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The activated sludge process - the main biological technology usually applied to 
wastewater treatment plants (WWTP) - directly depends on live beings 
(microorganisms), and therefore on unforeseen changes produced by them. It 
could be possible to get a good plant operation if the supervisory control system is 
able to react to the changes and deviations in the system and can take the 
necessary actions to restore the system’s performance. These decisions are often 
based both on physical, chemical, microbiological principles (suitable to be 
modelled by conventional control algorithms) and on some knowledge (suitable 
to be modelled by knowledge-based systems). But one of the key problems in 
knowledge-based control systems design is the development of an architecture 
able to manage efficiently the different elements of the process (integrated 
architecture), to learn from previous cases (spec@c experimental knowledge) and 
to acquire the domain knowledge (general expert knowledge). These problems 
increase when the process belongs to an ill-structured domain and is composed of 
several complex operational units. Therefore, an integrated and distributed AI 
architecture seems to be a good choice. This paper proposes an integrated and 
distributed supervisory multi-level architecture for the supervision of WWTP, that 
overcomes some of the main troubles of classical control techniques and those of 
knowledge-based systems applied to real world systems. 

Key words: integrated AI systems, distributed AI systems, knowledge-based 
systems, real-time supervision and control, wastewater treatment, knowledge 
engineering, environmental engineering. 

1 INTRODUCTION 1.1 Wastewater treatment plant8 domaio 

The motivations of this work were originated by a double The main goal of a wastewater treatment plant is to 
source of unsolved problems: the proved insufficiency of reduce the pollution level of the wastewater at the lowest 
chemical engineering classical control methods applied cost, that is, to remove - within the possible measure 
to WWTP, and on the other hand, some limitations of - foreign compounds (pollutants) of the inflow water 
knowledge-based systems (KBS), in artificial intelligence to the plant prior to discharge to the environment, so 
as we will explain in sections 1.2 and 1.3. that the effluent water has the lower levels of pollutants 
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as possible (in any case, lower than the maximum and can take the necessary actions to restore the 
allowed by law). system’s performance. 

The plants taken as models, in this study, are based 
on the main biological technology usually applied: the 
activated sludge process. The target wastewater plant 
studied is located in Manresa, near Barcelona (Cata- 
lonia). This plant receives about 30 000m3/day inflow 
from 75 000 inhabitants. 

1.2 WWTP control and supervision problems 

A wastewater treatment plant (WWTP) is usually 
composed of two stand-alone but interactive sub- 
systems:’ sludge line and water line. The water line is 
formed by a sequence of unit process operations where 
the effluent of one process becomes the inflow to the 
next one. Usually, there are three major processes: 
primary treatment, secondary treatment and tertiary 
treatment. Each one reduces or removes the concentra- 
tion of several specific pollutants. The sludge line is 
commonly composed of three sequential processes in 
order to get an innocuous and compacted sludge: 
thickening, anaerobic treatment and drying processes. 
The flowsheet of a plant is depicted in Fig. 1. 

The complexity of the process - composed of several 
operational units - makes difficult the implementation 
of an automatic process control over the wastewater 
treatment plant system. There are many factors influ- 
encing the system (most of them cannot be controlled, as 
for example the water temperature, flow variations, 
peaks, toxic loading, etc.) and, furthermore, the domain 
is ill-structured; there is a lack of understanding of the 
true mechanisms of the biochemical processes involved 
in wastewater treatment plants, and the relationships 
among different phenomena, which characterize the 
system, are not well-enough known, although different 
mathematical models have been put forward to describe 
them. 

The activated sludge process directly depends on live 
beings (microorganisms), and therefore on unforeseen 
changes produced by them. It could be possible to get a 
good plant operation if the supervisory control system is 
able to react to the changes and deviations of the system, 

Most information is neither numeric nor quantified; 
qualitative information cannot be used in the context of 
a conventional control model, as for example micro- 
biological information, water smell and appearance or 
state of the flocculation during sedimentation. This kind 
of information is essential for the operator of the 
plant, but is not suitable to be included in the context of 
a classical numerical control model. Another added 
difficulty is the uncertainty or approximate knowledge; 
the variables which describe the process are global and 
most of them cannot be obtained on-line. Therefore, the 
expert also has to take into account subjective informa- 
tion, based on local experience, which enables him or 
her to identify certain states of the plant. 
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Fig. 1. Flowsheet of a wastewater treatment plant. 

