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The role of Artificial intelligence in the assessment of the spine and

spinal cord 

Abstract:

Artificial intelligence (AI) application development is underway in all areas 

of radiology where many promising tools are focused on the spine and 

spinal cord. In the past decade, multiple spine AI algorithms have been 

created based on radiographs, computed tomography, and magnetic 

resonance imaging. These algorithms have wide-ranging purposes 

including automatic labeling of vertebral levels, automated description of 

disc degenerative changes, detection and classification of spine trauma, 

identification of osseous lesions, and the assessment of cord pathology. 

The overarching goals for these algorithms include improved patient 

throughput, reducing radiologist workload burden, and improving 

diagnostic accuracy. There are several pre-requisite tasks required in order 

to achieve these goals, such as automatic image segmentation, facilitating 

image acquisition and postprocessing. In this narrative review, we discuss 

some of the important imaging AI solutions that have been developed for 

the assessment of the spine and spinal cord. We focus on their practical 

applications and briefly discuss some key requirements for the successful 

integration of these tools into practice. The potential impact of AI in the 

imaging assessment of the spine and cord is vast and promises to provide 



broad reaching improvements for clinicians, radiologists, and patients 

alike.

Highlights:

- In the past decade, multiple spine AI algorithms have been created based 

on radiographs, computed tomography, and magnetic resonance imaging.

- The overarching goals for these algorithms include improved patient 

throughput, reducing radiologist workload burden, and improving 

diagnostic accuracy. 

- Their practical applications are detailed and briefly discuss some key 

requirements for the successful integration of these tools into practice.

1. Introduction  

Medical practice has seen a rapid recent increase in the development of 

artificial intelligence (AI) solutions. Medical images, such as those 

generated in radiology, are data rich and thereby provide an excellent 

substrate for AI algorithms. As a result, considerable efforts have been 

directed towards creating and implementing AI applications in radiology, 

aiming to improve clinical practice. To date, there have been many notable 



developments in radiology applications for AI, with promising results 

spanning many different conditions and diverse anatomic regions [1], [2], 

[3]. To the uninitiated, the AI lexicon can be daunting. Terms such as 

machine learning (ML), deep learning (DL), and convolutional neural 

networks (CNNs) have specific and unique definitions, but are often 

erroneously used interchangeably, compounding confusion [4]. ML is the 

field of AI responsible for creating algorithms for providing computers the 

ability to learn automatically without minimal human intervention. DL is 

the subfield of ML focused on creating algorithms able to process data and

create patterns in the human brain. CNNs are a subtype of DL algorithms 

applied to analize data using a neuron-like pattern.

A primary goal of AI implementation in radiology is to improve and 

augment the radiologist’s workflow, which will, in turn, benefit referring 

clinicians and positively impact patients. AI has the potential for useful 

applications throughout all parts of the diagnostic process in radiology, 

beginning with image acquisition and ending with image postprocessing 

and automated report generation. In spine imaging, AI algorithms have 

been developed for several different tasks including improving the overall 

quality of images, automated labeling of vertebral levels, and the 

detection, segmentation, and characterization of lesions [5], [6], [7], [8]. AI 

tools for spine lesion characterization have shown particular promise in the



extraction of specific image features that can help to both detect and 

classify lesions.

Early AI applications in spine have demonstrated remarkable utility in 

the assessment of the focal lesions. For example, some algorithms have 

been able to detect early compressive myelopathy changes and 

demyelinating lesions in the spinal cord, which are otherwise occult on 

normally appearing MR images [9]. Other AI applications have resulted in 

an earlier detection of focal or diffuse pathologic marrow involvement. This

may prove to have substantial prognostic implications for patients, 

allowing for more rapid initiation of therapy and, in some cases, additional 

therapeutic options that would have otherwise not been available with a 

more advanced disease [4], [5], [10].

We conducted a bibliography search with a review of articles on 

Spine imaging and Artificial Intelligence in radiology published between 

2010 and 2021 using a PubMed search. In this narrative review, we 

describe some of the main AI solutions that have been developed during 

this period for the imaging evaluation of the spine and spinal cord and 

highlight their primary strengths and weaknesses. Further, we review 

some of the barriers to the eventual, successful integration of these 

specific AI tools into daily clinical practice.



2. Artificial intelligence applications in the spine

The spine was one of the first anatomic regions for which dedicated

AI algorithms were applied to imaging studies. Since the spine is typically

included as part of the field of view for a variety of other imaging studies

(e.g., neck, thorax, abdomen), there is the potential to either capture, or

miss,  a  considerable  amount of  additional  information.  For  this  reason,

there is growing interest in the development of automated AI tools that

can be used to assess the vertebra and the spinal cord on these non-spine

examinations. Additionally, tools for automated vertebral body labeling are

now widely available for both computed tomography (CT) and MRI [11] (Fig.

