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Abstract: Accumulating evidence suggests that the predisposition to metabolic diseases
is established in utero through epigenomic modifications. However, it remains unclear
whether childhood obesity results from preexisting epigenomic alterations or whether
obesity itself induces changes in the epigenome. This study aimed to identify DNA
methylation marks in the placenta associated with obesity-related outcomes in children
at age 6 and to assess these marks in blood samples at age 6 and whether they correlate
with obesity-related outcomes at that time. Using an epigenome-wide DNA methyla-
tion microarray on 24 placental samples, we identified differentially methylated CpGs
(DMCs) associated with offspring BMI-SDS at 6 years. Individual DMCs were validated in
147 additional placental and leukocyte samples from children at 6 years of age. The methy-
lation and/or gene expression of IRS1 in both placenta and offspring leukocytes were
significantly associated with various metabolic risk parameters at age 6 (all p ≤ 0.05).
Logistic regression models (LRM) and machine learning (ML) models indicated that IRS1
methylation in the placenta could strongly predict offspring obesity. Our results suggest
that IRS1 may serve as a potential biomarker for the prediction of obesity and metabolic
risk in children.

Keywords: childhood obesity; DNA methylation; fetal programming; placenta; leukocytes;
metabolic risk

1. Introduction
Childhood obesity is a major public health concern, affecting millions of children and

posing significant risks for chronic cardiometabolic disorders traditionally associated with
adulthood [1,2]. While genetic and environmental factors contribute to obesity, their predic-
tive power remains limited, underscoring the potential role of epigenetics in understanding
the obesity risk [3,4].
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DNA methylation, the most widely studied epigenetic mechanism, has been linked to
childhood obesity in numerous studies [5]. Candidate-based approaches have identified
obesity-associated genes in infants and children [6–8], while epigenome-wide association
studies (EWAS) have revealed hundreds of differentially methylated sites [9,10]. However,
many of these studies lack robust adjustment for confounding factors, and the findings are
rarely replicated.

Emerging evidence suggests a bidirectional relationship between obesity and epigenetic
changes. Some studies propose that excess weight alters the epigenome, while others indicate
that epigenetic changes may predispose individuals to obesity [11,12]. Longitudinal studies
are essential to clarify this causal relationship, yet few have examined DNA methylation
at multiple time points in children. For instance, a longitudinal study using data from the
ALSPAC cohort investigated the associations between early postnatal weight gain and DNA
methylation in cord blood, as well as in peripheral blood samples taken at ages 7 and 17 [13].
A recent prospective cohort analysis including 31 children found that the DNA methylation
signatures in cord blood remained stable in the saliva at age 6–12 years [14]. However,
evidence of the persistence of DNA methylation marks over time is scarce.

Although epigenetic patterns vary across cells [15], some studies have shown that
epigenetic marks can be consistent across tissues [16] and over time [17]. Notably, blood-
based epigenetic biomarkers may reflect signatures in biologically relevant tissues, such as
the adipose tissue [18]. Among these, key regulators of insulin signaling and metabolism
may be particularly relevant in the context of the obesity risk. Insulin receptor substrate
1 (IRS1), a crucial mediator of insulin action, plays a central role in glucose homeostasis,
lipid metabolism, and the energy balance [19]. Given the placenta’s essential function
in fetal nutrient supply and metabolic programming, epigenetic modifications of IRS1
in placental tissue could contribute to long-term metabolic adaptations in offspring. In
this context, we hypothesize that DNA methylation marks in placental tissue at birth
may influence the body composition and adiposity in offspring at the age of 6 years. We
further propose that, while some methylation marks may be unstable and tissue-specific,
others could persist over time and serve as early predictors of obesity and metabolic risk
in children.

Specifically, we aimed (1) to identify DNA methylation marks in the placenta asso-
ciated with obesity-related outcomes in offspring at age 6 and (2) to assess these marks
in blood samples at age 6 and to study their correlation with obesity-related outcomes at
that time.

2. Results
2.1. Participants Characteristics

Table 1 presents the characteristics of the mothers and their offspring in the study
population. All women were apparently healthy and had no known diseases except for
possible overweight (mean pregestational BMI: 25 kg/m2). The children in both groups
had similar anthropometric characteristics.

