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A B S T R A C T

Increasing aridity poses a threat to soil functionality, as it affects the key players -prokaryotes and fungi- 
responsible for these functions. Studying microbial diversity and functions in soils from different aridity con
ditions is crucial to understanding potential adaptations and response mechanisms to climate change, which may 
ultimately affect soil ecosystem multifunctionality. Here, we used a natural humid-to-arid climate gradient to 
determine: (1) if and how soil functions and microbial communities change across the aridity gradient; and (2) 
the main drivers of soil function variability along the gradient. We sampled soils (0–10 cm depth) from 12 sites 
across the Iberian Peninsula and analyzed their prokaryotic and fungal diversity and biomass as well as soil 
functions (aerobic respiration and extracellular enzyme activities linked to organic carbon, nitrogen and phos
phorus degradation), together with soil physicochemical characteristics. Our results showed that increasing 
aridity resulted in a gradual change in the microbial community structure and a decrease in fungal diversity. 
However, soil functions did not show clear changes in response to aridity itself. Instead, microbial respiration and 
enzyme activities depended mainly on the local soil properties (i.e. organic matter quantity and quality, soil 
texture and pH) rather than on aridity. Overall, results indicated that in long-term climate-adapted soils, mi
crobial functions are primarily driven by soil edaphology with aridity influencing them indirectly by shaping the 
microbial community composition and the intrinsic soil characteristics.

1. Introduction

Soil microorganisms are responsible for biogeochemical cycling and 
regulators of terrestrial ecosystem functions, playing a key role in 
maintaining ecosystem health and stability and accounting for 80–90 % 
of soil processes (Nannipieri et al., 2003). The sensitivity of soils to 
climate change, such as increasing aridity, may imply a reduction in soil 
functions, with a wide range of associated negative outcomes. Currently, 

approximately 40 % of all terrestrial ecosystems are drylands (Baker and 
Allison, 2017), which include sub-humid, semi-arid, arid and hyper-arid 
environments characterized by their high evapotranspiration potential 
and their low precipitation (aridity index values below 0.65) (Maier 
et al., 2018). Climate change observations and predictions suggest that 
drylands are expanding, together with increasing erratic and extreme 
weather events (Jansson and Hofmockel, 2020).

Aridity conditions shape soil microbial communities and their 
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functions (Maestre et al., 2015; Schimel et al., 2007). Microorganisms 
have evolved strategies to adapt to aridity both at the cellular (e.g., 
spore formation, cell wall thickening or production and accumulation of 
osmolytes such as glycerol) (Gionchetta et al., 2020; Schimel, 2018), and 
community (e.g., biofilm formation, colonization of cryptic niches, 
compositional changes) levels (Makhalanyane et al., 2014). These two 
levels of adaptation are in turn intertwined. Changes in community 
structure to adapt to increasing aridity ultimately reflect differences in 
cellular level adaptations, whereby species with improved capacities to 
resist aridity replace the less resistant ones.

Although changes in microbial community composition due to 
different aridity have been observed in several studies (Maestre et al., 
2015; Neilson et al., 2017; S. Wang et al., 2021), the impact of aridity on 
soil functions is not always apparent (Delgado-Baquerizo et al., 2016). 
This could be attributed to functional redundancy, in which different 
taxa can perform similar functions. Consequently, when taxa are lost due 
to increasing aridity, other remaining or newly introduced taxa can 
assume their roles (Louca et al., 2018; Nannipieri et al., 2003). However, 
it is generally observed that a decrease in soil water content negatively 
affects microbial respiration and soil multifunctionality (Durán et al., 
2018; W. Liu et al., 2009). Additionally, drought conditions may result 
in a reduction of microbial activities involved in nutrient and carbon (C) 
cycling such as enzyme production (Delgado-Baquerizo et al., 2013), 
which can slow down organic matter decomposition rates (Durán et al., 
2018).

Climate may also affect microbial communities and their functions 
through its effect on soil characteristics and vegetation. Climate change 
affects the precipitation regime, leading to modifications in the vege
tation communities, which would impact the soil organic matter quality 
and availability of substrates for decomposers, consequently modifying 
prokaryotic and fungal biomass, community structure, and functionality 
(Védère et al., 2022). Furthermore, differences in climate are often 
correlated with differences in soil texture and pH, which are known to 
affect microbial diversity and function (Bastida et al., 2021; Dong et al., 
2024; Eslaminejad et al., 2020). For example, increasing temperatures 
and decreasing moisture can lead to a reduction in soil pH (Zárate- 
Valdez et al., 2006), consequently impacting the biomass and the ac
tivity of microorganisms, such as their extracellular enzyme capabilities 
(Tale and Ingole, 2015; Zuccarini et al., 2023). Effects of soil 
geochemistry, including pH and soil organic C quality (e.g., C/N ratio) 
and quantity, on bacterial and fungal community structure and their 
function have also been reported (Fierer, 2017; Nouhra et al., 2018).

However, the final impact of these physicochemical parameters to 
soil microbes is not a simple addition of single effects but results from 
multiple interactions. For instance, in drylands, where soil pH tends to 
be high, microbial communities have exhibited greater resistance to pH 
fluctuations (Delgado-Baquerizo et al., 2020), possibly due to the buff
ering conditions provided by soils with a calcareous composition 
(Eslaminejad et al., 2020). Similarly, the respective relevance of silt and 
clay in enhancing soil organic matter content and in improving water 
holding capacity might be modified depending on the aridity conditions 
with potential contrasting effects to soil functions (Augustin and Ciha
cek, 2016). Given these multifactorial effects, many studies focus on 
short-term controlled experiments to isolate the effects of aridity. While 
these short-term studies are crucial and have provided relevant mech
anistic knowledge (e.g., Schimel, 2018), field studies that include whole 
ecosystem interactions are needed to better understand adaptations of 
soil microbes in the long-term and decipher realistic functional re
sponses to climate.

Here, we analyze soil prokaryotic and fungal community structure 
and a range of soil functions across a broad aridity gradient in the Ibe
rian Peninsula. Our aim was to disentangle if and how aridity shapes soil 
microbial communities and functions related to organic matter cycling. 
Specifically, we aimed to: 1) study whether and how aridity shapes 
microbial community structure; 2) assess whether aridity shapes soil 
microbial functions (i.e. respiration and extracellular enzyme activities) 

and their link with community structure; and 3) determine the main 
drivers affecting functions along the aridity gradient. Our hypotheses 
were that: (i) aridity decreases microbial diversity and modifies com
munity structure; (ii) soil functionality is negatively affected by 
increasing aridity; and (iii) climate and soil characteristics (such as pH 
and soil organic matter) are the main drivers of soil microbial functions. 
This study disentangles the interactions and relative relevance between 
climatic factors and soil characteristics in shaping microbial community 
structure and soil multifunctionality. Our findings provide insights into 
the long-term microbial adaptation to different climatic conditions, 
integrating the ecosystem-wide interactions that short-term studies may 
overlook.

