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A B S T R A C T

Machine learning regression models are increasingly used to improve management, decision-making, and 
monitoring of drinking water quality, leveraging growing data from real-time sensors and laboratory analyses. 
However, most models provide only point predictions, ignoring inherent uncertainty caused by unobserved 
factors that can produce varying outcomes under similar conditions. This study benchmarks state-of-the-art 
regression algorithms and uncertainty quantification methods for predicting E. coli concentrations in a drink
ing water catchment. Gradient-boosted decision trees (GBDT) proved effective for real-time tracking, with 
CatBoost achieving the lowest error (RMSLE = 0.877), improving on the naïve baseline (1.160) and out
performing Random Forest by 5 %. Uncertainty quantification techniques successfully generated valid prediction 
intervals to identify high-risk contamination events, with Conformalized Quantile Regression emerging as the 
most reliable method. By combining accurate GBDT predictions with well-calibrated uncertainty estimates, this 
approach enhances microbial water quality forecasting, offering improved risk assessment and supporting more 
robust decision-making in drinking water management.

1. Introduction

Ensuring a safe drinking water supply is a critical global public 
health priority. Water quality in drinking water treatment plants 
(DWTPs) is monitored by collecting data from both laboratory analyses 
and real-time sensor measurements. This data encompasses a wide range 
of chemical, physical, and microbiological parameters that reflect the 
current state of water quality. While initially used for routine moni
toring, the growing volume of collected data offers far more potential 
when leveraged through machine learning (ML) techniques. These al
gorithms can unlock insights beyond simple monitoring, enabling tasks 
such as predicting optimal treatment dosages [1], detecting pipeline 
leaks [2], developing early warning systems [3], and enhancing process 
control and optimization [4–6]. By harnessing the power of data, ML can 
transform water management, driving safer and more efficient treat
ment practices, granting a powerful environmental risk assessment.

In environmental risk assessment, uncertainty arises at multiple 
stages, from data collection and sampling to the final stages of a model 

development and prediction [7]. This uncertainty can generally be 
categorized into two main types: aleatoric uncertainty, arising from 
inherent variability in natural systems, and epistemic uncertainty, 
which results from limited knowledge or data gaps. Each stage of 
environmental data acquisition and modeling introduces variability that 
contributes to aleatory uncertainty, arising from natural system fluctu
ations, and epistemic uncertainty, stemming from sampling, measure
ment, processing inconsistencies, or modeling assumptions, both of 
which affect the reliability of risk assessment. Quantifying this uncer
tainty is particularly relevant in contexts where there is health risk 
associated, e.g. in drinking water supply systems. Integrating this un
certainty into decision making process is essential for producing more 
robust and reliable outcomes. This can improve decision-making [8], 
detect critical events [9], produce prediction intervals (PIs) and pre
dictive distributions of risk-related outcomes [10], optimize processes 
[11] and reduce false positives and false negatives [12], helping man
agers to avoid under and over estimations.

The traditional regression algorithms provide point predictions, 
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offering a single estimated value for a given feature. However, these 
models fail to account for the uncertainty inherent in environmental 
systems [13]. Inaccurate or overconfident ML outputs that do not 
consider uncertainty quantification can lead to missed hazards that may 
compromise public health [14]. While international standards empha
size the need to quantify the uncertainty in water quality laboratory 
measurements [15–17], the underlying principles are equally applicable 
to modeling approaches. When developing regression predictive models, 
the uncertainty can be considered by providing PI instead of single point 
predictions. These intervals provide a range within which the true value 
is likely to fall, with a specified level of confidence indicated by the user 
[18]. To contextualize the integration of uncertainty quantification 
within the broader modeling process, Fig. 1 presents a typical machine 
learning regression workflow, extended to include uncertainty-aware 
predictions. The process starts with data generation, acquisition, and 
pre-processing to prepare inputs for a regression algorithm, which yields 
point predictions evaluated for performance. Based on this evaluation, 
preprocessing and modeling can be readjusted as needed, and through 
calibration, point predictions can be converted into PI that capture 
uncertainty.

Despite their value, prediction intervals are not widely used in water 
management and modeling, but some studies have addressed this gap by 
employing various techniques. In wastewater systems, a Bayesian 
framework has been used to quantify uncertainty in water quantity and 
quality simulations [19] and signal decomposition combined with 
adaptive kernel density estimation has been applied to generate dy
namic prediction intervals for effluent quality [20]. Gaussian Process 
Regression has been used to produce predictive distributions in a 
papermaking wastewater system [21] and Monte Carlo simulations have 
been used to evaluate E. coli variability and calculate related health risks 
in a karst aquifer [22]. Uncertainty has also been incorporated into 
drinking water pipe break modeling through Bayesian Belief Networks, 
enhancing prediction capability and supporting asset management de
cisions [23]. In recent years, conformal prediction (CP) has gained sig
nificant attention as a promising method for uncertainty quantification. 
It offers distinct advantages for generating prediction intervals because 
it is a distribution-free framework that provides coverage guarantees. 
Unlike many other methods, CP does not require any assumptions about 
the data distribution, making it highly flexible and broadly applicable. 
Despite its capabilities CP has seen limited application in the water field. 
For instance, in groundwater applications, MAPIE algorithms have been 
integrated with Gradient Boosting Decision Trees (GBDT) to estimate 
heavy metal concentrations [24]. In surface and recreational waters, 
conformalized quantile regression (CQR) has been used to generate 
prediction intervals for Enterococci concentrations [25]. Moreover, 
machine learning models have produced prediction intervals with CP for 
water quality parameters based on data from uncrewed surface vessels 
and hyperspectral UAV sensors [26]. In urban water systems, CP has 