Table 1. Clinical characteristics of the study subjects.

Screening Validation p-Value
Mother (n) 24 147

Age (yr) 31 ± 1 31 ± 1 NS
Height (cm) 164 ± 1 163 ± 1 NS

Pregestational weight (kg) 68.5 ± 2.9 65.6 ± 1.0 NS
Pregestational BMI (kg/m2) 25.2 ± 1.0 24.7 ± 0.3 NS
Pregestational obesity (%) 30 34 NS
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Table 1. Cont.

Screening Validation p-Value
Newborn (n) 24 147

Gender (% female) 50 52 NS
Gestational age (wk) 40 ± 0.1 40 ± 0.1 NS

Birth weight (kg) 3.4 ± 0.1 3.4 ± 0.1 NS
Birth weight-SDS 0.3 ± 0.1 0.2 ± 0.1 NS
Birth length (cm) 50.1 ± 0.2 49.7 ± 0.1 NS
Birth length-SDS 0.07 ± 0.1 0.01 ± 0.1 NS

Offspring at 6 yr (n) 24 147
Age (yr) 6.2 ± 0.1 6.0 ± 0.1 NS

Weight (kg) 23.7 ± 1.0 22.4 ± 0.4 NS
Weight-SDS 0.22 ± 0.2 0.05 ± 0.1 NS
Height (cm) 120 ± 1 116 ± 1 NS
Height-SDS 0.58 ± 0.2 0.11 ± 0.1 NS

BMI (kg/m2) 16.3 ± 0.3 16.3 ± 0.1 NS
BMI-SDS −0.02 ± 0.1 0.01 ± 0.1 NS

∆ BW-SDS to weight-SDS −0.18 ± 0.2 −0.15 ± 0.1 NS
Waist (cm) 57.1 ± 1.7 56.3 ± 0.6 NS
Hip (cm) 61.1 ± 1.8 59.6 ± 0.6 NS

SBP (mmHg) 96.9 ± 3.0 95.9 ± 1.0 NS
DBP (mmHg) 57.1 ± 1.1 57.0 ± 0.7 NS

HDL-cholesterol (mg/dL) 57.0 ± 2.7 55.8 ± 0.8 NS
Triglycerides (mg/dL) 49.5 ± 2.7 50.8 ± 1.2 NS

Glucose (mg/dL) 85.0 ± 1.7 82.9 ± 0.5 NS
Insulin (mIU/L) 6.2 ± 0.5 5.2 ± 0.2 NS

HOMA-IR 1.3 ± 0.1 1.1 ± 0.1 NS
FBM (kg) 5.9 ± 0.6 5.6 ± 0.2 NS
LBM (kg) 18.0 ± 0.6 17.0 ± 0.2 NS

Subcutaneous fat (cm) 0.41 ± 0.03 0.45 ± 0.02 NS
Peritoneal fat (cm) 0.45 ± 0.04 0.46 ± 0.01 NS
Visceral fat (cm2) 5.4 ± 0.2 5.2 ± 0.1 NS

Data are shown as mean ± SEM. BMI: body mass index; SDS: standard deviation score; ∆ BW-SDS to weight-SDS:
z-score changes from weight at birth to weight at 6 years; SBP: systolic blood pressure; DBP: diastolic blood
pressure; HDL: high-density lipoprotein; HOMA-IR: homeostatic model assessment for insulin resistance; FBM:
fat body mass; LBM: lean body mass; NS: non-significant.

For study purposes, the subjects in the validation group were separated by sex
(Table S1). No differences were observed between boys and girls apart from the body
mass distribution, as boys had a lower fat mass (FM) and higher lean body mass (LBM)
compared to girls.

