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Title of the thesis: Vision based reactive navigation for agricultural robotics operations 

Given the lack of labour and the increasing demand of agriculture requiring a lot of manpower, 
agriculture is a sector that would greatly benefit from automation and robotics solutions. The 
technologies and algorithms developed in the robotics sector for localization and autonomous 
navigation have been intensively addressed in the last two decades, mainly in indoor 
environments (for example, logistics warehouses). In these cases, the scenario is usually quite 
structured, controlled, predictable and limited in size, and the terrain is usually quite flat and 
regular. Lidar based SLAM, for instance, has been intensively implemented and deployed with 
great results.  

These solutions, however, do not perform well in agricultural scenarios. The objective of this 
Thesis is to develop: 

● A reactive navigation solution, based on vision and lidar sensors, in order to obtain a 
robust navigation solution. 

● Overcome the problems associated with navigation derived from an erratic localization 
system, given the difficulty of the scenario. 

Proposed, preliminary research questions: 

● Using the perception module, how can the robot estimate the center of the vineyard row 
based on the information from sensors such as lidars or cameras (including research, 
state of the art review) 

● How should the navigation module, given information of the center of the row, output 
velocity commands (using PID controllers, pure pursuit, etc). 

● How well the robot performs in a real environment (precision, accuracy of both 
perception and navigation module in a vineyard) 

Methodology: how, what methods, technology, tools, could be used? 

The solution will be built with the ground robotics team at Eurecat. The perception can be done 
using OpenCV and ML models. We will also look into how LiDAR can help us in estimating 
the rows of vineyards. It needs research and state of the art review. The Navigation module will 
be using the information from the perception module to develop a motion controller for the 
robot. It could use PID controllers or pure pursuit technologies etc. All the modules will be 
integrated in ROS with the robot. C++ will be mainly used for programming.  

5 keywords: 

ROS, Perception, Navigation, PID, Image Processing.  
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Abstract

Food production and agriculture have been of utmost importance for the devel-

opment of humanity. Given the lack of labour and the increasing demand for agricul-

ture requiring a lot of manpower, this sector would greatly benefit from automation

and robotics solutions. The technologies and algorithms developed in the robotics

sector for localization and autonomous navigation have been intensively addressed

in the last two decades, mainly in indoor environments (for example, logistics ware-

houses). In these cases, the scenario is usually structured, controlled, predictable,

and limited in size, and the terrain is usually flat and regular. LiDAR-based SLAM,

for instance, has been intensively implemented and deployed with excellent results.

These solutions, however, do not perform well in agricultural scenarios. We aim to

use vision-based sensors such as RGB-D cameras to estimate traversable lanes in

agriculture fields. We are using the Detectron2-based Keypoint Detection model to

detect trees. The detection is performed on the color image, and the position is es-

timated using the depth image. Vision-based systems are cheaper than LiDAR but

require much more computation and storage space. We will convert our model to

OpenVino and TensorRT engine to optimize the deep learning model for embedded

boards. So far, the Keypoint Detection model has not been optimized with such

tools. Our implementation converts this model to the TensorRT engine, increasing

the inference speed by almost 2.5x. Reactive navigation based on the Pure Pursuit

algorithm is used to traverse the fields while maintaining a safe distance from plants.

The navigation module is tested in simulation with lane traversal and lane changing,

and the perception module is tested in both simulation and real-world environments.
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Chapter 1

Introduction

1.1 Background and context

The world is currently facing an increasing demand for food production. And

given the lack of labour and human resources required in the agriculture sector, it

can benefit significantly from automation and robotic solutions. The current methods

of planting, weeding, etc., require a lot of resources. Most algorithms developed in

the last two decades for localization and autonomous navigation have been mainly

for the indoor environment. These solutions are deployed in warehouses, factories,

and other indoor industries.

In indoor environments, the scenario is usually quite structured, controlled, pre-

dictable, and limited in size. The terrain is also relatively flat and regular. For

instance, LiDAR-based SLAM has been intensively implemented and deployed with

good results and precision. These solutions, however, do not perform well in agri-

cultural scenarios with uneven terrains and uncertain environments.

1.2 Problem statement

The growing population demands automated agricultural practices. Due to the

technological advancements in Computer Vision and Robotics in the past few years,

it is possible to develop precise and safe robotic solutions for farming. While there

are many state-of-the-art indoor navigation solutions, they do not perform well in

uncontrolled outdoor environments.

12



1. Introduction

1.3 Research questions

We will focus on presenting an answer to the following questions:

• Using a perception module, how can the robot estimate a feasible path to

traverse a row (e.g., in a vineyard) based on the information from sensors such

as RGB-D cameras?

• How can the perception module be optimized to achieve suitable FPS (at least

5 FPS) on embedded boards?

• How should the navigation module, given information of the center of the row,

output velocity commands (using PID controllers, pure pursuit, etc.)?

1.4 Objectives and scope

The objectives of this thesis are to:

• Create a tool for adapting to different agricultural environments by generating

simulation environments to test/tune the developed algorithms.

• Build a perception module capable of estimating a feasible path for an agri-

cultural robot based on information from "cheap" sensors such as cameras.

• Develop a reactive navigation solution, based on outputs from the perception

module, to safely follow the estimated path.

• Test the developed modules in simulations and real environments.

• Overcome the problems associated with navigation derived from an erratic

localization system, given the difficulty of the scenario.

1.5 Methodology and approach

The perception module uses a deep learning model to detect trees in an apple

plantation orchard. Using an RGB-D camera, We can estimate the position of these

detected trees through the depth image. The tree detection using the deep learning

model can be done using RGB or depth images. We are, however, using RGB images

for tree detection and depth images for position estimation of the detected trees.

13



1. Introduction

The thesis also expands on optimizing the deep learning model using tools such as

OpenVino and TensorRT.

The navigation module uses the perception module’s information about the tree

location to develop a motion controller for the robot. The Pure Pursuit algorithm

is used to reactively navigate the agriculture field by following the center of the

vineyard rows. All the modules will be integrated into the robot using ROS2 Foxy.

