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Abstract
Zonation of stratigraphic successions is a key practice for identifying intervals charac-
terised by stability or, conversely, by palaeoenvironmental changes. Stratigraphically
constrained agglomerative algorithms have been commonly adopted to obtain zona-
tion based on quantitative palaeontological data. Here we explore constrained divisive
algorithms aiming at obtaining a zonation that meets the principle of maximizing
coefficients commonly used to evaluate the effectiveness of clustering algorithms.
In particular, a constrained version of Cavalli Sforza’s method was applied, together
with an algorithm conceived to maximise, at each division, the average silhouette
width of the observations. The results were compared, following the compositional
data analysis properties, with those obtained with a commonly adopted agglomera-
tive method. When evaluated on artificial data, the divisive algorithms show stability
and a tendency to identify the boundary between intervals at the midpoint of tran-
sitions, consistently with common stratigraphic practice. Overall, the application to
real micropalaeontological data, consisting of percentages of planktonic foraminifera,
provide reasonable zonation patterns with all algorithms considered. For the main par-
tition, the constrained version of Cavalli Sforza’s method provides highest values of
Calinski–Harabasz and Hartigan indexes, while the average silhouette width method,
as expected, performs better in the evaluation of average silhouette width index as
well as of Goodman–Kruskal’s coefficient and cophenetic correlation. One potential
issue to consider is the tendency to define single sample intervals as the number of
partitions increases.
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1 Introduction

Ecozonation methodologies are widely adopted, in both continental and marine suc-
cessions, to define high-resolution biostratigraphic and chronostratigraphic schemes
(Capotondi et al. 1999). The concept behind this approach is that changes in the
composition of fossil assemblages are proxies of palaeoenvironmental or palaeocli-
matic changes. Thus, the definition of ecozones enables the identification of intervals
characterised by relative stability or, conversely, by stratigraphical levels which mark
environmental changes. Once their boundaries have been dated, ecozones may be use-
ful to correlate, at regional/sub-basin scale stratigraphic successions. There are several
application examples of palaeontological ecozonation of both continental and marine
successions (Capotondi et al. 1999; Sprovieri et al. 2003; Siani et al. 2010; Allen
et al. 1999). The boundaries between zones can be defined through simple inspection
of stratigraphic diagrams, looking for a bioevent that is of interest to the researcher.
However, the definition of ecozones may be strengthened by adopting stratigraph-
ically constrained classification algorithms, which allow ecozone boundaries to be
objectively defined. In these algorithms, the objects (samples or clusters of samples)
can only be joined to immediately preceding or succeeding objects according to strati-
graphic order. The CONSLINK method (Gordon and Birks 1972), as an example,
is based on a single linkage criterion. The constrained incremental sum of squares
(CONISS) method (Grimm 1987) has been widely adopted in micropalaeontological
studies and, likely, is the most successful zonation algorithm. Basically, CONISS is a
stratigraphically constrained Ward’s method (Ward 1963), based on the constraint of
minimum increase of within groups (ecozones) variance. As a modified Ward algo-
rithm, theCONISSmethod canbe computed fromadistancematrix basedonEuclidean
distance as the measure of difference between samples. The application of CONISS
to micropalaeontological data expressed in terms of percentages requires an approach
conforming to the nature of the compositional data (CoDa) (Aitchison 1986). On this
basis, Di Donato et al. (2008), Di Donato et al. (2009) defined compositional intervals
based on the CONISS method applied to centred log-ratio (clr) data. The rationale
behind this approach is that the Ward’s method is correctly applied and, at the same
time, a distance measure conceived for CoDa is adopted. The CONISS method is a
hierarchical agglomerativemethod because it creates a hierarchical structure of groups
from the bottom (each sample forms a group) to the top (a single group contains all
samples) (Hennig et al. 2015).

In contrast, a hierarchical divisive algorithm operates from the top to the bottom,
recursively splitting a group into two groups. Among them, the Cavalli-Sforza method
(Edwards and Cavalli-Sforza 1965) can be considered as the divisive counterpart
of Ward’s method (Ward 1963), being focused on minimising within-group sum of
squares and, by converse, maximising the between-group variance. In a constrained
context, Gill (1970) proposes a divisive approach to zonation of univariate stratigraph-
ical data based on analysis of variance, although not developed in a cluster analysis
context. Overall, this divisive approach follows a criterion also adopted in time series
analysis to identify abrupt changes in signal (Killick et al. 2012). A classical divisive
Euclidean approach was also explored by Gordon and Birks (1972) with the SPLITSQ
and SPLITINF algorithms.

123



Mathematical Geosciences (2025) 57:1305–1326 1307

In recent decades, clustering algorithms based on unusual ratio-type formulas have
been proposed. For example, the average silhouette width (ASW) (Rousseeuw 1987;
Kaufman and Rousseeuw 1990), which was introduced for measuring cluster quality,
has also been considered as a clustering criterion (Batool and Hennig 2021). In a
comparative study of divisive and agglomerative clustering algorithms, Roux (2018)
highlighted that divisive algorithms based on unusual ratio-type formulas (e.g., the
ASW formula) perform efficiently and, in fact, slightly better than their agglomerative
counterparts.