1).  More  recently,  AI  tools  for  vertebral  fracture  detection  and  for  the

assessment of  osteoporosis have been successfully  developed for CT as

well as plain radiographs with promising early results [1], [12]. Algorithms

have  also  been  applied  to  MRI  and  CT  images  in  an  effort  to  output

automated scoring and reporting of lumbar spine degenerative changes

[13],  [14].  Furthermore,  specific  AI  tools  have  been  developed  for  the

detection  of  spinal  metastases  [15]  and  the  diagnosis  of  hematologic

diseases  [16].  Table  1  summarizes  the  main  AI  applications  for  spine

evaluation.



2.1  Anatomic  localization  in  the  Spine:  Vertebral  body  labeling and

segmentation

The first step in many fully automated ML tasks in spine is to label

the vertebral bodies on CT or MRI, with several different algorithms having

already  been  developed  to  this  end  [17],  [18],  [19].  Suzani  et  al.  [20]

developed a deep neural network for automatic detection and localization

(defined  in  this  work  as  the  determination  of  the  center)  of  specific

vertebrae  in  CT  scans.  Their  work  produced  results  in  less  than  three

seconds per CT with an accuracy of 96 %, improving upon the one minute

per image computation time using a random forest algorithm previously

achieved  by  Glocker  et  al.  [21].  Based  on  CT  images,  Wang  et  al.  [8]

developed a solution that decreased localization errors in the cervical and

lumbar region due to stronger image contrast but with lower accuracy in

the thoracic  region due to spine curvature  and substantial  similarity  of

thoracic vertebrae. We consider that wrong site spinal surgery percentage

as consequence of  transitional  abnormalities would potentially  decrease

with the introduction of these AI solutions [22]. Recent studies obtained

localization and labeling accuracies of 94.7 % on CT [17], and of 95.6 % for

MRI  [23].  While  some  of  these  applications  are  already  commercially

available, considerable research continues in this area to further improve

results  and  reduce  computational  costs.  Similarity  of  the  different



vertebrae, spinal curvature, beam hardening or susceptibility artifacts due

to  orthopedic  hardware,  the  presence  of  lumbosacral  transitional

vertebrae  or  field  of  view  limitations  are  among  the  main  challenging

issues  for  developing  and  implementing  AI  solutions  for  automatic

vertebral bodies labeling [8], [19], [21], [23], [24].

Segmentation, the process in which each pixel is labeled based on its

belonging to a specific region or anatomical structure, is a prerequisite for

developing more powerful diagnostic and prognostic AI tools. For example,

once AI based automated segmentation is mastered, future AI algorithms

can  then  be  developed  to  use  this  segmented  information  in  order  to

generate  3D models  for  surgical  planning  and navigation among other

tasks  [25],  [26].  In  recent  years,  CNN  has  emerged  as  the  primary

methodology employed for the development of segmentation algorithms.

For example, Kuang et al. developed an unsupervised DL pipeline model

for  vertebral  segmentation  from  MRI  images  that  eliminates  time-

consuming  manual  labelling  tasks  with  a  segmentation  accuracy

comparable to manual methods and that also overcomes limitations due to

vertebral shape variability or image quality inconsistences derived from the

use of different MRI systems or protocols [27]. Extensive experiments will

be  required  to  validate  these  promising  results  further.  In  addition  to



vertebral segmentation, ML algorithms have also been used to segment

and measure the neural foramina [28] and the spinal canal [29].

Several  authors  have  explored  the  application  of  AI  tools  to

conventional radiographs in order to reduce interpretation times through

automation. Successfully screening normal radiographs through the use of

AI could markedly reduce radiologist interpretation times, allowing them to

focus  their  effort  on  more  complicated  or  abnormal  studies  [30].  In

addition, active prioritization of cases with urgent findings on the reading

worklist, such as a vertebral fracture, may reduce turnaround times and

thereby improve patient outcomes. ML can also help with repetitive tasks

such as  measuring angles.  For  example,  Zhang et  al.  [31]  used a  deep

neural network on posteroanterior radiographs of the spine to measure

Cobb angles obtaining a high intraclass correlation coefficient. Wu et al.

[32] proposed a multi-view correlation network using anteroposterior and

lateral radiographs for the automated assessment of adolescent idiopathic

scoliosis.  Using  526  radiographs  from  154  patients,  they  achieved  high

accuracy with only a 4.04° mean error in the estimation of AP Coob angle.

Additionally, Pan et al. [33] applied a two Mask R-CNN to chest radiographs

for the assessment of scoliosis, which was defined as a Cobb angle greater

than 10°. They obtained limited results with a sensitivity of 89.5 % and a

specificity  of  70.3  %  and  suggest  that  their  models  could  reduce



interobserver variation in scoliosis grading as manual measurements have

been shown to depend on the radiologist's experience [34]. Furthermore,

Galbusera  et  al.  [35]  developed  a  CNN  able  to  predict  the  location  of

several spine landmarks on biplanar radiographs of the spine in order to

calculate thoracic kyphosis, lumbar lordosis, Cobb angle, pelvic incidence,

sacral slope and pelvic tilt; however, the accurate results reported in this

study might be at least partly influenced by the reduced size of the training

dataset,  the use of distinct localizers for each landmark, and potentially

non-negligible measurement errors in the determination of the ground-

truth.