been incorporated into a hybrid CNN-BiLSTM model to improve hourly 
demand forecasts [27]. Most of the UQ-prediction intervals algorithms 
are built upon an existing regression algorithm, like GBDTs, which are 
widely used for both regression and classification tasks. This makes well- 
established in data-driven models for water quality prediction [28] and 
can be used as a strong foundation for prediction interval algorithms. 
GBDTs are based on the concept of boosting, where weak learners, such 
as decision trees, are ensembled into a robust predictive model. In most 
recent benchmarking studies, GBDT algorithms have demonstrated a 
superior predictive performance over other models due their ability to 
handle complex relationships in data, handle missing values and provide 
robust predictions [29,30]. Given these strengths, GBDT models are 
especially promising for critical steps in drinking water treatment where 
predictions are vital. One such application is Quantitative Microbial Risk 
Assessment (QMRA).

QMRA is a methodology used to estimate the health risks posed by 
pathogenic microorganisms, from environmental concentrations to 
exposure. This approach is increasingly valuable in managing water 
reuse related health risks [31]. For instance, recent work has proved that 
coupling hydrological simulations with QMRA can be used to enable an 
effective risk management of microbial scenarios in stormwater reuse 
[32] and that can be used to quantify the risk associated to specific 
bacteria [33]. A key component to perform these tasks is the reliable 
estimation of microbial concentrations, which often serves as proxies for 
pathogen presence. Among these, E. coli is a widely used organism as 
fecal contamination indicator [34]. Its presence is strictly regulated in 
the European Union, with a parametric value set at 0 CFU/100 mL in 
drinking water under European Directives [35], and thresholds ranging 
from 250 to 900 CFU/100 mL for recreational waters [36]. The tradi
tional microbial quantification methods for these indicators, which are 
performed by microbial cultures, can take up 24 h to yield final con
centrations [37]. This delay hinders the ability to adapt the drinking 
water treatment to water quality fluctuations. To deal with this chal
lenge, data driven models can be employed to estimate the microor
ganism’s concentration in raw water. Predictive models are particularly 
valuable in this context, as they not only provide real-time monitoring to 
complement traditional laboratory cultures but also offer more robust 
inputs for guiding operational decisions. A huge number of different 
regression algorithms have been used to predict microorganisms in 
water sources, e.g. artificial neural networks [38], Gaussian Process 
[39], Zero-Inflated regression models [40], Random Forest, Bayesian 
Belief Networks [41], Tree-based pipeline optimization tools [42] and 
tree-based ensemble models [43]. However, this area is particularly 
challenging due to the uncertainty that arises in microbial quantification 
[44]. Various sources contribute to this variability, including human and 
equipment errors in weighting, pipetting, preparation, and the risk of 
contamination during culture medium sterilization [45]. By integrating 
uncertainty into these models, all these variabilities can be accounted 

Fig. 1. General Machine Learning implementation pipeline.
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for making predictions more reliable, supporting better risk manage
ment and improving the utility of QMRA in operational contexts [46]. In 
this way, the algorithms provide prediction intervals instead of single 
point estimates, resulting in a range of possible outcomes which allow 
for more conservative decisions under uncertain scenarios. For instance, 
this approach enables more informed decisions regarding chlorination 
strategies, allowing for adjustments in disinfectant dosing to ensure 
microbial safety while minimizing the formation of disinfection by- 
products [47]. This approach becomes even more critical in an 
increasingly anthropized environment, where pressures on water bodies 
and evolving contamination patterns intensify the variability and 
unpredictability of raw water quality [48]. In such contexts, predictive 
models that incorporate UQ are essential for maintaining resilient water 
treatment operations. By explicitly accounting for uncertainty, these 
models can also serve as early warning systems, detecting peak 
contamination events that may not be reflected in historical data, as 
demonstrated in other fields [49,50]. These insights can guide the 
implementation of targeted control measures, in line with World Health 
Organization guidelines for drinking water [51]. UQ holds significant 
potential for improving real-time monitoring of microbial contamina
tion in drinking water, yet it has not been applied in this context. 
Although some predictive models have shown promise in addressing 
various case studies, none have evaluated GBDT algorithms for FIB in 
drinking water catchments. Developing a tool capable of detecting 
microbiological risk concentration and producing uncertainty-aware 
prediction intervals in real-time would overcome delays on cultures 
results and would suppose an enhancement in microbiological risk 
assessment of a DWTP.

The aim of this paper is to develop and benchmark approaches for 
prediction intervals to improve the reliability of machine learning pre
dictions by quantifying uncertainty, thereby addressing the lack of un
certainty quantification in drinking water quality modeling. To achieve 
this, two key objectives were defined: (i) to benchmark various gradient- 
boosted tree regression models and random forest against baseline 
models in order to identify the most suitable point prediction model for a 
specific case study, and (ii) to compare different model-agnostic and 
distribution-free algorithms, including CP for the first time in drinking 
water quality modeling for generating prediction intervals based on the 
predictions of the best-performing model identified in the benchmark. 
As a case study, this research examines the modeling of E. coli in a 
drinking water catchment, representing the first evaluation of uncer
tainty quantification algorithms to produce prediction intervals in this 
context, evaluating these intervals with a suitable metric, and suggesting 
different methods for incorporating uncertainty in regression problems.

