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Abstract

This Master’s Thesis introduces an innovative two-phase solution for autonomous

drone navigation in sewer manhole inspections, addressing the significant challenges

presented by the complex and unknown environments of sewer systems. The ap-

proach combines autonomous drone flight, computer vision techniques, and path

planning algorithms, with rigorous testing conducted in both simulated and real-

world environments to ensure reliability. The research includes a novel application

of the Arc Adjacency Matrix based Fast Ellipse Detection (AAMED) algorithm for

sewer manhole detection and develops a unique algorithm for drone descent based

on depth image data. By enhancing safety and efficiency in sewer inspections and

potentially influencing similar applications requiring advanced navigational capabil-

ities, this study significantly contributes to drone operations in constrained vertical

environments and the management of essential urban infrastructures.
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Chapter 1

Introduction

In the accelerating pace of our technological era, unmanned aerial vehicles (UAVs), com-

monly known as drones, have firmly established themselves as versatile instruments across

a multitude of industries, evidencing a steady transition toward autonomous systems. The

remarkable surge in their deployment, reflective of their vast potential in a variety of ap-

plications, has recently extended into the realm of sewer inspection. This thesis addresses

an enduring challenge within urban infrastructure management – the inspection of sewer

systems – proposing a groundbreaking solution. It explores how drones can revolutionize

these inspections, enhancing safety and efficiency. Sewer systems present a distinctive en-

vironment teeming with unique navigational challenges, which the current state of drone

technology is not yet fully equipped to surmount. Our work aspires to tackle these issues,

presenting a two-phase approach to navigate drones through unknown environments, with

a specific focus on sewer systems.

1.1 Background and context

Sewer systems, as vital infrastructural networks, transport and treat wastewater, crucial

for urban health and sanitation. Due to aging, environmental stress, and chemical corrosion,

they require regular scrutiny to prevent deterioration.

Traditionally, inspections were manual, posing safety risks to workers, while also be-

ing labor-intensive and time-consuming. Consequently, there’s a pressing need for a safer,

efficient alternative, which has come in the form of drones.

Drones can access hard-to-reach areas, reducing human risk and expediting inspec-

tions. With the capability to capture high-resolution data for further analysis, they offer

significant advantages.
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1. Introduction

However, operating drones within sewer systems is fraught with challenges due to the

confined, complex environments they need to navigate. Variable lighting, water presence,

debris, and intricate sewer geometry further complicate the situation. Even with advance-

ments in drone technology, reliable, autonomous sewer navigation remains a substantial

challenge.

Given the widespread use of drones in various sectors and the urgent need to address

sewer system management, the timeliness and relevance of this research are evident. By de-

veloping an efficient, safe solution for sewer inspections, this research aims to revolutionize

the management and maintenance of essential urban infrastructures.

1.2 Problem statement

Sewer management, a crucial sector within the utility industry, continues to grapple

with ongoing challenges due to the infrastructure’s complexity and the hazardous nature of

the environment. A promising solution lies in the use of drones for sewer inspections, but

safe and effective navigation of these drones within sewer systems remains a formidable

challenge.

This research focuses on tackling specific challenges intrinsic to this task. The central

issues addressed include platform limitations, manhole detection, precise navigation above

the manhole, controlled descent, sensor limitations, and ensuring sufficient battery life for

mission completion.

It’s important to note that these issues form part of a broader set of challenges faced by

drones inspecting sewer manholes. The remaining challenges - notably localization, com-

munication, environmental factors, and manoeuvring through the intricate sewer system -

fall outside the scope of this thesis but are equally significant for achieving a comprehensive

autonomous drone system for sewer inspections.

1.3 Research questions

This research’s central question is to determine how we could develop and implement an

autonomous solution capable of effectively executing a complete sewer inspection operation

with a real drone. This question encompasses critical elements such as manhole detection,

navigation, controlled descent, and localization, considering the transferability of simulated

operations to real-world scenarios. To address this overarching question, we investigate the

following specific questions:
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1. Introduction

1. Manhole Detection and Navigation: What is the most suitable algorithm for detecting

manholes in the variable environments of sewers, and how can image detection be translated

into real-world drone navigation commands?

2. Controlled Descent and Localization: Which algorithm can ensure a safe, controlled

descent of the drone given the onboard sensors, and how can we mitigate typical errors

such as localization noise and drift?

3. Simulation and Real-world Transferability: How can we accurately simulate the mis-

sion to guarantee that tested procedures are easily transferable to the real robot, especially

when considering variations in tunnel geometry and camera position?

The following section outlines the objectives and scope required to address these re-

search questions.

1.4 Objectives and scope

The purpose of this thesis is to tackle the challenges outlined in the Problem Statement,

creating an innovative, real-time solution to sewer manhole inspection using drones. The

crux of this study lies in the design of an autonomous navigation system for drones, engi-

neered to efficiently navigate the complex task of detecting manholes and ensuring a safe

descent in the demanding environments of sewers, considering practical constraints such

as drone weight and maneuverability.

Our approach to the problem is divided into two distinct phases. The first phase con-

centrates on take-off, precise detection of the sewer manhole, and accurate positioning of

the drone above the manhole. The second phase is focused on the controlled descent into

the manhole, facilitated by a single downward-looking Time-of-Flight (ToF) camera. A sig-

nificant part of this research is dedicated to the development of a mechanism that ensures

a seamless transition between these two crucial phases.

The intent is to validate the proposed system through comprehensive simulations and

real-world tests. The overarching goal of this research transcends the provision of an effec-

tive solution for sewer inspections. It aims to also potentially influence other applications

that demand similar navigational capabilities. By succeeding in this endeavor, we aspire to

make a significant contribution to drone operations in constrained vertical environments,

thereby enhancing the safety and efficiency of such tasks.

Having outlined the objectives and scope of this thesis, the following section details

the methodological approach designed to achieve these goals.

5



1. Introduction

1.5 Methodology and approach

Our research strategy is structured into two distinct phases as outlined in the objec-

tives and scope section, each with specific tasks to address the challenges articulated in

the problem statement. The approach begins by setting up a simulation environment in

the Gazebo 3D robotic simulator for preparations to tackle these tasks. An innovative in-

tegration of computer vision, reactive path planning, and robotic navigation is required

for the tasks. Our methodology diverges from conventional practices that often resort to

cutting-edge machine learning techniques.

These techniques often lead to extended operation periods, taxing the battery limi-

tations of the drones [1], [2], [3]. Furthermore, they require extensive datasets, which are

often not available for our specific tasks. In contrast, we opt to employ computer vision

methods that leverage OpenCV functions to resolve the challenges at hand. This approach

offers a balance of efficiency and practicality for our application.

Following the simulation phase, the developed solutions are transferred to a real-world

drone and tested in a real-life environment. This step ensures that the proposed solu-

tions are practically applicable, thereby underscoring the real-world transferability of our

approach.

Our research, therefore, is not anchored on a mere quest for a more economically savvy

solution. Instead, it is geared towards executing complex tasks, such as sewer manhole

inspection, effectively and accurately given the drone’s inherent constraints. By choosing

resources best suited to our specific application, like ellipse detection algorithm in phase

one and reactive path planing algorithm based on a single ToF camera system in the second

phase, we target an optimal balance between cost, effectiveness, and accuracy.

Choosing this path does present its set of challenges — particularly doubts over appli-

cability and reliability under varied real-world conditions. However, it also accentuates the

potential of strategies that are precisely tuned to the task and resources at hand in drone

navigation and inspection assignments. By aiming for a more achievable solution within

these constraints, the success of this research could precipitate a reassessment of current

standards and carve a path for similar methodologies in comparable applications.

This comprehensive approach seeks to balance effectiveness, efficiency, and real-world

applicability, addressing the specific challenges of drone sewer inspection in a novel way.

As the research progresses, we anticipate refining this methodology based on the emerging

data and experiences.
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1. Introduction

1.6 Contribution of the thesis

The contributions of this thesis to the field of sewer manhole detection are substantial

and multi-faceted.

For the first time, this research introduces the application of the Arc Adjacency Matrix

based Fast Ellipse Detection (AAMED) algorithm in sewer manhole detection. This inno-

vative use of the AAMED algorithm, which has been previously successful in fields such

as satellite tracking and Unmanned Ground Vehicle (UGV) guidance, paves the way for

a significant enhancement in the speed and accuracy of sewer detection methods. By suc-

cessfully integrating this algorithm into the field of sewer inspection, this work not only

enhances the precision and efficiency of sewer manhole detection but also contributes to

improved management and maintenance of sewer systems.

Furthermore, this research goes beyond the conventional use of the AAMED algorithm

by adding a filtration layer to optimize its performance specifically in the intricate context

of sewer manholes. Utilizing area-based metrics, this additional filtration layer fine-tunes

the detection process by selectively retaining only those ellipses that match the typical

dimensions of a manhole. This modification substantially reduces the incidence of irrelevant

detections and boosts the reliability and precision of the AAMED algorithm in this novel

application.

Building upon the substantial advancements in sewer manhole detection, this research

further contributes by creating and implementing a novel algorithm designed specifically

for drone fully autonomous descent within manholes. A task that primarily relies on depth

image data, this particular use of drones is groundbreaking, as indicated by a comprehensive

literature review revealing minimal exploration in this specific area.

The development and successful implementation of such an algorithm signify a vital

stride in leveraging drone technology for intricate navigation tasks. This unique contribu-

tion has practical implications not only for sewer inspection and management, but also for

any other field that requires autonomous navigation in constrained and complex environ-

ments.

1.7 Overview of the thesis structure

This thesis is organized into seven significant chapters, each addressing a different

aspect of the research:

1- The "Introduction" chapter sets the stage by outlining the context, problem state-

ment, research questions, objectives, and scope of the research. It also highlights the
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1. Introduction

methodology and the unique contributions of this study.

2- The "System Specifications" chapter delves into the technical and functional re-

quirements of the drone system for sewer inspection, detailing aspects like hardware and

software selection, and sensor configurations.

3- The "Literature Review" chapter provides an in-depth analysis of the current state

of drone technologies, sewer inspection methodologies, and relevant algorithmic solutions,

emphasizing the gaps this research intends to address.

4- The "Methodology" chapter provides a detailed step-by-step description of the ellipse

detection algorithms, the process of developing a drone-controlled descent algorithm, and

the setup of the simulation and real-world environments for testing and evaluation.

5- In the "Results" chapter, we present and dissect the outcomes of the simulated and

real-world tests of the proposed system, focusing on its performance and robustness across

varying sewer environments.

6- Lastly, the "Conclusion" chapter encapsulates the entirety of the thesis, providing

a summary of the key findings, acknowledging the study’s contributions, and suggesting

potential directions for future research.
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Chapter 2

System specifications

2.1 Overall framework

The primary objective of this research is the autonomous operation of a sewer-

inspecting drone, facilitated by the integration of various tools and systems across two

primary phases: manhole detection and positioning, and the subsequent descent into the

sewer manhole.

Gazebo, a 3D robotic simulator, provides a controlled environment where we can rig-

orously test the algorithms designed for the autonomous operation of our drone. This

process is streamlined with the Robot Operating System (ROS), serving as the backbone

for operational software.

To ensure safe and controlled flight, both in simulation and real-world scenarios, the

PX4 Autopilot is implemented. This open-source flight control software not only integrates

smoothly with our simulation environment for effective testing and validation, but it also

extends to the actual drone, delivering reliable, autonomous control.

Finally, to facilitate communication between the ROS-based control system and the

drone, the MAVROS package is utilized. This system enhances MAVLink’s capabilities

within the ROS platform, allowing efficient transmission of commands from the ROS nodes

to the drone and providing access to real-time telemetry data.

The following sections delve into each of these components, providing a comprehensive

understanding of their roles within the framework.

2.1.1 Gazebo

Gazebo plays a pivotal role in the development and testing of the two main phases of

our sewer inspection project, all within a controlled virtual setting. With its compatibility

9



2. System specifications

with ROS Noetic and support for PX4 Autopilot firmware, coupled with the ability to

simulate realistic graphics, physics, and sensor data, Gazebo provides a highly accurate

and realistic simulation environment tailored for intricate drone operations.

Furthermore, Gazebo offers a selection of pre-built models that can be customized

to suit the specific needs of our project. This flexibility allows us to design a simulation

environment that closely mimics the real-world conditions in which the drone will operate.

Additionally, it enables us to adapt the drone model for our sewer inspection application

by integrating the necessary sensors to replicate those onboard the actual drone.

2.1.2 Robot Operating System (ROS)

The Robot Operating System (ROS) is a flexible framework for writing robot software.

