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Abstract: Heating, ventilation, and air conditioning (HVAC) systems account for up to
40% of the total energy consumption in buildings. Improving the modeling of HVAC
components is necessary to optimize energy efficiency, maintain indoor thermal comfort,
and reduce their carbon footprint. This work addresses the lack of a general methodology
for data preprocessing by introducing a novel approach for feature extraction and feature
selection based on physical equations and expert knowledge that can be applied to any data-
driven model. The proposed framework enables the forecasting of indoor temperatures and
the energy consumption of individual HVAC components. The methodology is validated
with real-world data from a system involving a fan coil unit and a thermal inertia deposit
powered by geothermal energy, achieving a coefficient of determination (R2) of 0.98 and
mean absolute percentage error (MAPE) of 0.44%.
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1. Introduction
This work builds upon our previous research [1] presented at the SOCO 2024 Con-

ference, where we introduced an initial methodology for HVAC temperature modeling.
In this expanded study, we refine our approach by incorporating additional experimental
validation, providing a more detailed performance analysis and enhancing the core of this
study, which is the proper definition of a feature selection and extraction methodology.
The improvements presented here aim to further optimize energy efficiency and predictive
accuracy in HVAC systems.

In developed countries, buildings are responsible for an estimated 20–40% of total
energy consumption with half of it being dedicated to maintaining thermal comfort [2].
HVAC systems encompasses all the devices related to the management and regulation
of temperature, humidity, and air quality within enclosed spaces. More adaptive and
flexible HVAC systems have been shown to achieve energy savings ranging from 12.4 and
17.4% [3] to as high as 25–32% [4], within the established indoor comfort conditions. Many
studies have successfully attempted to improve energy efficiency in HVAC systems [3–8],
which goes hand-in-hand with proper thermal modeling of the studied system [4,9–17].
Similar approaches have been explored for optimizing the energy consumption of wireless
sensor networks, applying ultra-low power techniques and energy harvesting to enhance
efficiency and prolong operational lifespan [18]. Numerous algorithms and software are
used, and it is essential to decide which one to use to obtain a useful and accurate outcome
with each system.
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This work proposes a novel preprocessing methodology grounded in expert knowl-
edge for feature selection and extraction, specifically designed to enhance the predictive
accuracy of temperature and energy consumption of HVAC data-driven models. The
proposed approach is based on studying the thermodynamic interactions that describe the
system to accordingly select the variables that have a meaningful impact on the studied
system and creating dynamic variables that can contain information from multiple features
to reduce the space of inputs of the data-driven model. The significance of this approach
lies in understanding the thermodynamic interactions and the physical equations that
describe these interactions, thereby exploring innovative criteria for feature selection and
creation. Notably, the contributions of this paper include the utilization of real data from a
non-residential building, providing a robust basis for model validation. Furthermore, the
case study focuses on a complex HVAC system featuring a fan coil that extracts energy from
an inertia tank. This unique setup underscores the general applicability of the proposed
methodology, demonstrating its potential to address advanced HVAC configurations and
improve predictive accuracy in various real-world applications.

The rest of this work is organized as follows: Section 2 outlines the three primary
families of HVAC modeling approaches and introduces support vector regression. Section 3
reviews the state-of-the-art in HVAC systems and data preprocessing techniques. Section 4
details the methodology, elaborating on the novel contributions to ensure reproducibility.
Section 5 describes the building, the HVAC system used, its operational characteristics, and
the application of the proposed methodology. Section 6 presents simulation results and
analyzes the model’s performance. The work concludes with a summary of key findings
and suggestions for future research directions in Section 7.

2. Background
Reliable temperature forecasting in HVAC systems is essential for improving energy

efficiency and indoor comfort. Common modeling techniques are classified as either data-
driven, physics-based, or hybrid, and each offer advantages and limitations. This chapter
reviews these approaches and introduces the SVR modeling technique, which is applied in
later sections.

2.1. HVAC Modeling Techniques

There are different methods to tackle the thermal approach of a system and each
can be linear or nonlinear, static or dynamic, explicit or implicit, discrete or continuous,
deterministic or probabilistic, deductive, inductive or floating [19]. Different methodologies
have been employed in numerous studies to tackle the thermal problem. However, it is
essential to identify which method most accurately predicts the system’s behavior to enable
proper optimization.

2.1.1. Physics-Based Models

Physics-based models are constructed on the foundational principles of thermody-
namics, such as Fourier’s law of thermal conduction and the Navier–Stokes equations,
among other energy and mass balance equations. While these models can yield high
accuracy by solving the equations analytically, this approach is often impractical due to
the complexity and time-consuming nature of numerically solving the coupled partial
differential equations. Additionally, an in-depth understanding of the system is essential;
otherwise, numerous assumptions must be made, which can lead to discrepancies between
the computed results and real-world observations. Numerous studies have focused on
various components of HVAC systems. Browne and Bansal [20] employed a thermal ca-
pacitance approach to predict chiller performance, achieving results within ±10%. Lei and
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Zaheereuddin [21] utilized mass and energy balance techniques to analyze the transient
response of refrigeration systems. In the context of thermal zones, Ghiaus and Hazyuk [22]
applied heat equations to dynamically simulate heating loads, while Goyal et al. [23] used
an RC network model to predict zone temperatures, accounting for heat losses through
walls. These studies highlight the importance of selecting appropriate methodologies to
accurately predict and optimize HVAC system performance.

2.1.2. Data-Driven Models

Data-driven models leverage empirical data and employ machine learning techniques
such as artificial neural networks, fuzzy networks, and genetic algorithms to establish
relationships between features and target variables. These approaches are highly dependent
on the quality and quantity of the available training data and can account for disturbances
in the data, such as variability in occupancy, the usage of electronic devices, and other
environmental factors. However, they capture the physics of the process to a minimal extent.
Wei et al. [3] successfully integrated an MLP with MOPS framework, achieving energy
savings of 12.4–17.4%. Similarly, Kusiak et al. [5] applied a multi-objective optimization
model in combination with an evolutionary computation algorithm, resulting in energy
savings of 21.4–22.6%. Additionally, Huang et al. [7] utilized an ANN model to capture
thermal interactions in multi-zone buildings, demonstrating that comfortable temperatures
can be maintained with a 28% reduction in daily energy consumption and an estimated
10% savings when the model is extended over a month.

2.1.3. Hybrid Models

Hybrid models represent an advanced synthesis of data-driven and physics-based
methodologies. These models are grounded in physical laws, while their parameters are es-
timated using data-driven techniques derived from experimentally obtained training data.
Such models excel in scenarios where the studied system encompasses physical interactions
that are not explicitly defined and where the training dataset is relatively sparse. This
dual approach enables hybrid models to effectively capture the complexities of the system,
thereby enhancing the accuracy of predictions and overall system optimization. Afram
and Janabi-Sharifi [24] derived the energy balance equations for each HVAC subsystem
and estimated the parameters utilizing the nonlinear least squares optimization technique,
successfully capturing the impact of ON/OFF controllers on energy consumption with high
accuracy. Similarly, Rao and Ukil [15] employed numerically simulated temperature data
to estimate the parameters of a semi-nonlinear thermal model designed to approximate
the temperature dynamics of a room, using FloVENT software version 9.3. Additionally,
Wu and Sun [16] developed a physics-based Auto-Regressive Moving Average with Exoge-
nous Inputs (pbARMAX) model to predict room temperature, demonstrating a root mean
squared error of less than 0.10 over a four-week period.

