbert extended the original Quadric Error

Metric (QEM) scheme to account for a wide range of vertex attributes. Hoppe [Hop99]

made several improvements to Garland and Heckbert’s approach by computing the error

based on the difference, in position and attribute, between a given point and its closest pro-

jection on the simplified surface. Cohen et al. [COM98] proposed a simplification algorithm

guided by the texture deviation. Lindstrom and Turk [LT00] introduced the image-driven

simplification concept, where multiple images were used to decide which portions of a model

have to be simplified. Zhang and Turk [ZT02] proposed a new image-based algorithm that

combines the QEM with a visibility function defined between the model and a surround-

ing sphere of cameras. New viewpoint-driven simplification approaches were presented in

[CSCF07, CSCF08b, CSCF08a]. These methods use the variation in viewpoint quality to

drive the simplification process. Previously to these image-based metrics, Sander et al.

[SSGH01] presented a multi-chart parameterization, constrained to convex and straight
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chart boundaries, to be used in a progressive mesh. Unfortunately, for a small number of

charts, the chart boundaries do not usually follow the ‘creases’ of the model and, conse-

quently, distorted results may be obtained.

These approaches guide the simplification process by measures that try to balance ge-

ometric fidelity and texture preservation. Nevertheless, significant texture distortions and

artefacts can be observed on the simplified surfaces. The fundamental reason is that the tex-

ture map, even when it is very well parameterized, is accessed through linear interpolation

of texture coordinates on the simplified triangles. One way to minimize the texture dis-

tortion is the texture adaptation technique, proposed by Chen and Chuang [CC06], which

adapts the texture content for each edge-collapse. However, commonly used multi-chart

parameterizations are not supported.

The presence of chart boundaries hinders the quality of the simplification due to the

discontinuity in texture space. If boundary edges are not allowed to be collapsed, the

resulting approximation presents a poor quality mesh with a lot of skinny triangles near

the seams. Furthermore, texture distortions or artefacts appear near chart boundaries.

There are two main strategies to avoid getting seams. The first one consists of sim-

plifying the geometric model with any of the surface simplification methods, and then

parameterizing the simplified mesh and finally projecting the attributes, such as texture,

of the high polygonal model onto the lower one ([TCS03]). The fidelity of the result de-

pends on various factors, such as the complexity of the original mesh, the quality of the

simplification method or the point-to-point correspondence strategy used to project the

attributes. The most commonly used strategy is normal projection that needs the conti-

nuity of the normal field over each face and does not guarantee that every attribute of the

texture is projected onto the simplified surface. The second strategy is to choose a texture

domain with the same topology as the given mesh and a similar shape. The survey by

Hormann et al. [HLS07] gives complete, detailed information on these seamless texturing

parameterization techniques. One of the most powerful of these methods is PolyCube-Maps

([THCM04] and [LJFW08]). A polycube is a 3D shape, composed of many unit-sized cubes

attached face-to-face, which is used as the texture domain. However, the main drawback of

PolyCube-Maps is the fixed resolution that has to be carefully chosen to match the geomet-

ric features, which would give a parameterization with too many cubes for a surface with

complex geometry or topology. [GP08] proposes a method that allows the use of a seamless

parameterization for simplification purposes that is independent of the parameterization

provided by the artist for texturing. The main drawback of this technique is the use of a

common bijective parameterization for all the levels of detail.
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3.2 Overview of our Proposal

When simplifying a textured surface, S, the triangles created for each edge-collapse have to

be parameterized, that is texture coordinates have to be assigned to the vertices of the new

triangles. However, this is not sufficient to prevent texture distortions due to the linearity

of the texture mapping. Therefore, we propose not only to modify the texture coordinates,

but also to modify the texture content in order to preserve the appearance of the model

more accurately.

First the model is parameterized by an index texture, I, whose texels store texture

coordinates referring to the original texture, T . This index texture, I, is modified in the

course of edge collapsing. We denote by Si and Ii the simplified surface and the index

texture before the collapse of the edge, ei. The edge-collapse operator modifies Ii and we

obtain Ii+1 from the triangles involved in Si, their corresponding texture triangles in Ii

and the triangles involved in Si+1.

At first, it seems reasonable to assign to a point on Si+1 the texture attribute of its

closest point on Si. However this criterion does not produce a bijection between Si+1 and

Si and, consequently, texture attributes may be lost. In [CC06], this criterion is applied

only for a reduced number of points in the following way: given two edges of the involved

triangles, one of Si and one of Si+1, whose corresponding texture edges intersect, their

closest points are computed and the texture attribute of the point on Si is assigned to the

point on Si+1. These assignments create two cell partitions, one in Ii and one in Ii+1, and

a cell correspondence between them. The texture modification is done by mapping a cell

in Ii to its corresponding cell in Ii+1. The main drawbacks of this technique are that cell

overlapping may be produced and that a large number of point assignments and cells are

needed for computation when full-edge collapses are used.

In contrast, our method takes advantage of the orthogonal projections of the surface

triangles involved in Si and Si+1 onto the tangent plane, π, of the point of collapse, vi. Only

when these two projections are bijective is the edge-collapse allowed. The new triangles in

Ii+1 are filled with a fragment shader by first mapping the triangles in Ii to the projected

triangles in plane π, and then mapping these latter triangles to the new triangles in Ii+1. In

fact, these two mappings are linear bijections and can be merged into just one by using their

composition. In this way, Si and Si+1 have the same appearance from a viewpoint placed

on the normal direction of vi. Observe that, in contrast to point-to-point correspondence

strategies, in our approach, every texture attribute will appear on the simplified surface.
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Moreover, the texture deviation has to be minimized, that is the distance from the

point on Si of an attribute in texture Ii and the point on Si+1 of the same attribute in

texture Ii+1 must be minimal. Consequently, the more ‘similar’ a surface triangle is to

its projected triangle onto the tangent plane and to its corresponding texture triangle, the

more minimal the texture deviation is. Because the position of a point in a polygon can be

derived from the areas of the triangles determined by the point and the polygon edges, we

use the area as a measure of similarity between triangles. Consequently, our simplification

process incorporates a measure of distortion between the area of the surface triangles and

the area of their projections onto the tangent plane, and the new triangles in Ii+1 are

determined by the areas of the new involved surface triangles in Si+1.

Therefore, the fundamentals of our method, which will be described in more detail in

the following sections, are as follows:

� Using an index texture that avoids blurring (Section 3.3).

� A simplification process based on a modification of the QSlim [GH97] simplification

method by weighting the quadrics with a local area distortion measure to preserve

highly curved regions and consequently better apply the texture of the original model

(Section 3.4).

� An edge management that (Section 3.5)

– decides if a candidate edge can be collapsed by taking into account its adjacent

surface triangles and their corresponding texture triangles and

– determines the new surface triangles and the new texture triangles.

� For each edge-collapse, the mesh is reparameterized by local bijective mappings to

avoid distortions to the appearance of the simplified mesh produced by geometric

changes (Section 3.6). These bijective mappings are GPU-friendly: fully supported

by the texture mapping hardware, the render-to-texture feature and the fragment

shading. To avoid blurring artefacts due to an excessive number of resampling op-

erations, the mappings are applied to an index texture. Each texel of this index

texture stores the texture coordinates referring to the original texture. The technique

supports any arbitrary multi-chart parameterization with the only requirement being

that the index texture has to be empty near concave parts of its chart boundaries.

In Section 3.7, we will see that this is not a strong requirement. Subsequently, our

approach allows the chart boundary edges to be simplified, guaranteeing geometric

fidelity and avoiding artefacts.
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3.3 Index Texture

At the beginning of the process, an index texture, I, encoded with two float channels to

get enough precision, is created with the same size as T , and each one of its texels stores

its respective coordinates. Texture I can be created with the same parameterization as the

original model or with another one. When using a parameterization method that minimizes

the distortion between surface triangles and texture triangles, such as [LPRM02, SCOGL02,

SWG+03] or [ZSGS04], more accurate results are obtained (see Section 2.2.3). The whole

process is applied to I, producing the successive modifications, Ii. In this way, the original

texture, T , is not under-sampled and, consequently, blurring artefacts produced by the

iterative resampling do not appear during the simplification process. Once the simplified

level is obtained, we generate the texture of the output model by transferring the contents

of the original texture via the I texture coordinates.

3.4 Weighted Quadric Error Metrics

The QSlim [GH97] algorithm is an incremental method that simplifies a mesh by iteratively

collapsing edges ordered by increasing errors provided from the QEM.

Let F be the set of faces incident at vertex v. Each face f ∈ F is contained in a plane

πf defined by n ·u+d = 0, where n is its unit normal. The squared distance of any point u

to this plane is (n · u+ d)2 = uT (n · nT )u+ 2(dn)Tu+ d2. The fundamental quadric Qf of

πf is defined by Qf = (A, b, c) = (n ·nT , dn, d2), and the squared distance can be computed

as Qf (u) = uTAu+ 2bTu+ c. The quadric of the vertex, v, is defined as the weighted sum

of these fundamental quadrics,

Q =
∑
f∈F

Qfwf ,

where wf is the area of the triangle, f . Given a quadric Q, point u = −A−1b minimizes the

quadratic error Q(u). After computing quadrics for all vertices, the contraction cost or the

error of every edge, e = (vi, vj), is computed by (Qi +Qj)(uij), where point uij minimizes

the quadratic error (Qi +Qj)(u), where Qi and Qj are the quadrics of vertices vi and vj .

The algorithm has many advantages, which are justified theoretically in [HG99]. The

most important quadric properties are the preservation of the Gaussian curvature of the

model and the good aspect ratio of the simplified model triangles. The authors prove that,

in the limit, the quadric error is minimized by triangulations with optimal aspect ratio.

Notwithstanding all these advantages, important features of the objects may not be well
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Figure 3.1: Curved regions (horns and ears) not preserved by the QSlim approach. In

contrast, they are well preserved by our approach. Both simplified versions have the same

number of faces.

preserved due to their low geometric error with respect to the whole model. To illustrate

this, we show an example in Figure 3.1. In the image, we can see that the ears and the

horns of the simplified cow are not well preserved. Moreover, this behaviour produces a

poor visual appearance of a simplified textured model due to high texture distortions near

these features.

Kho and Garland [KG03] introduced a user-guided simplification method by weighting

the QEM of each vertex. The order of the edge contractions is manipulated by multiplying

the quadric of each vertex by some scalar factor at the initialization step. By selecting

different weights the user can control the relative importance of different surface regions to

preserve the desired features. For view-dependent simplification, Zhang and Turk [ZT02]

weight the QEM of each vertex by a visibility function. The visibility function is defined

for a point on the surface of the mesh and it is the percentage of the camera space that can

see the point giving more weight to views at better angles. Lee et al. [LVJ05] weighted the

QEM of each vertex by its saliency. They define the mesh saliency using a centre-surround

operator on Gaussian-weighted mean curvatures to capture what most would classify as

visually interesting regions on a mesh. The main drawback of this method is the empirical

and heuristic nature of the saliency measure, which needs user parameters.

Other metrics to guide the simplification process have been proposed. Among them,

information-theoretic metrics: viewpoint entropy in [CSCF07], viewpoint mutual informa-

tion in [CSCF08b] and viewpoint f-divergences in [CSCF08a]. These metrics measure the
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amount of information from a scene that arrives at a certain viewpoint and use its variation

to measure the edge-collapse error. Otherwise, Park et al. [PSC06] proposed an area-based

metric. The contraction cost of every edge is computed by the absolute difference between

the areas of the mesh before and after the contraction. In contrast, we want to minimize

the distortion between the area of surface triangles and the area of their projections onto

the tangent plane. For this, we propose to preserve the curved features by weighting the

quadrics by a local area distortion measure. In the following sections, we will define this

measure and how it is used in our simplification process.

3.4.1 Local area distortion measure

First, we need to recall some theoretical aspects of the QEM ([HG99]) that are used to

define and justify the proposed local area distortion measure. Let n be the surface normal

at vertex v, let k1, k2 be its principal curvatures and e1, e2 their corresponding principal

directions. In the orthogonal coordinate frame with origin at v and axes e1, e2, n, the

second-order local approximation of the surface (see Section 2.1.3) is a patch of the form

S(x, y) =

(
x, y,

k1x
2 + k2y

2

2

)
, (x, y) ∈ [−ε1, ε1]× [−ε2, ε2] .

By considering only the lower terms of the Taylor series approximation, we have

� A is a diagonal matrix with entries

a11 =
4

3
ε31ε2k

2
1, a22 =

4

3
ε1ε

3
2k

2
2, a33 = 4ε1ε2 −

a11 + a22
2

.

� The area of the surface patch is

a11 + a22 + a33 = 4ε1ε2

(
1 +

ε21k
2
1 + ε22k

2
2

6

)
.

Thus, the distortion factor between the area 4ε1ε2 of the domain and the area of the surface

patch is

a11 + a22 + a33
4ε1ε2

= 1 +
ε21k

2
1 + ε22k

2
2

6
.

Observe that the area distortion depends on the term
ε21k

2
1+ε

2
2k

2
2

6 , which we call the local area

distortion measure and can be computed by

a11 + a22
a11 + a22 + 2a33

=
trace(A)− a33
trace(A) + a33

.
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Due to the invariance of the eigenvalues of a matrix under bijective linear transformations,

the local area distortion measure can be computed in the canonical coordinate frame by

trace(A)− λ
trace(A) + λ

.

where λ is the A eigenvalue corresponding to the eigenvector closest to the surface normal

at v.

3.4.2 Simplification process

We guide the order of the edge-collapses (see Section 2.3.3) using the weight derived from

the local area distortion measure to guarantee a balance between the minimization of the

geometrical error and the minimization of the texture deviation. This weight can be com-

puted for the initial quadrics and for the newly created quadrics. Intuitively, recomputing

the weights during the process seems a better solution. Experimental results have con-

firmed this and we have modified the simplification process in this way. At the initial step

each vertex, vi, has assigned to it the quadric Qi = (Ai, bi, ci). Then, we have to compute

the contracting cost of each edge e = (vi, vj) to create a keyed heap. We use the quadric

wiQi + wjQj , where the weights wi are computed by

wi =
trace(Ai)− λi
trace(Ai) + λi

.