ML  algorithms  can  also  be  used  for  image  reconstruction.  For

example,  the  BoneMRI  software  generates  CT-like  images  from  a  T1-

weighted sequence. This model was trained with paired MRI and CT on a

CNN,  and  can  obviate  the  need  to  acquire  a  separate  CT  for  surgical

planning or diagnostic purposes, eliminating unnecessary patient radiation

exposure and providing both a time and cost savings [36].

2.2 Spine osteoporosis and degenerative changes

AI  allows  one  to  leverage  previously  untapped  information  on

imaging studies in order to achieve purposes that the ordering clinician



may  not  have  originally  considered.  For  example,  the  assessment  of

osteoporosis  based  on  radiographs  or  CT  (opportunistic  screening)

examinations acquired for other purposes has become a topic of particular

interest in the field of AI (Fig. 2). Zhang et al. developed a deep CNN model

to detect osteopenia and osteoporosis on lumbar spine radiographs using

dual-energy  X-ray  absorptiometry-derived  bone  mineral  density  as  the

reference standard. The diagnostic sensitivity was approximately 70 % for

osteoporosis and 83 % for osteopenia; however, this model was limited by

the narrow study group (only women over 50 years old) and the potential

overestimation of the bone mineral density due to the significant variability

introduced  by  patient  positioning  as  well  as  atherosclerotic  and

osteophytic calcifications [12]. Summers et al. automatically estimated the

bone mineral density, based on Hounsfield Units, of the L1 and L2 vertebral

bodies in 475 women ranging from 42 to 79 years-old who had received CT

colonography.  They  were  able  to  obtain  reproducible  results  that

successfully differentiated between osteopenic and osteoporotic patients.

The  authors  concluded  that  their  AI  solution  could  be  used  to

simultaneously screen for osteoporosis during standard colorectal cancer

screening;  nevertheless,  further  research  including  a  broader,  more

diverse study group would be required for further validation [37].



Several  teams have applied AI to the assessment of  degenerative

changes  on  spine  MRI  intending  to  obtain  high  accuracy  in  feature

extraction  (Fig.  3).  Jamaludin  et  al.  [23]  developed a  ML algorithm that

automatically  grades  lumbar  spine  disc  degeneration  on  sagittal  T2-

weighted  sequences  using  a  CNN.  Their  model  first  detects  and  labels

vertebrae and discs with an accuracy of  95.6 %,  then analyses different

features (i.e.,  disc signal intensity, narrowing, spondylolisthesis, endplate

changes, Modic changes, and central canal stenosis), and finally predicts

radiologic scores. This entire process is completed in only 1–2 min. Their

results were impressive, achieving Pfirrmann grading system predictions

and  disc  narrowing  grading  with  a  performance  comparable  to  a

radiologist.  However,  although  accuracy  was  also  similar  to  radiologist

scoring for spondylolisthesis, central canal stenosis, and endplate changes,

the  reliability  (overall  consistence  of  measuring)  scores  were  poorer.

Similarly, Oktay et al. [38] developed an algorithm based on midsagittal MR

images  of  102  subjects  combining  disc  intensity,  shape,  context  and

texture  features.  This  information  was  extracted  from  segmented

intervertebral  discs  classifying  them  as  normal  or  degenerated  using  a

support vector machine (SVM), resulting in an accuracy of 92.8 %.

AI based tools for automated estimation of spinal canal stenosis (Fig.

4)  or  intervertebral  disc  herniation  (Fig.  5)  have  been  created  to  help



radiologists  in  the  routine  assessment  of  MRI  spine  studies.  Lu  et  al.

developed a DL algorithm to assess spinal  canal and foraminal stenosis

grades  on  axial  and  sagittal  images.  They  used  a  natural  language

processing  (NLP)  model  to  establish  ground-truth  stenosis  grade

information from MRI free text reports to train their model, obtaining an

overall accuracy above 90 % in most of the levels evaluated. Although this

model was enough to grade stenosis in most cases, the authors reported

the need for further development to properly address problematic cases,

for example in patients with severe scoliosis [39]. Lewandrowski et al. used

an alternative approach via deep CNN models to produce lumbar MRI free

text reports with high accuracy, sensitivity, and specificity for spinal canal

stenosis  (86.2  %)  and  disc  herniation  (85.2  %).  This  group  also  used  a

natural language processing model to generate the report and suggested

that their algorithm could be used for routine reporting in spine MRI, a

time-consuming process in typical radiology practices compounded by the

common nature of these imaging exams. However, this group also stated a

need to refine their model further as it had difficulty in detecting foraminal

stenosis [40].