In this project, ROS Noetic is specifically selected for its compatibility with Ubuntu 20.04

and Gazebo 11, and for the robust set of tools it provides for robot software development.

ROS plays a central role in our sewer inspection application, functioning as the pri-

mary platform for the development, and deployment of the two main algorithms — manhole

detection and drone descent. These algorithms, encapsulated as ROS nodes, process sen-

sor data to detect manholes and control the drone’s movement, allowing it to descend

accurately into the manhole. ROS’s modular design and advanced message-passing inter-

face enable seamless communication between nodes and other system components like the

Gazebo simulator and PX4 Autopilot. This inter-node communication allows for real-time

adjustments, critical for the accurate and autonomous operation of the drone during sewer

inspections.

2.1.3 PX4 Autopilot

In our project, PX4 Autopilot, an open-source flight control software, controls the

movements and operations of our sewer-inspecting drone. it is compatible with the Gazebo

simulator that we use for testing our drone’s manhole detection and descent algorithms. The

communication between PX4 and Gazebo, as well as other elements of our system, occurs

through the Simulator MAVLink API. This API facilitates the exchange of sensor data

and motor/actuator values using MAVLink messages. It also manages communication with

ground control stations such as QGroundControl and offboard APIs including MAVSDK

and ROS, enabling us to seamlessly integrate our custom algorithms. Figure 2.1 provides a

detailed illustration of the input and output flow of messages between the PX4 Autopilot

system and the Gazebo simulator using this protocol.

10



2. System specifications

Figure 2.1: Diagram of message flow between PX4 and Gazebo [4]

During a SITL simulation, PX4, the Gazebo simulator, ground stations, and external

developer APIs connect via UDP, either on the same computer or across different computers

within a network. The SITL environment, depicted in Figure 2.2, features the main box

on the left representing the PX4 autopilot system. The entire environment utilizes the

UDP protocol to transfer information between tools, with PX4 employing three default

port numbers: port 14540 for ROS, port 14550 for QGroundControl, and port 14560 for

Gazebo. Gazebo automatically connects to port 14560, while QGroundControl listens on

port 14550 for information from the autopilot system. The "API/Offboard" box in the top

right corner indicates ROS communication and the "Simulator" box represents Gazebo

communication.

Figure 2.2: PX4 Software In the Loop environment overview diagram [4]
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2. System specifications

2.1.4 MAVROS

MAVROS plays a critical role in our sewer inspection project by serving as the com-

munication bridge between the MAVLink-compatible PX4 Autopilot system and our ROS-

based detection and descent algorithms. It translates MAVLink messages to ROS message

types and vice versa, ensuring seamless information exchange within our system. This con-

version enables the drone, equipped with MAVLink/MAVROS, to interact effectively with

the ROS platform, facilitating successful execution of our sewer inspection application.

2.2 Drone specifications

The drone used in this project has a width of 257.80 mm, a height of 217.80 mm,

and a limitted battery life of 20 minutes. It is specifically designed for sewer inspections,

with a comprehensive set of cameras supporting the autonomous navigation into sewer

manholes. To accomplish this task, the drone is equipped with four cameras that serve

various purposes during the autonomous detection of sewer manholes and descent.

Figure 2.3: Image of the drone used in this project

12



2. System specifications

2.2.1 Visualization camera

A front-facing camera (VOXL Hires Sensor M0024 IMX214) provides visual feedback

and situational awareness for the operator or for processing by the drone’s onboard com-

puter.

2.2.2 Tracking camera

Another front-facing camera (VOXL Tracking Sensor M0014 OV7251) is used for dual

purposes: to detect sewer manholes and perform visual odometry. It is placed beside the

visualization camera, and both cameras are tilted at a 45-degree angle. This camera plays a

crucial role in identifying the manhole and providing visual odometry data for localization.

2.2.3 Time-of-Flight (ToF) cameras

The Time-of-Flight (ToF) cameras used in the drone are based on PMD technology,

which stands for Photonic Mixer Device. The PMD sensor works by emitting a short pulse

of light and measuring the time it takes for the light to reflect back to the sensor. This

time measurement is used to calculate the distance between the sensor and the object that

reflected the light.

The PMD Time-of-Flight sensor used in the drone produces high-fidelity depth mapping

indoors up to 6m. This allows the drone to accurately measure the distance to nearby

surfaces and navigate autonomously within the sewer manhole. It is important to note

that on the VOXL platform, the ToF sensor is mutually exclusive to the stereo cameras,

meaning the stereo cameras need to be replaced with the ToF Add-on.

During the descent and ascent phases, the bottom and top ToF cameras play a crucial

role in ensuring the drone maintains a safe distance from the walls and ladder while nav-

igating the manhole. This is important to prevent collisions and ensure the safety of the

drone and any potential human operators or bystanders.
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Chapter 3

Literature review

The Literature Review chapter is structured to provide an in-depth look into the mul-

tidisciplinary areas that play a critical role in the development of an autonomous drone

for sewer manhole inspection. This chapter begins with an overview of the relevant liter-

ature, presenting the context and motivation for this research, and identifying the unique

value propositions of drones in this context. The theoretical framework delves into the

key concepts, principles, and methodologies in the fields of Computer Vision, 3D Sensors,

Deep Learning, Simultaneous Localization and Mapping (SLAM), and Ellipse Detection

Algorithms. The section on related work examines the existing solutions and research

findings related to sewer manhole detection, ellipse detection methods, and autonomous

navigation. The final section focuses on identifying the gaps in the current literature, for-

mulating the research questions, and defining the scope of this research.

3.1 Overview of relevant literature

The burgeoning application of drones in various fields has led to a surge of interest in

their potential for sewer manhole inspections. Their inherent capabilities have been shown

to enhance safety, efficiency, and cost-effectiveness significantly, outperforming traditional

methods like CCTV and manhole cameras, as validated by multiple studies [5], [6], [7], [8],

[9], and [10].

Building on this interest, the end of 2014 marked the initiation of a pilot project under

the European Union’s ECHORD++ innovation program. The project aimed to develop

robots adept at performing inspection tasks within Barcelona’s drainage and sewer network.

The vision of this endeavor was to establish a satisfactory technological solution that could

subsequently be applied to similar challenges in other cities across Europe and potentially

worldwide.[11]
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3. Literature review

The unique value proposition of drones in this context, encompassing the following:

• Improved safety: Sewer manholes are often located in challenging and hazardous

environments. The use of drones can minimize the risk of accidents and injuries to

workers by reducing direct human exposure to toxic gases, contaminated water, and

confined spaces.

• Enhanced efficiency: Manual inspection of sewer manholes is time-consuming and

labor-intensive. Drones can cover large areas and inspect multiple manholes in less

time, increasing the efficiency of the inspection process.

• High-quality data collection: Equipped with advanced sensors and cameras, drones

can capture high-resolution images and accurate measurements of the sewer infras-

tructure. This data can be used to detect defects, assess structural integrity, and

identify maintenance requirements more effectively.

• Cost-effectiveness: Drones can significantly reduce the costs associated with sewer

manhole inspections by eliminating the need for expensive and specialized equipment

such as confined space entry equipment, gas detectors, and safety gear.

• Accessibility: Drones can access hard-to-reach or hazardous areas that may be diffi-

cult or dangerous for human inspectors to access. This allows for more comprehensive

inspections and a better overall assessment of the sewer infrastructure.

• Real-time monitoring: Drones can transmit live video feeds and data to inspection

teams, enabling real-time monitoring and decision-making. This can help prioritize

maintenance tasks and allocate resources more effectively.

• Reduced environmental impact: By minimizing the need for manual entry into the

sewer system, drone inspections can help to reduce the environmental impact of

sewer inspections. The use of drones can reduce the potential for contaminating

water sources or releasing harmful gases into the environment during inspection

processes.

However, the implementation of these innovative systems in practical sewer manhole

inspections is fraught with significant technical challenges. The challenges faced by drone-

based solution for this application are:

• Platform Limitations: Balancing the drone’s stability, computational power, and

size presents a significant challenge. Drones need stable controllers for maneuvering
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in confined spaces with potential obstacles and disturbances. They also require ro-

bust computational capabilities to handle real-time tasks like sensor data processing,

image recognition, path planning, and potentially executing machine learning algo-

rithms. Yet, these improvements must not compromise the drone’s size, as navigating

narrow sewer systems demands compact designs.

• Localization: Accurately determining the drone’s position within the complex sewer

network, as GPS signals are typically unavailable underground. This requires alter-

native localization methods, such as visual odometry or LiDAR-based solutions.

• Navigation: Navigate through the sewer system while avoiding collisions with pipes,

debris, and other obstacles. Drones must be able to plan their path and adjust to

changes in the environment autonomously. Particularly in the confined spaces of

sewer systems, inherent sensor drift from Inertial Measurement Units (IMU) can

exacerbate navigation challenges, causing accumulated errors over time and leading

to positional inaccuracies.

• Manhole detection: Identifying manholes accurately and efficiently in diverse envi-

ronments with varying lighting conditions, debris, and surface materials. This may

involve the development of robust image processing algorithms or machine learning

models to improve detection performance.

• Descent: Safely and autonomously descending into the sewer manhole while avoiding

obstacles such as ladders, maintaining stability, and controlling the drone’s speed.

This task becomes particularly challenging due to confined spaces, airflow distur-

bances, and significantly reduced visibility in the dark environment of the sewer

manhole [12], [13]. Conventional RGB cameras used for visual navigation struggle in

low-light conditions, requiring alternative sensing solutions for effective operation.

• Communication: Maintaining reliable communication with the control station while

operating in an underground environment with limited connectivity. This may in-

volve the use of alternative communication methods or autonomous decision-making

capabilities.

• Sensor limitations: Dealing with sensor limitations, such as reduced visibility for

cameras and the potential for LiDAR sensors to become contaminated or obstructed

by debris, water, or other materials present in the sewer system.
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• Battery life: Ensuring sufficient battery life for the drone to complete its inspection

tasks and return to the surface safely. The power constraints in such applications

may require energy-efficient algorithms and hardware [1], [2], [3].

• Environmental factors: Operating in potentially hazardous environments with the

presence of toxic gases, moisture, and corrosive substances. This requires drones to

be designed with materials and components that can withstand these conditions.

This literature review supports our research’s broader academic context, which is a

part of the mission to develop a fully autonomous drone solution for sewer manhole inspec-

tion—a task that demands a period extending beyond three months. Given this time-bound

constraint, the thesis narrows its focus to crucial aspects of the mission: autonomous take-

off, sewer manhole detection, and safe descent through a vertical manhole while adeptly

avoiding obstacles. Accordingly, our work primarily concentrates on addressing the chal-

lenges of platform limitations, manhole detection, navigation, descent, sensor limitations,

and battery life. As we delve into these specific aspects, we aim to critically examine the

existing work and prior research that tackle these challenges. The intention behind focusing

on these aspects is twofold.

First, it aids in understanding the intricacies associated with the development of an

autonomous drone system capable of conducting sewer inspections. By synthesizing the

wealth of knowledge accumulated in these areas, we build a strong foundation for the rest

of our research.

Second, this review takes the crucial step of identifying gaps in the existing body

of literature, indicating which aspects have been extensively researched and which require

further exploration. This investigation forms the basis for our research questions, providing

a roadmap for our study and directing future research efforts in this field.

With this emphasis on the specified challenges, we are now equipped to critically ana-

lyze the relevant literature, identifying and synthesizing key findings to shape our study’s

specific research questions and objectives.

By the end of this comprehensive literature review, we will have painted a detailed

picture of the opportunities and challenges in this field. This will lay the groundwork

for detailing the gaps in the literature and formulating our research questions, thereby

providing a clear trajectory for our research and guiding our contribution to the broader

mission of creating an autonomous drone system for sewer manhole inspection.
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3.2 Theoretical framework

3.2.1 Computer vision

In the realm of computer vision, the establishment of object recognition algorithm

frameworks has reached a level of stability, allowing for the application of computer vision in

a wide range of scenarios. Drones, or unmanned aerial vehicles (UAVs), are versatile robotic

systems capable of flight, vertical take-off and landing, and impressive maneuverability.

By integrating computer vision technology, drones have found extensive applications in

navigation [14], precision landing, obstacle avoidance during flight, and visual simultaneous

localization and mapping (Visual SLAM) [15].

In the context of sewer manhole inspection, drone-based object recognition and track-

ing technology leverage the capabilities of computer vision. During the flight, the drone

captures images of the target objects (e.g., sewer manholes) while considering factors such

as altitude and field of view. It then processes the extracted image features to recognize

and track the objects of interest [16],[17]. Moreover, by combining this information with

a relative position control algorithm, the drone can autonomously navigate and perform

inspection tasks within the sewer system.