2.2. Support Vector Regression

SVR was first introduced by Vapnik [25] as a method for estimating regressions
and approximating functions as a generalization of their previous work support vector
machines [26]. Support vector regression operates by finding the optimal hyperplane that
best fits the training data while maximizing the margin between data points. The key
components of SVR include kernel functions to map input data into high-dimensional
feature spaces; epsilon (ϵ) and regularization (C) parameters as hyperparameters to control
the model’s behavior with epsilon as the margin width within which data points are
considered correctly predicted, while C balances the trade-off between achieving a small
margin and minimizing training error; and support vectors as points lying exactly on the
margin or within it, which heavily influence the construction of the regression model.
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This modeling technique offers several advantages that make it a valuable tool in
data modeling. It performs effectively in high-dimensional spaces, is memory-efficient,
and demonstrates robustness against overfitting. Additionally, SVR excels at modeling
complex, non-linear relationships. However, it also has certain limitations, including com-
putational complexity when dealing with large datasets as its computational cost scales
between O(n f eatures × n2

samples) and O(n f eatures × n3
samples) [27], sensitivity to hyperparame-

ter tuning, and challenges in handling noisy data. Despite these drawbacks, it has been
successfully applied in various fields such as financial forecasting, environmental modeling
and bioinformatics [28]. As a powerful regression technique, SVR remains relevant even in
the deep learning era, providing a mathematically sound approach for capturing intricate
patterns within data.

3. State of the Art
This chapter provides a review of the current advancements in HVAC system modeling

and data preprocessing techniques. The first section delves into the latest data preprocessing
techniques specific to HVAC modeling, highlighting methods for data cleaning, feature
selection, and transformation that enhance model performance and reliability. The second
section explores the state-of-the-art in HVAC modeling methodologies, examining recent
developments across data-driven, physics-based, and hybid modeling approaches and
their applications in improving forecasting accuracy and efficiency.

3.1. Data Preprocessing Techniques

Preprocessing data before using it for HVAC model training is essential due to the
inherent complexity and variability of the system data, which are typically composed of
time-series sensor information. Proper preprocessing improves data quality, facilitates
feature extraction, and enhances the model’s ability to detect patterns. Key preprocessing
techniques used in HVAC modeling are reviewed here.

The presence of missing data in HVAC systems can result from sensor failures or
communication issues. Several techniques exist for dealing with missing values, each
varying in complexity and suitability depending on the nature of the data. Common
methods for handling missing data include mean or median imputation, where missing
values are replaced by the central tendency of the available data. For more sophisticated
imputation, techniques such as kNN [29] or MICE [30,31] are employed, which consider
the correlations between variables to fill in missing values more accurately.

Outliers in HVAC data can significantly affect the performance of predictive models.
Various methods, such as Z-score and IQR, are used to detect and remove data points that
deviate from the expected range. More advanced methods like IF [32] or LOF [33] are also
utilized to handle outliers in large datasets where traditional methods may be less effective.

HVAC data is often noisy due to fluctuations in sensor readings. Smoothing techniques,
such as Gaussian filtering [34] or moving averages, are applied to time-series data to
reduce noise and reveal underlying trends. This enhances model accuracy by providing
cleaner features.

Data normalization is essential to ensure that different features have comparable scales,
preventing any single feature from disproportionately influencing model results. Common
techniques include Min-Max scaling and standardization.

High-dimensional HVAC datasets, particularly those with many sensors or features,
may suffer from issues such as overfitting and computational inefficiency. PCA [35] is
commonly used for dimensionality reduction, helping to retain the most significant features
while discarding less informative ones. t-SNE [36] and UMAP [37] are also employed for
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visualizing high-dimensional HVAC data, though they are less commonly used for direct
model training.

Preprocessing is a standard practice in machine learning; the following are examples
of papers that apply a variety of the explained techniques. Richter and Abida [38] applied
data cleaning and normalization for neural network control, while Tang et al. [39] used
clustering for short-term temperature and CO2 predictions. Advanced methods, including
weight clustering (Wang et al. [40]) and LSTM-based interpolation (Mtibaa et al. [41])
improve load predictions and multistep forecasting. Xiao et al. (2022) [42] are the first
authors to investigate the influence of data preprocessing and selection on the accuracy
of HVAC energy consumption models. Their study emphasizes common preprocessing
practices such as data imputation, resolution processing, normalization, outlier detection,
and smoothing. Despite this contribution, the role of preprocessing, feature selection, and
extraction remains underexplored. This work seeks to address this gap by establishing a
methodology to identify key variables and define new ones based on expert knowledge and
physics equations. By reducing the dimensionality of features used in data-driven models,
the objective is to simplify the process while enhancing the accuracy of temperature and
energy consumption forecasts for HVAC systems.

3.2. HVAC Modeling Approaches

As seen in Section 2.1, HVAC modeling approaches can be categorized into physics
based, data-driven, and hybrid models, each with its own strengths and weaknesses.

Physics-based models excel in generalization but have low prediction accuracy, and
while they require little data, they are complex. Data-driven models can vary widely in both
prediction accuracy and generalization but are simpler and data-intensive. Hybrid models
strike a balance with high prediction accuracy, medium generalization, and moderate
complexity and data requirements [19].

Table 1 encapsulates the trade-offs and considerations for choosing between different
modeling techniques in various applications, highlighting their strengths and weaknesses.

Table 1. Comparative study of the three major modeling techniques based on weakness and strength.

Modeling Technique Weakness Strength Research Studies

Physics-based

• Computationally expensive
• Requires detailed system

information
• May oversimplify complex

phenomena

• High accuracy when system
details are known

• Insights into underlying
physical processes

• Good extrapolation
capabilities

Kim, et al. [43]; Ghiaus and
Hazyuk [22]; etc.

Data-driven

• Complexity
• Potential extrapolation error
• High cost of implementation
• Data-dependent
• Higher complexity in

convergence and optimiza-
tion relative to traditional
methods

• High adaptability
• Reduced operational costs
• Effective thermal comfort

maintenance
• Efficiency in cost savings

Kim, et al. [43]; Afram, et al. [19],
Michailidis, et al. [44]; etc.

Hybrid

• Complexity
• Dependency on data and

sensor availability

• Robustness
• Adaptability
• High prediction accuracy
• Easy to generalize

Afram and Janabi-Sharifi [24];
Von. et al. [45]; etc.

Hybrid models have gained popularity due to their ability to combine the strengths of
both physics-based and data-driven approaches. These models offer improved prediction
accuracy, adaptability, and leverage physics-based simulations while addressing some of
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the limitations of purely data-driven or physics-based models [43]. At the same time, data-
driven approaches, particularly those utilizing machine learning and artificial intelligence,
have seen significant advancements. These methods offer high adaptability and efficiency
in cost-saving, with promising performance compared to other approaches [19].

