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ABSTRACT

In this paper, an information theoretic framework for im-
age segmentation is presented. This approach is based on
the information channel that goes from the image intensity
histogram 1o the regions of the partitioned image. It allows
us (o defing a new family of segmentation methods which
maximize the mutual information of the channel. Firstly, a
greedy top-down algorithm which partitions an image into
homogeneous regions is introduced. Secondly. a histogram
quantization algorithm which clusters color bins in a greedy
bottom-up way is defined. Finally, the resulting regions in
the partitioning algorithm can optionally be merged using
the quantized histogram.

1. INTRODUCTION

In image processing, grouping parts of an image into units
that are homogencous with respect to one or more character-
istics (o1 features) results in a segmented image. Thus, we
expect that segmentation subdivides an image on its con-
stituent regions or objects. Segmentaiion of non trivial im-
ages is one of the most difficult tasks in image processing.
Image segmentation algorithms are generally based on one
of two basic properties of intensity values: discontinuity
and similarity. In the first category, the approach is (o parti-
tion the image based on abrapt changes in intensity, such as
edges in an image. The principal approaches in the second
category are based on partitioning an image into regions that
are similar according to a 'set of predefined criteria. Thresh-
olding, region growing, and region splitting and merging are
examples of methods of this category [1, 2].

In this paper, we introduce a new information theoretic
framework for image segmentation, built on the information
channel between the two most basic pixel characteristics:
its intensity and its spatial position into the image. Using
this channel, we present two algorithms based on the maxi-
mization of the murual information (MI). The first algorithm
partitions an image into relatively homogeneous regions us-
ing a binary space partition (BSP). The second segments an
image from the clustering of the histogram bins. The result-
ing regions in the first algorithm can be merged using the
quantized histogram obtained in the second one.
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2. INFORMATION TIIEORY TOOLS

The following information theeretic definitions and incqual-
itics [3] are fundamental to develop the most basic ideas of

this paper.
© The Shannon entropy H(X) of a discrete random vari-
able X with values in the set &' = {xy,..., %, } is defined
as
H{X) = —Zp; log p;, (1)
i=1

where n = [X| and p; = PrlX = a;]. The logarithms
are taken in basc 2 and entropy is expressed in bits. If we
consider another random variable ¥ with values in the set
Y ={.-..,ym} and q; = Pr[¥Y = y;], the conditional
entropy is defined as

HXIY) =~ ¢y pa;logpy @)

=1 =1

where m = |)| and p;; = Pr{X = =Y = y;]is the
conditional probability. H(X]Y) corresponds to the uncer-
tainty in the information channel input X from the point of
view of receiver ¥, and vice versa for H{Y[.X).

The mutual information between X and ¥ is defined as

1 ™
1Y) =33 p,log 2L, 3)
R Pig;
where pi; = Pr[X = x;,Y = y;| is the joint probability. It
can also be expressed by I(X,Y) = H(X) - H(X|Y) =
H(Y) — H(Y|X) and is a measure of the shared informa-
tionbetween X and Y.
Next, we give two basic inequalities:
Daia processing inequaliy, f X — Y — Z is a Markov

chain, i.e., p(x, y, z) = p(z)ply|=)p(z|y), then
X, Y)Y > [(X, 7). 4

This result demonstrates that no processing of ¥, determin-
istic or random, can increase the information that Y con-
tains about X,
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Fig. 2, Two partitions of the Lena image (512x512), over
luminance channel Yyo obtained with the given MIR,
values. The mumber of regions R is (a) 1553 and (b)
15316. RMSE and PSNR values are respectively (a)
(16.232, 22.681) and (b} (9.710, 27.490).