3.2.2 3D Sensors

LiDAR technology and Time-of-Flight (ToF) cameras significantly enhance the capabil-

ities of drones for obstacle detection and avoidance, especially in challenging environments

like sewer manhole inspections. Systems based on detection and avoidance employ these

sensor technologies to identify and position obstacles, enabling the execution of maneuvers

that assure drone safety. Both LiDAR and ToF cameras project infrared light beams in

various directions, capturing the time of flight to create three-dimensional models of the

navigational surroundings. As active technologies, they function independently of ambi-

ent lighting conditions, providing increased reliability in low-light or nighttime situations.

Additionally, the time of flight measurements eliminates the need for extra processing to

generate the 3D scene.

Mobile LiDAR systems utilize near-infrared radiations to measure the topology of an

object and collect the reflectance returned by the measured objects. Due to the high pulse

repetition rate (e.g., 550 kHz), the density of the acquired point clouds is very high (e.g.,

approximately 4000 points/m2 on the road surface), making mobile LiDAR systems a

suitable solution for detecting manhole and sewer well covers on road surfaces.
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In the context of sewer manhole inspections, incorporating LiDAR technology and

ToF cameras into drones bolsters their capacity to detect and circumvent obstacles in the

constrained and complex environment of sewer systems. While LiDAR provides a more

accurate representation by emitting multiple light pulses, ToF cameras offer a simpler

solution by sending out a single light pulse to obtain depth information. The 3D models

produced by LiDAR and ToF cameras facilitate autonomous navigation for the drone,

ensuring the aircraft’s safety and the precision of the inspection procedure.[18]

3.2.3 Deep learning

Deep learning, a subset of machine learning, focuses on artificial neural networks with

multiple layers that can learn and process complex patterns in data. It has become increas-

ingly popular in various fields, including computer vision, natural language processing, and

robotics. In the context of sewer manhole inspections, deep learning techniques can be ap-

plied to enhance object detection, recognition, and tracking of the manhole and other

obstacles within the environment [19], [20],[21]. In addition, deep learning can assist in

processing the data obtained from sensors like LiDAR and ToF cameras, contributing to

better autonomous navigation and decision-making capabilities for the drone.

3.2.4 Simultaneous Localization and Mapping (SLAM)

SLAM is a computational approach that enables a robot or drone to build a map of

its environment while simultaneously keeping track of its position within that map. This

technique is particularly valuable for drones operating in GPS-denied environments, such

as sewer manholes. By integrating SLAM with sensor data from LiDAR [22], ToF cameras

[23], or computer vision systems [15] , drones can accurately estimate their position and

orientation while navigating the complex and confined spaces of sewer systems. SLAM

algorithms can also contribute to obstacle detection and avoidance, path planning, and

efficient exploration of the sewer environment, enhancing the drone’s ability to perform

reliable and precise inspection tasks. [24]

3.2.5 Ellipse detection algorithms

Ellipse detection algorithms are fundamentally based on the distinct mathematical

characteristics of an ellipse. To illustrate these properties, we can refer to Figure 3.1 as an

example. The ellipse fitting or detection algorithms that have been developed so far can

primarily be classified into three groups according to their architecture. The first group

consists of algorithms that utilize algebraic or geometric least square methods. The second
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group employs clustering or voting-based Hough transform methods. The third and final

group encompasses a range of uncategorized, statistical, or heuristic techniques that often

involve combining different approaches [25].

Figure 3.1: This figure highlights some useful parameters (blue) and geometric
properties (red dotted line) of an ellipse [25].

3.3 Related work and previous research

3.3.1 Sewer manhole detection

A crucial aspect of the autonomous detection process is the drone’s ability to recognize

manholes while navigating the urban landscape. The literature offers various techniques

and approaches to addressing the challenges associated with this unique perspective and

the autonomous detection of manholes.

When it comes to detecting manholes and sewer wells in urban areas, LiDAR-based

solutions are widely used due to the long-range, high-speed, and low-cost data acquisition.

An automated stochastic object-oriented algorithm to detect sewer manholes from mobile

LiDAR point clouds based on a marked point process of disks and rectangles is presented

in [26]. The algorithm is based on the Bayesian paradigm in-order to efficiently process

very large volumes of 3D point clouds, keeping in mind that the main scope here is to

detect an unknown number and sizes of manholes and sewer wells in road surfaces. Mobile

laser scanning (MLS) also known as Mobile LiDAR is used also for urban road manhole

detection since laser scanning and navigation technologies have rapidly developed, and

proven to be very efficient in acquiring very dense point clouds (over 800 points per square

meter) along road corridors and been applied in many relevant applications such as sur-

veying and mapping. In [27], they proposed an automated algorithm for detecting road

20



3. Literature review

manhole covers using MLS data. The mobile laser scanning system can carry the mapping

mission day and night, which makes such a system a promising and cost-effective solution

in similar tasks of detecting a big number of manholes in urban roads. They reduce the

computational complexity and narrow down the searching regions by segmenting the road

surface point from a raw point cloud and rasterizing into a georeferenced intensity image

through inverse distance weighted (IDW) interpolation. Furthermore, a supervised deep

learning model is developed and a random forest model is trained to detect road manhole

covers. Another example regarding the MLS usage for road inventory and safety inspection,

a feature recognition method presented in [28] is interpreting the whole MLS data accord-

ing to the defined features. Initially, the raw MLS data are divided along road directions

into sub-regions for segmentation and classification, and finally, further examination using

the knowledge-based method to recognize the interested features for road inventory such

as poles and crash barriers.

Another different approach to detect manhole covers from road surface images based

on morphological techniques is presented by Tanaka and Mouri [16]. From the road surface

image, they extract round shape components and use a black top-hat operation with disk

shape structure elements to extract the round components. The resulting components go

through a masking operation while applying a threshold input image, and by eliminating

the regions with small areas the cover manholes were obtained.

A localization system presented in [29] includes a manhole detector module, that based

on the depth images captured by a camera pointed upwards, checks whether the robot

is under a manhole. Since the detected manholes offer a perfect opportunity to localize

the robot according to the location of each manhole in the sewage system and the city

drawings. The poor illumination conditions and high symmetry of the environment raised

the need for machine learning approaches to train a classifier able to split the depth camera

view between the regular ceiling and manhole [30]. The need for high-accuracy manhole

detections and light-weight detection computations that are essential for the localization

system, lead to the emergence of Convolutional Neural Networks (CNNs) as a convenient

technique. Manhole detection is used to correct drift in the joint localization algorithm

presented in [17], the location of the manholes can be either known a priori or mapped

from above ground and then detected inside the pipes. They use a bag-of-features image

recognition system to detect manholes through a linear support vector machine (SVM)

classifier.

In the research paper by [31], the authors present an innovative approach to detecting

manholes using depth images captured by drones navigating in dark, GPS-denied, and

confined spaces. Rather than relying on traditional methods, their method employs a deep
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learning model specifically designed for this task. The study explores various network sizes

to achieve the desired accuracy while maintaining low computational demands, making it

suitable for implementation on a drone’s parallel processing co-processor.

The core of their technique is the use of a temporal filter to enhance robustness and

minimize false positives. This is achieved by requiring multiple detections within a specific

timeframe before validating the final location of the manhole. The results of the study indi-

cate that using deep learning on depth images is a viable solution for scene texture-agnostic

manhole detection. The approach’s effectiveness is demonstrated by a drone successfully

navigating through a 1:1 size standard manhole found on a marine vessel.

3.3.2 Ellipse detection methods

A crucial aspect of the autonomous detection process is the drone’s ability to recog-

nize manholes while navigating the urban landscape. Due to the 45-degree tilted camera

mounted on the drone, manholes are perceived as ellipses. This distinction is vital for

developing robust computer vision and object recognition algorithms that can accurately

identify and track manholes in real-time, enabling the drone to approach and descend

into the manhole while avoiding obstacles. The literature offers various techniques and

approaches to addressing the challenges associated with this unique perspective and the

autonomous detection of manholes.

In the field of digital image processing, feature extraction is a key component that

involves identifying and extracting simple features such as edges, corners, lines, and shapes,

as well as more complex ones like rectangles and circles. Ellipse detection methods have

matured over the past three decades but have not been extensively reviewed in the literature

[25].

Ellipses are part of the family of conics in mathematics and can be viewed as a gen-

eralization of circles. Circles can appear as ellipses when viewed from a distant, oblique

angle. The relationship between circles and ellipses contains meaningful information about

size and orientation that can be used in various applications. Researchers have explored

the properties of ellipses [32], such as the symmetric nature of their foci and the conjugate

diameter relationship between parallel chords, to parameterize ellipses and predict their

centers [33].

The importance of developing a robust ellipse detection system that can be applied

in various real-world scenarios. The right balance between robustness and computational

efficiency must be established for each specific application. The early research on ellipse

detection focused on identifying a small number of computer-generated ellipses among

22



3. Literature review

primitive shapes, which can achieve high accuracy even with image noise or blur. However,

this may not be suitable for more complex applications, such as tracking an elliptical face

in a video sequence or detecting large numbers of elliptical cells in microscopy images

[25]. Introducing the following set of real-world applications indicates the rule of ellipse

detection.

• Surveillance and monitoring: Eye tracking [34], lips-reading [35], face detection [36],

and human gait analysis [37].

• Agricultural applications: Segmentation of touching kernels for automatic sorting

and picking [38].

• Industrial applications: Quality control in steel coil production using eccentricity

measurement [39].

• Biomedical applications: Cell segmentation [40], [41], [42], 3D object shape recon-

struction [43], and volume prediction of ellipsoid-shaped organs [44].

• Oceanography: Detection of elliptical water eddies in Surface Temperature maps [45].

• Spatial surveying: Identifying elliptical arcs in satellite images of natural contours

and man-made structures [46].

• Space exploration: Analysis of solar corona with elliptical shapes [47].

• Electrical engineering: Impedance measurement system using ellipse fitting [48].

• Mechanical engineering: Strain and curvature analysis relying on ellipse fitting [49].

• Photovoltaic engineering: Tracking sunspot center orientation using ellipse fitting

[50].

• Mechatronics applications: Localizing cameras on moving vehicles [51], [52] or un-

manned helicopters using ellipse fitting on circular traffic signs [53].

• Character reconstruction: Chinese calligraphic stroke reconstruction using ellipse

fitting [54].

Application-specific demands drive the need to increase computational efficiency and

adapt to different types of images. Most projects involve introducing modifications to

existing methods, but this practice hinders the development of a futuristic system capable

of efficiently extracting ellipses from a variety of images automatically [25].
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Ellipse detection algorithms can be broadly classified into three categories: least-square

methods, clustering or voting-based methods, and uncategorized, statistical, or combined

methods [25].

A. Least-square methods: These methods are popular for ellipse fitting due to their

linear nature and simplicity, making them suitable for real-time applications [55], [56]. The

direct Least-Square (DLS) method is a notable development [57], as it performs ellipse-

specific fitting in a non-iterative manner. However, these methods can be sensitive to noise,

biased, and limited in their ability to fit multiple primitives [58].

B. Clustering or voting-based methods: Hough Transform (HT) methods are widely

used in computer vision for detecting geometric features. Despite their robustness to-

wards occlusion, these methods are not ideal for multiple ellipse detection due to the

increased computational demands. Some possible HT methods for multiple ellipse detec-

tion include Generalized HT [59], Straight Line HT [60], Fast Ellipse Hough Transform

[61], and Randomized HT [62].

C. Uncategorized, statistical, or combined methods: Extended Kalman Filter (EKF)

[63] and other statistical methods like RANSAC [64] and Genetic Algorithm [65] have been

used for ellipse detection. However, they may perform poorly in high-noise environments

or when multiple ellipse detection is required. Other approaches include ellipse growing,

noise-inclusive statistical estimation methods such as maximum likelihood, and combined

methods that use HT alongside least square methods or other techniques. While some of

these methods can be computationally expensive, they may outperform other methods in

certain situations.

In the paper [66] the authors propose a novel algorithm for detecting and tracking

elliptical patterns in real-world robotics tasks. The algorithm fits ellipses to each contour

in the image frame, discarding those that do not provide a good fit. This lightweight

method is suitable for resource-limited onboard computers in robots and can handle lighting

variations and partial views. The authors tested their approach on an autonomous UAV

landing on a fast-moving vehicle, demonstrating its performance in indoor, outdoor, and

simulated real-world scenarios. Compared to other well-known ellipse detection methods,

the proposed algorithm achieved an F1 score of 0.981 on a dataset with over 1500 frames,

indicating its potential for improved performance in certain robotics applications.