In this paper, we explore the behaviour of divisive (DCONSIL) and agglomera-
tive (ACONSIL) constrained algorithms based on the ASW in a context involving
CoDa analysis of micropalaeontological data. Furthermore, an algorithm (CONCS)
based on the Cavalli-Sforza method (Edwards and Cavalli-Sforza 1965) is also eval-
uated. The latter can be regarded as a divisive full counterpart of the agglomerative
CONISSmethod. Adoption of log-ratio techniques (Aitchison 1986) overcomes prob-
lems associated with adopting typical techniques for CoDa, whose sample space, the
simplex, has properties for which classical algebraic/geometric operations are neither
subcompositionally coherent nor scaling invariant (Pawlowsky-Glahn et al. 2015).

In the following sections, the algorithms are described together with some pre-
treatment of micropalaeontological data that should be applied before carrying out the
analysis. Examples applying the method to planktonic foraminiferal assemblages of
Mediterranean Sea marine cores and to an artificial dataset are used to evaluate the
differences between the algorithms.

2 Constrained Hierarchical ClusteringMethods

In cluster analysis, one of the objectives is to obtain groups whose entities are as homo-
geneous as possible, while entities in different clusters are heterogeneous (Hennig et al.
2015). There are more than several algorithms to perform a cluster analysis. Among
them,Ward andCavalli-Sforzamethods are distinctive in that they focus onminimising
the within-group variance and, by converse, maximising the between-group variance.
In fact, the Cavalli-Sforza method is a divisive method which follows, in some ways,
the same approach as the Ward method. In this method, a dataset is divided progres-
sively with the constraint of maximising, at each step, the between-groups sum of
squares (the general sum of the squared distances is the sum of within-groups and
between-groups sum of squares). In practice, the two groups obtained by partitioning
an undivided dataset are further divided, while they are made by at least two samples,
so that for successive division cycles, an increasing number of clusters is obtained.
Overall, this divisive approach follows a criterion adopted in time series analysis to
identify abrupt changes in signal (Killick et al. 2012).

To use these clustering algorithms as zonation techniques, they must be modified
with the constraint of preserving the stratigraphic order of samples. As pointed out
above, based on this concept, Grimm (1987) modified Ward’s method to obtain the
CONISS algorithm. With the same approach, the introduction of a stratigraphic con-
straint makes it possible to employ the Cavalli-Sforza method (hereafter CONCS) to
divide a stratigraphic succession into zones. Being a divisive algorithm, the CONCS
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method is computationally very expensive: as an example, the initial division of an n
by D dataset (where n is the number of observations and D the number of variables)
would require the examination of all 2n−1 − 1 partitions, although this number can be
reduced to (2D−2)

(n
D

)
(Scott andSymons 1971). Introducing a stratigraphic constraint

allows this number to be substantially reduced, since the partitions to consider for the
initial division are only n-1 (the succession must simply be divided into two inter-
vals). To perform divisive clustering and construct the dendrogram, we considered
two approaches. In the first version of CONCS (CONCS version 1), the algorithm
is designed to divide, at each step, the group whose partitioning yields the highest
between-groups sum of squares (SSB). In this version, node levels can represent the
SSB of the partitioned groups. Alternatively, to reduce the number of inversions often
observed in constrained dendrograms, node levels can be defined by the diameter of
the successive clusters (measured as the largest dissimilarity between objects within
a cluster), as in the DIANA method (Kaufman and Rousseeuw 1990). As a third pos-
sibility, the total within-groups sum of squares (SSW) can be considered for node
levels. This choice has the advantage of providing monotonic node levels. In the sec-
ond approach (CONCS version 2), the algorithm is set to partition, at each step, the
cluster with the largest SSW, while still maximizing the resulting SSB. In this version,
node levels can be based on either the SSW of the cluster being partitioned or the total
SSW. This approach has the advantage of producing monotonic node levels and is
computationally less expensive, as it does not require a pre-evaluation of which group
to partition. For this reason, we preferred this second version in the examples provided.
It is worth noting that the two versions do not lead to substantial differences in the
resulting zonation, except in some cases where the order of cluster partitioning varies.
A comparison of the dendrograms obtained using the two approaches is presented in
Sect. 5.

The other divisive algorithm that has been evaluated in a constrained context is
based on the principle of maximising, for each partition, the ASW of the observations
(hereafter CONSIL). To compute the silhouette width, it is necessary, first, to compute
the mean squared dissimilarity of an observation xi belonging to a cluster Ck to all
other n(k) − 1 observations of the same cluster, di,Ck = 1

nk−1

∑
j∈Ck ,i �= j d

2(xi , x j ),
and second, to compute the smallest value, di,C = minldi,Cl , of the average squared
dissimilarity of the observation xi to observations of any other cluster, Cl , di,Cl =
1
nl

∑
j∈Cl ,l �=k d

2(xi , x j ), by means of which the “closest” cluster C is found. The

silhouette width value on an observation xi ∈ Ck is thus defined by si = di,C−di,Ck
max(di,C ,di,Ck )

.