2.2. Placental DMCs Associated with Obesity Risk in Offspring

A total of 977 CpGs, which were annotated to 816 genes, were differentially methy-
lated in association with BMI-SDS in offspring at 6 years of age. From these, 538 CpGs
(55%) presented positive associations (hypermethylated) and 439 CpGs (45%) presented
negative associations (hypomethylated). A compilation of the top hypermethylated and
hypomethylated DMCs is shown in Table 2, and the full list is shown in Table S2. Among
the top hypermethylated DMCs, several were observed to be annotated to the same gene,
align in the same direction, and be located close to each other (e.g., TMEM218, ASPG, and
IRS1), suggesting they might have greater biological significance.
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Table 2. Compilation of the top hypermethylated (A) and hypomethylated (B) DMCs.

(A) Hypermethylated DMCs

Ilmn ID Beta Coef. FDR OR Chr Position Gene

cg00406870 1.03970511 4.35 × 10−43 2.82838283 11 124981741 TMEM218

cg07150062 1.03245317 2.74 × 10−39 2.80794576 14 104552032 ASPG

cg10761315 0.98664557 7.57 × 10−37 2.68222203 14 104552034 ASPG

cg11163620 0.97173534 5.92 × 10−36 2.64252615 4 157997554 GLRB

cg01963620 0.97115961 6.50 × 10−35 2.64100522 11 124981674 TMEM218

cg08626939 0.96229948 4.80 × 10−33 2.61770892 2 227656417 IRS1

cg05665562 0.96004491 5.03 × 10−38 2.61181376 11 124981679 TMEM218

cg14874299 0.95164064 4.12 × 10−36 2.58995536 11 124981343 TMEM218

cg12163935 0.94020019 8.88 × 10−32 2.56049395 2 227656057 IRS1

cg05446424 0.92323155 3.13 × 10−43 2.51741242 2 14772734 FAM84A

(B) Hypomethylated DMCs

Ilmn ID Beta Coef. FDR OR Chr Position Gene

cg10324224 −1.13770315 6.06 × 10−11 0.32055444 1 231115997 TTC13

cg24202000 −1.09504286 2.49 × 10−10 0.33452527 8 129551766 LINC00824

cg21240123 −0.98681175 1.42 × 10−08 0.37276326 3 20016987 RAB5A

cg14730097 −0.96058097 8.10 × 10−09 0.3826705 2 233632281 GIGYF2

cg18705155 −0.86117235 7.25 × 10−09 0.42266628 6 39194077 KCNK5

cg20401473 −0.81442859 7.13 × 10−07 0.44289233 6 88186912 SLC35A1

cg23691406 −0.80357486 5.41 × 10−17 0.44772554 14 71112909 TTC9

cg10533159 −0.77469288 8.47 × 10−40 0.4608453 1 207991937 LOC148696

cg17325094 −0.77392864 2.08 × 10−20 0.46119763 1 57809419 DAB1

cg04248557 −0.74101842 1.63 × 10−06 0.47662826 7 69196758 AUTS2
In bold, we indicate DMCs annotated to the same gene, aligned in the same direction, and located close to each
other. FDR, false discovery rate-adjusted p-value; OR, odds ratio; Chr, chromosome.

The genomic distribution of the DMCs with respect to the CpG island and gene regions
is shown in Figure 1. We observed the enrichment of DMCs within the CpG island, mainly
corresponding to hypermethylated CpGs. With respect to gene regions, we observed the
enrichment of hypomethylated CpGs within the body, and the hypermethylated CpGs
were mainly distributed in TSS1500, TSS200, and the gene first exon.

The gene set enrichment (KEGG pathways) analysis revealed that DMCs associated
with BMI-SDS in offspring were significantly enriched in pathways related to cell prolifera-
tion, survival, and metabolism. These pathways included signal transduction (mTOR
signaling pathway, phosphatidylinositol signaling system, MAPK signaling pathway,
AMPK signaling pathway), endocrine and metabolic diseases (type 2 diabetes, insulin
resistance, non-alcoholic fatty liver disease), neurodegenerative diseases (spinocerebellar
ataxia, Alzheimer’s disease), carbohydrate metabolism (inositol phosphate metabolism),
lipid metabolism (biosynthesis of unsaturated fatty acids), and cancer-related pathways
(Table S3).
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The clustergram of the top pathways and overlapped genes (Figure S1) showed that
phosphatidylinositol 3-kinase (PIK3) regulatory subunits 1 and 2, protein kinase C beta
(PRKCB), insulin receptor substrate 1 (IRS1), and insulin receptor (INSR), which were
significantly enriched in the KEGG pathways analysis (Table S3), were common genes
across the top pathways, highlighting their significant roles in metabolic regulation.