Modeling HVAC systems presents significant challenges due to their non-linear, dy-
namic, and multi-variable nature, making purely physics-based models difficult to im-
plement effectively. Classical approaches rely on solving complex differential equations
that require detailed knowledge of system parameters and are computationally intensive,
making real-time applications impractical. Furthermore, HVAC performance is influenced
by external factors like occupant behavior, weather conditions, and sensor variability, which
are difficult to represent accurately with fixed physical models. In contrast, a data-driven
framework leverages historical and real-time sensor data to automatically capture complex
relationships between temperature dynamics, energy consumption, and external conditions
without the need for explicit equations.

Machine learning techniques excel in handling non-linear dependencies, allowing for
improved forecasting accuracy and adaptability to changing conditions. Additionally, data-
driven models require less computational power after training, enabling faster predictions
compared to iterative numerical solutions of physical equations. Another advantage is
scalability, as physics-based models must be redefined for each specific HVAC system,
while machine learning models can generalize across different buildings by training on
diverse datasets. For these reasons, a data-driven approach was chosen as it provides
a more flexible, accurate, and computationally efficient solution for HVAC modeling
and forecasting.

4. Methodology
This section outlines the novel preprocessing methodology based on expert knowledge

for modeling HVAC system dynamics. The approach is designed for applicability to similar
energy-efficient HVAC systems using data-driven models, with this new preprocessing
method aimed at reducing and simplifying the dataset provided to the model.

Notably, the methodology is designed to be applied to a recursive modeling strategy,
where the model predicts a step in the future and utilizes its previous predictions to inform
subsequent forecasts. A block diagram illustrating the complete process of modeling an
HVAC system is presented in Figure 1.

The methodology is composed of seven steps to model the temperature profile of a
acclimatized room that uses an HVAC system:

1. Analysis of the studied case: identification of key components of the HVAC system
(e.g., energy storage device).

2. Data collection: raw data are gathered from the system’s sensors, including tempera-
ture, humidity, energy consumption, and occupancy levels.

3. Feature selection and extraction: key features are selected and new ones are defined
based on expert knowledge and thermodynamic principles to accurately capture the
system’s dynamics.

4. Acquisition and forecasting of essential features required at each time instant to ensure
the model’s completeness.

5. Model selection: a proper data-driven model is chosen to handle the non-linearities of
the thermal system.

6. Model training: the model is trained using historical data from the system, tuning
hyperparameters to optimize performance.

7. Model validation and evaluation: the trained model is validated using a separate test
dataset, and performance is measured using R2 and MAPE metrics.
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Figure 1. Process flow of the methodology.

Step 1 focuses on thoroughly understanding the HVAC system under study. This
involves identifying the critical components within the system, such as the energy storage
device, heat exchangers, ventilation units, and other key equipment. Understanding
the role of each component in the system helps establish a clear picture of the factors
influencing the HVAC system’s performance and energy dynamics. This analysis serves
as the foundation for subsequent steps, ensuring that all relevant elements are considered
when building the predictive model.

Step 2 is to gather raw data from the system’s sensors. The primary variables collected
include temperature, humidity, energy consumption, and room occupancy, which all play
significant roles in HVAC system behavior. These data often come from distributed sensors
within different zones of a building, capturing a wide range of conditions. By collecting
comprehensive data, it is ensured that the full spectrum of variables affecting the system is
captured. Data quality and consistency are key here, as inaccuracies or gaps in data can
adversely affect model performance.

The critical contribution of this work lies in step 3, feature selection and extraction,
which follows a specific format and introduces a novel approach to define key variables.
This step transforms standard modeling practices by incorporating thermodynamic prin-
ciples into the selection and creation of variables. This step is explained in detail in
Sections 4.2 and 4.3.

In step 4, essential features, identified as critical to each time instant of the modeling
process, are either acquired or forecast as needed. This step ensures that all relevant features
are available at every stage, supporting the model’s completeness and accuracy. Forecasting
may be employed when future values of certain variables (e.g., expected occupancy levels
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or outdoor temperatures) are required for predictions but are not directly measured in
real-time. This step is explained in detail in Section 4.1.

A suitable model is chosen in step 5 to account for the inherent complexities of the
HVAC system, including its non-linear behaviors. A data-driven modeling approach
is often appropriate here, allowing the model to capture complex relationships within
the data. Selecting an appropriate model architecture is key to balancing predictive
power with computational efficiency, ensuring the model can handle the HVAC system’s
unique characteristics.

In step 6, the chosen model is trained on historical data gathered from the HVAC
system. During this process, the model learns patterns and relationships within the data,
fine-tuning its parameters to improve its predictive accuracy. Hyperparameters are carefully
adjusted to optimize the model’s performance without overfitting. Training the model on a
large and representative dataset allows it to generalize well to new data, making it robust
for future predictions. This step may also involve regularization techniques to prevent
overfitting, enhancing the model’s generalizability.

Finally, in step 7, the trained model is validated using a separate test dataset, distinct
from the training data, to evaluate its real-world predictive performance. Validation metrics
such as the coefficient of determination (R2) and the mean absolute percentage error (MAPE)
are used to assess the model’s accuracy and reliability. This step provides insights into the
model’s strengths and potential limitations, ensuring it meets the required performance
standards before deployment.

The proposed methodology focuses on a recursive model structure, where the model
uses its past outputs as inputs for future predictions as seen in Figure 2. This approach
inherently involves feeding the forecast values back into the model at each time instant,
creating a sequence of predictions over time. Consequently, error accumulation is expected,
as small inaccuracies in early predictions can propagate and amplify throughout the
forecasting process. Additionally, any external variables or factors not forecast by the
model must be known at each time instant to ensure accurate predictions and maintain
consistency within the recursive framework.

Figure 2. Recursive model structure starting at time t until n−th iteration.

4.1. Features Acquisition and Forecasting

The methodology is designed for a model to perform iterative forecasting, so it is criti-
cal to have all the features that significantly affect the model available at each time instant.
For example, exterior temperature is a key feature in any HVAC system; its value can be
continuously monitored or forecast using data from weather APIs. Room occupancy is
another crucial feature, as it significantly impacts indoor temperature. However, predicting
occupancy is challenging due to the variability in human behavior.

Nevertheless, approximations can be made based on factors like work schedules if
the room is a workspace. When schedules are unavailable but a sensor provides real-time
occupancy data, modeling this occupancy over time can be achieved using techniques
such as autoregressive models, moving averages, or machine learning algorithms. These
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approaches help capture occupancy trends, supporting more accurate and dynamic HVAC
forecasting even when human patterns are unpredictable. Furthermore, a simple approach
is to approximate the values as a Gaussian function:

f (x) = Ae−(
x−b

c )
2

(1)

where A, b, c ∈ R. Using the curve_fit function from the scipy.optimize library [46], this
Gaussian function, along with any other appropriate function, can be fitted to the observed
occupancy data to estimate the number of people in the room based on past trends. This
approach offers a smooth approximation of occupancy variations over time.