The values of si are constrained in the interval [−1, 1]. Values close to 1 indicate
that the observation is well classified, values around 0 suggest that the observation
is in between two clusters, while values around −1 indicate a wrong classification.
The ASW is thus defined by the mean of all silhouette values computed on the n
observations in the dataset, ASW = 1

n

∑n
i=1 si . The higher this value, the better is the

overall classification.We considered both a divisive (DCONSIL) and an agglomerative
(ACONSIL) constrained algorithm, both aimed at maximising the ASW. It is worth
noting that the ASW values obtained through successive partitions or agglomerations
tend to be distinctly non-monotonic, making dendrograms constructed with ASW
values at the node levels difficult to interpret (e.g., Fig. 3 in Sect. 5). Therefore, to
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construct the dendrograms, we followed the approach used for CONCS, employing
the SSW (or alternatively, the diameters) as node levels. The two algorithms differ
in their structures. In the divisive approach, the cluster selected for partitioning is
the one with the largest SSW (whose value can also be used as the node level), and
it is subsequently subdivided to maximise the ASW. In contrast, the agglomerative
approach performs aggregation at each step based on achieving the maximum ASW,
after which the total SSW is used to determine the node levels.

To evaluate the performance of the algorithms, we considered the cophenetic cor-
relation (CC) and, following Roux (2018), the Goodman–Kruskal coefficient (GK)
(Goodman and Kruskal 1954). In general, the hierarchical cluster tree matrices used
in the algorithms do not include linkage distances. For instance, in Ward’s method,
the hierarchical cluster tree is based on the incremental sum of squares. To com-
pute the CC, we reconstructed these distances from the hierarchical cluster tree by
calculating the distance of a newly added observation to the centroid of the already-
formed cluster. The GK coefficient can be computed in the following way: Let
d(xi , x j ) and u(xi , x j ) be, respectively, the input and ultrametric (the level at which
objects xi and x j are linked in the dendrogram) distance between a pair of objects
xi and x j . Two pairs of objects (xi , x j ) and (xk, xl) are said to be concordant if
d(xi , x j ) < d(xk, xl) and u(xi , x j ) < u(xk, xl). Conversely, they are said to be dis-
cordant if d(xi , x j ) < d(xk, xl) and u(xi , x j ) > u(xk, xl). If S+ and S− are the
number of concordant and discordant pairs of distances, then the GK coefficient is
given by GK = S+−S−

S++S− . The GK coefficient ranges from 0 (no concordance) to
1 (perfect concordance), with higher values indicating better clustering quality. In
general, the zonation of a stratigraphic succession is aimed at defining a relatively
restricted number of intervals. Therefore, it is also necessary to consider the effec-
tiveness of the algorithm with regard to the first few partitions only, or with regard to
the optimal number of intervals. There are several methods which suggest an optimal
number of groups to be retained in cluster analysis. In Roux (2018), as an example,
the Dunn index is considered. Among them, we considered that proposed by Mojena
(1977), which is based upon statistical stopping rules. These rules utilise n − 1 items
in the distribution of the criterion α (the criterion by which the algorithm forms the
clusters) by calculating the mean and standard deviation of the sample. The values of
the criterion can range from α0 (n clusters) to αn−1 (one single cluster). The stopping
rule proceeds by defining a significant α as the one that lies in the upper tail of the
distribution satisfying α j ≤ α + k · sα , where α j represents the value of the criterion
at stage j, k is the standard deviation, and α and sα are the mean and unbiased standard
deviation of the distribution, respectively. In Mojena (1977) datasets including 60 and
120 observations were evaluated and, in terms of predicted number of clusters, k val-
ues ranging from 2.75 to 3.5 gave the best overall results (in general, with increasing
k values, fewer clusters are predicted). We also ran some simulations, and the results
suggest a dependence of k on the number of observations. For datasets with n=200 and
D=10, k values around 3.5 reasonably predicted the number of clusters considering as
criteria both node levels obtained with CONISS and cluster diameters obtained with
CONCS and DCONSIL. Instead, when considering the SSW as criterion, a lower k
value, around 1.8, provided better predictions.
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Other procedures for making cluster number decisions are based on the ratios
of between-cluster sum of squares measurements to within-cluster sum of square
measurements, such as the Calinski–Harabasz index (Calinski and Harabasz 1974),
which provide information on the separation and homogeneity of the clusters. The
Calinski–Harabasz index is defined byCHnc = trace(Bnc )/(nc−1)

trace(Wnc )/(n−nc)
in which nc indicates

the number of clusters, and Bnc andWnc are the matrixes of the between- and within-
group sums of squares, respectively. This index can be computed for any possible
nc, and its largest value suggests the optimal number of intervals (each of which,
obviously, may be divided into subintervals).

