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ABSTRACT: In this study, we report a general and efficient method for the iron-catalyzed intermolecular N–H insertion at the 

intercarbonylic position of malonate reagents. Using iodonium ylides and simple iron(II) triflate as the catalyst, the reaction enables 

the functionalization of a wide range of primary and secondary aromatic and aliphatic amines in excellent yields. The reaction operates 

under exceptionally mild conditions, without the need for an inert atmosphere or anhydrous solvents, and proceeds in remarkably 

short reaction times. Mechanistic studies support a non-radical pathway in which an iron(II)-stabilized intermediate having hybrid 

carbene/carbocationic character undergoes nucleophilic attack by the amine. 

Metal carbenes are regarded among the most versatile inter-

mediates in organic chemistry, given their ability to react with 

a wide range of functional groups, thus enabling the efficient 

and straightforward construction of diverse chemical bonds.1,2 

Among these, N–H insertion has emerged as especially appeal-

ing given the ubiquity of nitrogen heterocycle-containing drugs 

and small-molecule drugs derived from amino acid derivatives.3  

Traditionally, diazo compounds have been employed as pre-

cursors for generating metal carbenes, with particular emphasis 

on the generation of donor–acceptor metal carbenes.4 Instead, 

the use of acceptor–acceptor carbenes – both in general and par-

ticularly in N–H bond insertion reactions – has been largely 

overlooked in the literature. In the few reported cases, the suc-

cessful insertion of acceptor–acceptor carbenes into N–H bonds 

typically require the use of precious metals - Rh(II) or Ir(I) - 

catalysts (Scheme 1a). The groups of Livant5a and Moody5b re-

ported N–H insertions of diazomalonates under Rh2(OAc)4 ca-

talysis in refluxing toluene. These transformations are limited 

to the use of aniline derivatives or sterically hindered secondary 

alkylamines. Alternatively, the groups of Sivasankar and 

Lacour employed [Ir(COD)Cl]2 catalyst at room temperature. 

The substrate scope described by Sivasankar et al.6 was limited 

to aromatic amines, while that of Lacour et al.7 extended to a 

broader array of aromatic and aliphatic amines. 

With these precedents in hand, we envisioned that a meth-

odology that avoids the use of diazo compounds as carbene pre-

cursors and precious metals as catalysts will represent a signif-

icant advance in the field of acceptor-acceptor carbene N-H in-

sertion. First, iodonium ylides have emerged as promising al 

 

Scheme 1. N-H insertion reactions with acceptor-acceptor 

carbenes. 

 

ternatives to diazo compounds for the generation of acceptor-

acceptor carbenes under mild conditions.8 These reagents are 

regarded as easily preparable, non-toxic and bench stable solids 

that bypass the safety issues associated with diazo derivatives.9 

Second, iron constitutes an excellent alternative to precious 

metals, due to its low toxicity, high natural abundance, and af-

fordability.10 Nonetheless, iron-catalyzed carbene transfer reac-

tions are underexplored and reports remain scarce.11 In the par-

ticular case of iron-catalyzed carbene N–H insertion reactions, 

the few reported cases using acceptor carbenes rely on the use 



 

of porphyrin derived complexes or highly engineered metal-

loenzymes.12  

Herein, we report the N-H insertion of acceptor–acceptor 

carbenes using iodonium ylides as carbene precursors and sim-

ple, commercially available iron catalysts. This highly efficient 

and straightforward methodology enables the insertion of car-

benes into both primary and secondary aromatic and aliphatic 

amines in high yields and under exceptionally mild conditions, 

without the need for an inert atmosphere or anhydrous solvents, 

and in short reaction times. 

We began our studies by testing the viability of our hy-

pothesis using iodonium ylide 1a and 2 equivalents of p-tolu-

idine 2a in the presence of iron(II) acetylacetonate in anhy-

drous dichloromethane under inert conditions inside a glove-

box for 15 min (entry 1, Table 1). This initial experiment 

yielded the desired product 3a in 54% yield. Encouraged by 

this result, we repeated the reaction outside the glovebox with-

out employing anhydrous solvents (entry 2, Table 1). Re-

markably, 3a was obtained after 45 min. in an improved 74% 

yield, highlighting the high tolerance and robustness of our 

transformation. We next evaluated the use of various commer-

cially available iron(II) salts as catalysts. The use of iron(II) 

