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A NOTE ON THE PERIODIC ORBITS
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Abstract. This paper deals with the relationship between the periodic orbits
of continuous maps on graphs and the topological entropy of the map. We
show that the topological entropy of a graph map can be approximated by the
entropy of its periodic orbits.

1. Introduction

The notion of topological entropy appeared early in the sixties (see [1]). It is
defined for continuous maps on compact metric spaces and is a quantitative measure
of the dynamical complexity of the map. It is an important topological invariant.

There are some properties of the dynamical behavior of the maps which are
controlled by the topological entropy. For instance, it measures the exponential
growth rate, when n tends to infinity, of the number of different orbits of length
n if we use certain precision to distinguish two orbits (see [6]). For a piecewise
monotone map f of the interval, it measures also the exponential rate of increase
with n of the number of maximal intervals of monotonicity of fn (see [10]).

We are interested in relating periodic orbits and topological entropy. For contin-
uous maps on the interval, to every periodic orbit P of f we can associate a number
h(P ) which is the topological entropy of the “connect-the-dots” map corresponding
to P or the “linearization” of P . In fact, this entropy corresponds to the infimum
of the entropies of all maps exhibiting orbits with the same combinatorics as P (see
Corollary 4.4.7 of [2]).

In the interval case it is possible to show that the entropy of any map f is
the supremum of the values h(P ) corresponding to all the periodic orbits P of
f . Furthermore, for each n, we can take this supremum only over the orbits of
period k > n. This result was stated by Takahashi [12] and proved with the
assumption that f is piecewise monotone. In the general case it was also proved in
an independent way by Block and Coven [5] and Misiurewicz and Nitecki [9].

Since the topological entropy is usually considered as a measure of the degree of
chaos, a natural problem is developing algorithms for calculating it (see [7], [11] or
[4]). These algorithms are based on different properties of the entropy and some of
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them take into account the existence of periodic orbits (see, for instance, [5]) and,
in particular, properties like Takahashi’s result.

In this paper we show that an analogous relation between periodic behavior
and topological entropy is satisfied for continuous maps on graphs. It has been
motivated by a question posed by S. Kolyada and N. Snoha to the first author. To
this end we introduce some basic notation and state in detail the main result of the
paper.

A (finite) graph G is a compact connected Hausdorff space which contains a
finite non-empty set V (the set of vertices), such that every connected component
of G \ V is homeomorphic to an open interval of the real line. These connected
components are called edges. Given a point x ∈ V , the number of edges whose
boundaries contain x (with the edges whose closures are homeomorphic to a circle
counted twice) will be called the valence of x. We will denote the set of points of
valence larger than 2 by B(G) (the set of branching points). Since any graph can
be embedded in R3, in what follows we will consider each graph endowed with the
topology induced by the topology of R3.

We shall call a set J ⊂ G an interval if there is a homeomorphism φ : I −→ J ,
where I is [0, 1], (0, 1], [0, 1) or (0, 1), and there are no vertices in J except perhaps
φ(0) and φ(1). The set φ((0, 1)) will be called the interior of J and will be denoted
Int(J). If I = [0, 1], the interval J will be called closed and if I = (0, 1), the interval
J will be called open. Notice that it may happen that Int(J) 6= J for an interval J
being an open set in the topology of G. For example, let G be a graph with two
vertices and one edge. Then G is an interval and an open set as a topological space
but Int(G) does not contain the vertices. As usual, a subinterval of an interval J
will be an interval contained in J .

A continuous map f from a graph G into itself is called a graph map. Let f be a
graph map and let A be a finite set such that f(A) ⊂ A. We define an equivalence
relation among the triplets (G,A, f) as follows: (G,A, f) and (G′, A′, f ′) are equiv-
alent if there exists a homeomorphism φ : G −→ G′ with φ(A) = A′ such that f
and φ−1 ◦ f ′ ◦φ are homotopic relative to A. Notice that then φ−1 ◦ f ′ ◦φ|A = f |A.
Each equivalence class of this relation, denoted by [G,A, f ], will be called an action.

We define the entropy of [G,A, f ], denoted h([G,A, f ]), as

h([G,A, f ]) = inf{h(f ′) : (G′, A′, f ′) ∈ [G,A, f ]}.

Given an action [G,A, f ], from [3] it follows that there exists a representative
(G,A, g) of [G,A, f ] that gives the entropy of the action, i.e., such that h(g) =
h([G,A, f ]). We shall use this fact to obtain lower bounds of the topological en-
tropy of a graph map. For a finite set P we denote its cardinality by |P |. The main
result of the paper is the following.

Theorem 1.1. Let G be a graph and let f : G −→ G be a graph map. For each
nonnegative integer m we have

h(f) = sup{h([G,P, f ]) : P periodic orbit of f and |P | > m}.

Our proof of this result is based in the main ideas used in the proof of the
analogous result for interval maps (see, for instance, Theorem 4.4.10 of [2]) and in
some properties of graph maps pointed out in [8].
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2. Proof of Theorem 1.1

We shall need a simple property which is well known for interval and circle maps
(see, for instance, [2]).