2.3 Spine trauma



Multiple AI based solutions have been developed and integrated into

routine  imaging  protocols  to  assist  radiologists  in  the  diagnosis  of

vertebral  body fractures.  These tools  help in quantifying the severity  of

vertebral collapse and enable the automated detection of vertebral body

fractures. This latter task is particularly useful in the identification of these

fractures as incidental findings on CT exams of the chest, abdomen, and

pelvis,  and also  allows for  the prioritization of  studies  containing these

urgent unexpected fractures on the worklist (Fig. 6). ML can also be used to

screen plain radiographs to identify vertebral fractures. Murata et al. [41]

trained  a  deep  CNN  on  anteroposterior  and  lateral  thoracolumbar

radiographs of 300 patients, detecting fractures with an accuracy of 86 %

and a sensitivity of 84.7 %. They compared model performance with that of

orthopedic surgeons and residents and determined that it was non-inferior

to  orthopedic  surgeons  and  had  superior  sensitivity  compared  to

orthopedic  residents.  The  model  did  not  reveal  which  vertebra  was

fractured or if the fracture was unstable; however, its high accuracy and

sensitivity suggest that it could be a valuable screening tool for clinicians,

particularly  those  without  subspecialty  training,  such  as  primary  care,

emergency medicine, or rural physicians.

Several  groups  have  developed  different  AI  algorithms  for  the

diagnosis of compression fractures on CT, some also evaluating fracture



morphology and determining the degree of thoracolumbar vertebral body

height loss [42], [43], [44]. In addition to these applications, Burns et al.

also  added  to  their  model  the  ability  to  assess  fractures  in  a  3D

reconstruction. Using an SVM, they graded the extent of height loss and

detected asymmetric lateral height loss, which allowed for the additional

assessment of  post-compression scoliosis.  They reported a sensitivity of

95.7 % for fracture detection and localization. Importantly, their model also

found additional mild compression fractures that were missed during the

manual annotation of the data set. However, this model is limited by the

lack of manual reference standards for the extent of height loss [45].

Several  investigators  have also  developed AI  solutions  capable  of

identifying fracture lines. Using CT examinations in trauma patients, Yao et

al. [46] developed a model that can detect fracture lines extending through

the cortex of thoracic and lumbar vertebral bodies, achieving a sensitivity

of 95.3 %. Burns et al. built upon their work mentioned above to further

develop  their  algorithm  such  that  it  could  determine  the  location  of  a

vertebral  body  fracture  (i.e.,  anterior  two-thirds  or  posterior  one-third)

relative to  the Denis  three-column classification  scheme.  Although their

model  did  not  evaluate  the  posterior  elements,  they  still  reported  a

sensitivity of 81 % for detecting and localizing fractures, and a sensitivity

for  fracture  localization  to  the  correct  vertebra  of  92  %.  However,  the



interobserver  agreement  between  the  algorithm  and  the  radiologist

interpretation was 79 %. The generalizability of this model is likely limited

by several simplifications in its design including narrowing the search for

fractures to the vertebral bodies and specifically focusing the algorithm on

detecting fracture lines through the cortices [47].

2.4 Metastasis, hematologic disease, and spine infection

AI applications have recently been developed for the automated detection

of lytic and sclerotic lesions in the spine [48]. Burns et al. built a system

capable  of  identifying  vertebral  body  sclerotic  metastases  on

thoracolumbar CT, producing results in less than 2 min. They used a SVM

to detect sclerotic lesions greater than 0.3 cm3. Their algorithm achieved a

sensitivity of 79 %, with 40 % of the false negatives due to lesion proximity

to the endplate,  low attenuation, or small volume [49]. Wang et al.  [15]

focused  their  efforts  on  the  detection  of  spinal  metastases  on  MRI,

applying deep Siamese neural networks to 26 examinations with known

osseous metastases and obtaining a true positive rate of 90 %. There is

also  early  ongoing  work  attempting  to  characterize  metastatic  spinal

lesions. Lang et al. applied diverse ML analysis methods and radiomics to

contrast-enhanced MR sequences in order to classify vertebral metastases

as of either lung or non-lung origin. Their efforts yielded an accuracy of 81



%  using  a  convolutional  long-short  term  memory  network.  The  major

limitation in this study was the relatively small case number [50].

Frighetto-Pereira  et  al.  used  different  ML  methods  including  k-

nearest-neighbor, a neural network with radial basis functions, and naive

Bayer classifier, to classify vertebral compression fractures as either benign

or malignant on T1-weighted sequences. They achieved an AUROC of 0.97

in detecting vertebral fractures and of 0.92 in classifying them as benign or

malignant.  However,  their  model  was  limited  by  their  manual

segmentation process (introducing intra- and interobserver variability) and

their  individual  analysis  of  the  vertebral  bodies,  ignoring  relevant

information such as the presence of epidural masses [51].

Radiomics can also be used to differentiate between metastatic and

non-metastatic  lesions  in  the  vertebral  marrow  [52]  and  to  detect

osteoporosis  [53].  Hwang  et  al.  [16]  used  a  SVM  texture  classifier  to

distinguish between pathologic diffuse infiltration of the bone marrow and

normal  bone  marrow  on  lumbar  MRI  T1-weighted  sequences  with  a

resultant performance that was similar to that of radiologists. Using bone

marrow radiomics of T1-weighted lumbar MRI in combination with a least

absolute  shrinkage  and  selection  operator  to  select  the  most  relevant

radiomics  features  and  random  forests  for  classification,  Hwang  et  al.

found  that  their  ML  model  was  more  accurate  than  radiologists  in



identifying diffuse hematologic marrow diseases. The algorithm’s AUROC

was 0.92 compared with 0.86 and 0.76 for radiologists with 1 and 11 years

of experience, respectively. The reliability and reproducibility of this model

were not tested, and thus further work is needed to ensure robustness

[54].