acetate resulted in a significantly diminished yield of 17% af-

ter 14h (entry 3, Table 1). In contrast, iron(II) bromide and 

chloride afforded 3a in 77% and 64% yields, respectively (en-

tries 4–5, Table 1). Strikingly, when iron(II) triflate was used, 

immediate solubilization of the iodonium ylide 1a was ob-

served, with the reaction finished within mixing time, deliver-

ing 3a in 88% yield (entry 6, Table 1). Further optimization 

revealed that the reaction could be carried out with equimolar 

amounts of the amine partner, affording 3a in 92% yield (entry 

7, Table 1). Switching the solvent to chloroform further im-

proved the yield to 99% (entry 8, Table 1).13 We explored the 

impact of reduction of the catalyst loading to 2.5 mol%, lead-

ing to a slightly decreased yield of 84% (entry 9, Table 1). 

Control experiments were conducted to clarify the observed 

unique reactivity. The use of Fe(OTf)3 or FeCl3 under the op-

timized conditions afforded 3a in 54% and 30% yield, respec-

tively. A blank experiment performed in the absence of any 

iron salt provided 3a in only 12% yield after 14 hours (entry 

10, Table 1). Replacement of 1a with dimethyl 2-diazomalo-

nate led to recovery of starting materials, even upon extending 

the reaction time to 15 min. Collectively, these results under-

score the catalytic role of iron, the superior performance of 

iron(II) salts, and the essential role of  the iodonium ylide as a 

carbene surrogate in this transformation. Finally, addition of 

10 equivalents H₂O under the optimized conditions afforded 

3a in 96% yield, with no detectable water-insertion byprod-

ucts, confirming the reaction’s tolerance to moisture. 

With the optimized conditions in hand, we next explored 

the scope of the reaction (Scheme 2). We began by evaluating 

the effect of substitution on the aniline moiety. Both meta- and 

ortho-toluidine afforded the corresponding insertion products 

3b and 3c in excellent yields of 90% and 92%, respectively. 

Notably, the sterically hindered 1,3,5-trimethylaniline also re-

acted smoothly, delivering 3d in 89% yield. Unsubstituted 

aniline could also react efficiently, affording 3e in an excellent 

96% yield. After assessing the tolerance to steric bulk, we next 

investigated the electronic factors on the aniline ring. Para-

substituted anilines bearing electron-donating methoxy or 

electron-withdrawing chlorine groups afforded 3f and 3g in 

quantitative yields. The strong electron-withdrawing (and  

Table 1. Optimization of the reaction conditions[a].  

 

Entry Catalyst Reaction time Yield % (3a) 

1[b] Fe(acac)2 15 min. 54 

2 Fe(acac)2 45 min. 74 

3 Fe(OAc)2 14 h 17 

4 FeBr2 45 min. 77 

5 FeCl2 75 min. 64 

6 Fe(OTf)2 Mixing time 88 

7[c] Fe(OTf)2 Mixing time 92 

8[d] Fe(OTf)2 Mixing time 99 (99)[e] 

9[f] Fe(OTf)2 Mixing time 84[e] 

[a]Reactions were carried out with 0.08 mmol of iodonium ylide 1a, 0.16 mmol of p-

toluidine 2a and 5 mol% catalyst loading, at room temperature in 1 mL of CH2Cl2 for 

the time stated (until complete solubilization of the iodonium ylide). NMR yields cal-

culated via 1H NMR spectroscopy using CH2Br2 as internal standard. [b] Reaction car-

ried out inside of the glovebox using anhydrous solvent [c] Reaction carried out with 

0.08 equivalents of p-toluidine 2a. [d] Reaction carried out in CHCl3 as the solvent. [e] 

Isolated yield. [f] Reaction carried out with 2.5 mol% catalyst loading. 

highly coordinating) nitrile-substituted aniline afforded 3h in 

a slightly reduced 82% NMR yield. However, purification was 

unsuccessful due to co-elution with unreacted p-cyanoaniline. 

Alternatively, we employed a tert-butyl-substituted iodonium 

ylide, yielding 3h′ in moderate but easily isolable 56% yield. 