2. Materials and methods

2.1. Study sites along the aridity gradient

Twelve sampling sites with different climates according to the 
Köppen classification were selected through the Iberian Peninsula, 
following an aridity gradient (Fig. 1). Land cover type classification was 
designated following the guide of Sulla-Menashe and Friedl (2018), and 
mapped using the data extracted with the Earth Data AppEEARS (NASA) 
software (AppEEARS Team, 2024) and the layers from the MODIS 
MCD12Q1 dataset (Friedl and Sulla-Menashe, 2019) (Fig. S1). Less arid 
sites are found at the north of Spain, with a temperate climate and no dry 
season (ATK, ARZ and VAL sites). Land cover in this zone is classified as 
deciduous broadleaf forest (Table 1). Sites with a temperate climate and 
dry summers are located at the northwest and northeast of the penin
sula, in Galicia and Catalonia. They are differentiated by the presence of 
warm (LHE and FDE sites) or hot summers (GAV, MON, and ALB sites), 
respectively. Their vegetation is more diverse, consisting of deciduous 
broadleaf forests, evergreen needleleaf forests, mixed forests or open 
shrublands (Table 1). The most arid sites are located in the southeast and 
south of the peninsula, in Murcia and Almería (COY, SAN, MAL, and TAB 
sites), with a dry climate that can be semi-arid or arid hot or cold desert. 
They are open shrublands, grasslands, savannas and barren sites 
(Table 1). Climatic variables, i.e. mean annual temperature (MAT) and 
mean annual precipitation (MAP), are extracted from the worldclim 
database (https://worldclim.org/data/worldclim21.html), using a 30- 
year dataset and a 1 × 1 km resolution. The aridity Index (AI) was 
extracted from the dataset by Trabucco and Zomer (2022), which 
calculated AI as the ratio between precipitation and potential evapo
transpiration (Zomer et al., 2022). AI ranges from 1.33 (less arid site) to 
0.18 and 0.16 (Fig. 1, Table 1). To facilitate interpretation, aridity (1 - 
AI) is used for all analyses. MAT and MAP range from ~17 ◦C to 9–12 ◦C 
and from ~300 mm to 1300 mm, respectively (Table 1).

2.2. Soil sampling

The sampling campaign was performed during June and July 2021. 
At each site, five replicate soil samples were randomly collected from a 
sampling plot of 5 × 5 m. Each soil sample consisted of a surface soil core 
of 10 cm depth collected by PVC tubes (10 cm diameter). This sampling 
strategy resulted in the collection of a total of 60 individual soil samples. 
Soil cores were stored at 4 ◦C during the sampling campaign. Five rep
licates of surface litter (Litter, Table S1) were also collected from a 40 ×
40 cm area at each site. A larger area of 60 × 60 cm was used at TAB and 
MAL due to the low litter accumulation at these sites. Litter subsamples 
were grinded (Retsch mixer mill, MM 400, Haan, Germany) for the total 
C and nitrogen (N) content (LTC, LTN, Table S1). At each sampling site, 
soil temperature (Table S1) was measured in-situ next to each core (n =
5) with a soil thermometer every 15 min for one hour. Sampling hour for 
soil temperature recording was between 10:00 to 16:00, approximately.

At the lab, soils were sieved (4 mm mesh size) and subsamples for 
each analysis were separated. Enzyme activities, microbial respiration 
and water content were measured, within 7 to 10 days after collection. 
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Subsamples for bacterial biomass were fixed with 2 % formalin and 
stored at 4 ◦C until analysis. Soil organic matter composition subsamples 
were also stored at 4 ◦C, while subsamples for fungal biomass, nutrients 
and molecular analyses were frozen at − 20 ◦C. For the physicochemical 
parameters, samples were dried at 60 ◦C prior to analysis.

2.3. Physicochemical variables

Soil texture was analyzed using the hydrometer method (Gee and 
Bauder, 1986). Soil water content was determined by measuring the loss 
in weight after oven-drying fresh soils (105 ◦C, 48 h). Soil organic matter 
was measured by combusting the oven-dried soils at 450 ◦C for 4 h. 
Water activity was measured with a water activity meter (LabSwift-aw, 
Novasina AG, Lachen, Switzerland). pH was assessed in a 0.01 M CaCl2 
soil solution using a pH meter (2:1 v/w) method. Total C and total N 
were measured in dried (60 ◦C) fine-grained soils and litter using an 
elemental analyzer (NC-2500, CE Instruments, Wigan, United 
Kingdom). Carbon-Nitrogen mass-based ratio (C/N) was calculated with 
these total C and total N values. Soil total organic C was quantified post 
HCl-fumigation using an elemental analyzer (Walthert et al., 2010). Soil 
ammonium and sulfate were extracted from 2.5 g dried-soil with 1 M KCl 
(KCl:soil 4:1 v/w), followed by filtration through DF 5895–150 ashless 

paper (Albert LabScience, Dassel, Germany). Ammonium in KCl extracts 
was determined spectrophotometrically with a FIAS 300 flow injection 
system (Perkin-Elmer, Waltham, USA). Sulfate was measured with a dx- 
120 ion chromatography. Available phosphorus (phosphate) was 
extracted with 0.5 M NaHCO3 (NaHCO3:soil 60:1 v/w) and quantified 
spectrophotometrically with malachite green using a plate reader 
(TECAN, Life Sciences, USA) (Kuo, 1996).

2.4. Organic matter composition

Water extractable organic matter (WEOM) was extracted and quan
tified following the method described by Chantigny et al. (2014). Ex
tracts from 30 g of freeze-dried soil with 60 mL of MilliQ were prepared, 
incubated at 20 ◦C (dark conditions, 80 rpm agitation, 1 h) and filtered 
with 0.2 μm nylon filters. Filtered extracts were analyzed through 
absorbance and fluorescence spectroscopy. UV–visible absorbance 
spectra were measured on an Agilent 8453 spectrophotometer (Agilent 
Technologies, Germany). Excitation-Emission matrices (EEMs) were 
obtained on a fluorescence spectrophotometer (F-7000, Hitachi, Japan). 
The intensity of the main fluorescence peaks related with dissolved 
organic matter (DOM) characterization (A, M, C, B, T; Coble, 1996; 
Parlanti et al., 2000) was obtained from the EEMs. From the 

Fig. 1. Location of the 12 sampling sites in different Köppen climatic classification zones across Spain (left). Aridity, expressed as 1 - Aridity Index (AI), arranges the 
sites from the least (FDE) to the most arid (TAB) (right).

Table 1 
Location of the sampling sites, their climate, land cover and soil characteristics. Climatic variables (AI, MAT and MAP) were extracted from the worldclim database 
(https://worldclim.org/data/worldclim21.html), using a 30-year dataset. AI = Aridity Index; MAT = Mean Annual Temperature; MAP = Mean Annual Precipitation. 
Landcover type classification was designated following the guide of Sulla-Menashe and Friedl (2018). Köppen classification abbreviations correspond to the following: 
Csb = Temperate, dry with warm summer; Cfb = Temperate, without dry season and with warm summer; Csa = Temperate, dry with hot summer; BSk = Dry semi-arid 
cold; BSh = Dry semi-arid hot; BWh = Dry arid hot.