Given that the IRS1 gene had four hypermethylated DMCs (two CpGs among the top
hypermethylated ones and two additional CpGs located nearby), and was one of the most
abundant genes present in the top enriched pathways, it was selected to be validated in an
extended number of samples (validation group).
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2.3. Placental IRS1 Methylation

The methylation analysis by pyrosequencing confirmed that, among the four studied
CpGs annotated to IRS1, CpG2 was related to an increased BMI in offspring, as its methyla-
tion in the placenta was significantly higher in children with BMI-SDS > p50 compared to
those with BMI-SDS < p50 (p = 0.01) (Figure S2).

Bivariate correlations showed that placental IRS1 (CpG2) methylation was associated
with several parameters related to the body composition and metabolic risk in offspring
at 6 years of age, including weight-SDS, BMI-SDS, ∆ BW-SDS to weight-SDS, waist, hip,
waist-to-height ratio, LBM, FM, and subcutaneous and preperitoneal fat (all p ≤ 0.05)
(Table 3).

Table 3. Correlations between placental IRS1 (CpG2) methylation and expression and parameters
related to body composition and metabolic risk in children at 6 years of age.

Placental IRS1 (CpG2) Methylation Placental IRS1 Expression
Offspring at 6 yr All Boys Girls All Boys Girls

r p-Value r p-Value r p-Value r p-Value r p-Value r p-Value
Weight-SDS 0.227 0.006 0.254 0.03 0.249 0.02 0.054 Ns 0.319 0.006 −0.011 NS
Height-SDS 0.160 0.05 0.214 NS 0.142 NS 0.134 NS 0.150 NS 0.091 NS

BMI-SDS 0.221 0.007 0.245 0.04 0.237 0.03 0.062 NS 0.118 NS −0.016 NS
∆ BW-SDS to weight-SDS 0.190 0.02 0.236 0.05 0.201 NS 0.039 NS 0.153 NS −0.063 NS

Waist 0.215 0.01 0.235 0.05 0.225 0.05 0.092 NS 0.168 NS 0.079 NS
Hip 0.217 0.01 0.270 0.03 0.163 NS 0.149 NS 0.287 0.02 0.030 NS

Waist-to-height ratio 0.181 0.03 0.155 NS 0.214 NS 0.098 NS 0.091 NS −0.115 NS
LBM 0.185 0.03 0.240 0.05 0.201 NS 0.168 0.05 0.317 0.01 0.123 NS
FBM 0.176 0.04 0.195 NS 0.164 NS 0.078 NS 0.198 NS −0.029 NS

Subcutaneous fat 0.248 0.003 0.270 0.02 0.244 0.03 0.045 NS 0.086 NS −0.137 NS
Preperitoneal fat 0.171 0.03 0.282 0.01 0.066 NS 0.086 NS 0.032 NS −0.182 NS

Visceral fat 0.143 NS 0.242 0.04 0.063 NS 0.248 0.003 0.408 <0.0001 0.057 NS
Insulin 0.103 NS −0.041 NS 0.241 0.03 0.167 0.05 0.178 NS 0.249 0.03

HOMA-IR 0.063 NS −0.086 NS 0.204 NS 0.159 0.05 0.179 NS 0.264 0.02

In bold, we indicate values that are significant after adjusting for maternal BMI and offspring age and gender in
the whole population and only for the maternal BMI in boys and girls. SDS: standard deviation score; BMI: body
mass index; ∆ BW-SDS to weight-SDS: z-score changes from weight at birth to weight at 6 years; LBM: lean body
mass; FBM: fat body mass; HOMA-IR: homeostatic model assessment for insulin resistance; NS: non-significant.

