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“In the canvas of exploration, SLAM paints a vibrant tapestry, blending sensor data

strokes and probabilistic hues to compose a masterpiece of understanding.”

“Na plátně průzkumu maluje SLAM živou tapisérii, na níž se mísí tahy dat ze

senzorů a pravděpodobnostní odstíny, aby vzniklo mistrovské dílo porozumění.”

“En el llenç d’exploració, SLAM pinta un tapís vibrant, combinant traços de dades

del sensor i matisos probabilistes per compondre una obra mestra de comprensió.”

“На полотнi дослiдження SLAM малює яскравий гобелен, поєднуючи мазки

сенсорних даних та iмовiрнiснi вiдтiнки, щоб створити шедевр розумiння.”

- ChatGPT [1]
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Title of the thesis 

Autonomous Robotic Exploration in Communication-Denied Environments 

Topic of the thesis (1 – 1,5 pages) 

During autonomous robotic exploration, human supervision is desired to monitor the mission 
performance or assist in specific cases where autonomy cannot safely resolve the mission progress. In 
communication-denied environments, suitable communication infrastructure is unavailable, and the 
robot needs to build and maintain communication connectivity with a supervision base station. The 
thesis goal is to investigate localization methods and active perception strategies in combined spatial 
exploration and communication infrastructure building.  

The following achievements are expected. 

� Familiarize with the existing autonomous exploration frameworks [1,2] and communication 
accessibility models based on interpolation [3] and extrapolation [4]. 

� Propose an integration of existing state-of-the-art Simultaneous Location and Mapping (SLAM) 
methods [5], such as GTSMA [6], into the exploration framework [7] used in a single robot 
exploration scenario [8].  

� Propose exploration strategy in active perception scenario combining spatial exploration with 
communication infrastructure building [9] with deployable communication modules [4].  

� Develop and integrate proposed solutions using a multi-legged walking robot or wheeled ground 
robotic platform of the Computational Robotics Laboratory at the Czech Technical University in 
Prague (CTU).  

� Propose ideas for an eventual generalization for the multi-robot systems.  
� Develop and integrate proposed solutions using a multi-legged walking robot or wheeled ground 

robotic platform of the Computational Robotics Laboratory at the Czech Technical University in 
Prague (CTU).  

� Propose ideas for an eventual generalization for a multi-robot exploration framework [9]. 

The following research questions are supposed to be answered.  

� How does the proposed SLAM system improve navigation for a restricted set of sensors?  
� What is the performance effect of combining spatial and communication exploration models?  
� How does the proposed exploration system perform with multiple robots?  

The following tools and methods are expected to be used. 

� The development would be performed using ROS1 and C++ programming language. For simulation, 
the DARPA Subt simulator1 will be used. It could be launched using docker. 

� For Localization, the robot would use 3D point clouds outputted by the 3D Lidar. Other sensors may 
be integrated. An Iterative Closest Point (ICP) method combined with Inertial Measurement Unit 

 
1 https://github.com/osrf/subt 



 

 

 

 

(IMU) may be used for basic odometry. On top of that, SLAM frameworks, such as GTSAM2, may 
be added to fuse with other measurements. 

� For mapping the environment, a 2.5D map representation would be used. The ANYbots library3 will 
be used for the first tests, with a possible switch to a custom mapping implementation inspired by 
it. The Eigen library will likely be used. In any case, the map could be represented using the 
GridMap4 library or by a custom implementation inspired by it. 

� Custom code or Robotic Systems Lab’s package5 may be used to generate traversability maps. 
� The move_base6 package could be used for the navigation stack during the early stage. Afterward, 

custom nodes for path planning and path following could be implemented.  
� Custom frontier detection and different frontier fusion could be used for exploration management. 

 

Keywords: Mobile robotic exploration, autonomous navigation, localization, SLAM, communication 
infrastructure building. 
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Abstract

In this thesis, motivated by the autonomous exploration problem, we address

the problem of autonomous robot localization using Simultaneous Localization and

Mapping (SLAM) with Light Detection and Ranging (LiDAR) perception enhanced

by black-box visual odometry in scenarios where laser scan matching can be am-

biguous because of a lack of sufficient features in the scan. We propose to develop a

novel localization method based on the Graph SLAM approach that benefits from

fusing data from multiple types of sensors to overcome the drawbacks of using only

LiDAR data. The proposed localization method uses a failure detection model based

on the quality of the LiDAR scan matching and inertial measurement unit (IMU)

data. The failure model improves LiDAR-based localization by an additional local-

ization source, including low-cost black-box visual odometers like the Intel RealSense

T265. The proposed method is compared to the state-of-the-art localization system

LIO-SAM in cluttered and open urban areas. Based on the performed experimental

deployments, the proposed failure detection model with black-box visual odometry

sensor yields improved localization performance measured by the absolute trajectory

and relative pose error indicators. Furthermore, we developed elevation mapping and

traversability estimation to employ the proposed localization method in autonomous

robotic exploration that is based on the frontier-based exploration strategy. The pro-

posed localization method has been experimentally validated within the developed

exploration framework in the outdoor field experimental deployments in the campus

backyard, where it allows building successfully aligned map of the environment.
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Chapter 1

Introduction

This section starts with describing the context of the SLAM problem for ex-

ploration in Section 1.1. The specific addressed problem is explained in Section 1.2.

The section continues by summarizing the proposed approach to face the problem in

Section 1.2. Finally, in Section 1.4, the structure of the thesis remainder is described.

As the research progressed, it became apparent that there was a need to address

the issue of failure-resilient simultaneous localization and mapping (SLAM) in au-

tonomous robotic exploration, especially in environments without Global Navigation

Satellite System (GNSS) signals. Consequently, the title of the thesis was changed

from "Autonomous Robotic Exploration in Communication-Denied Environments"

to "Failure-Resilient Graph-based SLAM for Autonomous Robotic Exploration in

GNSS-Denied Environments" to emphasize the importance of effectively addressing

this problem.

1.1 Background and context

The autonomous robotic exploration problem appears in scenarios where a map

of the operational environment is not a prior known, such as search-and-rescue

missions, and the robot is requested to build such a map. Hence, spatial robotic

exploration aims to explore an unknown environment and build a desired environ-

ment representation, a map. In autonomous exploration, it is necessary to address

the autonomous robot navigation and decision-making to determine where to nav-

igate the robot next, represented as the exploration strategy. The navigation itself

consists of localization, mapping, path planning, and path-following tasks. Mapping
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is needed to interpret the environment; elevation maps [2], which store the height

of the environment, are suitable environment representations for outdoor scenarios

with rough terrains. However, to build a map from the sensory data, it is necessary

to align them properly and consistently, which requires a sufficiently precise estima-

tion of the robot (sensor) pose (position and orientation of the robot and its sensory

equipment). Having a map, the exploration strategy decides where the robot should

move to maximize exploration of the reachable parts of the environment. One of the

commonly used exploration strategies is frontier-based exploration [3] that steers

the robot navigation towards the boundary (frontier) of the already explored and

not yet explored parts of the environment and thus increases the explored parts of

the environment.

The performance of the exploration highly depends on the localization system

that enables environment mapping for which the robot needs to know its pose. In

scenarios where external localization systems, such as satellite navigation, are un-

available or do not work reliably because of signal reflections from tall structures, the

robot’s sensors-based localization is required. In the presented thesis, autonomous

robotic exploration is the motivation to develop a reliable localization system.