Site codes Site name Coordinates Köppen AI MAT (◦C) MAP (mm) Altitude (m.a.s.l) Land cover type

FDE Fragas do Eume 43.36926 N, 7.98579 W Csb 1.33 12.2 1361.7 450 Mixed Forests
ATK Artikutza 43.19830 N, 1.80540 W Cfb 1.25 12.1 1312.6 344 Deciduous Broadleaf Forests
LHE Las Herrerías 42.66882 N, 6.98307 W Csb 1.09 11.0 1253.3 665 Deciduous Broadleaf Forests
ARZ Arantzazu 42.96013 N, 2.37830 W Cfb 1.00 9.4 1004.0 803 Deciduous Broadleaf Forests
VAL Vallcebre 42.20294 N, 1.82094E Cfb 0.70 9.2 859.3 1096 Deciduous Broadleaf Forests
GAV Gavarres 41.89968 N, 2.91217E Csa 0.56 13.8 719.5 259 Evergreen Needleleaf Forests
ALB Albera 42.39600 N, 2.98230E Csa 0.43 14.4 590.5 154 Open Shrublands
MON Montgrí 42.06125 N, 3.12231E Csa 0.40 14.7 550.3 103 Evergreen Needleleaf Forests
COY Coy 37.94358 N, 1.77985 W BSk 0.25 13.5 401.7 925 Open Shrublands
MAL Malcamino 37.58771 N, 1.44243 W BSh 0.18 16.9 304.1 278 Grasslands
SAN Santomera 38.09860 N, 1.03135 W BWh 0.18 17.1 314.2 195 Savannas
TAB Tabernas 37.00954 N, 2.44254 W BWk 0.16 17.0 265.2 283 Barren
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fluorescence and absorbance spectra, several indexes were calculated as 
indicators for WEOM composition. The Biological Index (BIX) indicates 
recently produced DOM (Huguet et al., 2009) and the Fluorescence 
Index (FI) is an indicator of vascular plant-derived (low FI ~1.2) or 
microbial-derived (high FI ~1.8) origin (Cory and McKnight, 2005). The 
Humification Index (HIX), an indicator of the degree of DOM humifi
cation. The absorbance ratios E2/E3, E3/E4, and E4/E6 are all inversely 
correlated with aromaticity. The slope ratio (SR), calculated as the ratio 
between the absorbance slopes at the wavelengths intervals 275–295 
and 350–400 nm, is inversely correlated to molecular weight and 
described to increase upon irradiation (Helms et al., 2008). Further 
details on the variables and methodological procedure are provided in 
the Supplementary Material.

2.5. DNA extraction and microbial community structure

DNA was isolated from 0.25 g soil samples using the DNeasy Pow
ersoil Pro Kit (Qiagen, Hilden, Germany) and quantified by PicoGreen 
(Molecular Probes, Eugene, OR, USA) following the manufacturer’s in
structions (ThermoFisher Scientific, USA). The V3-V4 region of the 
prokaryotic 16S rRNA gene was amplified by PCR using primers 341F 
and 801R as described by Frey et al. (2016). Barcoding of amplicons was 
performed with Fluidigm Access Array technology (Fluidigm) and 
paired-end sequencing was conducted on the Illumina MiSeq v3 plat
form (Illumina Inc., San Diego, CA, USA) at the Genome Quebec Inno
vation Center (Montreal, Canada). Raw sequences were processed using 
DADA2 (Callahan et al., 2016) in Qiime2 (Bolyen et al., 2019). Primer 
removal was carried out with cutadapt (Martin, 2011) using default 
settings, and sequences were quality filtered and denoised with DADA2 
(p-trunc-len-f = 270, p-trunc-len-r = 220, p-max-ee = 5 for 16S rRNA 
sequences, p-trunc-len-f = 270, p-trunc-len-r = 230, p-max-ee = 4 for 
ITS sequences). 16S rRNA and ITS2 sequences were classified using the 
q2-feature-classifier scikit-learn algorithm in Qiime (Bokulich et al., 
2018; Pedregosa et al., 2011) with default parameters (p-confidence =
0.7) against the SILVA v138 (Quast et al., 2013) and UNITE v9 
(Abarenkov et al., 2010) taxonomic databases, respectively.

2.6. Microbial biomass

Prokaryotic density was analyzed by flow cytometry after disaggre
gation and dilution of the soil prokaryotes. Soil samples were shaken in a 
disaggregation solution of 2 % formalin and surfactant (150 rpm, 30 
min, dark conditions), cooled down and sonicated to separate prokary
otic cells from soil particles. A coagulant agent (Nycodenz Optiprep 
density gradient, Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) 
was used to help precipitate particulate material after centrifugation 
(14,000 rpm, 90 min, 4 ◦C) and obtain a clean sample. Samples were 
diluted and stained using a nucleic acid dye (SYTO13, FISHER, 5 μM). 
Prokaryotic density was measured by flow cytometry (FACSCalibur, 
Becton Dickinson, Franklin Lakes, USA), using a standard curve of beads 
at known concentrations. Prokaryotic biomass results were obtained 
from prokaryotic densities (Bratbak, 1985; Theil-Nielsen and 
Søndergaard, 1998) and expressed as μg of prokaryotic C per g dry 
weight (DW) of soil. Fungal biomass was measured through the analysis 
of ergosterol content in soil samples by high-performance liquid chro
matography (HPLC, Waters Corporation, Milford, USA). Ergosterol was 
extracted from the samples, after soil lyophilization, performing the 
lipid extraction in alkaline methanol and separating in a solid-liquid 
phase extraction (Waters Sep-Pak, V ac RC, tC 18, 500 mg) (Gessner, 
2005). Considering the stoichiometric relationship from Montgomery 
et al. (2000), results were expressed as μg of fungal C per g DW of soil.

2.7. Microbial aerobic respiration and extracellular enzyme activities

For both microbial aerobic respiration and extracellular enzyme 
activity (EEA) assays, soil extracts (5 g of fresh soil with 50 mL pH- 

matched buffer; Maleate buffer for pH 5 to 6, Tris(hydroxymethyl) 
aminomethane buffer for pH 7 to 8).

Microbial respiration was determined using the resazurin (RAZ) 
assay. RAZ was added to the sample extracts and to controls (buffer 
instead of extract), mixed, placed into a black 96-well plate and incu
bated overnight (dark conditions, at the temperature of the soil during 
the sampling campaign). Fluorescence measurements were done before 
and after the incubation with a plate reader (Infinite M200 Pro, Tecan, 
Zurich, Switzerland) at 602/632 nm excitation/emission wavelengths. 
RAZ results were obtained through the difference between the final and 
initial fluorescence. To convert fluorescence to RAZ concentration, a 
calibration curve was used (0–100 μg/L). Results were expressed as 
pmol of RAZ transformed per g DW per hour of incubation.