The modules are written using C++ and Python language. Gazebo is used for

simulating the environment, and RViz is used for visualizations.

1.6 Contribution of the thesis

The thesis develops an industrial robotics solution for reactive navigation using

vision-based tree detection and position estimation. The solution is developed using

ROS2 and state-of-the-art Detectron2[1] model. We will verify the results of [2]

and check if it can work with an industrial robot to detect trees as landmarks

for navigation. The deep learning model is further optimized using OpenVino and

TensorRT frameworks to run on embedded boards installed on the robots. There

is no available solution to convert Keypoint Detection in Detectron2 to TensorRT,

which this thesis successfully does.

1.7 Overview of the thesis structure

The thesis begins with a literature review of the vision-based systems currently

or previously deployed in agriculture fields. We will dive deep into state-of-the-art

systems for reactive navigation in outdoor fields. A solution is proposed describing

the algorithms, approach, and tools used for precise detection and navigation. After

that, the results are presented and discussed. The main part of the thesis ends with

a conclusion of the findings and answers the research questions presented at the

start. The thesis also includes an appendix at the end for further reading.

14



Chapter 2

Literature Review

2.1 Overview of relevant literature

Localization based on the surroundings and navigation in complex environments

is a very broad topic in robotics, and much research is being done in these domains.

The indoor navigation and localization are usually very precise due to the nature

of the surroundings, as it is more controlled and has better landmark features for

position estimation of the robot. However, in outdoor environments, specifically in

agricultural fields, the uneven terrain combined with the uncontrolled environment

gives very erratic localization and navigation results.

Research is done to use algorithms with a combination of different sensors to fix

this erratic behaviour. We will be focusing on finding ways to combine vision-based

systems such as cameras with reactive navigation approaches.

2.2 Related work and previous research

Agricultural robotics has been a hot topic for at least a decade, and different

solutions have been put forward for navigation in the farming fields. We will be

discussing the use of cameras and depth sensors for navigation.

2.2.1 Vision based navigation

Initially, plant detection was mainly done using color contrast of plants and soil.

We can use different types of cameras for these purposes. The authors in [3] are

using an IR camera and applying Hough Transform for row detection in a field. The

15



2. Literature Review

high contrast between the soil (dark) and plants (light) in the infrared image helps

with the estimation of plant rows. The same can also be done by RGB cameras

using color segmentation [4]. The robot looked for green color using the three color

channel values. After that, they grouped contiguous pixels and eliminated low count.

The path was determined based on the center of the left and right segmentation

boundary, and a map was generated at the end.

Fast forward a few years, and newer techniques, such as 3D structures, were

used. Depth cameras were used by [5] for clustering and detection of humans in

a depth image. The detection was used for human tracking purposes, but it can

be extrapolated to different objects, such as plants and trees. Methods using 3D

structures mainly used stereo vision, depth cameras, or laser scanning but [6] used

Monocular vision for robot navigation in outdoor fields. They tracked the direction

of the rows of crops. It was assumed that most crops are in a straight row and on flat

ground. IMU sensor was used for estimating camera attitude and for tracking the

visual horizon. The method used no image segmentation of plants and soil and did

not need any assumptions about the appearance of row spacing, color, and lighting.

The algorithm was later improved in [7], which utilized different sensors such as

stereo cameras, GPS, and INS for obstacle detection and developed kinematically

feasible navigation.

With the advancement of Machine Learning and Neural Networks, AI-based

vision robotics is quickly taking over the former methods of row approximations.

[8] uses a Convolution Neural Network (CNN) for semantic segmentation of a color

image into binary classification. It divides the terrain into crops or no crops, i.e., not

drivable and drivable terrain, respectively. These techniques to find rows are also

applied for road line detection in [9]. And after estimating the row or road, they used

the vanishing point, i.e., the intersection of the road line, and estimated the angle

from the vanishing point. Instead of detecting rows, we can also detect plants. [10]

performed vegetation segmentation and used connected components operations to

find individual plants. Secondly, they detected the number of crop rows by estimating

the moving variance. Finally, the rows were tracked by centering a parallelogram on

each row. [11] used supervised learning for under-canopy navigation. They estimated

the heading and placement in a row using the machine learning model and fused this

data with inertial measurements using EKF filter. The robot stayed in the center of

the row using a robust nonlinear controller such as Model Predictive Control (MPC).

16



2. Literature Review

For our use case in Apple plantation orchards or strawberry fields, we can detect

tree trunks or poles as landmarks and estimate the position of these landmarks us-

ing depth images. Using Detectron2 Module provided by the Facebook AI Research

team, [12] used two annotated datasets of synthetic and real RGB-D images in natu-

ral forest environments to train a tree-trunk detection model and then modified the

object detectors to estimate the felling cut, diameter, and inclination for each tree.

The training parameters and inference time of trained models on the two datasets

are provided in [2]. They have been able to achieve around 18 FPS using the ResNet-

50-FPN backbone in the Detectron2 model, which has 25.6 million parameters. This

FPS is achieved using a very powerful 24GB NVIDIA RTX-3090 GPU. Given that

the model is already trained with good results, we will use the same pre-trained

model and optimize it further using TensorRT.

2.2.2 Reactive navigation

We will be focusing on a reactive navigation approach for traversing the fields.

Reactive Navigation, in simple terms, is to plan and control the motion of the robot

to reach a desired goal position, but the knowledge of features in the environment

becomes available only after the robot starts moving [13]. The robot reacts to the

information in real-time and plans its path while avoiding obstacles.

In a corn field, [14] presents a reactive navigation solution using a LiDAR sensor

and H∞ controller. The proposed navigation system is an alternative to GNSS-

based systems. It uses a histogram filter for row detection and an H∞ controller

to keep the robot in the lane center. The controller was also compared with PID

controller in a controlled environment. [15] uses a hybrid reactive and GPS-based

navigation where LiDAR and RGB-D device is used to perform row following and

obstacle avoidance. A reactive approach or GPS waypoints are used for changing

from row to row or field to field.