Finally, the system is dynamic; it is under continuous 
changes that can directly modify the performance of the 
process. The plant is never working in steady-state 
conditions. Also, there is no possibility to control the 
feed to the plant, which has a wide variability in flow 
and concentration, or to control the microorganisms’ 
behaviour. The WWTP system must be able to keep the 
outflow under environmental law limits, and minimize 
environmental effects. 

So, all these features reveal that supervision and 
control of activated sludge processes could only be 
treated in a multi-disciplinary way,* that includes: 
monitoring (sensor developing, continuous analysis 
equipment), modelling (equations that model the bio- 
reactors’ behaviour), control (maintaining good effluent 
water quality and reducing operation costs), qualitative 
information (microbiological information, water colour 
and odour, water appearance, etc.), expert knowledge 
(supplied by the much experience from plant managers, 
biologists and operators) and experimental knowledge 
(specific knowledge supplied by the previously solved 
problems in the concrete plant). The last three 
features commonly provide the systems with incomplete, 
uncertain or approximate information. 



DAI-DEPUR 211 

1.3 Knowledge-based control and supervision 

The main characteristics of knowledge-based systems 
(KBS) point to the fact that they could be used for the 
supervision and control of wastewater treatments plants:3 
usefulness in concrete domains, supporting numerical 
and/or symbolic information, specially useful in ill- 
structured domains, the treatment of uncertain or 
approximate reasoning. 

Nevertheless, KBS do not incorporate some desired 
features from human intelligence and have some 
technical difliculties in their development:4 most KBS 
do not learn from previous cases, and the use of these 
previously solved cases is a valuable feature to be 
integrated in KBS; the knowledge acquisition problem, 
there are some difilculties in extracting the knowledge 
and experience from knowledge’s sources; brittleness, 
their scope is limited to the forecasted situations in 
the domain, and they are not reliable when applied to 
unexpected situations; the increasing complexity of the 
systems, as the systems grow, it is more difficult to 
manage information and knowledge contained in 
them; lack of reusability, knowledge acquisition strongly 
depends on both the experts and the concrete domain, 
thus, it is very difficult for partial or global sharing and 
reuse of knowledge bases. 

On the other hand, it is generally agreed that more 
powerful knowledge acquisition and learning tools and 
techniques are needed in order to increase both the quality 
and the quantity of KBS for real world supervisory 
applications. By this, we mean systems that exhibit a 
certain level of complexity, that sometimes have to cope 
with problems on the border (or slightly outside) of their 
special domain of competence (not brittle), and have to 
be properly self-updated and maintained (learning) in 
order not to degrade over time. 

1.4 DAI-DEPUR’s integrated and dlstrlhuted 
architecture: an overview 

One of the key problems in the design of knowledge- 
based control and supervision systems is the develop- 
ment of an architecture able to efficiently manage the 
different elements of the process’ (integrated architec- 
ture), to learn from previously solved cases (specific 
experimental knowledge) and to acquire the domain 
knowledge (general expert knowledge). These problems 
increase when the process is composed of several 
complex operational units. Therefore, an integrated 
and distributed problem solving architecture seems to be 
a good choice. 

In Section 2 is presented some related work on 
chemical engineering classical control methods and, on 
the other hand, some knowledge-based approaches 
applied to WWTP control and supervision. 

In this paper we will focus on the integrated design 
issues of our proposal (Section 3), which tries to 
overcome some of the troubles from knowledge-based 

systems and those from classical control systems, in 
order to build-up a more efficient and robust system for 
the supervision and control of wastewater treatment 
plants. The supervisory integrated and distributed 
architecture proposes the integration of several inter- 
acting subsystems or agents, and the combination of 
problem solving capabilities, reasoning, as well as 
learning tasks in a single structure. 

In Section 4, we describe an application of this 
architecture to a real plant. Section 5 discusses some of 
the results and provides some means of evaluation of the 
system. Section 6 gives the conclusions and suggests 
future research lines. 

2 RELATED WORK 

2.1 Chemical englneerlng classlcnl control methods 

The following methods are the different automatic 
process control configurations which have been applied 
to WWTP: 

Feedback control. This uses direct measurements 
of the controlled variables to adjust the values of 
the manipulated variables. The objective is to keep 
the controlled variables at desired levels (set 
points). It is commonly used to control the 
dissolved oxygen (DO) level in aeration tanks and 
it has also been studied to control substrate and 
biomass.6 A feed-back controller reacts only after it 
has detected a deviation in the value of the output 
from the desired set point. 
Feedforward control. Unlike the feedback systems, 
a feedforward control uses direct measurements of 
the disturbances to adjust the values of the 
manipulated variables. An example of feedforward 
control configuration was implemented in Luggage 
Point WWTP.’ 
Adaptive control. There are two main reasons for 
using an adaptive controller in a WWTP. First, the 
process is non-linear (as the desired steady-state 
operation of the process changes, the best values of 
the controller’s parameters change). Second, the 
process is nonstationary (its characteristics change 
with time). Different conil 

Y 
rations of adaptive 

control have been proposed. 
Optimal controt and predictive controt” complete 
the list of automatic process control configurations 
applied to WWTP. 