Eight EEA related to the degradation of different labile to recalcitrant 
C and N compounds were analyzed: ⍺-glucosidase (ALPHA); β-glucosi
dase (BETA); β-xylosidase (XYL); cellobiohydrolase (CBH); N-acetyl- 
β-glucosaminidase (NAG); phosphatase (PHOS); leucine- 
aminopeptidase (LEU); and phenol oxidase (PHE). Soil extracts were 
incubated with artificial substrates under saturation (Table S2) at field 
temperature conditions. For the hydrolytic enzymes (all except PHE), 
incubations lasted one hour, and after them, glycine buffer (0.05 M, pH 
10.4, mixed at a 1:1 ratio v:v) was added to all samples, standards 
(ranging from 0 to 100 μM for MUF: methylumbelliferone, and AMC: 7- 
Amino-4-methylcoumarin), controls (samples without artificial sub
strate) and quenching controls (samples plus a MUF/AMC standard). 
Fluorescence was measured with a microplate reader (Infinite M200 
Pro, Tecan, Zurich, Switzerland) at 365/455 nm for MUF and 364/445 
nm for AMC excitation/emission wavelengths. Final results were 
quantified as the rate of MUF or AMC released per hour relative to the 
soil dry weight (μmol MUF or AMC * g DW− 1 * hour− 1). PHE activity was 
assessed by spectrophotometry using L-DOPA (3,4-Dihydroxy-L- 
phenylalanine) as a substrate (Table S2). Samples, controls (L-DOPA 
with buffer) and blanks (soil extract with buffer) were incubated for 2 h 
in the dark. Additionally, the absorbance from the buffer alone was 
measured separately. Absorbance measurements were read at 460 nm 
(Infinite M200 Pro, Tecan, Zurich, Switzerland). The results were 
expressed as μmol of DIQC (3-dihydroindole-5,6-quinone-2-carboxylate; 
the product of the L-DOPA reaction) per hour relative to the dry weight 
of the soil (μmol of DIQC * g DW− 1 * hour− 1).

With the data from the eight different enzyme activities, a multi
functionality index has been calculated in the form of a Shannon di
versity index. Enzyme activities were first standardized to consider 
differences in measurement and units. The relative contribution of each 
enzyme to the total enzyme activity (pi) was calculated per sample and 
used to compute the Shannon index using the formula -

∑
(p i*log2pi).

2.8. Data analyses

Different matrices of variables have been used for analyzing the data. 
The climatic variable matrix includes the variables extracted from the 
worldclim database (AI, MAT and MAP), as well as altitude. Regarding 
soil characteristics, this matrix includes the physicochemical variables 
(soil temperature, water content, water activity, soil organic matter, pH, 
total C, total N, total organic C, C/N, Litter, LTC, LTN, ammonium, 
sulfate, phosphorous), soil texture (Sand, Silt and Clay content) and the 
organic matter quality indexes (S275–295, S350–400, SR, E2/E3, E3/E4, 
E4/E6, FI, BIX, HIX and Peaks A, B, C, M, T). An environmental matrix 
which includes the climatic and soil characteristics variables together 
has been used to perform some analyses. Microbial community 
composition matrices are related to the prokaryotes or fungi sequencing 
(Amplicon Sequence Variants, ASVs). The functional matrix includes the 
extracellular enzyme activities (ALPHA, BETA, XYL, CBH, NAG, PHOS, 
LEU, PHE) and the aerobic microbial respiration. All statistical analyses 
and plots were conducted in R, version 4.1.2 (R Core Team, 2021).

Alpha-diversity parameters (Chao and Shannon indices) were 
calculated after rarefying to even sequencing depth, resulting in a total 
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of 356,040 and 113,880 sequences for 16S rRNA gene and fungal ITS2 
region respectively. Differences in composition among the microbial 
communities between sites were tested through permutational multi
variate analysis of variance (PERMANOVA, permutations = 10,000) 
with the “adonis2” function, from the vegan package (Oksanen et al., 
2022), based on Bray-Curtis distances of relative abundances. These 
results were graphically represented with Principal Coordinates Analysis 
(PCoA).

For the soil functions and microbial biomass, linear mixed effects 
models with site as a random factor, were used to decipher the most 
relevant driving variables, including soil characteristics and climate 
variables. Collinearity among variables was assessed using the “vif” 
function from the usdm package (Naimi et al., 2014), setting a threshold 
of 10 for the VIF values. The selected variables were soil temperature, 
soil organic matter, pH, C/N, ammonium, phosphate, sulfate, Silt, Litter, 
LTC, LTN, LTC/LTN, prokaryote biomass (PB), SR, E2/E3, E4/E6, BIX, 
Peak C, Peak B, HIX, and altitude. To further refine the models, addi
tional variables which were deemed potentially significant were incor
porated using the “vifstep” function, including water content, total C, 
fungal biomass (FB), and Clay. Although aridity was correlated with 
other variables, it was also added to the models in order to test its po
tential effects on the soil functions. The linear mixed effect models were 
constructed using the “lmer” functions from the lme4 package (Bates 
et al., 2015). Model diagnostics were performed by examining residuals 
to check for normality and homoscedasticity. A stepwise model simpli
fication to retain only the most significant predictors was done with the 
buildmer package (Voeten, 2023). Best fits of the models were deter
mined using AIC and R2, through the package MuMIn (Barton, 2022). 
Standardized dominance of each main predicting variable was deter
mined through the function “domin” from the domir package (Luchman, 
2024).

To test for relationships between the soil functions, the microbial 
community structure, the soil characteristics, the land cover type, and 
the climatic variables (AI, MAT, MAP, and altitude), Mantel tests 
(method = Spearman, permutations = 100,000) were conducted with 
the distance matrices derived from each variable group. Land cover, 
originally a categorical variable, was transformed into a binary dummy 
matrix of each land cover type per site, and Jaccard distance was used to 
calculate pairwise dissimilarities. All numerical variables were stan
dardized and transformed into Euclidean distance matrices before per
forming the Mantel tests. For both the Mantel tests and the linear mixed 
models, some correlated and conceptually similar variables were 
aggregated, and thus the enzymes involved in the degradation of simple 
polysaccharides (ALPHA and BETA), and the enzymes involved in the 
degradation of hemicellulose and cellulose (XYL and CBH) were 
aggregated. Additionally, for the linear mixed models, the microbial 
biomass (PB and FB) was aggregated as a unique variable (microbial 
biomass, MB).

Further data analysis that complements the primary findings are 
included in the Supplementary Material.

3. Results

3.1. Climatic and physicochemical description

As expected, soil water content correlated negatively with aridity 
(Table S3). pH and C/N ranged from 3.78 ± 0.1 to 7.71 and from 12.2 ±
0.6 to 90.0 ± 18.7 respectively (Table S1), and both had a significant 
positive correlation with aridity (Table S3). Conversely, LTN, LTC and 
phosphates were negatively correlated with aridity (Table S3). Soil 
texture did not follow a clear trend with aridity (Fig. S2, Table S3). 
Sampling sites were separated according to their aridity in a PCA based 
on all soil physicochemical variables, with PC1 and PC2 explaining a 
50.0 % of the total variation observed (Fig. S3). As expected from the 
correlation analyses (Table S3), most arid sites were characterized by 
high soil pH and C/N, while most humid sites were characterized by 

high C and N litter content, and high soil phosphate content. Among 
humid sites, further variability in soil characteristics was found, and 
ATK and FDE showed high silt content and BIX (Table S4), while VAL 
showed high ammonium and total C content (Table S1).