It can be noted that indices such as those described above can be used to both
define the number of clusters (this is also the case of the ASW), and to evaluate the
performance of the algorithms. In effect, in our study the CHnc index was used twice:
first, to define an optimal number of intervals. Next, the maximum values achieved
by applying the different algorithms were considered to compare their performance
in relation to a reduced number of partitions. Together with the CHnc index, we con-
sidered the ASW index described above and the Hartigan index (H) (Hartigan 1975)
defined as Hnc = ln trace(Bnc )

trace(Wnc )
. The Hnc values tend to increase as the number of clus-

ters increases, and consequently thewithin-group sumof squares decreases. The values
obtained for only the first few partitions may help to compare the performance of the
different algorithms. In doing that, higher performance may be obviously expected for
CONSIL in the evaluation of the ASW index. The CHnc and the Hnc indices provide
information on the separation among clusters and their homogeneity. CONISS and
CONCS are both based on evaluation of the between/within sums of squares of the
clusters. It thus seems interesting to analyse how the two algorithms are evaluated by
these indices. Further, we explored in more detail the interpretation and significance
of the differences between the clusters by means of CoDa techniques such as rela-
tive variation biplots (RVB) (Aitchison and Greenacre 2002), multivariate analysis
of variance (MANOVA) contrast, R-mode cluster analysis (Martín-Fernández et al.
2023) and geometric mean bar plots (GMBP) (Martín-Fernández et al. 2015). Among
these four techniques, the first three involve applying the classical methods of biplot,
MANOVA, and R-mode clustering to the log-ratio coordinates of CoDa (Sect. 3). In
contrast, the GMBP is a technique specifically designed for CoDa. When analysing
data with two or more groups, a geometric-mean bar plot can be used to visually com-
pare their centres. For each group, we first calculate the ratio of the overall geometric
mean to the group-specific geometric mean. Then, these ratios are displayed in a bar
plot using a logarithmic scale. If the group’s centre matches the overall centre, the
ratio for each part will be 1, corresponding to a value of zero on the log scale. How-
ever, when the group’s centre differs from the overall centre, the ratio deviates from
1, producing a positive or negative logarithmic value. Larger bars, whether positive or
negative, reflect greater differences between the group and overall means.
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3 Application to Fossil Assemblages from Sediment Cores

In general, fossil assemblage data arise from counting of specimens from samples. It
is quite intuitive to consider that the Euclidean distance is strongly determined by the
total of assemblages rather than the relative ratios between the components. Since in
the analysis of fossil assemblage compositions the total of the vector is not informative,
this problemmay be in part circumvented by using angular distancemeasures to define
the similarity (or distance) between assemblages, such as the squared chord distance.
It can be noted, however, that the CONISS algorithm cannot be properly applied on a
distance matrix built with squared chord distance (Palarea-Albaladejo et al. 2012; Di
Donato et al. 2009, 2019).

The analysis of relative abundance (percentage) data does not suffer of a “size
of samples” effect. However, it is important to define an appropriate distance mea-
sure among compositions expressed in terms of percentages. Percentage (closed)
data only bring relative information; thus, they require a specific statistical frame-
work, such as that represented by the CoDa analysis (Aitchison 1986). In recent
years, CoDa tools have been proposed to also include the total, if it is of interest,
in the analysis (Pawlowsky-Glahn et al. 2015). However, these issues are beyond the
scope of this article. Some statistical techniques (e.g., PCA) can be performed fol-
lowing CoDa properties of the Aitchison geometry (Pawlowsky-Glahn et al. 2015)

on the the centred log-ratio (clr) scores defined as clr(x) =
(
ln x1

g(x) , . . . , ln
xD
g(x)

)
,

for a D-part composition x = (x1, . . . , xD), where g(·) is the geometric mean of
x. Based on the definition of a compositional inner product between to composi-
tional vectors < x, y >A=< clr(x), clr(y) >E , the Aitchison distance is derived as
dA(x, y) = dE (clr(x), clr(y)), where the subindex “A” and “E” mean Aitchison and
Euclidean, respectively. These elements allow us to create an orthonormal log-ratio
(olr) basis in the sample space of CoDa (the simplex SD). An olr-basis can be cre-
ated using a data-driven method such as principal balances (Martín-Fernández et al.
2018) or R-mode cluster analysis (Martín-Fernández et al. 2023). Alternatively, the
knowledge of the researcher can be used to improve the interpretation of the models
when creating the olr-basis by a sequential binary partition (SBP) process (Egozcue
and Pawlowsky-Glahn 2005). The olr-coordinates of the general form can be defined
as

olr(x)k =
√

nk · dk
nk + dk

ln
(xi1 · · · xink )1/nk
(x j1 · · · x jdk )1/dk

, k = 1, . . . , D − 1, (1)