When separating the population by sex, nearly all correlations were observed in both
boys and girls (all p ≤ 0.05) (Table 3), who displayed comparable levels of IRS1 (CpG2)
methylation (Table S1). Moreover, in girls, IRS1 (CpG2) methylation also correlated with
insulin (p = 0.03) (Table 3 and Figure S3). Most of these correlations maintained statistical
significance in multiple regression analyses (MRA) after adjusting for potential confounding
variables (bold p-values in Table 3).

2.4. Placental IRS1 Expression

Placental IRS1 expression was positively correlated with placental IRS1 (CpG2) methy-
lation (r = 0.170, p = 0.04) (Figure S4).

In turn, placental IRS1 expression was correlated with several parameters related to the
body composition and metabolic risk in offspring at 6 years of age, including LBM, visceral
fat, insulin, and HOMA-IR (all p ≤ 0.05) (Table 3). The correlations between placental IRS1
expression and visceral fat remained significant after adjusting for potential confounding
variables in the MRA.

When separating the population by sex, no differences were observed in IRS1 ex-
pression between boys and girls (Table S1). Boys showed positive correlations between
placental IRS1 expression and parameters related to body composition (weight-SDS, hip cir-
cumference, LBM, and visceral fat), while girls exhibited positive correlations with markers
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of insulin resistance (insulin and HOMA-IR) (all p ≤ 0.05). After the MRA, the correlation
between placental IRS1 expression and visceral fat remained significant in boys, while the
correlation with insulin and HOMA-IR was maintained in girls (Table 3 and Figure S5).

2.5. Leukocyte IRS1 Methylation and Expression

IRS1 (CpG2) methylation failed to show significant correlations with IRS1 expression
in offspring leukocytes, nor did it correlate with placental IRS1 methylation. Additionally,
no significant correlations were observed with parameters related to the body composition
and metabolic risk in offspring

However, leukocyte IRS1 expression was correlated with markers of metabolic risk in
offspring at 6 years of age, including the waist-to-height ratio and visceral fat, across the
entire population. These correlations maintained statistical significance after adjusting for
potential confounding variables in the MRA (all p ≤ 0.05) (Table 4). These correlations were
stronger and more prevalent in girls, who showed significant correlations with weight-
SDS, BMI-SDS, ∆ BW-SDS to weight-SDS, waist, waist-to-height ratio, FBM, subcutaneous
fat, visceral fat, insulin, and HOMA IR (all p ≤ 0.05) (Table 4 and Figure S6). Most of
these correlations remained statistically significant in the MRA after adjusting for potential
confounding variables. No significant correlations were observed in boys, and no significant
differences in IRS1 (CpG2) methylation were found between boys and girls (Table S1).

Table 4. Correlations between leukocyte IRS1 expression and parameters related to body composition
and metabolic risk in children at 6 years of age.

Offspring Leukocyte IRS1 Expression

Offspring at 6 yr All Boys Girls

r p-Value r p-Value r p-Value

Weight-SDS 0.183 NS −0.074 NS 0.470 0.001

Height-SDS 0.094 NS 0.012 NS 0.186 NS

BMI-SDS 0.148 NS −0.152 NS 0.444 0.002

∆ BW-SDS to weight-SDS 0.028 NS −0.177 NS 0.283 0.05

Waist 0.120 NS −0.230 NS 0.460 0.002

Hip 0.025 NS −0.207 NS 0.258 NS

Waist-to-height ratio 0.214 0.05 −0.157 NS 0.470 0.001

LBM 0.043 NS −0.109 NS 0.252 NS

FBM 0.084 NS −0.176 NS 0.431 0.004

Subcutaneous fat 0.107 NS −0.091 NS 0.313 0.03

Preperitoneal fat 0.100 NS 0.007 NS 0.178 NS

Visceral fat 0.226 0.03 −0.099 NS 0.411 0.006

Insulin 0.080 NS −0.155 NS 0.383 0.009

HOMA-IR 0.066 NS −0.144 NS 0.335 0.02

In bold, we indicate values that were significant after adjusting for maternal BMI and offspring age and gender in
the whole population and only for the maternal BMI in boys and girls. SDS: standard deviation score; BMI: body
mass index; ∆ BW-SDS to weight-SDS: z-score changes from weight at birth to weight at 6 years; LBM: lean body
mass; FBM: fat body mass; HOMA-IR: homeostatic model assessment for insulin resistance; NS: non-significant.