Consequently, the contraction cost of every edge e = (vi, vj) is computed by

(wiQi + wjQj)(uij) ,

where point uij minimizes the quadratic error (wiQi + wjQj)(u). Moreover, the quadric

assigned to the new vertex uij has to be

wiQi + wjQj
wi + wj

in order not to overestimate its weight since it will be recomputed.

This is a simple and efficient solution which allows us to preserve the curved features of

the models. Consequently, although the global error increases slightly, the texture will be

better mapped to the simplified model. Figure 3.1 shows an example of the results obtained

by our approach using the cow model. There are evident differences between our results

and those obtained by the QSlim approach. With our approach, the horns and the ears are

preserved without losing the correct shape. Figure 3.2 shows a whole view and a close-up

of the Armadillo model simplified by the QSlim approach and ours. It can be seen that, in
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Figure 3.2: Simplification of the Armadillo model with QSlim and our approach. Compar-

ison of the whole model and a close-up detail of its hand.

contrast to QSlim, our approach preserves all the fingers even when the approximation has

only 0.125% faces of the original one. Figure 3.3 shows different levels of simplification of

the Lucy model. The fingers disappear at low levels of detail by using QSlim approach as

can be seen in close-up views. Finally, to illustrate the good behaviour of the simplification

method Figure 3.4 shows a sequence of simplified models for pegasus and a gargoyle scanned

models.

3.5 Edge Management

The edges have to be collapsed while both the surface and the parameterization topology

are preserved. Thus, necessary consistency checks must be carried out ([DEGN99]).

In the following a triangle on Si is denoted by t, its corresponding triangle in Ii by t,

a triangle on Si+1 by t′ and its corresponding triangle in Ii+1 by t
′
. The same notation is

applied for edges and vertices.

Let e be a candidate edge to be collapsed and v be its point of collapse with tangent

plane π. Let {t0, . . . , tk} and {t′0, . . . , t′k−2} be the triangles involved in the collapse on Si

and on Si+1 respectively.

Edge e is not allowed to be collapsed if at least one of the following constraints holds:

� e has only one endpoint on a chart boundary;

� e is a non- chart boundary edge with both endpoints on a chart boundary;

� e has an endpoint lying on more than two charts;
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Figure 3.3: Lucy model simplification at different levels of detail by our method and QSlim.

QSlim does not preserve the fingers at the low level.

� the orthogonal projection onto π of triangles {t0, . . . , tk} or triangles {t′0, . . . , t′k−2}
overlap.

These constraints enforce chart compliance and ensure a bijection between Si and Si+1.

When an edge e does not fulfil any of the previous constraints, we need to determine

the new triangles {t′0, . . . , t
′
k−2} in Ii+1. There are two possible cases depending on whether

e lies on a chart boundary or not.

� Chart interior edge. Let U be the union of texture triangles {t0, . . . , tk}. For each

boundary edge bj of U , let aj(x) be the relative area of the triangle determined by bj

and a point x ∈ U with respect to the area of U , and let aj be the relative area of the

triangle t′j with respect to the total area of the triangles {t′0, . . . , t′k−2}. Because we

want to minimize the area distortion measure between triangles in Si+1 and triangles

in Ii+1, we take as the corresponding point of v in Ii+1 the point v ∈ U that minimizes

the quadratic function ∑
j

(
aj(x)

aj
− 1

)2

.
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Figure 3.4: Simplification results on a pegasus and a gargoyle models.

Areas aj(x) can be expressed by

aj(x) =
1

2
(x− bj1) · nj =

1

2
(nTj x− nTj bj1) ,

where bj1 is the initial point of edge bj and nj is the normal vector to bj satisfying

|nj | = |bj |. Then, the function to be minimized is

∑
j

(
1

2

nTj x− nTj bj1
aj

− 1

)2

.
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Setting equal to zero the partial derivatives leads up to the equation:∑
j

1

2

njn
T
j

a2j

 v =
∑
j

1

2

njn
T
j

a2j
bj1 +

∑
j

nj
aj
,

from which point v is obtained.

Taking into account the point v and the boundary edges bj , we obtain the triangles

{t′0, . . . , t
′
k−2}. If these new triangles overlap, the edge e is also not allowed to be

collapsed.

� Chart boundary edge (see Figure 3.5). There are two texture edges e1, e2 corre-

sponding to surface edge e. Each one is a boundary edge of its own chart. For each

subset of triangles of the same chart, we apply the same process as in the first case,

restricting the optimal point to lie on the boundary edge, e1 or e2. Observe that,

when a chart is not convex, the new triangles intersect the exterior of concave parts

of the chart. For this reason, we need the texture to be empty near concave parts

of the chart boundaries. Therefore, in the worst case, the convex hull of each chart

should be empty.

Figure 3.5: New texture triangles of a chart boundary edge.

3.5.1 Edge flip

To improve the fitting of simplified models to original models and to create well-shaped

triangles in flat regions, we use an edge flip operator. It takes two adjacent triangles as

parameters and swaps the shared edge with its opposite diagonal. This operator has to be

guided by an accurate measure to decide which of the two edges, the actual or the opposite

one, must be kept in order to better approximate the mesh to the initial one.

For each edge-collapse, non-chart boundary edges of triangles {t′0, . . . , t′k−2} are flip-

tested. The criterion used to decide the flip operation is the one proposed by Jiao et al.
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[JCNH06], which uses the restriction of the QEM onto the tangent plane of each vertex

as a local metric, and applies the modified Delaunay criterion proposed by Bossen and

Heckbert [BH96]. The non-overlapping checks are carried out on each tangent plane of the

four vertices for the surface triangles and on the texture map for the texture triangles.

3.6 Bijective Mappings

Once an edge-collapse has been carried out, the texels in triangles {t′0, . . . , t
′
k−2} must

be filled with the content of texels in triangles {t0, . . . , tk}. As we briefly described in

Section 3.2, our method takes advantage of the orthogonal projections of the involved

surface triangles in Si and Si+1 onto the tangent plane π of the point of collapse v. Thus,

our basic idea consists of transferring the content of a texel p to a texel p′ having the same

projection onto π of their corresponding surface points. Figure 3.6 illustrates the situation

and we will now describe how to implement it.

Figure 3.6: Mappings for filling the new texture triangles.

On plane π, we consider an orthogonal frame centred at v. For any triangle t or t′ on

the surface, we have two linear transformations, Mt and Pt. The transformation of Mt



3.7. Results 67

maps t to its corresponding triangle t in the texture, while the transformation of Pt maps t

to the orthogonal projection of t onto π. Let PMt be the linear transformation Pt ◦M−1t .

For each texel p′ of a triangle t
′
, we have the point p′ on t′ satisfying Mt′(p

′) = p′ and the

point p contained in a triangle t of Si satisfying Pt(p) = p∗ = Pt′(p
′), where p∗ ∈ π. Let p

be the point in t determined by p = Mt′(p). Thus we have

PMt(p) = (Pt ◦M−1t )(p) = (Pt′ ◦M−1t′ )(p′) = PMt′(p
′) .

Our approach consists of filling texel p′ with the content of texel p without computing it

explicitly.

Due to the bijective nature of the defined linear transformations for a fixed triangle t
′

we have

� If tj 6= tl, (PM−1t′ ◦ PMtj )(tj) ∩ (PM−1t′ ◦ PMtl)(tl) = ∅.

�
⋃
j t
′ ∩ (PM−1t′ ◦ PMtj )(tj) = t

′
.

Consequently, by using standard hardware capabilities, we can fill the texels in a tri-

angle t
′

by mapping onto t
′

the triangles (PM−1t′ ◦ PMtj )(tj) without explicitly computing

their common intersection. However, because we are dealing with a multi-chart atlas, the

transformation that, for each Ii texel, maps the T texture coordinates stored in it, is not

continuous. Thus, the standard hardware bilinear interpolation of T texture coordinates

might cause invalid T texture coordinates. To solve this problem, we map the triangles

(PM−1t′ ◦ PMtj )(tj) with a fragment shader. For each fragment within t
′

with Ii coordi-

nates (u, v), we compute the four closest texels to (u, v), with a being the closest. Then,

we compute the index of the fragment by a bilinear interpolation of the Ii indices stored

at these four texels, taking into account only those the indices that lie in the chart of the

index stored at a. Figure 3.7 shows the good performance in reducing blurring artefacts

resulting from using an index texture.

3.7 Results

Our approach allows us to simplify large models while preserving their most important

details without losing fidelity. We obtain single approximations as close as possible to the

original models, which may be useful in various fields of application where the frame rate is

more important than insignificant details. Several tests have been done on different models

to study the accuracy of our method. All experiments were carried out on a quad core duo

(2.83GHz) with a GeForce GTX 280.
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Figure 3.7: Blurring artefacts disappear when using an index texture during the simplifi-

cation process.

Figure 3.8 compares our textured cow approximation result with the results obtained

using the open-source tool MeshLab [CCR08, CCC+08], the commercial package Polygon

Cruncher [Moo] and Hoppe’s approach [Hop99]. The first two tools also allow us to preserve

the boundary edges by simplifying chart interiors only. Activating this option generates a

poor quality, low-resolution model full of seams is generated that cannot achieve the desired

simplification level. To test how well our approach behaves, we have filled in the empty

space of the atlas with red. Observe how our approach is the only one able to generate

simplified models without texture distortions or artefacts near the chart boundaries by

using only one additional texture during the simplification process.

Another comparison is presented in Figure 3.9. As you can see, the bunny model

generated with [SSGH01] presents perceptible texture distortions because of the reparam-

eterization, with convex and straight chart boundaries, that is carried out to be used on

a progressive mesh. In contrast, with our approach we obtain an accurate approximation

with a high-quality mesh and correctly preserved texture without distortions.

Figure 3.10 shows the Buffle model parameterized with a high number of small sized

charts. A close-up view of the model shows that neither texture distortions nor artefacts

appear in the simplified version, despite the presence of chart boundaries.

Parameterizations with a lot of charts reduce the level of simplification because the

charts must all be preserved. Figure 3.11 shows a scanned Vase model parameterized with

LSCM [LPRM02] and Iso-charts [ZSGS04] (see Section 2.2.3). Notice that the first one has

a huge number of charts, whereas the second one only has 24 charts. In Figure 3.12, we can

see the results of our simplification of these two parameterizations of the Vase model at the

same level (90% simplification). Observe that parameterizations with less charts allow us

to obtain better geometric quality and also to substantially increase the simplification level
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Figure 3.8: Simplification of a textured cow model. Comparison between our approach and

three different texture preserving methods. The empty space of the atlas has been filled in

with red.
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Figure 3.9: Simplification of a textured bunny model. Comparison between [SSGH01] and

our approach.

(98% simplification). The flexibility that results from using parameterizations that admit

non-convex charts is an important advantage with respect to [SSGH01].

Figure 3.13 shows a close-up view of the Vase model parameterized with Iso-charts.

Chart boundaries have been properly simplified to give accurate approximations without

seams between charts. Observe that, even though charts have interchanged part of their

contents, their global shapes are preserved due to the low stretching of the parameterization

used. For this reason, if we use a good parameterization method to generate the index

texture, empty texture near concave parts of chart boundaries is not a strong requirement.

Figure 3.14 and Figure 3.15 are representative examples of large meshes obtained from

real objects. For each of these, we would like to have a simple version that shares the

same special characteristics. Not all the details of these models are represented in their

texture maps, since small but important geometric features are lost at low resolutions with

any simplification method. To capture all these details, their normal maps were generated

before applying our method. Faithful and realistic approximations are obtained by applying

bijective mappings on colour and normal maps even at a simplification level of 95% for the

Imperia and of 99% for the Lion.
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Figure 3.10: Buffle model simplification. For original (left) and simplified (right) models:

at the top, the mesh with chart boundaries depicted in red and the textured model; at the

bottom, the atlas and a close-up view.

Figure 3.11: Two different parameterizations for the Vase model.



72 Chapter 3. Simplification of Multi-chart Textured Models

Figure 3.12: Vase model simplification results according to the parameterizations showed

in Figure 3.11.
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Figure 3.13: Close-up view of the Vase model texture before and after applying our bijective

mapping approach.

Without Flips With Flips

Orig. Simplif. CPU GPU Total CPU GPU Total

Bunny 69630 3524 9.03 10.47 19.50 101.27 30.93 132.20

Cow 92864 1856 12.61 19.79 32.40 129.65 33.26 162.91

Buffle 117468 11746 15.11 17.80 32.91 157.53 88.88 246.41

Vase LSCM 142462 14246 20.12 21.78 41.90 199.11 118.59 317.70

Vase Isochart 142462 14246 19.36 20.74 39.30 200.49 62.95 263.44

2848 20.18 21.70 41.88 215.11 61.69 276.80

Imperia 199978 9997 26.76 41.30 68.06 278.20 76.67 354.87

Lion 309148 3090 45.09 48.18 93.27 462.67 114.74 577.41

Table 3.1: Time consumption of the simplification process with and without edge flips for

some results presented in the chapter measured in seconds.
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Although the proposed simplification method can be considered a part of a preprocess,

in Table 3.1 we present a quantitative analysis of the time consumptions of some results

presented in this chapter to give an idea about the complexity of the approach. The two

first columns show the number of faces of original and simplified models. The following

columns distinguish between CPU and GPU operations to show the time required for the

simplification process with and without edge flips. Observe that the total time greatly

increases when the edge flip operator is used. The elevated cost of the edge flip operator

in the CPU is due to the high number of tests required to check all possible flips and their

consistency. Notwithstanding, using the edge flip operator improves the results obtained

and, taking into account that the presented approach is a preprocess, the time increment

can be considered acceptable. The complexity of the parameterization affects the resulting

time, as can be seen in the Vase results. The presented approach is almost independent of

the texture resolution because only the faces affected for the edge collapse or the edge flip are

sent to be drawn. Moreover, using the index texture allows all the desired textures (colour,

normal, relief, ...) to be generated after the process without increasing the simplification

cost.

Finally, to illustrate the good behavior of our approach Figure 3.16 shows a set of

simplification results obtained from a collection of scanned multi-chart textured models.

All models have been parameterized using the LSCM parameterization method.
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Figure 3.14: Imperia model simplified by our approach with texture and normal maps.

Observe that, in both global and close-up views, the visual appearance is preserved from

the original one to the simplified one. Chart boundaries (in red) have been simplified

without producing artefacts.