2. Materials and methods

2.1. Study case

This study was conducted on the Llobregat DWTP catchment, located 
in Catalonia, Northeastern Spain (Fig. 2). The DWTP is managed by Ens 
d’Abastament d’Aigua Ter-Llobregat (ATL), the main drinking water 
supply company in the Barcelona Metropolitan Area, serving approxi
mately 5.5 million inhabitants. The Llobregat River, which provides the 
surface water source for the DWTP, is subject to high anthropogenic 
pressure, receiving effluents from both urban and industrial wastewater 
treatment plants [52]. As a result, significant fluctuations of FIB occur in 
key water quality parameters, including organic matter concentration, 
salinity, temperature, and microbial contamination.

2.2. Data processing

The target variable in this study is E. coli, a key indicator of recent 
fecal contamination that is strongly correlated with public health risks 
[53]. To develop the predictive model, a comprehensive dataset was 
compiled, covering physicochemical, microbial, meteorological, and 

hydrological parameters collected daily from October 2000 to December 
2023. Routine inlet water quality samples are collected at the DWTP 
intake by the Catalan Water Agency (ACA), the public agency respon
sible for water resource management in Catalonia. E. coli concentrations 
are measured every weekday at 7:00 a.m., while physicochemical pa
rameters are continuously monitored through online sensors. A statis
tical summary of the water quality parameters and river flow conditions 
at the DWTP intake is provided in Table 1.

To enhance the model’s predictive capabilities, multiple meteoro
logical and hydrological monitoring points were selected to capture 
changes in river flow that could be influenced by wastewater discharge 
of the key drivers of fluctuations FIB concentrations. Precipitation data 
from three different locations within the Llobregat River basin were 
obtained from Meteorological Service of Catalonia, while real-time flow 
data from 12 monitoring points along the river and its tributaries were 
provided by ACA.

To account for the effects of previous rainfall events on E. coli con
centrations, lagged precipitation features were incorporated into the 
dataset. Specifically, precipitation data from 1, 2, and 3 previous daily 
time steps were used for each observation. The number of lagged vari
ables was determined based on domain knowledge, river basin hydro
dynamics, and previous studies on microbial contamination transport in 

Fig. 2. Location of Llobregat DWTP operated by ATL and detailed region of 
Llobregat basin.

Table 1 
Statistical summary of quality parameters at Llobregat river, from 2000 to 2024.

Units Mean Standard 
deviation

Min Max

E. coli MPN/ 
100 mL

5116.88 12,916.47 73.00 244,200.00

UV absorbance 
254 nm

m− 1 7.73 2.36 2.08 29.37

Ammonia mg N- 
NH4

+/L
0.24 0.23 0.00 3.68

Chlorides mg Cl− / 
L

251.74 89.52 29.72 1304.56

Conductivity μS/cm 1277.43 283.16 531.00 4830.00
Nitrates mg N- 

NO3
− /L

8.98 3.70 1.77 34.69

Nitrites mg N- 
NO2

− /L
0.25 0.19 0.00 1.15

Dissolved 
oxygen

mg O2/ 
L

6.06 1.90 2.11 10.97

Total organic 
carbon (TOC)

mg C/L 4.46 1.36 0.91 10.89

Temperature ◦C 15.76 6.46 2.40 28.90
Turbidity NTU 69.87 224.72 0.26 8560.00
pH pH 

units
8.11 0.17 7.32 9.03
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surface water systems [54].
E. coli data shows a highly right-skewed distribution, indicating the 

presence of extreme values and deviation from a Gaussian distribution. 
As shown in Table 1, E. coli concentrations reach nearly 200,000 MPN/ 
100 mL, suggesting occasional contamination peaks. This pattern in
dicates the presence of extreme and out-of-distribution values, which 
must be considered when selecting appropriate predictive models and 
uncertainty quantification methods.

For model training and evaluation, the dataset was split into two 
periods: 2000 to 2020 as the training set, and 2020 to 2023 as the testing 
set, corresponding approximately to an 85 % training and 15 % testing 
split. This temporal split was chosen due to the large size of the dataset, 
allowing for robust model development on extensive historical data 
while reserving recent data for unbiased evaluation. For uncertainty 
quantification, 20 % of the training data was set aside as a calibration 
set. All model training, calibration, and prediction interval construction 
were performed without using the testing set, which was strictly held out 
and used solely for final evaluation of model performance and predic
tion interval validity.

The main steps of the performed computational workflow are pre
sented in Algorithm 1. 

Algorithm 1. Point prediction model benchmarking.  

All the machine learning tasks were implemented in Python 3.12.

2.3. Point prediction

A benchmarking study was conducted to evaluate the predictive 
performance of different machine learning models for E. coli concen
tration forecasting. The study compared a naïve baseline method, which 
assumes that the most recent observation persists as the next predicted 
value, against a Random Forest (RF) model, and three GBDT algorithms, 
which were XGBoost (XGB), CatBoost (CB) and LightGBM (LGBM).

The naïve method was included as a baseline reference, while RF and 
GBDT models were selected for their ability to capture complex, 
nonlinear relationships in environmental data. To ensure that the most 
reliable point-prediction model was used for subsequent prediction in
terval estimation, the model that achieved the best balance between 
performance and the over- and under-prediction ratio in the 

benchmarking study was selected as the base model. To ensure optimal 
model performance, hyperparameter tuning was conducted using the 
Tree-structured Parzen Estimator algorithm, implemented via the 
Optuna library [55]. Each model underwent 60 min of optimization, 
allowing for an efficient search across the hyperparameter space. The 
following sections provide a brief description of each model, with 
further details available in Supplementary Text S1 and S2.