As we detect the trees using a deep learning model, we can estimate the row

of trees and take the center of the fields as our navigation path. We will then use

the pure pursuit algorithm developed by [16]. The pure pursuit was later tested

against different algorithms, such as the Quintic Polynomial approach and a “Control

Theory” approach by [17]. The implementation details of the pure pursuit algorithm

are explained in detail by [18], and we will be following it to implement and integrate

17



2. Literature Review

pure pursuit in our navigation solution.

2.3 Gaps in the literature and research questions

While research is being done on developing robot navigation solutions using

different vision algorithms, there is a need to deploy newer deep learning modules

to test the feasibility of real-time detection and navigation using Machine Learning

on robot’s embedded boards. These vision algorithms should be optimized using

different tools to provide good inference time and FPS on low-power embedded

boards.

18



Chapter 3

Methodology

3.1 Research design and approach

For the perception module, we have decided to use state-of-the-art tree trunk

detection with a pre-trained Detectron2 module [12]. The model outputs keypoint

detections on a color image, and we can map those keypoints to the depth image

and extract distance information. From this information, we can estimate the row

center, which will be the input for the navigation stack. The model, however, is

computationally very heavy and requires a good GPU for faster inference. As the

authors of [2] described that around 10-18 FPS was achieved using the models on

one of the best available GPUs, it will decrease significantly on Jetson Devices and

other embedded boards. For this, we will be optimizing the model using OpenVino

and TensorRT. OpenVino is provided by Intel for optimizing models, mainly for

their processors. TensorRT is a tool by NVIDIA for optimizing the inference time

of deep learning models for NVIDIA GPUs.

We will use Gazebo as our simulation environment to effectively test our algo-

rithms. The navigation module will require the implementation of the pure pursuit

algorithm as mentioned in Algorithm 1. The algorithm will take the path as input

and output velocity commands.

3.2 Tools and technologies used

For communication with the robot, we are using ROS2-Foxy. We will start with

building a docker environment. Docker ensures the code can run without installing
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3. Methodology

specific versions of Ubuntu, and other dependencies can be resolved easily. For the

simulation, we have measurements from an apple field in Girona, Spain, where we

will perform real-world tests. The same field will be regenerated in the Gazebo

environment so our tests are as close to reality as possible.

3.2.1 Docker environment for ROS2 Foxy

As ROS2 needs newer Ubuntu versions making it difficult to run and test our

code on different machines, we will take Docker environments’ help. Docker helps to

virtualize software so it can run independently of the platform. The ROS2 Foxy is

set up inside Docker with all the required dependencies, such as OpenCV, PyTorch,

Gazebo, etc. A volume with ROS2 workspace is mounted to efficiently work with

the Docker environment. To run the Docker environment, we will be using WSL2

enabled Windows platform.

3.2.2 Gazebo environment

To test our code before going to the real robot, we can generate a simulated

environment of an agriculture field inside the Gazebo. A tractor model is used,

closely resembling the real tractor used in an apple field in Girona. The tractor

robot is equipped with an RGB-D camera and LiDAR.

We need an apple tree model for Gazebo to create the apple field. We have

information about the number of rows and distances between each apple tree from

the real field in Girona. We will try to place trees at the same distances to make the

simulation as close to the real field as possible. For this, a Python script is written

that generates world files used by Gazebo. The script takes different parameters

such as the model name, the total number of rows, the number of trees in a row, the

distance between each row, the distance between each tree, and the initial distance

of trees from the robot. The script then places the trees according to the given

dimensions and generates a world file ready for use with Gazebo. We can tweak the

parameters to match the real-world measurements as close as possible.

3.2.3 Apple tree model

A 3D model of apple trees, as shown in Figure 3.1, is used, which is 110-120

meters high and 10-14 meters wide. It is then converted to Collada dae file format
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so it can be used inside Gazebo. We will apply a scaling factor of 0.04 to change the

height and width to match our real-world requirements. The scaling factor can be

changed depending on the given measurements of the real trees. The model also has

different nodes to display the leaves of the trees. But as our model only uses tree

trunks for detection, we will turn off the other layers in Gazebo to save resources.

Figure 3.1: Apple tree model

3.2.4 Robot model in Gazebo

A tractor model is used in Gazebo, which has a LIDAR and camera mounted.

The camera is an RGB-D camera that has both color and depth images. The RViz

window in Figure 3.2 shows the robot model and the frames.
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(a) Robot description RViz (b) Robot frames RViz

Figure 3.2: Robot model and frame visualization

3.2.5 Tree detection using Detectron2

The pre-trained weights provided by [2] will be used for tree detections. We

will not train the model as the results described in [2] are pretty good for our use

case. The weights are compatible with Detectron2, and the pre-trained weights are

provided for different backbone networks. We will use the backbone network that

provides the most FPS, i.e., ResNet-50-FPN. So we will use the ResNet-50-FPN

pre-trained weights and try to optimize the model further using OpenVino and

TensorRT.

The model performs keypoint detection, which we can use to estimate the loca-

tion of the trees through the depth image. The keypoint detection can be performed

on color or depth images. As the model performs better on colored images, we will be

doing the inference on colored images and then mapping those points to the depth

images.

3.2.6 Color image to depth image correspondence

Based on the keypoints detected in the RGB image using the pre-trained weights,

we can estimate the location of the trees by mapping the same keypoints from RGB

to the depth image. The article [19] provides a solution using the intrinsic camera

matrices. As we have the camera info in the camera topics using ROS, we can

easily do color-to-depth or depth-to-color correspondence. Mainly, if Kc and Kd are
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intrinsic matrices for color and depth cameras respectively and Tdc represents the

transformation between them, a point in color image [uc vc Zc] can be mapped to its

corresponding depth pixel [ud vd Zd] using Equation 3.1:

Zd[ud vd 1] = Kd ∗ Tdc ∗K−1
c ∗ Zc[uc vc 1] (3.1)

Our case has no rotation or translation, as one camera provides color and depth

images. Hence the transformation matrix will be an Identity matrix, and the equa-

tion simplifies to
Zd[ud vd 1] = Kd ∗K−1

c ∗ Zc[uc vc 1] (3.2)

3.2.7 Estimating tree position

As we now have the depth pixels, which give us the distance of the point from

the camera frame in millimeters, we can easily get the distance in meters. The model

outputs five keypoints for each tree trunk. Three keypoints are horizontal along the

base of the trunk. The rest of the points are vertical along the length of the trunk.