3.2. Microbial community diversity and composition along the aridity 
gradient

The total number of Amplicon Sequence Variants (ASVs) for pro
karyotes and fungi were 4932 (with 577,639 total reads) and 4536 
(768,004 total reads), respectively. When analyzing prokaryotic com
munity α-diversity, we found no correlations between aridity and the 
observed number of ASVs (Richness) or the Shannon and Chao indices 
for 16S rRNA gene fragments (Table S3, Table S5). In contrast, fungal 
community Shannon and Chao indices were negatively correlated with 
aridity (Table S3). The prokaryotic and fungal community structures 
differed between sites and clustered according to aridity (PERMANOVA 
~ Site, F = 6.21, p-value <0.01 for prokaryotes, Fig. 2A; PERMANOVA 
~ Site, F = 3.97, p-value <0.01 for fungi, Fig. 2B; Fig. S4).

Across all samples, the most abundant prokaryotic phyla were 
Planctomycetota (average of 24.6 % across all samples), Pseudomona
dota (20.7 %) and Verrucomicrobiota (15.9 %), followed by Actino
mycetota (12.8 %) and Chloroflexota (10.4 %). Chloroflexota and 
Actinomycetota relative abundances increased with aridity; in the less 
arid site (FDE), their relative abundances were 3.9 % and 8.0 %, 
respectively, and increased to 33.1 % and 24.2 % at the most arid site 
(TAB) (Fig. 3A). In contrast, other phyla relative abundances decreased 
with aridity; Pseudomonadota ranged from 31.3 % in FDE to around 11 
% in the most arid sites (MAL and TAB), Verrucomicrobiota were the 
lowest at the four most arid sites, and Acidobacteriota gradually 
decreased from semi-arid (around 11 %) to arid sites (from 3 % to 7 %) 
(Fig. 3A).

For fungi, the most abundant classes across all samples were Agar
icomycetes (average of 21.5 % across all samples), Eurotiomycetes 
(18.9 %) and Dothideomycetes (10.9 %), followed by Leotiomycetes 
(9.9 %), Sordariomycetes (9.5 %) and Pezizomycetes (6.9 %) (Fig. 3B). 
Dothideomycetes and Eurotiomycetes classes increased with aridity 
(ranging from values of 1–5 % and 4–9 % in the less arid sites to 25.5 % 
and 35.6 % relative abundance in the most arid site), while Agar
icomycetes decreased with aridity (25–36 % to 2.1 %) (Fig. 3B).

Both the prokaryotic and fungal community matrices were strongly 
correlated with the climatic matrix, showing weaker but also significant 
correlation to soil characteristics (Mantel tests, Table 2). Specifically, 
most influencing environmental variables were aridity, MAP and pH 
(Fig. S5, Table S6).

3.3. Microbial biomass and soil functions along the aridity gradient

Prokaryotic biomass ranged from 0.73 ± 0.24 to 8.77 ± 2.20 μg C 
g− 1 DW, and fungal biomass from 144.94 ± 56.41 to 1700.29 ± 208.81 
μg C g− 1 DW. These ranges do not include a site within the gradient 
(VAL), which had unexpectedly high prokaryotic (17.78 ± 2.92 μg C g− 1 

DW) and fungal (8530.12 ± 1696.09 μg C g− 1 DW) biomass (Fig. S6). 
Neither prokaryotic nor fungal biomass had a significant correlation 
with aridity, regardless of whether VAL was included or not (Fig. S6). 
Microbial biomass was mainly driven by total soil C content (positively) 
and peak B -indicator of protein compounds in WEOM- (negatively) and, 
although not statistically significant, by water content and clay content 
(Fig. 4).

Microbial aerobic respiration ranged from 28.10 ± 2.09 to 71.12 ±
2.28 pmol Raz g− 1 DW x h− 1 and was not correlated with aridity (Fig. S7, 
Table S3). Microbial respiration was mainly driven by clay content 
interacting with aridity (Fig. S8), and to a lesser extent by water content 
and the BIX index (Fig. 4).

Among all enzymes measured, ALPHA was the only that correlated 
positively with aridity (Fig. S9, Table S3). The functional matrix showed 
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a significant correlation to soil characteristics, followed by prokaryote 
community and climatic variables matrices, in order of strength (R2, 
Mantel test, Table 2). Functions did not follow a clear aridity gradient 
(Fig. S10), nor did the soil multifunctionality index (Fig. S11). Instead, 
their variability was mainly explained by soil C content (total C, total 
organic C) and quality (HIX), litter content (LTC, LTN), texture (silt), pH, 
and two variables related to climate (water content and soil tempera
ture) (Fig. S12). In more detail, each specific EEA showed different 
drivers (Fig. 5). Enzymes related to the degradation of litter compounds, 
like hemicellulose and cellulose (XYL and CBH), were driven by total C 
and silt content interacting with aridity (Fig. S8). In contrast, enzymes 
involved in the degradation of simple polysaccharides (ALPHA and 
BETA) were primarily driven by soil temperature. The degree of humi
fication of the organic matter (HIX) influenced all these enzymes, either 
interacting with aridity (Fig. S8) or not. Organic matter availability (soil 
organic matter and total C) mainly drove the enzymes related to lignin 
degradation (PHE) and to nutrient acquisition (PHOS, LEU, and NAG to 
a lesser extent). Finally, water content contributed significantly to NAG 
activity and microbial respiration, but not on the other functions. The 
results for each model, with the statistics for each main driver sepa
rately, are shown in the supplementary data (Table S7).

Structural equation modeling (SEM) for all enzymes aggregated 
(Fig. S13), or for each function separately (Fig. S14), showed an overall 
acceptable to good model fit (Table S8), and pointed that aridity affected 
functions indirectly (Table S9), thought its influence on soil properties, 
and in most cases, in microbial community composition. Aridity 
consistently reduced prokaryotic composition (r = − 0.89, p-value 
<0.001), and strongly influenced soil properties, while these variables 
affected each specific function.

4. Discussion

4.1. Aridity shapes soil microbial community structure

The prokaryotic and fungal community structure clearly changes 
within the studied aridity gradient, ranging from humid to semi-arid and 
arid soils (AI from 1.25 to 0.18). Other studies have shown shifts in 
microbial community structure along aridity gradients, with reductions 
in the abundance and diversity of the microbial community as aridity 
increases (Maestre et al., 2015; Neilson et al., 2017; X. Wang et al., 
2024). However, these studies included narrower aridity ranges, such as 
considering only drylands or forests, whereas our study covers a wide 

aridity range (i.e., from humid to arid) which allows deciphering more 
representative patterns.

Increasing aridity determined the reduction of Pseudomonadota, 
Verrucomicrobiota and Acidobacteriota prokaryote phyla. The effect of 
aridity on Pseudomonadota from previous studies is unclear, as some 
show a negative relationship (Li et al., 2022; Neilson et al., 2012), and 
others a positive one, especially when studying only drylands and up to 
hyper-arid soils (Dong et al., 2024; Maestre et al., 2015; McHugh et al., 
2017). Although we observed a clear tendency for Pseudomonadota to 
decrease with aridity (up to arid soils), its metabolic versatility could 
make species of this phylum resistant to highly desiccated environments, 
such as in hyper-arid soils (Leung et al., 2020). The decrease in Verru
comicrobiota in arid soils is expected, as this phylum has affinity to 
humid soils (N. Liu et al., 2023). Acidobacteriota showed a gradual 
decrease only from semi-arid to arid soils, which may be related to its 
affinity for soils with low pH, more common in humid climates 
(Conradie and Jacobs, 2021), and have shown positively correlation 
with MAP and negative with MAT and aridity (Dong et al., 2024).

