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 A B S T R A C T

This paper explores the viability of electric vehicle charging point operators to act as flexibility service 
providers in local flexibility markets. The work focuses on the requirements for operating in local intra-day 
markets and specifically in solving grid congestion at the distribution level. The explored approach assumes 
an alternative to bilateral agreements constrained to the capacity of the charging point operator to forecast 
the electric vehicle demand and flexibility effectively.

The current paper analyses the flexibility capacity and proposes a methodology to address the re-dispatch 
process within the GOPACS (The Netherlands) context.The flexibility estimation methodology comprises two 
forecasting steps: forecasting the aggregated flexibility capacity and forecasting electric vehicles flexibility. A 
detailed case study presents data from the real electric vehicle sessions in Amsterdam City. The experimental 
results validate the effectiveness of the proposed methodology, establishing a robust basis for further research.
1. Introduction

The energy transition is characterized by the electrification of 
energy-intensive activities, traditionally fed by contaminant fuels, in 
particular in transport or space heating in the residential and tertiary 
sectors, and the consequent need to increase renewable generation 
distributed at different voltage levels in the grid (e.g., individual and 
self-consumption photovoltaic (PV) installations). This changes how the 
grid is operated and presents major challenges to the distribution grid 
due to the presence of reverse flow (when the generation is larger than 
the demand) and variability of demand due to the increase of peak 
demand and the volatility of renewable generation. Countries such as 
Norway, the UK, and the Netherlands are already experiencing grid 
congestion due to the rapid adoption of electric vehicles (EVs) due to 
the large power demanded during charging [1].

Moreover, there is a misalignment between the investment plans 
of distribution system operators (DSO) (linked to retribution schema) 
and how the grid users (prosumers) are investing in the electrification 
of their energy needs (often pushed by incentives), including both 
generation (PVs) and demand (space heating and electro-mobility). 
From a regulatory perspective, European energy policies (e.g. Direc-
tives (EU)2019/944 on the Internal Electricity Market, (EU)2018/2001 
on Renewable Energy Sources) or the recent (EU)2023/1791 on energy 
efficiency claim for direct participation of citizens in the electricity 
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value chain, not only as consumers but also as generators and flexibility 
(i.e., the capability to increase or reduce either generation or consump-
tion) providers enabled, if necessary, by aggregators and through their 
participation in demand response programs.

In this context, effectively managing EV charging infrastructures 
constitutes a challenging scenario. Some countries (e.g., the Nether-
lands and Norway) are already experiencing distribution grid conges-
tion (i.e., secondary substations reaching the capacity limit at specific 
periods) due to the concentration of EVs in urban areas. At the same 
time, these offer an opportunity to increase renewable hosting capacity 
if charging time can be aligned with periods of major renewable 
generation. Currently, in these countries, DSOs are under consider-
able pressure to accept more requests than the grid can handle with 
normal operation and, consequently, are forced to implement limiting 
strategies to avoid subsequent congestion [2] and look for a more 
flexible operation of the grid through demand response programs. 
There are different approaches that DSOs can implement for procuring 
flexibility services [3], such as directly managing the generation assets 
and flexible loads of their customers through bi-lateral agreements or 
procuring flexibility through a marketplace with specific pricing rules 
and remuneration rules. The definition of these local flexibility markets 
can vary from country to country, and there is not yet a clear European 
regulatory framework with common rules.
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Nomenclature

ACM Authority for Consumers and Markets 
(Dutch Regulator)

AI Artificial Intelligence
ARIMA AutoRegressive Integrated Moving Average
CPO Charging Point Operator
CSP Congestion Service Provider
DBN Deep Belief Network
DSO Distribution System Operator
DT Decision Tree
EV Electric Vehicle
FSP Flexibility Service Provider
FC Fully Connected (neural network layer)
GMM Gaussian Mixture Model
GOPACS Grid Operators Platform for Allocating Ca-

pacity and Stability
GRU Gated Recurrent Unit
KNN K-Nearest Neighbors
KNMI Royal Netherlands Meteorological Institute
LightGBM Light Gradient Boosting Machine
LSTM Long Short-Term Memory (neural network 

architecture)
MAE Mean Absolute Error
MC Markov Chain
MLR Multiple Linear Regression
MLP Markov Layer Perceptron
NODES Nordic Distributed Energy Resources Mar-

ket
PV Photovoltaic
RES Renewable Energy Sources
RF Random Forest (algorithm)
𝑅2 Coefficient of determination
SVR Support Vector Regression
TSO Transmission System Operator

However, the grid operators (TSOs and DSOs) of countries with 
congestion issues (e.g., Germany, Netherlands, United Kingdom, or 
Norway) have already been progressing in adopting flexibility market 
platforms to trade flexibility at the local level to support grid operation 
and planning in the mid-term (and some start exploring the operative 
also for short term). Some examples are NODES in Norway and Ger-
many, LEO in Oxfordshire (UK), Piclo Flex in the UK and Portugal, 
and GOPACS in the Netherlands. Flexibility service providers (FSP) are 
the grid users that, either directly or through an aggregation party, 
use these platforms to offer flexibility for a specific time, location, and 
price.

Most of these platforms follow a market-based approach (i.e., ten-
ders) for procuring flexibility services in different temporal horizons, 
typically seasonal, day-ahead, or intraday. However, the pricing rule 
can vary, such as common approaches such as the pay-as-bid, regulated 
price, pay-as-clear, or a combination of these mechanisms. For example, 
pay-as-bid with indications of maximum prices at each substation is 
applied in the Piclo Flex UK flexibility markets [4]. The remuneration 
schema can be completely different depending on the regulations of 
each country. The same happens with the type of flexibility prod-
ucts allowed in every market. The network operators from the UK 
standardized the naming of flexibility services as ‘sustain’ (scheduled 
constraint), ‘secure’ (pre-fault constraint), ‘dynamic’ (post-fault con-
straint), and ‘restore’ (restoration support) [5], the Dutch GOPACS 
market is specifically designed for day-ahead and intraday demand 
2

reduction offers with a diversity of regulated products, and the NODES 
market has two types of products, the ShortFlex (close to real-time) and 
LongFlex.