76 Chapter 3. Simplification of Multi-chart Textured Models

Figure 3.15: Lion model simplification results with and without normal mapping.
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Figure 3.16: Simplification results obtained for a set of multi-chart textured models. From

left to right, the two first columns correspond to the original models while the next two

columns correspond to simplified models. The grey background columns illustrate the

wireframes with chart boundaries depicted in red.





Chapter 4

Compact Models

Surface simplification are not always enough for all application fields. The increasing de-

mand for realism together with the need of speed make that new surface approximation

techniques begin to arise. In this chapter we present a new mesh structure, called Com-

pact Models (CMs), that allows dense triangular meshes of arbitrary topology to be ap-

proximated by preserving their original shapes. The structure, based on local surfaces, is

constructed from the information gathered by each vertex taking into account the sharp

features detected during a simplification process. Thus, the input model can be approxi-

mated from its CM by blending the local surfaces at its vertices and refining each triangle

of the simplified model. CMs make possible adaptive reconstructions, textured models are

also supported and the whole approximation process can be completely parallelized. The

versatility of the method combined with the simplicity of the computations makes it a

powerful approach.

4.1 Introduction

Level of detail (LOD) is an extensively used technique for many computer graphics appli-

cations. The correct balance of memory space, transitions between models and quality of

the approximations is key to the success of a method. As we stated as the key point of all

content of Section 2.3, for a wide range of applications, original highly detailed surfaces are

too expensive to support and their processing is made difficult. Unfortunately, simplified

models are not always enough because of the increasing demand for realism.

In this work, we present a new mesh structure that allows dense triangular meshes of

arbitrary topology to be approximated. We call such structures Compact Models (CMs).

79
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A CM is a small model from which we are able to generate, whenever we want, an approxi-

mation of the original mesh at a desired level and preserve its original shape. The resulting

mesh can be adaptively reconstructed by different criteria. Surfaces with sharp features are

also faithfully reconstructed.

Surface fitting is achieved by blending local surfaces. These surfaces are stored at each

vertex of the CM and are generated by gathering the required information during a sim-

plification process. The combination of the idea of blending local primitives and LOD

techniques, results in a simple and easy to implement method that produces adaptive ap-

proximations of the original surface close to it. Next, we summarize the main contributions

of our approach:

� Approximation with controlled error.

� Sharp feature preservation.

� Least-squares fitting that involves solving only 5× 5 linear systems of equations.

� Simple parallelizable reconstruction.

� Adaptive reconstruction based on a desired criterion.

� Local shape deformations can be integrated to the reconstruction process.

Observe that the last three contributions are the main advantages of our approach

over those based on subdivision surfaces introduced in Section 2.3.4. A CM can be used

in many different application fields such as visualization, adaptive reconstruction, surface

fitting, surface smoothing and surface deformation.

4.1.1 Previous work

Interactivity provided by compactness of detailed geometric models is a desired goal in

several application fields. Increasingly, we want to work with more detailed surfaces that

consume much less time. A correct balance between the memory space and the execution

time required has to be achieved to obtain the desired frame rate.

In light of this idea, different techniques have been proposed. In one group, the main

aim is to find a simpler geometry and a set of scalar values which together are equivalent

to the original model. Krishnamurthy and Levoy [KL96] presented a scheme for encoding

an arbitrary mesh using a manually constructed B-spline patch network together with a
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vector-valued displacement map. The Displaced Subdivision Surfaces introduced by Lee

et al. [LMH00] consist of a control mesh and a scalar field that displaces the associated

Loop subdivision surface [Loo87] locally along its normal. The control mesh is obtained by

simplifying the original mesh using the quadric error metric (QEM) technique proposed in

[GH97]. Guskov et al. [GVSS00] pursue a similar goal, called Normal meshes. A normal

mesh is a multiresolution mesh where each level can be written as a normal offset from

a coarser version. Their construction allows most of the vertices to be encoded by scalar

displacements.

In a second group, the main goal is to fit the original model to a simpler surface by

minimizing a geometric error. Ohtake et al. [OBA+03, OBA05] present shape represen-

tations (MPU and SLIM) that allow to approximate surface models from a set of points.

These techniques, driven by hierarchical structures (octree and ball tree, respectively), lo-

cally fit piecewise implicit quadratic functions to the data and use weighting functions

(partitions of unity) to blend these functions together. Because shapes are described by

implicit functions, some shape modelling operations are simple to perform. However, an

isosurface extraction process is needed to obtain a polygonal surface approximation, and

they are not capable of representing correctly surfaces with boundaries. Moreover, cor-

rect reconstruction of the input data is not guaranteed. Least-squares meshes (LS-meshes)

presented by Sorkine and Cohen-Or [SCO04] are meshes with a prescribed connectivity

that approximate in a least-squares sense a set of strategically placed control points. An

initial LS-mesh is computed and new control points are placed at the vertices whose loca-

tion in the LS-mesh have maximal error compared to their location in the original mesh.

Because of their prescribed connectivity, LS-meshes can only approximate a given smooth

mesh. Moving Least Squares (MLS) is a classical method for point set surface approxi-

mations ideally designed to reconstruct smooth surfaces [Lev03, ABCO+03]. Fleishman

et al. [FCOS05] use the MLS methodology for reconstructing surfaces with sharp fea-

tures. The technique is based on an iterative refitting algorithm that locally classify re-

gions of the point set to outlier-free smooth regions expressed by bivariate polynomials

of degree two. The outliers are detected by applying a robust statistics framework. The

result of this approach is a piecewise quadratic surface. T-splines defined on manifolds

[HWW+06] or on polycube maps [WHL+08] are capable to approximate smooth surfaces.

However, these approaches have a high computational cost due to the intrinsic complexity

of T-splines. Subdivision surfaces have also been used in shape approximation. Several

algorithms [MMTP04, MK05, CWQ+07, LWY08] for fitting subdivision surfaces to dense

triangular meshes or dense point clouds have been presented. With an initial control mesh,

these algorithms employ an iterative optimization method that performs the following two
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steps until convergence occurs: finding foot points of the input vertices to compute fitting

errors, and updating the control mesh points to further reduce the fitting errors. Mari-

nov et al. [MK05] and Cheng et al. [CWQ+07] only deal with smooth fitting surfaces,

while fitting subdivision surfaces with sharp features is considered by Ma et al. [MMTP04]

and Ling et al. [LWY08]. Variational shape segmentation techniques aim to segment a

shape into patches that can be well approximated by a parametric surface. Two iterative

steps are used: mesh partition and fitting a surface, called proxy, to each partitioned re-

gion. Cohen-Steiner et al. [CSAD04] only use plane proxies, Wu and Kobbelt [WK05] use

planes, spheres, cylinders and rolling ball patches as proxy types, while Yan et al. [YLW06]

consider quadric surface proxies. However, these kinds of approaches are only adequate for

models which inherently consist of clear geometric structures.

4.2 Overview of the Algorithm

The presented approach allows to generate at any time surface approximations at different

levels of detail with the desired characteristics thanks to the flexibility of the local surfaces

stored. A CM can be used for a wide range of applications as we will see in Section 4.6.

To introduce CMs we have to explain how they are constructed, stored and applied. The

following sections has been organized into the next three stages of processing (illustrated

in Figure 4.1):

� Simplification process: A simplification process is applied to the original highly

detailed surface. Original points are gathered and stored in simplified vertices during

simplification. Finally, we obtain a simplified model in which each vertex represents

a set of original points.

� CM generation: Taking into account the information collected during the simplifi-

cation process, we first detect the sharp edges and then generate local surfaces at each

vertex of the simplified model. We call CM the simplified model plus the necessary

information to generate these local surfaces. A CM can be efficiently stored in a file.

� CM reconstruction: From a CM we can easily obtain a faithful reconstruction of

the original model by blending local surfaces stored at each vertex. Thanks to the

codification done in the CM file format, we can properly reconstruct sharp features.
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Moreover, the original models can be adaptively reconstructed by different criteria.

For example, it is possible to only reconstruct parts of a model in a region of interest.

4.3 Simplification Process

From a dense triangular mesh we use a simplification process to compact the surface model

information. Since we want to obtain accurate results, we use our previously developed

simplification method presented in Chapter 3 which properly preserves geometric fidelity

between original and simplified models. We take advantage of the simplification process to

collect the necessary information to generate the CM. Before the simplification process we

create a set of points Ri for each vertex vi of the original model. Each set Ri is initialized

with vi and its adjacent vertices. The simplification process proceeds as follows. If vivj is

an edge to be collapsed and vk is the vertex of collapse, the set Rk is computed by Ri ∪Rj .
At the end of the simplification process we obtain a simplified model with a set of points

in each of its vertices (see Figure 4.1(b)). In case a vertex vi of the simplified model is not

an original vertex, vertex vi is substituted by the point in Ri closest to vi.

Figure 4.1: Steps of the CM generation and reconstruction of a cylinder model. Local

surfaces incident to the red point are obtained by the corresponding yellow and black point

regions after a redistribution step and a sharp edge detection.
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The resulting mesh can be seen as a set of vertices that represent the regions defined

by the corresponding set of points. Each set of points allows the shape of the surface at

each simplified vertex position to be determined. As the simplified vertices are optimally

distributed to guarantee geometric fidelity, the correct union of the shapes defined by the

collected points at each vertex can result in an accurate approximation of the original

model.

When a model has regions of nearly constant curvature, points of the original model

can be incorrectly distributed to sets Ri due to the arbitrary order of the edge-collapses.

To prevent this and really capture the shape of the original surface at each vertex, we apply

a redistribution step (see Figure 4.1(c)).

This step consists of adding points from one point set to others. Given two adjacent

vertices vi and vj , a point p ∈ Ri is added to the set Rj if distance p to vi is greater than

distance p to vj and the angle between normal vectors at p and vj is less than a certain

threshold. At the beginning of the whole process, the normal vector at each vertex of

the original model is computed by the area-weighted average of the normal vectors of its

adjacent faces.

4.4 CM Generation

The basic idea of CMs is to create a continuous representation of the shape of a highly

detailed surface with a much smaller mesh. The generation process is key to the good

behaviour of the result. We have to extract the most important information about the

model to faithfully reconstruct the original model. The process consists of two steps:

1. Sharp edge detection.

2. Local surfaces generation at each vertex of the simplified model.

In the following sections, we describe these two steps in detail. But, first we need to

introduce some terminology and some notation about the least-squares technique.

4.4.1 Terminology and notation

Given a point p in Ri, the face of the simplified model adjacent to vi closest to p along

the normal direction at p is called the foot face of p. The points of vivjvk are those in
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Ri ∪Rj ∪Rk whose foot face is vivjvk. The foot point of a point p on vivjvk is the point of

vivjvk nearest to p.

We use the least-squares technique to fit each set Ri by a local quadratic surface as

follows. Let v be the vertex where we want to construct a local quadratic surface and R

be the set of points collected by v. Let N be the unit normal vector assigned to v. From

N = (n1, n2, n3) we construct two additional orthogonal unit vectors U and V as follows:

U =

{
(n2,−n1, 0)/

√
n21 + n22 n1 6= 0 or n2 6= 0

(1, 0, 0) n1 = 0 and n2 = 0

V = N × U.

Vertex v and vectors U , V andN define a local coordinate frame where we use (x1, x2, x3)

as local coordinates of a point p. At this local frame a quadratic function Q is given by

Q(x1, x2) = ax21 + bx1x2 + cx22 + dx1 + ex2 .

The unknown coefficients a, b, c, d and e are determined by minimizing

E(a, b, c, d, e) =
∑
p∈R

(Q(x1, x2)− x3)2 .

Setting equal to zero the partial derivatives
∂E

∂a
,
∂E

∂b
,
∂E

∂c
,
∂E

∂d
and

∂E

∂e
leads up to the

equation system: ∑
p∈R

XT ·X

CT =
∑
p∈R

x3X
T ,

where

X =
(
x21 x1x2 x22 x1 x2

)
,

and

C =
(
a b c d e

)
.

The solution of this linear system defined by the previous equations provides the local

function Q which determines a local surface S at v defined by

S(x1, x2) = v + x1U + x2V +Q(x1, x2)N ,

and the normal vector NS = N − dU − eV of S at v.

Notice also that a local conical surface can be fitted by minimizing∑
p∈R

(
Q(x1, x2)− x23

)2
,
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and then the local surface S at v is defined by

S(x1, x2) = v + x1U + x2V +
√
Q(x1, x2)N .

4.4.2 Sharp edge detection

At this point we have only one set of points for each simplified vertex. If we imagine that

each set of points can be represented by a surface, we can only generate smooth surfaces

by assembling the surfaces at each vertex. For this reason, we have to detect sharp edges

to be able to reconstruct different kinds of meshes, even surfaces with sharp features.

There are different approaches to detecting sharp features [HG01, GWM01, HPW05,

YBS05, DHOS07, ZGM09] over the meshes. The most common sharp edge detection

method consists of computing the angle between the normals of the two incident faces

of the studied edge. If the obtained angle is larger than a certain threshold, the edge is

marked as a sharp edge. This method is not useful in our approach because the simplified

faces do not strictly follow the shape of the original model. For example, if we simplify a

cylinder at a high level we can obtain a prism. If this method were used, the vertical edges

would be incorrectly marked. We have to use a method that takes into account the original

shape of the model. For this reason, we define a new sharp edge detection process. For

each edge e of the simplified model we apply the following steps:

1. Fit by the least-squares technique the points of both incident faces to e with a

quadratic surface centered at the foot point m of the midpoint of e.

2. Compute the normals NS0 and NS1 at m of the two quadratic surfaces.

3. Compute the angle between NS0 and NS1. If it is bigger than a threshold, the edge

e is marked as a sharp edge.

In Figure 4.1(d) we can see depicted in blue the sharp edges of the cylinder.

4.4.3 Local surface generation

Given a vertex v of the simplified model and its corresponding set R of collected points, we

want to fit a local surface to R. First, we analyze if at least one sharp edge is incident to v.

In case of only one sharp edge (dart vertex ), the incident edge with bigger angle between

NS0 and NS1 is also classified as sharp edge. Then, the set R is split into subsets Rn
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according to the incident sharp edges as follows. Two adjacent faces are in the same subset

if their shared edge is not a sharp edge. Then, each subset Rn corresponds to the points

whose foot face is within the same group of adjacent faces (see Figure 4.1(d)). After this,

the sets Rn are fitted by the least squares technique with a quadratic surface Sn centered

at v (see Figure 4.1(e)). When any sharp edge is incident to v, the set R is fitted by the

quadratic surface or the conical surface that gives minimum fitting error. When the second

case holds, the vertex is classified as cone-type vertex.

