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Fronts from complex two-dimensional dispersal kernels:
Theory and application to Reid’s paradox
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Bimodal dispersal probability distributions with characteristic distances differing by several orders
of magnitude have been derived and favorably compared to observations by Nathan et al. [Nature
(London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular
dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual
continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce
discrete-space random walks and use them to check the CSRW results (because of the inefficiency
of the numerical simulations). The physical results reported are shown to predict front speeds high
enough to possibly explain Reid’s paradox of rapid tree migration. We also show that, for a
time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension
and that this difference is important both for unimodal and for bimodal kernels. © 2007 American

Institute of Physics. [DOI: 10.1063/1.2733631]

I. INTRODUCTION

Reaction-diffusion phenomena are observed in many ap-
plied biophysics systems, e.g., tumor growth,1 patterning in
microchannel ﬂows,2 nanobiosensors,3 etc. However, the dif-
fusion (or Laplacian) approximation does not hold in some
cases—not only in matter transport but also in heat
conduction* and radiative transfer.>® Indeed, classical diffu-
sion (Fick’s law) is well known to break down in some rel-
evant phenomena. One example is time-delayed diffusion
due to the rest time of particles (or individuals) between
successive jumpsg’9 (this delay can be the same for all
jumpsm_12 or there may be several possible delays13_15). A
second case is sometimes called reaction dispersal. Broadly
speaking, reaction dispersal refers to dispersal probability
distributions (kernels) which do not vanish for very long
jump distances (compared to the front width). This leads to
the break down of the diffusion (or second-order) approxi-
mation. Reaction dispersal has been widely used in modeling
population invasions.'®™"? An especially important subcase is
that of kernels with several components with characteristic
distances differing by several orders of magnitude. It has
been long suspected that such kernels may explain a very
important, unsolved biophysical problem, namely, the fact
that the observed speeds of forest postglacial recolonization
fronts are much faster than those predicted by single-kernel
reaction-dispersal models. This disagreement is called Reid’s
paradox.18 Many authors have shown that hypothetical long-
distance dispersal (LDD) events could solve Reid’s
paradox,]8 but all previous approaches are based on kernels
fitted to short-distance data, with purely hypothetical LDD
events'®!” [and almost always using one-dimensional (1D)
models]. However, Nathan and co-workers have derived and
tested very interesting kernels with two components: a short-
distance component (of the order of 10 m) and a second,
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very rare, LDD component (covering distances of
10°~10* m but observed for only about 0.2% of seeds re-
leased from the parent tree). They derived such bimodal ker-
nels by means of fluid dynamics simulations of atmospheric
transport including turbulent-uplifting events that had been
previously neglected. They also checked their new kernels
by comparing predicted vertical deposition patterns and up-
lifting probabilities to observed data.”***' This opens the
possibility to explain Reid’s paradox using complex dispersal
kernels which are not hypothetical but derived from physical
principles. Below we derive the appropriate front speed for-
mulas for such complex kernels. We also show that the pre-
dicted front speeds are about 10>°—~10° m/yr (which are two
orders of magnitude higher than those obtained neglecting
the LDD component). This could eventually solve Reid’s
paradox.

Il. EVOLUTION EQUATION

Many two-dimensional (2D) reaction-dispersal models
are based on the equationgilz’22

+0oC +00
ple,y,t+ T)=f f px+A,y+A1)

X (A, A)dAdA, + R[p(r,y,0], (1)

where p(x,y,1) is the population number density at position
(x,y) and time 7. The dispersal kernel ¢(A,,A,) is the prob-
ability per unit area that a particle (or individual) that was at
(x+A,,y+A,,t) jumps to (x,y,r+7). T is the time interval
between  two subsequent  jumps  (usually T=1
generation'”""). The last term, R[p(x,y,#)], corresponds to
the reaction (or reproduction) process. In contrast to, e.g.,
human populations,lo’14 dispersal (of seeds) for tree popula-
tions takes place during a specific period of the year only,
always after reproduction (seed production). The dispersal
and reproduction are not independent, so a time-ordered evo-
lution equation for the adult tree number density must be
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used, instead of Eq. (1). The time-ordered evolution equation
. 16,17
is™