A common challenge in quantifying flexibility demand and settle-
ment in many of these products resides in the definition of a baseline 
from which flexibility is computed. Flexibility is commonly defined 
as an increase (upward flexibility) or decrease (downward flexibility) 
of generation concerning a baseline, or equivalently, upward/down-
ward flexibility can be achieved by decreasing/increasing consumption. 
Procuring flexibility in local day-ahead or intraday markets is a kind 
of explicit demand response strategy oriented to better manage the 
grid and support the critical event (e.g., congestions and over-voltages) 
management that enables investment deferral. Thus, when a DSO fore-
casts the possible occurrence of congestion in the grid (based on 
demand and generation forecasts) and launches a flexibility demand to 
get the support FSPs to solve the issue through flexibility procurement 
(i.e., increase generation or decrease demand at a specific time and 
point of the grid) the effectiveness of this measure is highly affected 
by the quality of forecasts. The forecast is required to predict the 
occurrence of such a critical event, estimate the amount of flexibility 
needed, establish the baseline for each participant from which flexi-
bility is settled, and estimate the amount they can offer. Flexibility 
is traded at specific times (i.e., market clearance times or specified 
time before deals) before its activation, so it is necessary to reduce the 
uncertainty in estimating the baseline from which flexibility demand is 
computed. Improving the flexibility forecasts will result in a reduction 
of uncertainty in the flexibility demand, making the demand response 
programs much more efficient.

Based on the publications proposing the use of forecasting method-
ologies leveraging the flexibility provided by EVs, Table  1 presents 
a comprehensive overview of the state of the art in EV flexibility 
estimation. The table compares the following key aspects:

• Forecasting Methodology: The specific forecasting techniques em-
ployed.

• Model Attributes: The attributes or features used in the models.
• Targets/Labels: The targets or labels that the models aim to 
predict.

• Objective: The primary objectives of the studies.
• Potential enhancements: An analysis of the main possible im-
provements of each work. The potential enhancements corre-
spond to items 1 to 6 in the numbered list of primary contribu-
tions provided below. 

This structured comparison highlights existing approaches’ method-
ologies, model components, objectives, and limitations, providing a 
clear context for the advancements introduced by the current proposal.

Based on the previous analysis and recognizing the gaps in the cur-
rent state of the art, the paper proposes a methodology to estimate the 
flexibility charging point operators (CPOs) can offer at an aggregated 
level and under different conditions of access to contextual information. 
A novel approach is proposed to improve the methodology of the 
flexibility estimation, thereby improving the prediction of flexibility 
demand and the activation of traded flexibility when needed.

Analyzing the potential enhancements (Pot. enh.) row in Table 
1 and comparing previous publications to the current proposal, the 
primary contributions of this work are as follows:

1. Employs minimal data inputs, optimizing practicality and com-
putational efficiency for real-world applications.

2. Excludes inaccessible or sensitive personal data, such as user 
identification, ensuring data privacy and compliance.

3. Leverages an established protocol, guaranteeing methodological 
robustness and alignment with industry standards.

4. Utilizes real-world datasets, enhancing the accuracy, validity, 
and reliability of the proposed approach.
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 State-of-the-art Flexibility in EV.
 Ref. Year Work title Forecasting methodology Attributes used Target/s of the model Objective of the work Pot. 

enh.
 

 
[6]

2015 Quantifying load flexibility of electric 
vehicles for renewable energy 
integration.

Mixed-integer optimization model Driving profiles of employees and 
retirees, availability and power of the 
EV charging points, renewable energy 
generation data, conventional 
generation constraints, and driving 
profiles of employees and retirees.

The model predicts the optimal 
charging schedule for EVs to 
maximize the utilization of renewable 
energy sources and minimize the use 
of conventional generation.

The main objective is to quantify the potential of EVs to utilize 
renewable energy sources through optimized charging strategies 
and to analyze how different factors, such as renewable 
portfolios and charging infrastructure, impact this potential.

1, 3, 4, 
5, 6  

 [7] 2020 Probabilistic forecasts of time and 
energy flexibility in battery electric 
vehicle charging

Quantile regression and MLP Travel logs data, including time of 
arrival, time of departure, parking 
duration, and trip distance. Additional 
features include location data and 
historical parking events.

The model predicts parking duration 
and energy requirements. The main objective is to develop and validate a method for 

generating probabilistic forecasts of parking duration and 
energy requirements to optimize smart charging strategies for 
battery electric vehicles.

1, 2, 3, 
4, 5, 6  

 [8] 2020 Flexibility - enabling technologies 
using electric vehicles. MLR Historical power production data from 

various intervals: two days, one day, 
two hours, one hour, twenty minutes, 
and ten minutes prior to the 
prediction time.

The model predicts the optimal 
scheduling of electric vehicle charging 
sessions.

The model is used to improve the efficiency and reliability of 
the power distribution network by leveraging the flexibility of 
electric vehicle charging sessions. This process helps to balance 
the network, reduce peak loads, and increase the 
self-consumption of locally produced renewable energy.

1, 3, 5, 
6

 

 [9] 2020 Short-term load forecasting algorithm 
based on LSTM-DBN considering the 
flexibility of electric vehicle

Combination of LSTM and DBN. Start time of charging, battery 
charging power, and average charging 
power.

The model predicts the short-term 
load power of electric vehicles, 
particularly the total charging load 
(P).

The main objective is to propose a load forecasting algorithm 
that considers the flexibility of electric vehicles, aiming to 
improve the reliability and accuracy of short-term load 
forecasts for the power grid.

3, 4, 5, 
6

 

 [10] 2020 Quantifying the Flexibility of Electric 
Vehicles in Germany and 
California—A Case Study.

Computational methods to calculate 
vehicle availability and energy 
demands based.

Vehicle identifier, arrival time at 
home, departure time from home, 
distance traveled since the last 
departure from home, and available 
time at home.

The model predicts the availability of 
electric vehicles at home and their 
energy demand.

The main objective is to quantify the flexibility potential of 
electric vehicles and analyze the impact of different charging 
strategies on electricity costs and grid stability.

1, 2, 3, 
4, 5  

 [11] 2021 Flexibility management of electric 
vehicles based on user profiles: The 
Arnhem case study

GMM The model uses the start time and 
the duration of the connection of 
charging sessions.

The model predicts the flexibility 
potential of electric vehicle charging 
sessions.

This method aims to improve the efficiency and robustness of 
smart charging by optimizing the scheduling of charging 
sessions according to the flexibility potential of different user 
profiles.

3, 5  

 [12] 2021 Flexibility Prediction of Aggregated 
Electric Vehicles and Domestic Hot 
Water Systems in Smart Grids

Temporal Convolutional Network 
combined transformer model. Historical power consumption data of 

EVs, and generation data of the 
distributed resources.

The model predicts the size and 
maintenance time of the aggregated 
flexibility of Evs.

The model is used to provide accurate, real-time flexibility 
predictions for demand response resources to support grid 
operations, such as load shifting, voltage improvement, and 
reserve services.

3, 4, 5, 
6

 

 [13] 2021 Ultra-Short-Term Prediction of EV 
Aggregator’s Demand Response 
Flexibility Using ARIMA, 
Gaussian-ARIMA, LSTM, and 
Gaussian-LSTM

ARIMA, Gaussian-ARIMA, LSTM, and 
Gaussian-LSTM

Power load data from EV charging 
stations, and historical load data with 
15-minute intervals.

The model predicts the electric 
vehicle aggregator’s base power load 
and demand response flexibility.