After generating the CM we obtain a mesh with a set of n lists of coefficients [a, b, c, d, e]

and the corresponding normal N at each vertex.

A CM can be easily saved by storing vertices, least-squares coefficient list, normal

vectors, cone-type vertex list and by describing the faces by three sets (one per vertex) of

three indices: vertex, coefficient list and normal vector. Sharp edges are implicitly saved by

only using this data structure. From this reduced information we are able to reconstruct

the original model.

4.5 CM Reconstruction

The original model is reconstructed by refining the simplified model. Each triangle of

the simplified model is subdivided into smaller triangles and each vertex p of the refined

triangulation is substituted by a point Φ(p) computed by blending the local surfaces at each

vertex of the triangle. The following sections are dedicated to describing these two processes.

Notice that each triangle can be refined independently of the others. Consequently, adaptive

refinements are allowed and the whole approximation process can be completely parallelized.

4.5.1 Blending local surfaces

Let v be a vertex of the simplified model. As explained in the previous section, the adjacent

faces of v are grouped according the sharp edges, and a local surface Sn has been assigned

to each group. For each point p on an adjacent face of v we define a projection S(p) onto

the local surfaces as follows. If p lies on a sharp edge e, we use the two local surfaces Sn

and Sm corresponding to the two groups of faces adjacent to e. Let π the orthogonal plane

to e passing through p. Then, point S(p) is defined as the point on Sn∩Sm∩π closest to p.

Observe that S(p) needs to be computed by a Newton iteration scheme. Notice also that it

may not exist if a bad fitting of surfaces Sn and Sm to the original model is done. However,

in practice this not happen due to the nature of the surfaces and the simplification levels
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used. For a point p not lying on a sharp edge, we use the local surface Sn corresponding

to the group of the p face. Two different projections onto Sn are possible. The simplest

one is the projection along the normal direction N at v. If point p is expressed by its local

coordinates (x1, x2, x3), S(p) is determined by Sn(x1, x2). The second possibility consists

of determining S(p) by the point on Sn closest to p. In this case, we compute S(p) using

a Newton iteration scheme. Naturally this second option increases the computational time

but offers more accurate results. The two options were tested on various models and we

experimentally observed that second option multiplied by a factor of three the running

times. This is because Newton’s method requires three iterations in average. In spite of

this, all the examples shown in Section 4.6 were computed using the second option because

running times were low enough (see Table 4.1).

Next, we describe how we compute Φ(p). Let (α1, α2, α3) be the barycentric coordinates

of point p with respect to its face v1v2v3. Then we have p = α1v1 + α2v2 + α3v3 with

α1 ∈ [0, 1], α2 ∈ [0, 1− α1] and α3 = 1− α1 − α2. From coordinates α1 an α2 we consider

the following weight functions:

W1(p) =
α3
1

α3
1 + α3

2 + (1− α1 − α2)3
,

W2(p) =
α3
2

α3
1 + α3

2 + (1− α1 − α2)3
,

W3(p) =
(1− α1 − α2)

3

α3
1 + α3

2 + (1− α1 − α2)3
.

Observe that:

� Wi(vi) = 1 , Wi(vj) = 0 (i 6= j) .

�
∂Wi

∂αk
(vj) = 0,

∂2Wi

∂α1∂α2
(vj) = 0.

Then, we determine the point Φ(p) by blending the three projections S1(p), S2(p) and

S3(p) as follows:

Φ(p) = W1(p)S1(p) +W2(p)S2(p) +W3(p)S3(p) .

Surface Φ satisfies the following properties:

� Φ(vi) = vi.

�
∂Φ

∂αk
(vi) =

∂Si
∂αk

(vi),
∂2Φ

∂α1∂α2
(vi) =

∂2Si
∂α1∂α2

(vi).
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Then, surface Φ is approximately equal to the local surfaces at each vertex. This is why

we use such kind of approximations. In Figure 4.1(f) we can see the final approximation of

the cylinder.

4.5.2 Triangle subdivision

The triangles of the simplified model can be subdivided using two different strategies:

Regular subdivision. Each triangle is recursively subdivided into four triangles by join-

ing the midpoints of the edges until a certain level of accuracy is achieved.

Adaptive subdivision. Each triangle is recursively subdivided into two, three or four

triangles by joining the midpoints of the edges that satisfy some criterion. Several

criteria can be applied. We have used the following criteria for a given edge p1p2:

� Silhouette. At least one of the points Φ(p1) or Φ(p2) is detected to be on the

silhouette of the model with respect to a given point of view.

� Region of interest. At least one of the points Φ(p1) or Φ(p2) is within a region

of interest.

� Length. The length of Φ(p1)Φ(p2) is greater than a certain threshold defined by

the user.

In the following, the number of subdivision steps is called level.

4.5.3 Controlling the error

The reconstruction process provides a natural way to control the error between the original

mesh and the reconstructed mesh. Finding the foot points of the reconstructed mesh vertices

and computing their fitting errors, we can update the CM by adding in a straightforward

way the foot points whose fitting error is greater than a certain bound introduced by the

user.

4.5.4 Textured models management

With the aim to obtain more realistic approximations CM also supports textured model.

We take advantage of the accurate results obtained by our simplification approach over
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multi-chart textured models (Section 3) in the CM generation process. For each of the

vertices of the CM we also store its texture coordinates which are directly obtained from the

simplification method. In the CM reconstruction process, the texture coordinates assigned

to each of the reconstructed vertices are computed by performing a linear combination

taking into account their corresponding barycentric coordinates.

4.6 Results and Applications

The presented technique can be seen as a surface approximation method that obtains faith-

ful reconstructions. Our approach provides the versatility required to adapt the result

according to user needs. It can be achieved by changing the simplification level, the sharp

edge threshold or by making more or less subdivisions in the reconstruction process. More-

over, we can reconstruct the model regularly or adaptively by a desired criterion. We

present some results to demonstrate the effectiveness of our technique. A quantitative and

a qualitative analysis have been made to show all the characteristics of the method. All

experiments were carried out on a quad core duo (2.83GHz) with a GeForce GTX 280.

4.6.1 Smooth surfaces

Figure 4.2 shows a reconstruction of a knot model. We generate a well smoothed model by

using a very simplified mesh. We compare our result with that obtained by a smoothing

method ([DLG90]). The error distribution maps (notice that the range of colours depends

on the corresponding maximum error of each model) shows how our technique obtains

better approximations than only applying a smoothing method over the simplified model.

Figure 4.3 and Figure 4.4 are representative examples of big meshes obtained from

scanning processes. As can be appreciated in close views, the original shapes are faithfully

reconstructed despite the substantial storage space reduction.

4.6.2 Sharp feature preservation

Figure 4.5 and Figure 4.6 present the reconstruction of models with the presence of sharp

features. The difference between original models and their reconstructions is inappreciable

even though the simplified mesh have a small number of faces. The error map distribution

illustrated for the Fandisk model shows the good performance of our method when dealing

with sharp feature models. Figure 4.7 presents an example with both sharp edges and
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Figure 4.2: Comparison between our approach and the Butterfly subdivision method of the

reconstruction of a smooth knot model.

cone-type vertices. Another example is showed in Figure 4.8 formed by sharp edges and

two dart vertices. As we can see, we are able to correctly detect, preserve and reconstruct

all the features of the models.

4.6.3 Adaptive reconstruction

Figure 4.9 shows the reconstruction results on the Max Planck model. Regular reconstruc-

tion demonstrates the power of the local surfaces stored at each vertex since the facial

features have been recovered. Moreover, we illustrate the results obtained with the three

different adaptive reconstruction criteria implemented. The first generates a model with

regular size edges that are 20% of the longest edge of the simplified model. The second sub-

divide takes into account a point of interest situated in the tip of the nose (point depicted

in red). As we move away from the selected point the faces become bigger. Depending
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Figure 4.3: From left to right: the original Fertility model, the simplified model and the

CM reconstruction. The CM generation takes 163.55 seconds and only 0.28 seconds to

reconstruct it at level 2. The size of the CM file is only 0.3% of the original model.

Figure 4.4: CM reconstruction of a frog model.
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Figure 4.5: CM reconstruction of the Fandisk model with the corresponding error maps.

on the point of view, the last one allows the silhouette to be refined. As we can see, the

versatility of our technique allows users to adapt the result to their needs.

4.6.4 Textured models

Textured models are also allowed to be reconstructed by a CM. The more similar the orig-

inal model is to the simplified model the better applied is the texture on the reconstructed

approximation. This ability allows to enrich the simplification approach developed previ-

ously obtaining thus more realistic results. The detail information can be added adaptively

to the textured simplified model depending on our needs.

Figure 4.10 shows the approximation of the lion model illustrated in the previous chapter

(Figure 3.15). As can be seen, the adaptive approximation obtained from a CM by adding

more geometric detail on the silhouette allows to improve the fidelity to the original model

with respect to the simplified version with only one level. The two lion poses shows how

the silhouette are refined depending on the point of view.
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Figure 4.6: CM reconstruction of a sword model with sharp edge preservation.

Figure 4.7: CM reconstruction of a star model with sharp edge and cone-type vertex (de-

picted in green) preservation.
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Figure 4.8: CM reconstruction of a model with sharp edge and dart vertex preservation.

In Figure 4.11 a buddha model is reconstructed regularly and adaptively according

to the silhouette. Moreover, we show the results obtained for two simplification levels.

The rounded shape of the model is achieved and the texture is correctly applied although

the simplified version is too poor. Therefore, the approximations produced are almost

indistinguishable to the original model. The adaptive solution allows to obtain similar

results with fewer triangles but depending on the point of view.

To show the accuracy of the reconstructions obtained for textured models we present

Figure 4.12. The correct preservation of the lines defined on the texture allows to illustrate

the high precision of the method. In the figure we also show the reconstruction obtained

adaptively with regular size edges. The number of faces is too much lower than in regular

reconstruction.

4.6.5 Strategies for LOD

The general idea of the LOD technique is to visualize models at different levels of detail

according to the distance to the observer. A CM can then be incorporated into a LOD

technique using one of two different strategies. Figure 4.13 illustrates the first strategy:

the model is simplified at different levels and each simplified model is reconstructed at

the same level. Observe that as we reduce the number of faces of the simplified model,

the geometric error increases. Figure 4.14 illustrates the second strategy: the model is
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Figure 4.9: Regular and adaptive reconstructions of the Max Planck model.
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Figure 4.10: Approximations of the lion model from two points of view: regular and adaptive

by the silhouette.
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Figure 4.11: Regular and adaptive reconstructions of a buddha model for two simplification

levels as a CM base.
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Figure 4.12: Zebra results for two reconstructions: regular and adaptive by a regular edge

size (25% of the longest edge).
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simplified at a desired level and reconstructed at different levels. Observe that as we

increase the reconstruction level, the geometric error decreases.

4.6.6 Quantitative results

Table 4.1 shows the memory space and the computation time related to most of the examples

used. In first column we compare the size of the original file with the size of the CM file.

As we can see the reduction is considerable using our method. We can obtain really good

approximations with much less space. Observe that for horse and Max Planck models the

size of CM are equal in all variants due to the CM used is the same. Figure 4.15 illustrates

some comparison results graphically. In second column we present the computation time for

the two principal steps, CM generation and CM reconstruction (without parallelization).

The cost of gathering points during the simplification can be underestimated due to in all

our experiments it only represents an increment of 3%. As we can see, the CM generation

time depends on the size of the original model, the simplification level and the presence of

sharp edges. The CM reconstruction time depends on the size of the simplified model, the

subdivision level and the presence of sharp edges. For example, a simplified model of 1000

faces can be reconstructed at level 2 in less than 0.3 s. Figure 4.16 shows graphically the

results obtained.

Finally, we would like to make some comparisons with related approaches based on

subdivision surfaces (see Section 2.3.4). Figure 4.17 and Figure 4.18 compare the results

obtained by [CWQ+07] and our approach for Igea and Ball Joint models, respectively. As

we can see, our reconstruction obtains more accurate approximations of the original models.

Due to the nature of the [CWQ+07] method, their results are too smoothed and do not

fit the real feature details of the models even though they are reconstructed at the limit.

Table 4.2 shows the geometric errors obtained for these two models with the two methods.

It supports the good behaviour of our method and shows how we obtain smaller RMS and

Max errors for the two models. For models with sharp features we compare our results with

[LWY08] for the Fandisk model. In Table 4.3 we can see how substantially smaller error

values are obtained even though the simplified mesh has fewer vertices.
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Figure 4.13: CM reconstruction of a camel model at different levels of simplification speci-

fying the corresponding RMS and Max geometric errors.
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Figure 4.14: CM reconstruction of a horse model at different levels of subdivision specifying

the RMS and Max geometric errors in each case.
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Memory Space (MB) Computation Time (sec)

Original CM Generate Reconstruct

Fandisk 0.64211 0.02656 1.29 0.42

Camel

2000 faces 0.96891 0.13751 1.37 0.49

1000 faces 0.96891 0.10890 1.37 0.25

500 faces 0.96891 0.05455 1.37 0.14

Sword 1.78455 0.04766 3.82 0.17

Horse

Level 1 4.80865 0.08220 10.21 0.06

Level 2 4.80865 0.08220 10.21 0.24

Level 3 4.80865 0.08220 10.21 1.03

Frog 4.86687 0.16422 7.70 0.46

Max Planck

Level 2 4.87292 0.12321 9.32 0.35

20% Length 4.87292 0.12321 9.32 0.22

Point of interest 4.87292 0.12321 9.32 0.14

Silhouette 4.87292 0.12321 9.32 0.17

Knot 6.16278 0.06151 13.54 0.21

Table 4.1: Memory space occupied by the original model and the CM files in MB and

computation time of the CM generation and CM reconstruction steps in seconds.
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Figure 4.15: Graphic illustration of some memory space results showed in Table 4.1.

