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Abstract

In this paper we study random walk estimators for ra-
diosity with generalized absorption probabilities. That is, a
path will either die or survive on a patch according to an
arbitrary probability. The estimators studied so far, the in-
finite path length estimator and finite path length one, can
be considered as particular cases. Practical applications of
the random walks with generalized probabilities are given.
A necessary and sufficient condition for the existence of the
variance is given, together with an heuristics to be used in
practical cases. The optimal probabilities are also found
for the case when we are interested in the whole scene, and
are equal to the reflectivities.

Keywords: Radiosity, Monte Carlo, Random Walk, Vari-
ance.

1. Introduction

Discrete or continuous random walk estimators have
been widely used in radiosity. Gathering random walk pro-
ceeds sending paths from the patches of interest togather
energy when a source is hit. Path-tracing [6], and even dis-
tributed ray-tracing [3, 21] can be considered as the limit-
ing case of gathering random walk for the non-discrete case
(without the shadow ray). Shooting random walkshoots
paths carrying energy from the sources, to update the vis-
ited patches [9], [2]. The techniques in [17, 5] can be seen
as a breadth-first approach to a shooting random walk es-
timator, which in turn would be the depth-first approach.
Bidirectional ray-tracing [20, 7] is a mixture of non-discrete
shooting and gathering. The random walk proceeds accord-
ing to the discrete Form Factor probability transitions. The
survival (or not absorption) probability on a patch has been
usually considered equal to its reflectivity. An exception to
this survival probability is found in [8], where the received
importance was considered instead of the reflectivity. In
[10] we find also a short discussion under the term ofsur-
vival biasing. Also, infinite path length estimators can be

considered the ones where the survival probability is equal
to one. We will study in this paper shooting and gather-
ing estimators resulting of considering any survival (or not
absorption) probability. We will keep the Form Factors as
transition probabilities. In this way the finite path length
estimators [12] and infinite ones [14] studied so far will be
considered as particular cases of this generalized one.
The organization of this paper is as follows: In section 2 we
present our previous work on random walk. In section 3 we
study the gathering estimator with generalized absorption
probabilities. A necessary and sufficient conditions for the
existence of the variances is given, together with a heuristics
to be used in practical situations. We give also an example
of when to use this estimator. Next, in section 4, the shoot-
ing estimator is studied. The optimal survive probabilities
for the case when we are interested in the whole scene are
given. The resulting estimator happens to be the one with
survival probability equal to the reflectivity. Finally, in sec-
tion 5 we present our conclusions and future research.

2. Previous Work

In [12] we studied the three estimators defined in [18],
together with their gathering dual ones. In [14] we char-
acterized the infinite path length estimators, and in [16] we
proved that the best finite path length estimator was better
than thebiasedinfinite path length one. Finally, in [15] we
obtained the variances for the previous shooting estimators
for any general source selection probability, and also proved
that the results obtained so far were extensible to the pure
particle tracing case, that is, when we keep the impinging
point on a patch as next exiting point. The obtained results
are summarized in table 1.

A feature common to all the studied estimators is that
we use as transition probabilities the Form Factors, and as
survive (or not absorption) probability the reflectivity of the
patch (except of course for the infinite path length, where
the survival probability is always 1). Here we will relax this
second assumption, that is, we will consider generalized ab-
sorption probabilities. The two already studied cases, when
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Table 1. Different Random Walk estimators.
The meaning of the different quantities is in
table 2.

Shooting Patch scored Variance
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P
s

Es+2bs
Rs
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2
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pi

P
s
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2

infinite all 1
pi

P
s
(Es + 2bs)�is � bi

2

survival probability is equal to reflectivity and the infinite
case, can then be seen as particular cases. We will still con-
sider the Form Factors as transition probabilities. The use-
fulness of the estimators obtained can be seen when one
considers survival probability proportional to importance
(or better to received importance). This has been used in
[8]. We will also restrict ourselves to the estimators that
score on all patches. The extension of the results to the
other ones, which score only on surviving patches or on the
last patch, is straigthforward. Next we will proceed to study
the gathering case.