+0o0 400
plx,y,t+T) =R0f J p(x+AX,y+Ay,t)
X p(A,A))dAdA,, (2)

where R, is the net reproductive rate (number of seeds per
parent tree and year which survive into an adult tree), and T
is the age (in yr) at first reproduction (7 is sometimes called
the generation time). Equation (2) is exact only for species
with nonoverlapping generations (i.e., such that parents re-
produce only once and then die).lﬁ’17 But previous 1D results
with hypothetical kernels show that substantially more com-
plicated, age-structured models do not change the order of
magnitude of the front speed.lg’lg Thus, the interesting case
of age-structured extensions of the 2D Eq. (2) will be tackled
in future work. Here we will use the approximate Eq. (2).
This will make it much easier to focus our attention on the
main physical question posed in the Introduction: How do
the dispersion kernels in Ref. 7 affect the speed of fronts?
The kernels in Ref. 7 have two components: a short-distance
one, “S” (with probability pg and distances ~10?> m), and a
long-distance one, “L” (covering distances of 10°~10* m but
with probability p; =1-pg<<ps). The latter component is due
to atmospheric turbulent-uplifting events, which have been
up to now neglected in the prediction of invasion speeds.
Both components are clearly distinguished in, e.g., Fig. 2 in
Ref. 7 and they are due to independent events (because a
seed can reach any final location either after being uplifted or
not, but both possibilities are obviously incompatible).
Therefore, the dispersion kernel can be written in the addi-
tive form G(A,,A,)=psebs(A,. ) +p b (A, A,).

Ill. CONTINUOUS-SPACE RANDOM WALK (CSRW)
MODEL

For the evolution equation [Eq. (2)], assuming R,> 1
and that p(x,y,) has bounded support (i.e., vanishes outside
a finite region) at some finite value of time, Weinberger pre-
sented a general approach to derive the front speed.m’17 But
Weinberger’s approach has been almost always applied to
one dimension.'®" Thus, it will be clarifying to deal briefly
with the 2D case in this section. Also, we will use a much
simpler approach than Weinberger’s.

The speed of radially symmetric 2D front solutions can
be found most easily by assuming that for r— oo, the front is
approximately planar at scales much larger than that of indi-
vidual dispersal events. We can then choose the x axis par-
allel to the local velocity of the front. Let c=|c,| stand for
this speed (c,=0 in the local frame just introduced).®* We
look for constant-shape solutions with the form p=p,exp
[-N(x—c1)] as x—ct— o and, as usual, assume that the mini-
mum speed is the one of the front™ (we will check this
assumption by means of numerical simulations in Fig. 1).
Then Eq. (2) leads to the asymptotic (1— ) speed of 2D
fronts,
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FIG. 1. Front speed in two dimensions vs net reproductive rate (Ref. 25) for
a unimodal short-distance kernel ¢g(A). Stars: 2D computer simulations.
Full curve: analytical 2D CSRWs, Egs. (3)—(5). There is good agreement.
The 1D speed for the same kernel is included for comparison (dotted curve).
For bimodal kernels it is found that computer simulations cannot yield ac-
curate results within a reasonable computing time (Sec. IV). The DSRW
model overcomes this limitation (Fig. 2).

. In[Ryp(N)]
n s

= 3
¢ I)Tl>lo AT 3)
where
o\ = f dAg(A)IH(NA), 4)
0
and
1 2
Io(\NA) = —J dfexp(\A cos 6) (5)
277 0

is the modified Bessel function of the first kind and order
zero. We have related the dispersal probability per unit area
#(4A) (i.e., into a rectangular area dA,dA,) to that per unit
length ¢(A) (i.e., into a 2D ring of area 27mAdA), because the
kernel in Ref. 7 is ¢(A). It is easy to see that

@(A) =2mAH(A). (6)

We have assumed an isotropic dispersion kernel (i.e., that ¢
depends only on distance A= \rA§+ Ai) and obviously

F dAg(A) =1. (7)

0

Previous papers on Reid’s paradoxl&19 usually apply the
corresponding 1D result instead of (3)—(5). In fact, in one
dimension, Eq. (3) holds but Egs. (4) and (5) do not. Thus,
speed c is different in one dimension than in two dimensions
[indeed, in Sec. VI we show that the 2D speed is always
slower than in one dimension for the same dispersal kernel
@(A)].

The fact that 1D and 2D speeds are different was noted
already in Ref. 22 for the evolution equation in (1) and in
Ref. 10 for its hyperbolic and Fisher limits. However, here
we will deal with the evolution equation in (2).