4.2. Feature Selection

Feature selection is important to obtain a model that can capture precisely the dynamics
of an HVAC system. Data-driven models rely heavily on data to identify patterns and
make predictions; however, generally, it is almost impossible to interpret their decision-
making process. Modeling an HVAC system is fundamentally a thermodynamics problem,
necessitating that the model resemble the behavior of heat transfer equations. To guide the
model in understanding the processes occurring within the system, the thermal interactions
are first described to facilitate proper feature selection. The focus is on detailing which
thermal interactions occur and then choosing features that represent or significantly impact
the system based on their similarity to variables in thermodynamic equations.

According to thermodynamics, heat transfer can take place in the form of conduction,
convection, or radiation. Radiation involves the emission of electromagnetic waves by all
objects at temperatures above absolute zero. However, radiation loss becomes significant
only at high temperatures. Considering a typical HVAC temperature range of 8 ◦C to 50 ◦C,
this interaction can be neglected.

Convection, the transfer of energy through fluid movement, significantly impacts
room temperature, as hot air circulated by a fan coil heats the entire space. The objective
is not to predict the temperature at every point in the room, but rather to establish a
single representative temperature for each HVAC element. Consequently, detailed spatial
temperature predictions are not considered in this process.

Conduction is the process by which heat is transferred from a region of higher temper-
ature to a region of lower temperature within an object. HVAC systems typically focus on
interactions involving fluids, such as air and water, rather than solid objects. To simplify
the analysis, the system can be modeled by considering the HVAC unit and the acclima-
tized room as contiguous blocks, with the exterior environment acting as a third block.
In this context, thermal interactions are governed exclusively by conduction. Analyzing
Newton’s law of cooling (Equation (2)) provides valuable insights into the importance of
the variables involved:

q = h∆T (2)

Here, q represents the heat flux transferred into or out of the body, h denotes the heat
transfer coefficient, and ∆T signifies the temperature difference between the two objects.
This equation highlights the importance of the heat sources and the temperatures of the
interacting objects.

Based on this information, a study must be conducted for each case to identify the
heat sources that significantly impact the temperature system (e.g., the number of people,
operating electrical devices, server racks, etc).
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4.3. Feature Extraction

The emphasis here is on minimizing and simplifying the data provided to the models
to accurately represent the underlying thermodynamic processes to the machine learning
model. This approach is aimed at improving the model’s performance and accuracy.

From Equation (2), ∆T = Tsystem − Tenv, where Tenv represents the temperature of
the environment, which is the temperature toward which the system tends at any given
moment. Consequently, a new variable called tendency is defined. This variable aims to
capture the temperature toward which the system’s temperature is expected to tend, taking
into account the HVAC instructions and the current state of the system. To accurately
define this new variable, it is necessary to understand the HVAC system’s logic and the
conditions under which the HVAC should be activated or deactivated.

Typically, acclimatized rooms operate based on a straightforward rule: if the temper-
ature drops below the set point, the HVAC system is activated, and if the temperature
exceeds the set point, the HVAC system is deactivated. This rule is implemented with
considerable precision, incorporating both an upper and a lower threshold. When heating
the room, the system continues to heat until the temperature reaches the set point plus the
upper threshold. Conversely, when the HVAC system is off, the room cools down until the
temperature falls below the set point minus the lower threshold. Figure 3 illustrates this
oscillating state as the room is heated.

With each change in the direction of the oscillation, the room tends toward a specific
temperature. When the room is being heated, it tends toward the temperature of the air
pumped by the HVAC system. When it is cooling down, it tends toward the outdoor
temperature. A challenge arises when the temperature is located between the thresholds:
with only one point, it is impossible to determine whether the temperature should increase
or decrease. To resolve this and determine the direction of the temperature, the closest
previous point is examined, and the slope between them is calculated. A positive slope
indicates that the room’s temperature will tend toward the air pumped by the HVAC,
while a negative slope suggests it will tend toward the exterior temperature. Based on this
understanding, the general Algorithm 1 is defined in the function room_tendency.

Figure 3. Representation of oscillating room temperature between upper and lower thresholds while
HVAC status is ON. This figure does not contain any real data and is used only as a support for visual
representation of the oscillating behavior of room temperature.
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Algorithm 1: Temperature tendency of the room
Input: room1: Temperature of the room at time t−1

room2: Temperature of the room at time t−2
hvac: Temperature of the air expulsed by the HVAC at time t−1
exte: Exterior temperature at time t
inst_room: Instruction for the room at time t
upp_threshold: Upper threshold
lw_threshold: Lower threshold

Output: Vector: [Tendency temperature, 1 fan coil is ON 0 if fan coil is OFF]

1 Def room_tendency(room1, room2, hvac, exte, inst_room, upp_threshold,
lw_threshold):

2 if lab1 > inst_room + upp_threshold then
3 return [exte, 0]

4 else if inst_room − lw_threshold ≤ room1 ≤ inst_room + upp_threshold then
5 slope = room1 − room2

if slope ≥ 0 then
6 return [hvac, 1]

7 else if slope < 0 then
8 return [exte, 0]

9 else if room1 < inst_room − lw_threshold then
10 return [hvac, 1]

Algorithm 1 shows the general function that should follow the tendency temperature
of a room, while also returning the HVAC status for energy consumption prediction. This
serves as a universal formula but may need adjustments based on the specific requirements
of each system. The computational cost of executing this function is O(nsamples).

The objective is to simplify the features provided to the model, ensuring alignment
with those used in Equation (2). Consequently, the final set of features for a generic
one-room system with an air conditioner should include all relevant heat sources, the
temperatures of adjacent spaces that significantly impact the target room (e.g., exterior
temperature), and the temperature tendency.

5. Case Study
The HVAC system under study is installed in a workplace room at the University of

Girona. This room is situated on the first floor of the P4 building of the Montilivi campus, sur-
rounded by other working areas. It has an exterior wall with northwest-facing windows. The
geometrical dimensions of the room are 9.83 m (length) × 7.25 m (width) × 3.00 m (height).

The room, hereafter referred to as the laboratory, is used daily by researchers as an
office. It is equipped with numerous sensors for monitoring humidity, temperature, energy
consumption and person zone by zone as displayed in Figure 4a,b.

The HVAC system, depicted in Figure 5, utilizes geothermal energy during winter
mode, extracted from a 100-m-deep well with a stable temperature range of 15.0–17.0 ◦C.
Water circulates to harness the geothermal energy, which then passes through a com-
pression/expansion heat pump. The extracted energy is stored in an inertia tank and
subsequently used by the fan coil to acclimatize the laboratory. This system is versatile,
capable of providing both cooling in summer and heating in winter.
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(a) (b)

Figure 4. Top-down map of the laboratory showing the workstations and the precise locations of data
collection devices and their distribution. Images extracted from Control Assistant page. (a) Ambient-
related devices collecting data of temperature in light blue, humidity in dark blue, CO2 concentration
in gray, and light intensity in yellow. The temperature at which the fan coil expels the air is shown
in red, the temperature used as the representative temperature of the laboratory is shown in green,
and at the top center of the image, the number of people counted by the door sensor is shown. At
the top left side corner of the image indicating the position of the door, four light blue squares with
a circle disposed as a bigger square indicate the position of the air expelled by the fan coil and at
the bottom of the image, four light blue rectangles indicate the position of the windows. (b) Energy
consumption sensors of the room; in light blue, the consumption of each working place, in red, the
accumulated energy consumed by each electric line, in yellow, the energy consumed by lights, and at
the top center, the number of working places with consumption (not a physical device) are shown.