The model is used to ensure accurate ultra-short-term 
predictions of EVA’s power consumption and flexibility to 
benefit from energy arbitrage and provide reliable services in 
the energy and regulation markets.

3, 5, 6  

 [14] 2021 Application of flexible ramping 
products with allocation rates in 
microgrid utilizing electric vehicles

MC EV location, charging status, 
renewable energy output, net load, 
and transition probabilities reflecting 
driving patterns.

The model predicts the available 
capacity of EVs for dispatch in 
microgrid operations.

The main objective is to develop an optimal microgrid 
scheduling model that integrates EVs as flexible resources, 
ensuring stability and reduced operating costs while addressing 
variability and uncertainty in renewable energy generation.

1, 2, 3, 
4, 5  

 [15] 2022 Leveraging the flexibility of electric 
vehicle parking lots in distribution 
networks with high renewable 
penetration

Stackelberg game model. Renewable energy generation, EV 
parking lot loads, conventional 
demand, and network operational 
constraints.

The model predicts the distribution 
network net-load ramp rates and 
operational costs.

The main purpose is to reduce DN operational costs by 
incentivize EV parking lot operators through tariff discounts, 
enhancing flexibility and stability in renewable-heavy power 
grids.

1, 3, 4, 
5

 

 [16] 2024 Power system flexibility analysis using 
net-load forecasting based on deep 
learning considering distributed 
energy sources and electric vehicles

LSTM, GRU, and FC models. Load, wind generation, solar 
generation, electric vehicle demand, 
temperature, wind speed, solar 
radiation, and pressure.

The model predicts the net load and 
its ramps. The study aims to investigate the impact of controlled EV 

charging on power system flexibility and to propose an optimal 
combination of RESs to enhance future system flexibility

1, 3, 4, 
5, 6  

 [17] 2024 Forecasting flexibility of charging of 
electric vehicles: Tree and 
cluster-based methods

LightGBM User ID, hour, month and weekday. The model predicts energy delivery 
and parking duration for charging 
sessions.

The main objective is to accurately predict the flexibility of 
aggregated electric vehicles systems to enhance the efficiency 
of smart grid operations.

2, 3, 5  

 [18] 2024 Analyzing flexibility options for 
micro-grid management from 
economical, operational, and 
environmental perspectives

DT, MLR, and LSTM. Renewable generation, storage 
capacities, dispatchable sources, 
dynamic line rating, and electric 
vehicle demand-response.

Day-ahead predictions of photovoltaic 
and wind turbine outputs. The main purpose is to optimize the operation of 

grid-connected micro-grids by integrating various flexibility 
options and minimizing operating costs, emissions, and power 
mismatch.

1, 3, 4, 
5

 

 X 2024 Enabling charging point operators for 
participation in congestion markets KNN, SVR, ML, and RF. Calendar, session, sociodemographic, 

and weather data. The model predicts the aggregated 
flexibility capacity (power) and the 
individual EV sessions (hours).

The primary objective is to forecast aggregated flexibility 
within a geographical area and evaluate individual charging 
sessions to identify those that can to be interrupted. This 
algorithm is then integrated into a smart charging framework, 
facilitating participation in existing market platforms.
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Fig. 1. Block diagram for the proposed flex market participation.

5. Accurately predicts how long sessions can be paused, enabling 
proactive and effective management while providing an estima-
tion of the available flexibility.

6. Ensures that users remain unaffected, as their charging process 
experiences minimal intrusion and inconvenience, allowing the 
necessary charging for each user.

Emphasizing this, the objective is to develop a flexibility forecasting 
methodology that can integrate into a smart charging framework, 
enabling participation in existing market platforms. This methodology 
should be easily adaptable for various countries and use cases. The 
solution proposed has considered the GOPACS market in the Nether-
lands as the reference framework, but it could be easily adapted to 
be implemented to support the dynamic product of the UK flexibility 
markets or the ShortFlex product of the NODES market (Norway and 
Germany).

Participation of CPOs in congestion markets, as described in the 
GOPACS platform, consists of four main steps (capacity forecasting, 
market operation, EV session forecasting, and delivery). Two of them 
require forecasting, as can be seen in Fig.  1.

The first step aims to know the flexibility in a geographical or 
technical area. This area needs to be related to the flexibility offers that 
the market is providing. The extension depends on the affected area and 
can vary from a neighborhood to a district or city, as well as technical 
areas such as substations. Step two consists of performing the operation 
on the flexibility market and obtaining the market decision from the 
bidding process. The third step consists of forecasting the flexibility of 
the sessions to know if they can be interrupted. The last step in the 
delivery process is applying flexibility, which does not disrupt or affect 
the charging sessions. Several scenarios are considered and tested for 
all steps, considering data availability and required hardware and user 
interaction.

The second and third steps, the forecasting processes, are described 
in the following sections, together with the data representation and 
curation.

The data used in the analysis come from public chargers in the 
city of Amsterdam. Thus, although the previously introduced steps are 
common to any flexibility market, the analyses have been expressly 
framed within the context of GOPACS.

In summary, the work focuses on the role of CPOs as FSPs con-
textualized in the Dutch scenario. With this aim, the paper analyses 
the operative of the platform GOPACS and, specifically a flexibility 
product to support congestion management (Redispatch) to reaffirm 
the importance of forecasting both capacity and individual flexibility 
associated with EV charging at several stages of the Redispatch trading 
process.

2. Redispatch: Flexibility trading in the GOPACS congestion mar-
ket

After closing the wholesale energy market, it could happen that 
traded energy cannot be delivered because it violates the grid capacity 
constraints. When this happens in the transmission system, the TSO 
4

acts and changes the generators’ schedules so that the load can be 
served (redispatch). Redispatch payments at the transmission system 
level are usually negotiated in advance, and providers are paid as they 
bid in a ‘‘command and control’’ fashion without creating a real market. 
However, when congestion happens at the distribution level, and this 
is becoming more frequent, redispatch of generators is not a feasible 
solution, and collaboration of consumers through demand response 
programs is needed, either through bilateral contracts or through the 
activation of local markets.

Currently, the platform GOPACS offers support for congestion man-
agement to Dutch grid operators (both TSO and DSOs) through two 
main flexibility products (proposed in 2022 by the Dutch regulator 
ACM, [19]): Redispatch and Capacity limiting.

The last, Capacity Limitation is a long-term contract between the 
network operator and users that refers to waiving the use of (con-
tracted) transmission capacity during an agreed period at the request 
of grid operators, announced before the close of the day-ahead market. 
Participants can be either a pre-qualified service provider, specifically 
labeled as a Congestion Service Provider (CSP), or other grid-connected 
parties. Currently, it is only envisioned as an option for consumers with 
connection capacities above 1MW, but according to [20] it may be 
extended to smaller connections in the residential section as well. The 
contract specifies the agreement on maximum capacity, conditions of 
delivery, price, contract period, and additional information such as the 
number of times per year it can be requested and similar conditions.