The widely adopted method for localizing a robot in an unknown environment

using its sensors is Simultaneous Localization and Mapping (SLAM) [4]. The ap-

proach builds a map of the environment and, at the same time, localizes the robot

with respect to (w.r.t.) such a map. SLAM can be based on data from various

sensors, including Light Detection and Ranging (LiDAR) laser scanners [5], visual

cameras [6], inertial measurement units (IMU), or wheeled odometry, to name just

a few.

Using exteroceptive sensors to build a map of the operational environment within

which the robot is localized allows for decreasing the localization drift compared

to purely proprioceptive incremental methods such as odometry and dead reckon-

ing. Even matching only consecutive frames in Visual Odometry (VO) [7] might

help to overcome drifts of IMU measurements or slippage of the wheeled odome-

try. Nevertheless, the map’s quality is important and related to the data quality,

specifically the depth estimates of the range measurements. LiDAR sensors pro-

vide relatively precise range measurements and can have a resolution in hundreds

or thousands of scanning lines [8]. These properties make them suitable for local-

ization, especially in cluttered environments, where LiDAR scans can be precisely
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matched w.r.t. each other [9]. However, the scan matching may be ambiguous in

long corridors or flat fields, leading to localization failure or a high drift.

Incremental localization methods, such as IMU and odometry-based methods,

including VO, might help to overcome areas where LiDAR scan matching is am-

biguous locally, albeit it can lead to higher drift than the LiDAR-based SLAM

in the long run. Thus, combining multiple data sources can be advantageous in

SLAM, and two main sensor fusion approaches can be found in the literature. The

first is tightly-coupled methods that account for all the sensor raw data to get the

localization estimation, such as in LiDAR Inertial Odometry via Smoothing and

Mapping [10] (LIO-SAM), where an IMU displacement measurement serves as an

initial guess for the scan-matching of LiDAR scans. The second class of sensor fusion

methods is loosely-coupled approaches that fuse multiple localization sources, mean-

ing that two displacement outputs from localization systems are fused at the top.

Consequently, the resulting estimation tends to be more robust because a failure of

one source does not provoke the failure of another. Besides, loose coupling allows

the integration of several independent localization systems, making the whole system

modular and easily replaceable compared to tightly-coupled systems. However, in

scenarios where both localization sources function normally, tightly-coupled methods

might improve the performance better than loosely-coupled methods. For example,

a loosely-coupled method for the fusion of LiDAR and IMU would not give an ad-

vantage of a good initial guess for the scan matching.

In the presented thesis, we report on the developed failure-resilient localization

system to address the localization problem leveraging both tight and loose coupling.

Motivated by the deployment of exploration, we developed an exploration framework

that combines the proposed localization, mapping, exploration strategy with path

planning and path following to validate the proposed localization method and reveal

potential improvements of the method.

1.2 Problem Statement

Localization is an active research field, specifically in challenging environments

with limited availability of the global satellite signal. Within the thesis, we face a

failure-resilient localization problem using an additional odometry source. We con-

sider localization a critical component of autonomous exploration; therefore, we aim
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the evaluate the localization performance within the exploration. We present the

developed localization system in the exploration context and address the following

research questions in the thesis.

1. Is the proposed localization method resilient against LiDAR-based localization

failure?

2. What is the performance of the proposed localization method compared to

state-of-the-art methods?

3. Is the proposed exploration method sufficient for exploring the outdoor envi-

ronment?

4. Can the proposed localization system support the developed exploration frame-

work in the case the employed LiDAR odometry fails?

1.3 Methodology and Approach

We propose building the developed localization system on the existing work and

an extension of the Pose-Graph SLAM [11], combining tightly and loosely coupled

ideas. We propose to use tightly coupled sensory fusion between LiDAR and IMU,

similar to LIO-SAM [10]. Besides, the developed solution allows utilizing additional

sources of pose estimates in a loosely-coupled manner, improving the SLAM perfor-

mance when LiDAR-based localization fails. Various methods of incremental local-

ization can be used in loose-coupling, and we opt for the black-box embedded stereo

visual localization system, the Intel RealSense T265 (T265) [12], and visual-inertial

localization VINS-Mono [13]. We propose a relatively straightforward failure detec-

tion model that triggers incorporating an additional low-quality pose estimate into

the developed Pose-Graph SLAM. The model assesses LiDAR scan matching quality

to indicate possible matching failure and IMU-based pose change prediction to con-

firm the failure for switching the pose estimate source. Incorporating the additional

localization source is enhanced by an auto-scaling mechanism and improved graph

structure.

The triggering threshold for failure detection has been experimentally established

using a real robotic system, and the proposed Graph-based SLAM has been deployed

in several deployments and compared with the selected state-of-the-art LiDAR-based

8
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Figure 1.1. Results of the developed methods. Notice that even though the matching of
the LiDAR scans was unsuccessful in some areas, the proposed method can use scale and
pose drifting visual localization VINS-Mono to overcome such areas and close the loop.

SLAM. Based on the experimental results, the proposed method demonstrates im-

provement of the localization performance by the additional source of the incremen-

tal localization while not sacrificing LiDAR-based performance in scenarios where

LiDAR scan matching performs well, see Fig. 1.1a.

For the environment representation of the exploration part, we developed an in-

stance of the elevation mapping method, from which the traversability map is com-

puted to detect untraversable areas (obstacles) that are avoided by path planning.

We employed frontier-based exploration strategy [3] to set the exploration goals,

an external path planner to plan towards these goals, and a follow-the-carrot path

follower to follow the planned path. The developed exploration framework can nav-

igate the robot in the unknown environment and construct a representation of the

environment supported by the developed localization system as shown in Fig. 1.1b.

LiDAR-based localization itself, with no failure detection and additional odometry

incorporation, was not able to localize the robot in such an environment. Thus, the

presented thesis successfully faced the challenged research questions.

We consider the main contributions of the proposed approach as follows.

• Modular enhancement of existing Pose-Graph SLAM by a loosely coupled

unreliable additional localization system.

• Two-step failure detection model, allowing detection of LiDAR-based localiza-

tion failure.

• Outdoor exploration and elevation mapping framework.
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1.4 Thesis’s Structure Overview

The rest of the thesis is organized as follows. Chapter 2 overviews the related

literature, including a brief description of the selected reference LIO-SAM frame-

work. The proposed method, including exploration and localization, is described

in Chapter 3. Experimental results are reported in Chapter 4 and discussed in

Chapter 5. Finally, the thesis is concluded in Chapter 6.
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Chapter 2

Literature Review

2.1 Overview of Relevant Literature

Autonomous exploration is one of the fundamental problems in robotics. We

consider the exploration task as a problem to autonomously build a map of (pos-

sibly a priory unknown) environment. Existing map representation approaches in-

clude occupancy gridmap [14] (2D) and octomap [15] (3D). While a pure 2D map

(grid map) is designed for flat terrains, an octomap is a more complex 3D repre-

sentation requiring complex and computationally demanding algorithms. Therefore,

a 2.5D elevation map [2] is a suitable trade-off for a wide range of outdoor au-

tonomous exploration tasks. It combines 3D information (elevation) sufficient for

terrain mapping and computational efficiency of projection to a 2D-matrix repre-

sentation. Implementation [16] proposes an efficient robot-centric elevation map.

Although it is designed to map only the local area of the robot’s surroundings, it

inspired our solution.