3. A gathering estimator with generalized ab-
sorption probabilities

We will consider here the discrete random walk, that is,
the one which proceeds according to patch-to-patch Form
Factors. However, the formulae and results obtained are
also valid for the point-to-point Form Factors, as shown in
[15].

Let us first consider what the expected value of any un-
biased Monte Carlo estimator should be for the radiosity of
a patch. Let us suppose that the emittance of sources is
Es, bi is the reflected radiosity, or radiosity of patchi due
to the received power (that is,bi = Bi � Ei, and so for a
non-emitter patch, it equals the total radiosity),Fkl denotes
the Form Factor from patchk to patchl, andRk denotes the
reflectance of patchk. Then we have, by developing the Ra-
diosity system in Neumann series (dropping the zero order

Table 2. Meaning of the different quantities
appearing in table 1. The suffix i means for
patch i, suffix s indexes the sources.

Ei Emissivity

bi Reflected radiosity =Bi �Ei

�i idem with each reflectivity substituted by its square

�s Emitted power

Ai Area

Ri Reflectivity

�i Received power (or radiosity) due to self-
emitted unit power (or emittance)

bis Reflected radiosity oni due to sources

�is idem with each reflectivity substituted by its square

pi Probability for a path to begin ati

term):

bi = Ri

X
s

EsFis +Ri

X
h

X
s

EsFihRhFhs

+Ri

X
h

X
j

X
s

EsFihRhFhjRjFjs + � � �

This can be expressed as:

bi = b
(1)
i + b

(2)
i + b

(3)
i + � � �

where
b
(1)
i = Ri

P
s EsFis, b

(2)
i = Ri

P
s

P
hEsFihRhFhs,

b
(3)
i = Ri

P
s

P
h

P
j EsFihRhFhjRjFjs and so on. That

is, b(1)i represents the radiosity due to direct illumination,

b
(2)
i represents the radiosity after one bounce, and so on. It

is also useful to define the following quantities:

bis = b
(1)
is + b

(2)
is + � � �

b
(1)
is represents the radiosity due to direct illumination from

sources, b(2)is represents the radiosity after one bounce from
sources, and so on. It is clear that:

bi =
X
s

bis

Let us now consider the following simulation. A path

starts from patchi with probabilitypi (this probability can
be considered as the initial or emitted importance of the
patch), and from here on it evolves according to the tran-
sition probabilities given by the Form Factors. For instance,
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from i it will go to patchj with probabilityFij . It will then
be absorbed in patchj with probability1� �j , and survive
with probability�j . Let us define now the random variablesbb(1)i ;bb(2)i ;bb(3)i ; : : : in the following way:
All of those random variables are initially null. If the
path 
 happens to arrive at sources at length l, and if
i; h1; h2; : : : ; hl�1; s is the trajectory the path has followed,

then the value ofbb(l)i is set toRi
Rh1

�h1

Rh2

�h2
: : :

Rhl�1

�hl�1

Es

pi
. Let

us define also a new random variablebbi as:bbi = bb(1)i +bb(2)i +bb(3)i + � � �

Now let us find the expected value of those random vari-
ables. Applying the definition of expected value, and re-
membering that the probability of selecting patchi is pi, the
probability of landing on sources just after leaving patchi
is Fis, we have

E(bb(1)i ) =
X
s

Ri

Es

pi
� piFis = b

(1)
i

Now, to go from patchi to a sources in a two length path
we can pass through any patchh (after surviving on it with
probability�h, so we have