where nk and dk are the number of parts in the numerator (xi1 , . . . , xink ) and in the
denominator (x j1 , . . . , x jdk ), respectively. Note that the olr-coordinate in Eq. (1) is a
“balance” between the average of two sets of parts, which generalises the expression of
the clr-scores, balancing one part of the composition against the average of the others.
Consequently, any multivariate analysis can be performed on the olr-coordinates of
the compositions (Pawlowsky-Glahn et al. 2015). Due to the challenges associated
with clr-scores in terms of subcompositional coherence and the degeneration of the
covariance matrix, it is preferable to use olr-coordinates in analyses that require proba-
bilistic models (Pawlowsky-Glahn et al. 2015), such as the simulation of artificial data
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(Sect. 5).On the other hand, theAitchisondistance (Aitchison et al. 2000) is equal to the
Euclidean distance between both the clr-scores or olr-coordinates (Palarea-Albaladejo
et al. 2012). Being Euclidean, this distance allows the adoption of algorithms based
on calculating the sum of squares. It is important to note that, because the distances
are invariant under change of basis, the divisive algorithms based on SSB and SSW
are invariant as well. As a consequence, there is no difference in the results if olr-
coordinates are obtained by means of principal balances, by means of R-mode cluster
analysis or any other particular SBP.

Log-ratio formulae can only be applied to strictly positive data. Thus, before calcu-
lating the balances, a zero values substitution is needed. In our case, this substitution
was done by following the approach of Palarea-Albaladejo and Martín-Fernández
(2015). In order to reduce the number of zero values to be substituted, amalgamation
of parts into informal taxonomical groups can be considered.

4 Application Examples

To evaluate the performance of algorithms taken into account, we considered a simple
experiment based on an artificial dataset and two application examples with literature
datasets consisting of planktonic foraminiferal assemblages. An interesting aspect of
palaeontology is the transition between different data groups. The bivariate artificial
dataset consisted of four stratigraphically constrained non-overlapping groups, each
with 60 observations. For each group, we considered a bivariate normal distribution
with a diagonal covariance matrix with variances equal to 0.01. Although made up
of real numbers, the dataset was conceived as representing a set of olr-coordinates
derived from a three-part compositional dataset. In this regard, it is worth recall-
ing that the normal probability function of a random composition in SD is given by
fx(x) = 1√

|�|(2π)(D−1)
exp[− 1

2 (olr(x)−μ)′�(−1)(olr(x)−μ)], whereμ and� denote

the expected value and the covariancematrix of the vector of coefficients olr(x), respec-
tively (Mateu-Figueras et al. 2003). Intervals were numbered from top to bottom. In
between the groups II/I and IV/III we inserted 12 and 6 observations, respectively,
to simulate a “gradual” and a “faster” transition. The transition from group III to
II was considered as an abrupt shift. Artificial compositions were numbered from 1
(top) to 252 (bottom). To better assess the behaviour of the algorithms considered, we
replicated the generation of the dataset and the analysis 30 times.

The planktonic foraminiferal assemblages were obtained from two cores retrieved
in the Mediterranean Sea. The record of the Core TEA-C6 (Gulf of Taranto, Ionian
Sea–CentralMediterranean Sea) covers the last 15 ka, while that of CoreGNS84-C106
(Gulf of Salerno, Tyrrhenian Sea, Western Mediterranean Sea) covers the last 33 ka.
Compositional zones for cores TEA-C6 and GNS84-C106 were formerly obtained by
means of CONISS applied to the clr-scores of the CoDa. For methods and details on
the age models of these cores, the reader is referred to Di Donato et al. (2009) and Di
Donato et al. (2019). The two datasets considered here consist of 11 clr-scores and,
respectively, 228 and 144 samples.
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5 Results

5.1 Artificial Dataset Experiment

An example of the artificial datasets generated, shown in terms of a three-part com-
position and the corresponding olr-coordinates, is presented in Fig. 1. In all the runs
performed with simulated data, both the CHnc index and Mojena’s stopping rule cor-
rectly identified the four predefined groups. For this example, CONCS and DCONSIL
produced slightly higher cophenetic correlation (CC) values, while the Goodman–
Kruskal (GK) coefficient values were fairly similar acrossmethods (Table 3). For these
datasets constructed with four different intervals, the focus was on how the algorithms
defined the transitions between intervals and the CHnc, Hnc, and ASWvalues obtained
for a four-cluster partition. Across all runs, CONCS, DCONSIL, and CONISS consis-
tently identified the abrupt boundary between intervals II/III (observation 128/129).
However, for transitions I/II (gradual) and III/IV (rapid), the algorithms showed some
variation. Divisive algorithms (CONCS and DCONSIL) reliably detected boundaries
in the middle of transitions: between observations 65/66 for I/II and 190/191 for III/IV.
In contrast, CONISS showed more variability. For transition I/II, CONISS identified
the boundary at the beginning of the transition (observation 68/69) in 18 out of 30
cases, while in 10 cases it placed the boundary at the top (observation 60/61) and in
one case slightly earlier (observation 61/62). In only one case did it coincide with
the boundary detected by CONCS and DCONSIL. A similar pattern was observed
for transition III/IV. CONISS placed the boundary at the beginning of the transition
(observations 191/192 or 192/193) in 14 out of 30 runs or at the end of the transition
(observation 188/189) in 10 runs. Summarizing, the divisive algorithms consistently
identify interval boundaries at themiddle of transitions, which alignswith stratigraphic
practices (e.g., in isotopic stratigraphy, Marine Isotopic Stage terminations are placed
mid-transition). In contrast, CONISS tends to place boundaries either near the base or
the top of transitions, with some variability due to randomness. A notable distinction
between CONCS and DCONSIL is evident in the dendrograms shown in Fig. 2a. In
CONCS, transitions are grouped into subclusters, whereas in DCONSIL, observations
within transitions are separated sequentially.