The fungal community structure was also clearly affected by aridity, 
as it showed a decrease in the Agaricomycetes and Leotiomycetes clas
ses’ relative abundances. These changes might be related to the decrease 
in vegetation cover and litter with aridity. Given that fungi serve as the 
primary decomposers of lignin, cellulose and hemicellulose, fluctuations 
in woody material may influence the fungal community structure along 
the aridity gradient (Abrahão et al., 2019). Specifically, Agaricomycetes, 
as wood-decay fungi, are shown to be affected by the quality and 
quantity of woody substrates (Eduardo et al., 2018). This decrease in 
Agaricomycetes correlated with lower levels of litter mass and was 
evident in the sampled sites with less woody vegetation, such as the two 
most arid sites along the gradient, which had grassland and barren as 
land cover types. Apart from wood rot fungi, Leotiomycetes class is 
ecologically diverse, including mycorrhizae and root symbionts 
(Ekanayaka et al., 2019; Johnston et al., 2019), and therefore related to 
plant roots development and similarly affected by decreasing higher 
plant development.

Conversely, certain prokaryotic (Chloroflexota and Actinomycetota 
phyla) and fungal (Dothideomycetes and Eurotiomycetes classes) groups 
became more abundant in their respective communities as aridity 
increased. These phyla are known to be well adapted to dryland envi
ronments (Cowan et al., 2022; Makhalanyane et al., 2015). Both 
Chloroflexota and Actinomycetota are Gram-positive bacteria, which 
imply thick cell walls that help them withstand arid conditions. 

Fig. 2. Principal Coordinates Analyses (PCoA) for the total of ASVs observed for prokaryotic (A) and fungal (B) communities. Each dot represents a replicate soil 
sample from each site; dots are colored according to the aridity gradient scale (Aridity = 1 - Aridity Index). Letters next to the dots represent the site codes. 
PERMANOVA test results to assess differences in the microbial community structure between sites are shown in each respective plot. Bray-Curtis distances were used 
based on taxa relative abundance.
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Fig. 3. Relative abundances of the main prokaryotic phylum (A) and fungal classes (B) in each sampling site. Sites are ordered left to right from the least to the most 
arid. “Others” refers to phyla or classes representing <1% of the sequences in the respective site.
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Moreover, their capacity to form endospores and synthesize osmolytes 
further enhances their resistance to aridity (Marasco et al., 2021). 
Therefore, observing the highest proportion of Actinomycetota with 

aridity was expected (Dong et al., 2024; Leung et al., 2020; Makhala
nyane et al., 2015; Neilson et al., 2017). Chloroflexota are primary 
producers and common components of biological soil crusts (BSC) 

Table 2 
Mantel test results for the different variable datasets. AI = Aridity Index. MAT = Mean Annual Temperature (◦C). MAP = Mean Annual Precipitation (mm). n.s. = non- 
significant.

Soil characteristics Functional variables Microbial community composition Land cover type

Prokaryotes Fungi

Soil characteristics – R2 = 0.44 
p-value = 0.02

R2 = 0.40 
p-value <0.01

R2 = 0.34 
p-value <0.01

R2 = 0.07 
p-value = n.s.

Climatic variables (AI, MAT, MAP, altitude) R2 = 0.55 
p-value <0.01

R2 = 0.23 
p-value = 0.02

R2 = 0.63 
p-value <0.01

R2 = 0.65 
p-value <0.01

R2 = 0.34 
p-value = 0.02

Functional variables R2 = 0.44 
p-value = 0.02

– R2 = 0.27 
p-value = 0.02

R2 = 0.14 
p-value = n.s.

R2 = − 0.04 
p-value = n.s.

Fig. 4. Standardized dominance (%) of the main predicting variables for each model. In bold and with asterisks are shown the significant predictors for each model 
(p-value < 0.05). Conditional R squared is shown for each model. ALPHABETA = ALPHA + BETA activities; XYLCBH = XYL + CBH activities; PHOS = phosphatase; 
LEU = leu-aminopeptidase; NAG = N-acetyl-β-glucosaminidase; PHE = phenol oxidase. Microbial Biomass includes PB (Prokaryotic Biomass) and FB (Fungal 
Biomass). BIX = biological index; HIX = humification index; LTC = total carbon in the litter; LTN = total nitrogen in the litter; PeakB = indicator of protein 
compounds in WEOM; PO4

3- 
= phosphate concentration; SOM = Soil organic matter; STemp = Soil Temperature; SR = Slope Ratio; TC = total carbon; WC =

water content.

Fig. 5. Conceptual framework showing the effects of climate (aridity, mean annual temperature [MAT], mean annual precipitation [MAP], and altitude) on the 
studied soil functions through soil characteristics and microbial community. Path coefficients represent significant correlations after Mantel tests (see Table 2). 
Asterisks indicate significance levels (*p-value < 0.05, **p-value < 0.01). Superscripts indicate the microbial group involved: (P) for prokaryotes, and (F) for fungi. 
Further details on direct and indirect pathways are shown in the structural equation models (Fig. S13 and S14; Table S9).
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(Mugnai et al., 2024). Therefore, it was also unsurprising to observe the 
highest abundance of this phylum specially in the most arid and BSC- 
covered site of the gradient (“Desierto de Tabernas”) (Lázaro et al., 
2022; Maestre et al., 2015; Maier et al., 2018). Although Cyanobacteria 
do not show an increasing pattern with aridity, they were only detected 
at low relative abundance in some of the most arid sites. This could be 
attributed to their prevalence in BSC, as it has been indicated that while 
Cyanobacteria are abundant in BSC, they are not as common once 
vegetation cover increases with decreasing aridity (Guo et al., 2023; 
Leung et al., 2020). Regarding fungi, Dothideomycetes and Euro
tiomycetes are black yeast fungi, which are renowned for their capacity 
to resist UV radiation (Coleine et al., 2022). Due to this characteristic, 
their presence within the community in high aridity soils is crucial, as 
they form an opaque barrier over photobionts, shielding them against 
harmful UV radiation (Dong et al., 2024).

Our results indicate that climate (i.e. MAT, MAP and AI) strongly 
shapes the soil prokaryotic and fungal community structure whereas soil 
characteristics play a weaker role. Despite these compositional shifts, 
microbial biomass did not vary with aridity, suggesting that community 
adaptation likely occurred through taxonomic reorganization, buffering 
potential changes in biomass (Yang et al., 2022). Interestingly, the hi
erarchical clustering of sites along the aridity gradient differed between 
prokaryotes and fungi, being the latter more erratic, with sites often 
grouped together despite having quite different aridity levels. This 
suggests that prokaryotes and fungi do not respond in the same way to 
differences in aridity. Similar to the results from S. Wang et al. (2021), 
soil prokaryotes seem to adapt through aridity shifts changing their taxa 
proportions, whereas fungi display greater variability across sites, with 
only few fungal classes consistently present across all environments. 
Reduction of fungal classes as aridity increases must be related to the 
reduction of fungal diversity found in this study. The lack of consistent 
dominant taxa suggests that increasing aridity filters fungal groups that 
are less tolerant to water stress, leading to community simplification, 
and consequently, a decrease in diversity. Moreover, most fungi are 
commonly more strongly coupled to plant community development than 
bacteria (X. Wang et al., 2024) and therefore being more sensitive to 
reduction in vegetation cover shaped by aridity.

