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RESUM

Es defineix "expansid general d'operadors com una combinacid lineal de projectors 1 s’expo-
sa la seva aplicacit gencralitzada al caleul d’integrals moleculars. Com a exemple numéric,
es fa Paplicaci6 al calcul d'integrals de repuisié electranica entre quatre funcions de tipus 5
centrades en punts diferents, 1 ¢s mostren tant resultats del calcul com la definicid d’escalat
respecte a un valor de referéncia, que facilitara el procés d’optimitzacid de Uexpansié per uns
pardmetres arbitraris. Es donen resultats ajustats al valor exacte.

RESUMEN

Se define la expansion general de operadores como combinacidn lineal de proyectores y se
expone la aplicacién gencralizada al ciiculo de integrales moleculares. Un ejemplo numérico
s¢ aplica al cdleulo de integrales de repulsién electrénica entre cuatre funciones de tipo $ cen-
tradas cn puntos difcrentes, mostrando tanto resultados de cdleulos como la definicién de un
escalade con respecto 2 un valor de referencia, que facilitard el proceso de optimizacién de la
expansién para unos parimetros arbitrarios, dando resnltados ajustados al valor exacto.

ABSTRACT

A general aperator expansion as 2 lincar combination of projectors is defined, and also its
peneralized application to integral computation. As a numerical example, it has been applied
to electron repulsion integral computation between four s-type functions centered at different
points. Numerical resulis are shown and a scaling with respect 1o a reference valuc is defined,
opening an casier way to optimize the expansion for any sct of parameters, and giving accu-
rate results with this kind of integrals.

Keywords: Electron Repulsion Integrals, Integral, Gaussian Functivns, Operator, Operator Expansion,
Repulsion Operator.

INTRODUCTION

At the Institute of Computational Chemistry, our group has been studying the deve-
lopment and applications of some new theories in Quantum Mechanics [1]. In this
work, it is proposed a new methodology to obtain an operator expansion as a biline-
ar combination of projectors. As a particular case, the operator z,-* is expanded, and
this is applied to the computation of electron repulsion integrals.
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OPERATOR EXPANSION

A Projector, or Projectign Operator, can be defined as a Linear Operator P in a
vector space V such as P2 = P [2]. An Elementary Projector is a projector build
from a normalized vector | a>, as

P, =la){al (0

Any operator O can be expanded as a linear combination of elementary projectors:

6-% cla){al , @

ar]

where the { ¢ } parameters are coefficients depending on the nature of 0 and {| a>}.
In 2 more general way, the O operator can be expanded as a bilinear form as:

0-%F c.lp){al. ©

pul g=1

where the elements in the set of vectors { | p> } are functions and the expansion
coefficients { ¢_} are collected in the matrix €.
For practical purposes, the expansion is truncated at a finite number of terms:

4
6=%% o 1p) (g @

pai g=1

and thus, the C matrix will become of finite dimension. The ¢ operator can be
approximated changing the N and N, values, until the expansion is good enough
as to obtain numerical results within a desired precision. If the set of vectors {| p>}
in the expansion (4) forms a complete basis, such an approximation will become an
equality.

The expansion of the 0 operator can be applied in any expression where this
operator appears; €.g., in the computation of operator matrix elements with respect
to the same basis { | p> }. In this case, the matrix elements have the generic expres-
S10Mm:
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which can be written in matrix form as
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where the O elements are collected in the matrix 0, C is defined as above and §
has as clements the function basis set metric, § =<r | p>.

To find the expansion coefficients values, equation (7} has to be solved; so, C
matrix is computed as:

C=8708" @)

and it can be evaluated easily, because § is a definite positive matrix. Then an
inverse will always exist. This inverse matrix can be found, for example, by means
of Cholesky decomposition algorithm [3].

APPLICATION TO INTEGRAL COMPUTATION

As it has been said before, one of the applications of operator expansion may con-
sist info evaluate integrals where the implied operator appears. The example given
in this work is the development of an integral of the kind

r={o|ola)} &

where ¢ and @’ are arbitrary functions. In this integral, the expansion can be
applied, and an approximate value of the integral can be obtained:

L=(01010) (o] (33 ,lp)(al} &) - 4o
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There appear overlap integrals between the operator expansion elements and ¢ and
‘&' functions. In most cascs, an error which measures the degrec of fitting between
the approximate and the exact value, expressions (10} and (9) respectively, can be
defined. In this work the quadratic error is written as the square of the difference
between both integrals: e =(1-1)° (11)

An optimization technique can be used to minimize the quadratic error, using as
parameters the expansion functions and coefficients of the operator expansion.

