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Review

The first epidemiologic studies on the impact 
of air pollution on health were undertaken as a 
consequence of the extreme pollution episodes 
that took place in the decades from 1930 to 
1960. The association between air pollution 
and certain health variables was made clear by 
simple graphic representations or by compari-
sons of mortality rates for these time periods 
(Firket 1931; Logan 1953). Since that time, 
air pollution levels have fallen substantially, 
such that, to evaluate their effects on health, 
longer time series are required. To this end, 
epidemiologists began to use dynamic regres-
sion models in the 1970s that consisted of 
models in which the relationship between the 
dependent and explanatory variables were dis-
tributed over time, rather than being expected 
to occur simultaneously. Moreover, investiga-
tors were able to control for residual auto-
correlation, with the error being specified by 
means of autoregressive integrated moving-
average models (ARIMA). The problem with 
these types of models is that they assume that 
the dependent variable is distributed normally, 
which, in fact, is extremely rare in the daily 
outcome count variables of morbidity and 
mortality events (Saez et al. 1999).

The early 1990s saw the appearance of 
linear models based on Poisson regression, in 
which a parametric approach was used to con-
trol for trend and seasonality because the event 
counts more typically have a Poisson distribu-
tion. These models use the variable “time” and 
its transforms, quadratic and sinusoidal func-
tions (sine or cosine) of different frequency 
and amplitude, to control for the effect on the 
dependent variable (mortality or morbidity) of 
unmeasured variables that may vary seasonally, 
such as in pollen concentration, meteorologi-
cal variables, and influenza outbreaks, or that 
may have a trend, such as changes in a city’s 
population distribution, in order to ascertain 
the effect of such variables on the dependent 
variable (Saez et al. 1999). Insofar as changes 
in a city’s population pyramid are concerned, 
Poisson regression is particularly useful only 
when cases, rather than the entire popula-
tion, can be enumerated, because this form of 
regression analysis does not require knowledge 
of the denominator as long as population flux 
is in steady state (Loomis et al 2005).

Nevertheless, Poisson regression poses the 
problem that, if any of these unmeasured vari-
ables follows a cyclical component of varying 

frequency and width (as might be the case of 
pollen concentration or influenza), the para-
metric functions of time or of its sinusoidal 
transforms cannot be easily “adapted” to such 
changes. These limitations led to the develop-
ment of nonparametric Poisson regression 
with the application of generalized additive 
models (GAMs) that use nonparametric func-
tions of the variable “time” (Kelsall et  al. 
1997), which adapt flexibly to the irregular 
cyclic components of unmeasured variables 
and allow for flexible fits for important vari-
ables, such as temperature, barometric pres-
sure, and relative humidity, thus reducing any 
potential confounding due to these factors.

One difficulty with this method is that the 
number of degrees of freedom of the smoothed 
nonparametric function must be specified by 
the researcher, with discrepancies arising as 
to the most appropriate way to calculate this. 
Because inappropriate determination of the 
number of degrees of freedom can lead to bias 
in the estimates of nonparametric Poisson 
designs, epidmiologists focused on the case-
crossover (CCO) design that purported to con-
trol time trends.The CCO design was proposed 
by Maclure (1991) to identify risk factors of 
acute events; it is characterized by the fact that 
each subject serves as his or her own control by 
assessing referent exposure at a point in time 
prior to the event. By virtue of its design, this 
type of study controls for the influence of con-
founding variables that remain constant in the 
subject at both dates, that of the event and that 
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Background: Case-crossover is one of the most used designs for analyzing the health-related effects of 
air pollution. Nevertheless, no one has reviewed its application and methodology in this context. 

Objective: We conducted a systematic review of case-crossover (CCO) designs used to study the 
relationship between air pollution and morbidity and mortality, from the standpoint of methodology 
and application.

Data sources and extraction: A search was made of the MEDLINE and EMBASE databases.
Reports were classified as methodologic or applied. From the latter, the following information 
was extracted: author, study location, year, type of population (general or patients), dependent 
variable(s), independent variable(s), type of CCO design, and whether effect modification was ana-
lyzed for variables at the individual level.

Data synthesis: The review covered 105 reports that fulfilled the inclusion criteria. Of these, 
24 addressed methodological aspects, and the remainder involved the design’s application. In the 
methodological reports, the designs that yielded the best results in simulation were symmetric  
bidirectional CCO and time-stratified CCO. Furthermore, we observed an increase across time 
in the use of certain CCO designs, mainly symmetric bidirectional and time-stratified CCO. The 
dependent variables most frequently analyzed were those relating to hospital morbidity; the pol-
lutants most often studied were those linked to particulate matter. Among the CCO-application 
reports, 13.6% studied effect modification for variables at the individual level.

Conclusions: The use of CCO designs has undergone considerable growth; the most widely used 
designs were those that yielded better results in simulation studies: symmetric bidirectional and 
time-stratified CCO. However, the advantages of CCO as a method of analysis of variables at the 
individual level are put to little use.
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of the referent time, such as sex, smoking his-
tory, occupational history, and genetics. This 
design was initially used to assess the effect of 
exposures measured at an individual level (tele-
phone calls and traffic accidents, physical or 
sexual activity, and acute myocardial infarction) 
and was not applicable to exposures with a time 
trend, such as air pollution. Thus, if an inves-
tigator selected exposure control dates before 
the effect, and there was a trend, prior expo-
sures would be systematically higher or lower 
than at the date of the effect. To circumvent 
this bias, Navidi (1998) developed a variant of 
this design, bidirectional CCO, which is con-
ceptually characterized by having control time 
periods before and after the event, something 
that made it possible to control for the effect 
of long-term trend and seasonality on the vari-
able “exposure.” This design was already appro-
priate for ecologic-type exposures, such as air 
pollution, because the existence of registries 
means that the values of such exposure can be 
ascertained even after the event. In addition, 
pollution values are not affected by the presence 
of prior morbidity and mortality events. In the 
CCO design, the referent time periods rep-
resent the counterfactual exposure experience 
of the individual, had he or she not become 
sick; because in air pollution pre- and postevent 
exposure values are independent of the hazard-
period exposure, those that are postevent ref-
erent can be appropriate. One advantage of 
CCO design over Poisson regression is its abil-
ity to assess potential effect modification (i.e., 
statistical interaction) at the individual level 
rather than at the group level (Figueiras et al. 
2005). As an alternative analytic methodol-
ogy to Poisson regression, the CCO approach 
allows for direct modeling of interaction terms, 
rather than depending on multiple subgroup 
analyses (Figueiras et al. 2005).