These conventional process control systems cannot 
work properly in a WWTP when there are either 
abnormal situations (storm, bulking, rising, etc.), or 
when there are unforeseen situations such as a mechanical 
fault (turbines, bridge of the clarifier, etc.) or when the 
available information is incomplete. Classical control 
processes have problems to be tuned and, sometimes, 
are not able to keep the system under control. Moreover, 
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most of them require numerical information; they need 
precise knowledge over the domain; they do not include 
the experts knowledge about the process, and their model 
of the system is rather static. 

2.2 Knowledge-based systems approach 

Some of the problems within the conventional process 
control systems described in section 2.1 have been the 
focus, during the last years, on much of the research 
efforts in artificial intelligence - specially in KBS - in 
many supervisory areas (monitoring of continuous 
processes, statistical process control, control of sun 
powered plants, control of petrochemical plants, etc.). 

Specially related to the wastewater treatment area, KBS 
technologies have been develo 

!Y 
d as off-line consulta- 

tions for: diagnosis,“-‘3 design, process optimization,‘5 
etc. But all these approaches solve only certain aspects 
of the overall WWTP management process and cope 
with the KBS problems mentioned in section 1.3. 

Thus it seems that the management of the whole 
WWTP process: system evaluation, diagnosis, super- 
vision, actuation, etc., could be more easily achieved 
within an integrated and distributed AI architecture. 
Distributed AI (DAI) encompasses the research, analysis 
and development of ‘intelligent communities’ that 
integrate a coordinated set of knowledge-based pro- 
cesses, usually called agents (or actors or knowledge 
sources) that interact either by cooperation, by coexist- 
ence or by competition, in order to reach common 
objectives. The main reasons for distributing an AI 
system into a distributed problem solving architecture 
are:i6 geographic distribution in the domain of appli- 
cation, functional decomposition, faster processing 
speed by means of parallel execution, modularity and 
extendibility, controlling the increasing complexity of 
AI systems and increasing the power of the resulting 
system. Also, there are some problems with a distributed 
architecture: how to maintain the global coherence of 
several agents involved in the architecture? How to 
plan a concrete solution for a given problem? How to 
coordinate agents’ communication? 

Although there are some areas where distributed AI 
systems have successfully been applied such as air traffic 
control, robotic systems, man-machine cooperation and 
office information systems, design, medical diagnosis, 
speech and natural language processing, etc., we have no 
knowledge of an integrated and distributed AI system 
applied to wastewater treatment plant control and 
supervision. 

3 DAEDEPUR ARCHITECTURE 

3.1 Introduftion 

There are many kinds of distributed AI archi- 
tectures which can be grouped into four main classes:t7 

blackboard systems (BBS), supervisory systems (SVS), 
contract nets (CN), non-explicitly coordinated systems 
(NECS). The main reason to choose a supervisory 
integrated and distributed AI system is because for 
WWTP there is a set of fixed abnormal situations such 
as storm, bulking, toxic loading, etc., that may be 
solved with a predetermined plan or strategy in a more 
efficient way than with other types of DA1 architectures 
such as blackboard systems or contract nets. Further- 
more, the integration of several techniques such as 
knowledge-based reasoning, case-based reasoning, 
learning, distributed problem solving and numerical 
control methods tries to cope with the troubles of single 
technologies that have been applied to real-world 
systems and to WWTP supervisory systems. 

The integrated and distributed supervisory system 
(as shown in Fig. 2) is formed of several interacting 
subsystems (agents) that can be executed in parallel 
processing. Distribution criteria are based on spatial 
and semantic distances.‘* In a WWTP there are some 
subsystems that are in spatially distributed locations: 
primary settlers, secondary-settlers, biological reactors, 
etc. (see Fig. 1). Thus, all of these agents are specialized, 
that focus on different aspects of the system. Each one 
has its own knowledge base. 

The water line subsystem is a set of seven knowledge- 
based agents which diagnose and supervise the state 
of the water line subsystem. This task is done through 
their activation, which recalls information from the 
evolutionary real time data base and make their own 
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Fig. 2. DAI-DEPUR architecture. 
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inferences. This subsystem has already been developed, 
but is being re-structured. 