In the paper [67] the authors propose a novel ellipse detection method called arc ad-

jacency matrix-based ellipse detection (AAMED). The method begins with segmenting

edges into elliptic arcs and constructing a digraph-based arc adjacency matrix (AAM) to

represent their triple sequential adjacency states. To make the AAM sparse, curvature and

region constraints are applied. The algorithm then performs bidirectional searches on the
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AAM to find potential ellipse candidates, utilizing cumulative-factor (CF) based cumu-

lative matrices (CM) for efficiency. The ellipses are fitted from these candidates through

the eigendecomposition of CM using the Jacobi method. Lastly, a comprehensive valida-

tion score is introduced to effectively eliminate false ellipses, taking into account adaptive

shape, tangent similarity, and distribution compensation. The experiments demonstrate

that the AAMED method outperforms 12 other state-of-the-art methods across 9 datasets

in terms of recall, precision, F-measure, and time consumption.

In [68], the authors introduce a unique method for detecting elliptical features in dig-

ital images, which is not based on the widely used Hough transform or random sample

consensus approaches. Instead, their technique is founded on the circle power theorem and

its extension to conics. The primary concept involves transforming an image into multiple

power ratio histograms, which record the distribution of power ratios calculated from spe-

cific reference point pairs. The authors demonstrate that peaks in power ratio histograms

offer substantial evidence for the presence of ellipses. By employing peak verification based

on the parallel chord property and multi-histogram cross-validation, the confidence of an

identified peak is increased. The method’s accuracy and robustness are validated through

experiments on various synthetic and natural images.

3.3.3 Autonomous navigation

In the realm of autonomous navigation, existing solutions can be broadly categorized

into global path planning (deliberative), local path planning (sensor-based), and hybrid

methods [69].

Deliberative, or planning-based, approaches necessitate a map representation of the en-

vironment and localization information to determine safe local paths. These methods often

rely on simultaneous localization and mapping (SLAM) techniques for autonomous opera-

tion in unknown environments [70]. For instance, the method in [71] combines an Unscented

Kalman Filter (UKF) and a particle filter to process IMU and range measurements for UAV

localization in dam penstocks with pre-existing maps. This semi-autonomous approach was

later extended in [2] and [3] for more autonomous penstocks inspection.

In [2], UKF was employed to provide a 6-DOF estimation of the UAV pose by fusing

data from the IMU, two range sensors, and four cameras against a known 3D occupancy

grid map. However, a remote operator was still needed to provide waypoints to guide the

UAV. In [3], a SLAM-based approach combining range and vision-based estimators was

suggested. An algorithm was proposed for local mapping that applied a cylindrical model

fitting to point clouds obtained from the heterogeneous sensors. Subsequently, the tunnel
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axis was estimated from the local map, and the UAV position was determined along the

tunnel axis to guide the UAV.

When the robot can navigate freely in 3D space, some researchers [72],[73] employ

adaptive path planners based on traditional techniques, such as A* [74], D* lite [75],

PRM [76], or RRT [77]. However, these approaches often come with the drawback of

high computational cost, and they consistently compute a collision-free path to the target

location, which can be resource-intensive in unknown or dynamic environments. In contrast,

refs [78] presented a different approach for operations in extremely narrow tunnels. This

method finds safe paths using a modified A* algorithm in 2D occupancy maps generated

by onboard SLAM, and it employs a low-level model predictive controller to track local

trajectories based on the planned paths.

For inspections in tunnels, [12] and [13] proposed using a UAV equipped with a rotating

camera to minimize field-of-view (FOV) obstructions when collecting images for inspec-

tion. The system also incorporated an array of laser range sensors, which leveraged prior

knowledge of the tunnel’s geometry to estimate the UAV’s position and heading, allowing

it to maintain its position at the tunnel’s center. In the same studies [12] and [13], the

team also conducted an experiment to test the UAV’s autonomous performance in vertical

shafts. Specifically, they simulated the access or exit from the tunnel via a DTSS entry

shaft through a 5 m diameter manhole at ground level. The UAV was prepared with a

safety tether for emergency retrieval, and the initial positioning at the shaft’s centerline

was manually controlled by a human pilot. Once in autonomous mode, the UAV was pro-

grammed to maintain its position in the shaft center, while the pilot manually controlled

its vertical speed and altitude. The UAV conducted an autonomous flight of approximately

4.5 minutes, covering a vertical distance of roughly 8 m. The results of this experiment

revealed an RMS position error of 0.53 m with a maximum deviation of 1.44 m from the

shaft centerline, which was greater than the errors observed during the horizontal trial at

the canal. The larger error may be attributed to the vertical nature of the flight, the manual

control of vertical speed and altitude, and the inherent complexities of navigating vertical

shafts. Despite the increased errors, this experiment demonstrated the potential applicabil-

ity of UAVs for inspecting vertical tunnel shafts, although it also underscored the necessity

for improvements in autonomous control during vertical navigation. Alternatively, deep

learning approaches such as those presented in [19], [20], and [21] utilized Convolutional

Neural Networks (CNNs) for navigation in underground mines with low-cost UAV systems,

relying only on a single camera and LED light bar. In these approaches, the CNN clas-

sified images into three categories—left, center, and right—to adjust the UAV’s heading

and prevent collisions with tunnel walls, all without depending on localization information.
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The UAV’s motion was managed in the horizontal plane, while a remote operator provided

a fixed altitude. The effectiveness of these methods hinges on the quality of the training

dataset, posing challenges when implementing them in unfamiliar environments.

However, with an increase in the size of the search space, the computational cost of

algorithms such as these becomes significantly more expensive [79]. Consequently, sensor-

based methods, which are a subset of reactive approaches [80], can be more beneficial.

These methods generate motion decisions based on the lightweight processing of current

sensor observations, resulting in rapid and instinctive responses. Compared to planning-

based methods, these approaches offer a more favorable computational cost and eliminate

the need for precise localization.

In tunnel-like environments, reactive methods have been proposed, such as [81], [82],

and [83], which focus on local sensory depth information of surrounding tunnel walls. These

methods provide rigorous mathematical proofs of their performance and utilize control

laws or estimations to maintain movement parallel to the tunnel axis while keeping a safe

distance from the walls.

Merz and Kendoul [84] introduced a LiDAR-based collision avoidance solution for he-

licopters in structure inspection scenarios, which relies on a 2D LiDAR and the pirouette

descent and waggle cruise flight modes for accurate mapping of the 3D environment. This

method requires precise estimation of the vehicle’s position for proper obstacle detection

and allows for uninterrupted flights while avoiding obstacles, providing a real-time solution.

Hrabar [85] presented a reactive approach to collision avoidance that creates an elliptical

search zone whenever an obstacle is detected in the planned path. The safety volume is

composed of spheres that approximate a cylinder. The algorithm has been tested with both

stereo vision and LiDAR-based systems, with the best results obtained using the LiDAR-

only system. In [86], Hrabar’s work was extended by incorporating a LiDAR sensor with

360-degree coverage and a range of up to 100 m, focusing on improving the search area for

escape points, dynamic safety volume, local minima escape procedures, and limited search

space.

Vanneste et al. [87] proposed a real-time approach that extrapolates the 2D VFH+ [88]

method to 3D using a 2D polar histogram of the environment. The algorithm generates

new robot motions with an average time of only 326 µs. However, this method requires

tuning parameters depending on the application.

Some methods, such as those presented in [89], [90], [91], focus on collision avoidance for

UAVs in shared spaces, considering the presence of other known UAVs and static obstacles.

Alejo et al. [89] proposed an indoor method based on optimal reciprocal collision avoidance

(ORCA) with centralized control.
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Hybrid strategies aim to address the aforementioned drawbacks by combining both

deliberative and reactive approaches for more efficient navigation behavior in unknown and

dynamic environments. There exists a considerable body of literature on hybrid approaches,

with examples found in [92], [93], [94], [95], [96], [97], [98] and the references cited therein.

Many existing hybrid navigation methods in three-dimensional (3D) environments em-

ploy search-based techniques for local planning components. While some utilize reactive-

based approaches, they often only consider two-dimensional methods by constraining UAV

movement to a fixed altitude, which fails to take full advantage of UAV capabilities. Thus,

the primary contribution of this work is to propose a hybrid 3D navigation strategy for

UAVs, enabling efficient navigation in partially unknown or dynamic environments. The

proposed strategy combines a global path planning layer with a reactive obstacle avoidance

control law, developed based on a general 3D kinematic model. The global path planning

layer, which is founded on RRT-Connect, can generate efficient paths using available en-

vironmental knowledge. A sliding mode technique is employed to implement a boundary-

following behavior in the reactive layer, offering quick obstacle responses at a low compu-

tational cost compared to search-based and optimization-based local planners. To create a

well-rounded hybrid navigation strategy, a switching mechanism is introduced to manage

the transition between the two control laws. Ultimately, the suggested method can over-

come the limitations associated with relying solely on deliberative or reactive approaches.

A hybrid approach was proposed in [92] for navigation in dynamic environments, which

integrated a potential field-based local planner with the A* algorithm serving as a global

planner, relying on a topological map. The authors of [99] recommended an alternative

hybrid approach for micro aerial vehicles, employing A* for both deliberative and local

planning components. In this approach, the global path is refined locally around obstacles

by undergoing re-planning processes.

3.4 Gaps in the literature and research questions

Upon critically reviewing the pertinent literature, two significant gaps in existing re-

search are evident, guiding the focus of our study.

Firstly, there’s a clear void regarding the detection of sewer manholes specifically aimed

at precisely pinpointing their accurate center position. Existing literature mainly concen-

trates on recognizing manholes and sewer wells within urban contexts, primarily detecting

manhole covers from the road surface. However, a lacuna becomes evident when one con-

siders the accurate localization of a sewer manhole’s center, a vital prerequisite for correct
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drone positioning for inspection missions. This dearth of research signifies a crucial area for

exploration and development, imperative for furthering sewer inspection methodologies.

Secondly, the literature critically lacks discourse surrounding the drone’s controlled

descent during inspection missions. Much research has been carried out on navigation and

detection for inspections of horizontal pipes. Still, the procedure of descending into vertical

sewer manholes fully autonomous is glaringly neglected. The absence of substantial work

in this area underscores the pressing need for research focused on devising robust and

dependable methods for the drone’s vertical descent into manholes. This gap presents

a compelling opportunity for progress and innovation within the domain of autonomous

drone technology for sewer inspections.

Beyond these identified gaps, the aspect of simulating the entire inspection operation

and ensuring the real-world transferability of the developed solutions becomes a pertinent

research question. While it doesn’t directly correspond to the specific gaps identified, the

issue of simulation and transferability is central to our study as it seeks to ensure the

methods devised for manhole detection, navigation, and descent are not just theoretically

sound but also practically applicable and transferable to real-world scenarios.

Given these discernible gaps and significant research questions, our study is shaped

around the following key inquiries:

How can we devise an autonomous drone system capable of accurately detecting a sewer

manhole’s center to bridge the gap in current detection and localization techniques? How

can we design an autonomous drone system that ensures a safe and dependable descent

into vertical sewer manholes, effectively addressing the barely explored challenge of vertical

descent in the context of sewer inspections? How can we accurately simulate the mission to

guarantee that tested procedures are easily transferable to the real robot, especially when

considering variations in tunnel geometry and camera position? In pursuit of answers to

these questions, our research aims to make significant contributions to existing knowledge,

providing innovative and pragmatic solutions to these identified gaps. We hope that our

efforts will not only answer the aforementioned questions but also lay the foundation for

future research, development, and innovation in the realm of autonomous drones for sewer

inspections.
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Chapter 4

Methodology

The system proposed for sewer manhole localization and descent using drone technology

incorporates a blend of autonomous drone flight, image processing techniques, and path

planning algorithms. These elements harmoniously collaborate to facilitate precise location

and identification of sewer manholes in urban landscapes, ensure navigational accuracy

towards them, and administer safe descent of the drone into these manholes.

The system comprises three major components: Drone Control, Manhole Center

Localization and Navigation, and Drone Descending, as visually represented in Figure

4.1.

The procedure is divided into two phases, with the first phase encapsulating the Drone

Control and Manhole Center Localization and Navigation components, and the second

phase focusing on the Drone Descending component.