We conducted a systematic review of the 
CCO design used to study the relationship 
between air pollution and morbidity and 
mortality, from both a methodologic and an 
applied standpoint.

Materials and Methods
We conducted a bibliographic search in 
January 2009 using the MEDLINE (National 
Library of Medicine, Bethesda, MD, USA) 
and EMBASE (Elsevier, New York, NY, USA) 
databases and the key words case-crossover*  
and pollution*; the time frame was 1999 
through 2008. From the total number of 
papers, we selected a series of reports based 
on the language used and the topic addressed 
in the title and/or abstract, thereby eliminat-
ing all that were not written in English or 
Spanish and that did not address the subject 
targeted for study. All the reports chosen in 
this way were reviewed, and additional reports 
were selected from among those cited in the 
respective references.

The reports retrieved were classified into 
two major groups: methodology reports in 
which new CCO designs were described or 
existing designs compared, generally by means 
of simulation studies, and application reports, 
in which some CCO design was applied for 
the purpose of analyzing the relationship 
between air pollution and health.

The methodology reports were in turn 
classified into those that conducted simula-
tion studies to compare CCO designs with 
one another or with other designs, such as 
Poisson time-series, and those that described 
theoretical aspects pertaining to CCO design.

From the application reports, the fol-
lowing data were obtained for comparison: 
author, study location, year, dependent 
variable(s), independent variable(s), and type 
of CCO design (unidirectional, symmetric, 
semisymmetric, or time stratified). The mod-
eling of interaction terms between pollut-
ants and the individual characteristics of the 
subjects was also assessed, to record whether 
the reports had analyzed effect modification. 
For this purpose, only interactions with sub-
jects’ individual variables were considered, 
with the following deemed ineligible: stud-
ies only reporting interactions between pol-
lutants and pollen, meteorological variables, 
or other pollutants; and stratified analyses in 
which different models were constructed for 
each subgroup and no interaction term was 
included in a single model.

Results
Figure  1 schematically depicts the results 
obtained in the bibliographic search. Of the 
total of 105 reports retrieved as a result of 
the bibliographic search, 24 addressed meth-
odological aspects of CCO design (Bateson 
and Schwartz 1999, 2001; Figueiras et  al. 
2005; Fung et al. 2003; Hajat 2003; Jaakkola 
2003; Janes et al. 2005a, 2005b; Kunzli and 
Schindler 2005a, 2005b; Lee et al. 2000; Levy 
et al. 2001a; Lu et al. 2008; Lu and Zeger 
2007; Lumley and Levy 2000; Maclure 1991; 
Maclure and Mittleman 2008; Marshall and 
Jackson 1993; Mittleman 2005, Navidi 1998; 
Navidi et al. 1999; Navidi and Weinhandl  
2002; Peters et al. 2006; Sheppard et al. 2001); 
the remaining studies applied CCO designs to 
study the relationship between different air 
pollutants and different outcome variables in 
terms of human health (Barnett et al. 2005, 
2006; Bateson and Schwartz 2004; Boutin-
Forzano et al. 2004; Carracedo-Martinez et al. 
2008; Chang et al. 2005; Checkoway et al. 
2000; Cheng et  al. 2007; D’ippoliti et  al. 
2003; Filleul et al. 2004; Forastiere et al. 2005, 
2007; Henrotin et al. 2007; Hinwood et al. 
2006; Jalaludin et al. 2008; Johnston et al. 
2007; Kan and Chen 2003; Karr et al. 2006; 
Kim et al. 2007; Kwon et al. 2001; Laurent 
et al. 2008; Lee and Schwartz 1999; Lee et al. 

2007a, 2007b, 2008; Levy et al. 2001b; Lin 
et  al. 2002, 2003, 2005; Ljungman et  al. 
2008; Luginaah et al. 2005; Maynard et al. 
2007; Medina-Ramón et al. 2006; Neas et al. 
1999; Peel et al. 2007; Perez et al. 2008; Peters 
et al. 2001, 2005; Pope et al. 2006, 2008; 
Rich et al. 2004, 2005, 2006a, 2006b; Romieu 
et al. 2004; Ruidavets et al. 2005; Schwartz 
2004a, 2004b, 2005; Ségala et al. 2008; Son 
et al. 2008; Stafoggia et al. 2008; Sullivan 
et al. 2003, 2005; Sunyer and Basagana 2001; 
Sunyer et al. 2000, 2002; Symons et al. 2006; 
Tecer et al. 2008; Tsai et al. 2003a, 2003b, 
2006a, 2006b; Villeneuve et al. 2006, 2007; 
Wellenius et al. 2005a, 2005b, 2006; Xu et al. 
2008; Yamakazi et al. 2007; Yang 2008; Yang 
and Chen 2007; Yang et al. 2003, 2004a, 
2004b, 2006, 2007; Zanobetti and Schwartz 
2005, 2006; Zeka et al. 2005, 2006).

CCO design. Of the 24 reports that 
addressed CCO design, nine conducted simu-
lation studies, one study compared the estima-
tors obtained by different methods applied to 
real data, and the remaining 14 analyzed only 
theoretical aspects of CCO design, without 
performing simulations or comparisons.

Our review of methodological aspects 
revealed a trend in CCO bidirectional designs 
with regard to the choice of control peri-
ods (Table 1). The main bidirectional CCO 
designs, in chronological order of appearance, 
were as follows: a) full-stratum CCO, one 
of the designs initially proposed by Navidi 
(1998), in which all the days of the series 

Figure 1. Identification of studies and inclusion 
criteria.

Papers potentially included in the review (n = 103)

Search of references cited (n = 2)

Papers finally included in the review (n = 105) 

Papers potentially eligible for inclusion in the 
study after perusal of their title and abstract 
(n =105) 

Papers excluded for language 
reasons (n = 2)

Papers that fulfilled search criteria in 
MEDLINE-PubMed (n = 114) and 
EMBASE (n = 95) 
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except that of the event were taken as controls; 
b)  random matched-pair CCO, which was 
also proposed by Navidi (1998) and consisted 
of taking any day of the series before or after 
the event, at random; c) symmetric CCO, pro-
posed by Bateson and Schwartz (1999), which 
consisted of taking 2 days of the series as the 
controls, one before and one after the event, 
equidistant from the latter; d) time-stratified 
CCO, a design proposed by Lumley and Levy 
(2000), consisting of taking as control one 
or more days falling within the same time 
stratum as that in which the event occurred; 
for example, if “month” is established as the 
time stratum and the event occurs on, say, a 
Monday, then this is compared with all the 
Mondays in that same month; and e) semi-
symmetric CCO, proposed by Navidi and 
Weinhandl (2002), which consists of ran-
domly choosing as control only one of the two 
controls used by symmetric CCO.