Figure 4.16: Graphic illustration of the computational time results showed in Table 4.1.
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Figure 4.17: Comparison of the approximation result of the Igea model between the ap-

proach of Cheng et al. and our method. The reconstructions are build from the same

number of faces. The image of the result of Cheng et al. 07’ has been borrowed from

[CWQ+07].
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Figure 4.18: Comparison of the approximation result of the Ball Joint model between the

approach of Cheng et al. and our method. The reconstructions are build from the same

number of faces. The image of the result of Cheng et al. 07’ has been borrowed from

[CWQ+07].
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Igea Ball Joint

RMS Max RMS Max

Cheng et al. ’07 0.0005 0.0036 0.0009 0.0064

CM reconstruction 0.00035 0.00221 0.00071 0.00424

Table 4.2: Geometric error comparison in % with respect to the BBox diagonal for the Igea

and Ball Joint models showed in Figure 4.17 and Figure 4.18, respectively).

Fandisk

#Vertices Simplified RMS Max

Ling et al. ’08 346 0.000581 0.0135

CM reconstruction 127 0.000271 0.00208

Table 4.3: Geometric error comparison in % with respect to the BBox diagonal for the

Fandisk model.





Chapter 5

∗Cages for Mesh Deformation

Geometric modelling and editing tools play an important role in geometric processing. Mesh

deformation techniques, which provide a convenient way to edit a model to meet various

design requirements (see Section 2.4), are especially important. The main advantages of

cage-based deformation techniques are their simplicity, relative flexibility and speed. How-

ever, up to now there has been no widely accepted solution that provides both user control

at different levels of detail and high quality deformations. In this chapter, we present

∗Cages, a mesh deformation system which allows multiple cages enclosing the model to be

used for easier manipulation while preserving the smoothness of the mesh in the transitions

between them. The proposed deformation scheme allows heterogeneous sets of coordinates

and different levels of deformation to be used, thus obtaining fast evaluations and a reduced

memory footprint. This results in a extremely flexible and versatile tool very useful for a

wide range of applications from industrial design to computer animation.

5.1 Introduction

Shape deformation plays a central role in computer graphics, both in two and three dimen-

sions. Space deformation techniques have received a lot of attention, especially in cage-

based methods as a practical means to manipulate 3D models [Flo03] [JMD+07] [LLCO08]

[WBCG09]. A cage is a low polygon-count polyhedron, which typically has a similar shape

to the enclosed object. The object points inside the cage are represented by affine sums

of the cage elements (vertices or faces) multiplied by special weight functions called co-

ordinates. The main advantage of these space deformation techniques is their simplicity,

relative flexibility and speed on applying the deformation. Manipulating an enclosed ob-

109
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ject, for example a surface mesh, requires transforming a point by a linear combination of

the cage geometry using a set of precalculated coordinates. Moreover, since each point is

transformed independently, these techniques are indifferent to the surface representation

and in general free of discretization errors.

However, up to now there is no widely accepted solution that provides both user con-

trol and high quality deformations. It is commonly accepted that an ideal deformation

system should allow user intervention when it is required but infer all the missing data

automatically. For instance, given a user-chosen set of constraints, the system should find

the best deformed shape that satisfies them. There are several possible alternatives, like

Mean Value Coordinates (MVC) [Flo03], Harmonic Coordinates (HC) [JMD+07] or Green

Coordinates (GC) [LLCO08], but they present some problems. They can be classified as

global deformation methods because they are defined in terms of a single cage which affects

all mesh vertices. Also, the construction of these single cages around the entire model may

not always be easy, while generating specific smaller cages around a region of interest is

rather simple. Even more, unnecessary memory space is used and more time is consumed if

local deformations are to be applied. Moreover, all of them present continuity problems on

the cage boundaries, from lack of smoothness to discontinuities. From these aspects we can

see that their use was limited to being applied to monolithic single cages, without any pos-

sibility of combining their strengths and, even less, to be used in a multi-level deformation

system. Even more, currently there is no method that allows all the advantages of these

powerful coordinates to be combined in order to apply finer-detail deformations together

with large-scale ones. A combination of different cages at different levels of granularity

could provide an interesting tool, which would offer both flexible mesh deformation and

would require minimal computational resources (memory, computational power) as they

would consume only what is necessary for each cage in isolation.

In this work we present ∗Cages (pronounced star-cages), a cage-based deformation

method that involves a hierarchical set of cages where the leaf cages bound the object

in a piece-wise manner. Cage coordinates can be individually defined for each leaf cage,

and blended among neighbouring cages to produce a smooth (class C1) deformation, thus

offering localized deformation control with fast computation. The hierarchy further allows

deformation control to take place at multiple levels. In this sense, we can say that ∗Cages

complements the existing techniques instead of competing with them. Hence the reason for

its name: ∗Cages can accommodate any coordinate system inside a cage, and smoothly

combine any number of cages to get a flexible general deformation system at any level of

detail. The main contributions of the proposed technique are:
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� We can have any number of cages at different levels of granularity, and use each one

to smoothly deform the base mesh.

� As far as we know, this is the first system that allows the use of heterogeneous sets

of coordinates: We are able to define different coordinates for different cages and use

them together in combination.

� We allow a multi-level deformation scheme, where different cages are used to locally

control different levels of detail in the model, from a whole-model deformation to a

very localized one.

� As a consequence, our method has small memory and computational requirements.

Together this gives rise to an extremely flexible and versatile deformation scheme, which

is much more intuitive and user-friendly.

5.2 Previous Work

Cage-based deformation methods are considered one of the most important space deforma-

tion techniques, driving the deformation by a control cage which encloses the fine-detailed

model to be deformed. The first method based on three dimensional regular lattices was

introduced by Sederberg and Parry [SP86]. Later, this method was extended to handle

general lattices [Coq90] and LOD management [SMT00]. In recent years, new deforma-

tion methods have been proposed based on the use of coordinates with respect the vertices

of a single enclosing cage. Floater and co-workers [Flo03] [FKR05] [JSW05] introduced

Mean Value Coordinates (MVC) as a method for constructing an interpolant for closed

triangular meshes. MVC have a closed-form formulation and allow linear functions to be

reproduced. They are well defined both inside and outside the control mesh (C∞ continu-

ous) but they are only C0 continuous across the cage faces. Later, Joshi et al. [JMD+07]

proposed Harmonic Coordinates (HC) for character articulation. In contrast to MVC, HC

are guaranteed to be positive everywhere in the interior of the cage, while their influence

decreases with distance as measured within the control mesh. However, as they do not

have an explicit expression, they force the use of a multi-grid finite difference to compute

the coordinates. HC are C∞ continuous inside the cage, C0 continuous on the boundary

and have no definition outside the cage. Lipman et al. [LKCOL07] presented an alterna-

tive non-negative coordinate definition to MVC (PMVC). The coordinates are computed

numerically by using a GPU-friendly approach. Later, Lipman et al. [LLCO08] proposed
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a new shape-preserving space deformation approach called Green Coordinates (GC). The

work, motivated by Green’s third integral identity, produces conformal mappings, and ex-

tends naturally to quasi-conformal mappings in 3D by using both vertex positions and face

orientations of the cage. GC are C∞ continuous inside and outside the cage but discon-

tinuous at the boundary, although some extension mechanism can be defined. ∗Cages is

a technique that provides smoothness to any of these coordinates across multiple cages,

allowing them to be used in combination. Also, the introduction of a multi-level system of

cages provides the artist with much finer control for specific local deformations.

Langer et al. [LBS08] developed criteria for the construction of smooth maps, called

Bézier maps, that are piecewise a homogeneous polynomials in generalized barycentric

coordinates. For that purpose, they had to increase both the number of control points

and the order of the polynomials to avoid discontinuities, with the corresponding added

computational cost. In the work by Ben-Chen et al. [BCWG09], the challenge was to find

a harmonic map from a domain such that it satisfies constraints specified by the user, and

it is detail-preserving and intuitive to control. Huang et al. [HCLB09] presented a mesh

deformation technique using modified barycentric coordinates with a tetrahedron control

mesh that avoids first order discontinuities across the cage boundaries. Unlike them, we

are not restricted in the nature of the cages we can use.

Other deformation techniques take advantage of the previously mentioned cage coor-

dinates to define new deformation approaches. A GC-based technique to locally deform a

mesh contained by an automatically generated umbrella-shaped cell was presented by Li

et al. [LLD+10]. Even though their cage is local, they need to bind coordinates for all

mesh vertices, increasing the memory consumption. Ju et al. [JZvdP+08] introduced skin-

ning templates as a solution to share and reuse skinning behaviours for similar joints and

similar characters. The skinning templates were implemented using cage-based deforma-

tions, and thus they can benefit from all the features of our approach. A hybrid approach

that combines surface-based and cage-based deformations was presented by Borosan et al.

[BHZN10]. There, an ”as-rigid-as-possible” method was applied on a region of interest of

the cage and then the obtained deformation was transferred to the mesh using MVC. As

they note, too coarse meshes limited the effectiveness of the method making their approach

suitable only for local mesh deformations. Moreover, the resulting deformation of the mesh

that falls on the boundary of the cage is not smooth. ∗Cages, instead, is able to provide

smoothness to an arbitrary combination of different coordinates. Recently, Landreneau

and Schaefer [LS10] introduced a Poisson-based method to reduce the storage needs of the

coordinates for animated meshes. Our method can be used in combination with theirs, as
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both consider different aspects of the deformation: while ∗Cages aims at creating a hierar-

chical set of cages and cage-coordinates can be individually defined for each cage, the work

by Landreneau and Schaefer aims at making a coordinate system local while still using a

global cage, thus reducing storage and computational needs.

Cage-based deformations have also been applied to planar domains. One related work

was introduced by Meng et al. [MSW+09], who designed a method to keep the shape of

images during the deformation of a region of interest. In their approach, different types of

discontinuities can appear over the deformed image depending on the cage coordinates used

(MVC, HC or GC). Later, Weber et al. [WBCG09] generalized the concept of barycentric

coordinates from real numbers to complex numbers, only applicable to two dimensional

shape deformations. Let us remark that our method can be applied to planar domains as

well as 3D domains.

As far as we know, none of the existing cage-based methods can be used in a multi-level

approach to perform both local and global deformations on the same framework if a smooth

mesh must be obtained after applying the desired deformations because of the discontinuity

problems already mentioned.

All these space deformation techniques require a construction of a cage or other 3D

structures around the manipulated object. One of the first steps to automatically generate

coarse bounding cages while keeping the main features of the original model was presented

by Xian et al. [XLG09]. The construction and manipulation of the cages is closely related

to the deformations obtained, thus this approach may not be suitable for any situation.

Moreover, this method can generate an unnecessary amount of vertices, giving as a result

not only more complex-to-use cages, but also more time-consuming deformations. Let us

note that the aim of our work is not to build cages.

5.3 ∗Cages

As we mentioned in the introduction, the main objective of ∗Cages is to allow deformations

at different levels of detail on the model while preserving the smoothness of the enclosed

mesh. This is achieved by defining a set of non-intersecting cages that share boundaries

and are responsible for directly modifying the mesh. Each cage can have its own coordinate

system, and ∗Cages provides smoothness at cage boundaries and between coordinate sys-

tems. The basic definitions are presented in Section 5.3.1. Then, a new transformation to

obtain smooth transitions between this set of neighbouring cages is introduced in Section
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5.3.2. Next, an enriched transformation, presented in Section 5.3.3, allows different cage

coordinates to be used on each cage while smoothly combining them.

Because of the local nature of the presented transformations, a multi-level deforma-

tion scheme can be used to incorporate different levels of deformation, from a whole-model

deformation to a very localized one. These new transformations allow extremely fast in-

teractive deformations because they only need to compute affine combinations of a low

number of precalculated coordinates corresponding to the affected cages. In Section 5.3.4,

a multi-level system is introduced by taking advantage of the powerful transformations pre-

viously defined, where the already presented cages are called leaf cages and the rest of the

upper-level cages, which own the vertices of cages at lower levels, are called internal cages.

Here, intersections between internal cages are allowed, and smooth transitions between the

internal-cage transformations do not need to be enforced.

5.3.1 Definitions

Let C = (C0, C1, . . . Cn) be a set of control cages satisfying Interior(Ci) ∩ Interior(Cj) = ∅
for all i 6= j. Let V = (v0, v1, . . . vm) be the vertex set of C, and let V Ci be the set of vertices

of cage Ci. By Adj(Ci) we denote the adjacent cages of cage Ci. For a cage Cj ∈ Adj(Ci),
let Bij = Ci ∩ Cj be the border between Ci and Cj , and let V Bij be the vertices of Bij .

Let the boundary of Ci, noted ∂Ci, be the union of all borders Bij . These definitions are

illustrated in the left image of Figure 5.1.

Most cage-based deformation methods such as MVC, PMVC and HC express a point

p ∈ Ci as an affine combination of cage vertices v ∈ V Ci:

p =
∑
v∈V Ci

wi(v, p)v ,

where wi(v, p) are the coordinate basis functions. Then the natural way to define a defor-

mation in each cage Ci is by:

Ti(p) =
∑
v∈V Ci

wi(v, p)T (v) ,

where T (v) are the deformed control cage vertices.

In this manner, the piecewise transformation defined on C by transformations Ti is

only C0, i.e., it can generate first-order discontinuities across common faces of adjacent

cages (see Figure 5.2(a) where classic MVC/PMVC/HC were used). Transformations Ti

could be also defined by the GC technique, which uses both vertices and face normals
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Figure 5.1: Left: C0 = v0v1v6v7, C1 = v1v2v5v6, C2 = v2v3v4v5, ∂C0 = B01, ∂C1 = B01 ∪
B12, ∂C2 = B12. Middle: Cage C({v1, v6}) = v0v1v2v5v6v7. Right: Cage C({v2, v5}) =

v1v2v3v4v5v6.

of the cages. Unfortunately, the corresponding piecewise transformation is discontinuous

at cage boundaries (see Figure 5.2(b)). The insets in the figures show a detail of these

discontinuities.

To address this continuity problem, we first obtain a C1 transformation in each cage Ci

whose associated piecewise transformation on C, which we call Join Transformation (J), is

C1 on C. Then, the J transformation is blended inside each cage Ci with transformations

Ti obtaining another C1 transformation on C, which we call Smooth Transformation (S).

In this manner, we can apply any of the existing cage coordinates at each cage to combine

their strengths to generate different transformations, while preserving smooth transitions

between cages.