For theASWmetric, CONCSandDCONSIL consistently produced positive silhou-
ette values for all observations. CONISS, on the other hand, often produced negative
silhouette values for observations around transition I/II (e.g., 60/61 or 68/69) (Table
1). This discrepancy resulted in overall higher ASW values for CONCS and DCON-
SIL compared to CONISS in a four-interval zonation (Table 2). Similarly, slightly
better performance for CONCS and DCONSIL was suggested by the CHnc and Hnc
indices, which indicate better separation of groups 1 and 2 as defined by the divisive
algorithms.

The results obtained with ACONSIL are more problematic. As shown in Fig. 2b,
both abrupt and gradual transitions were inconsistently identified across different runs.
For example, the transition II/III was detected at observation 128/129 in 16 out of 30
runs, but in the remaining runs, it was identified in different positions or, in some cases,
not recognised at all in the four-interval partition. Similar problems were observed for
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Fig. 1 Diagrams (left) of a three-part composition of the artificial dataset and scatter plot (right) of corre-
sponding olr-coordinates (balances). Roman numerals indicate the intervals from top to bottom. Samples
corresponding to boundaries between zones are highlighted

the other transitions, highlighting instability and high sensitivity to random variation.
Furthermore, the dendrograms generated by ACONSIL showed a tendency to form
chains of successively aggregated observations. Overall, these results suggest that the
lack of stability in ACONSIL makes it unsuitable for achieving consistent zonation
schemes. Comparisons of the two methods based on ASW showed that DCONSIL
significantly outperformed ACONSIL, consistent with, but extending, the findings of
Roux (2018).

5.2 Planktonic Foraminiferal Assemblages

Figure 3 shows dendrograms obtained for the Core TEA-C6with CONCS andDCON-
SIL where different options for the node levels are used (Sect. 2). As pointed out
above, by adopting SSW as a criterion for the nodes the resulting dendrogram does
not include inversions except by the CONISS (Fig. 3g). On the other hand, nodes
using SSB (Fig. 3a) and ASW (Fig. 3f) include inversions, with the latter being the
worst case. Figures 4 and 5 show the zonation obtained with the agglomerative and
divisive algorithms on the foraminiferal assemblage data of the cores TEA-C6 and
GNS84-C106. Due to the weaknesses identified in the artificial case study, we have
not considered the algorithm ACONSIL in the results. According to the CHnc index
both successions can be divided into two main intervals. The Mojena stopping rule
suggests two main intervals for the Core TEA-C6 datasets, and three main intervals
for the Core GNS84-C106 dataset. In Figs. 4 and 5, two main intervals are considered,
with further subdivisions into subzones.

The zonation schemes appear well outlined, yet, for the Core TEA-C6, there is
a difference in the main partition, since Compositional Zone 1 (CZ1) obtained with
CONISS and DCONSIL coincides with the base of the Holocene, while the zone
CONCS-CZ1 includes only the last 11 ka. Instead, in CONCS the base of theHolocene
would be recognised at subinterval level as a further partition of Zone CONCS-CZ2a.
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In this example CONCS and CONISS show similar behaviour to that observed in the
artificial data experiment. In fact, with CONCS, the division between the two main
intervals falls in the middle of the transition between late glacial and fully Holocene
assemblages that are established around 10 ka BP. Moreover, the two halves of the
transition could be recognised as subintervals. CONISS, instead cuts the two main
intervals at 11.65 ka BP, at the beginning of the transition. The behaviour is even more
evident as the zonation schemes are compared (Fig. 6(down)) with scores of the two
first components of the clr-biplot computed fromplanktonic foraminiferal assemblages
(Fig. 8(up)). All the algorithms give evidence to a Middle Holocene (Northgrippian
stage) interval characterised by a relative increase in Neogloboquadrina incompta
and Globorotalia inflata (CONCS and CONISS CZ1b subzones) and to their strong
decrease at around 6 cal ka BP. Subdivision into subzones obtained with DCONSIL is
a bit more complicated. In fact, the division of the zone DCONSIL-CZ1 also yields a
single element interval (DCONSIL CZ1-1b), while a Middle Holocene division could
be recognised as a further division of Subzone CZ1-1a.