We can use the middle keypoint at the base and the two keypoints along the trunk

to better estimate tree location. One solution is to take the average of the three

keypoints, but we also want to remove outliers and fuzzy detections.

2D to 3D point conversion

The 2D detected points in the depth image are first converted to 3D points

using the intrinsic parameters of the camera. To convert the points, the following

equations are used
Z = z = depth_image(x, y) (3.3)

X =
(x− cx) ∗ z

fx
(3.4)

Y =
(y − cy) ∗ z

fy
(3.5)

X, Y, and Z are points in 3D, x and y are the 2D image pixels, and z is the depth

value in millimeters.

3D keypoints to distance and angle

The 3D Keypoints mapped onto the depth image can extract the distance and

angle of the measured landmark from the camera. To make our detections more
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robust, we will measure the distance from the camera to the line generated by the

three points in 3D space instead of taking the average of the three points. The line

can be used to trim out the outliers.

First, we need to fit a line to the 3D points, which we can do by centering our

points around the origin, i.e., (0, 0, 0) by subtracting the mean of the points from

each point. Now we need its direction and a point that goes through the line. We can

take Singular Value Decomposition and use the V ∗ matrix to get the eigenvectors.

The first eigenvector is the best representation of the given data, which is also the

line that will fit the 3D points. Let x be the 3D points and x̄ the mean of all the

points.
UΣV ∗ = SV D(x− x̄) (3.6)

p(t) = p0 + V ∗[0] ∗ t (3.7)

Where t can be any real number. To project the robot’s origin on the line and

find the distance and angle from the robot to the landmark, consider Figure 3.3

Figure 3.3: Projection of robot’s origin on the line connecting 3D keypoints

We need to calculate the projection point, i.e., the green circle from Figure 3.3,
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and then take the Euclidean distance from the projection to the robot’s origin.

Consider A⃗R as a⃗ and A⃗C as b⃗ then

a⃗.⃗b = |⃗a||⃗b|cos(θ) (3.8)

Then the projection of a⃗ on b⃗ is just [20]

|⃗a|cos(θ) = a⃗.⃗b

|⃗b|
=

b⃗

|⃗b|
.⃗a (3.9)

The resultant is just a scalar which gives us the distance along A⃗C. For the full

projection vector, we need to multiply by the unit vector as

|⃗a|cos(θ) = b⃗

|⃗b|
.⃗a.(

b⃗

|⃗b|
) = a⃗.⃗b

b⃗

|⃗b|2
(3.10)

This is the projected vector. To get the projected point, we need to add the resultant

vector to point A. Let P be the projected point in 3D, then

P = A+ a⃗.⃗b
b⃗

|⃗b|2
(3.11)

Now that we have the projected point, the distance and angle are easy to calculate,

Let R = (x1, y1, z1) and P = (x2, y2, z2)

distance =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (3.12)

To calculate the angle, consider the camera frame in Figure 3.4
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Figure 3.4: Camera optical frame for angle calculation

If projected point P = (x2, y2, z2) then the angle can then be calculated as

θ = atan2(
−x2

z2
) (3.13)

Convert landmarks from camera to world frame

Now that we have the distance from the camera plane and the angle from the

robot to the landmark, we need to convert the landmark position from the camera

frame to the world frame. For this, we will use the transformations package provided

by ROS2 to apply transformations from the camera and robot frame to the world

(Odom) frame. From 3.4, we can see that we need to find R⃗A, which gives us the

actual distance of the landmark from the robot. We can compute R⃗A easily using

3.14 and 3.15
camerax = distance ∗ cos θ (3.14)

cameray = distance ∗ sin θ (3.15)
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This is still the distance from the camera to the tree. Using the tf2_ros package, we

can use the lookup_transform() function to get the transformation from the camera

optical frame to Odom (world) frame. Consider tcw to be the translation from camera

to world frame. Also, we need to consider the robot’s orientation with respect to the

world frame. This can be done by calculating the rotation matrix from the robot to

the world frame. Let Rrw be this rotation matrix. The yaw angle can be found from

the rotation matrix as:
α = tan−1(

r21
r11

) (3.16)

The final equation to find the world coordinate is given in 3.17 and 3.18

worldx = tcw.x+ distance ∗ cos(θ + α) (3.17)

worldy = tcw.y + distance ∗ sin(θ + α) (3.18)

3.2.8 Optimize for CPU - OpenVino

The Detectron2 Keypoint Detection works pretty well with the pre-trained

weights of [2], but as we need the solution to work on embedded boards, we will try

to optimize the model as much as possible. The embedded board currently present

on the robot does not have a GPU. So, our first approach is to optimize it for CPU

processing and check if the inference time is good enough for the navigation to work.

We aim to achieve at least 5 FPS on inference to run the navigation stack at 5 Hz.

To achieve better inference on Intel-based CPUs, we will be using the OpenVino

platform. OpenVino is a toolkit provided by Intel to optimize deep learning models

from almost any framework and perform faster inference on Intel-based hardware.

It does so by using load balancing, memory reuse, graph fusion, and parallelism of

inferencing across Intel CPU, GPU, and VPU, etc.

OpenVino Model Optimizer

To convert to OpenVINO, we first need to convert our model to Open Neural

Network Exchange (ONNX) format. Facebook provides this ONNX conversion for

any Detectron2 module, including Keypoint Detection. The out-of-the-box support

for ONNX conversion makes Detectron2 an ideal choice for our use case. Facebook

has provided a script, export_model.py, inside the official Detectron2 reposi-

tory on GitHub. We can run the script with our pre-trained weights and convert it
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to ONNX format. Check Code A.1 to convert the Detectron2 Keypoint model to

ONNX. We must also provide a sample image of the data where we will run the

inference. The dimensions of the image matter for optimizing the model. The script

will generate an ONNX format output which can easily be converted to OpenVINO

IR (Intermediate Representation) format.