Simulation studies compare model predic-
tions based on repeated samples drawn from a 
data set that represents the entire population 
of interest and for which true values are known 
because they were determined by the investi-
gator when the data set was created in order 
to represent a scenario of interest. They com-
pare the performance of different CCO designs 
(process or manner of functioning or operat-
ing) based on such indicators as efficiency (with 
relative increases in variance or standard error 

indicating less efficiency), bias (the difference 
between the model-estimated value and the 
true value of the parameter being estimated), 
and coverage (the proportion of replicate esti-
mates that include the true value of the coef-
ficient within their 95% confidence intervals). 
Simulation studies yielded the following results, 
in chronologic order (summarized in Table 2).

Navidi (1998), in a simulation scenario 
based on real data for particulate matter (PM) 
with aerodynamic diameter ≤ 10 µm (PM10) 
and an unmeasured confounding variable 
that generated a long-term trend, conducted a 
simulation in which unidirectional was com-
pared with bidirectional full-stratum CCO 
design and observed that the bidirectional 
design resulted in less bias.

Bateson and Schwartz (1999), in a simu-
lation scenario based on real PM10 data and 
an unmeasured confounding variable that 
generated long-term trend and seasonality 
(short-term trends), conducted a simulation 
to compare Poisson time-series regression 
design against different CCO designs, such as 
unidirectional, full-stratum, random matched 
pair, and symmetric, with control periods 
ranging from 1–4 weeks before and after the 
event. The results of this simulation showed 
that, whereas the symmetric CCO design per-
formed best in terms of bias, it nevertheless 
displayed a lower efficiency (66%) than did 
the Poisson time-series designs.

Lumley and Levy (2000) compared sym-
metric with time-stratified CCO designs in a 
simulation scenario based on real black smoke 
data and an unmeasured confounding variable 
that generated long-term trend and seasonal-
ity; they observed better performance with the 
time-stratified CCO design, although both 
displayed a small degree of bias.

Lee et al. (2000), in a simulation scenario 
based on real mortality data and an unmeas
ured confounding variable that generated 
seasonality, compared unidirectional design 
with symmetric CCO and found that the lat-
ter performed better, although bias increased 
when the number of seasonality waves was 
incomplete.

Bateson and Schwartz (2001) set out to 
study the best distance at which to use control 
days in symmetric CCO design, in a scenario 
with trend and seasonality, in which all the 
variables were simulated. They studied control 
days ranging from 1–28 days before and after 
the event and observed that confounding was 
minimized when the spacing was equal to the 
period of exposure.

Levy et al. (2001a), in a simulation sce-
nario based on real black smoke data and an 
unmeasured confounding variable that gener-
ated long-term trend but no seasonality, com-
pared unidirectional with symmetric design, 
using different numbers of control periods and 
at different intervals from the event period, as 

Table 1. Comparison of different CCO designs.

Reference Type Selection of controls Advantages
Factors that can 
introduce bias Selection of controls diagram

Maclure 1991 CCO One control point before the 
effect

All possible confounding 
factors undergoing no change 
between control periods and 
effect, automatically controlled 
for by design

Long-term trends or 
seasonality

Navidi 1998 Full-stratum 
bidirectional

For each case, all the days of 
the series other than that of 
the event taken as controls

Provides control for long-term 
trends

Long-term trends (only 
partially controlled 
for) or seasonality

All series
Bateson and 

Schwartz 1999
Symmetric 

bidirectional
Two at equal distance of 

the event
Provides adequate control 

for long-term trends and 
seasonality

Navidi and 
Weinhandl 2002

Semisymmetric 
bidirectional

One chosen at random from 
the two used for symmetric 
bidirectional CCO

Provides adequate control 
for long-term trends and 
seasonality

 A
t r

an
do

m

Lumley and Levy 
2000

Time stratified One (or several) within the 
same time stratum in which 
the event occurred

Provides adequate control 
for long-term trends and 
seasonality

Calendar month

Arrows pointing up indicate case periods; horizontal arrows represent direction of time within 1 month; dashed lines indicate time periods of 1 day; vertical lines 
indicate control periods.
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well as the influence of autocorrelation (cor-
relation of a temporal series variable with its 
own previous or posterior values) between 
control periods and overlapping (bias result-
ing from the use of incorrect referent peri-
ods), and concluded that the symmetric CCO 
design performed better, with less bias when 
the distance of the control periods from the 
event was 7 days and when autocorrelation 
and overlapping were avoided.

Navidi and Weinhandl (2002) conducted 
a simulation in a scenario based on real PM10 
data and an unmeasured confounding variable 
that generated long-term trend and seasonal-
ity, in which they compared Poisson time-
series design with the following CCO designs: 
symmetric with control periods separated by 
7 days with respect to the case date, semi
symmetric with the control period separated 
by 7 days with respect to the case date, ran-
dom matched pair, and full-stratum. They 
concluded that the semisymmetric design per-
formed best.

Fung et al. (2003) conducted a simulation 
in a simulation scenario based on real PM 
with aerodynamic diameter ≤ 2.5 µm (PM2.5) 
data and an unmeasured confounding vari-
able that generated long-term trend and sea-
sonality, in which they compared Poisson 
time-series design against unidirectional, sym-
metric, and semisymmetric CCO designs. 
They concluded that, although the symmet-
ric design displayed a better performance 
in terms of bias than did the other designs  
studied, it was nonetheless similar to that of 
the Poisson time-series design, which showed 
a better coverage and statistical power thanks 
to its greater efficiency.

Figueiras et al. (2005), in a simulation 
study that used a simulation scenario based on 
real PM10 data and an unmeasured confound-
ing variable that could generate long-term 
trend and seasonality, compared the Poisson 
time-series design with a number of CCO 

designs: symmetric, semisymmetric, time 
stratified, full symmetric (14 control periods 
before and after event) analyzed by longitu-
dinal designs, and full semisymmetric (seven 
control periods before and after event) ana-
lyzed by longitudinal designs. They reported 
that the full semisymmetric design displayed 
the least bias together with the best cover-
age and statistical power but proved unstable 
when the beta value (strength of association 
between the pollutant and the event) varied 
with respect to the usual values. Although 
semisymmetric CCO displayed fewer biases 
than did symmetric or time-stratified CCO 
(both of which yielded similar results), it suf-
fered from the drawback of having a lower 
statistical power.

It is particularly interesting to note that 
three of these simulation studies (Bateson 
and Schwartz 1999; Figueiras et  al. 2005; 
Navidi and Weinhandl 2002) generated data 
for simulations using the same equations to 

determine trend and seasonality, before going 
on to use different real pollution data, such 
that comparable scenarios were investigated 
by each set of investigators.