The exploration strategy to explore unknown parts of the environment can be

based on the frontier-based exploration [3] that utilizes a border between unknown

and unknown parts of the environment (called frontier) to selects the next navigation

waypoint at the frontier and thus steer the robot toward exploring not yet explored

parts of the environments. Planning a path to reach the desired waypoint is desirable

to assess multiple possible waypoints. Several methods, such as grid-based planning

or RRT-based approaches [17], are reported to be fast and suboptimal. Next, the

path following can be based on multiple approaches described in [18], where the

carrot-chasing algorithm is mentioned as one of the simplest yet effective approaches.
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Calculating traversability from the elevation map [19] shifts exploration and path

planning to 2D space, simplifying further data processing. However, all the above

methods are highly dependent on the localization quality and would fail in the case

of localization failure. Therefore, SLAM [4] technique can be used to address high-

quality and reliable localization.

Diverse SLAM systems have been proposed [5, 6] and evaluated using the

available Kitti benchmark dataset [20]. Based on the reported results, most top-

performing methods use LiDAR measurements for robot pose estimation. One of

the top-performing LiDAR-based methods is LOAM [21], albeit it lacks an explicit

loop closure and is limited to only one type of sensor. On the other hand, multiple

possible sensors are used in the RTAB-Map [22], which is a general tightly-coupled

LiDAR-Visual SLAM framework using multiple graph frameworks. However, failure

handling is not resolved in the framework yet, and the authors indicated it as a

future research direction.

Another approach is shown in [23], where the authors loosely coupled several

localization sources to explicitly handle failure of one of the sources. The first step

of the coupling is the sanity check, where localization failures are identified for each

localization source using the dynamic model of the vehicle. Then, Chamfer distance-

based [24] score is used to select the best pose estimate. The advantage of [23] is its

high robustness, but since the localization sources are completely independent, the

visual odometry cannot help the LiDAR-based SLAM to close the loop in the case

of temporal LiDAR-based SLAM failure. Furthermore, the Chamfer distance-based

score measures the alignment of the LiDAR scans. Thus, it does not directly detect

when the perfect alignment of LiDAR scans may correspond to a wrong displacement

in monotonous corridors or fields.

In [25], the authors review available sensory fusion approaches for LiDAR-Visual

SLAM. They mention that the graph-based SLAM [4] is often used for sensor fusion

because it abstracts from raw measurements. The approach represents measure-

ments, poses, and observations in a graph structure. Pose-graph SLAM [26] is a spe-

cific kind of graph-based SLAM that is widely used. It restricts the graph’s nodes to

be poses and positions of the robots and landmarks and edges to be measurements-

based constraints between them. The authors of [27] demonstrate the computational

advantages of the pose-Graph SLAM for large-scale maps, comparing the solution

with conventional filter-based approaches. The approach is further explored in [28],
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Figure 2.1. Map optimization graph in LIO-SAM [10].

where the authors review iSAM2 [29], which iteratively re-optimizes only nodes in-

fluenced by new observations. Multiple graph optimization frameworks have been

proposed. ORB-SLAM3 [30] uses the g2o library [31] in Loop Closure for Bundle

Adjustment [32] to improve the Visual-Inertial Odometry. In VINS-Mono [13], the

authors present a Visual-Inertial SLAM solution that fuses a monocular camera and

IMU in a tightly-coupled manner for obtaining odometry and optimizing the global

trajectory with pose-graph SLAM using Ceres [33] optimization framework.

LiDAR-Inertial odometry is the core of LIO-SAM [10] that uses scan matching

based on LOAM [21], where the initial guess of the LiDAR pose is based on in-

tegrated IMU measurements. The scans aligned by LiDAR odometry are marked

as keyframes if the distance from a pose corresponding to the previous keyframe is

above a certain threshold. Otherwise, the pose is treated as a temporal sub-frame.

The relations between the keyframes are represented by constraints that are used to

construct a sparse graph within the GTSAM [34] optimization framework. Loop clo-

sure is performed as a parallel process using the Iterative Closest Point (ICP) [35],

and the loop constraints are added if the ICP converges. For the loop closure detec-

tion, the latest keyframe is attempted to be matched against the nearby keyframes,

including recent keyframes and keyframes that are close to the current robot pose.

If the matching of the keyframes is successful, the transformation between them is

inserted into the graph as a constraining factor. The graph structure is illustrated

in Fig. 2.1.

LIO-SAM is further extended by tightly-coupled Visual Odometry (VO) in

LiDAR-Visual-Inertial Odometry via Smoothing and Mapping (LVI-SAM) [36]. LVI-
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SAM tightly couples LIO-SAM with Visual SLAM VINS-mono [13] to improve per-

formance in challenging scenarios using sensor-specific failure detectors for LiDAR

and VO. However, such an approach does not support flexibility in changing the

source of additional localization systems and restricts end-users to specific addi-

tional sensors (camera) and algorithms (VINS-mono).

Based on the literature review, we opt for LIO-SAM as a suitable base system

for integrating the additional sensor for localization. It provides the advantage of

a great performance of LiDAR-based methods [20] while avoiding the disadvantage

of the tightly-coupled visual odometry of LVI-SAM, which supports only the spe-

cific method of visual odometry. LIO-SAM framework accounts for ambiguities of

the scan-matching by checking scan-matching convergence. The convergency is then

reflected in uncertainties while optimizing IMU measurements. On the other hand,

the system is developed for structure-rich environments. Besides, it does not ex-

plicitly handle situations where the scan-matching results are completely unusable.

Both the drawbacks are addressed by the proposed loosely-coupled combination of

LiDAR-Inertial SLAM and VO.

Here, it is worth mentioning that in the available literature, localization systems

are usually evaluated on pre-recorded datasets only, while we also aim for more

challenging show-case usage of the developed method in the online exploration task

and custom datasets.

2.2 Theoretical framework

In this section, we briefly introduce concepts of exponential smoothing filter and

outlier detection methodology to make the thesis self-contained, as these techniques

are used in the proposed solution. The exponential smoothing filter is used to esti-

mate the heights of the environment in the mapping module. The outlier detection

methodology is used for the failure detection part of the proposed localization sys-

tem.

2.2.1 Exponential Smoothing Filter

Exponential smoothing is a way of processing sequential numerical data, de-

scribed in [37]. Although it is a commonly known theory and a widely used tech-
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nique, we recap it here for completeness. In the presented work, we use it to process

the sequential observation of the heights of the map to maintain the most recent

observation without being hardly influenced by dynamic obstacles such as walking

people or noise. The technique works as follows.

Having a sequence of observations {Si} = {S0, S1, . . . , St}, we aim to estimate

the most recent height of the map point S̄t. A general approach is to estimate it

with the weighted average between the most recent estimation ¯St−1 and the new

observation St as in (2.1).

S̄t = (1− A) · ¯St−1 + A · St (2.1)

where the parameter A ∈ (0, 1) regulates how much the recent observations weights

w.r.t. the old ones. With increasing value of A, the more recent observations are

reflected in the value of S̄t.

This simple yet effective approach allows estimating possibly dynamic value rep-

resented by the sequence of observations, accounting for all past observations but

reflecting the most recent changes.

2.2.2 Outlier Detection

Outlier detection [38] faces the problem of detecting atypical observation values

ξ̂ of a given distribution ξ. Essentially, it is the way to understand if the currently

observed value ξ̂ is unlikely to happen based on the knowledge about the modeling

distribution ξ. We employ the outlier detection methodology to detect the failure of

the LiDAR-Inertial odometry as follows.

Let ξ be a random distribution for which the distribution law is unknown. The

quantile concept of the distribution is employed to detect the outliers. For a ran-

dom variable, α-quantile qα is defined as a value, for which the probability that an

observation is above qα equals to α as in (2.2).

P{ξ > qα} = α (2.2)

The value of the quantile has to be estimated as it can be used for further outlier

detection. As the nature of the distribution is unknown, we directly estimate the

quantile instead of fitting a distribution and using the fitted distribution’s quantile.