Since we are interested in Reid’s paradox, which refers
to forest range expansions that took place in two dimensions,
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we will firstly deal with the 2D case. We shall compare
speeds in two dimensions and one dimension only in Sec.
VL

IV. MOLECULAR DYNAMICS SIMULATIONS

We are not dealing with a differential but with an inte-
grodifference equation in two dimensions, Eq. (2). Therefore,
numerical simulations in this paper will not be based on
finite-step approximations to derivatives but on molecular
dynamics (or cellular automata in the continuous limit).
Simulations in two dimensions are much more time costly
than in one dimension, but a 2D model is necessary (as seen
in the last paragraph of the previous section). We have thus
performed simulations on a 2D grid, with nearest neighbors
separated by a distance D. Initially p(x,y,0)=1 at (x,y)
=(0,0), and O elsewhere. At each time step, we compute the
new number density of trees p(x,y,t+T) at all nodes of the
2D grid as follows. In agreement with Eq. (2), we first com-
pute the seed production Rop(x,y, ) at every node®* and then
redistribute this value among all grid nodes using the kernel
@(A). We have performed such 2D simulations for values of
Ry and T typical of the yellow poplar (Liriodendron
tulipifem).25 We consider this species because its long- and
short-distance kernel components [¢4(A) and ¢;(A), respec-
tively] were determined in Ref. 7. Consider first a very
simple, short-distance unimodal kernel ¢g(A) such that it is
approximately constant for dispersal distances A<<15 m and
zero for A>15 m.’ Using a 2D grid with nearest neighbors
separated by a distance D=1 m, the simulations agree with
the CSRW, as shown in Fig. 1.%° This shows (i) the validity
of the minimum-speed conjecture®’ and (ii) the need to take
Eq. (6) into account in the simulations.”® But og(A) is a
unimodal kernel, whereas we are interested in bimodal ones
(see Sec. I). Then the simulations above are not useful, as we
have found that the time required is prohibitively long.29
Therefore, molecular dynamics simulations are not practical
to test the 2D analytical result in (3) for bimodal kernels. Is
there some other way to test whether Eq. (3) holds or not for
bimodal kernels? In the next section we present a fast, effi-
cient approach that we have found very useful for this pur-
pose.

A>0 AT

Note that Eq. (10) is a very simple approximation
(DSRW) but is completely analogous to the exact (CSRW)
speed in (3). We have found [e.g., for ¢4(A) in Sec. IV] that
this extremely simple DSRW yields a speed in (10) which
disagrees with that from the CSRW. Thus, we next consider
dispersal to nodes not on a single but on many squares
(j=1,2,3,...) centered at each parent tree. A square with
side 2jD will obviously have 8; nodes, namely, four at dis-

 In(R{P(D)[cosh(AD) + 11/2 + P(D\2)cosh(AD)})
min .
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V. DISCRETE-SPACE RANDOM WALK (DSRW)
MODEL

This model is not exact, but it is necessary to check the
CSRW model for bimodal kernels. The DSRW is closely
analogous to the numerical simulations, in the following
sense. Both in the DSRW and the simulations, we replace 2D
continuous space by a grid of points (nodes) with nearest
neighbors separated by a distance D along the x and y axes.
The nodes are the only points available for seeds and trees.
First consider the very simple, highly idealized case in which
any tree disperses seeds only to its eight nearest neighbors on
the grid. Obviously, these eight final dispersal nodes lie on a
square with side 2D and center at the parent tree, as follows.
The closest four nodes are a distance =D away along the x or
y direction, and the next four are at distance +D away along
both directions, i.e., on the vertices of the square (at distance

M2 n2 [
\VD*+D*=DV?2 from the parent tree). Then Eq. (2) becomes
simply

p(-xay’t"' T) :RO{[P(D)M'][.U(X—D,)’J) +P(x+D,y,t)
+p(x,y = D,t) + p(x,y + D,1)]
+[P(D\2)/4][p(x - D,y - D,1)
+P(X—D,)’+D,t) +p(x+D9y_Dst)
+p(x+D,y+D,nl}, (8)
where the first four terms correspond to horizontal and ver-
tical “jumps,” whereas the last four terms are due to diagonal
jumps, and the jump probabilities are, from Eq. (6),
P(A)/(2mA)

play = ) -G
N (2mA.
S g =N

J=1

)

For the simple case of Eq. (8), n=2 and the only possible
dispersal distances are A;=D and A,=D?2.