Figure 5. Scheme of the HVAC system and its sensors. Image extracted from Control Assistant page.
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Figure 5 shows the four zones where data are collected. The first, in orange, is the
laboratory or the acclimatized zone. The second, in light gray, is the machine room where
the heat bomb and inertia tank are located, displaying its temperature. The light green
zone is the exterior of the building where the temperature is collected. The last zone, in
light orange, represents the well and its temperature at 100 m below ground.

Every sensor and controller is monitored through a web interface called the Control
Assistant, designed by the university researchers. This platform manages all instructions
for the HVAC system, from setting the temperature of the inertia tank and laboratory to
controlling the opening and closing of windows. Each sensor collects real-time data, which
are stored in a database. The data storage rate can be adjusted to the desired frequency;
however, to avoid overloading the database, the default setting is to collect data every
five minutes.

Within the Control Assistant, a set of target temperatures can be defined for both the
laboratory and the inertia tank to maintain a comfortable indoor environment. These target
temperatures should be adjusted according to seasonal variations in outdoor temperatures.
Therefore, two modes are defined: summer mode and winter mode. Each mode sets specific
temperature targets based on the time of day, h.

Winter mode =



Laboratory temperature =

20 ◦C if 17:00 < h ≤ 05:00

24 ◦C if 05:00 < h ≤ 17:00

Inertia tank temperature =



30 ◦C if 17:00 < h ≤ 03:00

48 ◦C if 03:00 < h ≤ 05:00

45 ◦C if 05:00 < h ≤ 06:00

42 ◦C if 06:00 < h ≤ 08:00

40 ◦C if 08:00 < h ≤ 17:00

(3)

Summer mode =



Laboratory temperature =

25 ◦C if 16:00 < h ≤ 04:30

20 ◦C if 04:30 < h ≤ 16:00

Inertia tank temperature =

13 ◦C if 17:00 < h ≤ 03:30

8 ◦C if 03:30 < h ≤ 17:00

(4)

5.1. Dataset Description

This paper focuses on the winter mode, from which all data were collected and used
to build the models. The dataset extends from 2024-01-22 to 2024-04-29 with a granularity
of 5 min. After removing all the instances with errors and missing values, the resulting
dataframe contains 24,203 useful rows for each sensor described in the previous section. The
collected dataset encompasses a wide range of temperatures. To ensure a comprehensive
model, the dataset is randomly partitioned for testing by selecting 11 days, equivalent
to 15% of the total data, as the test set, while the remaining data are used for training.
Figure 6a,b display an example of a complete day in winter mode of set points for the
laboratory and inertia tank with its respective values of real temperature.



Appl. Sci. 2025, 15, 4291 14 of 30

(a) (b)

Figure 6. Temperatures over 24 h of a weekday. (a) Temperature and set points of the laboratory.
(b) Temperature and set points of the inertia tank.

5.2. Feature Selection

Features are selected according to the methodology outlined in Section 4.2, treating
the inertia tank, the laboratory, and the exterior as three distinct blocks with varying
temperatures in contact.

The first step is to identify heat sources, and a clear difference in temperature dynamics
is observed between weekdays, when the laboratory is occupied with investigators working,
and weekends when the laboratory is empty. As an example, Figure 7a shows how during
working hours, the temperature increases due to the presence of investigators, going above
the set point; in contrast, Figure 7b presents a more gradual approximation and stabilization
around the set point on a weekend day when no-one entered the laboratory.

This observation highlights the number of people as a heat source with a substantial
influence on the laboratory’s temperature.

Referring to Equation (2), the temperature of the inertia tank, the outdoor temperature,
and the number of people are identified as crucial features for predicting the laboratory’s
temperature. These features have a significant impact on the system and will be used to
train the laboratory’s model.

(a) (b)

Figure 7. Temperatures through a working day and a weekend day presenting differences in behavior
due to the heat flux caused by human presence or absence in the room. (a) Temperature and set
points of the laboratory. Data collected on a working day. (b) Temperature and set points of the
laboratory. Data collected on a weekend day.
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The features that affect the inertia tank are straightforward to identify since this
element is more isolated than the laboratory. The heat flux of the inertia tank will be
through the machine room, the laboratory if the fan coil is ON or OFF, and its own set point
heating the tank when it gets below the target temperature.

Table 2 displays the features selected to build the models with their types and
short descriptions.

Table 2. Variables selected to build the models.

System Variable Name Type Description

Laboratory sensor.shelly_ht_temperature Real (◦C) Main temperature
recorded

climate.fan coil_labo_hivern.temperature Real (◦C) Target temperature
switch.shelly_plus_1pm_fan coil_switch_0 Boolean Status fan coil (ON/OFF)

counter.numero_persones Natural Number of people inside
the laboratory

switch.schedule_consigna_laboratori_hivern_balanced Boolean Status instructions
schedule (ON/OFF)

Inertia tank sensor.geotermia_temperatura_diposit Real (◦C) Recorded temperature
number.geotermia_temperatura_consigna_diposit_hivern Real (◦C) Target temperature
sensor.esp32_gtmeas_temperatura_sala_de_mquines_2 Real (◦C) Room temperature

Exterior sensor.geotermia_temperatura_exterior Real (◦C) Recorded temperature

Table 2 collects the features that describe the systems according to their thermodynamic
properties and those will be the variables used to train the models. It is essential to note that
the primary objective of the models is to predict the temperatures of both the laboratory
and the inertia tank. Therefore, all features used to train the models must be available for
each time instant at which a forecast is to be made in the future.

5.3. Feature Extraction

In this section, step 3 of the methodology is applied to the fan coil and inertia tank
components. For the fan coil, the feature extraction process follows the same algorithm
described in the methodology, ensuring consistency across the analysis. However, the
inertia tank requires a customized function to accommodate its unique characteristics,
while still adhering to the core principles of the methodology. This approach ensures
methodological coherence while addressing the specific needs of each component.

5.3.1. Laboratory Tendency Temperature

The laboratory follows the exact same process as that described in Section 4.3. This
behavior can be seen in Figure 8; when reaching the set point, it oscillates between the
region defined by the thresholds. The values of the upper and lower bound are set manually
to 0.2 ◦C for the laboratory.

Following Algorithm 1, the laboratory_tendency variable is build. This is based
on the understanding that the temperature tendency during heating corresponds to the
temperature of the inertia tank, as the hot air pumped by the fan coil is heated by the
temperature of the inertia tank. Additionally, the energy consumption of the fan coil can
also be predicted if a constant power consumption of 0.2 kW is assumed.



Appl. Sci. 2025, 15, 4291 16 of 30

Figure 8. Temperature, set point, and thresholds of the laboratory. This plot visualizes the oscillation
of the laboratory’s temperature between the upper and lower thresholds.