The sludge line subsystem is a set of four knowledge- 
based agents which diagnose and supervise the state of 
the sludge line subsystem. This process will be done by 
means of their activation, which will recall information 
from the evolutionary real time data base and will 
come to their own conclusions. This subsystem is under 
development. 

3.2 Levels of the architecture 

The integrated’9120 multi-level architecture is composed 
of four levels as shown in Fig. 2: data level, distributed 
knowledge level, reasoning level and supervisory level. 
The multi-level feature provides the architecture with 
some independence among the levels. 

3.2.1 Data level 
The data base management system controls the access of 
the several KBS, CBRL agent, supervisory-KBS to the 
evolutionary (real-time) data base to guarantee the 
consistency of the system. The data collection system 
periodically receives data from the on-line sensors of the 
plant and sends them to the data base through the data 
base management system. The actuator system lets the 
system modify the on-line working parameters of the 
plant (turbines on/off, recirculating flow, etc.) under the 
supervision of the operator. This data level ensures a 
real-time environment for the WWTP system if there are 
real-time interfaces. If not, off-line supervision is 
required. 

3.2.2 Distributed knowledge level 
This general knowledge is obtained both from semi- 
automatic knowledge acquisition techniques and from 
expert knowledge. Agents forming the Water line 
subsystem are: 

Screen-KBS: agent supervising physical units that 
remove gross pollutants from the inflow of the 
WWTP. 
Grit removal-KBS: agent supervising physical 
units that remove grit to prevent abrasion and 
wear of mechanical equipment. 
Primary settler-KBS: agent supervising physical 
units with a long residence time that remove 
suspended par&dates heavier than water. 
Biological reactors-KBS: agent supervising bio- 
logical units that, using aerobic microorganisms 
(biomass or sludge), convert soluble BOD (bio- 
logical oxygen demand) to new microorganisms. 
Secondary settler-KBS: agent supervising physical 
units with a long residence time that separate 
biomass from the liquid phase. 
Chlorination-KBS: agent supervising chemical 
units that allow, if necessary, to disinfect the 
outflow prior to discharge. 

l Recirculation-KBS: agent supervising pumping 
systems to keep a certain level of biomass in the 
biological reactors. 

Agents forming the sludge line subsystem are: 

Waste-KBS: agent supervising pumping systems 
that determine the sludge age (mean cell residence 
time, MCRT). 
Thickening-KBS: agent supervising physical units 
to increase the sludge concentration. 
Anaerobic treatment-KBS: agent supervising bio- 
logical units that, using anaerobic microorganisms, 
convert biomass in methane (biogas), decreasing 
and percentage of BOD. 
Drying-KBS: agent supervising physical units that 
dry the sludge prior to discharge. 

Each of these agents includes concrete knowledge about 
its local system, and all necessary elements for pro- 
cessing, validating and monitoring the information 
from this area of the process. This knowledge has been 
obtained by means of the knowledge acquisition module 
as will be described in Section 3.2.2.2. 

From these measurements and observations, agents 
describe the behaviour of their local units and com- 
municate their inferences to the supervisory agent. It 
uses all this information to infer the whole plant state. 
Once this whole plant state is diagnosed, the supervisory 
agent starts a procedure to execute an adequate strategy. 

Numerical control knowledge. The numerical control 
knowledge module allows the system to simulate the 
actual plant operation, obtain simulated values for some 
required variables and implement a dissolved oxygen 
(DO) control scheme*’ based on four main blocks. 

A mathematical model of the process. 
A software sensor to estimate the oxygen uptake 
rate (OUR). 
A continuous-range optimization procedure. 
An algorithm that, using the continuous-range 
optimal control value computed by the previous 
block, generates a discrete-range suboptimal control 
value, suitable to be applied by the aeration motors. 

Knowledge acquisition module. The knowledge 
acquisition module is based in recent developments in 
knowledge acquisition. This module uses the software p, 
which is the merging of LINNEO+** and GAR23 for 
automatic generation of inference rules as the result of a 
previous classification process of attributes and 
observations, defined by experts.” 

LINNEO+ is a knowledge acquisition tool that works 
incrementally with an unsupervised learning strategy 
which accepts a stream of observations and discovers a 
classification scheme on the data set. As a control 
strategy, it retains only the best hypotheses which are 
consistent with the observation given a similarity 
criterion. Part of the LINNEO+ methodology could 
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be considered as a conceptual clustering method with 
two critically important tasks: 

l Clustering, which determines useful subsets of data 
using a fuzzy set approach, and characterization, 
which determines a concept for each extensionally 
defined set discovered by clustering. 

l Validation from an expert to accept or reject the 
resulting clusters. Other modules try to exploit 
observational knowledge from the data set, or take 
advantage of the expert’s knowledge if available. 
This knowledge is called domain theory (DT) and it 
is used to bias the process. 