On the other hand, Redispatch is implemented via intraday market 
platforms (e.g. Etpa platform, which also manages Intraday and Ex-
Post markets in The Netherlands), and only the CSPs (pre-qualification 
is needed) can participate. GOPACS enables the interaction of market 
parties with the Dutch DSOs and TSO (TenneT) to deliver bids for 
solving congestion in their grids. The grid operators declare congestion 
areas in the GOPACS platform, and CSPs place flexibility bids related 
to adjustable power to solve the congestion on an energy trading 
platform connected to GOPACS, where the settlement takes place. Buy 
and sell orders have the particularity (not required in other energy 
markets) of being linked to transfer point identifiers (i.e. EAN codes 
identifying the location where energy transfer between CSP and the 
grid is administratively assigned to a market party). Redispatch can be 
extended to include direct agreements between the grid operator and 
the CSPs with the Bid obligation contracts that assure the participation 
of CSPs in the Redispatch auction (i.e., to make bids) at the request of 
the grid operator.

Redispatch implies a modification of the generation (or consump-
tion) concerning forecast at the connection point as a result of the 
activation of one or more flexibility orders to solve congestion in a zone 
of the grid. Redispatch has been designed not to affect the balance at 
the national level; thus, congestion avoidance offers (e.g., buy orders) 
in Redispatch are combined with other complementary orders (i.e., sell 
orders) outside the congestion area, resulting in a null or quasi null, 
unbalance. The price difference between the Buy Order(s) and the Sell 
Order(s) is called the ‘Spread’ and represents the resulting cost to the 
Grid Operators.

The product follows the Dutch Key Code of electricity (Article 
9.1 and Annex 11), and it is available for both single or aggregated 
connections (the grid operator should specify it in the demand) but 
with a minimum accepted bid of 100 kW. Bids are defined to include 
the price, location (EAN codes), the assets in MW per imbalance settle-
ment period, the direction, the delivery period, and availability to be 
called. Bids are submitted to the intraday market, a continuous trading 
platform operating at quarter-hourly, hourly, or longer intervals, where 
prices are determined by the pay-as-bid principle (i.e., transactions 
are finalized upon acceptance of a sell bid by a buyer), ensuring all 
transactions are concluded at least 5 min before delivery.
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3. Enabling CPO as congestion service provider: Flexibility model 
and forecast

CPOs are linked to geographic areas and are responsible for the 
management of a substantial amount of energy in one or several 
transfer points. Consequently, they are foreseen as one of the most 
important Congestion Service Provider (CSP) since they can manage 
the flexibility that EVs offer at an aggregated scale in a geographical 
area. However, the electricity demand associated with the EV charging 
process depends mainly on the behavioral habits of EV owners and 
consequently, the management of charging points is affected by a 
certain degree of uncertainty.

Consequently, major efforts to control the impact of EV charging 
on the Dutch grid are currently facing curtailment strategies through 
bilateral agreements between the DSO and the CPO (Capacity limit-
ing). Avoidance of possible congestion is faced by limiting the charg-
ing power of all active charging sessions in the affected area during 
the expected critical event without any interaction with the EV user 
(e.g., FlexPower [21] in Amsterdam and the INVADE project [22] 
in Arnhem). The FlexPower project is one of Europe’s largest smart 
charging pilots that has demonstrated the potential of EVs to increase 
the grid hosting capacity [23]. However, these pilots do not exploit the 
flexibility EVs can offer through the existing Dutch Congestion market. 
Participating in Redispatch is difficult because of the uncertainty of 
loads (EVs) they manage. Declaration and availability of energy assets 
are needed for a positive validation of the pre-qualification process. 
Thus, any effort to reduce the uncertainty of either demand or flex-
ibility, either individually or at a specific grid transfer point or zone, 
constitutes a step forward to their successful participation in congestion 
markets.

3.1. Flexibility definition for EV charging

A simple demand profile of an EV connected to a charging point, 𝑘, 
during the interval [𝑡𝑖, 𝑡𝑒], charging at constant power, 𝑃𝑘, is given by 
the following expression (1). 

𝑝𝑘(𝑡) =
{

𝑃𝑘 𝑡𝑖 < 𝑡 < 𝑡𝑟
0 𝑡𝑟 < 𝑡 < 𝑡𝑒

(1)

Commonly, the charge starts at arrival time (𝑡𝑖) and ends, either 
because the car leaves, at the connection time 𝑡𝑒; or before, at time 𝑡𝑟, 
because the charge has been completed (battery full). In this second 
scenario, flexibility is given by this extra time (𝑡𝑒 − 𝑡𝑟) when the EV is 
connected and not using the charging point. So, it is a better strategy 
to manage charge during the whole interval [𝑡𝑖, 𝑡𝑒] instead of curtailing 
charging power (reducing 𝑃𝑘) during [𝑡𝑖, 𝑡𝑟] since the first does not 
affect the quality of the charging service. Thus, an EV is said to be 
flexible if the energy required, 𝐸𝑅, is less than the total energy that 
the charging point can provide during connection time. Thus, without 
any intervention, vehicles that require 𝐸𝑅 at 𝑡𝑖 will be charging during 
𝐸𝑅∕𝑃𝑘 starting at 𝑡𝑖 and ending at 𝑡𝑟, and the charging point could 
provide flexibility by postponing charging up to 𝛥𝑡𝑓 = 𝑡𝑒 − 𝑡𝑟 or 
interrupting the charging session one or many times up to 𝛥𝑡𝑓 . So, 𝑡𝑟
can be calculated using the expression (2) and 𝛥𝑡𝑓  using the expression 
(3). 

𝑡𝑟 = 𝑡𝑖 + 𝐸𝑅∕𝑃𝑘 (2)

𝛥𝑡𝑓 = 𝑡𝑒 − 𝑡𝑟 (3)

Thus, the flexibility of a CP can be modeled as the power it can 
curtail (upwards flexibility), 𝑃𝑘, at a given time instant without affect-
ing the quality of service; that is, completing the charge of the EV at 
𝑡𝑒. The following expression (4) represents this flexibility model for a 
single CP, where 𝐸 (𝑡) is the remaining energy charge at time instant 𝑡. 
5

𝑟

Observe that in case of not being used flexibility before 𝑡, 𝐸𝑟(𝑡) can be 
easily estimated by 𝐸𝑟(𝑡) = 𝐸𝑟 − 𝑃𝑘⋅(𝑡 − 𝑡𝑖). 