We apply the approach already used above [Eq. (3)]
(Refs. 8, 23, and 27) and obtain, from the DSRW equation

[Eq. (8)],

(10)

tance jD, four at distance jD\E, and also (except for the
simple case j=1 above) eight nodes at distance
V(jD)*+(iD)? for i=1,2,...,j—1. Finally, in order to use
the measured kernels’ we need to restrict dispersal to a maxi-
mum distance in whatever direction, r,,,.. Then it is not dif-
ficult to write the analog to Eq. (8) for a bimodal kernel [i.e.,

pren(r)+pses(r)] and see that the speed in (10) is general-
ized into
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Ny

1
c=miny~ o In| Rop, >
T j=0

(PLUDL) [cosh()\éDL) +1]

J-1

+2
i=1

cosh(NiD;) + cosh(\jD;)
2

{PL[\”(].DL)Z +(iDy)*]

Ng .
+ps>, (PS(I'DS)[COSh()\]Zw
=0

J-1

+2

i=1

cosh(NiDg) + cosh(N\jDy)
2

{PS[ V(jDg)* + (iDg)*]

where N;=rp. /D1, Ng=Fnax s/Ds, and the terms with
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+ PL(]'DL\'E)COSh()\jDL)

!

+ Pg(jD S\E)cosh()\ JDg)

i

(jDg)*+(iDg)? arise from jumps in directions different from 0°,

(11)

+45°, 180°, and £90°. The probabilities are related by Eq. (9) to the corresponding dispersion kernel, for example,

iD;)/21jD

Ny j-1

. ; e . ) ; ) 5
2\ eliD)2mjDy + ¢, ((DND2mD N2 + 2 @i[N(iDg)? + (iDgY2m\(jDs)’ + (iDs)?
j i=1
|
For the yellow poplar (Liriodendron tulipifera), the LDD +o0 B
component of the kernel derived (and favorably compared to plx.t+T)=R, px+AL0B(4,), (14)

observations) in Refs. 7, 20, and 21 can be fitted to a curve

of the form
0, A<10°m
(PL(A) — 103A903A—2A301, 103 m=A< 104 m (13)
0, A>10* m,

SO F'yax .= 10* m, whereas, as mentioned in Sec. IV, its short-
distance component ¢g(A) can be taken as approximately
constant for A<15m and zero for A>15m, SO rp.s
=15 m.

Figure 2 presents the results for the bimodal kernel
pLeL(r)+pses(r), where p;=0.002 02 and py=1-p; are the
probabilities of long-distance and short-distance dispersals
(obtained from Fig. 2 in Ref. 7). The results for the unimodal
kernels ¢;(r) and ¢g(r) are also presented for comparison.
The relevance of these results for Reid’s paradox will be
discussed in Sec. VIIL

VI. COMPARISON OF INVASION SPEEDS IN TWO
DIMENSIONS AND ONE DIMENSION

The aim of this paper has been to analyze front speeds in
2D space. But many papers have applied 1D results instead,
see, e.g., Refs. 18, 19, 30, and 31 and references therein.
Thus, a comparison between two dimensions and one dimen-
sion is appropriate.

In one dimension, clearly the kernel per unit area ¢(A)
has no physical meaning. The 1D evolution equation equiva-
lent to Eq. (2) is obviously
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where we have not used the notation @(A) for the kernel in
order to avoid confusion. Indeed, in two dimensions we have
used Eq. (7) for the normalization of the kernel per unit
length ¢,
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FIG. 2. Front speeds in two dimensions vs net reproductive rate (Ref. 25).
Curves: CSRWs, Egs. (3)—(5). Symbols: DSRWs, Eq. (11), using the values
of D, and/or Dy in the legend (in meters) and the corresponding kernel(s).
The bimodal kernel for the yellow poplar, from Ref. 7, leads to the middle
curve. It thus predicts speeds of about 10>—~10% m/generation. In contrast,
the short-range unimodal kernel (lower curve and stars, the same as in Fig.
1) predicts front speeds several orders of magnitude lower. Thus, the bimo-
dal kernels derived and favorably compared to data in Refs. 7, 20, and 21
may solve Reid’s paradox. Note from the upper curve (100% of seeds with
LDD, ¢,) that the same order of magnitude (10> m/yr) is obtained for only
0.2% of seeds with LDD (middle curve).
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fmdmp(A):l. (15)

0

In contrast, in the 1D Eq. (14) the kernel per unit length @ is
defined both for positive and negative jumps. Therefore, the
lower integration limit must now be — instead of 0, i.e.,

fo dA&(A)=1. (16)

Clearly, A, can be either positive or negative, whereas A
=( (they are related as A=|A,| in one dimension and A
= VA?+A3 in two dimensions).