Phase One commences with the Drone Control component. The drone is readied for

autonomous flight, a process that involves arming the drone, activating offboard control,

and implementing takeoff. Upon achieving a pre-defined altitude, the procedure transitions

to the Manhole Center Localization and Navigation component. This step utilizes images

from the onboard tracking camera to identify and navigate to the sewer manholes. The

captured images undergo processing, followed by the application of the detection algo-

rithm, which serves to pinpoint the center of the manhole within the image frame. This

identified center is then translated into real-world coordinates, directing the drone toward

the recognized manhole center.

Phase Two is initiated once the drone has navigated to the identified manhole center.

It consists solely of the Drone Descending component. This step relies heavily on a depth

image sourced from a downward-facing ToF camera. The depth image is subdivided into

smaller depth intervals, each of which is used to create an individual mask. These masks

are then processed, facilitating the identification of the free area’s center within each mask.
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The identified centers are then translated into real-world coordinates, generating multiple

free area centers. This process aids in establishing a safe and viable path for the drone to

follow during its descent into the manhole, thereby ensuring the overall safety and efficacy

of the operation.

Arm drone

Initialize Offboard Control

Takeoff

Acquire image

Process image

Apply detection algorithm

Identify manhole center

Compute real-world coordinates

Navigate to center

Acquire depth image

Create depth masks

Process masks

Identify free area centers

Compute real-world coordinates

Generate valid path

Navigate path

Drone Control

Manhole Center Localization and Navigation
Descending

Figure 4.1: Flowchart of the drone-based sewer manhole localization and
descending system.

4.1 Drone control

The drone control component prepares the drone for autonomous flight and ensures its

safety and proper operation through the following actions:

• Arming the drone: The drone’s motors and internal systems are activated. During

arming, the drone performs self-checks to ensure essential components, such as the
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IMU and sensors, are functioning correctly. Arming also unlocks the motors for lift

generation.

• Off-board mode: Control is handed over to an external device, like a companion

computer running ROS, instead of using the built-in remote controller. Off-board

mode enables advanced control capabilities, autonomous missions, complex flight

paths, and tasks that require precision and coordination based on instructions or

real-time commands from ROS nodes.

• Initiating takeoff: The drone receives a command from a ROS node to lift off. Motors

spin faster to generate lift, while onboard sensors and control algorithms maintain

stability and control. Upon reaching a predefined altitude or a safe hovering height,

the drone enters a stable hover mode, awaiting further ROS node commands to

execute its mission, such as moving to the sewer manhole center and descending into

it.

4.2 Manhole center localization and navigation

The Sewer Manhole Center Localization and Navigation component effectively locate

and navigates to the manhole center using a sequence of stages:

4.2.1 Image acquisition and preprocessing

The drone captures images of the ground using its onboard tracking camera. The first

stage involves undistorting the received images to account for the fisheye lens distortion.

This step rectifies the images, ensuring accurate detection and localization of the sewer

manholes.

4.2.2 Sewer manhole detection and center identification in

images

Since the images are captured utilizing the front-tilted tracking camera positioned at a

45-degree angle, This tilted perspective causes the camera to capture the manhole’s circular

shape as an ellipse. Therefore in this stage, ellipse detection algorithms are applied to the

undistorted images to identify sewer manholes. Two ellipse detection algorithms have been

tested.
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4.2.2.1 Algorithm 1

An OpenCV-based shape detection algorithm is employed. A step-by-step explanation

of the algorithm is as follows:

1. Noise filtering: Convert the input image to grayscale, then apply a bilateral filter

for noise reduction while preserving edges.

2. Edge detection: Use the Canny edge detector to extract edges from the filtered

frame. Select thresholds thoughtfully to balance between capturing suitable edges in

various conditions and avoiding excessive edge generation.

3. Morphological operation: Implement a morphological closing operation on the

detected edges using a disk-shaped structuring element. This operation, which in-

cludes dilation followed by erosion, helps to fill minor gaps and connect disjointed

components, especially beneficial when the manhole is slightly occluded.

4. Contour extraction: Extract contours from the processed image. Each contour is

assessed individually to determine its elliptical nature. The algorithm verifies if there

are sufficient points, typically 5 or more, to constitute an ellipse.

5. Area range filtering: Upon confirming the elliptical shape, the algorithm calculates

the contour’s area. The algorithm then checks if this area falls within the typical

range for sewer manholes, which have diameters between 600 mm and 800 mm.

6. Aspect ratio filtering: If the calculated area lies within the specified range, the

algorithm fits a rotated rectangle around the contour. This rectangle is instrumental

in approximating the major and minor axes of the ellipse, independent of the ellipse’s

orientation. This enables the calculation of the aspect ratio, which differentiates

between circular and elliptical shapes, a distinction that is critical in this context as

the camera’s 45-degree tilt causes circular manholes to appear elliptical in captured

images.

The provided pseudo-code serves as a clear outline of the algorithm’s steps and method-

ology.

4.2.2.2 Algorithm 2

This adapted ellipse detection algorithm is designed for the specific task of detecting

sewer manholes in images. It is based on the method presented in [67], and includes the

original five main steps (steps 1–5) from the paper. To better suit the sewer manhole
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Algorithm 1 Ellipse Detection
1: procedure detect_ellipse_centers(image)
2: gray ← convert_to_grayscale(image)
3: blur ← apply_bilateral_filter(gray)
4: edges← detect_edges_using_Canny(blur)
5: closed_edges← apply_morphological_closing(edges)
6: contours← detect_contours(closed_edges)
7: filtered_contours← initialize_list
8: for each contour in contours do
9: if contour has sufficient points then

10: area← calculate_contour_area(contour)
11: if area is within specified range then
12: rotated_rect← fit_rotated_rectangle(contour)
13: aspect_ratio← calculate_aspect_ratio(rotated_rect)
14: if aspect ratio is within the specified range then
15: append_to_list(filtered_contours, contour)
16: end if
17: end if
18: end if
19: end for
20: return filtered_contours
21: end procedure

detection application, two additional steps (steps 6 and 7) have been introduced, which

consider the area range of sewer manholes and identify their centers.

1. Arc extraction: This step consists of three sub-steps: edge detection, contour ex-

traction, and arc segmentation. First, the Gaussian blur method is used for smooth-

ing the image, followed by the Canny edge detection method with adaptive thresh-

olds to detect edges. Next, non-branched connected edge contours are extracted and

approximated into multiple sets of line segments using the non-parametric Douglas-

Peucker method. These sets of line segments are referred to as DP contours. Edge

contours with lengths less than an adaptive threshold (Tedge) are considered noise

and discarded. Arcs are extracted based on their convexity and curvature by calculat-

ing an extracting area using a vector and its rotated version. To determine if a point

(Ak+1) belongs to the same arc (vk) as the previous points (Ak, Ak−1), a formula

with unknown parameters t and p is used: vk+1 = tvk + pR(sθarc) · vk. The formula

represents a linear combination of the original vector (vk) and its rotated version

(R(sθarc) · vk). The parameters t and p determine the weights of these two vectors

in the combination. If the combination of the two vectors with the right weights (t

and p) results in the vector vk+1, then it means that the next point (Ak+1) belongs

to the same arc as the previous points (Ak, Ak−1).
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2. Adjacency arc matrix construction: Construct an Adjacency Arc Matrix (AAM)

by defining an asymmetric matrix L to represent the connectivity between arc pairs.

Use the KD-Tree to find adjacent arcs and verify if they can belong to the same ellipse

by checking region and curvature constraints. The region constraint is satisfied if the

starting point of one arc is in the search region of the other arc and vice versa. The

curvature constraint is satisfied if the ending point of one arc and the starting point

of the other arc meet certain conditions related to the curvature of the ellipse. The

matrix L is then calculated for different cases based on the distance between the

ending point of one arc and the starting point of the other arc, and the AAM is

constructed after traversing all extracted arcs.

3. AAM Based candidate generation: Generate all possible arc combinations us-

ing Posterior Arc Search (PAS), Anterior Arc Search (AAS), and Bidirectional

Combination Verification (BCV). PAS and AAS find all posterior and anterior arc

combinations, respectively. BCV combines the results of PAS and AAS to produce

all possible arc combinations and verifies them. The verified combinations are fitted

to ellipses, and similar ellipses are removed using ellipse clustering.

4. Ellipse fitting speedup: The Ellipse Fitting Speedup method accelerates the ellipse

fitting process by using cumulative factors and matrices to minimize redundant cal-

culations when obtaining the fitting matrix, as two or more candidate combinations

might contain the same arcs. This is achieved by pre-calculating cumulative factors

for each point and summing them to form cumulative matrices. Fitted parameters are

then calculated directly through twice real symmetrical matrix eigendecomposition

using the Jacobi method.

5. Ellipse validation: Filter out false ellipses formed by candidate combinations using

a set of sampling points and four indexes: shape index (SI), location index (LI),

gradient index (GI), and weight index (WI). SI constrains the shape of the fitted

ellipse, ensuring it represents a one-fourth ellipse. LI checks if a sampling point lies

in the 8-neighborhood points of an edge point. GI measures the similarity between

the estimated gradient and theoretical gradient at the sampling point. WI accounts

for the non-uniform position distribution of points across the ellipse. The validated

score, Pscore, is computed using these indexes. If Pscore is greater than the validation

threshold Tval, the fitted ellipse is considered a true ellipse; otherwise, it is discarded.

6. Area range filtering: Filter the detected ellipses based on the typical area range

of sewer manholes, which have diameters between 600 mm and 800 mm. This step
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ensures that only ellipses corresponding to manholes are considered.

7. Overlap removal and center identification: Remove overlapping ellipses and

identify the center of the remaining ellipse, which represents the manhole.

4.2.2.3 Operator selection

The detection algorithms identify and display all detected manholes along with their

respective centers. Given that the drone operation is not authorized without an operator,

this detection system offers an added benefit. It empowers the operator to select the in-

tended manhole for inspection, especially in scenarios where multiple manholes are visible.

Once selected, the center of the chosen manhole is back-projected to real-world coordinates.

4.2.3 Back projection

Figure 4.2: Visualization of coordinate frames and back projection transformation
in the drone-manhole scenario

In this section, we explain the process of back-projection as shown in Figure 4.2, which

involves computing the real-world coordinates (in our case, coordinates in the map frame)

of a point detected in an image. This is particularly useful for our application, as we need

to compute the real-world position of the detected manhole center to send it to the drone,

allowing it to move towards the manhole center.

Fundamental to the process of back-projection are the intrinsic camera parameters,

obtained through camera calibration. These parameters, often arranged in a matrix known

36



4. Methodology

as the camera matrix, form the relationship between the 3D real-world space and the 2D

image space. Specifically, the intrinsic parameters are as follows:

K =

fx 0 u0
0 fy v0
0 0 1


Where the principal point (u0, v0) is a point on the image plane through which the lens’s

line of sight passes. This point typically corresponds to the center of the image or lens. The

focal lengths in the x and y directions (fx, fy) represent the distance between the camera’s

sensor and the lens, influencing the field of view. In our context, fx and fy refer to the

focal lengths in pixels. These pixel-based focal lengths are calculated as the product of

the physical focal length and the number of pixels per unit length (denoted by ρ) in the

respective directions:

fx = fphysical × ρx, fy = fphysical × ρy

The back-projection process can be divided into the following ordered steps:

1. Converting pixel coordinates to camera frame coordinates

To convert the detected center of the manhole from the pixel coordinate frame (de-

noted as P in Figure 4.2) to the camera’s optical frame coordinates (denoted as O

in the same figure), we first subtract the principal point (u0, v0), effectively moving

the origin of the pixel frame from the top-left corner to the center of the image, as

shown in the following equation:

[
u′

v′

]P
=

[
u
v

]
−
[
u0
v0

]
(4.1)

Next, we divide these coordinates by (fx, fy), which represent the focal lengths in

pixels in the x and y directions. This step serves two purposes: it converts the coor-

dinates from pixels to meters, and it reverses the perspective projection effect.

[
x′′

y′′

]
=

[
u′

fx
v′

fy

]
(4.2)

At this point, we know that the real-world point lies on a 3D vector expressed in the

camera frame, starting from the (x′′, y′′) point and extending infinitely. The goal is

to compute the length of this vector (scaling factor, denoted by λ) where it intersects

the ground, as our manhole center lies on the ground.

2. Computing the scaling factor λ
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To compute the scaling factor λ, we need the transformation matrix TM
O , which

represents the transformation from the camera’s optical frame to the map frame.

The optical frame, denoted as frame {O} in Figure 4.2, is a dummy frame created

to represent the conventional camera frame, where X is right, Y is down, and Z is

forward. In contrast, the ROS standard orientation, denoted as frame {C} in Figure

4.2, has X forward, Y left, and Z up.