The main objective of LINNEO+ is to build classifica- 
tions for ill-structured domains; where much imprecise 
information exists. It is assumed that observations vary 
in their degree of membership with regard to each class. 
Bearing all this in mind, the use of the conventional 
concept of distance as a fuzzy similarity value is used. 

GAR (automatic rule generator) is used to generate a 
set of classification rules from LINNEO+‘s output (a 
representation of the concept structure of the domain in 
terms of classes). GAR can generate both conjunctive 
and disjunctive rules, but after having analysed and 
compared several kinds of classification rules, one 
arrives at the following conclusions: 

The effectiveness of rule generation (defined as the 
specificity of a rule normalized in time) for 
conjunctive rules is the highest one. 
When delivered to experts, conjunctive rules are 
qualified as more understandable than other sorts 
of rules. 
When applying conjunctive rules, the reasoning 
process is faster. 
Conjunctive rules structure knowledge in a more 
modular way. 

Therefore, these facts drive the system to output 
conjunctive rules. The algorithm for conjunctive rule 
generation could be summarized in this way: 

(1) select the best term; 
(2) add such term to the ‘up to now’ conjunctive 

premise; 
(3) reduce the set of possible terms; 
(4) repeat steps l-3 while the rule is not completed. 

For instance, a rule generated by GAR is: 

(IF(>323.0 AFTER-PRIMARY-SETTLER- 

CHEMICAL OXYGEN DEMAND(COD)) 

(<7.7 INFLOW-pH) 

(<93-O GENERAL-CLEANSING- 

PERCENTAGE-BOD) 

(>300 INFLOW-BOD)) 

+ 

Class-12) 

which describes a high in-plant-overloading situation 
plus a poor sedimentation process in the primary 
settler. 

3.2.3 Reasoning level 
The case-based learning and reasoning agent manages a 
Case Library. This Case Library contains information 
about previously detected situations and solutions 
given to them as well as their efficiency (experimental 
or specific knowledge). A case-based reasoning” is 
performed in order to get benefit from these past 
experiences and cases. The Case Library is modified 
accordingly with the new information. The cases are 
previously experienced situations, which have been 
captured and learned, in such a way, that they can be 
reused in the solution of future situations. 

The reasoning process in the case-based reasoning 
and learning agent26 is performed by the following steps: 

l Retrieving the most similar case(s) (previous 
working situations) by means of some heuristic 
functions or distances, possibly domain dependent. 
The normalized weighted distance - after a wide 
performance study - used to rank the best cases is: 

d(Ci, Cj) = 2 eWk*d(Aki,Akj) 2 ewk 
k=l I k=l 

where 

d(Aki, Akj) = 1 quantvd(&) - quantvd(dkj)( 

if Ak is a lineal (ordered) attribute and wk 1. o 

+ (#mod(&) - 1) 

if Ak is a lineal (ordered) attribute and W, > CI 

d(Aki, Akj) = 1 - S qualval(dki), qualval(Akj) 

if Ak is a categorical (not ordered) attribute 

and, 

Ci is the case i 
Cj is the case j 
wk is the weight of attribute k 
Aki is the attribute k in the case i 
Akj is the attribute k in the case j 
quantval(Aki) is the quantitative value of Aki 
quantval(Akj) is the quantitative value of Akj 
Ak is the attribute k 
upperval(Ak) is the upper quantitative value of Ak 
lowerval(Ak) is the lower quantitative value of Ak 
(Y is a cut point on the weight of the attributes 
qualval(Aki) is the qualitative value of Aki 
qualval(Akj) is the qualitative value of Akj 
#mod&) is the number of modalities (categories) 

of Ak 

~qqualval(Aki),qualvaI(Akj) is the 6 of Kronecker 
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Adapting or reusing the information and knowledge 
in that case to solve the new problem (the current 
working situation of the plant). 
Evaluation of the proposed solution. Usually, it is 
performed by simulation or by questioning a human 
oracle (in this case the human oracle is the plant 
manager). In the future, the evaluation will be done 
through automatic checking of the effectiveness of 
past solved cases. 
Learning the parts of this experience likely to be 
useful for future problem solving. The agent can 
learn both from successful solutions and from 
failed ones. This record is made by updating the 
Case Library accordingly. 