Once the ONNX file is ready, we can use OpenVino’s built-in Model Optimizer

tool to convert ONNX to OpenVINO IR format. We can also change the precision

of the output to fp16, which corresponds to 16-bit floating point precision. This will

further optimize our model. The Model Optimizer will output two files which can

then be used by OpenVino Runtime.

OpenVino Runtime

OpenVino Runtime is a library built on C++, and it provides support for both

C++ and Python to run inference on any platform. With the conversion to OpenVino

IR format, we can remove the model’s dependency on the Detectron2 module, as it

can run without using the Detectron2 engine for inference. We will load our network

in OpenVino Runtime and preprocess our image before feeding it to the compiled

IR model. We will do a performance comparison of the Detectron2 engine vs. the

OpenVino Runtime in the Results section.

OpenVino GPU

We can also configure OpenVino Runtime to use Intel GPUs to run inference.

But, as our Detectron2 model contains some unsupported layers for GPU, such as

Non-Maximum Suppression Layers, we cannot run the model for Intel-based GPU.

3.2.9 Optimize for GPU - TensorRT

We will also be optimizing the Detectron2 Keypoint Detection model for

NVIDIA-based GPUs. The embedded board on the robot currently does not have

a GPU, but we can attach a Jetson device if needed. The make our model work on

the Jetson device with optimal inference time, we will be converting the model to

TensorRT format. In the same way that Intel published OpenVino to provide opti-

mal inference for deep learning models on their hardware, NVIDIA has published
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the TensorRT framework to run inference on their hardware, especially the CUDA

cores. TensorRT is highly optimized and one of the fastest ways to do inference.

The TensorRT compiler compresses a model to run faster and use less memory.

The compressed model has almost the same accuracy as before, with faster and more

efficient memory allocation. This is possible as the compiler evaluates and fixes the

computation graph and runs faster inference. It also combines some of the operations

together, e.g., convolution and activation layers.

Conversion to ONNX format

Like OpenVino, TensorRT requires the Detectron2 model to be converted to

ONNX format. For this, we can use the same script as before, provided by the

Facebook team itself, to convert to ONNX. But, if we remember from last time,

some layers are not supported on GPUs, such as the Non-Maximum Suppression

Layer. So conversion to ONNX works fine, but converting it to TensorRT engine

format will fail. To handle these cases, NVIDIA has provided an official example

to support the conversion of the Detectron2 Mask RCNN ResNet-50-FPN model to

TensorRT.

We are also using the ResNet-50-FPN backbone for our case but we are not using

Mask RCNN. We are doing Keypoint Detection, and NVIDIA does not yet support

the Detectron2 Keypoint Detection conversion. We will implement this conversion

and test against the original model for inference time.

Create ONNX graph

To get the ONNX format suitable for TensorRT conversion, we will start the

same way as we did for OpenVino. After converting the Detectron2 model to ONNX

format using the official script provided by the Detectron2 team, we will generate

an ONNX graph format suitable for TensorRT conversion. The sample image we

are providing for simulation has dimensions of 1280x800. Anything having a width

of less than 800 is not supported by Detectron2 ONNX conversion. We will remove

this limit from the script as, for our real use case, we receive images of 640x480.
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Optimizations in the ONNX file

After we have the ONNX format, we will convert the ONNX to Graph ONNX,

which will replace and remove some layers from the original ONNX file that

TensorRT does not support. The official example from NVIDIA does not work for

our case as we are using Keypoint Detection, so we will be taking help from onnx-

graphsurgeon. It is a convenient tool for modifying ONNX graphs. We will extend

the official script for Mask RCNN to work with Keypoint Detection. We are remov-

ing any unconnected nodes and doing constant folding inside the script. We also

remove all the pre-processing nodes other than image normalization in the ONNX

graph. As Non-Maximum Suppression is not supported, GenerateProposals and

BoxWithNMSLimit layers are replaced with Efficient NMS TensorRT. The Efficient

NMS is a plugin by NVIDIA for faster non-maximum suppression. But to replace it

with efficient NMS, we require anchors from feature maps of the Detectron2 model.

The exported ONNX file from Detectron2 does not have these anchors, so we will

also extract them offline. The Region of Interest Align layer is replaced with the

TensorRT plugin called PyramidROIAlign_TRT. This, along with some other opti-

mizations, removes a lot of unnecessary layers and replaces some of them with their

efficient TensorRT version.

MaskRCNN to Keypoint Detection in ONNX graph

To change the output layers, we will remove the output layers for MaskRCNN and

replace them with Keypoint Detection layers. We will extract the last Convolution

layer which is actually a ConvTranspose layer, and output it as it is from the ONNX

graph. We will later apply some processing during the TensorRT inference engine

on this Convolution layer to extract keypoints. The final ConvTranspose, as seen in

Figure 3.5 outputs a torch of size 100x5x28x28 where 100 is the maximum number

of detections the model can perform, 5 is the number of keypoints to be detected,

and 28x28 is the size of output mask. We will process this mask along with bounding

boxes to get the keypoints.
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Figure 3.5: Converted graph ONNX final ConvTranspose layer

There are certain limitations, such as fixed input image size and the number of

detections which will be discussed in the Limitations section.

Build TensorRT Engine

Now that we have the converted ONNX file suitable for TensorRT, we can easily

convert the model to TensorRT. We can do it using the trtexec tool provided by

TensorRT and give all the required parameters, or the NVIDIA team has provided a

script, build_engine.py, in their official GitHub repository for building the converted

ONNX to TensorRT with optimal parameters. We can change the precision to 16-bit

floating point (fp16) or 8-bit integer(int8).

The int8 precision is supposed to work much faster than the fp16 or the original

32-bit floating point precision, but we will check for the trade-off between precision

and speed and decide which one is better to use. For int8 precision, we also have

to provide calibration files, which are basically sample images. It can be training or

validation images as well. The more images for calibration, the better the precision.
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After conversion to the TensorRT engine, we can run inference using the inference

plugins provided by TensorRT. But as mentioned before, we need to do some pro-

cessing during the inference for our model to work with Keypoint Detection.