To accommodate the difference between these orientations, we have created two

different frames located at the same position: one named camera_link (following

the ROS convention) and the other camera_link_optical (following the standard

image convention). The Image and CameraInfo message headers should reference the

camera_link_optical frame.

We have created a static transformation between the camera_link and

camera_link_optical frames and placed it in the transformation.launch file. This

allows us to take advantage of the tf library and directly access this transformation

using the tf listener function.

With the transformation matrix TM
O , we can compute the scaling factor λ using the

following equation. XY
Z

M

= RM
O ×

x′′ ∗ λy′′ ∗ λ
1 ∗ λ

+

txty
tz

M

O

(4.3)

By extracting the third row of the aforementioned equation, we can directly compute

the scaling factor λ using the following expression:

λ =
Z − tz

(RM
O ×

x′′y′′

1

)3
(4.4)

In this computation, we assume that the depth Z of the hole is zero, a reasonable as-

sumption for flat ground surfaces. However, this assumption may not hold for uneven

terrains. In such scenarios, alternative approaches might be required to estimate the

position of the manhole

3. Computing the 3D point in the optical frame

Once we have the scaling factor λ which represents the 3D vector that goes from the

camera’s optical center to the manhole’s center in the optical frame, we can multiply

it by the normalized image frame coordinates to obtain the 3D point in the optical
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frame: xy
z

O

= λ×

x′′y′′

1

 (4.5)

4. Computing the real-world coordinates in the map frame

Finally, to compute the real-world coordinates of the manhole center in the map

frame, we can apply the transformation matrix TM
O to the 3D point in the optical

frame:


X
Y
Z
1


M

= TM
O ×


x
y
z
1


O

(4.6)

Now, we have the real-world 3D coordinates of the manhole center in the map frame,

which will be sent to the drone to navigate to the correct location of the manhole

center to start the descending phase.

4.3 Descending

The main concept of the descending algorithm, as illustrated in Figure 4.3, lies in the

partitioning of each newly received depth image into multiple smaller depth masks. Each

depth mask corresponds to a specific range of depth from the full depth range covered

by the depth image. For every mask, the algorithm identifies the center of the free areas

and converts these centers from pixel positions within the image to real-world coordinates.

After processing all the masks, a path is established, composed of the centers of the free

areas. This path is then relayed to the drone for execution. A detailed explanation of this

process is as follows:
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Figure 4.3: Illustration of the Descent Algorithm Concept: The depth image is
segmented into multiple smaller depth masks (represented by black circles), each
corresponding to a distinct depth range within the full depth range. The red dots
signify the center of the free area in each mask, which forms the drone’s descent

path.

1. Dividing the Depth Range into Smaller Intervals

Our ToF camera provides a depth range of 0.5m to 4m. When visualizing this data

using a histogram as shown in Figure 5.14, we observed that closer depths yield

more data points due to the occlusion of nearby obstacles. Directly segmenting this

depth range into fixed intervals could result in a lack of data points in the farther

intervals. To avoid this, we instead segment the full set of data points into multiple

equal groups. As a result, each group represents a unique depth interval, as can be

observed in Figure 5.15, where each interval is colorized differently. This approach

not only ensures equal data distribution across all intervals but also generates multi-

ple smaller intervals in the close range due to the higher density of nearby obstacles.

Consequently, waypoints with smaller z-steps can be generated, improving our algo-

rithm’s ability to avoid close obstacles.

2. Generating a mask for each depth interval

Upon creating depth intervals, we generate a binary mask for each one. Each mask

maintains the dimensions of the original depth image but only includes depth values

that fall within the corresponding interval. Within these resultant masks, a binary

code is assigned to the pixels: a value of one denotes occupied areas (obstacles), while
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Figure 4.4: Histogram representing the
distribution of data points across the

depth range.

Figure 4.5: Visualization of the depth
range divided into multiple equal groups,

each represented by a unique color.

a value of zero signifies the free areas specific to that depth range interval. Figure

5.16 provides examples of these masks.
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Figure 4.6: Visual representation of binary masks for each depth interval. The
original depth image is shown in the first subplot, followed by binary masks for the

corresponding depth intervals.

3. Identifying the free area in each depth mask

The first step in this stage involves applying dilation in each depth mask. This

operation enlarges the perceived size of the obstacles, which can cause the free area

- originally circular in the absence of obstacles due to the manhole’s shape - to

take on an irregular form. This irregularity arises when an obstacle occupies part of

the circular space within the manhole. This is illustrated in Figure 4.7, where the

irregularly shaped free area is the black area enclosed by the white boundary.

To enhance the geometric representation of these masks, we accumulate them.

Consequently, each mask includes depth data corresponding to its depth range and

all previous ranges. This approach yields more comprehensive depth data, generat-

ing a closed geometric representation with a single region signifying the free area. In

Figure 4.8a, Mask 3 from Figure 5.16 is illustrated. Here, gaps representing occupied

pixels from previous intervals are highlighted in red. However, through accumulation,

these gaps are effectively filled, as demonstrated in Figure 4.8b.

Given the irregularity of the free area, identifying its center requires a different

approach. We do this by recognizing all the connected regions in the image and then

calculating the distance transform for each region. The point with the maximum
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Figure 4.7: An illustration of the irregularly shaped free area after dilation is
applied to Mask 4 from Figure 5.16. The free area is the black area enclosed by the

white boundary.

(a) Mask 3: white region represents
current obstacles; red region identifies

previously detected obstacles.

(b) Accumulated mask: combination of
depth data from Masks 1, 2, and 3,
offering a more comprehensive depth

view.

Figure 4.8: The process of generating and accumulating depth masks. Subfigure (a)
illustrates an individual depth mask and Subfigure (b) demonstrates the

accumulation of multiple depth masks.

distance to the boundary of its connected region is considered the center of the

free area. However, as illustrated in 4.9, the resultant center (marked in red) may be

misaligned with the actual center of the manhole (marked in blue). This misalignment

can cause the ToF camera’s reflected rays to only partially capture the manhole,

resulting in a partially visualized manhole in the initial depth masks.

Attempting to identify the center of the free area under such circumstances using

distance transform could lead to inaccuracies. This is particularly evident in instances

like 4.10, where only a part of the manhole is visible, causing the center to be

erroneously assigned to an incorrect location, indicated by the red marker in the

figure.
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Figure 4.9: Depiction of the drone at the calculated center of the irregular free area
(marked in red), which is shifted from the actual center of the manhole (marked in
blue). The resulting proximity to the manhole’s right side causes the drone’s ToF
camera to capture a shorter depth on the right, leading to partial visualization of

the manhole in the initial depth masks.

To address this issue, centers that may result in errors are excluded. We utilize

the center of the entire depth image as a reference and only consider those centers

whose distances from the main center fall within a defined threshold, which was

empirically determined. These selected centers, originally in pixel coordinates, are

then back-projected into real-world coordinates. An adjustment is made for the Z

value used in Equation (4.4). Rather than employing zero, we add the mid-point

of the depth interval of the mask currently being processed to the drone’s current

z-depth value, as shown in Equation (4.7).

Z =
[
Z
]M
B

+
Intervalstart + Intervalend

2
(4.7)

It is important to note that simply disregarding depth mask intervals with such

centers and directly sending a valid center is not optimal. The suggested center may

be significantly distanced from the drone, increasing the risk of collision with a near

surface. To mitigate this risk, we transmit the x, and y coordinates of the center

along with smaller z steps from the drone’s current position to the center depth.

This approach is feasible as the center is identified not based on individual masks,
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Figure 4.10: An illustration demonstrating the issue with using distance transform
for center identification under incomplete manhole visibility. The erroneous center

assigned by the distance transform method is marked in red.

but on accumulated masks. As a result, all obstacles up to that interval are taken

into account.

Upon determining the center of the free area for all depth interval masks of the depth

image, we consider them valid paths for the drone to follow. To facilitate reactive

descent, the drone regenerates this path each time it receives a new depth image. The

descending process continues until the drone reaches a position directly above the

manhole ground, within a certain predefined threshold. Upon reaching this position,

the drone is well-positioned to collect data from the sensor located at the bottom of

the manhole.

4.4 Evaluation methodology

The algorithms discussed in the previous section form the foundation for the drone’s

ability to autonomously locate, identify sewer manholes in urban areas, navigate towards

them, and safely descend into them. However, their practical utility and effectiveness can

only be truly validated through rigorous testing. The subsequent sections present the eval-

uation methodology employed, outlining the procedures undertaken to assess the drone’s

performance within both simulated and real-world environments.
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4.4.1 Simulation environment

Before actual deployment in real-world conditions, it is vital to validate the performance

and reliability of the drone and its associated algorithms within a simulated environment.

This step not only helps in mitigating potential risks and failures but also provides a

better understanding of the system’s capabilities in controlled and consistent settings. The

simulation environment created for this purpose comprises three significant components:

Creating an urban environment, integrating the sewer manhole models within it, and the

refined Iris Quadrotor model to enhance realism and performance testing.

4.4.1.1 Creating urban environment

The first component of our simulation environment is the cityscape, designed with

Gazebo software to create a representative urban scenario. As depicted in Figure 4.11, a

Gazebo city world was meticulously designed to replicate a typical urban setting, replete

with houses, shops, and streets. This design process utilized pre-built models from the

Gazebo Library[100], which provided a diverse array of realistic models to construct the

simulation setting.

Figure 4.11: Customized Gazebo city world
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(a) Manhole with 600 mm diameter
(b) Manhole with 600-900 mm

diameter

Figure 4.12: Solids Drawings

4.4.1.2 Designing and integrating the sewer manhole models

In order to test the drone’s performance under a variety of conditions and challenges,

we incorporated custom sewer manhole models into the simulation. These models, designed

in SolidWorks, adhered to standard sewer manhole dimensions, ranging from 600 mm to

800 mm in diameter. We created two types of models to replicate the diversity encountered

in real-world scenarios: one type maintained a constant diameter of 600 mm and included

a ladder of 140 mm, while the other type showcased varying diameters, with the smallest

being 600 mm and also incorporating a ladder. Figure 4.12 provides an illustration of these

models.

To successfully incorporate the custom sewer manhole model into the Gazebo city

world, the following steps were taken:

1. The SolidWorks model was converted to a Gazebo-compatible format, such as STL

(.stl), ensuring smooth integration with the simulation environment and compatibil-

ity with the pre-built Gazebo library models.

2. The Blender program was used to accurately define the model’s center before export-

ing it in the (.stl) format, guaranteeing proper positioning and interaction within the

city world.

3. The sewer manhole model was integrated into the city world file using appropriate

XML tags that specify essential attributes, such as the model’s position, orientation,

and scale within the urban simulation. This provided a realistic representation and

seamless interaction with the Gazebo library models.
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4.4.1.3 Refining the Iris Quadrotor model and simulated sewer manhole

for improved realsim

The PX4-SITL and Gazebo package includes a 3DR Iris quadrotor model for simulation

purposes. The dimensions of the simulated Iris, with a diameter of 665 mm, propellers with

a diameter of 256 mm and a height of 110 mm, are larger than the actual drone utilized

in this project. To maintain the real-world proportions between the drone and the sewer

manhole, the diameter of the simulated sewer tunnel and the ladder width were adjusted

accordingly.

Furthering this pursuit of realism, four cameras were integrated into the Simulation

Description Format (SDF) file of the customized Iris model. The position, orientation, and

distinct properties of each camera such as image format, resolution, lens intrinsic, distortion

parameters, and noise characteristics, were meticulously defined in the SDF file.

Incorporating noise characteristics into the simulation was essential to provide a more

realistic representation of the camera’s performance, accounting for potential real-world

imperfections and uncertainties like varying illumination conditions. This inclusion of sim-

ulated noise enabled a more accurate evaluation and improvement of the drone system’s

robustness.

To facilitate the usage of the simulated camera’s data for further analysis, processing,

visualization, or control within the ROS Noetic environment, a Gazebo plugin was config-

ured to establish a connection between the simulated camera and the ROS environment.

These adaptations significantly enhanced the simulation environment, allowing for a

more representative depiction of the drone’s performance. Consequently, it facilitated more

effective testing and development, assuring that the drone’s behavior in the simulation

closely mirrored its real-life counterpart. This methodology successfully addresses the third

research question, proving that with careful design and customization, mission simulations

can ensure seamless real-world transferability of tested procedures.

4.4.2 Real-World environment

In order to ensure the robustness of the algorithm and to validate its performance

under real-world conditions, extensive tests were conducted in various environments.