2.3.1. Naïve method
To establish a baseline for comparison, we employed the Naïve 

persistence model, which assumes that the most recent observation re
mains unchanged in the subsequent time step. This simple yet effective 
approach is commonly used in time series forecasting as a reference to 
assessing the improvement provided by more sophisticated models. 
Mathematically, it is expressed as: 

Yt = Yt− 1 (1) 

where Yt represents the predicted value at time t, and Yt-1 is the observed 
value at the previous time step.

2.3.2. Random Forest
RF is an ensemble ML technique used for both classification and 

regression tasks [56]. It models complex relationships between predictor 

variables by combining multiple decision trees and aggregating their 
output, using majority voting for classification and averaging for 
regression. Each tree is built using a random subset of the training data 
(bootstrap sampling), and at each node, a random subset of features is 
considered for splitting. This randomness helps decorrelate trees, 
reducing overfitting and improving generalization to unseen data. RF is 
particularly effective for high-dimensional datasets and can handle 
missing values while maintaining robustness against noise.

2.3.3. Gradient boosting decision trees
GBDT are a family of ensemble learning algorithms used for regres

sion and classification tasks. Unlike RF, which builds trees indepen
dently, GBDT trains trees sequentially, where each new tree corrects the 
errors made by previous ones. This process iteratively minimizes a loss 
function, improving the model’s overall accuracy over multiple boosting 
iterations. Three GBDT models were evaluated in this study: CB, XGB 
and LGBM, which were implemented with Python 3.12 using the li
braries scikit-learn 1.6.1 [57], XGBoost 2.1.4 [58], LightGBM 4.6.0 [59], 

1 Data Acquisition: collect meteorological, hydrological and water quality real data.

2 Data Splitting: Partition data into training (80%) and validation (20%).

3 Model benchmarking: for each regression model:

Train on the training set

Make point predictions on the validation set

Compute performance metric score on validation set

6 PI evaluation: For each PI algorithm:

Train PI algorithm with the best-performing point prediction model

Generate prediction intervals for the validation set

Compute PI performance metric
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and CatBoost 1.2.8, respectively [60].

2.3.4. Point prediction metrics
To assess the predictive performance of the models, the Root Mean 

Square Logarithmic Error (RMSLE) was selected as the loss function. 
RMSLE is defined as: 

RMSLE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(log(xi + 1) − log(yi + 1) )2

√

(2) 

where xi represents the predictive value, yi is the observed value and n is 
the total number of observations.

The choice of RMSLE for FIB quantification is driven by several key 
factors related to the nature of the data. First, FIB concentrations often 
follow highly skewed, non-linear, making traditional error metrics less 
effective. Additionally, measurement errors in culture-based microbial 
quantification tend to grow exponentially at higher concentrations. By 
applying a logarithmic transformation, RMSLE stabilizes variance across 
different concentration levels, mitigating this effect. Finally, unlike 
mean absolute error or root mean squared error, which focus on absolute 
differences, RMSLE emphasizes relative deviations, making it particu
larly suitable for contamination levels that span multiple orders of 
magnitude [61].

Furthermore, since the logarithmic scale is asymmetric, the RMSLE 
metric inherently penalizes underpredictions more than over
predictions. This property is critical in drinking water safety, as under
estimating FIB concentration poses a direct risk to public health, 
potentially leading to inadequate treatment response. By contrast, a 
slight overprediction results in more conservative safety measures, 
which are preferable in this context.

2.4. Prediction interval

PIs provide a range within which a future observation is expected to 
fall, given a specified confidence. Unlike confidence intervals, which 
quantify the uncertainty of estimated parameters (e.g., the mean of a 
population), PIs capture uncertainty at the individual predictions level, 
incorporating both model uncertainty and intrinsic data variability. This 
makes PIs particularly valuable in environmental and microbial risk 
assessment, where uncertainty can arise from multiple sources, 
including measurement errors and dynamic systems fluctuations.

In this study, the methods for uncertainty quantification and PI 
generation were selected based on two key criteria: i) model agnosti
cism: the methods should be applicable to wide range of predictive 
models without requiring specific structural assumptions. ii) 
Distribution-free properties: the techniques should not rely on pre
defined statistical distributions, making them more flexible for real- 
world microbial water quality data. Based on these criteria, the 
following PI estimation techniques were benchmarked: a naïve data split 
approach, resampling methods (CV+, Jackknife+, and a split method 
[62]), quantile regression (QR) and CQR. For this case study, the algo
rithms were designed to target a 90 % prediction interval coverage, 
meaning that under typical conditions, 90 % of true outcomes are ex
pected to fall within the predicted intervals, thereby providing a reliable 
measure of uncertainty while avoiding excessively wide intervals. The 
only assumption for the implemented models is the exchangeability of 
the data, meaning that the joint probability distribution is unchanged if 
the order of the observations is permuted. In the case of a highly 
anthropized, high-flow river, E. coli levels show little to no temporal 
autocorrelation because conditions vary substantially over short time 
scales due to irregular human inputs and rapid water turnover, making 
the samples effectively independent in time and thus approximately 
exchangeable. The resampling methods were implemented through 
MAPIE v1.0.0 library [63], QR was implemented with the native algo
rithm of each GBDT library, and the CQR approach was implemented 
using adaptations from the solution of Probabilistic Forecasting I: 

Temperature competition-winning methodology.