As in the previous example, for Core GNS84-C106 two main intervals were
considered (Fig. 5). CONCS and DCONSIL provided the same zonation scheme,
while CONISS generated a slightly different one. In fact, Zones CONCS-CZ1 and

Fig. 2 a Dendrograms obtained from artificial dataset experiment with CONCS, DCONSIL and CONISS
(run 3). b Two examples of dendrograms obtained from artificial dataset experiment with ACONSIL (runs
3 and 10). Tick marks indicate the observations corresponding to the boundaries between intervals
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Table 1 Silhouette values for observations located around the transitions between intervals (CONISS results
are reported from both the outputs of the runs 3 and 10 of the artificial dataset experiment)

Observation CONCS/DCONSIL CONISS (run 3) CONISS (run 10)

Transition I/II

60 0.961 0.946 0.936

61 0.842 0.842 −0.781

62 0.704 0.718 −0.587

63 0.525 0.557 −0.339

64 0.331 0.382 −0.069

65 0.236 0.296 0.060

66 0.396 −0.359 0.578

67 0.707 −0.689 0.792

68 0.735 −0.718 0.811

69 0.935 0.941 0.915

Transition II/III

127 0.896 0.909 0.881

128 0.926 0.925 0.912

129 0.718 0.700 0.802

130 0.816 0.810 0.946

Transition III/IV

188 0.946 0.949 0.940

189 0.742 −0.734 0.799

190 0.270 −0.247 0.410

191 0.410 0.441 −0.319

192 0.817 0.820 −0.801

193 0.946 0.935 0.919

Table 2 Calinski–Harabasz index,Hartigan index, andAverageSilhouetteWidth for a four-interval zonation
of the artificial dataset experiment

Metric CONCS/DCONSIL CONISS (run 3) CONISS (run 10)

Calinski–Harabasz index 2,612.78 2,216.75 2,425.84

Hartigan index 3.45 3.29 3.38

Average Silhouette Width 0.897 0.877 0.881

DCONSIL-CZ1 correspond to the Holocene, while the CONISS-CZ1 encompasses
the Late Glacial and the Holocene. As in the previous examples, with CONCS (and in
this case also with DCONISS) intervals are defined so that the limit falls in the middle
of the transition between 15 ka PB and 10 ka BP, during which full glacial assem-
blages are replaced by post-glacial ones (Figs. 5 and 6(up)). With CONISS, instead,
the boundary is located at the beginning of the transition from the Last Glacial period
to the Late Glacial. As in the Ionian Sea record, the Middle Holocene compositional
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Fig. 3 Dendrograms obtained for the Core TEA-C6 with CONCS and DCONSIL and the different options
described in Sect. refsec:Methods

change characterised by a marked decrease in N. incompta and, to a lesser extent, G.
inflata recorded around 5−5.5 cal ka BP, has been detected at the subinterval level
(CZ1a/b, regardless of the algorithm adopted).

In evaluating algorithmic performance for the two examples based on real data,
for Core Tea-C6, higher GK and CC values are obtained with DCONSIL, while for
Core GNS84-C106, higher CC and GK values are obtained with both CONCS and
DCONSIL (Table 3). As regards CHnc and Hnc indexes, CONCS always provides, as
expected, the highest values for a 2-interval zonation (Fig. 7) and it can obviously be
expected that further partition of each group would produce the highest values of these
indexes computed on the two subgroups. In terms of overall evaluation, in the case of
the Core TEA-C6 dataset, it can be noted that with an increasing number of subinter-
vals up to the six subzones considered, CONISS produces very slightly higher values
than CONCS, while lower values are obtained with DCONSIL. In the case of the
Core GNS84-C106 dataset, the algorithms generate quite similar values. In particular,
CONISS gives slightly lower CHnc and Hnc values for the 2-interval main partition but
higher for a three-interval zonation. In the evaluation of the ASW index, DCONSIL
obviously provides the highest value for the main partition, although not much higher
than CONISS and CONCS. In the case of the Core Tea-C6, for a three-interval zona-
tion, theDCONSIL provided higher ASWvalues than other algorithms, in conjunction
with the identification of the quite short Subzone CONSIL-CZ1c. Conversely, for a
five- or six-subzone zonation, values are lower.