4.4.2.1 Real-World test site description

An initial site visit was conducted to a sewer manhole in Girona, Spain. During this

visit, data from the drone’s cameras were collected and stored in a ROS bag for subsequent

analysis. The sewer manhole observed during this visit can be seen in Figure 4.13.
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Figure 4.13: The sewer manhole in Girona, Spain

To facilitate a comprehensive testing regime, a dedicated test site was established within

the premises of the Eurecat Robotics Company, located in Cerdanyola, Spain. This setup

involved the installation of two cylindrical tubes each with a diameter of 600mm and height

of 1500mm, thereby emulating the physical characteristics of an actual sewer system. This

arrangement is depicted in Figure 4.14.

Figure 4.14: The cylindrical tubes installed in the lab at Eurecat Robotics
Company

Additionally, to aid the visual detection tasks, a printed image (of 600mm diameter)

representing the top view of a manhole was stationed within the lab, as shown in Figure

4.15.
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Figure 4.15: The printed image of a manhole used for testing
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Chapter 5

Results

This chapter presents the findings from the various tests conducted in both simula-

tion and real-world environments. The results are analyzed to ascertain the strengths and

limitations of the system and to propose potential improvements.

5.1 Simulation test results

This section presents the results of the simulation tests and discusses their implications.

The simulations were conducted in the customized Gazebo city world with the addition of

the sewer manhole as shown in Figure 5.1.

Figure 5.1: Customized Gazebo city world with the addition of the sewer manhole
model at street intersections
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5.1.1 Phase 1 - Autonomous sewer manhole localization and

navigation

To assess the efficacy of the implemented algorithms in a simulated environment, a

series of tests were executed as follows:

• Test 1.1: Ability of detection algorithms to identify sewer manhole

In this test, the drone’s ability to autonomously detect a sewer manhole was eval-

uated using two distinct detection algorithms. These algorithms were applied to

images captured by the drone’s tracking camera in a simulated environment, with

each image processed using dedicated ROS nodes. The accuracy and reliability of

the algorithms in identifying the manhole and its center were assessed, with results

visualized via an OpenCV window.

The results of Test 1.1 are presented in Figure 5.2. Both algorithms performed well

in the simulated environment, as the manhole’s elliptical shape was well-defined and

unobstructed, and there were no other objects of a similar shape that could cause

confusion.

(a) Output of the first detection
algorithm on a sample image from the

simulated environment

(b) Output of the second detection
algorithm on a sample image from the

simulated environment

Figure 5.2: Comparison of the output from two detection algorithms in the
simulated environment

The key performance metrics for the two algorithms are accurately summarized in

Table 5.1. It can be observed that the second algorithm demonstrated a notable

increase in processing speed over the first one by 66%. This boost in performance

makes it a more attractive option for real-time applications, especially when paired

with powerful processing hardware. Nevertheless, the trade-off comes with its higher

memory utilization, which may pose challenges in constrained hardware setups or

longer-duration missions where power efficiency is critical.
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Algorithm Processing Speed
(fps)

Memory
Consumption (GB)

Algorithm 1 22 0.00487
Algorithm 2 36 0.109

Table 5.1: Comparison of key performance metrics for the two detection algorithms

• Test 1.2 Navigation accuracy following coordinate conversion

This test evaluates the ability of the back-projection algorithm to convert the de-

tected center of the manhole from pixel coordinates to real-world coordinates for

navigation purposes. Subsequently, the real-world coordinates generated are used as

waypoints for the drone’s autonomous navigation. The drone is launched from vari-

ous starting positions, and its trajectory toward the manhole center is logged using a

ROS bag. This procedure aids in verifying whether the drone’s endpoint of the path

aligns with the known position of the sewer manhole within the simulated world,

thereby evaluating the algorithm’s performance under different starting conditions.

This was validated through trajectory data from a ROS bag, revealing the drone’s

successful approach towards the actual center of the manhole with minimal deviation

- just 9 mm in the x-direction and 20 mm in the y-direction (see Figure 5.3).
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Figure 5.3: Drone’s trajectory illustrating its approach to the actual center of the
manhole

We then analyzed the performance of the back-projection algorithm under varying

initial drone positions within the world frame. The sewer manhole’s real-world coor-

dinates were noted at position (46.0264 m, 1.44992 m), and associated errors were

meticulously scrutinized. Both detection algorithms contributed to the error plots

shown in Figures 5.4 and 5.5.

A significant source of error, common to both scenarios, is the undistortion process.

Despite utilizing the camera’s intrinsic parameters to correct the inherent distortion

caused by the fisheye lens, it doesn’t always achieve flawless results, resulting in

residual distortion.

This residual distortion becomes more pronounced as the drone’s distance from the

manhole increases, leading to the manhole’s image appearing as an elongated ellipse

towards the image edge. This distortion is especially noticeable when the drone’s

initial position diverges considerably from the actual manhole center.

In the first scenario, a notable error was observed when the y-coordinate of the

drone’s initial position deviated significantly from the actual manhole center, while

the x-coordinate remained constant. However, the second detection algorithm im-
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proved the fitting of ellipses to distorted manhole images, resulting in more accu-

rate real-world coordinate representations and smaller errors. Significantly, when the

drone’s y-coordinate stayed within a 1.5 m range on either side of the actual manhole

center, the error stayed within the acceptable limit of 100 mm (see Figure 5.4).

Figure 5.4: Error in the drone’s position with varying y-coordinate

In the second scenario, while keeping the y-coordinate constant, the x-coordinate

of the drone’s initial position was varied. The error increased when the drone was

either too close or too far from the manhole center. However, the second detection

algorithm’s refined ellipse fitting led to more accurate manhole center detection and

smaller errors, surpassing the performance of the first algorithm. When the drone’s

x-coordinate was within a 1-4 m range from the actual manhole center, the error

was less than 100 mm, indicating satisfactory performance within this range (see

Figure 5.5).
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Figure 5.5: Error in the drone’s position with varying x-coordinate

An error within 100 mm is considered acceptable, as this would still allow the drone

to remain over the manhole, even if its center is slightly shifted. Any discrepancy in

alignment can be corrected during the descending phase of the drone’s operation.

All measurements were conducted at the drone’s default takeoff altitude for this

mission, set at 2m. It’s important to note that the altitude, can significantly influence

the algorithm’s performance. Changes in altitude directly affect the perspective from

which the drone’s camera views the scene, as well as the resolution of the captured

image.

For instance, when the drone is flying at a low altitude and is significantly far in the

x-coordinate from the manhole, the manhole might not be visible in the captured

image due to the limited field of view. On the other hand, if the drone is at a low

altitude and is very close to the manhole, only a part of the manhole might be visible

in the image. These scenarios, among others, would naturally affect the ability of

the algorithm to accurately detect the manhole and determine its center.

This underscores the necessity for careful consideration of the drone’s initial altitude

and position to ensure the entire manhole is within the camera’s field of view. This

would facilitate accurate manhole detection and subsequent center determination.

56



5. Results

The complexity of this problem extends beyond mere coordinate conversion and

requires a thorough understanding of diverse positional and environmental factors.

5.1.2 Phase 2 - Descending through the manhole

• Test 2.1 Autonomous descent through the manhole:

In this test, the drone was tasked to descend autonomously through the sewer man-

hole. This phase was initiated after the completion of Phase 1, with the drone po-

sitioned above the manhole. The drone was tested in simulated sewer manholes of

different lengths, allowing an assessment of the algorithm’s performance and stability

under realistic and challenging conditions.

Initially, a ROS bag was recorded while the drone descended through a 4.5 m sewer

manhole. The drone was positioned near the center of the manhole, with coordinates

(2.85, 1.05) m in the map frame and an altitude of 0.5 m. The path generated by

the drone is depicted in Figure 5.6, which comprises three subfigures.

The left half of Figure 5.6 (a) showcases the 3D trajectory of the drone, with the

trajectory itself representing the drone’s center. The drone, in our simulation envi-

ronment, has a diameter of 921 mm. Given a manhole diameter of 1260 mm and a

ladder width of 215 mm, the available movement space for the drone’s center narrows

to only 120 mm. This region defines the safe zone within which the drone must nav-

igate to avoid a collision. Despite these constraints, the drone successfully adheres

to the safe zone, avoiding any contact with the manhole boundaries and the ladder.

Notably, prior to the drone entering the manhole, the algorithm guides it towards

a waypoint positioned relatively close to the center of the manhole’s free area. This

movement is noticeable as the drone transitions from its starting position to the

center of the safe zone.

For a detailed evaluation of the drone’s navigational accuracy, we examined the

drone’s positional variation along the x and y axes during the descent.

The top right quarter of Figure 5.6 (b) illustrates the drone’s position along the

x-axis throughout the descent. At one point, the drone came close to the boundary

but remained within the safe zone. This was possible because only the walls of the

manhole served as obstacles on this axis, which results in an elongated safe zone in

the x direction due to the exclusion of the ladder width.

The bottom right quarter of Figure 5.6 (c) demonstrates the fluctuations in the

drone’s position along the y-axis during the descent. This axis aligns with the ladder.
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Figure 5.6: Composite figure showing the 3D path of the drone and the variation
along the X and Y axes. The left half of the figure shows the 3D Path (a), the top
right quarter shows the X-Axis Variation (b), and the bottom right quarter shows

the Y-Axis Variation (c).

The variations in the drone’s y-coordinate stemmed from our algorithm’s process of

determining the free center of each mask derived from the depth image. During

instances where the ladder was not included in the mask, minor adjustments were

made to the drone’s y-coordinate. Despite these adjustments, the drone consistently

remained within the safe boundaries throughout the descent.

As previously discussed, in Phase One there can be instances where the generated

center might deviate from the actual center of the manhole. However, this doesn’t

pose an issue due to the efficiency of our descending algorithm. This algorithm is

designed to generate a valid path as soon as the drone’s downward-facing TOF

camera comes within the boundaries of the manhole.

we placed the drone at the starting position (43, -0.3)m in the world frame. This

position was identified in Test 1.2 Results and Discussion as causing a deviation

between the generated center and the actual center of the manhole.
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The center generated during the first phase was located at (3.273, 2.064)m with an

altitude of 1m in the map frame. On the other hand, the actual center was found to

be at (2.985, 1.750)m in the same map frame. As shown in Figure 5.7, after reaching

the generated center, part of the drone was found to be outside the manhole in the

Gazebo simulation.

Figure 5.7: The drone’s position shows a deviation from the manhole center.

Upon reaching the generated center, the descending algorithm was initiated. We

tracked the generated path using RViz and PlotJuggler (Figures 5.8a and 5.8b).

Despite the initial deviation, where the initial masks might only represent a por-

tion of the manhole, the algorithm succeeds in first generating a waypoint at (2.82,

1.754)m—very close to the center of the manhole—marked in black in subplot 1.

This is possible because our approach cumulatively considers these depth masks un-

til a mask representative of the manhole’s geometry is found. The center of this area,

while accounting for all previously identified obstacles, is then sent as a waypoint to

the drone.

The drone reacts to this waypoint by incrementally descending towards it, starting

from its current altitude and ending at the altitude corresponding to the waypoint.

Crucially, with our approach of generating a new path each time a depth image is

received, the algorithm has generated an additional waypoint close to the center

of the free area. This occurs before the drone enters the manhole. Such a strategy

is essential to circumvent any possible collisions with obstructions like the ladder,

which may not be visible in the initial depth image.

Subplot 2 presents an additional visualization using RViz to underline the success

of our algorithm. The red ellipse marks the initial position, while the green ellipses
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illustrate the waypoints generated by our algorithm.

(a) Visualization of the drone’s path using RViz.

(b) Visualization of the drone’s path using PlotJuggler.

Figure 5.8: Visualization of the drone’s navigational path using two different tools.

In another scenario, we evaluated our drone’s descending capabilities within a longer,

6-meter sewer manhole. We leveraged RViz for visualizing the path generated by

the drone throughout its descent. As illustrated in Figure 5.9, the drone’s path is

represented by a sequence of green ellipses. Each ellipse corresponds to a waypoint

produced by our algorithm. In addition, the green line indicates the path generated

by our algorithm for each incoming depth image. Consequently, this line depicts the

most recent depth image path.

Before initiating the descending algorithm, it is notable that the drone was positioned

almost centrally within the manhole’s free area with 0.5 altitude above the manhole.

The illustration in Figure 5.9 clearly demonstrates the adherence of the drone’s path

60



5. Results

to this central area during the course of the descent, showcasing the effectiveness of

our algorithm in guiding the drone safely down the manhole.