2.4.1. Metric for prediction interval
To evaluate the accuracy and quality of the PI, the Winkler Interval 

Score (WIS) was used. This metric evaluates both width of the interval 
and whether the observed value falls within it, providing a balance 
measures of interval reliability [64]. The WIS penalizes excessively wide 
intervals, as well as cases where the observed value falls outside the 
predicted bounds. Formally the WIS is defined as (Eq. (3)). 

W(y; L,U) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U − L if L ≤ y ≤ U,

(U − L) +
2
α (L − y) if y < L,

(U − L) +
2
α (y − U) if y > U.

(3) 

where y is the observed value, L and U represents the lower and upper 
bounds of the prediction interval, respectively and α is the penalty factor 
for predictions outside the interval.

The penalty factor (α) determines the level of penalization applied 
when the observed value falls outside the prediction interval. A lower α 
value results in stricter penalties for non-coverage, while a higher α 
value tolerates more outliers in exchange for narrower intervals. In this 
study, α = 0.1 was chosen, placing greater emphasis on penalizing non- 
coverage rather than increasing interval width. This choice reflects the 
importance of ensuring robust uncertainty quantification, particularly in 
a public health context, where underestimation of microbial risk can 
have significant consequences. The evaluation of the model with WIS 
was computed over the validation set of data, which was not used by the 
algorithm during the training.

3. Results and discussion

3.1. Point-prediction modeling benchmarking

The predictive performance of GBDT algorithms, RF, and a naïve 
baseline was benchmarked using RMSLE for forecasting E. coli 
concentrations.

3.1.1. Model performance
Table 2 presents the RMSLE scores, number of underpredictions and 

overpredictions, and the underprediction-to-overprediction ratio (U/O 
ratio) for each model.

All ML models outperformed the naïve baseline, which recorded an 
RMSLE of 1.160, confirming the added predictive value of ML-based 
approaches. Among the benchmarked models, LGBM achieved the 
lowest RMSLE (0.869), followed closely by CB (0.877), XGB (0.878), and 
RF (0.917). The small differences in RMSLE indicate that all four models 
provide comparable accuracy, yet their individual strategies for 
handling errors differ significantly. Analyzing more in detail the results, 
while LGBM exhibited the best RMSLE score, it also recorded the highest 
number of underpredictions, resulting in the largest U/O ratio (1.075). 

Table 2 
Descriptive analysis of performance and bias of regression models.

Model RMSLE Underpredictions Overpredictions U/O ratio

Naïve 1.160 375 396 0.947
CB 0.877 342 455 0.752
XGB 0.878 363 434 0.837
LGBM 0.869 413 384 1.075
RF 0.917 361 436 0.828
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This suggests that LGBM priories accuracy in low-concentration sce
narios, potentially at the cost of underestimating peak contamination 
levels. Conversely, CB achieved the lowest U/O ratio (0.751) by mini
mizing underpredictions, making it more conservative in its risk 
estimation.

3.1.2. Predicted vs observed E. coli values
Fig. 3 presents a time series plot comparing observed E. coli con

centrations with model predictions over a specific period that includes 
both baseline values and a peak contamination event.

CB enhanced predictive performance during peak events by mini
mizing underpredictions, making it particularly valuable for early 
warning systems and risk mitigation strategies. Its superior peak 

detection outperformed the other models. The model’s tendency to favor 
overpredictions in uncertain or extreme cases reflects a prioritization of 
safety, helping to ensure that high-risk events are less likely to be 
missed. These results are closely followed by XGB, which showed a 
lower capacity to accurately quantify peak events but demonstrated 
overall good performance for lower concentration values. A similar 
pattern was observed for RF, which exhibited a prediction trend com
parable to XGB but with higher associated errors. LGBM, on the other 
hand, provided more stable predictions within commonly observed 
concentration ranges, making it a reliable option under regular opera
tional conditions. These results highlight the trade-offs between models: 
CB tends to prioritize safety by reducing underpredictions, while LGBM 
excels in low-to-moderate range predictions but underestimates peak 

Fig. 3. Global time series of observed E. coli concentrations (top panel) with a yellow-shaded region indicating the selected interval. The lower panels provide a 
zoomed-in view of this period, comparing observed values (markers) with model predictions: (A) CB, (B) XGB, (C) LGBM, and (D) RF.

Fig. 4. Residuals of the models along different observed ranges. (A) CB model, (B) XGB model, (C) LGBM model, (D) RF model. The insets in each plot show a zoom- 
in view of the residuals in the observed range from 103 to 104.
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contamination levels. This behavior aligns with the findings in Table 2, 
where LGBM had the lowest RMSLE but also the highest U/O ratio.

A detailed comparison of predicted versus observed E. coli concen
trations is shown in Supplementary Fig. S1, illustrating the distribution 
of prediction errors alongside model-fitted and perfect agreement 
reference lines.

3.1.3. Residuals analysis
Fig. 4 displays the residuals (difference between observed and pre

dicted values) across different E. coli concentration ranges for the four 
evaluated models. The residual analysis helps identify systematic biases 
and variations in model performance across contamination levels.