𝑓𝑘(𝑡) =
{

𝑃𝑘 𝑡𝑖 < 𝑡 < 𝑡𝑒 − 𝐸𝑟(𝑡)∕𝑃𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

And for a set of CPs in a given zone (i.e. CPs connected to a node of 
the grid, a district, or a city), 𝑍, the total flexibility can be estimated 
at time 𝑡 as the aggregation of the flexibility of all the charging points 
in 𝑍 as expressed in (5). 
𝑓𝑍 (𝑡) =

∑

𝑍
𝑓𝑘(𝑡) (5)

Accuracy in the estimation of the flexibility an EV can provide, 
from 𝑡𝑖 onwards, depends on the user parameters 𝐸𝑅 and 𝑡𝑒. The first, 
𝐸𝑅, could be known just after 𝑡𝑖 when the charging point exchanges 
information with the EV, and the second could be obtained either 
by asking the user or as an estimation for frequent or similar users. 
So, individual flexibility estimation requires user identification and 
interaction. Trying to estimate 𝛥𝑡𝑓  before 𝑡𝑖 is much more complex since 
the potential user and arriving time are unknown.

Moreover, the flexibility a single car can provide is not enough 
to participate in most flexibility markets (e.g. Redispatch in GOPACS 
requires at least 100 kW to participate), where an aggregated partici-
pation is required. However, the estimation of aggregated flexibility a 
set of charging points can provide in a bounded geographical area, 𝑍, 
(for example, to participate in local flexibility markets to support DSO 
operation) can be carried out from a stochastic perspective, resulting 
in substantial reduction of the estimation error.

Moreover, the accuracy of those stochastic models can benefit from 
exogenous variables such as the calendar (day of the week, holidays, 
etc.) to distinguish between date and time during the day and socioe-
conomic attributes describing specific urban areas as districts or cities. 
Using such an approach, the necessity of individual user information, 
{𝐸𝑟, 𝑡𝑒}, can be somehow skipped, and stochastic models describing 
user profiles of charging behaviors can be used instead.

In the following section, the authors propose a methodology to build 
these stochastic models from historical data and the feasibility of using 
them to improve the accuracy of flexibility estimation and enable the 
participation of CPOs in congestion markets.

4. Flexibility forecast strategies enabling congestion market par-
ticipation

In the current section, the proposed methodology is described. First, 
the data representation and generation process is explained. Then, the 
forecasting of the aggregated flexibility capacity and the forecasting of 
the individual EV flexibility are depicted.

4.1. Data representation and generation

The first consideration is the availability of reliable data for the 
forecast. In this paper, the data considered is easily available to any 
CPO. The required data set consists of historical sessions. These sessions 
must contain the start, end time, and, ideally, the charging time and 
power. Also, the sessions need to contain a reference to the area that 
is under study (i.e. EAN codes, location of transfer point, or substation 
that feeds the CP).

The first obvious step is to acquire and store the session’s data. This 
data usually presents or easily can be transformed and stored using a 
session-oriented format as represented in (6): 
𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 = {𝑐𝑠_𝑖𝑑, 𝐶𝑃 _𝑖𝑑, 𝑡𝑖, 𝑡𝑒, 𝛥𝑡𝑓 , 𝑃𝑘, 𝐸𝑅} (6)

Where 𝑐𝑠_𝑖𝑑 represents the identifier of a session, 𝐶𝑃 _𝑖𝑑 is the 
charger point where the EV is connected, 𝑡𝑖 and 𝑡𝑒 are the connection 
and disconnection times respectively, 𝛥𝑡𝑓  is the available time to post-
pone charging (computed according to Eq.  (3)) and 𝑃  is the charging 
𝑘
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power (assumed to be constant) and 𝐸𝑅 the total energy delivered 
during the session.

The next step is to achieve a dataset of flexibility capacity in an area, 
starting from this session-related flexibility dataset. All the sessions 
must be linked to the area where the flexibility must be computed.

To achieve this area dataset, the next step is to select all the sessions 
that are related to the area where there is a need to forecast. These 
sessions in the area where the flexibility has to be known must be 
separated into a subset for further transformations. Once the subset 
of sessions in an area is generated, to get the aggregated flex_Z (Eq. 
(5)), the Algorithm 1 can be applied. The 𝛥𝑇  must be the same as 
the resolution of the prediction we need (e.g., 15 min for Redispatch
in GOPACS).
1 𝛥𝑇 ← 15;
2 𝑓𝑙𝑒𝑥_𝑍 ← 0;
3 for 𝑐𝑠 ∈ 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠_𝑑𝑎𝑡𝑎_𝑠𝑒𝑡 do
4 𝐸𝑟 ← 𝑐𝑠.𝐸𝑅 ;
5 𝑃 ← 𝑐𝑠.𝑃𝑖 ;
6 𝑡𝑟 ← 𝑐𝑠.𝑡𝑒 − 𝐸𝑟∕𝑃  ;
7 𝑇 ← 𝑐𝑠.𝑡𝑖 ;
8 while 𝑡𝑟 > 𝛥𝑇  and 𝐸𝑟 > 𝑃∕𝛥𝑇  do
9 𝑓𝑙𝑒𝑥_𝑍[𝑇 ] ← 𝑓𝑙𝑒𝑥_𝑍[𝑇 ] + 𝑃 ;
10 𝑡𝑟 ← 𝑡𝑟 − 𝛥𝑇 ;
11 𝐸𝑟 ← 𝐸𝑟 − 𝑃∕𝛥𝑇 ;
12 𝑇 ← 𝑇 + 𝛥𝑇 ;
13 end 
14 end 
Algorithm 1:  Algorithm for calculation of the flexibility in a 
zone
Note that in Algorithm 1, the flexibility is rounded to the lowercase, 

underestimating our real capacity.
The 𝑓𝑙𝑒𝑥_𝑍 is the flexible (power) profile of the desired area. 

Observe that if empty timestamps are present, they can be filled with 
0, which means that no flexibility is available in this timestamp. 
This flexibility on 𝑓𝑙𝑒𝑥_𝑍 will be the target variable for the capacity 
forecast. All the exogenous variables available for the area under study 
can be added to achieve better models. The results section studies the 
use of weather and socioeconomic data on Amsterdam’s use case.

4.2. Forecasting of aggregated flexibility capacity

This step aims to know the flexibility in an area shortly. The authors 
analyze the case of a system for participating in the GOPACS flexibility 
market in the case study. In this step, it is important to know the time 
frame of the market as the forecast needs to work in the same time 
frame. In the case study presented in further sections, the market works 
on a 15-minute basis at 24 h of anticipation.

During this step, an important consideration is the volume of ses-
sions to achieve accurate results and relevant enough flexibility to be 
able to participate in flexibility markets. The more aggregated and more 
sessions the area has, the better the results will be.

This paper analyses two aggregation levels:

1. City-level aggregation, that is the prediction of the flexibility of 
all the CPOs in the city.

2. District-level aggregation, that is the prediction of the flexibility 
of all the CPOs in each district.

Extra variables such as calendar and weather can be used in both 
aggregation levels. Using this model, it is possible to know, in advance, 
the flexibility in a city or similar aggregations with a good enough 
accuracy. As a result, a more detailed explanation of the best variables 
and results on the forecast and interesting findings can be found.