4.2. Indirect effects of aridity on soil functions via changes in microbial 
community

In contrast to our hypothesis, soil functions did not clearly decrease 
with aridity. This suggests that, whereas the microbial community 
structure at each site reflects its long-term adaptation to climate, soil 
functions are more related to the local edaphic environment. Still, in
direct effects of aridity on soil functions through changes in community 
structure -mainly prokaryotes- may occur (Fig. 5).

This might be specially the case for those enzyme activities that seem 
to follow better the aridity gradient and/or that are related to the 
community structure (i.e. α- and β-glucosidases and cellobiohydrolase). 
For example, Actinomycetota and Chloroflexota phyla, which increase 
under arid conditions, both carry genes capable of producing glycoside 
hydrolases, such as α- and β-glucosidades (Zang et al., 2017; Zhang et al., 
2024). Also, Eurotiomycetes, which are xerotolerant fungi, have a pos
itive relationship with α- and β-glucosidase, β-xylosidase, and cellobio
hydrolase activities (J. Wang et al., 2020). Likewise, Pseudomonadota 
and Acidobacteriota, both predominant phyla in more humid sites, 
exhibit high phosphatase activity (Azene et al., 2023). Pseudomonadota 
also possess a wide range of enzymes for degrading C compounds, 
including N-acetyl-β-glucosaminidase, and Acidobacteriota demon
strates an enhanced capacity for N-acetyl-β-glucosaminidase production 
(Lladó et al., 2016). Accordingly, these enzyme traits could be related to 
the higher production of phosphatase and N-acetyl-β-glucosaminidase in 
the humid sites of this study.

In addition, the weak relationship between aridity and soil functions 
in parallel to the clear aridity-shaped community composition, may also 

indicate microbial functional redundancy. In soils, functional redun
dancy is commonly observed, particularly in more arid environments 
compared to moister ones (León-Sobrino et al., 2019; Song et al., 2019). 
This common characteristic of functional redundancy in soils may arise 
from the non-monophyletic nature of many functions, meaning that 
certain functions are not exclusive to a single phylogenetic group (Louca 
et al., 2018). The fact that prokaryotes had a (weak) correlation with soil 
functions, while fungi had not, could be related to a greater functional 
redundancy of fungi than bacteria (Starke et al., 2020).

4.3. Mainly soil characteristics, sometimes interacting with aridity, drive 
soil functioning

In this study, soil microbial functions have shown to be primarily 
driven by variables related to soil texture, organic matter quantity and 
quality, and pH, rather than by climatic variables. Aridity was not the 
main driver of any soil function individually, but other climate-related 
variables (such as water content and soil temperature), and factors 
interacting with aridity, appeared as relevant drivers. Accordingly, 
along the studied aridity gradient, climate is shown to play an indirect 
role in soil functions. However, it must be considered that aridity, MAT 
and MAP climate values, were obtained from a database with 1 × 1 km 
resolution and averaged over 30 years. This may imply that, although 
the long-term data allow a climatic gradient classification, there is a 
limitation in capturing the exact conditions at each site during the year 
of the sampling. This limitation could hinder the potential link between 
aridity and/or other climate variables and soil respiration and organic 
matter enzyme degradation potential.

Interestingly, the different soil functions studied have shown distinct 
drivers. Soil texture (silt and/or clay) interacting with aridity, appears as 
a significant factor for enzymes involved in cellulose (cellobiohydrolase) 
and hemicellulose degradation (β-xylosidase) and soil respiration. The 
relationship between soil texture and the organic matter content and the 
availability of C substrates has been long reported, showing, in general, 
positive effects of silt and clay percentages on soil C content and water- 
holding capacity (Augustin and Cihacek, 2016; Hassink, 1997). How
ever, here we found a negative effect of silt content on β-xylosidase and 
cellobiohydrolase activities at the most humid sites, but a positive effect 
at the most arid ones. This suggests that in the highly arid soils, silt may 
favor litter (substrate for β-xylosidase and cellobiohydrolase) and water 
retention for their microbial degradation, as these soils are characterized 
by low litter and water content. In contrast, in humid soils, increasing 
silt content may favor the formation of silt-organic matter-enzyme col
loids limiting enzyme diffusion and activity (Guber et al., 2022).

Soil respiration also showed an interactive effect with aridity and 
texture (clay content), but in this case, the increase in percentage of clay 
determined low respiration in the more arid soils. Clay content may have 
contrasting effects; while clay enhances organic matter retention, fa
voring microbial colonization, it can also reduce the bioavailability of 
organic matter to microorganisms (Rakhsh et al., 2020). Our results 
suggest a general positive effect of clay content on microbial biomass 
but, at the more arid and higher clay content sites, organic matter 
mobilization may be reduced with negative consequences for 
respiration.

As expected, most enzyme activities (β-xylosidase and cellobiohy
drolase, phenol oxidase, N-acetyl-β-glucosaminidase, phosphatase, 
leucine-aminopeptidase), as well as microbial biomass, showed a posi
tive effect of organic matter quantity (i.e., total C, soil organic matter, 
litter content) as indicators of the resource availability for microbial 
degradation (Stock et al., 2019). However, most functions were also 
affected by organic matter quality (WEOM indexes, and C/N ratios from 
soil and litter), which might more specifically reflect organic matter 
bioavailability. Specifically, the degree of humification (HIX) positively 
affects β-xylosidase and cellobiohydrolase activities, and also degrada
tion of starch and simple polysaccharides (α- and β-glucosidase activ
ities), at high aridity levels. Although HIX is not correlated to aridity, it 
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tends to decrease at more arid sites, probably being related to the 
vegetation type (i.e., the reduced cover of woody and tree vegetation, 
which is a primary source of aromatic compounds). The increase in HIX 
may indicate a higher availability of mainly C organic substrates, and 
thus enhancing simple and complex degradation of polysaccharides. 
This effect could be more relevant in arid sites where organic matter 
inputs from vegetation are scarce.

Similarly to the C-degrading enzymes, lignin degradation activity 
(phenol oxidase) was enhanced by organic matter quality variables, like 
the protein-like compounds in WEOM (peak B), together with low C/N 
in litter. Probably, some plant derived proteins (contributing to peak B) 
contain bonds with phenolic compounds, which phenol oxidase can 
break down (Matheis and Whitaker, 1984). Also, low C/N ratios may 
contribute to enhancing decomposition of recalcitrant lignified com
pounds (Theuerl et al., 2010). Aridity was not a main driver for phenol 
oxidase, however, this enzyme was affected by water content, showing a 
general tendency to be higher in humid sites. However, as further 
described by other authors, phenol oxidase appears to be more influ
enced by the soil organic matter content than by climatic factors (Tan 
et al., 2021).