TensorRT inference

TensorRT provides plugins to run inference in Python. We will use those plugins

but extract different output layers, such as bounding boxes, masks, and scores. From

the scores, we will test if the confidence level is higher than a certain level. From the

bounding boxes and masks, we will extract keypoints. We will take the heatmap,

i.e., mask values inside the bounding box, interpolate the values using the PyTorch

interpolate() function and take keypoints as mid values of the heatmap. Also, the

conversion from discrete pixel to continuous coordinate is done using [21]

c = d+ 0.5 (3.19)

Where c is continuous, and d is a discrete coordinate. We are also clipping the values

of bounding boxes based on the image height and width.

3.2.10 Reactive navigation

After generating optimized models for tree detection and having keypoint loca-

tion in the world frame, we can use it for navigation. We are doing reactive navi-

gation, which means that we will perform navigation based on the current or most

recent detected state from the sensors. We will not store the previous state anywhere

and navigate the agriculture field reactively. For this, we will be using Pure Pursuit

Algorithm.

Generating path

The pure pursuit algorithm takes a path as input and generates velocity com-

mands. We will first look into how we can generate a path so robots can easily go

through the fields. For this consider Figure 3.6
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Figure 3.6: Generate path points based on detected landmarks

From the figure, we can see that the robot observes some landmarks (colored in

green), and we know the world coordinates of these landmarks through Equations

3.17 and 3.18. We are assuming that we know the width of lanes. So, we will generate

two navigation points for each landmark, colored in red, at half of the width distance

on the left and right sides of the landmark. If we detect two landmarks at the same

distance from the robot and their relative distance is close to the width of the

lane, we will update the navigation point between them using the average of both

landmark points. This will update the location of the navigation point in real time

based on the position of landmarks.

Once we have the navigation points, we will check the angle of each navigation

point relative to the robot. As we already know the current heading of the robot,

we can check which navigation points are in direct sight of the robot. If the angle

of the point with respect to the robot is below some threshold, e.g., 10°, then it is

added to the generated path. This is shown in Figure 3.7
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Figure 3.7: Detect navigation points in the same direction

The angle γ is already known as it is the current heading of the robot. We also

know the world coordinates of both robot and the navigation point and can easily

calculate θ. Hence we can apply some threshold value and only take points that are

almost in the same direction as the robot. We will then sort these points based on

their distance from the robot. This generated path, shown in orange color in Figure

3.6, is then passed to the pure pursuit algorithm that we will go over in the next

section.

Lane change

Before going over the pure pursuit algorithm, we also need to define a maneuver

path so the robot is able to change the lane and traverse through the next lane. For

this, we again use the pure pursuit algorithm and we define some custom points in

the path that the robot follows and is able to align itself with the next row. Consider

Figure 3.8
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Figure 3.8: Lane change maneuver

We are generating three points in front of the robot that the robot follows using

pure pursuit and changes the lane.

Pure pursuit algorithm

The pure pursuit algorithm is used to get the robot to follow a path by calculating

the distance to the goal point and navigating to it by following an arc path. It makes

the vehicle move in a curved path to reach the goal position. It also uses a look-

ahead distance that measures the next goal of the robot. The point in the path that

is closest to the look-ahead distance is taken as the next goal and the robot follows

a curvature to reach it. It is called pure pursuit as the robot is in pursuit of the

look-ahead distance. Consider Figure 3.9
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Figure 3.9: Robot pose and target position

From the figure, we can find the steering angle using Equation 3.20

γ = atan2(
targetY − currentY

targetX − currentX
)− θ (3.20)

We can find the distance between the points using the simple Euclidean distance

and based on the look ahead, we will decide if it is the closest point. If the point is

the closest, we will generate a pre-defined constant velocity along with the desired

steering angle and pass it to the command velocity of the robot.

3.3 Limitations and assumptions

As we mentioned before, some of the limitations and assumptions are:

• The camera should be placed at a small height from the robot so the robot is

able to see the tree trunks or strawberry poles easily.
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• The width of the lane should be known beforehand so we can generate better

navigation points. Also, the robot should be in line with the lane before we

run the perception and navigation modules.

• The TensorRT engine model should be built on the same device where inference

is to be done.

• The model optimized by TensorRT has a fixed input size. If the image size

changes by using a different camera, we need to re-optimize our model by

passing the sample image from the new camera.

3.4 Conceptual diagram

A visual representation of the conceptual diagram is depicted in Figure 3.10

Figure 3.10: Conceptual diagram of the methodology
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Results

4.1 Simulation environment

4.1.1 Generating Gazebo world

We need to generate our simulation environment precisely so we can perform

tests before going to the real fields. The Python script generates a custom number

of rows and trees in each row at specific distances. It is shown along with the robot

model in Figure 4.1

Figure 4.1: Gazebo environment with the robot and trees

The robot model is correctly generated with the correct transformation tree. The
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robot is also equipped with a camera and LiDAR. Figure 4.2 shows the output of

the camera and LiDAR when placed in the tree environment.

Figure 4.2: Camera and LiDAR output in RViz

4.2 Tree detection using deep learning

Tree detection is working pretty well on color images in the simulation environ-

ment. The confidence score for trunk detection is above 90% as we are not taking

anything below 90% confidence into account.

4.2.1 Color image to depth image mapping

The keypoints are detected on the trunks of the trees as shown in Figure 4.3
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Figure 4.3: Keypoint detection on RGB image

These keypoints are later mapped on the depth image and as evident from Figure

4.4, they are in sync with each other.

Figure 4.4: Keypoint detection on depth image

4.2.2 Precision of tree detection

The location estimation of trees is quite accurate in Gazebo. The first row is

placed at a distance of six meters from the center of the robot. Figure 4.5 shows the
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RViz display of tree detection. Each grid corresponds to one meter. The measured

distance is almost six meters from the robot.

Figure 4.5: Estimated distance of six meters from the robot to the tree

4.2.3 Speed of tree detection

CPU inference time

As the embedded board on the robot does not have a GPU, we started with CPU

inference of the Detectron2 model. The keypoints are detected fine using the CPU,

but they are extremely slow. The inference for one frame took around 20 seconds

with Gazebo and RViz.