ELECTRON REPULSION INTEGRALS

A numerical example is presented here: the application of the ;;\2'" operator expan-
sion to the electron repulsion integrals computation between four GTO s-type func-
tions {9}, .. As it will be seen, these integrals can be reduced to bielectronic
terms like those appearing in equation (9), where® and @ here adopt the form of s-
type gaussizn functions:
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i¢ ) =g -tlr-2? (12}

and
@) et (13)

centered at the points P and P, respectively.
Here, the projectors expanding the electronic repulsion operator are defined as
s-type normalized gaussian functions:

2 1 (14)
FRE (ﬁTe’*’:’
i

and the expansion set depends in a2 parametric form of the exponent set {o:p}.
Moreover, it must be taken into account that the expansion presented here is from
now on defined using N =~ =N in cquation {4}.

To solve equation (8}, it must be considered that the & matrix ¢lements which appe-
ar in equation (7) are defined by means of:

2 A4
0, ={p1#71q)= 4(3]" & o™

w (o, +ar,)

(15)

where | p> and <q } are functions from the original basis set. On the other hand, the
S matrix elements appearing in (7) are defined as

2¢ Y72 - (16)
s lp 10) [ 2"

0, +0t

and then, every set of projectors can determine, using equation (8), the related coef-
ficient matrix C. To compute the approximate electron repulsion integral, the
expansion obtazined substitutes the original operator in the corresponding integral.
As the exact integral value is well-known [4], see equation (15}, the definition of
the quadratic error {11} is applied here to estimate the fitting operator degree. Now,
the cxact and approximate integral values are given by

L= 1P M YT 'PP"}

Ia . (2n ¥ f:i Coq (18
Yy P (upaq)s"‘
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and
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respectively, where a, and e, are associate exponents from the set of GTO fune-
tions, and ¥ and v’ are ¢ and $' function exponents, respectively.

At this stage, an optimization of the quadratic error (11) has to be performed to
obtain the optimal operator expansion. The variational parameters in this optimiza-
tion are the coefficient set {c } and the set of projector exponents, which are collec-
ted in the vectora = (@, &, ..., ,&,).

The optimization process 1s done following Newton-Raphson method [5], compu-
ting analytically the Gradient and Hessian matrix, g and H:

aV = g-H g7 (19}

where @ and a“" are the values adepted by the exponent vector a in the optimiza-
tion steps (i} and (i+1) respectively. The g and H matrices are calculated using

. 20
:2 + oli )] '

where £ is not-squared computed error from equation (11) and I' and (i) functions
are defined as

Ll @n
( )9.!'4
and 24
O
(W = K (22)
oli E‘: o

The diagonal H matrix elements have the expression:

23
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where [and o(f) are defined as above, and ¢} is computed using

o) = S« 90 (24)
O c':i4

For non-diagonal terms { £ # f ), one has to use

(25)
H, = % or|120 g ep - Bt
dur, g, (yy P 4 (oo™

The optimization presented here gives enough accurate results even if a small
dimension in the expansion is used; in fact, N=2 is good enough for high precision
integral computation. When a good expansion is achieved, it can be used for fast
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evaluation of electron repulsion multicenter integrals.

SCALING

In practice, when the operator expansion is evaluated and applied in electron repul-
sion integrals, it is only necessary to compute the optimal coefficient and exponent
values in a reference case. That is: when y=y, Y=y° and |PP’ = |PP’] °. In this
reference case, it has been obtained a set of optimal coefficients and exponents,
noted as { &7 } and { ¢ }. When v,y exponents, or |PP’| distance are different
from the reference ones, the optimal coefficient and exponent values can be easily
computed using the set { o’ }, { ¢, } and a scale factor, in such a way that

o =02 F 26)

i Ca‘_io' \[ﬁ

The F definition can be found supposing that equation (26} is fulfilled, and evalua-
ting the quotient between the calculated and the reference integral afterwards:

I _ (£ \* PP E(v Y, IPP}) Q7)
rolyy \PP| E (", ¥°, PP

A |

(3]
n

where it has been used the function definition:

(28)
E(o, B jA]) =erf { of ]WIAI}
o+ B
The same expression for the approximate intcgrals can be found:
L (PN 2
I° 514

where condition (26) and equation (18) are used. Identifying as equalities /=/ and
I*=], the scale factor definition is obtained:

F-E(A Y PP ) PP (30)
E(y. Y, IPP'l) (PP~

It has been numerically proved that the use of the F factor is accomplished for any
dimensicn in the operator expansion without loss of précision in the integral com-
putations.
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RESULTS

The technique previously developed is used as a tool for the four-center electron
repulsion integrals computation, when the implied functions are s-type functions as
in equation (9} . Then, the integral is defined ay

(o) 50 | 23] 0rp i) ) = G

= [ otry or) £3 009 0irp dr, dry

where the expanded operator is ;;\_,-’, and the four { ¢, ¢, o, ¢, } function centers are
{A,B,C, D} respectively.