By doing that, the estimation is resilient to outliers in the modeling set of observa-
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tions. Given a set of N distribution observations {ξ̂i, i = 1, . . . , N}, the estimation

of the quantile q̄α can be estimated by ensuring the condition (2.3).

|{ξ̂i : ξ̂i > q̄α}| = [α ·N ] (2.3)

where | · | operation defines the number of elements of the set, and [·] is the integer

part of the number. In practice, q̄α may be calculated by taking the [(1− α) ·N ]-th

item of the ordered list of observations {ξ̂ik : ξ̂ik−1
< ξ̂ik}.

The described method can be performed if almost all the observed values are

coming from the distribution ξ, and the distribution fully represents the model.

Having the value q̄α, the observation ξ̂ is detected as an outlier if the condition

ξ̂ > q̄α is true. The smaller α is, the less amount of false-positive detections are

conducted. With increasing α, more false-negative detections are conducted.

In our case, the distribution ξ corresponds to the non-failure LiDAR-Inertial

odometry behavior; thus q̄α value is estimated using the data, where the LiDAR-

Inertial odometry works with no failure. The process of inferring q̄α is referred to as

system modeling. Afterward, the outlier detection condition is applied to a challeng-

ing dataset, where the observations may not belong to the distribution ξ, detecting

the failures as outliers.
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Chapter 3

Methodology

3.1 System Overview

The proposed method consists of two parts: localization and exploration. The

localization and exploration parts are two separate modules. Since the localization

module itself does not depend on the exploration module, the developed localization

system can be tested separately. Besides, the proposed modular structure allows

for the potential substitution of either exploration or localization modules using

the defined interface. An overview of the proposed method’s structure is presented

in Fig. 3.1, and the localization and exploration parts briefly work as follows.

Exploration

OMPL RRT*
Path planning

Proposed elevation
& traversability

Mapping

Carrot-chasing
Path follower

Proposed frontier-
based Exploration

strategy

Traversability 
Map

Current
Goal
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Failure detection
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LiDAR
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Used
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Developed
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Figure 3.1. Overview of the proposed method.

The proposed localization system starts by estimating LiDAR-based localization

(odometry) from received IMU and LiDAR measurements, using previously created

reference map if available. If the developed failure detection system detects a failure,

corresponding additional odometry is integrated into the underlying graph-SLAM
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structure. Hence, the resulting LiDAR-based SLAM system outputs the most recent

localization information based on globally optimized trajectory.

For the exploration part, the elevation mapping and traversability estimation

module creates a map of the environment from the LiDAR scans having a robot

pose. Then the employed exploration strategy determines the next exploration way-

point, and afterward the path is planned to the waypoint using the RRT* [17]

path-planner from the The Open Motion Planning Library (OMPL) [39]. Finally,

the carrot-chasing path follower controls the robot to follow the planned path. Once

the waypoint is reached by following the path or any other trigger (such as the

traveled distance or period), the process is repeated until all reachable parts of

the environment are explored or a supervising operator terminates the autonomous

exploration. Besides, the waypoint is reselected if the robot follows the waypoint

for more than tlimit seconds, making the process more resilient against unexpected

failure situations.

In the rest of the chapter, we explain assumptions for the developed methods.

After that, we describe the modules of the proposed localization system and ex-

ploration framework in detail, following the order of how data are processed from

sensors: localization and failure detection, additional localization source integration,

mapping, exploration strategy, and path planning and following.

3.2 Assumptions and Limitations

Localization part – Although the proposed localization approach is general, to

present the proposed concept, we consider Visual-Inertial odometry (VIO) as the

additional localization system that produces a 6 DoF (degrees of freedom) robot

pose estimate. The following assumptions are made in the design of the proposed

method.

• For simplicity of the description, only a single additional localization system

VIO is used, albeit multiple additional localization sources can be straightfor-

wardly utilized.

• The additional localization system provides pose estimates w.r.t. to the same

coordinate frame as the LiDAR-based odometry.

• All sensors’ data is synchronized in time.
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Exploration part – Since the main focus of the thesis is on improving localization,

evaluated within the exploration, we focused our solution on the following scope.

• The ceiling height is above 3 meters, albeit the limit is not sufficient nor

necessary; it would work in most exploration situations, specifically in the

planned validating experimental deployments.

• The explored area is more or less static. The presence of highly-dynamic ob-

jects is handled, but the system does not explicitly handle semi-static objects.

• The explored area does not contain fog, glass, or other factors that may corrupt

LiDAR’s sensor measurements.

3.3 Localization

3.3.1 Localization Failure Detection

The localization system exploits LiDAR-Inertial odometry part of LIO-SAM [10],

partly described in Section 2.1, and an additional localization system, VIO in our

case. The first step to make the developed localization a failure-resilient system is

to detect when the LiDAR-Inertial odometry fails.

The failure detection of LiDAR-Inertial odometry starts with the failure indica-

tion defined by the Failure indicator Ifail. If the indication is positive, Failure resolu-

tion determines if VIO provides a more suitable pose estimate than the LiDAR-based

odometry. The overview of the failure detection process is depicted in Fig. 3.2, and

it works as follows.

TLiDAR

TIMU

TVIO

DIMU-VIO

Failure Indication
DIMU-LiDAR

Failure Resolution

Start

Failure
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Convergence
Indication IConv

False

True
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Figure 3.2. Failure detection algorithm.
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The failure indicator IFail is combined from two components: convergence indi-

cator IConv and IMU-based indicator IIMU as

IFail = IIMU or IConv. (3.1)

IConv is triggered when the LiDAR scan matching does not converge, but it might

not cover all the cases when it is suitable to switch to VIO. Therefore, we also use

IIMU to increase the failure detection rate, which is supported by the experimental

results reported in Section 4.2.

The advantage of IIMU is that it is not directly influenced by a lack of spatial and

visual features in the environment. The indicator uses a rough estimation of the robot

motion by IMU-based odometry increment TIMU ∈ SE(3) to estimate the adequacy

of the LiDAR-based odometry increment TLiDAR ∈ SE(3). As the rate of the LiDAR

measurements is mostly bigger than 1 Hz, the translational drift accumulated by the

IMU is small enough to not affect failure indication. The difference of the increments

DIMU-LiDAR is computed as

DIMU-LiDAR = TIMU · T−1LiDAR. (3.2)

We analyze the norm of the rotational component and a translational component of

the difference defined by

rIMU-LiDAR = || rot(DIMU-LiDAR)||ANG

tIMU-LiDAR = || trans(DIMU-LiDAR)||
(3.3)

where rot(DIMU-LiDAR) ∈ SO(3) is the rotational component and

trans(DIMU-LiDAR) ∈ R3 is the translational component of DIMU-LiDAR. The

term || · ||ANG denotes the angular metric of the rotation that is determined as a

rotation angle of the angle-axis representation of the rotation.

The IMU-based indicator IIMU works as an outlier detector [38] (described

in Section 2.2.2), and it is defined as the logical or of detecting translational or

rotational differences as outliers with the defined quantile values (thresholds), cr
and ct correspondingly.

IIMU = (rIMU-LiDAR > cr) or (tIMU-LiDAR > ct) (3.4)

The thresholds are estimated experimentally using outlier detection methodology.
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The failure resolution begins if the failure indicator IFail (3.1) is triggered. The

VIO pose estimate is used if it is significantly closer to the IMU-based odometry

than the LiDAR-based odometry. Thus, the resolution is defined by the condition

(rIMU-VIO < β · rIMU-LiDAR)
and

(tIMU-VIO < β · tIMU-LiDAR)
(3.5)

where rIMU-VIO and tIMU-VIO are defined similarly to the IMU-LiDAR difference

DIMU-LiDAR defined in (3.3).