We ran the gazebo in headless mode, and the inference time improved, and one

frame now takes around 6 seconds. The need for OpenVino is evident from these

findings. After converting the model to OpenVino, we ran it using the OpenVino

Runtime and observed that the inference time had improved by a factor of 2.5x.

The time taken by one frame dropped to 2.4 seconds. Although we are seeing much

improvement, this is extremely slow for any reasonable results for robotic navigation.

The 2.4-second inference time corresponds to 0.41 FPS, and our minimum is to

obtain 5 FPS.
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GPU inference time

We have to use GPU to obtain meaningful results. We will use a laptop fitted with

NVIDIA RTX 3060 Laptop GPU with 6GB memory. Running the inference model

without optimization takes around 0.12 seconds for one frame. This corresponds to

8 FPS. The FPS is good enough for navigation but the GPU is very powerful and we

ideally want 5 FPS on a Jetson device. So we will try to optimize this time as much

as possible. The FPS is obtained in a simulation environment where the camera

gives us an image of 1280x800 size.

Using TensorRT to optimize the inference model and runtime, we ran our code

with 16-bit floating point and 8-bit integer precision. The inference improved by a

factor of 2x. With fp16 precision, the inference time is 0.055 seconds, giving us 18

FPS. We also traversed through the whole field and kept every detection as a marker

in RViz to visualize the detection as shown in Figure 4.6

Figure 4.6: Tree detection using 16-bit floating point precision

Using int8 precision, it improves to 20 FPS. The precision is almost the same as

with 16-bit precision, so it is better to use int8 precision. The results obtained with

int8 precision are depicted in Figure 4.7
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Figure 4.7: Tree detection using 8-bit integer precision

4.2.4 Lane center and change maneuver

We are generating the path as described in the methodology section above. We

take the robot’s current heading and only take the navigation points that exist in

the line of sight of the robot. We then sort the points based on their distance from

the robot and generate a path. The generated lane center is shown in Figure 4.8

Figure 4.8: Lane center path
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After the robot traverses through a lane, we perform the lane change maneuver

and generate a new path that the robot follows using the pure pursuit algorithm

and changes the lane. The lane change path is shown in Figure 4.9

Figure 4.9: Lane change path

After changing the lane, the robot keeps going through lanes and keeps traversing

until no more lanes are left. Figure 4.10 shows the reactive navigation in action

where the robot is reactively navigating through lanes and changing lanes.
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Figure 4.10: Reactive navigation using pure pursuit

4.2.5 Tilted lanes

Our algorithm will still work if the lanes are tilted at some angle. The navigation

points that are in direct sight of the robot are taken into account. We calculate the

angle using navigation points and robot position. The navigation module will use

the generated path to follow it safely in a tilted direction, as shown in Figure 4.11
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Figure 4.11: Reactive navigation on tilted lanes using pure pursuit

The lane change maneuver will also adapt to the tilted lanes and generate a path

that the robot can follow to change lanes. The generated path is shown in 4.12

Figure 4.12: Lane changing on tilted lanes
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4.3 Real environment

For the real environment, we have collected a rosbag file with the scout robot

in Budapest. The robot goes through a path with some trees, and the detection on

real trees is shown in Figure 4.13

Figure 4.13: Real tree detection using TensorRT engine

The robot uses a camera that outputs an image of 640x480 size. As the size has

changed, we need to rebuild our ONNX file and TensorRT engine and then perform

inference. The model is trained for trees, but we can also detect other cylindrical

objects, such as in strawberry fields where the strawberries are planted on top of

white poles. The model is able to detect some of these poles as shown in Figure

4.14. If the camera is fitted slightly lower, more poles can be detected.
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Figure 4.14: Real strawberry pole detection using Detectron2 engine

The inference time in the real environment is even lower as there is no Gazebo

overhead and the image resolution is also lower. With Detectron2 and GPU, we

are getting around 0.09s inference time. The inference time drops to 0.04s with

TensorRT optimization using 16-bit floating point precision. We also tested using

8-bit integer precision on the real environment, and the inference time goes back and

forth between 0.05 and 0.025 seconds. It gives us 20-40 FPS. As the 16-bit floating

point gives us more stable results in the real environment, we will take 25 FPS as our

final optimized result. A summary of all the different inference speeds is presented

in Table 4.1

Value CPU GPU Real GPU
Detectron OpenVino Detectron TensorRT Detectron TensorRT

Inference 6s 2.4s 0.12s 0.05s 0.09s 0.04s
FPS 0.167 0.41 8.33 20 11 25

Table 4.1: Inference time and FPS in simulation and real environment
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Chapter 5

Discussion

5.1 Interpretation of results

The perception module is working quite well. The confidence score for the trees

is above 95%. The only issue was the slow inference time which was improved by

converting the model to the TensorRT engine. However, The TensorRT engine is not

generic and must be recompiled if the image size changes. For one type of camera,

it usually remains the same. The engine should be built on the machine where the

inference will be done. But these are not very tiring tasks as we have the script for

everything.

The navigation module is also working flawlessly in the simulated environment.

We did not have the resources to test it in a real-world field yet. The pure pursuit

algorithm works well if the path is correctly generated from the output of the per-

ception module. The camera has to be positioned so that most of the tree trunk is

visible for the detection to work. The detection does not only work for trees but for

most cylindrical objects. That is why we have added some additional checks, such

as checking the inclination angle of three keypoints with the y-axis of the camera.

As we are doing reactive navigation, we do not need to store the previously

detected trees in the state. We do not care much about the robot’s localization as

it reacts to the information in real time and stays in the center of the field. The

somewhat controllability of the environment helps us in navigating the fields.
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5. Discussion

5.2 Comparison with previous research

The authors of [2] mentioned that they achieved 18 FPS with ResNet-50-FPN

backbone on a very powerful GPU. Our GPU is not as powerful and has less memory.

In our tests, the same model gave around 8 FPS. But by implementing the TensorRT

engine for Keypoint Detection, we optimized our model to achieve around 20 FPS

with 8-bit integer precision. This FPS goes up to 25 with 16-bit floating point

precision in the real world, where the camera gives us a lower resolution image, and

there is no Gazebo overhead that takes up processing power. There is still room

for improvement as the TensorRT inference is done in Python language, which is

not very optimized for running CUDA Graphs. In the future, we can use C++ for

inference, and the FPS is expected to increase even further.