E(bb(2)i ) =
X
h

X
s

Ri

Rh

�h

Es

pi
� piFih�hFhs

= b
(2)
i

and so on. Then, we have

E(bbi) = E(bb(1)i +bb(2)i + � � �) = E(bb(1)i ) +E(bb(2)i ) + � � �

= b
(1)
i + b

(2)
i + � � � = bi

So it is clear that the random variablebb(l)i is a centered es-
timator for the radiosity due to the power arrived on patchi

afterl bounces, and the sum of all this family of estimators
gives a new centered estimatorbbi which corresponds to the
total radiosity of patchi due to the power arrived after any
number of bounces. Our aim now is to obtain the variance
for this estimator. We will use here a similar approach to
the one in [12] and [14]. We can decomposeV ar(bbi) in the
following way

V ar(bbi) = V ar(bb(1)i +bb(2)i + � � �)

= E(
�bb(1)i +bb(2)i + � � �

�2
)�

�
E(bbi)�2

= E(bb(1)2i ) +E(bb(2)2i ) + � � �

+ 2
X

1�n<m

E(bb(n)i
bb(m)
i )� bi

2 (1)

The terms of the formE(bb(n)i
bb(m)
i ) are not null, because

if a path arrives at lengthn on sources it can also arrive

later at sources0 at lengthm. Next we find them:
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where�(n)is is the radiosity due to the incoming energy af-
tern bounces in the same environment having changed all
the reflectivities by their square divided by�i, that is,Ri is
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2
i
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where�is is the radiosity due to the incoming energy in
the same environment having changed all the reflectivities
by their square divided by the survival (or not absorption)
probability. For the radiosity our estimator is simplybbi+Ei,
and asEi is a constant we have

V ar(bbi +Ei) =
�i

pi

X
s

(Es + 2bs)�is � bi
2 (2)

3.1. Existence of the variance

We have that�i are the reflected radiosities solution of
the same system as the original one, having substituted each

reflectivityRi by R2i
�i

. But for these quantities to exist (and
be positive !) we must have as necessary and sufficient con-
dition that the spectral radius be less than 1 [19], that is

�(
R2
i

�i
Fij) < 1 (3)

This condition is equivalent to the one given in [4] for the
existence of variance in a random walk, that is

limk!1(norm(Uk))(
1
k
) < 1

whereUij =
K2
ij

pij
,Kij is the kernel andpij are the transition

probabilities (which include the survival ones). In our case

Uij =
R2iF

2
ij

�iFij
=

R2iFij
�i

.

The condition (3) is satisfied if for alli R
2
i

�i
< 1, or�i > R2

i .
To fulfill this condition, if we are initially given survival
probabilities�i, we just substitute them by max(�i; R2

i+�),
where� can be taken as small as we want (and of course,
R2
i + � must be less than 1).

In fact, what does the constraintR
2
i

�i
< 1 is to ensure the

convergence of the infinite sums in formula (1). We are
not claiming that without this condition there can not be
convergence. What we are claiming is that, to be safe, we
should take care of this condition. And of course we can
show that if for all patches this condition is violated, there is
no convergence. Next we prove thatlimn!1E(bb(n)2i ) 6= 0,
and thus the sum can not converge.

E(bb(n)2i ) =
X
h1

� � �
X
hn�1

X
s
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�h1
: : :

Rhn�1

�hn�1
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�2

piFih1 �h1 : : : Fihn�1 �hn�1Fhs

=
X
h1

� � �
X
hn�1

X
s

R2
i

R2
h1

�h1
: : :

R2
hn�1

�hn�1

E2
s

pi

Fih1 : : : Fihn�1Fhs

�
R2
i

pi

X
h1

� � �
X
hn�1

X
s

Fih1 : : : Fihn�1FhsE
2
s

(4)

because we have supposed for alli
R2i
�i
� 1. But we haveX

h1

� � �
X
hn�1

Fih1 : : : Fihn�1Fhs = (Fn)is

and in [13] we prove that, whenever the Form Factor matrix
is irreducible and aperiodic

lim
n!1

(Fn)is =
As

AT

(5)

whereAT is the total area in the scene. We do not consider
geometrically meaningful for a Form Factor matrix to be
periodic. If there are closed rooms, it is reducible with one
submatrix for each room. In this case, we consider in turn
each room and we have an irreducible matrix.
But now from (4) and (5) we obtain:

lim
n!1

E(bb(n)2i ) �
X
s

( lim
n!1

(Fn)is)E
2
s

=
X
s

As

AT

E2
s > 0 (6)

Source
Region of interest

Region with low survival probability

Region with higher survival probability

Figure 1. Paths traced from the region of inter-
est have a higher survival probability where
the reflected radiosity is higher.