In a separate study, Peters et al. (2006) 
analyzed a real database by means of a CCO 
and an alternative design (Poisson time-series 
design or Cox regression analysis) and then 
compared the results, observing that the time-
stratified CCO design yielded results and 
conclusions similar to those of the Poisson 
time-series design and Cox regression analysis.

CCO studies of the relationship between 
pollution and health. CCO designs are 
increasingly being applied to the task of ana-
lyzing the relationship between air pollution 
and its short-term effects on health (Figure 2). 
Tables 3–5 provide a detailed description of 
the studies published to date.

The reports published by Lee and Schwartz 
(1999) and Neas et al. (1999) were the first 
studies to report the relationship between air 

Table 2. Characteristics of the scenarios of simulation studies on CCO designs applied to the relationship between air pollution and health.

Reference Long-term trend
Short-term trend 

(seasonality) Pollutanta Event variableb
Site of real data 

collection Study period
Navidi 1998 Yes No PM10 S 10 communities in 

Southern California
1 January 1994 to 

30 December 1994
Bateson and Schwartz 1999 Yesc Yesc PM10 S Seattle 1988–1990
Lumley and Levy 2000 Yes Yes BS S King County 

(Washington)
1989–1994

Lee et al. 2000 No Yes S Mortality Seoul 1 October 1991 to  
30 September 1993

Bateson and Schwartz 2001 Yes Yes S C — 3 years
Levy et al. 2001a Yes No BS S King County 

(Washington)
3 October 1988 to  

25 June 1994
Navidi and Weinhandl 2002 Yesc Yesc PM10 S Denver 1989–1992
Fung et al. 2003 Yes Yes PM2.5 S Toronto 1981–1993
Figueiras et al. 2005 Yesc Yesc PM10 S Barcelona 1995–1997

—, simulation site only.
aBS, black smoke; PM2.5, PM with aerodynamic diameter ≤ 2.5 µm; PM10, PM with aerodynamic diameter ≤ 10 µm; S, simulated. bS, simulated (variable generated mathematically on 
the basis of other variables that enter into the simulation); C, created (variable generated artificially, although not on the basis of other variables that enter into the simulation). cThe 
simulations by Bateson and Schwartz (1999), Navidi and Weinhandl (2002), and Figueiras et al. (2005) share the same simulation scenario, in the sense that these authors use the same 
equation to generate trend and seasonality in the data series.  

Figure 2. Trend in the use of different CCO methods for analyzing the short-term relationship between air 
pollution and health.
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pollution and mortality using a CCO design. 
These studies performed a reanalysis of the 
effects of air pollution and mortality in the 
cities of Philadelphia and Seoul, respectively, 
and obtained a relationship that proved sta-
tistically significant. These results are similar 
to those previously obtained with the Poisson 
time-series design and thus strengthen the 
relationship of causality, inasmuch as the same 
relationship was observed when different sta-
tistical methods were applied.

Analysis of which CCO designs were 
most commonly used in the published reports 
showed that 7.7% of these were unidirectional 
and the remainder bidirectional. The most fre-
quently used bidirectional designs were sym-
metric (42.2% of studies) and time stratified 
(48.9% of studies). The semisymmetric bidi-
rectional design was used in only one study. 
Figure 2 depicts the time trend in the use of 
the different CCO designs. Although unidirec-
tional designs were used in the initial period, 
they were gradually discarded. Most of the 
published studies used a 1-day control period, 
but six studies used a 1-hr control period.

Most of the studies that employed sym-
metric CCO designs used day 7 before and 

after the event as the control days (n = 23), 
although a variety of other schemes were also 
used (Table 3). Studies that used time-stratified 
CCO typically selected a control day on the 
same day of the week during the same month as 
the event, although other schemes (e.g., select-
ing days during the same month with compa-
rable temperature) were also used (Table 4). 
Studies that used unidirectional CCO designs 
used a variety of schemes to select control days 
(e.g., day 7 before the event) (Table 5). 

The dependent variables studied were mor-
tality related in 25 cases and morbidity related 
in the remainder: hospital admissions in 35 
studies, hospital emergencies in 7  studies,  
episodes of arrhythmias recorded in pace
makers in 5 studies, telephone calls to medical 
emergencies in 2  studies, and others based 
on disease-specific registers, such as stroke 
(1 study), cardiac arrest (3 studies), and isch-
emic heart disease (2 studies). 

In 77 studies, the air pollutant ana-
lyzed was particulate level, mostly measured 
as PM10 (61  studies), followed by PM2.5 
(22 studies), black smoke (11 studies), haze 
coefficient (3 studies), total suspended PM 
(4 studies), sulfate particles (1 study), and PM 

with aerodynamic diameter < 7mm (1 study). 
Insofar as gaseous air pollutants were con-
cerned, sulfur dioxide was used on 47 studies, 
nitrogen dioxide on 48, ozone on 44, carbon 
monoxide on 43, and oxides of oxygen (Ox), 
oxides of nitrogen (NOx), and nitrogen oxide 
on 1 study each.

In most cases, the general population was 
studied. Patients were studied in only 9 studies:  
cardiac pacemaker carriers in 5, chronic 
obstructive pulmonary disease patients in 
2, and asthma and heart failure patients in 
1 study each.

Of all the studies that addressed applica-
tion of CCO designs, 11 (13.6%) made use 
of analysis of effect modification of variables 
at the individual level.

Common steps and requirements for CCO 
study designs. The procedures followed in con-
ducting a study into the relationship between 
air pollution and health, taking all reports on 
CCO design methodology and application 
into account, are outlined in the Appendix.

In brief, CCO studies begin by confirm-
ing that data meet a series of necessary requi-
sites and end with a sensitivity analysis, after 
passing through a series of intermediate steps 

Table 3. Studies of air pollution health effects using symmetric CCO.