5.3 Limitations and future research directions

5.3.1 Limitations

After performing both real-world and simulation tests, we found some limitations

of our solution

• The solution works perfectly for tree trunks, but it should ideally work for all

situations, such as strawberry fields where the plants are attached on top of

poles. The solution does detect these poles but not with a good confidence

score.

• The TensorRT engine has to be rebuilt if the image size or device changes.

• The navigation stack assumes that we already have information about the

width of the lane, and the robot is centered around the first lane.

5.3.2 Future directions

To overcome these limitations, we will outline some future directions to solve

these problems

• The Detectron2 model can be trained using transfer learning for new images

of strawberry field poles. The weights will be changed but the conversion to
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5. Discussion

TensorRT will remain the same. The newly trained model can be easily con-

verted to the optimized TensorRT engine.

• The optimized model should be tested on embedded boards such as Jetson

devices to test the inference time.

• The TensorRT engine currently uses Python but should be written in C++ to

utilize CUDA Graphs to achieve even more FPS.
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Chapter 6

Conclusion

The Detectron2 model, coupled with the pre-trained weights, effectively detected

trees and estimated their location in the global frame. However, it was extremely

slow and not feasible for robotics navigation. The optimizations performed on the

model using the TensorRT engine made it 3 times faster, achieving 25 FPS on real-

world tests. We have converted the Detectron2 Keypoint Detection to an optimized

TensorRT engine format. This will help save computation costs and make it feasible

to run perception modules on embedded computers such as NVIDIA Jetson devices.

The navigation stack takes input from the perception module and reactively navi-

gates through lanes. It traverses through lanes, changes lanes, and goes through the

whole field until no more lanes are left.

6.1 Research answers

• The perception module, equipped with an RGB-D camera, could precisely

estimate the location of trees. Based on the measurements, we estimated a

feasible path by calculating the center of the field rows for the navigation

module.

• The perception module was optimized with OpenVino and TensorRT, and it

achieved up to 20 FPS in simulation and 25 FPS in real-world testing using

NVIDIA 3060 Mobile GPU.

• The navigation module, after taking the input from the perception module

about the center of rows, used the pure pursuit algorithm to safely navigate

through the lanes and perform lane change maneuver.
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Appendix A

Reference Codes and Algorithms

A.1 Detectron2 to ONNX

1 git clone ’https :// github.com/facebookresearch/detectron2 ’

2

3 python detectron2/tools/deploy/export_model.py \

4 --sample -image image.png \

5 --config -file detectron2/configs/COCO -Keypoints/

keypoint_rcnn_R_50_FPN_3x.yaml \

6 --export -method tracing \

7 --format onnx \

8 --output ./ \

9 MODEL.WEIGHTS ./ output/R-50 _RGB_60k.pth \

10 MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE 256 \

11 MODEL.ROI_HEADS.NUM_CLASSES 1 \

12 MODEL.SEM_SEG_HEAD.NUM_CLASSES 1 \

13 MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS 5 \

14 MODEL.ROI_HEADS.SCORE_THRESH_TEST 0.90 \

15 MODEL.MASK_ON True \

16 INPUT.MASK_FORMAT bitmask \

17 INPUT.MIN_SIZE_TEST 480 \

18 INPUT.MAX_SIZE_TEST 640 \

19 DATALOADER.NUM_WORKERS 8 \

20 SOLVER.IMS_PER_BATCH 8 \

21 MODEL.DEVICE cuda

Code A.1: Export Model to ONNX
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A.2 ONNX to converted ONNX for TensorRT

We need to remove some layers and replace them with the TensorRT version

in the ONNX file generated by the Detectron2 script above. We can do it using

TensorRT as:

1 git clone ’https :// github.com/NVIDIA/TensorRT.git’

2

3 python TensorRT/samples/python/detectron2/create_onnx.py \

4 --exported_onnx ./ model.onnx \

5 --onnx ./ converted.onnx \

6 --det2_config detectron2/configs/COCO -Keypoints/

keypoint_rcnn_R_50_FPN_3x.yaml \

7 --det2_weights ./R-50 _RGB_60k.pth \

8 --sample_image image.png

Code A.2: Optimize ONNX Model by TensorRT

A.3 Converted ONNX to TensorRT

Finally, we need to build the engine on the same device where we will run our

inference node.

1 git clone ’https :// github.com/NVIDIA/TensorRT.git’

2

3 !python3 TensorRT/samples/python/detectron2/build_engine.py \

4 --onnx ./ converted.onnx \

5 --engine ./ engine.trt \

6 --precision fp16 \

7 --det2_config detectron2/configs/COCO -Keypoints/

keypoint_rcnn_R_50_FPN_3x.yaml \

Code A.3: Converted ONNX to TensorRT

A.4 Algorithms

A general Pure Pursuit algorithm is shown in Algorithm 1.
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Algorithm 1 A general pure pursuit algorithm
Funct pure_pursuit(current_x, current_y, θ, path, index)
1: Set the look ahead distance lookahead_distance := 0.0
2: for i = index, . . . , len(path) do
3: x = path[i][0]
4: y = path[i][1]
5: distance = math.hypot(current_x− x, current_y − y)
6: if lookahead_distance < distance then
7: pclose = (x, y)
8: index = i
9: break

10: end if
11: end for
12: if closest_point is not None then
13: α = math.atan2(pclose[1]− current_y, pclose[0]− current_x)
14: γ = α− θ
15: else
16: α = math.atan2(path[−1][1]− current_y, path[−1][0]− current_x)
17: γ = α− θ
18: index = len(path)− 1
19: end if
20: if γ > π then
21: γ = γ − 2π
22: end if
23: if γ < −π then
24: γ = γ + 2π
25: end if
26: if γ > π

7
or γ < −π

7
then

27: sign = 1 if γ > 0 else −1
28: γ = sign ∗ π

7

29: end if
30: return γ
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