5.3.2 Join transformation

Our proposal consists of defining a transformation Ji for each cage Ci. This transformation

is created by blending transformations defined on cages resulting from joining Ci with its

adjacent cages. This blending is done through a partition of unity, which is constructed

by the use of coordinate functions with respect to the cage vertices. There are two main
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Figure 5.2: A comparison between piecewise deformations. At the top, the original model

enclosed in two cages and its influence map. (a) MVC/PMVC/HC deformation. (b) GC

deformation. (c) ∗Cages with MVC deformation, both for J and T . (d) ∗Cages with GC

deformation, both for J and T . The second row shows close views of the deformed model.

Notice that only (c) and (d) are C1.

reasons for this: the coordinates are of class C1 inside the cages and they are equal to zero

on the cage faces that do not contain the vertex itself.

We proceed as follows. Let C(v) be the union of the incident cages to a vertex v ∈ ∂Ci,
which we call the Join Cage of v. Then, the set of vertices of ∂Ci is partitioned in subsets

according to having the same join cage. From now this partition will be denoted by ∂Ci,

their elements by [u] and the join cage of the vertices belonging to [u] by C([u]) (see

the middle and right images of Figure 5.1). Given a join cage C([u]) we consider the

transformation T[u] (MVC/HC/GC) determined by the displacement of its vertices, and let

w(v, p) be the coordinate function with respect to v ∈ [u] in cage C([u]). The function

w(v, p) needs to be computed by the MVC or HC approaches to ensure it is of class C1 in

C([u]).
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Then, we define the join transformation Ji in Ci by:

Ji(p) =

∑
[u]∈∂Ci

f(W [u](p))T[u](p)∑
[u]∈∂Ci

f(W [u](p))
,

where

W [u](p) =
∑
v∈[u]

w(v, p) ,

and f : [0, 1] → [0, 1] is a smoothing function that satisfies f(0) = f ′(0) = 0, f(1) = 1 and

f ′(x) ≥ 0. In our implementation we have used f(x) = 1
2sin(π(x − 1

2)) + 1
2 . To see an

example, transformations

J0(p) = T {v1,v6}(p) ,

J1(p) =
f(W {v1,v6}(p))T {v1,v6}(p) + f(W {v2,v5}(p))T {v2,v5}(p)

f(W {v1,v6}(p)) + f(W {v2,v5}(p))
,

J2(p) = T {v2,v5}(p) ,

(being W {v1,v6}(p) = w(v1, p) + w(v6, p), W {v2,v5}(p) = w(v2, p) + w(v5, p)) are the join

transformations of the cage system illustrated in the left image of Figure 5.1.

Transformation Ji is C1 in the interior of Ci and for a point p ∈ Bij we have:

Ji(p) = Jj(p), Jac(Ji)(p) = Jac(Jj)(p) ,

being Jac the Jacobian.

5.3.3 Smooth transformation

Once we know how to generate a smooth transformation between neighbours in C, we are

interested in solving the problem of being able to combine a different coordinate system

for each cage in a way that suits the user needs. The only requirement for the coordinate

system is that it must be defined inside the cage. In this section, we explain how to combine

the previous smooth transformation with others (e.g. MVC, HC, GC) defined on each cage.

For a point p ∈ Ci we define a weight with respect to each border Bij and a distance

with respect to the boundary ∂Ci as follows:

� Weight of p with respect to Bij :

wij(p) =
∑

v∈V Bij

wi(v, p)
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� Distance of p with respect to ∂Ci:

di(p) = fhi(
∏
j

(1− wij(p)))

where fhi is a smoothing function depending on a parameter hi ∈ (0, 1] satisfying

fhi(0) = f ′hi(0) = f ′hi(hi) = 0, fhi(x) = 1 if x ∈ [hi, 1], and f ′hi(x) ≥ 0. In our

implementation we have used fhi(x) = 1
2sin(π( xhi −

1
2)) + 1

2 for x < hi.

Observe that di(p) ∈ [0, 1] is equal to 0 when p ∈ ∂Ci and is equal to 1 on the faces of cage

Ci that are not incident to any vertex of ∂Ci. Moreover, di(p) is set to be 1 in case that

∂Ci = ∅, so when Ci does not have any neighbouring cage, its own transformation is fully

applied.

Let Ti be a cage deformation (e.g. MVC, HC, GC) defined on Ci. Then, we define a

smooth transformation Si in Ci by:

Si(p) = di(p)Ti(p) + (1− di(p))Ji(p)

Since for a point p on Bij we have:

Si(p) = Ji(p) = Jj(p) = Sj(p) ,

Jac(Si)(p) = Jac(Ji)(p) = Jac(Jj)(p) = Jac(Sj)(p) ,

the piecewise transformation S defined on neighbouring cages of C by transformations Si

is C1 in C. Figures 5.2(c) and 5.2(d) illustrate the effects of a smooth transformation. In

Figure 5.2(d) a MVC deformation has been performed by using it to compute both the cage

transformations and the join transformation while in Figure 5.2(d) GC are used.

Moreover, transformation S inherits properties of transformations Ti and T [u]. Then,

if all transformations Ti and T [u] are affine invariant or perform boundary interpolation,

transformation S also is.

The distance di(p) is a measure of the influence of the transformation Ti(p) in Si, and can

be adjusted by changing the parameter hi. To facilitate this task we use an influence map

(see the top-right image of Figure 5.2), where the model is painted in blue-red gradation

according to the distance di(p). The effect of the hi variation can be appreciated in Figure

5.3. At the right, results obtained from three different values of the hi corresponding to the

front ear cage are shown.
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Figure 5.3: Influence map variation on the chinchilla model. At the top, the original model

and a close-view with the initial cages. At the bottom, the original model with its initial

cages (left) and the results obtained by using different hi values for the front ear cage

(right).

5.3.4 Multi-level deformations

We can use ∗Cages to build a multi-level system which gives flexibility, versatility, interac-

tivity and control over the deformations to be applied to a part of the model. In our scheme,

upper-level cages can own an arbitrary set of vertices of lower-level cages, being the only

restriction that cages must have a hierarchical relation (e.g. a Directed Acyclic Graph or a

tree) and that a given cage vertex cannot be controlled by more than one parent cage. An

example can be seen in Figure 5.4, where the two kinds of cages can be distinguished. On

the left, the leaf cages that directly control the mesh cannot intersect each other and the

transformations applied have to ensure smooth transitions between them. On the right, the

internal cages that control cage vertices of lower-level cages. Because of the transformations

applied to them do not directly affect the mesh, these upper-level cages can intersect and

smoothness does not need to be enforced. In the figure, the cage C3 controls all the vertices
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Figure 5.4: Multi-level scheme. Colours indicate the correspondence between cages and

their controlled vertices.

of C0 and C1, and the cage C4 controls two vertices of the cage C3 and one vertex of the

cage C2.

Our multi-level system relies on a simple yet effective observation: When a cage in the

multi-level system changes, the effects of this change should be propagated only downwards,

not upwards, in the hierarchy. This means that, when a vertex v of a cage is changed,

the positions of all the vertices contained in the cage should be updated, but not their

coordinates with respect to the cage. Thus, the parent cage Ci containing v would not

be affected. However, if Ci changes later on, v should be updated according to the new

position of Ci, which implies recomputing its coordinates with respect to the owning cage.

This means recalculating only cage vertices, not the mesh vertices. To save unnecessary

work, we perform this recomputation only in this specific situation. If coordinates that are

defined everywhere are used, like MVC, then the above implementation works as described.

However, in the case of coordinates not defined outside (e.g. HC), special measures

should be taken. We propose an easy but effective solution without the need for any cage

recomputation. We can express any new position for v as v′ = T (v) + tv with tv being

the user-generated displacement, and T (v) the transformation with respect to the parent

cage C. We can express tv = λvstv, where stv is a displacement small enough to satisfy

that point sv = T (v) + stv within cage C at its current position. Now, if cage Ci suffers
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Figure 5.5: Multi-level deformation for coordinates not defined outside the cage. (a) Initial

cages. (b) Direct cage vertex movement. (c) Parent transformation.

another transformation T ′ that converts T (v) into T ′(v) and sv into T ′(sv), we will update

the current position of v by v” = T ′(v) + λv(T
′(sv)− T ′(v)) (see Figure 5.5).

5.4 Results

For the whole results, we have used the following colouring convention: blue cages use

MVC, red ones use HC and the green ones use GC. We have also drawn the boundaries

between cages in pink.

Figure 5.6 shows a comparison between single cage approaches and ∗Cages. The prism

model is twisted (each cage level is rotated by π/2) using four cages by ∗Cages and the union

of them as a single cage. See the large similarity between the results obtained by MVC

and GC (Figure 5.6(a) and Figure 5.6(d)) and ∗Cages (Figure 5.6(b) and Figure 5.6(e)).

Both cage and join transformations have been computed with the same coordinate systems

(MVC/GC). The corresponding error maps are shown in Figure 5.6(c) and Figure 5.6(f)

with the maximum (depicted in red) and RMS errors. Note that the differences between the

single cage and ∗Cages approaches are more noticeable at the center of the middle cages.

Another example of a single cage and ∗Cages comparison is shown in Figure 5.7. Again,

the camel model is deformed in our approach by using four cages (Figure 5.7(a)), and in

MVC by using the union of them as a single cage. Two deformations have been applied for

MVC (Figure 5.7(c) and Figure 5.7(d)) and ∗Cages (Figure 5.7(e) and Figure 5.7(f)). The

resulting error maps (Figures 5.7(g) and Figure 5.7(h)) show the differences and the low
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Figure 5.6: Twisting a prism using MVC (left) and GC (right). See the large similarity

between single cage (a,d) and ∗Cages (b,e) results. (c,f) show the corresponding error maps.

level of error obtained. Please note that the cages defined for the camel’s front and back

legs are different, as the front ones have articulations also for the camel’s knees resulting

in differences in the influence map (Figure 5.7(b)).

Figure 5.8 illustrates that ∗Cages supports the combination of different types of coordi-

nates in different cages. Two different combined transformations have been applied to the

elk toy model. HC have been used for the deformation of the body cage for both deforma-
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tions, while the head and wheel cages have been deformed by MVC in the left image and

by GC in the right image. Observe the differences between the results depending on the

coordinates used and how ∗Cages provides a way to smoothly combine them.

∗Cages is able to handle any number of cages meeting at a boundary cage vertex. Figure

5.9 shows a deformation obtained from a flower model enclosed with 13 cages using different

coordinate types. Observe the good behaviour of the method despite the presence of cage

boundary vertices with more than two incident cages.

An example of a multi-level deformation is illustrated in Figure 5.10. The squirrel model

has been enclosed by four leaf cages: teeth, face, left ear and right ear. There are also two

internal cages (coloured in grey). The ears’ cage englobes some vertices of the left ear and

right ear cages. The head cage englobes all unbinded vertices of the previous cages (see

Figure 5.10(a)). The sequence of deformation is as follows: the teeth have been deformed

in Figure 5.10(b), the ears in Figure 5.10(c), the entire head in Figure 5.10(d) and the face

in Figure 5.10(e). Observe the degree of control achievable by the multi-level system.

In the right of the Figure 5.11 we show a final render of the deformations applied over

the squirrel and the chinchilla models. Note that the chinchilla model has 9 leaf cages and

the squirrel model has 11 leaf cages and 3 internal cages, as can be seen on the left of the

image. Let us remark that different coordinates have been used for different cages.

Memory and time requirements are listed in Tables 5.1, 5.2 and 5.3. In Table 5.1

we show the influence of the parameter hi in the boundary distance function di(p) (see

Section 5.3.3). We compare the results obtained for three different hi values constant for

all cages of the chinchilla model both for MVC and GC. Let us remark that cage and join

transformations have been computed with the same coordinate types. Observe that the

memory usage and the computational cost is nearly proportional to hi. This is because as

the hi values decrease, the own transformations Ti are fully applied on more mesh vertices

and then, the join transformations do not need to be computed and are stored on them.

In Table 5.2 we compare ∗Cages with MVC and GC on the prism model (with 4 cages)

of Figure 5.6, the camel model (with 4 cages) of Figure 5.7 and the squirrel model (only the

11 leaf cages) of Figure 5.11. Observe that in our experiments ∗Cages consumes from the

same up to a half of the memory (column 2) depending on the number of cages and their

distribution. The best results are obtained when the number of cages is high and the degree

of a cage adjacency is low (squirrel model). The total time required for the preprocess is

shown in column 3, specifying the amount of time dedicated to compute the coordinates

with respect to the parent cages. Observe that ∗Cages takes less time to compute cage
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Figure 5.7: Comparison between a single cage approach and ∗Cages on the camel model.

(a) Cages and original model. (b) Influence map. (c,d) Two different MVC deformations

applied to the union of the cages. (e,f) The corresponding ∗Cages deformations. (g,h) Error

maps showing the large similarity between them.
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Figure 5.8: Combined deformations of the elk toy model. The first row shows the cages

and its influence map. The second row shows two different deformations. The body cage

uses HC for both deformations. Head and wheel cages use MVC for the deformation on

the left and GC for the deformation on the right. The third row shows close views of the

deformed antlers.
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Figure 5.9: Multiple number of cages meeting at a cage vertex. Left: Original model with

13 cages using different coordinates and a close view. Right: Deformation obtained with

∗Cages.

coordinates because the cages used are simpler than a single cage. The extra amount of

time is needed to compute join cages and coordinates with respect to them. In case of

using GC, ∗Cages spends less preprocess time because of the nature of their computations

[LLCO08]. The deformation time (column 4) is the average of the time needed for a

deformation of a cage vertex. Observe that our approach is significantly faster, especially

for the squirrel model where we achieve about 2 times the acceleration of MVC and about

8 times with respect to GC.

Finally, in Table 5.3 we show the requirements of the other 3D models illustrated in the

chapter. Observe that when HC are involved, the preprocess increases time considerably

due to the way they are computed. In all our experiments ∗Cages deforms the models in

less than 0.2 seconds.

We have implemented ∗Cages using the Ogre3D engine and all our experiments were

carried out on a quad core duo (2.83GHz).
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Figure 5.10: Multi-level deformation of the squirrel model. (a) Multi-level cages. (b) Leaf

deformation: teeth cage. (c) Internal deformation: ears’ cage. (d) Internal deformation:

head cage. (e) Leaf deformation: face cage.