Lemma 2.1. Let f : G −→ G be a graph map. Let {Ji ⊂ G : i = 1, 2, . . . , n}
be a family of closed intervals such that f(Ji) ⊃ Ji+1 for i = 1, 2, . . . , n − 1, and
f(Jn) ⊃ J1. Then there exists a point x = fn(x) such that f i(x) ∈ Ji+1 for all
0 ≤ i ≤ n− 1.

Proof. Since f(Jn) ⊃ J1 and there are no vertices in the interior of an interval,
there exists a closed subinterval Kn ⊂ Jn with f(Kn) = J1. Analogously, since
f(Jn−1) ⊃ Jn, there is a closed subinterval Kn−1 ⊂ Jn−1 with f(Kn−1) ⊂ Jn and
f2(Kn−1) = J1.

Inductively, there is a closed subinterval K1 ⊂ J1 with f i(K1) ⊂ Ji+1, for
i = 1, 2, . . . , n−1, and fn(K1) = J1. Then, since fn is a continuous map and there
are no vertices in Int(J1), the intermediate value theorem ensures the existence
of a point x ∈ K1 such that fn(x) = x. By the election of K1 it follows that
f i(x) ∈ Ji+1 for all 0 ≤ i ≤ n− 1 and the lemma follows.

As for interval and circle maps, an important notion for obtaining minimal mod-
els of an action is the notion of local monotonicity. Now we introduce the corre-
sponding definition for graph maps. Let I be a closed interval of a graph G. Let
f : I −→ G be a graph map and let x ∈ Int(I). We denote by K(x) the connected
component of f−1(f(x)) containing x. We say that f is locally monotone at x if
there exists an open neighborhood U of K(x) such that f(U) is homeomorphic to
an interval of the real line (perhaps degenerate to a point) and f |U is monotone
(not necessarily strictly) as an interval map. We say that f is monotone if it is
locally monotone at each point of I.

Let (G,A, f) be a representative of an action. We say that (G,A, f) is monotone
if f restricted to any interval I without points ofA∪B(G) in its interior is monotone.
If in addition f(B(G)) ⊂ A ∪ B(G), then (G,A, f) is called simplicial. Given an
action, as we noticed above, there is a representative such that its entropy coincides
with the topological entropy of the action. Moreover, in [3] it is shown that this
representative can be taken to be simplicial. We shall use this fact in order to prove
that the existence of a horseshoe gives a lower bound of the topological entropy of
the map. To this end we introduce the notion of horseshoe.

Let s ≥ 2. An s-horseshoe for f is a closed interval I ⊂ G and closed subintervals
J1, J2, . . . , Js of I with pairwise disjoint interiors, such that f(Ji) = I for j =
1, 2, . . . , s. An s-horseshoe is strong if in addition the intervals J1, J2, . . . , Js are
contained in Int(I) and are pairwise disjoint.

Proposition 2.2. Let f : G −→ G be a graph map. Assume that fk has a strong
s-horseshoe for some k ≥ 1 and s ≥ 3. Then there is a periodic orbit P of f with
period |P | ≥ 2(s− 2) such that h([G,P, f ]) ≥ 1

k log(s− 2).

Proof. From the definition of a strong horseshoe there exist a closed interval I ⊂ G
and pairwise disjoint subintervals J1, J2, . . . , Js contained in the interior of I, such
that fk(Ji) = I for i = 1, 2, . . . , s. Thus we have fk(J1) ⊃ Ji, fk(Ji) ⊃ J1,
fk(Js) ⊃ Ji and fk(Ji) ⊃ Js for i = 2, 3, . . . , s− 1.
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Then we consider the sequence of intervals {Ii : i = 1, 2, . . . , 4(s − 2)} defined
by

Ii =


Jj+1 if i = 2j − 1 for j = 1, 2, . . . , s− 2,
J1 if i = 2j for j = 1, 2, . . . , s− 2,
Jj+1−(s−2) if i = 2j − 1 for j = s− 1, s, . . . , 2(s− 2),
Js if i = 2j for j = s− 1, s, . . . , 2(s− 2).

Actually, this sequence is

J2, J1, J3, J1, . . . , J1, Js−1, J1, J2, Js, J3, Js, . . . , Js, Js−1, Js .

It satisfies the hypothesis of Lemma 2.1 for fk. Thus, there exists a periodic orbit
Q = {x, fk(x), f2k(x), . . . } of fk with f ik(x) ∈ Ii+1. Let P be the periodic orbit
of f containing Q. Obviously |P | ≥ |Q|. Furthermore |Q| ≥ 2(s − 2). Indeed, if
|Q| < 2(s−2), then there exists i ∈ {1, 3, 4, . . . , s−1} with x ∈ Ji∩J2, which gives
a contradiction.