The Case Library is implemented as a prioritized 
discrimination tree, where the priority of node-attributes 
is obtained from experts’ judgement and from an 
inductive learning method (such as ID3). The Case 
Library is initialized with some prototypical situations 
obtained with LINNEO+ classification, from real data 
(see section 5): 

0 normal l solids-shock 
l toxic-substances-loading l primary-treatment- 

problems 
0 storm l secondary-treatment- 

problems 
l plant-problems 

It evolves from initial contents and captures the 
experimental knowledge of the concrete plant under 
control. Evaluation and adaptation steps are under 
development for DAI-DEPUR. 

3.2.4 Supervisory level 
The supervisory-K&? agent is the manager of the 
distributed system and acts as a master. It receives 
diagnosis information from the water line and from the 
sludge line subsystems and the most similar case 
retrieved from the case-based learning and reasoning 
agent. If the diagnosed working situation of the plant 
is normal, then automatic numerical control is activated 
or maintained. Otherwise, the supervisory agent notifies 
the operator of the plant of the current situation, 
suggesting the possible solution to take into account or 
directly acting over the system. About 20 different 
working situations of the plant have been deflned.24 
Each one could be defined in terms of raw descriptions 
and relationships that effectively match the results 
obtained using LINNEO+. For example, the bulking- 
non-fiumentous situation was defined as follows: 

Outflow-chemical oxygen demand (COD) + high 
Sludge age + old 
Filamentous-presence + normal 
Sludge volumetric index (SVI) + high 
Recirculation-volatile suspended solids 

(RVSS) ---, low 
All-other-attributes + nought-value (don’t care) 

The user interface module provides interaction between 
the operator and the system through visualization of a 
chart of the plant, asking and answering the operator and/ 
or system inquiries, evolution of the system, diagnosed 
working situation, integration of process data obtained 
off-line in the laboratory, etc. The explanation module 
gives some explanations about conclusions reached of 
the different KBS agents of the system (supervisory 
agent, screen agent, thickening agent, etc.) and could 
give some required reports about deductive processes. 

3.3 The supervisory cycle 

The interaction of the several processes involved is done 
through communication channels and centralized by the 
supervisory agent process. Other processes interact with 
it asynchronically at different steps of the supervisory 
time cycle. These communications are shown in Fig. 3. 
The system activates a new supervisory cycle at fixed 
intervals of time. Each cycle is formed of four steps: 
diagnosis or evaluation phase, learning and reasoning 
phase, supervisory and communication phase, and 
actuation phase. 

3.3.1 Diagnosis or evaluation phase 
In a new cycle, the supervisory agent activates the 
water line agents to diagnose the state of the different 
subsystems of the plant (biological reactor, primary 
settler, recirculation, etc.). This means concurrent 
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processing of all agents involved. For this purpose it is 
necessary to know some values for certain variables of 
the process. All this data can be extracted from the 
evolutionary data base, fitted either with the on-line 
sensor values coming from the data collecting systems or 
with some other features provided by the operator (such 
as a microbiological laboratory analysis, qualitative 
observation, etc.). 

3.3.2 Learning and reasoning phase 
At the same time as the diagnose phase, in concurrent 
execution, the case-based reasoning and learning agent 
(CBRL) is activated to retrieve similar cases recorded in 
the Case Library. Next, the most similar one is updated 
in order to adapt it to the current situation of the 
plant. During this task access to the data base is 
required. The results are communicated to the super- 
visory agent. Afterwards, the agent can learn from its 
successes or failures. 

3.3.3 Supervisory and communication phase 
The supervisory agent combines all information coming 
from the several KBS agents (general knowledge) and 
from the CBRL agent (speczjic knowledge) to infer the 
current global situation of the plant and the suggested 
actions to be taken. It sends this information to the 
operator through the user interface module. The system 
can be used for explanations, retrieval of certain values, 
etc. 

3.3.4 Actuation phase 
If the normal situation has been detected the automatic 
control is maintained or activated. In abnormal situa- 
tions, the supervisory agent waits for the operator’s 
validation of the actions in order to update the current 
working state of the plant. If there are on-line actuators, 
the plant can be automatically updated through the 
actuator system. If not, manual operation is required. 