Chinchilla Memory (MB) Preprocess (sec) Deform (sec)

Cage Coord. Total

MVC

h = 1.0 45.45 3.8481 103.2508 0.5277

h = 0.6 29.75 3.7938 46.2589 0.2477

h = 0.2 14.05 3.7944 21.3310 0.1064

GC

h = 1.0 131.27 10.1164 130.5485 1.1849

h = 0.6 84.35 10.0846 72.0995 0.5012

h = 0.2 37.43 10.0876 47.5258 0.2086

Table 5.1: Memory and time requirements for the chinchilla model using different hi values

for MVC and GC.
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Figure 5.11: Deformation of the squirrel and chinchilla models using ∗Cages. Top: The

models and their corresponding multi-level cages at binding time. Bottom: Composition of

the two resulting poses. Cage colouring: Green - GC, Blue - MVC, Red - HC.
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Model Memory Preprocess (sec) Deform

(MB) Cage Coord. Total (sec)

Prism

MVC Single Cage 3.75 1.5164 1.5164 0.0531

MVC ∗Cages 3.99 1.0292 5.8322 0.0936

GC Single Cage 10.50 7.0746 7.0746 0.1871

GC ∗Cages 9.24 2.7612 9.9643 0.1552

Camel

MVC Single Cage 2.68 1.0634 1.0634 0.0256

MVC ∗Cages 2.80 0.6317 4.2333 0.0554

GC Single Cage 7.75 5.2271 5.2271 0.1159

GC ∗Cages 7.18 1.8454 7.4331 0.0960

Squirrel

MVC Single Cage 25.55 7.1640 7.1640 0.1029

MVC ∗Cages 11.26 3.4819 11.8422 0.0433

GC Single Cage 63.30 39.3373 39.3373 0.7428

GC ∗Cages 30.39 8.2603 27.9253 0.0903

Table 5.2: Memory and time requirements: comparison between ∗Cages (hi = 0.5) and

single cage-based methods.
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Model Vertices Cages Memory Preprocess Deform

(MB) (sec) (sec)

Elk toy

MVC/HC 26216 6 22.20 305.0652 0.19289

GC/HC 26216 6 30.42 309.7331 0.2067

Squirrel’s head 9724 6 6.87 8.7232 0.07821

Flower 10978 13 11.06 31.0083 0.1436

Chinchilla 19274 11 51.64 64.5301 0.1943

Squirrel 19030 15 12.04 48.8736 0.0449

Table 5.3: Memory and time requirements for several models included in the chapter with

hi = 0.5.

5.5 Discussion

We have presented ∗Cages, a multi-level (e.g. hierarchical) cage-based system for spatial

mesh deformations. It allows heterogeneous sets of coordinates to be combined, allowing

the user to define different coordinates for different neighbouring cages and smoothly use

them together in combination while preserving their properties (e.g. linear precision, affine

invariance, quasi-conformality, boundary interpolation, etc). With ∗Cages, any change the

user makes in one cage is kept local to the cage being modified. This is the main advantage

with respect to other mechanisms that try to obtain more localized deformations. Moreover,

∗Cages allows the local use of any coordinate, even those that do not allow such usage when

used in isolation.

∗Cages allows a multi-level deformation scheme, where upper-level cages are used to

locally control deformations in lower-level cages, allowing the passage from a whole-model

deformation to a very localized one. Also, it avoids recomputing vertex weights for all

vertices by keeping these computations local to the contents of a cage. Observe that the

multi-level nature of the binding relationship between vertices of one cage and the parent

cage can be re-defined vertex-wise by the user, binding or unbinding vertices according to

the specific deformation needs for that model and situation. This allows the user to have the

flexibility of an arbitrarily shaped cage while preserving a simpler one for the deformations.

Using ∗Cages considerably reduces the management cost of the hierarchy while performing

deformations. Thus, ∗Cages is an extremely flexible and versatile deformation tool, which
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results in a much more intuitive and user-friendly approach than the current state of the

art.

∗Cages reduces computational and memory costs when cages used to deform the model

are high and they have a small adjacency degree, that is, when one cage is connected

to a reduced number of other ones. Although ∗Cages can handle any number of cages

sharing a vertex, as in Figure 5.9, the evaluation cost increases due to the number of join

transformations taken into account. This also can be seen in Figures 5.6 and 5.7, where the

computational time of ∗Cages is about twice that for a single MVC global cage. Memory

requirements are roughly the same with ∗Cages, though. If the number of adjacent cages to

a vertex is reduced, however, as in Figure 5.11, ∗Cages outperforms global cage deformations

both in memory footprint and speed of evaluation. Moreover, the user can have some degree

of control over this behavior by adjusting the influence map parameter hi. As explained

in Table 5.1, changing this variable has a drastic impact on ∗Cages requirements, but also

using a value too small for hi in extreme deformation conditions could introduce visible

non-smooth transitions. Also, it is important to mention that the value for hi can be set

in an easy but independent manner for each border, for each cage or for the whole model.

In Figure 5.3 we have used the second approach, while for all the tables we have used a

single hi value for the entire model to make comparisons fairer. In our system, the user is

provided with a simple slider to control this parameter for each selected cage independently.

Also, the memory and computational needs of ∗Cages can be reduced if used in combi-

nation with the coordinate compression technique presented by Landreneau and Schaefer

[LS10]. This compression could be used for both cage and join transformations. In the latter

case, it would benefit ∗Cages the most, as join cages are more computationally demanding

to evaluate.

As a space deformation approach, ∗Cages can be used in the same domains as previous

methods. For instance, the lowest-level cages of our hierarchy could be deformed by a simple

skeleton, as did Ju at al. [JZvdP+08]. Thanks to the local behavior of our approach, we

could provide a finer degree of control over the skeleton, and as a result, a smoother final

animation.

Finally, we must also mention that ∗Cages has problems when dealing with cage vertices

that become interior vertices of a join cage. One possible way to solve this is to create a

very small cage around the vertex and define its join cage as the difference between the

union of its incident cages and this small cage. Then, the vertex weight is computed by the

sum of the coordinate functions with respect to the vertices of the small cage. However, for
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the case of interior vertices in the 2D case, there is always the simple solution of extruding

the cages to a set of 3D cages with an infinitesimal width, as shown in Figure 5.12. There,

the right finger, hand and eye cages use GC, body and head cages use MVC and the mouth

cage uses HC.

Figure 5.12: 2D deformation. The eye, hand and finger cages use GC. The mouth cage uses

HC and the head and body cages use MVC.
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Deformable Compact Models

In this last chapter we combine the good properties of the different methods developed

throughout the thesis to provide a powerful tool for geometric modelling applications. From

the simplification approach (Chapter 3) we construct a compact model (CM) (Chapter 4)

which enriches the approximations by obtaining more faithful and realistic results. Next,

the versatile cage-based deformation approach (Chapter 5) introduces us to the mesh editing

tools. In order to create a versatile tool that combines the advantages of mesh modelling

and mesh editing techniques we provide the CM with the ability to be deformable. In this

manner, any of the existing deformation techniques can be applied to large models. Faithful

approximations at different poses will be obtained with a reduced memory footprint and a

high performance.

6.1 Introduction

Satisfying the increasing desire for realism in several computer graphic applications depends

heavily on the ability to accurately represent geometric detail of the objects rendered. In

geometric modelling, scanned models provide a high resolution input to achieve this goal.

However, the manipulation of such models is not trivial. The challenge is to provide efficient

tools, in terms of performance and accuracy, for the edition and management of large

models.

A wealth of research has recently been devoted to the deformation and manipulation of

surface meshes. On one hand, surface-based deformation methods allow the user to fix one

region of a mesh while moving in a small and local region. On the other hand, space-based

deformation methods allow users to edit a shape indirectly via a control structure that exerts

133
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a prescribed influence on the enclosed space when deformed. The combined advantages of

these two techniques make them the natural choice to obtain real-time applications which

require highly detailed models.

We present the Deformable CMs, a versatile representation which allows us to obtain

good quality deformations on accurate approximations of highly detailed models. The

main idea of this hybrid solution consists of applying the deformations over the base of

the CM (the simplified model) presented in Chapter 4, and then transferring it to the

reconstruction in a simple way. As a result, we obtain high fidelity deformations quickly.

Next, we summarize the main contributions, or improvements with respect to the actual

state of the art, of the approach presented.

� Generality of the applicable deformations. Any kind of deformation can be

applied to the CM: affine transformations, surface-based, space-based, direct manip-

ulation, etc. So, both global deformations over the whole model and surface manip-

ulations of localized regions can be performed.

� Detail preserving. High quality approximations are obtained thanks to the accurate

simplification approach used as a base method, even when a textured model is used.

The preservation of surface details after applying a deformation directly depends on

the deformation method used and the simplification level of the CM base. So, the

linear reproduction property is always fulfilled.

� Compact representation. All the properties of the CM are preserved. The approx-

imation is automatically adjusted to satisfy the handle position constraints defined

by the deformation applied.

� Sharp feature preservation. Models possessing sharp features are correctly ap-

proximated and consequently deformed.

� Adaptive deformations. The resulting approximation can be adaptively generated

according to the desired conditions. Any criteria, even some information related with

the deformation applied, can be used to adaptively reconstruct the final mesh.

� Reduced memory footprint. The information required to be stored depends on

the CM and the deformation method used. In any case, this is much smaller than

needed to directly deform the original model.

� High performance. Good quality deformation results can be achieved with high

performance due to the simplicity of the computations required to transfer the defor-
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mations while reconstructing. Moreover, it can be suitable for GPU implementation,

so the computations are simple to parallelize.

The hybrid solution proposed represents a versatile tool that can be used in several

application fields, from mesh editing and mesh compression to mesh approximation.

6.1.1 Related work

Due to the wide availability of very detailed scanned meshes, recent research has focused on

high quality mesh editing. Detail preservation and high performance are the central goals

of such algorithms. In Chapter 5, we introduced some of the most important free form

deformation approaches. They perform object deformations indirectly by manipulating a

control mesh. However, these deformation techniques are usually not viable when large

models are used.

Multiresolution methods have been developed for detail-preserving deformations by de-

composing the surface into a smooth base representation and the corresponding surface

details [ZSS97, KCVS98, GSS99, BK04]. The deformation is applied directly to the base

representation and later the high frequency details are added back as displacement vectors.

Surface deformation techniques are also applied on smooth surfaces. In [QMV98], a

dynamic framework for the Catmull-Clark subdivision surfaces is presented. It allows the

smooth limit surface to be directly manipulated by applying forces. A variational approach

to deform subdivision surfaces has been proposed in [MRB05]. Surface details are preserved

by optimizing the energy of a deformation vector field instead of the deformation energy of

vertex positions.

Energy minimization has long been used for surface deformations. In gradient domain

techniques [Ale03, SCOL+04, YZX+04, LSLCO05, ZHS+05, ZRKS05, HSL+06] the defor-

mation is cast as an energy minimization problem, where the energy function incorporates

position constraints as well as terms for detail preservation. Algorithms based on differ-

ential representations extract local shape properties such as curvature, orientation or scale

and strives to preserve them while editing. The detail preservation term is non-linear as

it also depends on the position constraints, and various strategies can be used depending

on how it is approximated. Minimization of this energy distributes errors globally over the

mesh leading to high quality deformation results. The user can directly manipulate the sur-

face mesh and use the region of interest to control the scale of manipulation. In [SYBF06]

a multigrid technique for gradient domain mesh deformation is presented to improve the

running times.
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A combination of gradient domain techniques and subdivision surfaces is presented in

[ZHX+07]. Displaced subdivision surfaces and subdivision surfaces with geometric textures

are combined in an algorithm for interactive deformation of subdivision surfaces. The main

goal is to achieve visually pleasing deformations with high performance. Sumner et al.

[SSP07] built a space deformation represented by a collection of affine transformations or-

ganized in a graph to manipulate an embedded object. Detail preservation and independent

shape representation are the main properties of this useful approach.

In the mesh editing field, geometric modelling and mesh deformation are active research

areas in which a lot of previous work has been published. The above review only summarizes

some of the most relevant techniques.

6.2 Overview of the Proposal

The main aim of this work is to build an efficient system that will allow applying any

kind of deformation from global to local over a highly detailed model. We want to obtain

visually pleasing deformations with a high performance. The presented approach generates

accurate results while preserving the most important details of the model according to the

deformation applied. Next, we summarize the way we achieve it by taking advantage of the

previously developed techniques.

We propose deforming the CMs to obtain high quality approximations of deformations

of large-scale meshes. The idea is very simple. The base mesh of the CM is deformed first

and for each vertex of this mesh we compute a local deformation. Then, every refined point

of a CM face is deformed by blending the local deformations of the vertices of the face

applied to it. In this manner, the details are added simultaneously with the deformation

thanks to the local surfaces stored in the CM and, moreover, the resulting process can be

parallelized due to the independent nature of the operations done.

Sharp-feature preservation, textured model management, adaptive approximation and

parallelization of the reconstruction process are some of the good properties of CMs that,

combined with the ability to be deformable, make our proposal a powerful tool for the

interactive manipulation of high resolution models. Moreover, the versatility of the resulting

representation allows it to be very useful in several application fields.

The following sections are dedicated to explaining how we compute the local deforma-

tions and how they are blended.
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6.3 Local Deformations

For each vertex vi of the CM with deformed position vi we compute a local deformation

Tvi . Let vji be the adjacent vertices of vi and vji be their deformed positions. Deformation

Tvi is selected as the best affine transformation in the least square sense that transforms

points vji into points vji . In consequence, we compute the transformation

Tvi(x) = M(x− vi) + vi

that minimizes ∑
j

|Tvi(v
j
i )− v

j
i |
2 .

Accordingly, matrix M is computed by M = U−1V , where

U =
∑
j

(vji − vi) · (v
j
i − vi)

T

and

V =
∑
j

(vji − vi) · (v
j
i − vi)

T .

6.4 Transferring Deformations to CMs

From a CM, the original model is reconstructed by refining the simplified base model. In

the reconstruction process, each triangle of the simplified model is subdivided into smaller

triangles and each vertex p of the refined triangulation is substituted by a point Φ(p)

computed by blending the local surfaces stored at each vertex of the triangle (see 4.5). Let

(α1, α2, α3) be the barycentric coordinates of p with respect to its containing face v1v2v3.