Additionally, at the city aggregation level, socioeconomic data can 
be added when working at the district level. Adding socioeconomic 
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enables the possibility of performing a unique model that makes pre-
dictions based on the socioeconomic data of the district. This kind of 
model is interesting for exporting the models to similar areas where 
there is still insufficient data to build models.

4.3. Forecasting of individual EV flexibility

The objective is to know the sessions that can be paused and how 
long they can be paused. This step is executed once a flexibility offer 
needs to be applied. Since for every charging point 𝑃𝑘 is known, the 
objective of session forecast is to estimate 𝛥𝑡𝑓 , and at the forecasting 
instant, some of the previous attributes could not be available.

In Section 5, a study on distinct modeling options and possible 
exogenous variables is performed.

This step aims to forecast the sessions’ flexibility. This flexibility will 
be used in further steps to pause or not the sessions for applying the 
flexibility without affecting the charger users.

In this step, the authors analyze an important drawback; the most 
important variables for this forecasting are the user-related ones but 
usually, due to confidential reasons, this data is difficult to achieve. 
Here, the authors studied ways to bypass this lack of relevant data with 
up to three distinct formulations.

The following solutions for facing the lack of user-related data have 
been faced:

1. User model: Using personal information on the users. Not tested 
due to the confidentiality laws.

2. Non-interaction model: Working without any interaction with 
the user. This option is difficult and only for specific scopes 
where all the users have the same behaviors.

3. User profiles model: Using a user profiling methodology. This 
option does not require interaction with the users. So, it does 
not need extra hardware for this interaction, but it needs an 
additional study of the data and makes some assumptions about 
user profiles, as explained in the next paragraph.

4. User interaction model: Interacting with the user at the begin-
ning of the session to request how long he will stay there. This 
option is interesting in areas where a time payment method is 
implemented or there is the option to implement the needed 
hardware for interacting with the users.

For solution number 3, the User profiles model, a variable 𝑝𝑟𝑜𝑓𝑖𝑙𝑒
is added to the original data set of charging sessions, assigning to 
every session a specific user profile. The ‘user profile’ term refers to 
a connection pattern in the daily usage of the vehicle (e.g., worktime, 
commuter, dinner, visitor, etc.). This user-profiling process is the result 
of the previous work from the authors  [11] and also the confer-
ence presentation [24] , based on the model-based clustering method 
called Gaussian Mixture Models (GMM). This methodology has been 
validated with a data set of charging sessions from the Dutch city of 
Arnhem in [11], the Norwegian harbor of Borg in [25], and the city 
of Amsterdam [26]. The charging sessions data set used in this paper 
already contains the extra column 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 obtained after applying the 
profiling methodology in the Amsterdam case study [26] (see Table  3), 
to improve the forecasting accuracy using this extra knowledge of every 
charging session in one of the modeling options.

5. Experiments and results: Amsterdam case study

In this section, experiments and results from the Amsterdam case 
study can be found. This study is done using a real data set of EV 
sessions from the public charging infrastructure in Amsterdam, The 
Netherlands, during the whole year 2021. Most of the public charging 
infrastructure in Amsterdam uses regular AC charging stations, widely 
distributed throughout the city, supporting Type 2 connections that of-
fer power output of up to 22 kW. Since this data set is from Amsterdam 
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Table 2
Table with the features of the proposed methodology, similar to the GOPACS proposal.
 Granularity 15 min  
 Horizon D-1 (24h)  
 Length Day-ahead and intraday 
 Power No minimum  
 Zone From city to country  
 Type Reduction  

and GOPACS is based in the market operation in The Netherlands, this 
study uses this market as a reference.

Also, the authors explore possibilities in modeling that are not 
directly related to GOPACS to enable the methodology to be applied 
to other markets. The features of the present case study according to 
granularity, horizon, length, power, zone, and type of offer are defined 
in Table  2.

In the next subsections, the data used in this study is described. 
Then, the forecasting methodologies, which are the aggregated flexi-
bility capacity and the individual EV flexibility, are explained.

5.1. Data description

A sample of this data set can be found in Table  3, showing six 
sessions obtained from distinct chargers, defining every session’s con-
nection times, the charging power in kW, the energy required in kWh, 
and the number of hours of connection and charging.

The charging sessions are from the whole Amsterdam metropolitan 
area, and sessions can be grouped by district using session identifica-
tion. Since GOPACS works at the city level, but other markets work at 
smaller zone aggregations, districts will be used to study the limits of 
the methodology in the zone size.

Moreover, for this study, the authors used socioeconomic data 
on the distinct districts and weather from the aerator meteorological 
station.

The socioeconomic open data used in this work is obtained from the 
Dutch Central Bureau of Statistics [27]. Concretely, the 2020 data used 
is available in [9]. From the total data set, 35 variables have been pre-
selected for 96 districts in Amsterdam, corresponding to the number 
of residents (also dis-aggregated by age ranges: 0–14, 15–24, 25–44, 
45–64, 65–Inf), number of low/mid/high educated people, the density 
of population, urbanization degree, number of houses, number of 1-
person houses, number house stock, average house size, average house 
value, percentage of full/empty houses, percentage of old/new houses, 
number of business places (also dis-aggregated by type of business: 
services, communications, commerce, finances, culture, agriculture and 
industrial), the density of business, number of cars, density of cars and 
surface.

On the other side, weather data used in this study is gathered 
from the Royal Netherlands Meteorological Institute (KNMI) [28], and 
hourly data from Schiphol is used in this study. In Table  4, a description 
provided by KNMI on the variables used in this study can be found.

5.2. Forecasting of aggregated flexibility capacity

This forecast aims to know the flexibility in a geographical area in 
advance. This area needs to be tied to the offers of flexibility the market 
is providing. Knowing the areas where flexibility can be offered, the 
methodology’s user can participate in the market.

GOPACS is a market where offers can be displayed at distinct 
aggregation levels, starting at the city level and moving to the upper 
levels. In the next subsections, a study on the aggregation level is 
carried out to try with lower aggregation levels, as can be found in 
markets such as Piclo Flex. Unfortunately, higher aggregations than the 
city level cannot be tested as this study does not have access to data 
from other cities.

The next subsections will study the forecasting at the city (Amster-
dam) and district level.
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5.2.1. City-level aggregation: Amsterdam
At the city level, several forecasting methods were tested, providing 

good predictions. The method that performed better was Random 
Forest. In Fig.  2 the results of the prediction over three days can be seen; 
the model was built using weather and calendar data. The statistics of 
the shown results are 0.986 𝑅2 and  a mean absolute error (MAE) of 
148 kW.

As can be seen, when working at the city level, forecasts of the 
available flexibility present a very high precision.