Kim et al. trained a deep CNN to differentiate between tuberculous

and pyogenic spondylitis on axial T2-weighted MRI images, concluding that

the algorithm's performance was comparable to that of three radiologists.

They suggested that their model could be used to identify spondylitis as an

incidental finding on spine MRI obtained for reasons other than for the

assessment of a suspected infection. However, the DL method used in the

model  needs  further  validation  with  a  larger-scale  study  that  utilizes

multiplanar MR images [55].

3. Artificial intelligence applications in the spinal cord

The  application  of  AI  to  spinal  cord  imaging  brings  with  it  the

promise of potential advances in many different clinical arenas. To date,

initial studies have been focused on the evaluation of common pathology

such as multiple sclerosis (MS), assessment of the spinal cord after trauma,

and  degenerative  myelopathy,  all  with  encouraging  results  [56],  [57].



Investigators have also developed AI solutions for cord segmentation as

well as lesion characterization and quantification [57], [58], [59]. Unlike the

aforementioned AI applications in the osseous spine that include solutions

based  on  MRI,  CT,  and  plain  radiography,  most  of  the  algorithms

developed for spinal cord assessment are only based on MRI datasets. The

reason for this is likely the superior contrast resolution of MRI, particularly

for  soft  tissues  such as  the  spinal  cord.  Investigators  have  successfully

harnessed powerful  MR datasets to generate algorithms for spinal  cord

evaluation using almost every type of MRI sequence, including T1 and T2

weighted  sequences  and  even  advanced  sequences  such  as  Diffusion

Tensor  Imaging (DTI).  Table  2  summarizes the main AI  applications  for

spinal cord evaluation.

3.1 Spinal cord segmentation

AI-driven spinal cord segmentation has been developed not only for

delineation of the whole cord contour, but also for specific segmentation of

the  gray  and  white  matter,  providing  radiologists  and  clinicians  the

opportunity to quantify the volume of subcomponents of the cord more

precisely.  Furthermore,  such  previously  unobtainable  granularity  may

allow  one  to  more  rapidly  detect  and  characterize  specific  patterns  of

disease such as that found in MS, amyotrophic lateral sclerosis (ALS), spinal



cord degeneration due to trauma, or even physiological aging [59]. Several

different methodological approaches have been used to segment the cord.

Intensity-based, image-based, and surface-based approaches are the most

common.  These methods  use template  deformation based on an  atlas,

thresholding  strategies,  or  edge/contour  detection  in  order  to  achieve

proper segmentation of the cord [59] (Fig. 7). Perone et al. [7] applied deep

dilated convolutions  using T2* sequences to automatically  segment the

gray matter, obtaining better results than traditional approaches based on

medical imaging architectures such as U-Nets. Using a T2* sequence has

the advantage of providing superior contrast between the gray and white

matter  compared with other  conventional  MRI  sequences.  Alternatively,

gray  and  white  matter  segmentation  can  be  accomplished  using  the

inherent differences in fractional anisotropy on DTI [59].

Automated detection and segmentation of the cord using CNNs has

demonstrated utility  in  the  setting of  radiotherapy  planning in  patients

with locally advanced head and neck cancer. The spinal cord is both quite

radiosensitive and located close to the intended target, placing it at great

risk during radiation therapy [60]. Automated detection during radiation

planning  could  serve  to  reduce  the  risk  of  morbidity  due  to  radiation-

induced cord injury.  Liu et  al.  [61]  evaluated the accuracy of  a CNN for

segmenting  the  spinal  cord,  obtaining  a  Dice  Similarity  Coefficient  (a



statistical  calculation that measures the similarity between two samples,

commonly  used  to  quantify  the  performance  of  image  segmentation

algorithms)  of  0.83  compared  with  the  gold  standard  of  manual

segmentation  by  radiation  oncologists.  These  automated  segmentation

approaches, including volumetry studies, would also help to reduce inter-

and intra-observer variability, as they minimize the bias inherent in visual

or  semiqualitative  evaluation  (i.e.,  improving  radiation  oncologists

workflow for delimitating target lesions) [60]. Further,  these tools would

potentially  allow  radiologists  to  detect  subtle  changes  in  spinal  cord

volume  that  could  otherwise  remain  undetected  with  unaided  human

visualization alone. For example, early detection of spinal cord atrophy is

an  important  sign  of  disease  progression  in  a  diverse  group  of

neurodegenerative diseases.  Specifically,  ALS and MS can both result  in

progressive loss of cord volume, a finding that correlates with both the

patient’s level of clinical impairment as well as eventual outcomes.