2.6. Prediction of Obesity-Related Parameters

LRMs were developed with children’s BMI-SDS status (children with higher BMI-SDS
[BMI-SDS > p50] or lower BMI-SDS [BMI-SDS < p50]) as the outcome variable. Predictors
included placental IRS1 (CpG2) methylation, age, and sex. IRS1 (CpG2) methylation
significantly predicted childhood BMI-SDS (p = 0.01), explaining 7.6% of the variance
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(R2 = 0.076). For each 1% increase in methylation, the odds of a higher BMI-SDS increased
by 2.32 (Table S4). A similar model predicting the visceral fat status (higher visceral fat-SDS
[>p50] or lower visceral fat-SDS [<p50]) used placental and leukocyte IRS1 expression as
predictors, along with age and sex. Both were significant (p = 0.03 and p = 0.02), explaining
7.0% and9.6% of the variance, respectively. For each 1% increase in IRS1 expression, the
odds of higher visceral fat increased by 2.69 (placenta) and 5.23 (leukocytes).

ML models incorporating prenatal and infancy clinical variables also showed that
placental IRS1 (CpG2) methylation was key in predicting the BMI, alongside the maternal
blood pressure, gestational smoking, children’s weight at 6 months, gestational age, mater-
nal BMI, paternal obesity, and breastfeeding duration. The model achieved recall of 0.73,
precision of 0.78, accuracy of 0.76, and an F1 score of 0.75 (Figure 2).
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3. Discussion
This longitudinal study investigated early-life epigenetic marks as predictors of child-

hood obesity, identifying 977 DMCs in the placenta associated with children’s BMI-SDS at
6 years of age. Among these, IRS1 emerged as one of the most hypermethylated DMCs.
Further analysis of IRS1 methylation and expression in the placenta and blood at 6 years
revealed significant associations with metabolic risk and obesity-related parameters at
this age. Notably, IRS1 expression in leukocytes at 6 years was also linked to children’s
metabolic risk parameters. Prediction models, employing both LRM and ML approaches,
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suggested that placental IRS1 methylation is a potential robust predictor of the childhood
obesity risk.

Among the 977 DMCs in the placenta associated with children’s BMI-SDS at 6 years of
age, both hyper- and hypomethylated sites were identified. Notably, several of the top hy-
permethylated DMCs were annotated to the same genes—TMEM218, ASPG, and IRS1—and
aligned in the same direction, clustering closely together, suggesting a potentially greater
biological effect. Most hypermethylated DMCs were located in CpG islands, whereas
hypomethylated DMCs were also found in shore regions. This distribution aligns with
evidence linking CpG island methylation to stable gene silencing and disease processes,
while methylation in shore regions is known to display highly conserved, tissue-specific
patterns [20,21].

The pathway analysis revealed that placental DMCs associated with childhood obesity
were involved in cell proliferation, survival, and metabolism. Type 2 diabetes and the
mammalian target of rapamycin (mTOR) signaling pathway ranked highest, with IRS1
among the overlapping genes. mTOR regulates insulin signaling via IRS1 in metabolic
tissues and is implicated in diseases like type 2 diabetes, obesity, and cancer [22]. An EWAS
in blood from children with obesity and children of normal weight found that “IRS1 target
genes” were among the top enriched pathways in the identified CpGs [23]. These findings
underscore the importance of IRS1, whose methylation and expression were longitudinally
analyzed in placental samples and children’s blood at age 6 in the present study.

The validation analysis in placental samples revealed a significant relationship be-
tween IRS1 (CpG2) methylation and childhood BMI-SDS, consistent with the EWAS results.
Placental IRS1 methylation and expression were positively correlated. Although IRS1
(CpG2) is located within a CpG island, where gene silencing is typically expected, it is
located in the 3’UTR rather than the promoter region. Similar positive associations between
3’UTR methylation and gene expression have been reported in cancer, emphasizing the
3’UTR’s epigenetic significance and potential as a disease biomarker [24].