5.2.2. District-level aggregation
In this subsection, the authors try to study where the limits on the 

lower aggregation size are. Here, distinct forecasting options working 
at a district level are studied.

First, the study uses a model for each district. Second, the approach 
tries to use district socioeconomic data to build only one single model 
for all the districts. The first version achieves better results. However, 
the second option, which includes socioeconomic information, can 
produce a model that can be used on other cities/districts with similar 
characteristics.

5.2.2.1. District-level multiple model. Here, the goodness of building a 
model for each district is studied. In Amsterdam, there are 97 districts 
with charging sessions in the provided data set. Taking a generic 
configuration on random forest, some of the models present quite good 
results (0.82 𝑅2), and others present inferior performance (−0.3 𝑅2). All 
these models can indeed be improved by accurately parameterizing the 
algorithm for each of the 97 models or even finding a better-performing 
algorithm, but achieving the best results is not the author’s aim at this 
point.

The relevant point here is that some districts can be predicted easily 
and others not. Here, the authors found that the number of sessions 
is crucial to achieving good results. Some of the districts, the ones 
with more sessions, have more accurate models and can easily achieve 
results, as well as the ones at the city level. On the other hand, districts 
with a low number of sessions are not predictable. This is a well-
known characteristic when working on load prediction, as the more 
aggregation on the load to be predicted, generally the better the results.

In Fig.  3, a comparison of the 𝑅2 score against the average sessions 
per week is depicted. As can be seen, the models with 200 sessions or 
more per week rarely achieve good results. Some of the models that 
used between 200 and 300 sessions achieved good models. With more 
than 300 sessions, nearly all the models are over 0.6 𝑅2 and up to 0.82 
𝑅2.

Here, it is important to mention that not all the sessions are equally 
interesting regarding flexibility, that is the forecasting objective. Very 
short sessions or sessions without or with low charge have no flexibility. 
This may be the reason why, with the same session number, some of 
the districts are more predictable than others. Also, the variety of user 
patterns can play a significant role.

With the present information, the authors assess that the present 
methodology can be applied to areas where there are more than 300 
sessions per week. And the more sessions there are in the area, the 
better the results.
5.2.2.2. District-level single model. In this subsection, instead of build-
ing a model for each of the distinct districts, a single general model 
capable of predicting the flexibility in each of the districts is created. 
This general model uses socioeconomic data, weather, and calendar 
data. Again, the limitations on the sessions in each district are present, 
so districts with very accurate results and with poor results can be 
found. The average statistics are 0.774 𝑅2 and 11.15 MAE (kW) for 
a random forest model.

The goodness of this model is that it can be used to predict areas 
where there is still no session data, as this model uses socioeconomic 
data to learn the sessions a district will have. An example of the 
flexibility prediction on district 36347 can be found in Fig.  4. As can 
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Table 3
Example of EV sessions data.
 Profile Session Connection Start Date Time Power Energy Required Connection Hours Charging Hours 
 Work time S1 2021-02-01 05:30:00 3.7 12.950 9.00 3.50  
 Morning S2 2021-02-01 06:15:00 3.7 10.175 2.75 2.75  
 Work time S3 2021-02-01 06:15:00 3.7 11.100 7.50 3.00  
 Work time S4 2021-02-01 06:30:00 3.7 9.250 8.25 2.50  
 Work time S5 2021-02-01 06:45:00 3.7 3.700 8.25 1.00  
 Morning S6 2021-02-01 09:30:00 3.7 9.250 7.25 2.50  
Fig. 2. Forecast of the flexibility in Amsterdam. The Y axis is power in kW, and the X axis is time in 15-minute frequency. The blue line is the real value, and the red line is 
the forecasted value at d-1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Table with the meteorological variables used for the study.
 Wind Hourly mean wind speed (m/s)  
 Temperature Temperature at 1.50 m (Celsius)  
 Radiation Global radiation (J/cm2)  
 Precipitation Hourly precipitation amount (mm)  
 Visibility Horizontal visibility level from 0 to 89. (0= 0 to 

100 m;... 89=70km or more)
 

 Clouds Cloud cover (octants); (9=sky invisible)  
 Humidity Relative atmospheric humidity at 1.50 m (in percents)  

Fig. 3. Comparison on 𝑅2 achieved given an average number of sessions per week. 
The X axis is the average sessions per week. The Y axis is 𝑅2.

be seen, results can be quite accurate in areas where the sessions are 
above 300 sessions per week.

Another interesting conclusion that can be extracted from this study 
is that not all the socioeconomic data is relevant to forecast flexibility; 
the most relevant are summarized in Fig.  5.

As can be seen, the most correlated variables to the flexibility are 
day hour from calendar data, humidity, from weather,
n_business_services, n_business_culture, n_people_high_educated,
8

n_people_western; these variables are related to areas where more 
presence of EVs can be found and the usage made of the vehicles.

Finally, the results of this modeling option seem to be slightly lower 
than those achieved by modeling the districts individually. On the 
other hand, this modeling is interesting to take into consideration when 
studies of the implementation of the methodology in other areas are 
carried out. As it can provide forecasts to areas never seen by the model 
that are similar to those previously seen.

5.3. Forecasting of individual EV flexibility

In this subsection, forecasting is performed to understand the flex-
ibility of each session. This forecasting is constructed to know in 
advance when a session starts or when it is ongoing, as well as the 
total session flexibility in hours. This step aims to help assess the 
operator of the methodology. The operator needs to pause the sessions 
to apply the flexibility, so this forecasting is focused on knowing which 
sessions can be paused without interfering with the final user. Here, the 
authors analyze the distinct ways of operating and the advantages and 
disadvantages of each one.

In this forecasting, one of the most relevant points is the data 
availability, user interaction possibilities, and hardware/computational 
costs of each option. In the next subsections, the authors will analyze 
four distinct modeling options, comparing them in terms of data re-
quirements, wellness of the prediction, and computational/hardware 
costs.

Regarding the attribute relevance, as can be seen in Fig.  6, only the 
hour of the session has a considerable correlation.

5.3.1. User model
The authors believe that this is the modeling that can achieve the 

most accurate models in terms of wellness of the session flexibility 
prediction, but unfortunately, due to privacy laws, this data was not 
provided and could not be tested in this study. On the other hand, this 
technique does not easily fulfill requirements.

Regarding the requirements, the first one is data privacy. Knowing 
each user for how long his car is stationed and where information needs 
to be protected. The second requirement drawback is a technical one; 
sessions and users must be related and stored, and it requires hardware 
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Fig. 4. Forecast of the flexibility in district 36347. The Y axis is power in kW, and the X axis is time in 15-min frequency. The blue line is the real value, and the red line is the 
forecasted value at d-1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Correlation of the variables with the district’s flexibility.  Calendar variables are represented with a red bar, sociodemographic variables with green bar and weather 
variables with a blue bar. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



International Journal of Electrical Power and Energy Systems 167 (2025) 110604J. Massana et al.
Fig. 6. Correlation of the distinct variables with the session’s flexibility. Calendar variables are represented with a red bar, sociodemographic variables with a blue bar, weather 
variables with a purple bar, and session-related variables in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
capable of doing so. The third requirement is also a technical one; 
building a model for each user requires a huge number of models that 
may be difficult to maintain and require a lot of resources.