Other  groups  have  taken  slightly  different  approaches  toward

achieving the same goals of improved sensitivity and earlier detection of

cord  lesions.  Mathias  et  al.  performed  spinal  cord  texture  analyses,  a

specific  subtype  of  radiomics,  in  patients  with  MS,  finding  significant

differences compared with healthy controls using MRI fast spoiled gradient

echo  sequences.  More  importantly,  they  identified  these  cord  texture



changes before atrophic changes could be visualized on conventional MRI

sequences [62]. Further studies are required to determine if this texture

analysis  could be used to more accurately  monitor  for otherwise occult

imaging  changes  and  if  these  results  would  better  correlate  with  MS

patient  disability.  The  eventual  integration  of  these  spinal  cord  AI

algorithms into routine clinical practice would open the door to potential

improvements in diagnostic sensitivity, treatment monitoring, and patient

outcomes, with resultant value added for both clinicians and our patients.

3.2 Spinal cord trauma

Traumatic  spinal  cord  injury  results  in  considerable  disability  and

places  a  substantial  financial  burden  on  the  healthcare  system.

Unfortunately,  conventional  MRI  and  CT  imaging  methods  are,  in  most

cases, not enough for answering some important questions about a given

patient’s  diagnosis  and  prognosis  [63].  New  imaging  methods  are

therefore critically needed. AI may play a substantial role in providing a

solution. [64], [65]. Therefore, initiatives such as Open Data Commons for

Spinal  Cord  Injury  are  working  toward  creating  large  datasets  through

multidisciplinary  and  multicenter  collaboration  networks  to  develop  AI

algorithms for spinal cord assessment [65].



Several  groups have developed AI  solutions to assess spinal  cord

trauma. More notable efforts include those by McCoy et al., who explored

the feasibility of using CNN for automatic spinal cord segmentation and

contusion  injury  using  T2  fast  spin  echo  (FSE)  images.  They  obtained

superior  performance  with  a  Dice  coefficient  of  0.93  for  spinal  cord

segmentation,  a  significantly  higher  value  than  that  of  manual

segmentation tools (0.8) and borderline significant compared to the value

for  previous  segmentation  models  (0.9)  [66].  Additionally,  a  positive

correlation  was  identified  between  segmented  lesion  volumes  and  the

measurement of disability in traumatic spinal cord injury patients [58].

The use of DTI for the assessment of traumatic spinal cord injuries is

an area of active investigation. While conventional software analyses have

been applied, newer AI algorithms add the potential to extract additional

information from this advanced MRI sequence. Tay et al. developed an ML

approach  for  evaluating  spinal  cord  injuries  based  on  DTI  acquisitions.

Their  algorithms  analyzed  fractional  anisotropy  values  to  differentiate

between healthy volunteers and patients with spinal cord injuries obtaining

a sensitivity of 91 % and a specificity of 95 %. This model was limited by the

reduced availability of spinal cord data [57]. Recent animal model studies

have addressed the analysis of intraparenchymal signal changes on MRI of

spinal cord after trauma using ML approaches. For example, Boudreau et



al. [67] found a correlation between low signal areas on T2-WI and poor

functional recovery. These promising early studies reveal the potential of

AI to eventually substantively affect patient outcomes.

3.3 Degenerative myelopathy

Degenerative spondylosis  is  a  pervasive problem that can lead to

myelopathy in the setting of compressive effect on the cord. Before the

onset of myelomalacia and permanent disability, however, early changes in

cord  structure  occur  [68].  These  changes  often  begin  months  or  years

before  identifiable  signal  abnormalities  on  conventional  MRI  [69],  [70].

There  is,  therefore,  an  opportunity  for  earlier  diagnosis  and  improved

patient outcomes via the detection of these cord structural changes.

Current efforts to develop AI algorithms capable of analyzing cord

structure  based  on  texture  or  radiomics  analyses  are  generating

considerable enthusiasm. Such solutions could help to objectively explain

potential mismatches observed between patient symptoms and the extent

of degenerative changes on imaging. Further, one may be able to better

predict patient outcomes after surgery by combining clinical and imaging

data  [71].  While  some  investigators  have  employed  conventional  MRI

sequences  to  generate  these AI  algorithms,  others  have turned toward



more advanced imaging such as DTI. For example, Jin et al. used DTI data

to predict outcomes in patients with cervical degenerative myelopathy. The

parameters  derived  from  DTI  included  fractional  anisotropy,  mean

diffusivity, axial diffusivity, and radial diffusivity, and were analyzed using

logistic regression, k-nearest neighbors, and a radial basis function kernel

SVM tool with a resultant accuracy of 89.7 % for the prognosis of cervical

degenerative  myelopathy,  predicting  surgical  outcomes  based  on  the

modified Japanese Orthopedic Association scores. Nonetheless, this model

could  benefit  from a larger  sample  size,  and the implementation of  an

automatic  segmentation  toolbox  to  reduce  intra-  and  interobserver

variability [72]. Additionally, Wang et al. [73] developed a ML algorithm for

classification of DTI metrics in patients without and with clinical criteria for

cervical  degenerative  myelopathy.  A  SVM  was  employed  obtaining  an

accuracy of 95.7 % with a sensitivity of 93.4 % and specificity of 98.6 %. We

considered that  the functional  information provided by DTI  studies  and

their advanced AI based analysis would positively impact the management

of patients with cervical degenerative myelopathy. Early diagnosis, better

clinical-radiological correlation and improve of selection and monitoring of

surgical patients are among potential applications of these AI solutions.