The LiDAR-based odometry failure might be indicated based on IFail. However,

the failure resolution (3.5) would not activate the usage of the VIO pose estimate if

the latter does not improve the LiDAR-based one. We incorporate a constant factor

of β = 0.8 in the IMU-LiDAR difference when considering additional odometry

over LiDAR to ensure the significance of any potential improvement by additional

odometry and to account for the IMU noise.

3.3.2 Visual Odometry Integration and Scale Self-adjustment

Let us suppose the LiDAR-based odometry failure is indicated, and VIO provides

more precise localization according to the rule (3.5). In that case, VIO is incorporated

into the factor graph in place of the LiDAR-based odometry, introducing a constraint

between the keyframes if the keyframe is inserted. Since the additional odometry

(such as visual or wheeled) might suffer from a wrong scale or slow scale drift, the

proposed method performs dynamic scale self-adjustment, estimating the scale of

the odometry when the LiDAR-based localization is considered sufficiently precise.

We propose to utilize the median value of the moving window to compute the

scale. In particular, 500 keyframes-long window includes the past ratios of the ab-

solute values of the translations cadjustment = tVIO/tLiDAR, where t〈source〉 is the norm

of the translational part of the odometry increment from the corresponding source.

An additional odometry is scaled by the estimated median value of cadjustment be-

fore the incorporation. Besides, to synchronize additional pose increment estimation

with the LiDAR-based one, linear interpolation of the additional pose estimations

is performed. Thus, the rate of the additional localization should be at least bigger

than the rate of the LiDAR-based localization. Then, the factor graph structure is

created according to the scheme depicted in Fig. 3.3 as follows.

21



KF1

KF2

KF3

KF4

sf13

sf41 sf42

sf12

sf11

LiDAR-based

 odometry factor

sfij
j-th subframe

after i-th keyframe

Inital guess

by IMU

Currently inserted

subframe

Keyframes, used for

scan-matching (distance)

Keyframes, used for

scan-matching (time)

KFi

i-th keyframe

(pose + scan, can

 be used for scan-matching)

LiDAR-based

odometry

(temporal)

Additional

odometry factor

Keyframes, not used for

scan-matching

because of additional odometry

KFi

i-th keyframe

(pose + scan, can not

be used for scan-matching)

Loop closure

factor

Figure 3.3. The proposed method for combining the LiDAR-based odometry with VIO-
based pose estimate increments.

• The LiDAR-based odometry creates constraints between the previous and

the new keyframes based on scan-matching when the LiDAR-based odome-

try works successfully. When the new LiDAR scan (frame) is available, it is

scan-matched against a reference map combined from the nearby keyframes

to create such a constraint. Similarly to LIO-SAM, only if the estimated pose

increment exceeds a configurable threshold the frame is inserted into the map

as a keyframe. Otherwise, it is treated as a temporal sub-frame to improve the

initial guess of the next frame pose and output localization information.

• On the other hand, the VIO constraint is inserted instead of the LiDAR-based

one if the failure is detected. However, in contrast to LiDAR-based constraints,

the VIO-based ones are not guaranteed to be optimized for the keyframes

alignment as they optimize visual features alignment and may suffer from the

incorrect and drifting scale. Thus, combining keyframes connected with the

VIO-based constraints can result in a poorly aligned reference map and a new

LiDAR scan would not be successfully matched against such a reference map.

Therefore, only keyframes inserted after the last VIO usage are combined in

the reference map when the new LiDAR scan is processed.

Finally, it is necessary to properly handle loop closure constraints of the graph-

based SLAM that aim to match keyframes that are far from each other. These
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constraints might fix the drift introduced by the VIO constraints. However, false

loop closures may appear for the structure-less keyframes, consequently breaking the

graph. Therefore, keyframes corresponding to the LiDAR-based odometry failure are

deemed unsuitable for loop closures. Further, the inserted VIO constraints are set

to have 10 times larger uncertainty than the LiDAR-based ones to ensure that loop

closure constraints will fix mostly VIO constraints without affecting LiDAR-based

constraints significantly. The effect of the proposed loop closing system has been

experimentally examined, and results are reported in Chapter 4; in particular, the

effect is demonstrated in Fig. 4.5.

3.4 Exploration

An obtained failure-resilient localization information is further used by the ex-

ploration module. The robot maps the environment based on its estimated pose and

sensor measurements; based on the estimated map, exploration strategy defines an

exploration goal, and path planning and following ensure that the robot reaches the

goal.

3.4.1 Mapping and Traversability Estimation

Mapping is an integration of the sensor measurements (LiDAR scans) into a

map using the pose estimate. We developed an implementation of the elevation map

that represents the environment as a 2D grid, where each cell contains information

about the elevation of the corresponding area. At each timeframe when the LiDAR

scan is available, it is transformed to the map reference frame knowing the robot’s

pose from the localization system and down-sampled as in Fig. 3.4a. Afterwards,

each point p = {px, py, pz} ∈ R3 is assigned to a grid cell c = {ci, cj} ∈ N2 that

corresponds to it using (3.6).

c = [(pxy − oxy)/r] + [N/2], (3.6)

where o denotes coordinates of the map’s origin, r is the resolution of the map, ·xy
extracts xy-coordinates of the point, N is the size of the map in cells, and [·] extracts

integer part of the number.
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(a) LiDAR Scan (b) Elevation map (c) Binary traversability
map

Figure 3.4. Example of mapping in a simulated cave environment using [40].

Further, each cell c with correspondences chooses the observed point p with the

highest z-coordinate out of the ones corresponding to it. If the elevation of the cell

elc does not have a previous estimation, it is assigned to the current measurement.

Otherwise, the elevation of the cell c is calculated using the exponential filter de-

scribed in Section 2.2.1 with the parameter A = 0.1 as in (3.7).

elc[t] =

{
0.1 · pz + 0.9 · elc[t− 1] if elc[t− 1] is defined;
pz otherwise,

(3.7)

where elc[t] is the estimated elevation of the cell c at the time t, and pz is the z-

coordinate of the observed point. The map is initialized with 0 elevation on the

radius Rinit around the robot. It is a blind zone of the LiDAR, and initialization

happens only at the time t = 0. An example of the resulting elevation map can be

seen in Fig. 3.4b.

To extract 2D obstacle information from the elevation map, firstly the slope

slopec of every cell c is calculated as in (3.8).

slopec = max
c′∈N4(c)

(|elc − elc′|)/r, (3.8)

whereN4(c) is a 4-connectivity neighborhood of the cell c. A user-defined traversabil-

ity threshold value thsl defines traversability travc of each cell c as in (3.9), forming

a binary traversability map shown in Fig. 3.4c, that represents information about
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obstacles in the environment.

travc =

{
1 if slopec > thsl;

0 otherwise,
(3.9)

3.4.2 Exploration Strategy

With a traversability map based on integrating and processing the localized

LiDAR’s scans, the frontier detection starts to determine the next exploration way-

point. We exploit theWave Front Detection (WFD) frontier detection algorithm [41].

The WFD determines frontiers starting from the robot’s position using the Breadth-

first search (BFS) algorithm. It propagates through traversable cells, searching for

the frontier points. However, before running the WFD frontier detection, the obsta-

cles of the traversability map are expanded to ensure that the detected frontiers are

reachable by the robot. The side effect of the obstacles’ expansion is that it would

not be needed to propagate the wave through the narrow corridors, thus saving

computational time. Moreover, the robot would not try to reach waypoints close

to obstacles, increasing collision avoidance. In Fig. 3.5, it can be noticed that the

frontiers are detected only in the region that is reachable by the robot.