In order to compare to two dimensions, note that for an
isotropic kernel, Eq. (16) implies that

F dA, B(A) = % (17)
0

If we introduce the following 1D kernel (which we de-
fine only for A=|A|=0):

e(A)=25(A), ifA=0, (18)
then Eq. (17) yields

0

ln{ROJ‘Oc dAp(A)(172)[exp(— \A) + exp()\A)]}

J. Appl. Phys. 101, 094701 (2007)

fmdAcp(A)=1, (19)

0

which agrees with the corresponding normalization equation
in two dimensions, see Eq. (15). This will make it possible to
perform a meaningful comparison between one dimension
and two dimensions.

Now that we have carefully defined the kernel per unit
length ¢(A) both in one dimension and two dimensions, we
can ask the following question. For a given kernel ¢(A), is
the front in one dimension faster or slower than in two di-
mensions? Up to now, this question seems to have remained
unanswered for arbitrary kernels ¢(A). Here, we will provide
a mathematical proof that the front is always slower in two
dimensions than in one dimension for the same kernel ¢(A).

For an isotropic 1D kernel, i.e., $(-A,)=@(A,), Eq. (3)
holds for the front speed ¢ but @(\) is not given by the 2D
Eq. (4). Instead, in one dimension

@) = f dA (A )exp(NA,). (20)

This result was first derived by Weinbergerlﬁ’17 and has been

widely appli<3d18’19’30’31 (it can be also easily obtained from
the approach in Sec. IIT above).

The 1D speed can thus be written in terms of ¢(A), from
Egs. (20) and (18),

— i 21
(S1)) Iglg NT (21)
The 2D speed for an isotropic kernel ¢(A) is, from Egs. (3)-(5),
ln{Rof dA(p(A)(l/ZﬂT)f dfexp(—= \A cos 6) +exp(\A cos 6)]}
0 0
= mi , 22
=0 \T 22)

where we have simply applied that cos(a+ 7)=—cos a. Alternatively, Eq. (22) can be also obtained from Eq. (24.102) in Ref.

32. Finally, we write the 2D speed in (22) as

lanofw dA@(A)(l/W)fdeCOSh(KA cos 0):|
0 0

Cop =min
>0 AT

where we have simply used the definition cosh x= %[exp(x)
+exp(—x)].

We now rewrite the 1D speed in (21) in a form similar to
the 2D speed in (22). Obviously,

lanOJw dA(p(A)(l/w)jwdﬁcosh()\A):|
C]D:min 0 0 .

A>0 AT
(24)

(23)

Comparing Egs. (23) and (24) it is obvious that, for any
symmetric kernel per unit length ¢(A) (defined for A=0),

¢p < Cip, (25)

simply because cos #<1 and costh%[exp(x)+exp(—x)]

increases with increasing values of x=0 (in other words, its

derivative is sinh x= %[exp(x) —exp(=x)]=0 if x=0).
Therefore, we have shown that all symmetric kernels
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¢©(A) give a speed which is lower in two dimensions than in
one dimension. This result is not surprising, according to the
following two arguments.

(1) We may understand intuitively the result in (25) as
follows. Consider, for example, a delta kernel, i.e.,
such that all individuals move the same distance. In
one dimension, half of them will travel in each direc-
tion. In two dimensions, fewer individuals can reach a
given point than in one dimension because there are
not only two final dispersal points but a whole a
circle. So, we could well expect the front to be slower
in two dimensions than in one dimension. Moreover,
any kernel can be regarded as a sum of delta kernels.
From this perspective, it is not surprising that fronts
are slower in two dimensions than in one dimension.

(i)  For the special cases of Fisher and hyperbolic
reaction-diffusion evolution equations, fronts are also
slower in two dimensions than in one dimension.'”
However, it must be remembered that (i) such ap-
proaches are diffusive limits to Eq. (1), which does
not take proper care of the time order of events [in
contrast to Eq. (2) or (14), considered here], and (ii)
diffusive limits are well known to break down for
long-distance dispersal.18

All of the results in the present paper, including Eq. (25),
have been obtained for the time-ordered evolution equations
(2) in two dimensions and (14) in one dimension. Thus, they
may not hold for other evolution equations [such as (1)].

In this section we have shown that, for time-ordered evo-
lution dynamics and, an arbitrary symmetric kernel per unit
length ¢(A), the front is always slower in two dimensions
than in one dimension.”