Across all models, prediction errors increase significantly at higher 
E. coli concentrations, showing a systematic bias in high concentrations 
and reflecting the challenges of accurately predicting extreme contam
ination events. This behavior is likely due to the scarcity of high- 
concentration samples in the training set, limiting the models’ ability 
to generalize in these ranges.

As shown in Fig. 4, LGBM exhibits a greater dispersion of residuals 
above zero compared to the other models, indicating a higher degree of 
underestimation. This aligns with LGBM’s higher U/O ratio observed in 
Table 2. In contrast, CB exhibits more positive residuals in high E. coli 
ranges, indicating fewer underpredictions. Its residuals are also closer to 
zero than those of other models, suggesting it better captures contami
nation levels, which is a crucial factor for early warning systems. The 
zoom-in boxes highlight residual behavior in low-moderate concentra
tion ranges, where most models exhibit lower residual variance, indi
cating higher predictive accuracy in moderate contamination scenarios. 
RF and XGB have also shown residuals with a tendency to underestimate 
high E. coli concentrations. However, these models have adopted an 
intermediate approach between CB and LGBM, exhibiting a higher 
number of underpredictions than CB and less than LGBM, but with re
siduals closer to zero.

From a public health and decision-making perspective, under
prediction is more critical than overprediction, as it may lead to unde
tected contamination risks. In this context, CB appears to be the most 
reliable model for risk assessment, as it reduces the likelihood of 
underestimating peak contamination events. LGBM, while achieving the 
lowest RMSLE, tends to underpredict high-risk cases, which may limit its 
applicability in early warning systems. XGB and RF offer a balanced 
alternative, providing consistent performance across different concen
tration ranges, but without a strong prioritization of safety-driven pre
dictions. These residual patterns reinforce the importance of quantifying 
uncertainty using prediction intervals, as discussed in the following 
Section 3.2, to provide decision-makers with more reliable risk 
assessments.

3.2. Prediction interval benchmarking

To generate the PI, multiple distribution-free and model-agnostic 
methods were benchmarked. CB was selected as the base model, given 

its slightly superior performance in point-prediction benchmarking 
(Section 3.1), particularly in minimizing underpredictions, which is 
crucial in risk-sensitive applications. Model performance was assessed 
using the mean WIS, a metric that balances interval width and coverage 
quality. Additional key indicators included the percentage of samples 
below and above the interval bounds, as well as overall coverage.

3.2.1. Model performance of prediction interval
Table 3 compares the benchmarked prediction interval methods 

using WIS, coverage, and mean interval width. CQR consistently out
performed other approaches, achieving the lowest WIS (2.08 × 104), 
solid coverage (92.4 %), and a balanced proportion of samples outside 
the interval bounds—demonstrating its reliability and efficiency in 
capturing uncertainty without compromising actionability.

While QR showed the second-best WIS (2.19 × 104), its coverage fell 
below the 90 % target, with 13 % of samples below the lower bound, 
confirming a tendency to produce intervals that are too narrow and 
prone to underestimating risk, especially during contamination peaks.

Jackknife-based methods generally offered a better trade-off than 
CV-based methods. The Jackknife-minmax-AB variant ensured high 
coverage through conservative interval construction, resulting in a 
lower WIS than standard Jackknife+, though at the cost of wider in
tervals. Conversely, Jackknife+AB yielded narrower intervals but 
missed more extreme values, increasing WIS penalties.

CV-based methods all exceeded the 90 % coverage threshold but 
produced broader intervals overall. Notably, CV-minmax delivered the 
highest coverage (97.7 %) with the widest intervals (and the highest 
WIS: 4.53 × 104), while CV and CV+ struck a better balance between 
width and reliability.

In drinking water monitoring, prediction intervals must be both 
dependable and practical. Methods like QR, which sacrifice coverage for 
narrowness, may be unsuitable for risk-sensitive environments. CQR 
stands out as the most balanced solution: it ensures robust coverage, 
maintains actionable interval widths, and is distribution-free, making it 
adaptable to diverse datasets and ideal for integration into early warning 
systems and decision support tools.

3.2.2. Predicted intervals
Fig. 5 provides a visual representation of the PIs over a selected 

period of N days, highlighting how different methods respond to fluc
tuations in E. coli concentrations. The black line represents the observed 
values, while the blue shaded areas denote the predicted intervals for 
each method.

During peak concentration events, all models tend to produce wider 
intervals, reflecting the higher uncertainty associated with these 
extreme values. This aligns with the findings in Fig. 5, where models 
exhibited larger residuals in high-concentration ranges. Jackknife- 
minmax-AB, CQR and QR tend to generate narrower intervals 
compared to other methods, particularly in peak scenarios, although QR 
does not reach the target coverage, as seen in Table 3. This suggests both 
CQR and Jackknife-minmax-AB methods efficiently balance coverage 
and interval width, reducing excessive overestimation of uncertainty.

In low-concentration periods, Jackknife-minmax-AB, CQR, and QR 
consistently yield tighter prediction intervals, indicating higher confi
dence in predictions when contamination levels are stable. This property 
is advantageous in operational settings, where precise risk estimation is 
needed without unnecessary uncertainty inflation.

Overall, this Fig. 5 reinforces the quantitative findings from Table 3, 
demonstrating that CQR and Jackknife-based methods provide the most 
adaptive prediction intervals, adjusting their width dynamically based 
on contamination levels. These characteristics make them particularly 
well-suited for early warning systems and decision support frameworks, 
ensuring that uncertainty is accounted for without compromising 
actionability.