Unfortunately, the reaction with p-aminophenol and 2-ami-

noethanethiol did not proceed and led only to decomposition 

products. Besides monosubstituted anilines, the reaction was 

also compatible with aromatic secondary amines bearing me-

thyl and phenyl groups, furnishing 3i and 3j in good yields. 

We then turned our attention to aliphatic amines. Benzylamine 

reacted cleanly to produce 3k in 94% yield. Notably, allyla-

mine and propargylamine afforded exclusively the desired in-

sertion products 3l and 3m, without any trace of cyclopropa-

nation or cyclopropenation byproducts. Furthermore, the re-

action with diallylamine proceeded efficiently, affording the 

N–H insertion product 3l’ in 99% yield. Interestingly, reaction 

of geranylamine—a more sterically and electronically deman-

ding substrate bearing both internal and terminal trisubstituted 

alkenes— also showed excellent selectivity, furnishing the N–

H insertion product 3l’’ in 97% yield. In contrast, reactions 

with bulkier aliphatic amines such as cyclohexylamine and di-

ethylamine afforded modest 18% yields of 3n and 3o along 

with the carbene dimerization product (4) formed as the major 

product. We hypothesized that the increased steric bulk of the 

amines slowed the N-H insertion, thereby allowing the com-

peting iodonium ylide dimerization to dominate. To suppress 

dimerization, a more sterically hindered tert-butyl derived io-

donium was employed. Gratifyingly, the reaction proceeded 

with significantly improved yields of 3n′ (87%) and 3o′ 

(77%). Following the same strategy, the reaction with an ace-

tal-derived amine provided 3p′ in an excellent 97% yield. 

Scheme 2. Scope of the reaction. 



 

 
General conditions: Iodonium ylide 1 (0.16 mmol), amine derivative 2 (0.16 mmol, 

1.0 equiv), and Fe(OTf)2 (5 mol%) in CHCl3 (2.0 mL) at room temperature. The reac-

tions were complete after mixing time. Isolated yields. [a] NMR yield.  

In contrast, when N-Boc protected propargylamine was tested 

with both methyl and tert-butyl iodonium ylides, no N-H inser-

tion was observed in either case, and the reaction resulted pre-

dominantly in dimerization of the iodonium ylide. Cyclic sec-

ondary amines such as morpholine and piperidine were compat-

ible with the reaction, affording 3q and 3r in good yields. To 

further evaluate the chemoselectivity of the system, we tested 

p-(N-benzylamino)aniline. The reaction yielded a mixture of 

mono-inserted 3s and doubly functionalized 3s′, in 31% and 

46% yields, respectively, indicating a preference for the reac-

tion to occur at the benzylic amine over the aromatic one. Fi-

nally, we examined the scope of the iodonium ylide partner. 

Substituents such as ethyl (3t), isopropyl (3u), tert-butyl (3v), 

and benzyl (3w) were all well tolerated, affording the corre-

sponding insertion products in high yields. To evaluate the gen-

erality of the method beyond diester-containing substrates, we 

tested the iodonium ylide derived from methyl 3-oxo-3phe-

nylpropanoate. The reaction proceeded smoothly, affording the 

desired product 3x in 38 % yield. When scaling up the reaction 

for the synthesis of 3a to 1 mmol mixing the solid reagents prior 

to solvent addition lead to a spontaneous exothermic event,14 

thus the reagents were dissolved in chloroform before adding 

the iron catalyst, providing the product in a 71% yield. During 

the preparation of this manuscript, the group of Song15 reported 

the iron-catalyzed insertion of iodonium ylides into B-H and N–

H bonds. Unlike in the current report, the reaction relies on a 

sophisticated iron catalyst, requires strictly inert and anhydrous 

conditions, significantly longer reaction times and provided 

lower yields compared to our system, clearly highlighting the 

advantages of our approach. 