Given (G,P , f) ∈ [G,P, f ], if φ is the homeomorphism given by the equivalence
between (G,P , f) and (G,P, f), then the subset φ(Q) of P satisfies (G,φ(Q), f

k
) ∈

[G,Q, fk]. Since 1
kh(f

k
) = h(f) we have

h([G,P, f ]) = inf{h(f) : (G,P , f) ∈ [G,P, f ]}

= inf{ 1
k
h(f

k
) : (G,P, f) ∈ [G,P, f ]}

≥ inf{ 1
k
h(f) : (G,Q, f) ∈ [G,Q, fk]} =

1
k
h([G,Q, fk]).

Now, we prove that h([G,Q, fk]) ≥ log(s − 2) and we are done. From [3] there
exists a simplicial representative (G,Q, g) of [G,Q, fk] such that fk|Q = g|Q and
h([G,Q, fk]) = h(g). Notice that g has a strong (s− 2)-horseshoe. Indeed, for each
i ∈ {2, 3, . . . , s− 1} there is an element from Q ∩ Ji mapped to J1 and an element
from Q ∩ Ji mapped to Js. Thus, since g is Q-monotone and Ji ⊂ I, every g(Ji)
contains all the intervals J2, J3, . . . , Js−1. Thus g also has a strong (s−2)-horseshoe
as we claimed because J1, J2, . . . , Js is a strong s-horseshoe of fk.

From this fact and Lemma 3.4 of [8] it follows that h(g) ≥ log(s− 2) and

h([G,P, f ]) ≥ 1
k
h([G,Q, fk]) =

1
k
h(g) ≥ 1

k
log(s− 2).

This ends the proof.

Lastly we prove Theorem 1.1.

Proof of Theorem 1.1. From the definition of h([G,P, f ]) it follows that

h(f) ≥ sup{h([G,P, f ]) : P periodic orbit of f and |P | > m}.
So, we shall prove the other inequality.

If h(f) = 0 we are done. So we assume that h(f) > 0. From Theorem B of [8],
there are sequences of natural numbers (kn)∞n=1 and (sn)∞n=1 such that fkn has an
sn-horseshoe for each n ≥ 1 and h(f) = lim supn→∞

1
kn

log sn. Furthermore, from
Lemma 3.3 of [8], it follows that fkn has a strong (sn−2)-horseshoe for each n ≥ 1.

Now we distinguish two cases.
Case 1. h(f) =∞.
Then the natural numbers sn take infinitely many different values. So we can

choose them in such a way that (sn)∞n=1 is an increasing sequence.
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From Proposition 2.2 (with s = sn−2) it follows that for each n ∈ N there exists
a periodic orbit Pn of f such that |Pn| ≥ 2(sn−4) and h([G,Pn, f ]) ≥ 1

kn
log(sn−4).

Given any M > 0, since lim supn→∞
1
kn

log sn =∞, we can choose an n such that
1
kn

log(sn − 4) > M and 2(sn − 4) > m. Then we have |Pn| > m and

h([G,Pn, f ]) ≥ 1
kn

log(sn − 4) > M.

Since M is arbitrary, it follows that

h(f) =∞ = sup{h([G,P, f ]) : P periodic orbit of f and |P | > m},
as we claimed.

Case 2. 0 < h(f) <∞.
Since (kn)∞n=1 and (sn)∞n=1 are sequences of natural numbers and

0 < lim sup
n→∞

1
kn

log sn <∞,

then either both sequences (kn)∞n=1 and (sn)∞n=1 take infinitely many different values
or both sequences take finitely many values.

If (kn)∞n=1 and (sn)∞n=1 take infinitely many different values, we can choose the
sequence (sn)∞n=1 in such a way that it is an increasing sequence. As in Case 1, for
each n ∈ N there exists a periodic orbit Pn of f such that |Pn| ≥ 2(sn − 4) and
h([G,Pn, f ]) ≥ 1

kn
log(sn−4). Now lim supn→∞

1
kn

log(sn−4) = h(f). Thus, given
any ε > 0, there exists an n such that 1

kn
log(sn− 4) > h(f)− ε and 2(sn− 4) > m.

Then we have |Pn| > m and

h([G,Pn, f ]) ≥ 1
kn

log(sn − 4) > h(f)− ε.

Since ε is arbitrary, it follows that sup{h([G,P, f ]) : |P | > m} ≥ h(f), as we
claimed.

If (kn)∞n=1 and (sn)∞n=1 take finitely many different values, then there exist nat-
ural numbers k and s such that h(f) = 1

k log s and fk has an s-horseshoe. Then we
can take kn = nk and sn = sn for all n ≥ 1 and we have lim supn→∞

1
kn

log sn =
h(f). Also, from Lemmas 3.2 and 3.3 of [8], it follows that fnk has an sn-horseshoe
and consequently a strong (sn− 2)-horseshoe, for each n ≥ 1. The rest of the proof
follows as above.

References

1. R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans. Am. Math. Soc. 114
(1965), 309–319. MR 30:5291
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