Chitin degradation (N-acetyl-β-glucosaminidase activity) is a key 
enzyme that provides not only C but also N to microbes. It was also 
affected by C quantity and quality, but its main driver was soil water 
content. Humid soils may enhance the development of organisms con
taining chitin such as microfauna and fungi (Bärlocher and Porter, 1986; 
Brown et al., 2019), increasing the availability of the substrate for this 
enzyme (Gionchetta et al., 2019; Kwok et al., 2016; Morón-Ríos et al., 
2010).

The nutrient-acquiring enzymes (phosphatase, leucine- 
aminopeptidase) did not show any direct relationship with aridity or 
any climatic factor, suggesting that these are mostly driven by substrate 
availability. Phosphatase, in particular, is strongly correlated with 
organic matter components in other studies (Salazar et al., 2011), likely 
due to the influence of soil organic matter to phosphatase through the 
creation of stable humus-enzyme complexes (Nannipieri et al., 1988). 
For leucine-aminopeptidase, soil pH may be key for substrate avail
ability, as soil surface N mineralization at local or regional scales has 
been found to be positively related with soil pH (Y. Liu et al., 2016). 
Although leucine-aminopeptidase has an optimal pH of 7.2 (Balume 
et al., 2022), unlike other enzymes, it can maintain high activity at 
higher pH values (Puissant et al., 2019).

5. Conclusions

In the soils from the studied aridity gradient, climate strongly shapes 
the microbial community, while soil functions are mainly determined by 
physical and chemical characteristics of the soil. However, climate ex
erts a significant indirect effect on the soil functions through the pro
karyotic community and by modifying key soil characteristics, such as 
water content and organic matter quality. This indicates soil functions 
being part of the soil ensemble of long-term adapted natural environ
ments, functioning as a laced gear. But this further suggests that if not all 
actors of the ensemble (i.e. soil characteristics, microbial community, 
vegetation cover) respond in a similar velocity to climate change con
ditions such as dryness, soil functions and in consequence global cycles 
may be compromised. This study highlights the complexity of the 
regulation of soil system functionality, and consequently, points that 
policies aimed at mitigating the effects of climate change should be site- 
specific, taking into account the particular physical and chemical 
properties of each soil.

CRediT authorship contribution statement
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Bärlocher, F., Porter, C.W., 1986. Digestive enzymes and feeding strategies of three 
stream invertebrates. J. N. Am. Benthol. Soc. 5 (1), 58–66. https://doi.org/10.2307/ 
1467747.

Barton, K., 2022. MuMIn: Multi-Model Inference. https://CRAN.R-project.org/p 
ackage=MuMIn.

Bastida, F., Eldridge, D.J., García, C., Kenny Png, G., Bardgett, R.D., Delgado- 
Baquerizo, M., 2021. Soil microbial diversity–biomass relationships are driven by 
soil carbon content across global biomes. ISME J. 15 (7), 2081–2091. https://doi. 
org/10.1038/s41396-021-00906-0.
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Townsend, J.P., 2019. A multigene phylogeny toward a new phylogenetic 
classification of Leotiomycetes. IMA Fungus 10 (1), 1. https://doi.org/10.1186/ 
s43008-019-0002-x.
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catchment asymmetry in Tabernas Desert (Almeria, Spain). Geoderma 406, 115526. 
https://doi.org/10.1016/j.geoderma.2021.115526.

León-Sobrino, C., Ramond, J.-B., Maggs-Kölling, G., Cowan, D.A., 2019. Nutrient 
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Morón-Ríos, A., Rodríguez, M.Á., Pérez-Camacho, L., Rebollo, S., 2010. Effects of 
seasonal grazing and precipitation regime on the soil macroinvertebrates of a 
Mediterranean old-field. Eur. J. Soil Biol. 46 (2), 91–96. https://doi.org/10.1016/j. 
ejsobi.2009.12.008.

Mugnai, G., Pinchuk, I., Borruso, L., Tiziani, R., Sannino, C., Canini, F., Turchetti, B., 
Mimmo, T., Zucconi, L., Buzzini, P., 2024. The hidden network of biocrust 
successional stages in the high Arctic: revealing abiotic and biotic factors shaping 
microbial and metazoan communities. Sci. Total Environ. 926, 171786. https://doi. 
org/10.1016/j.scitotenv.2024.171786.

Naimi, B., Hamm, N. a s, Groen, T.A., Skidmore, A.K., Toxopeus, A.G., 2014. Where is 
positional uncertainty a problem for species distribution modelling? Ecography 37, 
191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x.

Nannipieri, P., Ceccanti, B., Bianchi, D., 1988. Characterization of humus-phosphatase 
complexes extracted from soil. Soil Biol. Biochem. 20 (5), 683–691. https://doi.org/ 
10.1016/0038-0717(88)90153-8.

Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G., Renella, G., 
2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54 (4), 655–670. 
https://doi.org/10.1046/j.1351-0754.2003.0556.x.

Neilson, J.W., Quade, J., Ortiz, M., Nelson, W.M., Legatzki, A., Tian, F., LaComb, M., 
Betancourt, J.L., Wing, R.A., Soderlund, C.A., Maier, R.M., 2012. Life at the 
hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. 
Extremophiles 16 (3), 553–566. https://doi.org/10.1007/s00792-012-0454-z.

Neilson, J.W., Califf, K., Cardona, C., Copeland, A., Van Treuren, W., Josephson, K.L., 
Knight, R., Gilbert, J.A., Quade, J., Caporaso, J.G., Maier, R.M., 2017. Significant 
impacts of increasing aridity on the arid soil microbiome. mSystems 2 (3). https:// 
doi.org/10.1128/mSystems.00195-16 e00195-16. 

Nouhra, E., Soteras, M.F., Pastor, N., Geml, J., 2018. Richness, species composition and 
functional groups in Agaricomycetes communities along a vegetation and 
elevational gradient in the Andean Yungas of Argentina. Biodivers. Conserv. 27 (8), 
1849–1871. https://doi.org/10.1007/s10531-018-1512-3.

Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., 
O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., 
Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M.D., 
Durand, S., Weedon, J., 2022. Vegan: community ecology package. https://CRAN. 
R-project.org/package=vegan.

Parlanti, E., Wörz, K., Geoffroy, L., Lamotte, M., 2000. Dissolved organic matter 
fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone 
submitted to anthropogenic inputs. Org. Geochem. 31 (12), 1765–1781. https://doi. 
org/10.1016/S0146-6380(00)00124-8.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., others, 2011. Scikit-learn: 
machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Puissant, J., Jones, B., Goodall, T., Mang, D., Blaud, A., Gweon, H.S., Malik, A., Jones, D. 
L., Clark, I.M., Hirsch, P.R., Griffiths, R., 2019. The pH optimum of soil exoenzymes 
adapt to long term changes in soil pH. Soil Biol. Biochem. 138, 107601. https://doi. 
org/10.1016/j.soilbio.2019.107601.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., 
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