IRS1 is a key component of insulin signaling [19], binding to the phosphorylated
insulin receptor to activate downstream cascades [25]. IRS1 knockout mice suggest its
role in adipocyte differentiation [26]. A nearby SNP has been linked to increased visceral
fat, insulin resistance, dyslipidemia, diabetes, and coronary artery disease risks [27]. IRS1
expression in human adipose tissue relates to the fat distribution and metabolic traits [28].
Our findings were consistent with the aforementioned results, showing that IRS1 CpG2
methylation and expression in the placenta correlated with children’s metabolic parameters
at age 6, including obesity (waist-to-height ratio and subcutaneous, preperitoneal, and
visceral fat) and insulin resistance markers (insulin and HOMA-IR).

Some of the correlations showed sexual dimorphism. Boys presented stronger cor-
relations between placental IRS1 expression and fat distribution, while placental IRS1
expression in girls strongly correlated with insulin resistance-related variables. Sexual
dimorphism has previously been reported as the genetic basis of fat distribution [29], and
sex-dimorphic effects on fasting insulin at IRS1 loci have also been described [30]. Recent
studies have also shown sex differences in subcutaneous adipose tissue IRS1 mRNA ex-
pression in adults with obesity [31]. Our results suggest that this sexual dimorphism may
already be present before birth and influence visceral fat accumulation in boys by age 6.

It is worth noting that methylation marks are often tissue-specific, and placental
epigenetic marks do not necessarily correspond to systemic methylation changes. In this
regard, the lack of correlation between IRS1 methylation in the placenta and in leukocytes
could be attributed to tissue-specific variability in DNA methylation patterns [20]. However,
we did observe an association between IRS1 methylation and/or expression and children’s
metabolic parameters at two time points (placenta at birth and leukocytes at 6 years),
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highlighting the potential significance of this gene in obesity development across different
life stages. Finally, prediction models using both LRM and ML methods demonstrated that
IRS1 methylation in the placenta strongly predicts children’s obesity.

Our data provide evidence that placental IRS1 methylation could potentially serve as
a biomarker for the childhood obesity risk. This study highlights the potential of early-life
epigenetic marks, such as those identified in IRS1, as predictive tools in identifying children
at a higher risk of developing obesity and related metabolic conditions. This could enable
targeted early interventions aimed at modulating risk factors and improving long-term
health outcomes.

The major strengths of our study include the longitudinal design and the availability of
placental and children’s blood samples from a large, well-phenotyped cohort. Additionally,
placenta-based biomarkers may offer clinical relevance due to the simplicity of obtaining
and analyzing samples, making them promising candidates for predictive biomarkers.
However, some limitations must be acknowledged. The small sample size prevented
stratification based on BMI-SDS categories (BMI-SDS < 1, normal weight; 1 < BMI-SDS < 2,
overweight; and BMI-SDS > 2, obese). Moreover, the imbalance between children with
obesity and children without obesity at 6 years required us to define the BMI status using
the 50th percentile as a reference. A larger sample would improve the statistical power and
ML model reliability, leading to more robust conclusions.

Moreover, it would be valuable to validate these results in other independent cohorts,
as well as to investigate the applicability of our findings to other ethnic groups.

Another limitation of this study was the inability to include additional variables such
as the maternal diet, socioeconomic status, and paternal obesity in the multiple regression
analysis, as data on these factors were either unavailable or incomplete.

In conclusion, we present the first longitudinal data on IRS1 methylation and expres-
sion in the placenta and children’s leukocytes at age 6. We propose that placental IRS1
methylation may play a role regulating obesity and metabolic risk parameters and could
serve as an early biomarker for metabolic risk. Our findings highlight the importance of
altered placental DNA methylation in fetal programming and the development of non-
communicable diseases like childhood obesity. This paves the way for the future use of
placenta-based epigenetic biomarkers to predict disease and metabolic dysfunction.