Let Tv1 , Tv2 and Tv3 be the local transformations applied to the vertices v1, v2 and v3

respectively. The natural way to compute the deformed point T (Φ(p)) of Φ(p) is given by:

T (Φ(p)) = W1(p)Tv1(Φ(p)) +W2(p)Tv2(Φ(p)) +W3(p)Tv3(Φ(p)) ,

where

W1(p) =
α3
1

α3
1 + α3

2 + (1− α1 − α2)3
,

W2(p) =
α3
2

α3
1 + α3

2 + (1− α1 − α2)3
,

W3(p) =
(1− α1 − α2)

3

α3
1 + α3

2 + (1− α1 − α2)3
.
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Notice that the deformation method is totally applied over the vertices of the base mesh

and it is properly propagated to the reconstructed model. Thus, the level of locality in the

deformations depends on the level of detail of the base mesh of the CM.

6.5 Results and Applications

The proposed approach takes advantage of the previously developed methods to present a

very useful tool for the deformation of large meshes. Providing the CM with the ability

to generate deformed reconstructions makes it a powerful representation for many applica-

tions. The accuracy of the simplification method together with the versatility of the CM

representation allow different versions of high quality deformations to be obtained depend-

ing on user needs. Moreover, we make it possible to apply any of the existing deformation

schemes to large models without any change in them. The memory space required and the

time consumed are widely reduced with respect to directly deforming the original mesh.

The level of reduction obtained depends on the deformation method used, the simplification

level of the CM base and the reconstruction level chosen. Next, we present some results

to demonstrate the good behaviour of our proposal. All experiments were carried out on a

quad core duo (2.83GHz) with a GeForce GTX 280.

Figure 6.1 presents a set of deformation results obtained from the Vase model. It

shows how different kinds of deformations are supported, from local deformations that

affect a certain region to global deformations that manipulate the whole model. Affine

transformations can also be applied to guarantee the linear reproduction property. Figure

6.2 shows a deformation result obtained from a zebra model. In this case, although global

deformation has been performed, the resulting approximation obtained from the simplified

version correctly preserves the original features of the model.

A representative example of a large mesh is illustrated in Figure 6.3. It shows two

different poses obtained from a CM after the original position was manipulated. Observe

the good quality of the resulting approximations with only one level of reconstruction.

In Figure 6.4, we compare the results obtained from the same deformation applied to

the original, the simplified, the reconstructed and the CM for the Camel model. The per-

formed deformation corresponds to the one presented in Figure 5.7(f) of the last chapter.

A comparison of the two last deformation results illustrated at the bottom of the image

shows that the differences between them are almost inappreciable. The one labeled CM

Reconstruction was generated by first reconstructing the model from the CM and then
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Figure 6.1: Set of deformation results from a CM of the Vase model reconstructed at level

2.
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Figure 6.2: Deformation of a zebra model applied on the simplified and the CM models.
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Figure 6.3: Two deformation poses of a CM of the Imperia model reconstructed at level 1.
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Figure 6.4: Comparison of the same deformation results applied on different Camel model

versions.

applying the deformation to all the reconstructed vertices. The second one labeled CM De-

formation corresponds to the result obtained by our proposal. The memory space required

and time consumption are the main differences between them. Moreover, observe that the

deformed version of the original model is too similar to the deformation of the CM which

has been generated more efficiently. The cost of the CM deformation is equivalent to the

deformation cost of the simplified model plus the local affinity computations that depend

on the reconstruction level chosen.

After a deformation of a CM the sharp features are also preserved depending on the

effects of the deformation method applied. To illustrate that, Figure 6.5 shows different

deformation results of a sword model. Because the manipulation is performed over the
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Figure 6.5: Set of deformation results with sharp-feature preservation from the CM of a

sword model.
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vertices of the simplified model, the accuracy of the deformation results depends on the

level of detail of the CM base.

Just as with CM, the detail in the reconstruction process after a deformation can be

applied adaptively according to user needs. Figure 6.6 shows how different deformed ver-

sions of the zebra model can be obtained depending on the criteria used to approximate it.

In the figure, we show four different adaptive approximations: regular size edges (25% of

the longest edge), two different points of interests and the silhouette according to the point

of view.

Next, we perform a quantitative analysis over the Imperia and the Vase models that

supposes we use a cage-based deformation approach for their manipulation. For a wider

study, we show the results obtained for MVC and GC.

Table 6.1 shows the memory space occupied by the original, the simplified and the CM

models for both mesh files and deformation coordinates needed. Notice that the increment

of the CM with respect to the simplified version is due to the local surface coefficients

stored. As the deformation is performed over the CM base, the memory space required

for the deformation coordinates is the same for both simplified and CM models. The

experimental results show the high reduction obtained on the memory footprint.

Table 6.2 and Table 6.3 show the computational time results obtained for the original,

the simplified and the CM at two different reconstruction levels for each model. For the

preprocess time we distinguish between the time required to compute the cage coordinates

and the time dedicated to the reconstruction process. Observe that the reduction obtained is

significant even though it takes taking into account the sum of the two values. The execution

time column is the average of the time needed for the deformation due to the displacement

of one cage vertex. The difference between the two columns is only noticeable in CM as

it represents the amount of time required to compute the local affine transformations and

the new positions of the reconstructed vertices. Therefore, the deformation cost for any

CM is the same as for the simplified, and as we increment the reconstruction level the total

execution time increases accordingly. Observe that deformable CMs are significantly faster

than directly deforming the original model in both preprocess and execution times.

Both in memory and time results, the differences are much greater with the GC defor-

mation approach. So, the reduction level will depend on the deformation method used.

As can be seen with some results, textured models are also supported. The experiments

show how the texture is correctly preserved and applied in the deformed approximations. In

this way, the results obtained are much more realistic. Thanks to the high geometric quality,
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Figure 6.6: Adaptive reconstructions of a deformed zebra model.

Model Cage Def. Coord. (MB)

Faces Vert. Memory (MB) Faces Vert. MVC GC

Vase

Original 142462 71229 7.06473 36 20 10.8686 30.4323

Simplified 2848 1422 0.14112 36 20 0.21698 0.60754

CM 2848 1422 0.81929 36 20 0.21698 0.60754

Imperia

Original 199978 9992 9.91728 116 60 45.7727 134.2666

Simplified 9996 4988 0.49517 116 60 2.2833 6.6977

CM 9996 4988 0.81929 116 60 2.2833 6.6977

Table 6.1: Memory space occupied by the original, simplified and CM Imperia and Vase

models both for mesh files and for deformation coordinates (MVC and GC).
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Vase Preprocess (sec) Execution time (sec)

Faces Cage Coord. Reconstruction Deformation Total

MVC

Original 142462 3.18 - 0.22175 0.22175

Simplified 2848 0.08 - 0.00023 0.00023

CM - Level 1 11384 0.08 0.17 0.00023 0.03944

CM - Level 2 45536 0.08 0.77 0.00023 0.09602

GC

Original 142462 25.15 - 0.78417 0.78417

Simplified 2848 0.50 - 0.01286 0.01286

CM - Level 1 11384 0.50 0.17 0.01286 0.05282

CM - Level 2 45536 0.50 0.77 0.01286 0.10685

Table 6.2: Computational times for different versions of the Vase model applying a MVC

and GC deformation approach. Cage information defined in Table 6.1.

Imperia Preprocess (sec) Execution time (sec)

Faces Cage Coord. Reconstruction Deformation Total

MVC

Original 199978 13.22 - 0.44146 0.44146

Simplified 9997 0.68 - 0.01987 0.01996

CM - Level 1 39808 0.68 0.58 0.01987 0.14198

CM - Level 2 159232 0.68 2.62 0.01987 0.34971

GC

Original 199978 108.11 - 2.90368 2.90368

Simplified 9997 5.56 - 0.14031 0.14031

CM - Level 1 39808 5.56 0.58 0.14031 0.25779

CM - Level 2 159232 5.56 2.62 0.14031 0.48929

Table 6.3: Computational times for different versions of the Imperia model applying a MVC

and GC deformation approach. Cage information defined in Table 6.1.
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the correct texture adaptation and the accurate reconstructions, faithful approximations

can be generated. In addition to all these good properties, the reduced memory footprint

and the high performance of the computations makes deformable CM a potential tool in

several application fields.





Chapter 7

Conclusions and Future Work

In this dissertation we addressed the simplification, approximation and deformation of large

models, some of the main geometry processing techniques. We proposed a set of new robust

and efficient techniques that represent a step forward with respect to the state of the art.

We first developed a method for the automatic simplification of a highly detailed polyg-

onal surface model into a single faithful approximation containing fewer polygons. The

method consists, on the one hand, of weighting the QEM by a local area distortion measure

and, on the other hand, of bijective mappings that properly modify an index texture for

each edge-collapse to avoid distortions on the appearance of the simplified mesh. In this

way, the chart boundary edges are not penalized. The main benefit of this approach is that

realistic and accurate approximations of complex textured models can be generated.

Then, we presented a novel technique to encode model information in order to approx-

imate it while preserving its original shape. The method consists of two principal steps:

CM generation and CM reconstruction. The first computes local surfaces at each vertex

following the original shape of the model in a simplification process. The second exploits all

stored information and joins it properly to obtain an accurate approximation. The method

also allows sharp features to be preserved and an adaptive reconstruction to be performed.

Moreover, textured models are supported, allowing the application of colour textures and

normal mappings to recover all the original details. The versatility of the method com-

bined with the simplicity of the computations makes it a very useful tool in different fields

of application.

After the study of simplification and approximation techniques we dealt with the mesh

editing field. In this context, we have presented ∗Cages, a multi-level (hierarchical) cage-

149
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based system for spatial mesh deformations. It combines heterogeneous sets of coordi-

nates, allowing the user to define different coordinates for different neighbouring cages and

smoothly use them together in combination. With ∗Cages, any change the user makes in

one cage is kept local to the cage being modified, not requiring recomputations for the con-

tents of a different cage. This is the main advantage with respect to other mechanisms that

try to obtain more localized deformations. Moreover, in the multi-level deformation scheme

proposed, upper-level cages are used to locally control deformations in lower-level cages in

the system, allowing the passage from a whole-model deformation to a very localized one.

The use of multiple cages to control the mesh makes the use of local effects possible and

thus the computational costs are greatly reduced with respect to traditional approaches. In

general terms, ∗Cages is an extremely flexible and versatile deformation tool, which results

in a much more intuitive and user-friendly approach than the current state of the art.

Finally, we combined all the knowledge acquired previously to develop a hybrid solution

for the efficient deformation of large models. When meshes become large and complex,

the performance of the deformation methods becomes a bottleneck of the entire system.

Deformations on large meshes are desirable in applications designed to obtain real-time

performance. In recent years, several deformation methods to achieve the necessary re-

quirements for the manipulation of highly detailed models have begun to emerge. In this

context, we presented deformable CMs, a truly powerful tool for modelling and editing

surfaces that preserve the original surface details efficiently. Giving the CM the ability to

be deformable, we allow any of the existing deformation techniques to be applied in large

models. The deformations are transferred to the approximation by computing and blend-

ing local transformations at each vertex of the deformed CM base. In this simple manner,

the resulting representation provides flexibility to the results obtained since, as with CM,

textured models are supported, sharp features are preserved and adaptive approximations

can be generated. Therefore, faithful approximations at different poses of highly detailed

models are obtained with a reduced memory footprint and a high performance.

7.1 Future work

After this thesis, several new avenues for future research are open. Next, we summarize

some of them.

� In the simplification context, extending our approach to obtain a progressive mesh

[Hop96, SSGH01] of the model with all the intermediate meshes sharing a common
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texture parameterization could be significant. Because the bijective mappings can

be inverted, our simplification technique could be applied on the fly while rendering

a change in the level of detail. However, we believe that this strategy can only be

applied for simple models. Consequently, dealing with progressive meshes on large

models will be an important part of our future work.

� Study the feasibility of integrating the simplification of the scene objects on the GPU,

thus simplifying the stored information needed for data structures while preserving

the global shape. The key point to performing the simplification process under the

GPU consists of the parallelization of the edge-collapses. In this manner, each edge-

collapse would be carried out independently of the rest of the collapses during the

simplification. Moreover, the texture, the appearance attributes and the sharp fea-

tures of the model would be preserved.

� In order to provide more flexibility to the CM when dealing with models possessing

sharp features, we could define more kinds of local surfaces. In this manner, we could

better approximate the surfaces by using less information.

� Taking into account the techniques developed for the CMs, a new mesh smoothing

approach could be studied.

� After studying deformation techniques we thought about the possibility of develop-

ing a novel parameterized mesh deformation approach which would allow a set of

deformed models to be obtained, taking into account semantic attributes. In addi-

tion, we could also define a set of restrictions to limit the deformation in favour of

more ”meaningful” ones. Most of the current approaches use a database of manually

parameterized scanned models to obtain different versions of them. In contrast, we

would automatically generate the required models without the need for any kind of

database, thus avoiding manual fittings and registrations that could introduce sur-

face artefacts. As a consequence, the generation of crowds would be easier, faster and

more user-friendly than the current techniques.

� Current space deformation techniques require the construction of a cage or other 3D

structures around the entire manipulated model or part of it. Both the construction

and the manipulation of the subject model are limited to the geometry and flexibility

of the cage. The problem of automatic cage generation is an open issue that is worth

further study. A framework which would allow the construction of suitable cages

without the need for user interaction is an interesting field of study.
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� The use of ∗Cages as a way to generate some sort of mesh deformation compression

by gathering crucial information from the model over the cages could be another

interesting possibility to study. Also, along the same line of thought, we could re-use

information gathered on cages for different, but similar models using the same set

of cages. In this way, we would be able to transfer deformations between different

models, which is usually quite a complex task.

� Several steps of the algorithms presented are completely parallelizable: both the CM

generation and the CM reconstruction, in the case of CM, or local transformations for

deformable CMs. The parallelization of the computations related to the deformations

depends on the deformation method used. Taking advantage of the programmable

capabilities of the graphics hardware, we would improve (significantly decrease) the

computation time of such processes.
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66:3–45, 1999.

[DH07] M. Dehn and P. Heegaard. Analysis situs, volume III.1.1. Enzyklopäedie d.
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