Reference Countrya Study populationb Control periodc Exposured Outcome variablee

Neas et al. 1999 US GP Days (± 7, 14, 21) TSP Nonaccidental M
Sunyer et al. 2000 Sp P with COPD > 35 years of age Days (± 7) BS Nonaccidental M
Sunyer and Basagana 2001 Sp P with COPD > 35 years of age Days (± 7) PM10, CO, NO2, O3 Nonaccidental M
Kwon et al. 2001 SK P with heart failure Days (± 7, 14) PM10, CO, NO2, SO2, O3 Nonaccidental M
Yang et al. 2003 Ca GP < 14 and > 65 years of age Days (± 7) COH, CO, NO2, SO2, O3 HA due to respiratory disease
Tsai et al. 2003a Chi GP Days (± 7) PM10, BS, CO, NO2, SO2, O3 HA due to stroke
Tsai et al. 2003b Chi GP Days (± 7) PM10, BS, CO, NO2, SO2, O3 Nonaccidental M
Lin et al. 2003 Ca GP > 6 and < 12 years of age Days (± 14) CO, NO2, SO2, O3 HA due to asthma
Yang et al. 2004a Chi GP Days (± 7) PM10, CO, NO2, SO2, O3 Nonaccidental M
Yang et al. 2004b Chi GP Days (± 7) PM10, CO, NO2, SO2, O3 HA due to cardiovascular cause
Bateson and Schwartz 2004 US GP > 65 years of age Days (± 6–14) PM10 HA due to cardiac or respiratory cause
Rich et al. 2004 Ca P with pacemaker Days (± 7) PM10, SO2, NO2, O3 Cardiac arrhythmias
Chang et al. 2005 Chi GP Days (± 7) PM10, NO2, CO, O3 HA due to cardiovascular cause
Luginaah et al. 2005 Ca GP Days (± 14) PM10, COH, NO2, SO2, CO, O3 HA due to respiratory cause
Barnett et al. 2005 Au, NZ GP < 14 years of age Days (± 2–14) PM10, PM2.5, COH, NO2, SO2 HA due to respiratory cause
Lin et al. 2005 Ca GP < 14 years of age Days (± 14) PM10, PM2.5, SO2, CO, NO2, O3 HA due to respiratory infection
Yang et al. 2006 Chi GP Days (± 7) PM10, SO2, CO, O3, NO2 Postneonatal M
Tsai et al. 2006b Chi GP Days (± 7) PM10, SO2, CO, O3, NO2 HA due to asthma
Tsai et al. 2006a Chi GP Days (± 7) PM10, SO2, CO, O3, NO2 Postneonatal M
Cheng et al. 2007 Chi GP Days (± 7) PM10, SO2, CO, O3, NO2 HA due to pneumonia
Lee et al. 2007b Chi GP Days (± 7) PM10, SO2, CO, O3, NO2 HA due to heart failure
Yang and Chen 2007 Chi GP Days (± 7) PM10, SO2, CO, O3, NO2 HA due to COPD
Yang et al. 2007 Chi GP Days (± 7) PM10, SO2, CO, O3, NO2 HA due to asthma
Lee et al. 2007a Chi GP Days (± 7) PM10, SO2, CO, O3, NO2 HA due to COPD
Kim et al. 2007 SK GP Days (± 7), days (± 7, 14) PM10, SO2, CO, O3, NO2 HE due to asthma
Henrotin et al. 2007 Fr GP Days (± 7, 14, 21, 28) PM10, SO2, CO, O3, NOx Stroke
Ségala et al. 2008 Fr GP < 3 years of age Days (± 7–8, 14–15) PM10, BS, SO2, NO2 HE due to bronchiolitis
Yang 2008 Chi GP Days (± 7) PM10, SO2, NO2, CO, O3 HA heart failure
Tecer et al. 2008 Tu GP < 14 years of age Days (± 7–14) PM10, PM2.5 HA respiratory diseases
Carracedo-Martinez et al. 

2008
Sp GP Days (± 7) BS, SO2 ETC due to respiratory and 

cardiovascular causes
Son et al. 2008 SK GP Days (± 7), days (± 7, 14), 

days (± 7, 14, 21)
PM10, SO2, NO2, CO, O3 Postneonatal M

aAu, Australia; Ca, Canada; Chi, China; Fr, France; NZ, New Zealand; SK, South Korea; Sp, Spain; Tu, Turkey; US, United States of America. bCOPD, chronic obstructive pulmonary 
disease; GP, general population; P, patients. cInterpretation of control periods: days (±7), 7th day before and after the case; days (±7, 14), days 7 and 14 before and after the case; days 
(± 7–14), days 7–14 before and after the case. dBS, black smoke; CO, carbon monoxide; COH, PM measured as haze coefficient; NO2, nitrogen dioxide; NOx, nitrogen oxide; O3, ozone; 
PM10, PM with aerodynamic diameter ≤ 10 µm; PM2.5, PM with aerodynamic diameter ≤ 2.5 µm; SO2, sulfur dioxide; TSP, total suspended PM. eETC, emergency telephone calls; HA, hos-
pital admission; HE, hospital emergency; M, mortality.
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that include the transformation of the data-
base into a matrix with CCO structure.

Discussion
This is the first systematic review to cover 
the application of CCO designs to the study 
of the health effects of air pollution. Use of 
CCO designs has risen steeply in recent years 
and from 2003 in particular, reaching a peak 
in 2006. Most of the new CCO designs that 

gradually appeared were based on simulation 
studies, which in many cases neither relied 
on the same scenarios nor assessed perfor-
mance for variables with special characteris-
tics, for example, discontinuous exposures. 
Most application studies have tended to study 
the effect of particulates on morbidity, yet few 
studies have taken advantage of the strength 
of CCO designs to assess potential effect 
modifications with individual variables.

CCO versus Poisson. The increase in the 
use of the CCO design appears to coincide 
with problems using Poisson regression mod-
els with GAM: as far back as 2002, Dominici 
et al. (2002) discovered that the most fre-
quently used statistical packages gave rise to 
unstable estimators due to inadequate con-
vergence criteria that could underestimate 
standard errors because of the presence of 
concurvity in the data (Ramsay et al. 2003). 

Table 4. Studies of air pollution health effects using time-stratified CCO.

Reference Countrya Study populationb Control periodc Exposured Outcome variablee

Checkoway et al. 2000 US GP  =month, =weekday BS, PM10, SO2, CO Cardiac arrest
Levy et al. 2001b US GP  =month, =weekday PM2.5, PM10 Cardiac arrest
Sunyer et al. 2002 Sp Asthmatic P > 14 years 

of age
 =month, =weekday PM10, BS, CO, NO2, SO2, O3 M due to asthma

Sullivan et al. 2003 US GP  =month, =weekday PM10, CO, SO2 Cardiac arrest
D’Ippoliti et al. 2003 Ita GP  =month, =weekday TSP, CO, NO2, SO2 HA due to myocardial infarction
Schwartz 2004b US GP  =month, =weekday PM10 M accidental
Romieu et al. 2004 Mex GP >1 month and  