4 APPLICATION 

As an example in the present paper, a case describing the 
integrated reasoning system of DAI-DEPUR is pre- 
sented. Focusing on the secondary settler agent, the 
information considered is (see Fig. 4): inflow, tempera- 
ture, inflow COD (chemical oxygen demand), inflow 
biomass, outflow COD, outllow suspended solids, 
recirculation flow, recirculation biomass, sludge level 
and qualitative observations. With all this information, 
the secondary settler agent may detect different local 
situations: 

increase or decrease in the sludge level (slowly, 
quickly, etc.) 
poor sedimentation 
presence of bubbles 
change in the efficiency of the solids removal 

Bridge 

outflow 
sludge 

water 
+ 

biomass 

Fig. 4. Secondary settler or clarifier. 

l some mechanical problem (pumps, bridge, etc.) 
l flow bursts 

Following the example, if the secondary settler agent 
detects a slight increase in the sludge level combined 
with a decrease in the biomass concentration in the 
recirculation flow and a clear sobrenatant, he concludes 
a bulking suspect (poor sedimentation of the biomass). 
This alarm arrives at DAI-DEPUR supervisory agent, 
which requests - from the biological reactors agent - 
the behaviour of the sludge volumetric index (SVI) value 
and microscopical observations to conclude the bulking 
situation. Then it starts a planning strategy to determine 
the causes of this situation using information coming 
from all agents. Also, the CBRL agent is simultaneously 
activated to retrieve any similar previous cases in the 
past. 

In particular for the present system, the bulking 
causes considered in the supervisory agent are: 

low DO level 
nutrient deficiency 
low F/M (food/biomass) ratio 
sulphur presence 
high pH variability 

Immediately after problem detection, the supervisory 
agent executes the bulking strategy to avoid biomass 
decrease in the system. These strategies are different for 
each kind of bulking. Each of them activates a super- 
visory agent’s specific area which contains some 
knowledge to control the bulking problem. 

For example, if DAI-DEPUR has detected that a 
possible cause of the bulking is low-DO-level (due to the 
presence of filamentous microorganisms S. Natans, type 
1701 or 2% Hydrossis) then, it requires, in Manresa’s 
plant, the operator to check DO-sensors or the DO-set- 
point executing the next rules: 

RBUO4 IF (bulking is true and the cause is low- 
DO-level) 

THEN (check the status of the DO-sensor) 
RBUOS IF (the status of DO-sensor is OK) 
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THEN 

RBU06 IF 
THEN 

RBU07 IF 

THEN 

(increase the set-point of DO- 
control) 
(the status of DO-sensor is wrong) 
(calibrate the DO-sensor keep the 
DO-control) 
(the status of DO-sensor is not- 
possible-to-check) 
(increase the set-point of DO-control 
keep the alarm-situation 
send message-34 to operators) 

The main difference between this system and a classical 
control one is that the second just could act on the set- 
point of the controller, but DAI-DEPUR may activate 
or modify the classical control strategy, or if it is 
necessary look for operational problems and errors in 
sensors. In addition, it can retrieve some similar 
previously detected situations in the past operation of 
the plant, and update them to solve this new situation. 
Finally, it can learn from this new experimented 
situation (case). 

5 EXPERIMENTAL RESULTS AND EVALUATION 

The experimental evaluation and validation of the 
system is incrementally being done at several points 
during its development: 

l Validation of each KBS agent and modules: 
knowledge bases obtained from the knowledge 
acquisition module, CBRL agent, the numerical 
control knowledge module, etc., are tested with the 
experts’ opinion and with some real data from the 
plant taken as a modelz4 

l Validation of the whole system. The whole system 
is being validated at three levels: (a) simulation of 
the plant in real time, (b) building-up and testing on 
a pilot scale plant and (c) validation on a real plant. 

The real data used to build-up the LINNEO+ classifi- 
cations prior to initializing the Case Library are 
available via anonymous ftp from the UC1 Machine 
Learning Repository of data bases (ftp.ics.uci.edu). 
They are 527 data (days) corresponding to the period 
1990- 1991. Each piece data is described by means of the 
daily mean of 38 variables. Of these 38 variables, 29 
correspond to measurements taken at different points in 
the plant, while the remaining 9 variables correspond to 
the calculated performance of the primary and second- 
ary treatments for the whole plant. Now, a new real 
data set is being studied from another WWTP which 
uses a slightly different technology. That new plant is 
located in Cassl de la Selva-Llagostera, near Girona 
(Catalonia), and receives about 2500 m3/day intlow from 
10 000 inhabitants. WWTP operation is being simulated 
for validation purposes with a GPS-X simulation 
package2’. 

A wider evaluation of DAI-DEPUR will be possible 

due to the construction of a pilot scale WWTP that will 
be connected in parallel to the Manresa plant. So it will 
be possible to create non-standard and/or dangerous 
situations - those that cannot be tested at the plant lest 
the environment may be damaged - and to measure 
our system’s performance with real data properly scaled. 