5.3.2. Inertia Tank Tendency Temperature

The inertia tank operates based on the same principles as the laboratory but with
different values. It has a set point, meaning that if the tank’s temperature falls below this
value, the heat pump is activated. The tank also has upper and lower thresholds. The tank
heats to the set point plus the upper threshold, and once this value is reached, the heat
pump turns off until the temperature drops below the set point minus the lower threshold.
This behavior can be observed in Figure 9 from 09:00 to 17:00. In this system, the upper
threshold is set to 0.7 ◦C and the lower threshold is set to 1 ◦C.

Figure 9. Temperature, set point, and thresholds of the inertia tank. This plot visualizes the oscillation
of the inertia tank’s temperature between the upper and lower thresholds.
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The laboratory only has two modes, either becoming hotter by the use of the fan
coil or colder by the difference with the exterior temperature. For the inertia tank, the
tendency function has to differentiate if the fan coil is ON or OFF. Four distinct modes
are distinguished based on the status of the fan coil (ON/OFF) and the status of the heat
pump (ON/OFF). If the fan coil is OFF, the behavior of the inertia tank is straightforward,
resembling that of the laboratory. If the temperature is below the set point minus the lower
threshold, it tends to be heated to the set point plus the upper threshold, if the temperature
is above the set point, it tends to be cooled tending toward the temperature of the machine
room, which is the environment with which the inertia tank is in contact. If the fan coil is
ON, it is observed that the temperature of the inertia tank reaches a certain equilibrium
temperature. This is due to a balance between the capacity of the fan coil to extract heat
and the capacity of the heat pump to introduce heat. Figure 10a,b show an example where
the laboratory’s temperature is below the set point for long enough to observe how the
inertia tank reaches a equilibrium temperature when the set point is at 40 ◦C from 08:00 to
17:00. Finding this equilibrium temperature is essential to define the tendency function of
the tank.

(a) (b)

Figure 10. Temperatures on Sunday 4 February 2024. (a) Temperature and set point of the laboratory.
(b) Temperature and set point of the inertia tank.

To identify the equilibrium temperature of the inertia tank, an alternative variable was
chosen that expresses the same idea: the difference between the set point and the actual
temperature. This approach offers greater utility by providing insights into temperature
differences at low and high set points without directly involving the tank temperatures.
The procedure was as follows: from the dataset, cases were initially selected where both
the fan coil and the heat pump were activated; next, the temperatures of the inertia tank
were classified according to their set points; following that, the difference between the set
point and the tank temperature was computed, and only the positive values were stored.
Because only temperatures below the set point are of interest, only positive differences
were stored. The data obtained are shown in Table 3.

The set points of 39.7 ◦C and 47.0 ◦C are identified as outliers that can be dismissed
due to their low number of samples, which are considered non-representative. The re-
maining points in Figure 11 follow an exponential function with the general expression
f (x) = Aebx+c with A, b, c ∈ R. Using the curve_fit function from the scipy.optimize
package [27], an exponential curve was successfully fitted to the data. The parameters A, b,
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and c that best describe the fit were obtained and are presented in Table 4. The resulting
exponential curve is illustrated in Figure 11.

Table 3. Classification of temperature difference by set point.

Set Point (◦C) Mean Difference (◦C) Number of Samples

25.0 0.71 122
33.0 0.75 65
39.7 14.06 1
40.0 1.15 2428
42.0 1.85 1005
45.0 2.70 451
47.0 13.60 8
48.0 5.54 72
55.0 19.26 101

Table 4. Exponential function values that best fit the data.

Constant Value

A 0.0153
b 0.1803
c −2.7791

Figure 11. Points of Table 3 with the exponential curve of Table 4.

With this curve, it is now possible to calculate the expected temperature difference
that a set point should have with its corresponding equilibrium temperature when both the
fan coil and heat pump are operational.

At this point, all necessary components are available to construct the tendency function
of the inertia tank, which follows the structure presented in Algorithm 2.
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Algorithm 2: Temperature tendency of the inertia tank
Input: dip1: Temperature of the tank at time t−1

dip2: Temperature of the tank at time t−2
exte: Exterior temperature at time t
tendency_lab: Temperature tendency of the laboratory at time t
inst_dip: Set point for the tank at time t
upper_th: Upper threshold
lower_th: Lower threshold

Output: Vector: [Tendency temperature, 1 if heat pump is ON 0 if heat pump is
OFF]

1 Def tank_tendency(dip1, dip2, exte, tendency_lab, inst_dip, upper_th, lower_th):
2 if tendency_lab == exte then
3 if dip1 > inst_lab + upper_th then
4 return [MachineRoomTemp, 0]

5 else if inst_lab − lower_th ≤ dip1 ≤ inst_dip + upper_th then
6 slope_dip = dip1 − dip2

if slope_dip ≥ 0 then
7 return [inst_dip + upper_th, 1]

8 else if slope_dip < 0 then
9 return [MachineRoomTemp, 0]

10 else if dip1 < inst_dip − lower_th then
11 return [inst_dip + upper_th, 1]

12 else if tendency_lab == dip1 then
13 if dip1 > inst_lab + upper_th then
14 return [inst_dip − equilibrium_diff(inst_dip), 0]

15 else if inst_lab − lower_th ≤ dip1 ≤ inst_dip + upper_th then
16 slope_dip = dip1 − dip2

if slope_dip ≥ 0 then
17 return [inst_dip − equilibrium_diff(inst_dip), 1]

18 else if slope_dip < 0 then
19 return [inst_dip − equilibrium_diff(inst_dip), 0]

20 else if dip1 < inst_dip − lower_th then
21 return return [inst_dip − equilibrium_diff(inst_dip), 1]

5.4. Laboratory Approximations

For the laboratory, the following features will be utilized: its own temperature, the set
point temperature, the exterior temperature, the value of which can be known in the future
using an API that communicates with the multiple weather applications that already exist,
and the number of people inside the room. This last feature is the most difficult to know in
the future since it involves human behavior, which tends to be hard to predict. Since the
system is like an office and investigators follow a certain schedule, the number of people
inside the room follows a certain pattern. Following Section 4.1 of the methodology, the
number of people inside the room is approximated simply by fitting a Gaussian 1 using the
cuerve_fit function.
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The door sensor is used to find the number of people inside the room. This sensor has
a good performance when people enter or leave the room individually with spacing but
when more than one person is involved, it has many counting errors. As an example, it is
seen on certain days of Figure 12a–c how the sensor can count up to 20 people or higher
even if by experience it is known that usually there are not more than 7 people inside the
room at any one time. Taking into account this consideration, the points with number of
people above 7 are marked as outliers and are not used by the curve_fit function.

(a) (b)

(c)

Figure 12. Laboratory occupancy during the weekdays of three consecutive weeks of 2024.
(a) Occupation from 4 to 9 March. (b) Occupation from 11 to 16 March. (c) Occupation from 18
to 23 March.

The mean of each computed Gaussian value was taken to obtain a single function
that approximates the number of people for each day for the test phase, and a Gaussian
adjusted to each day was computed for the training phase. The parameters of the Gaussian
found for the test phase are gathered in Table 5 and visualized in red in Figure 12a–c.

Table 5. Mean values of the Gaussian function.