Regarding the expensiveness of the algorithms, the elapsed times required for the
analyses are reported in Table 3c. For our datasets, the analyses were carried out in
less than a second with both CONCS (both version 1 and 2) and DCONSIL, while a
higher elapsed time was required by ACONSIL.
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Fig. 4 Zonations provided by CONCS, DCONSIL and CONISS for the late Pleistocene to Holocene
planktonic foraminiferal assemblages of the Core TEA-C6 (Ionian Sea). Numbers indicate the age in ka
BP of the boundaries between zones. Percentage abundance of the taxa is shown on the top. AWS indicates
an amalgamated warm water group
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Fig. 5 Zonations provided by CONCS, DCONSIL and CONISS for the late Pleistocene to Holocene
planktonic foraminiferal assemblages of the Core GNS84-C106 (Tyrrhenian Sea)
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Fig. 6 Comparison between the CONCS, DCONSIL and CONISS zonation schemes and relative variation
form biplots first two principal components scores of the planktonic foraminiferal assemblages of the Cores
GNS84-C106 (Up) and TEA-C6 (Down)
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Fig. 7 Summary diagrams of the indices adopted to evaluate the performance of the algorithms for interval
numbers varying from 2 to 7

Table 3 Goodman–Kruskal’s coefficient (a), Cophenetic Correlation (b), and Elapsed time (c) values
obtained for the three datasets with the clustering algorithms

Method Artificial dataset GNS84-C106 TEA-C6

(a) Goodman–Kruskal’s coefficient

CONCS 0.757 0.774 0.560

DCONSIL 0.755 0.775 0.630

CONISS 0.755 0.760 0.547

(b) Cophenetic Correlation

CONCS 0.798 0.833 0.623

DCONSIL 0.797 0.834 0.770

CONISS 0.770 0.795 0.721

(c) Elapsed time (s)

CONCS ver 1 0.669 0.922 0.867

CONCS ver 2 0.361 0.323 0.190

ACONSIL 115.158 76.106 12.282

DCONSIL 0.544 0.404 0.177

CONISS 0.265 0.274 0.204

Elapsed time (s) withMATLAB runningwith an Intel(R) Core(TM) i7-1065G7CPU@1.50GHz processor

5.3 Insight into Meaning and Interpretation of Zones

Figures 8 and 9 show the clr-biplots and GMBP computed on planktonic foraminiferal
assemblages of cores Tea-C6 and GNS84-C106, with the division into the main zones
and subzones considered. GMBP refers to the CONCS zonation. For Core GNS84-
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Fig. 8 Clr-biplots (left) andGeometricMeanBar Plots (right) forCoreTEA-C6. 2-sigma confidence ellipses
are given for each zonation interval. The biplot at the top of the figure shows the division into two main
zones, those at the bottom the division into four subzones

C106, the confidence ellipses of the subzones appear, thoughnot completely, fairlywell
separated. It can also be noted that the spread fromCZ1c to CZ1a subzones is oriented
as the link between the rays of N. incompta andG. truncatulinoides (Fig. 8), related to
their decreasing logratios recorded from the Northgrippian to the Megalayan interval
of the core. With reference to the main division obtained for Core Tea-C6, the zones
appear to be well separated, with a strong contrast between taxa more abundant in the
Late Glacial and in the Holocene, respectively. It can also be noted that G. bulloides
shows lowvariability across the intervals.With reference to the subzones, some effects,
not unexpected for the constrained clustering, can be reported. In fact, a MANOVA
performed on olr-coordinates of the four subzones considered, found a significant
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Fig. 9 Clr-biplots (left) and Geometric Mean Bar Plots (right) for Core GNS84-C106. 2-sigma confidence
ellipses are given for each zonation interval. The biplots at the top of the figure show the division into two
main zones, those at the bottom the division into four subzones

difference between mean vectors (p-value< 0.001). However, for Core TEA-C6, the
confidence ellipses of subzones CONCS-CZ1a and CZ1c, overlap strongly, related
to two intervals of the core, not immediately following each other, characterised by
quite similar assemblages. The similarity between these subzones is also highlighted
by the GMBP (Fig. 8). This case suggests considering pairwise comparisons between
consecutive intervals as post hoc tests.

6 Concluding Remarks

Divisive algorithms are a viable alternative to hierarchical agglomerative algorithms
for identifying intervals in a succession, especially in relation to the relatively reduced
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number of subdivisions being considered in ecozonations. In particular, it seems logi-
cal to consider that while the clustering in the agglomerative process is less constrained
at low levels and more constrained at high levels of aggregation, the partitioning of the
divisive algorithms is less constrained at high levels, allowing for a better division, in
relation to the criteria adopted, of the units of higher rank. More application examples,
on real or artificial datasets, may help to deepen aspects of the behaviour of the divisive
algorithms considered. However, in the application examples considered in this article,
divisive algorithms provided valid results in terms of stability and in the evaluation of
the indexes considered. As for comparing (and possibly, choosing) between the two
divisive algorithms, it is up to the sensitivity of the analyst. Reasonably, CONCS priv-
ileges separation and homogeneity of groups, while DCONSIL should favour overall
good classification of the observations. In the case of compositions, as in the case
of planktonic foraminiferal assemblages, the framework on the CoDa methodology
provides the tools for rigorous and appropriate application of algorithms in which
concepts related to distance and between- and within-groups sum of squares measures
are considered.
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