< 1 year of age
 =month, =weekday PM10 M due to respiratory cause

Schwartz 2005 US GP =month, days =temperature O3 Nonaccidental M
Sullivan et al. 2005 US GP  =month, =weekday PM10, PM2.5, SO2, CO Myocardial infarction
Wellenius et al. 2005a US GP > 65 years of age  =month, =weekday PM10, CO, NO2, SO2, O3 HA due to heart failure
Rich et al. 2005 US P with pacemaker  =month, =weekday, =hour PM2.5 Cardiac arrhythmias
Forastiere et al. 2005 Ita GP  =month, =weekday PM10, CO, NO2, O3 Out-of-hospital cardiovascular M
Zanobetti and Schwartz 

2005
US GP  =month, =weekday PM10 HA due to myocardial infarction

Zeka et al. 2005 US GP  =month, =weekday PM10 Nonaccidental M
Wellenius et al. 2005b US GP  =month, =weekday PM10, SO2, CO, NO2 HA due to stroke
Pope et al. 2006 US GP  =month, =weekday PM2.5, PM10 Ischemic coronary events
Villeneuve et al. 2006 Ca GP > 65 years of age  =month, =weekday PM10, PM2.5, SO2, CO, O3, 

NO2

HE due to ischemic stroke

Symons et al. 2006 US GP  =month, =weekday PM2.5 HA due to heart failure
Zeka et al. 2006 US GP  =month, =weekday PM10 Nonaccidental, cardiovascular 

and respiratory M
Medina-Ramon et al. 2006 US GP  =month, =weekday PM10, O3 HA due to pneumonia, COPD
Rich et al. 2006b US P with pacemaker  =month, =weekday, =hour BS, PM2.5, SO2, CO, O3, NO2 Paroxysmal auricular fibrillation 

Ep
Wellenius et al. 2006 US GP > 65 years of age  =month, =weekday PM10 HA heart failure
Karr et al. 2006 US GP < 1 year of age  =month, =weekday PM2.5, CO, NO2 HA due to bronchiolitis
Rich et al. 2006a US P with pacemaker  =month, =weekday, =hour PM2.5, SO2, CO, O3, NO2 Ventricular arrhythmia Ep
Zanobetti and Schwartz 

2006
US GP > 65 years of age  =month, days =temperature PM2.5, BS, CO, O3, NO2 HA due to myocardial infarction 

and pneumonia
Hinwood et al. 2006 Au GP  =month, =weekday BS, PM10, PM2.5, CO, O3, 

NO2

HA due to cardiovascular and 
respiratory disease

Barnett et al. 2006 Au, NZ GP > 15 years of age  =month, all days but day ±1 PM10, PM2.5, SO2, CO, O3, 
NO2

HA due to cardiovascular causes

Forastiere et al. 2007 Ita GP  =month, =weekday PM10 Nonaccidental M
Peel et al. 2007 Ca GP  =month, =weekday PM10, SO2, CO, O3, NO2 HE due to cardiovascular causes.
Johnston et al. 2007 Au GP  =month, =weekday PM10 HA due to cardiovascular and 

respiratory causes
Maynard et al. 2007 US GP  =month, all days but 2 days between BS, sulfate particles Nonaccidental, cardiovascular 

and respiratory M
Yamakazi et al. 2007 Jap GP > 65 years of age  =month, =weekday, =hour PM7, NO2, Ox M due to stroke
Jalaludin et al. 2008 Au GP > 1 and < 14 years 

of age
 =month, all days PM10, PM2.5, SO2, NO2, 

O3, CO,
HE due to asthma

Perez et al. 2008 Sp GP  =month, =weekday PM10, PM2.5 Nonaccidental M
Laurent et al. 2008 Fr GP  =month, =weekday PM10 SO2, NO2, O3 ETC due to asthma
Lee et al. 2008 Chi GP  =month, =weekday PM10, SO2, NO2, CO, O3 HA heart failure
Pope et al. 2008 US GP  =month, =weekday PM10, PM2.5 HA heart failure
Ljungman et al. 2008 Sw P with pacemaker  =month, =weekday, =hour PM10, NO2 Ventricular arrhythmia Ep
Stafoggia et al. 2008 Ita GP > 35 years of age  =month, all days but 1 day between PM10 Nonaccidental M
aAu, Australia; Ca, Canada; Chi, China; Fr, France; Ita, Italy; Jap, Japan; Mex, Mexico; NZ, New Zealand; Sp, Spain; Sw, Sweden; US, United States of America. bGP, general popula-
tion; P, patients. cControl periods: =month, =weekday, all the days of the same month as that of the case, which was the same day of the week; =month, =weekday, =hour, hours that 
coincide with those of the case, on days in the same month as the case, which were the same days of the week; =month, days =temperature, days in the same month as and having 
a temperature equal to that of the case date; =month, all days but 2 days between, all days in the same month as that of the case except 2 days between each control day. dBS, black 
smoke; CO, carbon monoxide; NO2, nitrogen dioxide; O3, ozone; PM10, PM with aerodynamic diameter ≤ 10 µm; PM2.5, PM with aerodynamic diameter ≤ 2.5 µm; SO2, sulfur dioxide; TSP, 
total suspended PM. eEp, episode; ETC, emergency telephone calls; HA, hospital admission; HE, hospital emergency; M, mortality.
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In part, the CCO design represents a solution 
to the problems posed by GAM methods, but 
before it can become generalized, a period of 
time is required. For instance, we observed 
no marked increase in the use of these designs 
until some years after the discovery of GAM-
related problems; a peak in use occurred 2 
years after the discovery of the problems of 
concurvity (analog to collinearity for non-
linear relationships). Currently, other (e.g., 
geographic) methods are also being used to 
analyze the link between air pollution and 
health (Zeger et al. 2008).

Different CCO designs and their evolu-
tion. We observed an ongoing effort to per-
fect the CCO design dating from the initial 
unidirectional design up to the bidirectional 
designs with their subtypes. Successive simu-
lation studies have focused on studying the 
designs that yielded the best results in pre-
vious simulations. Symmetric bidirectional 
CCO and time-stratified CCO most often 
proved to be best in different simulations. In 
contrast, the semisymmetric design yielded 
contradictory results: in some simulation 
studies it proved better than the symmetric 
design, but other studies gave opposite results 
(Fung et al. 2003), which could be due to 
differences in the simulation scenario. One 
consistent finding, however, is that the statis-
tical efficiency of semisymmetric CCO is low 
compared with that of the symmetric or time-
stratified CCO methods.

The rapid adoption of symmetric and 
time-stratified CCO designs is noteworthy, 
in that these began to be applied in the very 
same year in which their methodology was 
first proposed in the scientific literature. In 
contrast, the semisymmetric CCO design was 
first proposed in 2002, yet the first report 

in which it was used to analyze the relation-
ship between air pollution and health was  
published in 2004.