(a) Frontier clusters (b) Corresponding waypoint candidates

Figure 3.5. Frontier detection in a simulated cave environment using [40]. Pink cells are
expanded obstacles.

Each detected frontier (an edge of the boundary between the explored free space

and unknown part of the environment) is limited to a user-defined length lmax, in

our case set to lmax = 2 m. Frontiers with a length smaller than lmin are not being

detected. As a result, the frontier is clustered in sub-frontiers as shown in Fig. 3.5a

according to the maximum length. Next, on each sub-frontier, the closest frontier
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point to its geometrical center is chosen as the frontier representative forming a

set of candidates for the next waypoint; see Fig. 3.5b. The closest candidate to the

robot’s position is then chosen as the next waypoint to follow.

Note that after the waypoint is chosen once, a disk-shaped region with the ra-

dius 2 m around that waypoint is marked as unexplorable, meaning that candidate

waypoints in that region can not be selected in the future. It ensures that the robot

is navigated toward each frontier only once, as some frontiers might not change even

after the robot approaches them. However, if the waypoint is reselected due to the

path following timeout tlimit, the region around such a waypoint is not marked as

unexplorable.

3.4.3 Path Planning and Following

After the exploration strategy selects the next waypoint, the employed RRT*

path planner plans the path toward it. We use out-of-the-box implementation from

the OMPL [17] because it optimizes a combined objective from two objectives: path

length and path clarity. The path length is a standard path optimization objective,

while the path clarity optimizes the distance to the nearest obstacle along the path,

thus enhancing collision avoidance. These distances are calculated for every cell and

stored in the costmap, that is used by the planner, as shown in Fig. 3.6. However,

before the planning and costmap calculation, the obstacles are expanded similarly to

the previous step, but unexplored space is considered an obstacle for path planning.

If the robot is at the untraversable area, the nearest traversable cell is determined to

be the path start. This situation might happen due to path following imperfections,

dynamic obstacles, localization imperfections, or other unexpected factors. The same

procedure occurs if the waypoint is at the untraversable area. During the exploration

task, the selected waypoint is always considered being at the untraversable area

because, as described above, when the obstacles are expanded, unexplored space is

considered an obstacle for path planning.

Once the path is determined, the robot follows the path with a carrot-chasing

algorithm [18]. The idea of the carrot-chasing is that the robot employs a simple

kinematic control to reach the lcarrot meters away point on the path. The point that

is followed is reselected if the robot approaches at a closer distance than lreselection
meters. An example of the path following can be seen in Fig. 3.6.

26



Figure 3.6. An example of the costmap, planned path, and path following in progress. Note
that the costmap is calculated only in the region of the map that is reachable by the robot,
ignoring the right part of the map.

When the planned path is executed, the process of frontiers detection, subsequent

waypoint detection, and path planning with the path following repeats until the

termination condition of the exploration is not triggered.

3.5 Tools and Technologies Used

• The proposed loosely coupled VO with the graph-based LiDAR-Inertial SLAM

leverages LIO-SAM [10]. It uses the same way of calculating LiDAR-Inertial

odometry (referred to as LiDAR-based odometry). However, we modify the

factor graph construction to incorporate measurements from an additional

localization system, such as VO. For VO, depending on the experiment, the

black-box localization system T265 [12] and VINS-Mono [13] Visual SLAM

system were used.

• LIO-SAM uses the GTSAM framework [34] to support the underlying graph

structure and employs iSAM2 for iterative graph optimization.

• For implementation debugging and statistical modeling of outlier detection the

SciPy library [42] for Python (version three) has been used. Besides, the ROS

framework [43] and C++ programming language have been used to test and

deploy the proposed method on the real robotic system.

• The developed exploration framework has been extensively tested in the virtual

environment before its deployment on a real robot. The available DARPA

SubT simulator [40] has been used.
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• The path planning has been implemented using the available planners from

the OMPL [39] available at [44].

• Finally, the Eigen library [45] has been widely used throughout the developed

solution.
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Chapter 4

Results

The proposed method’s localization and exploration parts have been experimen-

tally validated using a four-wheeled skid-steered robot Husky, depicted in Fig. 4.1a.

The robot is equipped with the Ouster OS0 LiDAR with 128 channels and a max-

imum range of approximately 50 m, 9-axis IMU Xsens MTi-30, and fisheye stereo

tracking camera, the Intel RealSense T265 (T265). T265 provides out-of-the-box

VIO odometry, but its internal loop closures have been disabled to make it compli-

ant with the assumptions made on the additional localization systems. The 3 DoF

ground truth localization of the crystal mounted on the robot has been recorded

using the Leica TS16 total station, shown in Fig. 4.1b.

(a) Used wheeled robot (b) Total station setup

Figure 4.1. The robot Husky by Clearpath Robotics used in experimental validation of the
proposed solution and the Leica TS16 total station for 3 DoF ground truth localization.

Two experimental deployment sites have been considered for the system evalua-

tion. The first environment is the backyard area of the Czech Technical University

campus at Charles Square; see Fig. 4.2a. The environment has been used to record
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(a) Urban scenario (b) Parking lot scenario

(c) Campus exploration setup

Figure 4.2. Experimental testing sites: (a) urban scenario at the Czech Technical University
campus at Charles Square; (b) parking lot scenario in Prague’s outskirts; and (c) explo-
ration scenario at Charles Square campus.

a dataset for localization evaluation and to test qualitatively the exploration with

integrated localization online. The second environment is a parking lot at Prague’s

outskirt, depicted in Fig. 4.2b, that has been only used to record a dataset for

localization evaluation.

30



While the first environment can be considered structure-rich, the parking lot in

the rural area contains wide-open locations where LiDAR scans do not provide suffi-

cient features for successful scan matching. The testing environments are denoted as

campus and parking lot scenarios. The length of the traveled path for the localiza-

tion system evaluation is 285 m and 300 m for the campus and parking lot scenarios,

respectively. The proposed localization method is examined with different failure in-

dicators to justify the combined indicator denoted IMU + Convergence. Besides, its

performance is compared with the LIO-SAM [10] as the former localization method

to show the benefits of the proposed loosely-coupled VIO.

The evaluation of the localization method is based on the methodology [46]

using medians of the relative pose error RPEt and absolute trajectory error ATEt
indicators considering the translational parts of the localization error. In particular,

the median RPEt estimates the local consistency of the localization (drift), while

ATEt evaluates the global accuracy of the trajectory.

Calculating RPEt and ATEt is based on the estimated poses Pi that are first

matched with the corresponding ground truth poses Qi using timestamps, resulting

in a set of corresponding pairs {P̂j, Q̂j}.

For calculating RPEt, the pairs are downsampled to the set {P̂jk , Q̂jk} so that the

distance between consecutive estimated poses P̂jk−1
and P̂jk is bigger than the defined

parameter ∆. For simplicity, instead of jk, we use indexes i in further explanation

of RPEt. Afterward, a relative pose error at the time step i is defined by (4.1) and

is calculated for every consecutive pair of downsampled poses.

Ei = (Q̂−1i Q̂i+1)
−1(P̂−1i P̂i+1) (4.1)

In essence, Ei is a difference between the estimated pose increment P̂−1i P̂i+1 and the

actual pose increment Q̂−1i Q̂i+1. The median of RPEt is calculated as the median

value of the set of absolute values of relative pose errors: med({||Ei||}).