However, reproducibility and robustness of AI algorithms with different MR



vendors  and  institutions  should  be  tested  prior  to  extrapolate  clinical

results.

4. Integrating spine Artificial intelligence into practice

Generating AI tools for use in spine imaging in the academic arena is

of minimal impact without real world implementation and integration into

daily  practice.  Strategies  toward meeting this  end should be feasible  in

order to maximize the probability of success. For example, AI solutions that

require complex postprocessing of images, sophisticated software, or the

acquisition of new advanced skills by clinicians or radiologists will be more

difficult  to  implement,  regardless  of  their  promising results.  Eliminating

these  barriers  through  strategic  “one-click”  solutions  and  simple

integration  within  the  normal  radiologist  workflow  will  be  critical  for

successful translation from the research domain to practical everyday use.

Many  of  the  AI  solutions  previously  discussed  in  this  review  can

potentially  be  integrated  into  MRI  or  CT  acquisition  and  the  general

reading  workflow  in  an  automated  fashion  reducing  the  barrier  to

implementation.  As  previously  stated,  the  use  of  prioritization  reading

solutions  of  urgent  findings  may  improve  radiologistś  workflow  and

improve  patient  outcomes.  Others,  such  as  identifying  lesions  within



vertebral  bodies or the cord, require postprocessing via semiautomated

software that typically depends on active human input. For example, many

require placement of  regions of  interest  to segment and discrimination

between anatomic structures.  This step limits its real  implementation in

clinical practice.

A particular challenge that arises when using supervised ML with DL

algorithms is the need for large, annotated datasets. Also, a challenge is to

train this DL algorithms with multicenter and multivendor data that will

probe  the  reproducibility  of  their  results.  Furthermore,  obtaining  large

datasets  of  advanced techniques,  such  as  DTI,  in  patients  with  specific

pathologies  (i.e.,  spinal  cord  trauma)  is  problematic.  Developing  such

datasets can be extremely time-consuming and often requires dedicated

effort  from expert  radiologists  [74].  Fortunately,  some publicly  available

datasets  on  the  internet  can  be  used  to  develop  algorithms and  allow

teams to compare their results with previously published work [17], [42].

Alternatively, image processing techniques exist to artificially multiply the

training set, such as flipping the image, a strategy which could be used in

the spine, particularly suitable for this anatomic region due to its symmetry

[55].  Natural  language  processing,  a  branch  of  AI  dedicated  to  extract

information and insights contained in text and documents, could also be



used to mine the free text of radiology reports in order to label the dataset

[39], [40], [74].

Another  important  area  to  gain  confidence  in  AI  algorithms  for

radiologists,  clinicians  and  even  patients  is  to  overcome  the  black  box

inherent to this technology. Explainable AI is a branch of this technique

that tries to make transparent the used methodology to all kind of users.

Its implementation in radiology department is critical to gain confidence in

these solutions and increase their clinical use [75].

Collaboration  between  radiologists,  clinicians,  technologists,

engineers, and other stakeholders integrating multidisciplinary teams will

be  key  for  the  successful  integration  of  AI  solutions  into  the  routine

workflow [76]. Each of these individual contributors will be able to provide

unique  expertise  and  experience  that  can  inform  specific  queries  and

suggested adjustments to the AI solution, maximizing the quality of the

final product. The overarching goal in these collaborative efforts should be

to  minimize  inefficiencies  in  throughput,  such  as  long  postprocessing

times, which may prevent stakeholder buy in and preclude implementation

of this promising new technology.

5. Conclusions



The application of AI solutions to the imaging assessment of the 

spine and spinal cord has demonstrated early promise throughout a 

diverse range of clinical scenarios. AI offers the possibility of increased 

efficiency by reducing the need for time-consuming tasks and may also 

assist radiologists in determining specific diagnoses. Also, AI may provide 

new “free” information not usually included in radiological reports, such as 

the presence of osteopenia or osteoporosis and compression fracture on 

chest, abdomen and pelvis CT performed for other reasons. Of particular 

interest is the potential for AI to identify lesions that would otherwise 

remain undetected by the traditional radiologic interpretation as well as its 

potential to characterize lesions. These advances could allow for earlier 

diagnoses and reporting, adjustments in treatment regimens, and may 

contribute to more personalized medical care. Most of limitations of AI 

solutions mainly arise from their small sample size, for this reason larger-

scale, multi-center studies will allow a more robust analysis. Successful 

creation and integration of AI algorithms into clinical practice will require 

collaboration between multiple stakeholders in spine, including 

radiologists, clinical specialists, engineers, and data scientists in order to 

develop reproducible, robust, and relevant tools that enhance radiology 

exams and improve patient care.
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Tables

Table 1. Summary of the main spine AI applications.