Fano's inequalirv. Suppose we have two correlated random
variables X and Y and we wish to measure the probability
of error in guessing X from the knowledge of Y. Fano's
inequality gives us a tight lower bound on this error proba-
bility in terms of the conditional entropy H(X|Y'). From Y
we calculate a function g{}Y) = X which is an estimate of
X The probability of error is defined by P, = Pr[X # X]
and the Fano’s inequality is given by H(X]Y) < H(F.) +
P, log{n — 1) or, equivalently, by

I(X,Y) 2z H(X) - H(F;) — P.log(n— 1), (5

where H(F;) is the binary entropy from {Fe, 1—Fe}. Thus,
Fano’s inequality bounds the probability that X' # X

3. IMAGE PARTITION

Given an image with V pixels and an intensity histogram
with n; pixels in bin ¢, we define a discrete information
channel where input X represents the bins of the histogram,
with probability distribution {p;} = {%#}, output ¥ the
pixel-to-pixel image partition, with distribution {g;} = {%}
over the NV pixels, and the conditional probability distribu-
tion {p;;} is the transition probability from bin ¢ of the his-
togram to pixel 7 of the image. This information channel

can be represented by
X — Y (6)
{en:t
il =5 {g)

In this channel, it can be scen that, given a pixel, there
is no uncertainty about the corrcsponding bin of the his-
togram (consequently, 7(X,Y) = H(X)). From the data
processing inequality (4), we know that any clustering or
quantization over X or ¥ will reduce the shared informa-
tion 7(X,Y). The information channcl X — ¥ can be
defincd for each color component of an image. Thus, all
the algorithms presented in this paper can be applied to any
component of a color system.

In this section, we present a greedy algorithm which par-
titions an image in quasi-homogencous regions. The opli-
mal partitioning algorithm is NP-complete. To do this par-
tition, a natural approach could consider the above channel
€6) as the starting point for the image partitioning, design-
ing a pixel clustering algorithm which minimizes the loss
of ML This process can be described by a Markov chain,
X =Y —Y,where Y = f(Y) represents a clustering of
Y.

However, due to the computational cost of this algo-
rithm, a completely opposite strategy has been adopted: a
top-down splitting algorithm takes the full image as the uni-
que initial partition and progressively subdivides it with ver-
tical or horizontal lines (BSP) chosen according to the max-
imum MI gain for each partitioning step. Note that other
types of lines could be used, obtaining a varied polygonal
subdivision. Our splitting process is represented over the
channel (see Fig. 1)

p g N

The channel varies at each partition step because the num-
ber of regions is increased and, consequently, the marginal
probabilities of Y and the conditional probabilities of ¥
over X also change. This process can be interpreted in the
following way: the choice of the partition which maximizes
the MI increases the chances of guessing the intensity of a
pixel chosen randomly from the knowledge of the region it
pertains to. Similar algorithms were introduced in the con-
text of pattern recognition [4], learning [5], DNA segmen-
tation [6], and document clustering {7].

Our panitioning algorithm can be represented by a bi-
nary tree where each node corresponds to an image region.
At each partitioning step, the tree acquires information from
the original image such that each internal node < contains the
mutual information I; gained with its corresponding split-
ting. The total I(X,Y") captured by the tree [4] can be ob-
tained adding up the MI available at the internal nodes of
the tree weighted by the relative area ¢; = fﬂ\,& of the region
%, i.e., the relative number of pixels cotresponding to each
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node. Thus, the total MI acquired in the process is given by

T
I(X,¥)=)
i=1

where T is the number of intemal nodes. It is important to
stress that this process of extracting information cnables us
1o decide Yocally which is the best partition.

This partitioning proccdure can be stopped using differ-
ent criteria;

‘I, (8)

|z

e Given the error probability P, allowed in partition-
ing, Fano's incquality (5) provides us with a lower
bound for the gain of ML Taking the equality in (3),
we obtain the minimum value of MI needed in the
partitioning algorithm:

Lo (X, Y) = H(X) = H{F.) - P, log(B—1), ®)

where B is the number of bins of the histogram. The
process siops when (X, Y) > L, (X, Y). Note
that Tz (X, Y) is calculated from the initial channet
(6).

e The ratio MIR, = % is greater than a given
threshold. From it we can also determine the error
probability in partitioning using (%), and vice versa.

o A predefined numbcer of regibns R

This process can also be visualized from equation H{X)
= I{X, Y)+ H {X|17), where the acquisition of informa-
tion increases T(X,¥) and decreases H (X ji}), producing
a reduction of uncertainty due to the fact that the regions be-
come more and more homogeneous. Observe that the max-
imum MI that can be achieved is H{X).