For calculating ATEt, first, the rigid-body transformation S that aligns the esti-

mated trajectory with the ground truth is calculated as described in [46]. Afterward,

for every pair {P̂j, Q̂j}, the absolute trajectory error Fi at the time i is calculated

as in (4.2), and the median of such a set of values is calculated as med({||Fi||}).

Fi = Q−1i SPi (4.2)
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For RPEt, the step ∆ is set to 1 m, which corresponds to the minimum distance

between consecutive poses. Besides, the standard deviation STDt of RPEt is reported

to account for outliers. The indication Fail is used in cases when the system received

corrupted odometry, which led to a wrong IMU bias estimation. Such situations

prevent the localization system from recovering.

The exploration framework has been tested experimentally in the campus en-

vironment, showing the sufficiency of the proposed localization method for the ex-

ploration task and the successful exploration of the outdoor environment using the

developed framework. The reported results are structured as follows. The following

section presents an evaluation of the localization failure detection indicator followed

by failure detection parameterization. The localization performance in the campus

scenario is reported in Section 4.3. The results from the localization method deploy-

ment in the parking lot scenario are in Section 4.4. The exploration deployment is

presented in Section 4.5.

4.1 Localization Failure Detection Indicator

The failure detection indicator has been examined in the campus scenario, where

a human operator has operated the robot, and the total station has provided the

ground truth data for evaluation. The localization performance is examined based

on the scan-matching failure indicator IConv only and with both indicators IConv and

IIMU. The scan-matching ambiguity is induced by limiting the LiDAR range to 10 m.

Table 4.1. Localization performance in with and w/o failure detection

Method / Failure Indicator ATEt [m] RPEt [m] STDt [m]

LIO-SAM [10] (No indicator) Fail Fail Fail
Proposed IMU Fail Fail Fail
Proposed Convergence 5.35 0.08 0.22
Proposed IMU + Convergence 4.70 0.06 0.26

Fail indicates the method has not been able to produce reasonable results.

The results summarized in Table 4.1 indicate that a solo IMU-based indicator

cannot detect failure by itself but significantly improves the performance when com-

bined with the convergence-based indicator, reflected in more precise localization

results.
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4.2 Parameterization of the Failure Detection

The failure detection model’s parameters have to be estimated using the ex-

perimental data collected in the campus scenario. The proposed IMU-based failure

detection model is based on outlier detection [38] (see Section 2.2.2) for differences

between the IMU-based and LiDAR-based pose increments DIMU-LiDAR as of (3.4)

with two established threshold values cr and ct (α-quantiles).
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Figure 4.3. Histograms of DIMU-LiDAR differences in the campus scenario, translational
and rotational parts. The threshold values cr and ct are established as 95 percent quantiles
depicted by the vertical line segment.

The thresholds are set based on the estimate of the quantiles for the baseline

distributions of differences rIMU-LIDAR and tIMU-LIDAR in the non-failure scenario.

We set the outliers thresholds to the values of such quantiles as shown in Fig. 4.3.

Regarding the presented results, the LiDAR-based odometry provides satisfactory

results that can be treated as “Non-Failure” in the campus scenario with full range

LiDAR scans. Thus, this data is used to estimate the quantiles to fit the outlier

detection model. Note that the data used to fit the model does not intersect with

data from the campus dataset used for evaluation, ensuring that the localization

system tuning and evaluation are performed using different data.

4.3 Localization Performance in the Campus

Scenario

The proposed localization and the reference LIO-SAM performance evaluation in

the campus scenario are made for two setups: full range and limited range. Besides,
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we consider the localization method without and with the loop closure activated

(further denoted as lc). The methods are fed with data directly captured by LiDAR

without any range restrictions for the full range. However, for the limited range,

LiDAR’s range is cropped to 10 m to examine the localization system performance

under conditions where LiDAR scan matching might be ambiguous. Black-box lo-

calization from the T265 sensor was used as an additional source of odometry in

this experiment.

Table 4.2. Localization performance in the campus scenario

Full range Limited range

Method ATEt RPEt STDt ATEt RPEt STDt

[m] [m] [m] [m] [m] [m]

LIO-SAM 0.08 0.04 0.03 Fail Fail Fail
T265 16.40 0.83 0.50 16.40 0.83 0.50
T265 scaled 7.06 0.20 0.30 7.06 0.20 0.30
Proposed method 0.13 0.04 0.03 4.70 0.06 0.26

Proposed method (lc) 0.13 0.04 0.03 2.8 0.08 0.3

Fail indicates the method has not been able to produce a reasonable results.

In addition to LIO-SAM and the proposed localization method, we evaluate the

localization provided by the T265 with its (denoted T265) and with the optimal scale

(denoted T265 scaled). The optimal scale is the scale that minimizes ATEt metric

for the T265-provided trajectory, it is estimated after the experiment and applied

to the entire T265 trajectory. The optimal scale is considered to estimate the best

possible reachable result only using T265 with the constant scale. Nevertheless,

the proposed method is inputted with the raw T265 localization data, and the

scale is estimated dynamically using the method introduced in Section 3.3.2. The

performance indicators are depicted in Table 4.2, and the trajectories are shown

in Fig. 4.4.
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Figure 4.4. Aligned trajectories in the campus dataset.

Besides, we examined the loop closure of the proposed method qualitatively;

the obtained maps and trajectories before and after the loop closure are depicted

in Fig. 4.5. 1

(a) Before the loop closure (b) After the loop closure

Figure 4.5. Impact of the proposed loop closure for data in the campus scenario. Note
that the LiDAR scans (the map) remain aligned, as optimization mostly affects VIO-
based constraints that were used in the flat region, which is ambiguous for LiDAR-based
odometry. Length of the depicted trajectory is around 200m.

1The video of the localization together with the loop closure can be accessed at
https://youtube.com/playlist?list=PLpjtKkt1Mu3sbAcw8JcYJ0aOTCRqh-Cen.
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4.4 Localization Performance in the Parking Lot

Scenario

In the parking lot scenario with wide open areas, we use fisheye images from the

T265 processed by the VINS-mono [13] odometry to show the flexibility of the pro-

posed method to incorporate measurements from various types of additional local-

ization systems. Thus, we examine the performance of LIO-SAM, VINS-Mono, and

two variants of the proposed method, without and with loop closure (lc). Similarly

to the previous experiment, we also evaluate the scaled variant of the VINS-Mono

trajectory. The results are summarized in Table 4.3, and robot trajectories provided

by the evaluated methods can be seen in Fig. 4.6a.

Table 4.3. Localization performance in the parking lot scenario

Method ATEt [m] RPEt [m] STDt [m]

LIO-SAM Fail Fail Fail
VINS-Mono 10.9 0.39 0.25
VINS-Mono (scaled) 4.97 0.42 0.18
Proposed method 7.7 0.19 0.13

Proposed method (lc) 2.4 0.15 1.0

Fail indicates the method has not been able to produce a reasonable results.
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Figure 4.6. Trajectories provided by evaluated methods in parking lot scenario.
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4.5 Exploration

The proposed localization system employed by the developed exploration frame-

work was experimentally validated in a part of the campus site. The explored area

with the overlaid robot trajectory is shown in Fig. 4.7a, and the obtained elevation

map together with the trajectory of the robot is shown in Fig. 4.7b. The robot used

the proposed localization method during the experiment, with the LiDAR range re-

stricted to 10 m. Besides, we also compare the resulting map with the one obtained

by using only the LIO-SAM method for localization as shown in Fig. 4.8.2

(a) Exploration scenario with the overlaid traveled path

(b) Resulting elevation map with the exploration path

Figure 4.7. Exploration results in the campus site using the proposed localization method
with LiDAR range restricted to 10m.