AI application Ready for its

clinical use

Impact on clinical practice Imaging 

modality

Vertebral body

segmentation

Yes - Generation of 3D models CT, MRI

Vertebral body

labeling

Yes - Automatic vertebral 

numbering

- Decrease localization errors

CT, MRI

Angle 

measurement

Yes - Save radiologist time

- Reproducible 

measurements

X-ray

CT-like images No - Improve cortical bone 

assessment

- No radiation

MRI

Osteoporosis Yes - Opportunistic screening X-ray, CT

Lumbar spine 

assessment

No - Automatic evaluation of 

degenerative lumbar disease

- Spinal canal stenosis

- Automatic radiology 

reports

MRI

Spine trauma Yes - Automatic detection and 

assessment of vertebral 

fractures

X-ray, CT

Bone marrow 

involvement

No - Metastasis detection.

- Hematological diseases

- Spine infection

CT, MRI



Table 2. Summary of the main spinal cord AI applications.

AI application Ready for its

clinical use

Impact on clinical practice Imaging 

modality

Spinal cord 

segmentation

No - Automatic segmentation of 

spinal cord

- Radiotherapy planning

- Spinal cord volume follow 

up

- Multiple sclerosis 

assessment

MRI

Spinal cord 

trauma

No - Correlation of automatic 

segmentation with disability

- Advanced analysis of DTI 

data

MRI

Degenerative 

myelopathy

No - Detect changes prior to 

conventional approach

- Better clinical-radiological 

correlation

MRI



Figure legends

Figure 1. Artificial intelligence for automatic vertebral numbering. A 

49-year-old female submitted to lumbar MRI for back pain. No signs of 

degenerative disk disease were found. However, a transitional vertebrae 

was identified. An AI algorithm (Spine Dot Engine by Siemens Healthineers)

performed during the acquisition process enables an automatic 

identification and numbering of every vertebral body. This solution 

enabled not only to identify the transitional abnormality, but also to 

correctly label it as a L5 sacralized vertebrae (arrow).



Figure 2. Artificial intelligence for automatic assessment of bone 

mineral density. (a) 50-year-old male with fever and dyspnea underwent a 

chest CT. Automatic assessment of bone mineral density based on 

Hounsfield units (HU) by an AI algorithm (AI-Rad Companion by Siemens 

Healthineers) did not show significant decrease of HU (coded in blue 

numbers) within thoracic vertebral bodies. (b) 90-year-old female with 

constitutional syndrome underwent a chest CT study, finding significant 

decrease of HU (coded in blue numbers) within all vertebral bodies. 

Although changes in vertebral bone density can be detected in a qualitative

assessment of CT source images, this AI tool facilitates an automatic 

quantification of bone density.



Figure 3. Intended result for automatic assessment of degenerative 

disc disease by means of artificial intelligence techniques. Example of 

intervertebral disc analysis on MRI images to assess disc degeneration, 

with 3D representation of L3-L4, L4-L5 and L5-S1, and their corresponding 

histogram, where bright red indicates more intensity, i.e., less 

degeneration. Notice the reduction in size and signal intensity of the highly

degenerated L5-S1 disk. Figure obtained using Starviewer© software for 

image segmentation [77] and ParaView© software for improved 

segmentation visualization [78].



Figure 4. Intended result for automatic assessment of spinal canal 

stenosis by means of artificial intelligence techniques. Example of 

spinal canal segmentation on MRI images to assess canal stenosis, with 3D 

representations and quantification of parameters such as the spinal canal 

volume and its minimum diameter. Figure obtained using Starviewer© 

software for image segmentation [77] and ParaView© software for 

improved segmentation visualization [78].



Figure 5. Intended result for automatic assessment of disc herniation 

by means of artificial intelligence techniques. Example of intervertebral 

disc segmentation on MRI images to assess disc herniation, with 3D 

representations and quantification of some parameters, such as the 

volume and dimensions of the whole disc and the herniated fragment 

(represented in red). Figure obtained using Starviewer© software for 

image segmentation [77] and ParaView© software for improved 

segmentation visualization [78].



Figure 6. Artificial intelligence for automatic detection of vertebral 

fracture. A 75-year-old female underwent a chest CT study for suspicion of 

COVID-19 lung involvement. An AI system (AI-Rad Companion by Siemens 

Healthineers) performed an automatic sagittal reconstruction of thoracic 

spine, including volume rendering reconstructions, as well as an automatic 

estimation of vertebral body height at its anterior, middle, and posterior 

aspect, pointing out those vertebral body that show significant height loss. 

In this case, an osteoporotic chronic fracture of T7 vertebral body (arrows) 

with a loos of height of 50% was identified. This kind of tools may help to 

number and detect not only vertebral fracture in the setting of chest 

trauma, but also assist radiologists in detecting fractures as unexpected 

findings in patients that undergo CT studies for other clinical indications.



Figure 7. Artificial intelligence for spine involvement assessment in a 

55-year-old female with multiple sclerosis. (a) Image and segmentation 

corresponding to 2019 sagittal STIR sequence with an average cross-

sectional area of 40.115 mm2. (b) Image and segmentation corresponding 

to 2021 sagittal STIR sequence with an average cross-sectional area of 

34.1925 mm2. Both segmentations have been generated with the 

sct_propseg tool included in Spinal Cord Toolbox 

(https://spinalcordtoolbox.com/). In this case, the use of AI based tools can 

help radiologists to identify subtle changes in the average volume of spinal

cord, otherwise not detectable in a qualitative conventional manner.