Table 3 
Descriptive analysis of the performance in model benchmarks.

Model WIS 
(×104)

% samples 
below

Coverage 
%

% samples 
above

Mean 
interval 
width 
(×104)

Naive 2.34 12.0 83.7 4.3 1.4
CV 2.69 5.1 93.1 1.7 2.39
CV+ minmax 4.53 1.7 97.7 0.5 4.31
CV+ 2.76 3.9 94.9 1.2 2.36
Jackknife- 

minmax-AB
2.47 5.3 92.2 2.5 1.5

Jackknife+ AB 2.59 10.5 85.8 3.6 1.03
CQR 2.08 4.5 92.4 3.1 1.57
QR 2.19 13.0 83.7 3.3 1.17
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3.2.3. Coverage analysis
Fig. 6 shows a detailed view of the coverage and interval width of the 

prediction interval benchmarked algorithms across E. coli concentration 
ranges. Three distinct concentration ranges can be distinguished based 
on coverage: low values (<103 MPN/100 mL), medium values, which 
are the most common and range approximately between 103 and 103⋅5/ 
104 MPN/100 mL, and high values (>104 MPN/100 mL). The global 
trade-offs between coverage and interval follows the same pattern for all 
the algorithms. Although the overall coverage reaches 90 % as seen in 
Table 3, the coverage in low values does not reach the target for almost 
any of the models. In medium ranges, which are the most common ones, 
the predictions cover most of the observed values. In high E. coli values, 
the coverage slightly decreases in all algorithms while the interval width 
increases in these ranges.

QR, Jackknife+AB, and Naïve methods showed the lowest coverage 
at low (<103) and medium (<104) E. coli concentrations. Although they 
produced the narrowest intervals in these ranges, their failure to capture 
the true values indicates that they do not adequately represent the 
variability in the data, resulting in invalid prediction intervals.

At the other extreme, CV-minmax generated the widest intervals 
across the full range of concentrations, achieving consistently high 
coverage. This conservatism ensures that true values are rarely missed 

but reduces the informativeness of predictions. Other CV-based ap
proaches, such as CV and CV+, are somewhat more adaptive: their in
tervals are narrower and more informative, yet still expand at higher E. 
coli levels, reflecting the inherent uncertainty in those regions.

CQR and Jackknife-minmax-AB provide a more balanced solution, 
producing informative intervals with relatively high coverage across all 
concentrations. CQR performs especially well at mid-range levels, 
capturing central variability while keeping intervals reasonably narrow, 
whereas Jackknife-minmax-AB slightly outperforms at the highest 
concentrations.

Across all methods, interval width generally increases with E. coli 
concentration, reflecting greater uncertainty at extreme values. This 
pattern suggests that wider intervals can serve as an early indicator of 
potentially elevated E. coli levels, offering valuable information for risk 
assessment. Narrow intervals at lower concentrations indicate higher 
confidence but may underrepresent rare high-concentration events if 
coverage is insufficient.

Overall, CQR and Jackknife-minmax-AB emerge as the most suitable 
methods for this study. By balancing coverage and interval width, they 
provide reliable and informative uncertainty estimates across the full 
range of E. coli concentrations, making them the most practical choices 
for monitoring and risk assessment.

Fig. 5. Time series of observed E. coli concentrations (top panel), with the blue-shaded region indicating the period selected for detailed analysis. The lower panels 
provide an expanded view of this interval, showing 90 % prediction intervals generated by different models. Observed values are overlaid as markers, and shaded 
areas represent model uncertainty.
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3.2.4. Prediction interval reliability
Fig. 7 presents a decomposition of the WIS into contributions from 

predictions that fall inside and outside the interval bounds. This 
breakdown provides a clearer picture of each method’s overall perfor
mance while also illustrating how they manage miscoverage, an essen
tial aspect of reliability in uncertainty quantification.

While methods like CQR and Jackknife+AB achieved similar 
coverage and average interval widths, their WIS values are distributed 
differently. This difference stems from how they respond to mis
coverage: Jackknife+AB tends to compensate for missed observations, 
especially at the extremes, by producing excessively wide intervals, 
which sharply increases its WIS penalty. In contrast, CQR maintains 

more consistent and moderate interval widths even when failing to fully 
capture extreme values, resulting in a lower and more stable WIS.

A similar pattern of trade-offs emerges when comparing the CV- 
based and Jackknife-minmax-AB methods. CV-minmax stands out for 
its near-perfect coverage but does so at the cost of very broad intervals 
and the highest WIS, highlighting the inefficiency of overly conservative 
approaches. On the other hand, CV, CV+, and Jackknife-minmax-AB 
strike a more balanced compromise. Their WIS contributions are more 
evenly distributed between coverage failures and interval width, indi
cating a reasonable calibration of uncertainty. Notably, CV+ improves 
slightly over CV in terms of coverage, with only a minor increase in WIS, 
offering a practical middle ground between robustness and usability. By 
contrast, QR and the Naïve model perform poorly, with high WIS values 
driven largely by frequent and substantial miscoverage. Their intervals 
are too narrow to capture the true variability of E. coli concentrations, 
particularly in high-risk situations, resulting in significant penalties that 
reflect their unreliability in predictive risk assessment.