Figure 5.9: Visualization of the drone’s path in a 6-meter sewer manhole using
RViz. The green ellipses represent waypoints generated by our algorithm, while the

green line represents the path published by our algorithm for each new depth
image.

5.2 Real-World test results

5.2.1 Phase 1 - Autonomous sewer manhole localization and

navigation

A series of tests were performed to evaluate different aspects of the drone’s performance

in real-world:

• Test 2.1 Drone control evaluation

The drone’s autonomous control capabilities of autonomous arming, takeoff, and

landing are tested in the lab to confirm operational readiness.

The results of Test 2.1 revealed inconsistent outcomes during the autonomous takeoff

phase. The drone managed a controlled ascent in some instances, while in others it

abruptly rose and rapidly descended, ultimately leading to a crash.

The primary cause for these erratic behaviors can be traced back to the drone’s visual

odometry system. This system, designed to track visual features in the environment

to estimate the drone’s position and orientation, struggled during the ascent phase.

Specifically, when the drone was positioned over a uniformly patterned area or fea-

tureless ground, the 45-degree tilted tracking camera faced regions with insufficient
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visual features. This deficiency hindered the visual odometry system from accurately

estimating the drone’s position and orientation. Consequently, the drone was led to

take corrective maneuvers based on inaccurate data.

For instance, if the visual odometry system failed to register the drone’s upward

movement due to the lack of distinct features, it could mistakenly perceive that

it was not gaining altitude. This misinterpretation could trigger an overcorrection,

resulting in an abrupt, uncontrolled ascent. The erroneous positional data could then

generate a feedback loop, causing a rapid descent and subsequent crash.

In Figure 5.10 the altitude data for one of these scenarios is presented. It vividly

shows the sudden spike in altitude followed by a sharp descent, with subsequent

fluctuations due to the crash impact.

Figure 5.10: Drone altitude data during a failed takeoff attempt

These findings underscore the limitations of relying solely on visual odometry, par-

ticularly in environments featuring uniform or repetitive patterns. The outcomes

also suggest that performing further autonomous tests solely relying on this method

could pose considerable risks, as it increases the likelihood of crashes. These insights

are valuable in addressing the second part of our research question - "how can we
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mitigate typical errors such as localization noise and drift?" By emphasizing these

risks, we highlight the need for a more comprehensive approach for a more robust

solution to localization challenges.

• Test 2.2 Assessment of detection algorithms with pre-recorded ROS bag

data

In this test, the performance of the detection algorithms is evaluated using pre-

recorded ROS bag data from the tracking camera aimed at the Girona manhole.

The detection results are visualized using an OpenCV window.

The first algorithm had difficulty detecting the manhole due to partial occlusion by

grass. This manhole, located in a grassy area, had a portion of it obscured, thus

offering fewer clear edges for the algorithm to latch onto. Although our algorithm is

designed to detect well-defined elliptical shapes and can fill small gaps in instances

of minor occlusions, the degree of occlusion presented in this case was beyond its

capacity. Its reliance on clear, defined edges for accurate detection became a limiting

factor in this scenario, causing it to fail in identifying the sewer manhole.

Figure 5.11 below illustrates this difficulty, with the manhole going undetected by

our algorithm due to the grass occlusion.

Figure 5.11: Output of the first detection algorithm showing failure to detect the
occluded manhole

Contrastingly, the second algorithm successfully detected the manhole despite the

partial occlusion. This algorithm employs a more advanced technique, which includes

arc extraction and ellipse validation steps that enable it to handle cases where the

target object, in this instance the manhole, is somewhat obscured. Specifically, in

the arc extraction step, the algorithm extracts arcs based on their convexity and

curvature, allowing it to continue to detect parts of the manhole even when parts of
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it are obscured. In the ellipse validation step, the algorithm uses a set of sampling

points and four indexes to validate the shape of the fitted ellipse. This helps to

confirm the detection of the manhole even when parts of it are obscured. These

techniques together enable the second algorithm to successfully identify the occluded

manhole.

Figure 5.12 below demonstrates the successful detection by the second algorithm.

Figure 5.12: Output of the second detection algorithm successfully identifying the
occluded manhole

The results from Test 2.2 provide significant insights into the robustness and adapt-

ability of the two algorithms under varying conditions. The first algorithm, while

efficient in scenarios where the manhole is mostly unobstructed, demonstrates lim-

itations when the manhole is partially occluded. On the other hand, the second

algorithm shows greater resilience in handling complex detection scenarios, such as

those with partial occlusion. This resilience suggests its potential suitability for sewer

manhole detection applications, effectively addressing the first research question on

how sewer manholes can be accurately detected.

• Test 2.3 Comprehensive assessment of phase 1

This test involves a comprehensive evaluation of Phase 1. The drone is tasked with

autonomously taking off, detecting the printed manhole image, identifying the real-

world center coordinates of the detected manhole, navigating towards it, and finally

landing on top of it.

Figure 5.13 visualizes the outcomes of Test 2.4, showing the test setup on the left and

two result plots on the right. The testing environment was augmented with ArUco

markers and other objects to enrich the visual odometry, improving the features
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available for the drone’s navigation system and contributing to the success of the

tests, as shown in Figure 5.13 (left).

Figure 5.13: (Left) Test 2.4 setup showing the drone, printed manhole, and ArUco
markers. (Top Right) Drone’s navigation path in the x,y-plane. (Bottom Right)

Altitude plot of the drone’s flight.

As seen in the x,y-path plot in Figure 5.13 (top right), the drone navigates directly

towards the manhole after detecting it and identifying its real-world center coordi-

nates. The effectiveness of the algorithm is evident as the drone accurately reaches

the real center, marked in red. This highlights the success of converting pixel coor-

dinates to real-world coordinates.

The altitude plot in Figure 5.13 (bottom right) depicts the phases of the drone’s

flight: a sharp increase in altitude corresponds to the take-off, a nearly constant alti-

tude is maintained during navigation towards the manhole center, and a controlled

decrease in altitude occurs during the landing phase.

The outcomes of this operation affirm the effectiveness of Phase 1. The drone capably

executed autonomous take-off, manhole detection and center identification, naviga-

tion, and precision landing. This achievement successfully addresses our first research

question - "Manhole Detection and Navigation: What is the most suitable algorithm

for detecting manholes in the variable environments of sewers, and how can image

detection be translated into real-world drone navigation commands?" These findings

substantiate the aptness of detecting manholes as ellipses using the AAMED algo-

rithm in diverse sewer environments. Additionally, they illustrate how the detection
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Figure 5.14: Histogram representing the
distribution of the real ToF data points

across the depth range.

Figure 5.15: Visualization of the depth
range divided into five equal groups, each

represented by a unique color.

of a center in an image can be translated into practical drone navigation commands

using the back projection algorithm.

5.2.2 Phase 2 - Descending through the manhole

In this phase, we tested the drone under real-world conditions to demonstrate the ef-

fectiveness of our algorithm. Visual odometry, often used for localization, was found to be

unreliable for our needs. Consequently, we decided to operate the descent algorithm concur-

rently with a manual drone descent, extending one meter into the tube. This methodology

enabled us to visualize and compare the actual path of descent with the path generated

by our algorithm. Nevertheless, it’s crucial to note that the outcomes could be affected

by potential inaccuracies due to the manual nature of the descent and possible initial

misalignment with the tube’s center.

We recorded both the real path taken during the manual descent and the path generated

by the algorithm for further comparison. Additionally, we collected Time-of-Flight (ToF)

data throughout this process to gain more insights.

We started by illustrating several steps of our algorithm applied to the actual depth

data. Initially, we generated a histogram from a depth image taken at the beginning of

the descent (see Figure 5.14). This histogram provides a comprehensive view of the depth

values in the image. Furthermore, we segmented the entire set of data points into five

equal groups, each group denoted by a distinct color in a separate graph (refer to Figure

5.15). This segmentation demonstrated that the range of depth is more confined at closer

intervals and more extensive at farther intervals, a consequence of the occlusion of nearby

obstacles.
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We then partitioned the depth image into multiple masks based on the generated depth

intervals. As demonstrated in Figure 5.16, even though the attached surface is flat, Masks

1 and 3 show different depth levels due to the drone’s tilt during the descent.

Figure 5.16: Visual representation of binary masks for each depth interval. The
real depth image is shown in the first subplot, followed by binary masks for the

corresponding depth intervals.

Our analysis progressed by visualizing the centers generated by our algorithm for mul-

tiple masks obtained at different depths during the descent (Figure 5.17). The red dot in

these images represents the center calculated by our algorithm, and the green dot denotes

the actual center of the tube. In most cases, the calculated center was close to the actual

center, with identical centers in some cases. For instances where the mask does not fully

represent the shape geometry, such as in Mask 2, the algorithm successfully computes the

center by relying on the accumulated mask from previous intervals.
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Figure 5.17: Visual representation of algorithm-generated centers (red dots) and
actual tube centers (green dots) at varying depth intervals.

Lastly, we rendered a 3D plot to visualize both the paths followed during the manual

descent and those generated by the algorithm. These paths were recorded when the drone’s

initial position was approximately 300 mm above the tube. It is important to note that

the drone’s initial position exhibited a significant shift in the y-direction. However, in the

x-direction, it was nearly aligned with the center of the manhole.

As depicted in Figure 5.18, the y-positions of the generated centers were closely aligned

with those of the actual path. However, a noticeable discrepancy was observed between the

x-positions of the generated centers and the actual path, especially outside the manhole,

with the discrepancy being less than 100 mm. Given the absence of a ladder in the tube,

the drone remained within the safe zone despite this discrepancy. This discrepancy could

be attributed to inaccuracies during manual descent and potential misalignment of the

initial position with the actual center of the tube.
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Figure 5.18: 3D visualization of the path followed during the manual descent
(blue) and the one generated by the descending algorithm (orange). The green
cylinder represents the safe zone of the drone’s center, while the red cylinder

represents the tube boundary.

The visualization of the generated centers in the images and the results from this test

validate the concept of our algorithm. By demonstrating its performance in real-world

conditions, we have provided evidence of its resilience and effectiveness for the intended

application.

This phase’s outcomes provide evidence of the algorithm’s reliability and its poten-

tial applicability in similar environmental conditions, thus answering our second research

question affirmatively.

The outcomes of this phase offer substantial evidence regarding the reliability of our

descending algorithm and its potential applicability in similar environmental conditions.

These findings positively address the first part of our second research question - "Which
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algorithm can ensure a safe, controlled descent of the drone given the onboard sensors?"

Indeed, our uniquely developed descending algorithm, which relies solely on a single down-

ward Time-of-Flight (ToF) camera, exhibits considerable promise for ensuring a safe, con-

trolled descent of the drone, demonstrating robust performance even under real-world

conditions.
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Conclusion

In addressing the daunting task of achieving effective autonomous drone navigation for

sewer inspections, this research examined three fundamental questions: optimal manhole

detection and navigation, the development of a reliable descent and localization mechanism,

and the transferability of simulated operations to real-world scenarios.

Firstly, the AAMED algorithm was identified as a suitable method for detecting man-

holes in diverse sewer environments. Successful autonomous take-off, manhole detection,

center identification, navigation, and precision landing demonstrated how the detection of

a center in an image can be translated into practical drone navigation commands using the

back projection algorithm. This finding effectively addressed our first research question,

validating the application of the AAMED algorithm in real-world scenarios.

Secondly, the developed descending algorithm, which relies on a single downward ToF

camera, demonstrated its potential in ensuring a safe, controlled descent of the drone.

The reliability of this algorithm, tested under real-world conditions, satisfied the first part

of the second research question. However, our research also underlined the limitations of

sole reliance on visual odometry, particularly in environments with uniform or repetitive

patterns. This insight underscores the need for a more comprehensive approach, possibly

involving additional sensors or the use of ToF data for localization, to enhance system

robustness and minimize the likelihood of unexpected flight behaviors.

Lastly, careful design and customization of the simulation environment facilitated more

effective testing and development, ensuring the drone’s behavior in the simulation closely

mirrored its real-life counterpart. This approach demonstrated that mission simulations

can ensure seamless real-world transferability of tested procedures, successfully addressing

the third research question.

While this study provides promising solutions, it is important to note that the chal-

lenges of sewer inspections using autonomous drones are vast and interconnected. The
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remaining challenges - including localization, communication, environmental factors, and

maneuvering through intricate sewer systems - require further research. The insights and

methodologies derived from this research, nevertheless, offer a significant step towards a

comprehensive autonomous drone system for sewer inspections. We hope our contributions

will spur further innovations in the realm of autonomous drones for sewer inspections,

revolutionizing the management and maintenance of essential urban infrastructures.
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