For the short-distance kernel ¢q(r), we include the pre-
dicted speed in (21) in one dimensional as a dotted curve in
Fig. 1. It is seen that the 1D speed is faster than the 2D
speed, as it should. If the 1D approach is applied, the error
(difference relative to the 2D prediction) is important and
increases rapidly for decreasing values of R, (for example,
the error is 22% for Ry=6 yr~' and 33% for R,=2.2 yr'}).
This could have been expected since the lower the net repro-
ductive rate, the more important is dispersal relative to re-
production. The differences between the 2D and 1D results
show the importance of using 2D formulas to predict inva-
sion speeds. Similarly, for the bimodal kernel p;¢;(r)
+pses(r), Fig. 3 shows the predicted speed in (21) in one
dimension as a dotted curve. Again, it is faster than in two
dimensions, as it should, and the differences are important,
so it is not reasonable to use 1D models for invasions that
take place in two dimensions (e.g., postglacial forest range
expansions).

VII. DISCUSSION

Here, molecular dynamics simulations have been useful
to (i) make us realize that ¢(r) must be related to the mea-
sured kernel ¢(r) (Ref. 28) and (ii) check that the minimum
speed in (11) is that of the front.”” Thus, it is not reasonable
to rely on a single analytic approach only (e.g., the CSRW).

J. Appl. Phys. 101, 094701 (2007)
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FIG. 3. Comparison of speeds in two dimensions and one dimension for the
bimodal kernel. The full line and symbols correspond to two-dimensions
(the same as in Fig. 2), whereas the dotted curve corresponds to one dimen-
sion. The 1D speed is about 20% faster than the 2D speed.

Indeed, in reaction-diffusion problems, simulations are al-
most always used to check the analytic results.** However,
for bimodal kernels the 2D simulations do not yield accurate
enough results within a viable computing time (Sec. IV).
Thus, in addition to the 2D CSRW model, we have also
presented a discrete analytical model (DSRW) and applied it
(instead of the simulations) to check the CSRW results (Figs.
2 and 3).

Both the 2D DSRW and 2D CSRW models show con-
clusively that the front speeds for the bimodal kernels in Ref.
7 [i.e., pro.(r)+pses(r)] are about 10>~10° m/yr, i.e., two
orders of magnitude faster than those for the unimodal,
short-range component ¢g(r) (Fig. 2). Speeds of
102-103 m/yr are, in fact, those required to solve Reid’s
paradox.18

Short-distance kernels ¢4(r) have been measured experi-
mentally many times. But bimodal kernels with a LDD com-
ponent ¢;(r) were derived by a mechanistic (or physical)
model in Ref. 7 which motivated the work here reported.

We conclude that Reid’s paradox of rapid tree migration
can be solved (as far as the order of magnitude is concerned)
by taking into account the bimodal dispersal kernels derived
and favorably compared to data in Refs. 7, 20, and 21. This
is the main biophysical result of this work.

On the analytical side, our main contributions here are
the DSRW model, taking into account two dimensions in the
CSRW, and the comparison between two dimensions and one
dimension (Sec. VI). But the important natural phenomenon
tackled is Reid’s paradox, which motivated all of our analyti-
cal work and 2D simulations. Of course, we do not claim to
have solved Reid’s paradox. In future work, it would be in-
teresting to apply the 2D CSRW and DSRW approaches pre-
sented here by comparing the predictions and observations
for a list of tree species such that (i) their range expansion
speeds can be measured from the fossil record and (ii) dis-
persal kernels and net reproductive rates can be estimated
using the methods in Ref. 7 and experimental measurements.
Our results here do show the procedures (2D CSRWs and 2D
DSRWs) useful to perform such an analysis (as well as the
limitations of using numerical simulations for this purpose).
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Section VI contains the proof that, for an arbitrary kernel
¢©(A), the front is always slower in two dimensions than in
one dimension under the time-ordered evolution equation (2)
(in two dimensions) or Eq. (14) (in one dimension).

It future work, it would be nice to apply the physical
models presented (2D CSRWs and 2D DSRWs) to extended
2D evolution equations that take into account age structure,
interspecific interactions, etc. It would be also interesting to
generalize the models described here to a variety of applied
biophysics systems, e.g., tumor growth models' with several
nutrients (each with a different diffusion coefficient or dis-
persal kernel), several-species dispersion in microchannel
ﬂows,2 etc.
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