In real scenarios, user models performed with cutting-edge state-of-
the-art techniques can easily become too costly for a small improve-
ment. If implemented in real-world user models that can do the work 
without a huge amount of resources, are very simple models or statistics 
(i.e., mean flexibility for each user, mean for each user/hour, average 
charging vs actual charged...)

5.3.2. Non-interaction model
In this subsection, the less restrictive option is studied. This is the 

least restrictive but also the least performing in terms of the wellness 
10
of the predictions. In this forecast, no user identification is needed, and 
no additional user interaction is needed. Only a charging infrastructure 
and the necessary hardware to know in real-time the active sessions.

In this subsection, several forecasting methodologies were tested 
using one year of real session data. The target was predicting the session 
flexibility in hours, that is the duration of the flexibility. In Table  5 can 
be seen that all the models produce low-performing forecasts. More 
parametrization works could indeed be done, but the main problem 
here is that the variables, that can be achieved without user interaction, 
present a very low correlation with the session’s flexibility.
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Table 5
 Table with the statistics obtained for non-interaction models. Columns are the distinct 
algorithms tested, rows are the statistics obtained by each algorithm.
 KNN SVR MLP RF  
 𝑅2 0.003 0.032 0.167 0.02 
 MAE (Hours) 5.05 4.86 4.75 5.03 

Table 6
 Table with the statistics obtained for user profiles models. Columns are the distinct 
algorithms tested, rows are the statistics obtained by each algorithm.
 KNN SVR MLP RF  
 𝑅2 0.635 0.342 0.886 0.877 
 MAE (Hours) 2.82 3.81 1.61 1.64  

Table 7
 Table with the statistics obtained for user interaction models.Columns are the distinct 
algorithms tested, rows are the statistics obtained by each algorithm.
 KNN SVR MLP RF  
 𝑅2 0.91 0.954 0.96 0.96 
 MAE (Hours) 1.43 0.99 0.87 0.89 

5.3.3. User profiles model
This solution requires a first study, presented in [26], to achieve 

the user profile information for every session. This solution has no 
extra requirements than the previous solution. However, it considers 
the following assumptions:

• Every EV user belongs to a single User profile.
• The user profile assignment does not contain errors.
• There are no new profiles.

Using the profile associated with each session, the models tested in 
the previous modeling options achieve the results summarized in Table 
6.

Using the user profiles considerably reduces the forecasting error. 
The main drawback is that this process needs an extra step to calculate 
these profiles but has no extra costs on hardware and only the extra 
computational time of the process.

5.3.4. User interaction model
In this subsection, data on session duration will be used. To acquire 

this data is necessary to interact with the user and ask for this infor-
mation directly or indirectly. A similar study, with nearly the same 
results, can be done by asking the energy the user wants to charge. In 
comparison with the other modeling options explored, extra hardware 
or chargers with user interaction are needed here. This interaction 
can be easily implemented in charging payment areas by reusing the 
payment infrastructure but can be difficult in areas where there is no 
necessary hardware to interact with the user to ask for the session 
ending time, session duration, or energy to be provided.

Using the session duration associated with each session, the same 
models tested in previous modeling options can achieve the results sum-
marized in Table  7. In Table  7 it can be seen that results are much bet-
ter than previous modeling options without accurate parametrization 
works. Here, the assumption that the user does not lie was made.

6. Conclusions

Charging point operators can manage the enormous amount of 
flexibility the electric vehicles can provide and consequently could 
adopt a prominent role as flexibility service provider. In particular, at 
the distribution level, charging point operators can be determinant to 
solve congestion issues through their participation in local markets. 
11
The principal inconvenience in providing this service is due to the 
stochastic behavior of the load they manage and the difficulty in 
forecasting both electric vehicle demand and flexibility. The paper 
evaluates how forecasting can be improved by considering different 
levels of aggregation and using various categories of input attributes 
(i.e., energy data, weather data, socioeconomic data). The work focuses 
on the re-dispatch process within the GOPACS framework to identify 
the forecasting requirements and constraints.

Based on the analysis, the authors propose a methodology for 
quantifying the aggregated capacity of flexibility, aiming to enable 
market participation and, second, activating the traded capacity by 
strategically pausing charging sessions that will not be impacted. Thus, 
flexibility forecasting is analyzed according to these two necessities, 
resulting in the forecasting of aggregated flexibility and individual 
electric vehicle flexibility.

Regarding the aggregated flexibility forecasting (capacity), the au-
thors conducted tests across various aggregation levels to identify those 
levels that can significantly reduce the forecasting error at the same 
time, can aggregate enough flexibility as flexibility service provider 
in a specific area. The aggregated flexibility forecasting methodologies 
yielded the following results: at the city level, 𝑅2=0.986; at the district 
level using multiple models, 𝑅2=0.82; and at a district level using a 
single model, 𝑅2=0.774. The study, performed with Amsterdam CPO 
data, found that areas with 300 or more charging sessions per week 
are suitable for this methodology, as the forecasting algorithms provide 
accurate results. Another key finding is that, after analyzing the models, 
only certain socioeconomic variables, such as being from countries with 
a high GDP per capita or having tertiary education, provide useful 
information to improve predictions, while others, like the percentage 
of new or sold houses, do not contribute significantly.

According to the electric vehicle session forecasting, the authors ex-
plored various modeling approaches following the experience gathered 
in previous works. The electric vehicle session forecasting provided 
the following results: with the non-interaction model, 𝑅2=0.167; with 
the profiles model, 𝑅2=0.886; and with the user interaction model, 
𝑅2=0.96. The primary challenge lies in obtaining user-related informa-
tion linked to each session since the most influential variables are those 
related to users. However, dealing with personal information was not 
feasible in the study. Moreover, the investigations aim to find generic 
methods that minimize user interaction and avoid privacy issues. For 
that purpose, the authors explored the use of clustering methods to 
learn user profiles and, based on them, infer the number of sessions 
that could contribute to providing flexibility.

The work demonstrated how charging point operators can partic-
ipate in flexibility markets as providers without impacting electric 
vehicle charging customers with promising results.

Finally, the authors wish to emphasize that modifying the amount 
of energy charged to users has the potential to significantly enhance 
the overall flexibility of the system. However, altering the total energy 
charged raises important ethical considerations. Any such adjustments 
must be conducted transparently, ensuring that users are properly 
informed and adequately compensated for any impact on their energy 
usage.
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