The CQR method remains the most balanced approach, minimizing 
WIS while maintaining good coverage and reasonable interval width. 
This aligns with broader findings in microbial water quality forecasting 
where this method produces risk-based prediction intervals [25]. 
Jackknife+-AB, despite its strong performance in coverage, shows a 
slightly excessive widening of intervals when failing to cover observa
tions, resulting in higher WIS penalties and making it less optimal. CV+
and Jackknife-minmax-AB provide reasonable alternatives for balancing 
coverage and width, particularly in moderate-risk scenarios where 
overconfidence needs to be avoided. QR and the used Naïve method are 
the least reliable in terms of uncertainty quantification, as they lead to 
more frequent and severe out-of-interval penalties, making them 

Fig. 6. Prediction interval widths and coverage across observed E. coli concentrations. Both interval and coverage were smoothed to highlight trends across the 
observed E. coli range.

Fig. 7. Decomposition of the WIS for each prediction interval method, dis
tinguishing between WIS contributions from predictions inside and outside 
the interval.
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unsuitable for early warning systems and risk mitigation strategies. 
These results underscore the importance, as noted in recent water 
quality modeling literature [20] of selecting interval prediction methods 
that achieve target coverage without excessive interval expansion, thus 
ensuring actionable and interpretable uncertainty quantification in mi
crobial risk assessment [31]. These results reinforce the importance of 
selecting an interval prediction method that not only meets target 
coverage but also controls interval expansion efficiently, ensuring 
actionable and interpretable uncertainty estimates in microbial risk 
assessment.

4. Conclusions

The benchmarked point-prediction models showed similar perfor
mance in RMSLE scores, with LGBM, CB, XGB, and RF achieving com
parable accuracy. However, differences emerged in how each model 
balanced underprediction and overprediction. LGBM prioritized per
formance in low concentration ranges, leading to a higher 
underprediction-to-overprediction ratio, whereas CB minimized under
predictions, making it a more conservative and risk-averse model. This 
trade-off is crucial when applying machine learning models to microbial 
risk assessment, where underestimating contamination events could 
have serious consequences. Although these trade-offs can be calibrated 
during training, peak contamination events remain particularly chal
lenging to predict with point predictions. Uncertainty quantification can 
help address this limitation, not by precisely quantifying the magnitude 
of such events, but by identifying anomalous scenarios where the 
model’s confidence decreases, thereby flagging situations that warrant 
closer investigation.

Among the uncertainty quantification methods, Jackknife-AB+ and 
CQR demonstrated the best performance, generating prediction in
tervals with strong guarantees. These methods achieved high coverage 
and controlled interval widths, ensuring that predictions were both 
informative and actionable. Notably, CQR adapted well to peak 
contamination events, making it particularly well-suited for early 
warning systems. Both CQR and Jackknife-AB+ produced narrow in
tervals during low-concentration scenarios, which is particularly useful 
for routine monitoring and regulatory compliance, as high precision in 
the absence of elevated risk enables more efficient resource allocation. 
Relative to the observed scale, their mean interval widths remain within 
an order of magnitude of the variability in E. coli concentrations, 
providing meaningful and actionable bounds for operational use.

A key insight from this study is that relying solely on point pre
dictions limits the effectiveness of microbial risk assessment, particu
larly in scenarios with significant uncertainty. Incorporating uncertainty 
quantification through prediction intervals in predictions provides 
decision-makers with a clearer understanding of potential risks and 
confidence levels, enabling more informed and effective responses to 
contamination events. The uncertainty quantified in this study repre
sents all sources of variability, including both environmental fluctua
tions and model limitations. Measurement noise, while present, is 
negligible compared to the observed changes in E. coli concentrations 
and does not significantly influence predictions. Part of the model error 
arises inherently from the uncertain and dynamic nature of the envi
ronment and cannot be separated from the model’s outputs. Conse
quently, the prediction intervals capture the combined effects of 
environmental variability and model imperfection, providing a realistic 
estimate of total uncertainty and supporting informed interpretation of 
microbial risk under highly variable conditions.

In this case study, centered on predicting E. coli concentrations in the 
highly anthropized Llobregat River catchment, the pronounced skew
ness of the data highlights the significant impact of human activities on 
water quality. Since the catchment is heavily influenced by diverse and 
often untracked anthropogenic factors, there is inherently high uncer
tainty associated with the predictions. This strong asymmetry creates 
one of the most challenging scenarios for predictive modeling, as it 

requires capturing both frequent low-concentration values and rare but 
critical peak contamination events. The approach proved successful in 
this difficult context, with prediction intervals effectively representing 
the uneven distribution and achieving the targeted coverage levels. 
These results demonstrate the robustness of the methodology in 
providing reliable microbial risk estimates under complex and highly 
variable conditions. This supports its applicability not only to similarly 
impacted water sources but also to other ecosystems influenced by hy
drometeorological and anthropogenic factors.

Future work should focus on integrating uncertainty quantification 
methodologies into QMRA decision-making frameworks, enabling 
guidance that recommends conservative actions when uncertainty is 
high and more flexible or optimized measures when uncertainty is low. 
In drinking water treatment, the current operational tendency is to over- 
disinfect to avoid microbial health risks, which can lead to the increased 
formation of disinfection by-product. By incorporating well-calibrated 
prediction intervals, water managers can better assess the likelihood 
and magnitude of contamination events, providing a basis for balancing 
microbial safety with chemical by-product formation. Adopting these 
UQ approaches allows managers to navigate uncertainty and incomplete 
data more effectively, ultimately improving water safety assessments, 
optimizing treatment plant control processes, and enhancing public 
health protection.
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