As the condition�i > R2
i for the existence of the vari-

ance is too restrictive, the question arises whether a weaker
condition can be given. We have run simulations and found
that the spectral radius (3) is approximated by, and in most
cases, is less than, the average value

(
R2

�
)ave =

1

AT

X
Ai

R2
i

�i
(7)
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This finding is similar to the results in [1]. It is based on the
following:

If we consider the series�(R
2
i

�i
(Fn)ij), its limit is �(R

2
i

�i

Ai

AT
),

but it is very easy to check that

�(
R2
i

�i

Ai

AT

) =
1

AT

X
i

Ai

R2
i

�i
= (

R2

�
)ave

Thus what we do is to approximate the first term in the se-

ries,�(R
2
i

�i
Fij), by the limit of the series.

This approximation will work as far as we do not have al-
most isolated rooms with very different reflectivities (we
can not have completely isolated rooms, as we only con-
sider here an irreducible Form Factor matrix). Excluding
those cases, a heuristics such as keeping this average value
less than0:8 or maybe0:9 should be safe.

3.2. Particular cases

When�i = 1 we have the infinite path length estimator,
R2i
�i

= R2
i and �is becomes�is, and we obtain again the

formula in section 2. On the other hand, when�i = Ri

we have theEs estimator,R
2
i

�i
= Ri and�is becomesbis,

obtaining again the formula for theEs estimator given in
section 2.

3.3. An example

Suppose we have obtained a coarse solution for the ra-
diosities. This solution could be used to drive the random
walk taking�i / Bi � Ei. This will assure that the paths
will survive in patches with high received radiosity. This is
useful in a scene alike the one in Figure 1. This case can be
considered the dual of the one given in [8].

4. The shooting estimator

Let us now consider the shooting estimator with general-
ized absorption probabilities. Consider the following sim-
ulation. A path
 starts from sources with probabilityps,
and from here on it evolves according to the transition prob-
abilities given by the Form Factors. For instance, froms it
will go to patchj with probabilityFsj . On each patchi hit,
a survival-absorption test is done according to the probabil-
itiesf�i; 1��ig. If the path
 happens to arrive to the patch
i at lengthl, then the radiosity of this patch is updated with

the quantityRi

ps

Rh1

�h1

Rh2

�h2
: : :

Rhl�1

�hl�1
�s.

Now, the variance can be found either using the same ap-
proach as in section 3, or taking into account that the shoot-
ing estimator can be defined as the dual of the gathering one
[15]. The variance is found to be:

V ar(bbi +Ei) = �i
X
s

�s

(1 + 2Ri�i)�is
Aips

� b2i (8)

Source
Region of interest

Region with low survival probability

Region with higher survival probability

Figure 2. Paths traced from the source have a
higher survival probability where the received
importance towards the region of interest is
higher.

Here is also valid the same argumentation as in previous
section about the existence of the variance.

4.1. Particular cases

When�i = 1 we have the infinite path length estima-

tor, R2i
�i

= R2
i and �is becomes�is, and we obtain again

the formula in section 2. On the other hand, when�i = Ri

we have the�T estimator,R
2
i

�i
= Ri and�is becomesbis,

obtaining again the formula for the�T estimator given in
section 2.
Formula (8), when taking source selection probabilities pro-
portional to the power of the sourcesps = �s

�T
whith �T

total power, converts into

V ar(bbi +Ei) = �i�T

(1 + 2Ri�i)�i
Ai

� b2i (9)

where �i =
P

s �is is the reflected radiosity due to all

sources changingRi by R2i
�i

.
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4.2. An example

If we make the survival probability proportional to re-
ceived importance, that is,�i / Ii � Vi, where theVi is
the initial andIi the total importance [8], we will assure
that the paths will survive in patches which are important
to the selected ones. This could be used to drive a random
walk in a scene alike the one in Figure 2, the dual of Figure
1. This case was the one considered in [8], although there
a breadth-first strategy was used, instead of the considered
here, which is depth-first.