Two partitions of the Lena image over laminance chan-
nel Yoo in Fag. 2 illustrate the behavior of the partitioning
algorithm. They have been obtained using the M 1, crite-
rion, Number of regions K, root mean square error (RMSE),
and peak signal-to-noise ratio (PSNR) are given. The re-
gions in the partitioned images are shown with their average
intensity.

4. HISTOGRAM QUANTIZATION

In this section, a greedy bottom-up segmentation algorithm
based on the minimization of the loss of MI is introduced.
This algorithm produces a clustering of the histogram bins.

Now, the reverse of the channel (7) is the starting point
for the histogram quantization. Thus, the histogram cluster-
ing is carried out from a given partition of an image. This
process can also be described by a Markov chain, ¥ —
X — X, where X = f(X) represents a clustering of the
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(a) MIR, =045 (A MIR, =0.65

Fig. 3. Two segmentations of the Leng image over lumi-
nance channel Yygo, obtained from the partitioned image of
Fig. 2.(a) using the histogram quantization algorithm with
the given A{JR, values. The number of colors C is (a)
3 and () 6. RMSE and PSNR values arc respectively (@)
(19.068, 22.212) and (b) (10.683, 27.245).
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Fig. 4. Two contour segmentations of the Lena image, over
luminance channel ¥7p5 obtained by merging the regions
of the corresponding partitioned images of Fig. 2 from the
quantized histogram of six colors of Fig. 3.(9). RMSE and
PSNR values are respectively (a) (18.961, 22.261) and ()
(14.297, 24.714).

histogram. The optimal quantization algorithm is also NP-
complete.

The basic idea underlying our segmentation process is
to preserve the maximum information of the image with the
minimum number of colors (histogram bins). The cluster-
ing of the histogram is obtained efficiently by merging two
neighbor bins such that the loss of MI is minimum. The
stopping criterion is given, as in the previous section, by

an error probability F. or a MI ratio MIR, = %
Optionally, a predefined number of colors C can also be
given. An altemative to this algorithm would be to take a
top-down approach, like the partitioning algorithm of the
previous section. Thus, we could start from the full his-
togram and successively apply the binary partition which
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Fig. 5. Subfigures (a-¢) show the segmentations of the Pep-
pers image over the RGB componcnts with M TR, = 0.65
from the respective partitioned images with MTR, = 0.3,
Four colors have been obtained for each component. (d)
shows the result of merging (a-¢). RMSE and PSNR values
in (d) are 19.407 and 21.606, respectively.

maximizes the MI. However, this algorithm is less accurate
and more costly than the clustering one. Our clustering pro-
cess is represented over the channel

Yy — X (10)

Observe that one particufar case of this channel is Y — X
Note also that (10) changes at each clustering step because
the number of bins is reduced. The choice of the clustering
of the histogram which minimizes the loss of MI increases
the chances of guessing the region of a randomly chosen
pixel from the knowledge of its intensity. At the end of the
quantization process, the MI of the channel is /{ X, Y), and
the following inequality is fulfilted: I(X,Y) > I{X,Y) >
IX.¥).

The behavior of our histogram quantization algorithm
is shown in Figures 3-5. In Fig. 3, two segmentations of
the Lena image over lnminance channel Y;o9 are shown.
They have been obtained using the channel Y — X with the
M IR, criterion. Number of colors £, RMSE, and PSNR
are given. In Fig. 4, the regions obtained in the partitions
of Fig. 2 are merged using a quantized histogram of six col-
ors, Finally, Figures 5.(a-c) illustrate the result of quantiz-
ing the three color components of the Peppers image. Tor

each component, four colers have been obtained. Fig, 5.(¢h
shows the result of merging Figures 5.(¢-¢).

5. CONCLUSIONS AND FUTURE WORK

We have presented an intormation theoretic framework for
image segmentation, based on the information channel be-
tween the image intensity histogram and the regions of the
partitioned image. Two greedy algorithms, which respec-
tively split the image into homogeneous regions and cluster
the bins of the histogram, have been introduced. Mutal
information drives respectively the image partitioning [his-
togram quantization] so that the next image splitting [his-
togram clustering] is chosen to maximize [minimize] the
gain [loss] in mutual information. Our approach has been
validated with scveral experiments on standard test images.
In our futurc work, we will study the compositional com-
plexity of an image following the segmentation framework
presented in this paper, as well as the applicability to image
compression. :
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