One possible explanation for the fact that 
different designs are used in practice is that they 
were discovered at different points in time: uni-
directional were described before bidirectional 
methods, and within bidirectional methods, 
symmetric was described before time-stratified 
CCO. Unidirectional methods are being used 
less frequently because of important disadvan-
tages, such as poor control of trends. 

Of the three bidirectional methods, semi-
symmetric is used very little because of its 
negligible statistical power. Symmetric and 
time-stratified designs had a similar percent-
age of use, with a trend toward greater use of 
time-stratified designs, possibly because, from 
a theoretical point of view, they solve the 
“overlap bias” that symmetric designs other
wise display. However, simulation studies are 
not conclusive when it comes to comparing 
time-stratified with symmetric designs; for 
example, in their simulation study, Lumley 
and Levy (2000) reported that the time- 
stratified method was superior, but Figueiras 
et al. (2005) did not find this method to be 
better than the symmetric CCO.

The fact that the CCO designs most often 
used to analyze the relationship between air 
pollution and health are symmetric and time 
stratified, plus the rapid adoption of these 
same two models (they began to be used 
in the same year as they were proposed in 
the literature), together indicate that there 
is an interest in the correct application of 
this methodology. Control periods most fre-
quently used for the symmetric design are 
7 days before and after case, and for the time-
stratified design, control periods are all the 

same days of the week as the case within the 
same month. Thus, these two approaches pre-
vent problems of autocorrelation, and control 
for effect of day of the week.

Interpretation of application studies. In 
studies that use the CCO design to analyze the 
relationship between air pollution and health, 
the most frequently used exposure is that of 
hospital admissions. The greater use of hospi-
tal admissions than mortality as an outcome 
may be because, on the one hand, the hospital 
admission variable entails a greater number 
of events, thereby affording greater statistical 
power, and on the other hand, the time period 
from exposure until the event is shorter for 
hospital admissions than for mortality, thereby 
requiring a smaller number of lags, thus facili-
tating statistical analysis (American Thoracic 
Society 1985). The type of pollutant most fre-
quently analyzed with CCO designs is air-
borne particulates, possibly because these have 
been widely studied and because exposure 
data are readily available. In terms of type of 
population, these studies seldom target dis-
eased populations but focus instead on general 
populations, possibly because of the difficulty 
of obtaining records for a specific disease 
population (Filleul et al. 2004).

Lessons learned and new challenges. 
Although the application of nonparametric 
Poisson models amounted to a great advance 
over earlier designs, enabling more flexible 
control of unmeasured confounding variables 
that change over time, the problems detected, 
such as the difficulty in setting the number of 
degrees of freedom, seem to have heightened 
interest in other alternatives, such as CCO. 
These approaches make it possible to con-
trol for the influence of trend and seasonality 
by design. Initially, these designs resulted in 

Table 5. Studies of air pollution health effects using multiple CCO designs or those other than symmetric or time stratified.
Reference Countrya Study populationb Type of CCO designc Exposured Outcome variablee

Lee and Schwartz1999 SK GP U(–7d); U(–7, 14d); U(+7d); U(+7, 14d); SB(± 7d) TSP, SO2, O3 Nonaccidental M
Peters et al. 2001 US GP U(–2, 3, 4d) PM2.5 Myocardial infarction
Lin et al. 2002 Ca GP 6–12 years of age U(–14d); SB(± 14d) PM10, PM2.5 HA due to asthma
Kan and Chen 2003 Chi GP U(–7, 14, 21d); SB(± 7, 14, 21d) PM10, NO2, SO2 Nonaccidental M
Filleul et al. 2004 Fr GP > 65 years of age SSB(± 7d) BS Nonaccidental M and 

cardiovascular M
Boutin-Forzano et al. 2004 Fr GP > 3 and < 49 years 

of age
U(–7d) SO2, NO2, O3 HE due to asthma

Schwartz 2004a US GP SB(± 7d); TS(m, d =T) PM10 Nonaccidental M
Ruidavets et al. 2005 Fr GP U(–7, 14, 21, 28d); SB(± 7d) O3, SO2, NO2 HA due to myocardial 

infarction
Peters et al. 2005 Ger GP U(–(1–3)d ); U(–(1–3)d, =h); SB(± 7, 14d); 

SB(± 7, 14d, =h); SB(± 7–14d); SB(± 7–14d, =h); 
TS(m, =wd) ; TS(m, =wd, =h)

PM10, PM2.5, TSP, 
SO2, CO, NO, 
NO2, O3

HA due to myocardial 
infarction

Villeneuve et al. 2007 Ca GP SB(± 7, 14d); TS(m, =wd) PM10, PM2.5, SO2, 
CO, O3, NO2

HE due to asthma

Xu et al. 2008 US GP SB(± 7, 14d); TS(m, =wd) PM10, SO2 HA respiratory and  
cardiovascular diseases

aCa, Canada; Chi, China; Fr, France; Ger, Germany; SK, South Korea; US, United States of America. bGP, general population; P, patients. cSB, symmetric bidirectional CCO; SSB, semi-
symmetric bidirectional CCO; TS, time-stratified CCO; U, unidirectional CCO. Interpretation of control periods: (±7d), 7th day before and after the case; (±7; 14d), days 7 and 14 before and 
after the case; (±7–14d), days 7–14 before and after the case; (m, =wd), all the days of the same month as that of the case, which was the same day of the week; (m; =wd; =h), hours that 
coincide with those of the case, on days in the same month as the case, which were the same days of the week; (m; d =T), days in the same month as and having a temperature equal 
to that of the case date; U(–7d), one control day, 7 days before the case. dBS, black smoke; CO, carbon monoxide; NO2, nitrogen dioxide; O3, ozone; PM10, PM with aerodynamic diam-
eter ≤ 10 µm; PM2.5, PM with aerodynamic diameter ≤ 2.5 µm; SO2, sulfur dioxide; TSP, total suspended PM. eHA, hospital admission; HE, hospital emergency; M, mortality.
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certain biases in the estimators under very 
specific conditions, which were superseded 
by new control period sampling designs, 
although a decision must still be made as to 
precisely what is the most appropriate time 
interval between case and control periods.

In principle, CCO designs seem easier to 
model and involve fewer arbitrary decisions 

for the researcher than do Poisson time-series 
designs with GAM (type of smoother, num-
ber of degrees of freedom), yet CCO designs 
also entail arbitrariness in the selection of ref-
erence periods or sampling method.