To compute this kind of integrals, it has been used the methodology developed
above, where the two functions & and ®” are now s-type GTO products. The Gaus-
sian Product Thecrem [4] can be applied over the function products depending on
the same variable to give another s-type gaussfan function centered at a point situa-
ted on the line joining the two previcus centers, and having as exponent the sum of
the two previous ones.

As reference set the used values are { y=y° = |[PP’| ® =1}, and its corresponding
expansions for N=2 and =3 are shown in Table 1.

Using a bidimensional expansion, ¥=2, the obfained results ar¢ almost the same
than exact computed values, as it is shown in Tables 2, 3 and 4. In Table 2 the
exponents are the same as the reference ones, and the four centers appearing in inte-
gral (12) are varied. In Table 3, the reference distance [PP’| is maintained constant
and the exponents are varied. More examples are given in Table 4.

The obiained error is, for all cases, the same a8 the machine precision.
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Table 1. Optimized electron repulsion operator expansions for N=2 and N=3
when reference values’ are used.

N a vecior € matrix
35.62483411703156 4B.07664287944661 -54.21292066838888
71.24966823406282 -54.21282066838888 72.43772070405760

45.70145504997865 157 8142753998670 -435.5415526261345 311.4428844657524
3 |91.40291009995983 -435.5415526261345 1372.300340250810 -1043.037546040614
137.1043651489392 311.4428844657524 -1043.037546040614 827.4261045752368

I R

" Reference values are y=y'°=|PP’|*= 1.
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Table 2. Exact and approximate values of four-center electron repnlsion integrals

CENTERS EXPONENTS INTEGRAL VALUE

Exact
Approximaie

A(0,0,0) 1

B{0,0,0} 1 3.266126743113372
€{0,0,1} 1 3.266126743113366
D{0,0,1) 1

A{0,0,0) 1

B{(0,0,0} 1 2.496276956156262
C{0,0,1.5} 1 2.496276956156257
D{0,0,1.5) 1

A{0,0.0) 1

B{(0,0,0% 1 1.928827345952527
C(0,0,2} 1 1.928827345952523
D(0,0,2} 1

A{0,0,T} 1

B(0,0,2) 1 5.10188360077207E-2
C(0,2,3) 1 5.10188360077206E-2
D{1,0,4} 1
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Table 3. Exact and approximate values of four-center electron repulsion integrals

CENTERS EXPONENTS INTEGRAL VALUES
Exact
Approximate

A{0,0,0) 1
B{0,0,0} 1 0.2807061700350193
€(0,0,1) 1 0.2807061700350187
¢0,0,1) 16
A(G0.0) 1
B(0,0,0) 2 0.3001 719339577310
C{0,0.1) 3 0.3091719339577303
D(0,0,1} 4
A(C,0,0 10
B{(,0,0) 20 3.2219639431575E-4
C{3,0.1) 30 3.2219639431575E-4
D{(0,0,1} 40
A{0,0,h 01
B(0,0,0) 0.1 1338.227622535886
C(0,0,1) 01 1338.227622535981

D(0,0,1) 0.1
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Table 4. Exact and approximate values of four-center electron repulsion integrals
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CENTERS EXPONENTS INTEGRAL VALUE
Exact
Approxumate
A(0,0,0) 1
B{0,0,1} 1 0.684938491456359
C(0,1.1) 1 0.684938491456357
D(1,1,1) 1.5
A(D,0,0} 1
B(0,0,1) 2 1.530763677257491E-4
C{1,2.4) 1 1.530763677257489E-4
D{2,1,1} 2
A(0,0,0) 01
B{2,0,1} 0.1 305.7822551729557
(1,35 0.1 305.7822551729552
D¢22.1) 0.1
A(0,0,0) 10
B{1,1,1) 2 2.462977733467594E -4
C{6,0,0) 1 2.462977733467590E-4
D(0.5,0.1,0.1) 10