The time of the exploration has been limited to 30 min during which the robot

explored about 2000 m2, traveled 360 m long path with the speed limited to 0.3 m s−1.
2The video with the exploration can be accessed at

https://youtube.com/playlist?list=PLpjtKkt1Mu3sbAcw8JcYJ0aOTCRqh-Cen
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For the exploration experiment, only qualitative analysis of the resulting map and

the exploration path is made using the final obtained maps depicted in Fig. 4.8.

During the experiment, manual introduction in the robot control was done in case

the robot was heading too close to the obstacle.

(a) Exploration using the proposed localization method

(b) Exploration using the former LIO-SAM

Figure 4.8. Exploration results in the campus environment using: the (a) proposed local-
ization method; and the (b) former LIO-SAM.
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Chapter 5

Discussion

5.1 Localization

For the campus dataset, the presented results support the assumption that the

environment is structure-rich for the full LiDAR range and that LIO-SAM provides

competitive results in such a case. On the other hand, the T265 suffers from local-

ization drift and provides worse results, but as rarely used, it only slightly worsens

the performance of the proposed method compared to LIO-SAM. However, when

the LiDAR range is cropped to 10 m, LIO-SAM fails to output any feasible result

once the robot enters the area where it is too far from the buildings. The limited

LiDAR scans are ambiguous for the scans-matching algorithm, and the whole lo-

calization fails. The proposed method handles these ambiguous LiDAR scans by

substituting constraints with the VIO-based ones, as shown in Fig. 4.4b. Although

it introduces a drift caused by the additional odometry, it outperforms the other

localization methods.

The loop closure compensates for the drift introduced by the relatively low-

quality VIO, as observed in Fig. 4.5. The resulting map is aligned because the

loop closure constraint mostly optimized the trajectory where the LiDAR-based

odometry is ambiguous, which is the flat region at the right part of the map. At

the same time, LiDAR-based constraints that align keyframes with no ambiguity

are altered less than the VO-based constraints because the former ones have much

lower uncertainty in the graph structure.

In the rural dataset, we can see in Table 4.2 that the proposed method performed

better than LIO-SAM since it did not fail. VINS-mono provided the robot with
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smooth but scale and pose drifted odometry. It can be seen in Fig. 4.6b that due to

the loop closure, the proposed method is able to re-estimate the whole trajectory,

mainly altering the part where the additional odometry is used.

Overall, the presented method successfully handles LiDAR-deprived situations,

handling LiDAR odometry failure and reoptimizing the map after the loop closure,

dealing with the resulting drift.

5.2 Exploration

Employing the proposed localization system in the developed exploration frame-

work yields a successful exploration of the unknown environment and creates an

elevation map of the environment. The map is visually aligned, meaning that the

localization system has provided reliable data for exploration. In contrast, using

LIO-SAM for localization during exploration yields inaccurate localization data,

not allowing the experiment to continue as can be seen in Fig. 4.8b.

The elevation map that resulted from the proposed method looks adequate to

the environment, but the resulting traversability map includes unexpected noisy

obstacles in the right part of the map in Fig. 5.1b. These obstacles appeared as a

result of observations incorporated after excessive usage of the additional odome-

try. As seen in Fig. 5.1a, the elevation map of the highlighted area is smooth, as

the LiDAR features are close to the robot, and the robot does not use additional

odometry extensively yet.

In contrast, when the robot entered the area where the LiDAR features were

far from the robot, it started relying on the additional odometry only, the visual

odometry in our case. As visual constraints are not optimized for the point cloud

alignment, the usage of additional odometry creates a small tilt of the ground plane

that creates a traversability clutter for the previously explored area, as can be seen

in Fig. 5.1b. Despite that, these obstacles appear after exploring the corresponding

area, and the area around the robot is detected as traversable as local scans are

more consistent with each other than with the rest of the map.

Despite the resulting noisy obstacles, the usage of unreliable additional odome-

try made the proposed localization system resilient enough to keep the robot pose

estimation adequate during autonomous exploration of the environment. This shows
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(a) Before extensive usage of unreliable additional odometry

(b) After extensive usage of unreliable additional odometry

Figure 5.1. Binary traversability maps of the campus environment with corresponding parts
of the elevation maps for the proposed localization system before and after exploiting the
unreliable additional odometry.

the potential of the proposed method and reveals possible future research directions

that would ensure smoother exploration results.

Another problem that might appear is related to dynamic obstacles. Exponential

filtering handles the problem if it observes the area after the dynamic obstacle

disappears. However, if the absence of an obstacle has not been observed for a

significant period of time, remnants of the dynamic obstacles may remain on the

map.

5.3 Future Research Directions

There can be multiple ways in which the developed system can be further im-

proved. Here, we presented selected ideas that might be considered for future work.

• A combination of the localization employed in the exploration might be fur-
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ther investigated within the Active SLAM (ASLAM) context. The exploration

strategy aims to keep the LiDAR-based localization reliable by choosing an

appropriate path.

• Another possible future work might combine both types of features for joint

optimization in a common space to handle failures effectively. For instance, in

the field, the LiDAR scan-matching is ambiguous, but such an ambiguity still

fixes some degrees of freedom of the motion, such as changes of z, roll, and

pitch. Such a constraint might be useful in combination with visual odometry,

which would define the rest motion degrees of freedom.

• The exploration can be improved in multiple ways. Most promising, after the

loop closure, the elevation mapping module can recalculate the whole map as

it might be affected by the newly gained information. Moreover, segmenting

the ceiling and not adding it to the elevation map could account for more

challenging scenarios.

• Out of less fundamental implementation details, the safety behavior might be

implemented in the exploration framework. A more inclusive formula of the

traversability might be fitted to account for the difference between the tilted

plane and the stairs. Such a formula can also partly resolve the cluttered el-

evation map from Fig. 5.1b. Modularity for even better scalability might be

implemented in the memory representation of the map, such that only the

closest parts of the map are processed in computer memory. Moreover, a dy-

namic adjustment of the map size might be implemented instead of initializing

the whole map from the beginning.
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Chapter 6

Conclusion

In this thesis, we propose an augmentation of the graph-based SLAM based on

LiDAR-Inertial odometry in a modular way for incorporating additional localiza-

tion sources in a loosely-coupled manner. We demonstrate the performance of the

proposed localization system in two outdoor experimental test sites. Besides, the sys-

tem performance is further demonstrated using the developed exploration module,

revealing insights for practical improvements of the localization system.

The resulting factor graph substitutes LiDAR-based odometry with the addi-

tional one in case the former fails, and identifies loop closures based on the LiDAR

data accounting for which scans are ambiguous for matching and fixing the drift of

the additional odometry. The proposed improvement is based on failure detection by

an IMU model, setting the graph constraints uncertainties according to the nature

of localization sources and setting the selection rules for keyframes usage.

The proposed localization method has been tested in urban and rural scenarios

demonstrating competitive results compared to LIO-SAM when LiDAR scan match-

ing is not ambiguous. In scenarios where scan matching is ambiguous, the proposed

method utilized additional localization source improving the results of both LiDAR-

based odometry and additional odometry.

Such a system’s usage is demonstrated in the exploration task, supporting it with

a proposed failure-resilient localization. As a result, the given area has been success-

fully explored, and a map of the environment has been obtained. This demonstrated

practical usage of the developed system, at the same time pointing to unobvious

points of improvement of the localization system that are not reflected in localiza-

tion metrics.
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