Constant Value

A 7.8538
b 147.1506
c 27.8011
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Table 6 summarizes all the features that will be integrated in the laboratory’s model.
At first glance, it looks like it is missing a crucial value, which is the set point, but it is
important to note that this information is actually integrated into the tendency variable.

Table 6. Variables used to train the laboratory’s model.

Type Parameter

Features Temperature at time t − 1
Temperature at time t − 2

Tendency at time t
Outdoor temperature at time t

Gaussian number of people at time t
Target Temperature at time t

The only approximation made is that the number of people inside the room follows a
Gaussian distribution. For the training phase, the Gaussian distribution is computed daily
to smooth the data. For the test phase, the Gaussian distribution used is the one provided
in Table 5.

5.5. Inertia Tank Approximations

For the inertia tank, the following features will be used: the temperature at past time
instants and the tank’s tendency temperature, which encompasses multiple variables such
as the set point, the exterior temperature, and the tendency temperature of the laboratory.
Table 7 brings together all the features that will be integrated for the inertia tank. Similarly
to with the laboratory, the set point is hidden in the tendency variable.

Table 7. Variables used to train the tank’s model.

Type Parameter

Features Temperature at time t − 1
Temperature at time t − 2

Tendency at time t
Target Temperature at time t

The following approximations were applied in the development of the model: First,
the temperature of the machine room was assumed to remain constant at 23 ◦C. Second,
the equilibrium temperature, when both the heat pump and the fan coil are in operation,
was calculated by approximating the difference between the set point temperature and the
equilibrium temperature using an exponential function.

5.6. Model Selection

As seen in Section 2.1, many models can be applied to forecast HVAC system tem-
peratures, each with its pros and cons. In this study, data-driven models were chosen
due to the quantity and quality of the data collected. To model the thermal systems, SVR
was chosen for its robust performance in handling high-dimensional and non-linear data,
which are characteristic of thermal systems. SVR employs a kernel to effectively map input
features into higher-dimensional spaces where linear separation is feasible, thus capturing
the complex, non-linear relationships of thermal dynamics. Additionally, SVR’s ability to
minimize the generalization error ensures that the model remains accurate and reliable
even with noisy data, which is common in real-world thermal measurements. Its intrinsic
regularization mechanism prevents overfitting, making it suitable for predicting thermal
responses under varying conditions.
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The methodology is not restricted to SVR or a specific type of model. Instead, it is
flexible and can accommodate any data-driven model that suits the characteristics of the
data and the system being studied. This adaptability allows researchers to select models
that align best with their data’s structure and the system’s requirements, fostering the
exploration of diverse techniques for improved predictive performance.

6. Experiments and Results
The models generate predictions based on previously predicted data. As the forecast

extends further into the future, errors accumulate, leading to a decline in performance.
For this reason, predictions are limited to a 24 h timeframe. The performance of each
forecasting model was evaluated using the metrics described in the previous section.

The first part is dedicated to the selection of the best hyperparameters for the fore-
casting of the laboratory, the second part is dedicated to the inertia tank, and the last
shows the performance of both models working with each other. For both systems, the
hyperparameters examined to find the best combination are the same:

• Kernel = [rb f , sigmoid]
• C = [0.1, 0.5, 1, 5, 10, 25, 50, 100]
• ε = [0.01, 0.05, 0.1, 0.5, 1, 5, 10]
• γ = [auto, scale]

giving a total of 224 different models analyzed for both systems.

6.1. Laboratory Modeling

Table 8 shows the five best models sorted by their averaged values of R2. To allow
comparison, standalone data-driven models underwent training using an identical grid
search for hyperparameters. The top-performing model achieved an R2

avg of 0.33, revealing
a weak relationship between the predicted and observed values.

Table 8. Five top-performing models sorted by R2.

R2
avg MAPEavg (%) Kernel C ε γ

0.54 1.20 rbf 1 0.05 scale
0.52 1.37 rbf 10 0.1 scale
0.52 1.21 rbf 5 0.05 scale
0.51 1.41 rbf 5 0.1 scale
0.49 1.38 rbf 25 0.1 scale

The model with hyperparameters kernel = rb f , C = 1, ε = 0.05, and γ = scale demon-
strated superior performance by achieving the highest R2

avg and MAPEavg metrics.
However, the analysis indicates that the R2

avg values are notably low, suggesting
that the model may not be effectively capturing the relationship between predictors and
response variables. Table 9 provides a detailed examination of the daily performance,
revealing that the R2 values experienced significant declines on two specific days, thereby
impacting the overall R2

avg. Despite this, the MAPEavg values remain exceptionally low,
which attests to the model’s high accuracy and reliability. Figure 13a,b illustrate these days
of suboptimal performance.

Aligning these underperforming days with unusually hot weather explains the re-
duced model performance. Despite low R2 values, the prediction profile reveals a rea-
sonably accurate curve, with larger deviations typically around 1 ◦C. In contrast, the
best-performing days with the highest R2 values and lowest MAPE scores are shown in
Figure 14a,b.
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Table 9. Metrics table for each test day. Lab stands for laboratory.

Metric for Each System Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11

R2
lab 0.66 0.86 0.69 0.91 0.60 0.63 0.96 −0.27 0.88 0.77 −0.69

MAPElab (%) 1.51 0.83 0.78 0.61 0.84 0.90 0.44 2.22 0.64 2.1 2.63
MAElab (◦C) 0.35 0.19 0.18 0.14 0.20 0.22 0.10 0.54 0.15 0.46 0.65
MSElab (◦C2) 0.17 0.05 0.04 0.04 0.05 0.07 0.02 0.38 0.04 0.30 0.52

(a) (b)

Figure 13. Worst forecast temperatures of the laboratory’s model. (a) Worst R2 of the best-performing
model. (b) Second-worst R2 of the best-performing model.

(a) (b)

Figure 14. Best forecast temperatures of the laboratory’s model. (a) Best R2 of the best-performing
model. (b) Second-best R2 of the best-performing model.

Obtaining a negative R2 score but a very low MAPE is unusual but can occur due to
significant variance differences between training and test datasets. While the test data’s
high variability challenges the model, resulting in worse performance than mean-based
predictions (negative R2), the low MAPE indicates reasonably accurate predictions in
regions where test and training data variability align. The model captures overall trends
but struggles with local variations or outliers.

6.2. Inertia Tank Modeling

Table 10 lists the five top models sorted by their average R2 values (R2
avg). For compar-

ison purposes, standalone data-driven models were trained using the same grid search of
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hyperparameters. The model with the best performance achieved an R2
avg of 0.16, indicating

a weak correlation between the predicted and observed values.

Table 10. Five top-performing models sorted by R2.

R2
avg MAPEavg (%) Kernel C ε γ

0.93 1.31 rbf 50 0.05 auto
0.92 1.44 rbf 10 0.05 auto
0.90 1.54 rbf 10 0.1 auto
0.90 1.46 rbf 5 0.1 auto
0.90 1.37 rbf 100 0.05 auto

For both R2
avg and MAPEavg, the best hyperparameters are kernel = rb f , C = 50,

ε = 0.05, and γ = scale.
The observed deviations in the laboratory temperature cannot be extrapolated to

the inertia tank temperature. This is because the inertia tank is more insulated than the
laboratory and less susceptible to external temperature fluctuations. Additionally, the
variables influencing the behavior of the inertia tank are not subject to randomness or hard-
to-predict factors, such as laboratory occupancy. Consequently, the models achieve higher
R2 values and lower MAPE scores for each day tested, as shown in Table 11. Figure 15a,b
illustrate the two worst-performing days.

