Old Fault-Finding Device

- Wooden enclosure
- PLC siemens S5
- Conventional switches
- Plastic shields for the circuits
- 13 circuits and 13 possible errors
- Traditional fuses and supply
Why make a new one?

- 15 years old
- The measuring points
- Bad connections
- Safety
- Plastic stencils
- PLC program
- No labels in the wires
- Incomplete electric diagrams
New Fault-Finding Device

- Select the components
- Order the components
- Design the circuits
- Building the simulator
- Program the PLC and the TP
- Test and simulate
Select the components

- PLC Siemens S-7
- TP 177A
- PIT es 1.11 E-stop
- PSENmag 1.1 P20
- Safety relays PNOZ X2P
- Contactors LP4 K0610BW3
- Auxiliary relays C2-A20/24VDC
- Thermal overload relay LR2 K0306
- Circuit breaker DX 10 000A Curve C, DE 3000A
Select the components

- Power switch VBD-N12
- Start push buttons XB4-BA3311
- Stop push buttons XB4-BA4322
- Supply DR-SPS120W24V
- Safety Sockets SLB4-G
- Wire holders
- DIN rail
- Enclosure AE 1180/500
- Trespa plates
The PLC

- 14 inputs
- 40 outputs
- Features of the CPU’s
- Price
The Safety relays

S. Severity of injury
S1 Slight (normally reversible) injury (i.e. cut or bruise)
S2 Serious (normally irreversible) injury

F. Frequency and/or exposure time to the hazard
F1 Seldom to quite often
F2 Frequent to continuous

P. Possibility of avoiding the hazard
(generally related to the speed and frequency with which the dangerous part moves and to the distance from the hazardous part)
P1 Possible under specific conditions
P2 Scarcely possible

- Preferred category for reference points
- Possible categories which can require additional measures
- Preferred category for reference points
The Safety relays

- Emergency Stop Relays, Safety Gate Monitors
 - PNOZ e5.11p
 - PNOZ e5.13p
 - PNOZ X2P
 - PNOZ X1
 - PNOZ X7
Selection according to required electrical durability, in category AC-3 (Ue ≤ 440 V)

Control of 3-phase asynchronous squirrel cage motors with breaking whilst running.

The current broken (Ic) in category AC-3 is equal to the rated operational current (Ie) of the motor.
The Contactors

3-pole low consumption contactors

Compatible with programmable controller outputs.
LED indicator incorporated (except models LP4 K0600FW3 and LP4 K1200GW3).
Wide range coil (0.7...1.30 Uc), suppressor fitted as standard, consumption 1.8 W.

<table>
<thead>
<tr>
<th>Standard power ratings of 3-phase motors 50-60 Hz in category AC-3</th>
<th>Rated operational current in category AC-3</th>
<th>Instantaneous auxiliary contacts</th>
<th>Basic reference, to be completed by adding the voltage code (1) (2)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 V 380 V 440/500 V 440 V up to 415 V 660/690 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kW</td>
<td>kW</td>
<td>kW</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>2.2</td>
<td>3</td>
<td>6</td>
<td>1 –</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>1 –</td>
</tr>
<tr>
<td>3</td>
<td>5.5</td>
<td>4 (> 440)</td>
<td>12</td>
<td>1 –</td>
</tr>
<tr>
<td>5.5 (440)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Screw clamp connections

<table>
<thead>
<tr>
<th>Voltages</th>
<th>Screws (contactors LP1 K: 0.8...1.15 Uc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts</td>
<td>JD</td>
</tr>
</tbody>
</table>

Coil with integral suppression device available: add 3 to the code required. Example: JD3

Low consumption (contactors LP4 K: 0.7...130 Uc)

| Volts | 12 | 20 | 24 | 48 | 60 | 72 | 100 | 110 | 125 | 155 | 174 | 200 | 220 | 230 | 240 | 250 |
|--------|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Code | JW3 | ZW3 | BW3 | EW3 | SW3 | FW3 | GW3 |

(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

d.c. supply (contactors LP1 K: 0.8...1.15 Uc)

(2) For LP1 K only, when connecting an electronic sensor or timer in series with the contactor coil, select a 20 V coil (~ control circuit voltage code Z7, = control circuit voltage code ZD) so as to compensate for the incurred voltage drop.
The Supply

- DIN rail
- PLC
- Safety

- $U_{\text{out}} = 24\text{V DC}$
- $I_{\text{out}} = 5\text{A}$
- $P_{\text{out}} = 120\text{W}$
Ordering the components

- Breva
- Siemens
- Multi Contact
- B.A.G. Plastics nv
Design of the circuits

- **Old simulator circuits:**
 - 13 circuits in a soft plastic stencil
 - Structure horizontal and vertical
 - Symbols of the contacts, not professionals
 - Transform symbol in the front.
Design of the circuits

- **New simulator circuits:**
 - 5 circuits in a trespa stencil
 - Structure totally vertical and orthogonal
 - Regulated symbols
 - Supply symbol in the front
Dahlander circuit
Direct on/off switching
Pole change-over
Sequential circuit
Automatic star delta
Construction

- Mechanical
 - Construct the mounting plate
 - Hole the door and side of the enclosure
 - Mount the safety sockets, pushbuttons, E-Stop, Power switch,…
 - Design L-profile for the PSENmag
 - Mount the magnetic safety switch
Construction

- Electrical
 - Wire the power circuit
 - Wire the control circuit
 - Wire the PLC
Program

- **PLC program:**
 - New program divided in 9 FC’s:
 - FC1: Safety check
 - FC2: Circuit Selection
 - FC3, 4, 5, 6, 7: The different circuits
FC8: Relay outputs and sign lights

FC9: Outputs of the Measuring point
Program

- **TP program:**
 - WinCC program divided in 4 screens:
 - Screen n°1: Program start
 - Screen n°2: Circuit selection
 - Screen n°3: Error selection
 - Screen n°4: Information
Testing and simulating

- Test of the device:
 - Checking inside of the machine
 - Check all the safety components
 - Check all the connections.

- Simulation of the device:
 - Checking outside the machine
 - Check the Emergency Stop and the magnetic safety switch
 - Check the Push Buttons and the Touch Panel
 - Start the simulation
Conclusions

- Improvements compared with the old simulator:
 - Safety
 - More resistant enclosure
 - Stronger stencils
 - Stronger measuring point connections
 - Structured and more understandable PLC program
 - Updated systems
 - More comfortable working
 - Labelled wires
Conclusions

- Usefulness of the Fault-Finding Device:
 - Improve the knowledge
 - Faster and more efficient reactions
Thank you for your attention

Dank U well