To gain a deeper understanding, several mechanistic exper-

iments were conducted (Scheme 3). First, we subjected 1a to 

the optimized reaction conditions in the absence of any amine 

partner, leading to dimerized product 4 in 64% NMR yield 

(Scheme 3A). Previous studies by Betley16 and Groysman17 

have proposed the involvement of vinyl radical intermediates in 

reactions involving 1,3-dicarbonyl-derived carbene precursors 

and iron catalysts. DFT calculations by Groysman et al.17 sug-

gest that the reaction of iodonium ylides with iron(II) alkoxide 

proceeds via κ2 coordination through both carbonyl esters and 

concurrent oxidation, which activates the C-I bond, resulting in 

the formation of an iron(III) remote carbene/vinyl radical inter-

mediate A (Scheme 4). This intermediate reacts with alkenes in 

a stepwise manner to undergo cyclopropanation. On the other 

hand, the mechanism that Betley et al.16 describe for their intra-

molecular C-H alkoxylation of α-diazo-β-ketoesters using 

Fe(acac)2 as catalyst also involves a radical intermediate. 

Again, via κ2 coordination through the keto and ester carbonyls, 

a single electron transfer from iron to the substrate generates a 

vinyl carbon radical intermediate B (Scheme 4), which further 

evolves via hydrogen atom transfer (HAT). However, several 

experiments argue against the implication of such a carbon-cen-

tered radical intermediate in our system. First, the reaction is 

not perturbed by the presence of O2. Moreover, when the reac-

tion was carried out in the presence of three equivalents of rad-

ical trapping agents such as TEMPO (Scheme 3B), the insertion 

product 3a was obtained in 87% yield. Furthermore, the addi-

tion of BHT or 1,4-cyclohexadiene, well-established hydrogen 

atom donors, had no apparent effect on the reaction outcome 

(Scheme 3C), suggesting the absence of a competitive hydro-

gen atom transfer process typically associated with radical spe-

cies. Altogether, these results point to a mechanistic pathway in 

which intermediates with radical character are not implicated. 

Scheme 3. Mechanistic experiments 

 

The fast reaction rates of the current catalytic system, com-

bined with the low solubility of the iodonium ylides, prevented 

the identification of reaction intermediates that could support 

the characterization of the actual catalytic species or provide 

meaningful guidance to enable computational studies. Under 

these conditions, we propose a tentative alternative pathway—

compatible with the available mechanistic information—in 



 

which the catalyst remains in the iron(II) oxidation state 

(Scheme 4).  Consistent with the precedents reported by Groys-

man and Betley, the iron center is κ2-coordinated to the two es-

ter carbonyl groups. Supporting this coordination-based mech-

anism, the reaction with dimedone-derived iodonium ylide 1g 

(Scheme 3D) failed and led exclusively to decomposition, 

likely due to the rigid cyclic structure preventing proper coor-

dination to the iron center. This coordination, instead or pro-

moting oxidation, stabilizes an intermediate that can be viewed 

as a hybrid between a vinyl carbocation and a “remote” carbene 

(INT II). Differences in the ligand set, which in the current case 

is less donating that in Groysman and Betley’s catalysts may 

upshift the Fe(III)/Fe(II) red-ox potential, favoring the ferrous 

state. To the best of our knowledge, this would represent the 

first example of a remote carbene intermediate operating in a 

metal-carbene-type transformation. The carbocationic character 

of this intermediate accounts for its high reactivity towards nu-

cleophilic amines, as well as the chemoselectivity observed 

with substrates bearing alkenes (3l) and alkynes (3m). This hy-

pothesis was further supported by a control experiment using 

styrene under otherwise analogous conditions, which showed 

no evidence of cyclopropanation product formation, but only 

dimerization of the iodonium ylide. 

To sum up, the proposed reaction mechanism (Scheme 4) 

begins with the initial coordination of the iron catalyst to io-

donium ylide 1a, forming intermediate INT I. This intermediate 

undergoes extrusion of iodobenzene to generate the iron remote 

carbene (INT II). Nucleophilic attack by the amine at the car-

benic/carbocationic carbon yields ylide intermediate INT III, 

which undergoes a proton transfer followed by dissociation of 

final product 3a from the iron center. 

Scheme 4. Proposed mechanism 

 

In conclusion, we have developed a novel method for the N-

H insertion of acceptor–acceptor carbenes, utilizing iodonium 

ylides as carbene precursors and readily available, inexpensive 

iron(II) triflate as the catalyst. The reaction proceeds efficiently 

under mild conditions, without the need for an inert atmosphere 

or anhydrous solvents, in remarkably short reaction times. 

Mechanistic studies support a non-radical pathway in which an 

iron(II)-stabilized intermediate having hybrid carbene/carbo-

cationic character undergoes nucleophilic attack by the amine. 
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