Table 11. Metrics table for each test day. “it” stands for inertia tank.

Metric for Each System Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11

R2
it 0.95 0.94 0.97 0.85 0.96 0.89 0.96 0.91 0.96 0.98 0.83

MAPEit (%) 1.10 1.26 1.00 1.89 0.78 1.70 0.90 1.57 0.90 1.16 1.96
MAEit (◦C) 0.43 0.50 0.38 0.71 0.31 0.67 0.36 0.62 0.36 0.45 0.81
MSEit (◦C2) 0.4 0.47 0.29 1.09 0.34 0.67 0.37 1.03 0.35 0.32 1.84

Even though the last figures were the worst predicted, the values taken by their score
metrics indicate a good fit, with high accuracy also shown by the prediction profile of the
temperature. Figure 16a,b show the best predicted values of the test set.

(a) (b)

Figure 15. Worst forecast temperatures of the inertia tank’s model. (a) Worst R2 of the best-performing
model. (b) Second-worst R2 of the best-performing model.
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(a) (b)

Figure 16. Best forecast temperatures of the inertia tank’s model. (a) Best R2 of the best-performing
model. (b) Second-best R2 of the best-performing model.

6.3. Combination of the Two Models

Forecasting temperatures for both the laboratory and the inertia tank is possible by
integrating the outputs of two models, using each prediction for the next time instant’s
temperature. This method relies on the set points for both systems and the exterior temper-
ature, the latter being the only constraint. On the test set, the combined models achieve
an R2

avg of 0.91 for the inertia tank, consistent with previous performance. The fan coil,
however, shows an R2

avg of 0.37, worse than the standalone model. Examining individual
test days reveals the highest errors occur on days with the greatest deviations. Excluding
these two days improves the R2

avg to 0.79, confirming the model’s robust performance on
other days.

Although this study does not primarily focus on energy consumption forecasting,
such an analysis can be conducted by assuming constant power operation at 0.2 kW for the
fan coil and 2 kW for the inertia tank. The operational status of the machines, as indicated
by tendency variables, allows the determination of total energy consumption. Figures 17
and 18 illustrate the optimal forecast days within the combined model’s test set, with blue
shaded areas indicating periods of system operation.

Figure 17. Best combined temperature forecasting of the laboratory and the inertia tank with the
predicted consumption.
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Figure 18. Second-best combined temperature forecasting of the laboratory and the inertia tank with
the predicted consumption.

Zhao et al. [47] focused on forecasting room temperature in HVAC systems by lever-
aging historical data to identify distinct operational scenarios using k-means clustering.
These scenarios, representing different modes of operation (e.g., cooling or heating), are
used to train separate temperature prediction models via symbolic regression. The method-
ology was tested in a lecture building in Suita, Osaka, Japan, using data collected at 5 min
intervals over a year from multiple indoor and outdoor sensors. The best results achieved
were an R2 of 0.97 for the cooling phase and 0.73 for the heating phase.

The study described in [47] closely resembles the system under investigation, with
the primary difference being the absence of geothermal energy as a power source. Com-
pared to this approach, our proposed methodology achieves superior accuracy in temper-
ature forecasting for complex HVAC systems. While the clustering approach facilitates
modeling through operational segmentation, it relies heavily on extensive datasets (over
232,576 data points) and may struggle to generalize in scenarios with limited data avail-
ability or unique configurations. In contrast, the proposed approach explicitly integrates
domain knowledge, allowing the model to achieve R2 values of 0.94 for the laboratory
and 0.93 for the inertia tank even when using the combination of the two models, inde-
pendently of the operational mode and with much less training data. The integration of
physical principles enhances model reliability, ensuring the forecasts remain grounded in
the underlying thermal dynamics. Moreover, the adaptability of our methodology makes
it more reliable, demonstrating how it can handle complex HVAC systems and improve
accuracy in real world scenarios

7. Conclusions
This work introduced a general methodology for a feature selection and extraction

approach based in physical equations and expert knowledge of HVAC system logic to
create new variables highly influential to model performance.

The methodology used for constructing tendency variables allows precise computation
of the energy consumption for each machine and accurate temperature predictions. The
results demonstrate the effectiveness of the proposed method, showing how leveraging
physical principles can enhance both the accuracy and flexibility of the models.

The performance of the models for both the laboratory and the inertia tank heavily
depend on the availability of a high-quality and sufficiently large dataset for training.
Without a proper dataframe, both in terms of data quality and quantity, the accuracy
of predictions may be compromised. In systems influenced by factors that are poorly
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registered or are not even available, such as occupancy levels or solar irradiation, among
others, the model may struggle to make precise predictions if these variables are not
adequately represented in the training data. An example of this can be seen in the modeling
of the inertia tank, where we achieved higher accuracy compared to the laboratory’s model.
The laboratory’s model is influenced by variables that are both significant and challenging
to predict, such as occupancy levels or solar irradiation, among others, whereas the inertia
tank, being a more isolated system, is not affected by such uncertainties. Nevertheless, the
proposed models exhibit promising results and there are opportunities for improvement.
Enhancing the forecasting of the occupancy levels with other non-linear equations or
machine learning models, could lead to more accurate temperature predictions of the
laboratory. Additionally, developing a model to predict the temperature of the machine
room, where the inertia tank is located, which is currently assumed to be constant but
actually fluctuates, would further enhance the model’s accuracy and applicability.

The results obtained for the standalone modeling of both systems showcase the limi-
tations of the models and, more importantly, highlight the added value of the proposed
novel preprocessing methodology. This approach emerges as a promising tool for improv-
ing the quality and precision of temperature and energy consumption of HVAC systems.
Furthermore, the proposed methodology, based on physical equations, can be generalized
to other fields with sufficient expert knowledge about the system under study, making it a
valuable approach for future research.

Future work will expand by applying the proposed methodology to a wider array
of data-driven models, aiming to develop more accurate dynamic temperature profiles.
Additionally, these models will be integrated with optimization algorithms to minimize
energy consumption, achieve cost savings, and maintain comfortable indoor temperatures.
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Abbreviations
The following abbreviations are used in this manuscript:

HVAC Heating ventilation and air conditioning
SVR Support vector regression
MLP Multi-layer perceptron
MOPS Multiple objective particle swarm
ANN Artificial neural network
pbARMAX Physics-based autoregression moving average
SVM Support vector machine
kNN k nearest neighbors
MICE Multiple imputation by chained equations
IQR Interquartile range
IF Isolation forest
LOF Local outlier factor
PCA Principal component analysis
t-SNE t-distributed stochastic neighbor embedding
UMAP Uniform manifold approximation and projection
R2 Coefficient of determination
MAPE Mean absolute percentage error
CO2 Carbon dioxide
API Application programming interface
MAE Mean absolute error
MSE Mean squared error
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