4. Materials and Methods
4.1. Study Participants

This study included 171 pregnant women and their infants from a population-based
prenatal cohort in Girona. Of these, 24 women were part of the screening analysis to
identify differentially methylated CpG sites (DMCs) associated with BMI-SDS in offspring
at age 6 using an EWAS. The remaining 147 mother–infant pairs formed the validation
group, used to validate 4 selected DMCs related to the IRS1 gene through pyrosequencing.
The sampling method ensured the accurate representation of maternal (pre-pregnancy BMI
and age) and offspring characteristics (gender and BMI at 6 years) (Table 1). The study
design flow chart is shown in Figure 3, with the inclusion and exclusion criteria detailed in
the Supplementary Methods.

4.2. Biological Samples

Four placental tissue biopsies and fasting peripheral blood samples from children were
collected at birth and at 6 years of age, respectively. Further details of sample collection
and handling are provided in the Supplementary Methods.
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4.3. Clinical Assessments

Information on pregnancy, labor, and delivery characteristics was obtained from stan-
dardized medical records. The maternal weight at the beginning of gestation (6–9 weeks)
was used as a proxy for the pregestational weight. The pregestational BMI was calculated
as the pregestational weight divided by the height squared (kg/m2). Newborns were
weighed and measured immediately after delivery using a calibrated scale and measuring
board, respectively. Gestational age- and sex- adjusted z-scores (SDS) for birth weight and
length were calculated using regional norms [32].

Anthropometric measurements and blood samples from children were collected dur-
ing a follow-up visit at age 6. Further details are provided in the Supplementary Methods.

4.4. Infinium MethylationEPIC BeadChip Microarray

A placental epigenome-wide DNA methylation microarray was performed in
24 samples (screening group) using the Infinium® Human MethylationEPIC BeadChip
(Illumina, San Diego, CA, USA), covering a total of 850,000 CpGs. Placental DNA was
isolated using the Gentra Pure-Gene Tissue Kit (QIAGEN, Hilden, Germany). DNA quality
checks, bisulfite treatment, and hybridization were performed at the Epigenomics Unit
IIS La Fe (Valencia, Spain), following the manufacturer’s protocol (Illumina Infinium HD
methylation protocol).

Further details of data normalization and the statistical analysis of associations be-
tween DMCs and BMI-SDS in offspring are provided in the Supplementary Methods.

Gene annotation for the DMCs associated with offspring BMI-SDS was performed as
previously described elsewhere [33]. Raw DNA methylation data have been deposited in
the Gene Expression Omnibus data repository under accession number GSE192812.

4.5. Pathway Analysis

Gene set enrichment analysis was conducted using the Enrichr analysis tool version
3.3 (Ma’ayan Lab at the Icahn School of Medicine at Mount Sinai, New York, NY, USA).
Enrichr identified relevant Gene Ontology (GO) terms and functional pathways associated
with the genes annotated for the DMCs in relation to offspring BMI-SDS.
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4.6. DNA Methylation Assessment

The methylation percentages of the four DMCs, derived from the microarray anal-
ysis and annotated to the IRS1 gene, were assessed in the placental and blood samples
from the validation group using sodium bisulfite pyrosequencing. Amplifying primers
were designed with the PyroMark Assay Design 2.0 software (QIAGEN, Hilde, Germany)
and are listed in Table S5. Details of DNA isolation, bisulfite conversion, real-time PCR
amplification, and pyrosequencing are provided in the Supplementary Methods.

4.7. Gene Expression Assessment

IRS1 expression levels were assessed by quantitative reverse transcription PCR
(RT-qPCR). Further details are provided in the Supplementary Methods.

4.8. Statistical Analysis

The pyrosequencing and gene expression data from the validation group were an-
alyzed using SPSS version 22.0 (IBM, New York, NY, USA). Further details of the data
analysis and statistical tools are provided in the Supplementary Methods.

4.9. Prediction Analysis

Logistic regression models (LRM) were used to examine the contributions of the
selected DMCs to the prediction of obesity and metabolic risk. The case–control status
(higher or lower risk) served as the outcome variable, while the methylation or expression
levels, along with age and sex, were predictors. Further details of the predictive models
using machine learning (ML) analyses are provided in Supplementary Methods.
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participants, and data were anonymized. Data will be made available upon reasonable request.
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