There are no known study characteristics 
that would favor using one referent period 
over another, because the heterogeneity of 

the simulation studies in terms of their sce-
narios and results renders it impossible to 
draw any conclusion in this regard. Likewise, 
simulation studies have tended to concen-
trate on PM, and no simulation study assesses 
the latter’s behavior in discontinuous expo-
sures (e.g., a high-ozone day). In this type of 
exposure where high proportions of cases and 
controls assume a value of zero, Poisson time 
series might, from a theoretical point of view, 
perform better than CCO methods, because 
the comparisons are made in the same per-
son and, when the case and control periods 
have the same value, provide no statistical 
power when analyzed with conditional logistic 
regression. However, we are not aware of any 
simulation studies that have tested whether 
this assumption has any relevance in practice.

Theoretically, one of the great advantages 
of CCO designs is that individual data can be 
included to estimate effect modifications, but 
in practice most CCO-based studies on the 
relationship between air pollution and health 
do not analyze effect modification at the indi-
vidual level. The scant use of this advantage 
might be due to the lack of availability of data 
at this level (Filleul et al. 2004).

Furthermore, thanks to the CCO design, 
we have more scientific evidence of the short-
term association between air pollution and 
health, because at times reanalyses using CCO 
methodology have been run on data previ-
ously analyzed with Poisson methods, and 
similar results have been obtained (Lee and 
Schwartz 1999).

One possible challenge is the applica-
tion of mixed models to the analysis of CCO 
designs, something that, on the one hand, 
could furnish greater statistical power and, 
on the other, could extend CCO designs to  
spatial-temporal models. Figueiras et  al. 
(2005) attempted to apply longitudinal mod-
els to CCO designs but observed that, in the 
presence of autocorrelation, estimates might 
be biased. New approaches in this field could 
solve these problems.

From the standpoint of statistical analysis, 
Lu et al. (2008) have proposed that CCO 
models should be checked to see if assump-
tions for using CCO methodology were satis-
fied, via a series of diagnostic tools such as 
plotting the data. In practice, however, we 
have detected no CCO study on the relation-
ship between air pollution and health that 
checked the models. Furthermore there are no 
formulas for calculating sample size (or statis-
tical power) in CCO designs, and indeed, 
one study (Symons et  al. 2006) applied a 
simulation to calculate the lower bound of 
detectable effects. A possible risk of CCO 
designs lies in “model shopping,” whereby 
multiple analyses are performed using differ-
ent designs, and only the most interesting are 
then shown (Mittleman 2005). This problem 

Appendix: Applying CCO Designs to Study the Relationship 
between Air Pollution and Health
The steps to be followed to conduct a study into the relationship between air pollution and 
health, taking all reports on CCO design methodology and application into account, can be 
summarized as follows:

1. �Confirm that the study variables meet the conditions for being able to study the asso-
ciation using a CCO:
a. �Exposure variables must be transitory (prolonged exposures such as radon would not 

be valid).
b. Event variables must be acute (events such as cancer would not be valid).
c. Proportion of missing data must be small.

2. The databases obtained can be classified into one of the following types:
a. Contain only ecologic temporal cluster data.
b. Contain ecologic temporal and spatial cluster data.
c. �Individual data available—this enables effect modification to be subsequently stud-

ied at the level of variables having characteristics pertaining to individuals.
3. �For exposure variables, compute the individual (0, 1, 2, 3) or combined lags (0, 1, 2–3 . . .) 

depending on the nature of the dependent variable (longer lags are needed for mortality 
than for morbidity variables).

4. �Transform the database into a matrix with a CCO structure, that is, with as many 
strata as there are events, and in each stratum there is a case period that would be 
formed by exposure at the time of the event (or the corresponding lag) and one (or 
more) control periods that would be formed by exposure in the periods selected as 
controls (e.g., in a symmetric CCO design, these could be day 7 before and after the 
event). For an ecologic database consisting solely of temporal cluster data, calculations 
are simplified because:
a. �There are macros in S-Plus that transform an ecological matrix into a symmetric 

CCO, semisymmetric CCO, or time-stratified CCO (these may be requested from 
the corresponding author).

b. �There is the possibility of conducting CCO studies using an ecologic matrix, with 
weighting for the daily number of events in the regression models. The advantages 
are that transformation into a CCO matrix is not necessary, the size of the database 
is smaller, and computing time is shorter.

5. �To relate dependent and independent variables, perform the statistical analysis accord-
ing to the following steps:
a. �Construct a baseline model by introducing variables, such as temperature, ambient 

humidity, and atmospheric pressure. For these types of environmental variables, 
nonlinear risk exposure relationships might have to be checked. For the purpose, 
use can be made of different smoothers, such as natural splines, penalized splines, 
or smoothing splines. To decide whether a variable is retained in the model or the 
number of degrees of freedom of the smooth function, use the minimization crite-
rion of the Akaike information criterion (Figueiras and Cadarso-Suarez 2001).

b. �Construct the single-pollutant models by adding the pollutants to the baseline 
model.

c. �Construct the multipollutant models by adding those pollutants to the baseline 
model that have obtained a given p-value in the single-pollutant model.

d. �Analyze possible effect modification by reference to the statistical significance of the 
interaction term.

e. Analyze statistical power (Symons et al. 2006).
6. Check the models according to the method proposed by Lu et al. (2008).
7. �Conduct a sensitivity analysis by analyzing the models using another type of CCO 

design or even a Poisson time series.
8. Report the results obtained.
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can be solved, in part, by means of a sensitiv-
ity analysis, in which the authors show the 
results obtained with different CCO methods, 
and even compare the results against a gener-
alized linear model with a Poisson response.

Limitations of our review. In assessing 
the reports that use effect modification with 
individual data, we encountered difficulties 
regarding use of different terminologies: some 
used the term “modification” to classify what 
is in reality “stratification into subgroups”; 
others referred to stratification but did not 
clarify whether different statistical models 
were used for each group of subjects of the 
variable “stratification,” or whether an inter-
action term was introduced into the model 
to assess effect modification. Furthermore, as 
with any systematic review, publication bias 
may be present.

Conclusions
The CCO design could be an attractive alter-
native to Poisson time-series analysis with 
GAM, but its advantages and drawbacks are 
still in the process of being understood. The 
use of CCO designs to study the relation-
ship between air pollution and health has 
experienced a great upsurge, but with few 
exceptions, full advantage has not been taken 
in terms of effect modification or spatial- 
temporal analyses. Moreover, although a 
number of simulations have been conducted 
to study the performance of CCO designs, 
the performance of discontinuous exposures, 
such as ozone, remains to be studied. A fur-
ther, very important challenge would be to 
undertake an in-depth longitudinal analysis of 
CCO designs, which would enhance their sta-
tistical power and enable them to be applied 
to spatial-temporal models.
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