4.3. Optimal survival probabilities

Suppose we are interested in all patches, not just in a sin-
gle region. We want to find out the optimal survival prob-
abilities �i in the sense to maximize the efficiency. This
can be defined as the inverse of the product of the Vari-
ance times the cost [11], for a single patch, or the average
weighted variances (expected value of the Mean Square Er-
ror) times the cost, for the whole scene. This means, taking
as average cost 1

1��ave
, minimizing the quantity

E(MSE)�
1

1� �ave
(10)

Now, using the definition of the Mean Square, formula
(9) for the variance (we consider a reasonable hipothesis
ps = �s

�T
when interested on the whole scene) and the ap-

proximation

�i �

R2i
�i
�T

AT (1� (R
2

�
)ave)

we obtain, following the same approach as in [16]:

E(MSE) �
�2
TR

2
ave

ATAave(1� (R
2

�
)ave)

which substituted in (10) (after approximating(R
2

�
)ave by

R2ave
�ave

) gives as quantity to minimize:

�2
TR

2
ave

ATAave(1� (
R2ave
�ave

)

1

1� �ave
(11)

The behaviour of this quantity escalated for�2TR
2
ave

ATAave
= 1 is

shown in figure 3, taking the values forRave of 0.3, 0.5 and
0.8, respectively.

The analytical solution is�ave = Rave. This will obvi-
ously happen when for alli �i = Ri. Thus we can state the
result:
Between all the unbiased shooting random walk estima-
tors with generalised absorption probabilities and transi-
tion probabilities the Form Factors, the most efficient for
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(a)

0.2 0.4 0.6 0.8 1
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100

(b)

0.2 0.4 0.6 0.8 1

-200

200

400

(c)

Figure 3. Behaviour of the inverse of effi-
ciency against �ave for Rave = 0:3, 0:5 and 0:8,
respectively. The vertical asymptote corre-
sponds to R2

ave
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calculating all radiosities is the one with survival probabil-
ity equal to the reflectivity.
Remember that the infinite path length estimator is not con-
sidered here (the cost would be infinite), but from [16] we
know that biasing it we obtain a much worse estimator than
�T . That means that�T is the best of all shooting random
walk estimators with transition probabilities the Form Fac-
tors, biased or not. And as from [12] we know that shoot-
ing estimators are much better when dealing with the whole
scene than the gathering ones, we can extend this result to
all random walk estimators studied till now. It must be re-
membered here that the�T estimator in its breadth-first ap-
proach was the one used by Shirley [17] and Feda and Pur-
gathofer [5].

5. Conclusions and future research

We have here generalized the results of [12] and [14] to
the case of a generalized absorption probability, obtaining
closed formulae for the variances of the estimators studied.
Those are presented in table 3. A necessary and sufficient
condition for the existence of the variance is also given, to-
gether with a heuristics to be used in practical cases. The
usefulness of such estimators has also been shown. It has
been proved that the best shooting estimator, when we are
interested in the whole scene, comes from using the reflec-
tivity as the survival probability. Future work will be di-
rected towards obtaining closed formulae, whenever possi-
ble, for generalized transition probabilities.

Table 3. Variances for Random Walk estima-
tors with generalized absorption probabili-
ties, �i. �is is the reflected radiosity in patch i

due to source s substituting each reflectivity
by Ri

�i
.

shooting �i
P

s�s
(1+2Ri�i)�is

Aips
� b2i

gathering �i
pi

P
s(Es + 2bs)�is � bi

2
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