6 CONCLUSIONS AND FUTURE LINES 

An integrated and distributed supervisory architecture 
(DAI-DEPUR) for wastewater treatment plant super- 
vision has been designed and is currently being 
developed. It is composed of several knowledge-based 
systems (agents) and other processes (CBRL, DBMS, 
etc.) that can be executed concurrently. This integrated 
architecture approach has several advantages that make 
it more powerful than other single technologies applied 
to wastewater treatment plants as knowledge-based 
approaches (see section 2.2) the same as to other 
complex ill-structured domains: 

l 

a 

l 

l 

l 

l 

l 

It makes it possible to reason in an ill-structured 
domain, where other kinds of reasoning like model- 
based reasoning or algorithmic reasoning would 
not be possible or easily formulated. 
It allows the system to learn from previously solved 
problems and to adapt the available experimental 
knowledge over the domain (dynamic learning 
environment). 
It overcomes the brittleness of KBS in coping with 
unforeseen situations (not previously considered by 
the general expert knowledge), trying to solve them 
by means of the most similar situation in the Case 
Library. 
It captures the knowledge provided by the experts 
(knowledge acquisition) which is very important, 
although subjective, to get a central corpus of 
knowledge about the domain. 
The integration of problem solving capabilities, 
reasoning and learning tasks in a single system. 
The cooperation of knowledge-based reasoning 
(general expert knowledge) and case-based, reason- 
ing (specific experimental knowledge) to deal with 
either prototypical or idiosyncratic situations. 
Due to the dynamic learning environment, the 
system is able to self-adapt to different wastewater 
treatment plants, making the system reusable in any 
plant with some minor changes. It is only necessary 
to fill the Case Library with an initial set of specific 
cases (operating situations of the concrete WWTP), 
which can be obtained semi-automatically from real 
operational data. 

On the other hand, the design and implementation 
of the integrated and distributed problem solving 
architecture is more difBcult and complex than other 
single-technology approaches applied to WWTP super- 
vision. With this integrated approach, the plant can be 
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controlled in normal situations (mathematical control), 
usual abnormal situations (expert control) and unusual 
abnormal situations (experimental control). 

There are some features to be considered for the 
future: 

6. Marsili-Libelli, S., Optimal control strategies for bio- 
logical wastewater treatment. Jn Environmental Systems 
Analysis and Management, ed. S. Rinaldi, North-Holland, 
Amsterdam, 1982, pp. 279-87. 

l New research direction points to consider that 
knowledge bases would not be static but dynamic 
ones. Inference rules (control or expert ones) 
could be adapted in the same way as a CBRL 
agent updates the Case Library according to new 
experience. 

7. Corder, G. D. & Lee, P. L., Feedforward control of a 
wastewater plant. Water Res., 1986, 20, 301-9. 

8. Dochain, D., Design of adaptive controllers for non-linear 
stirred tank bioreactors: extension to the MIMO situation. 
J. Process Control, 1991, 1, 41-8. 

9. Beck, M. B., Identification, estimation and control of 
biological waste-water treatment processes. IEEE Proc., 
1986, 133, 254-64. 

l Perhaps, the study of feasibility of a model-based 
reasoning to increase the power of the system, 
complementing the knowledge-based reasoning 
and the case-based reasoning, although it would 
have more potential if the WWTP domain were a 
well-structured domain. 

10. Moreno, R., de Prada, C., Lafuente, J., Poch, M. & 
Montague, G., Non-linear predictive control of dissolved 
oxygen in the activated sludge process. ICCAFT SIIFAC- 
BIO 2 Conference, Keystone (CO), USA, 1992. 

11. Gall, R. & Patry, G., Knowledge-based system for the 
diagnosis of an activated sludge plant. In Dynamic 
Modelling and Expert Systems in Wastewater Engineering, 
ed. G. Patry & D. Chapman. Lewis Publishers, Chelsea, 
MI, 1989. 

Also, there are some related questions that research 
in WWTP field has to bear in mind, such as: the 
development of an automatic pattern recognition of 
microbiological images that can help to capture this 
useful information into the system28 and to apply the 
data set and knowledge bases as retrofitting information 
to optimization in the design of wastewater treatment 
plants.29 

12. Krichten, D. J., Wilson, K. D. & Tracy, K. D., Expert 
systems guide biological phosphorus removal. Water 
Environm. Technol., 1991, 3(10), 60-4. 

13. Serra, P., Sanchez, M., Lafuente, J., Co&s, U. & Poch, 
M., DEPUR: a knowledge based tool for wastewater 
treatment plants. Engng Applic. Arttjicial Intelligence, 
1994, 7( 1), 23-30. 
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