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A B S T R A C T   

Regional mineral exploration is based on geochemical data of which the nature is compositional and frequently 
involves a large number of components. Consequently, it mostly needs multivariate dimension reduction 
methods such as principal component analysis (PCA) and its various robust versions. The application of such 
methods, defined for real random variables, require the data to be represented in coordinates supported in the 
real space. However, a common problem in exploration geochemistry is to select the appropriate representation. 
Using centered (clr) and isometric (ilr) logratio coordinates to discriminate anomalous zones for orogeny gold 
exploration throughout Sweden revealed that there is, as expected, no difference between the two representation 
methods. The main difference affects the interpretation of the coordinates used. This is observed for regional 
scale exploration, while it is also needed to study different ways of representing geochemical data in local scale.   

1. Introduction 

Geochemical anomaly identification is one of the most significant 
parts of mineral exploration projects. To this end, a variety of spatial 
models have been developed for different types of geochemical data. 
The main purpose of such applications is to define and classify anomalies 
and the relevant background. This has been attempted by considering 
the element concentrations through univariate (in global scales) and 
multivariate (in local scales) points of view (Sadeghi, 2020). Taking into 
account that the nature of geochemical data is compositional and any 
approach with raw data might lead to spurious results, it is clear that a 
compositional approach will provide a better overview of samples' 
spatial relationships. 

A variety of multivariate techniques to assist in clustering samples 
and separating anomalous observations have been applied in 
geochemical studies, including canonical variates derived from data 
dimension reduction methods that reflect geochemical processes 
(Grunsky et al., 2014; Makvandi et al., 2016; Mueller and Grunsky, 
2016; Greenacre, 2010, 2018a, 2018b; McKinley et al., 2018; Grunsky 
and de Caritat, 2020; Sauro Graziano et al., 2020). These include 
parametric methods such as the various forms of principal component or 
factor analysis (PCA and FA) (Chork and Salminen, 1993; Grunsky and 

Kjarsgaard, 2016) and K-means clustering (Kaski, 1997), that are still 
commonly used in multivariate geochemical data assessment, and the 
less common non-parametric ones such as self-organising maps and 
neural networks (Kohonen, 1995; Foody, 1997; Clare and Cohen, 2001). 

Geochemical datasets represent the parts of a whole and are thus, by 
definition, compositional (Egozcue et al., 2003; Filzmoser et al., 2009; 
Nazarpour et al., 2015). This means that geochemical analyses provide 
results that are usually registered as proportions, percentages, moles per 
liter, or any other units reflecting parts of the whole (Aitchison, 1986; 
Martín-Fernández et al., 2017). In other words, such values are not 
absolute values; they provide the elements' relative information 
considering the whole sample. A composition is actually an equivalence 
class (Aitchison, 1992; Barceló-Vidal and Martín-Fernández, 2016) 
implying scale invariance of the relationships between different parts. 
This property justifies the representation of the data in the simplex, a 
constraint subset of real space. Working in this subset, it is easy to show 
that standard methods, based on the Euclidean geometry of the real 
space, might lead to spurious results, a well-known effect since Pearson 
(1897) coined the term spurious correlation. To get this effect resolved, 
several representations have been proposed, collectively called logratio 
transformations (Aitchison, 1986; Egozcue et al., 2003; Gallo and Buc-
cianti, 2013). Their properties have been analysed in the framework of 
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the Aitchison geometry (Pawlowsky-Glahn and Egozcue, 2001; Paw-
lowsky-Glahn et al., 2015). 

Among the dimension reduction methods, PCA is one of the most 
robust models. However, the loadings are mostly non-zero, and the PCs 
involve all the original parts; that is why the PCA interpretation can be 
extremely demanding. Several approaches have been developed in the 
real space framework as a solution for such complexities which are 
mostly based on either the rotation of the PCs or variable selection 
techniques (Jolliffe, 2002; Jolliffe et al., 2003). Note that in the frame-
work of compositional data no component can be suppressed without 

redoing the whole calculation, as the sum of the coefficients has to be 
necessarily zero. Therefore, in the framework of compositional data we 
find, to this end, the approach known as principal balances (Martín- 
Fernández et al., 2017; Pawlowsky-Glahn et al., 2011a, 2011b). 

To classify the geochemical anomalies detected based on element 
values or their relevant PCs, various models have been developed such 
as fractal/multifractal models (Daya Sagar et al., 2023; Sadeghi, 2024). 
Such methods include a variety of models in 2D and 3D and for different 
types of data samples (Zuo and Wang, 2016; Cheng and Agterberg, 
2021). Some of the well-established fractal/multifractal models are 

Fig. 1. (a) Geology and main metallogenic areas in Sweden (from Andersson et al., 2014); this map has been originally published as a part of the Geochemical Atlas 
of Sweden. The numbers refer to some description about different areas throughout the country. The descriptions are available in the Atlas. (b) Till sample locations 
along with main metallogenic provinces (from Sadeghi, 2020); (c) Au raw data map; and (d) IDW interpolated ilr-Au map. 
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number-size (Mandelbrot, 1983; Sadeghi et al., 2012), concentration- 
area (C-A: Cheng et al., 1994, see Sadeghi, 2021c); spectrum-area 
(Cheng et al., 1999, see Sadeghi, 2021c); singularity (Cheng, 2007, see 
Sadeghi and Agterberg, 2021); concentration-concentration (Sadeghi, 
2021a), concentration-distance from centroids (Sadeghi and Cohen, 
2021b), simulated-fractal models (Sadeghi et al., 2015; Sadeghi, 
2021b); category based (Sadeghi and Cohen, 2021a), and their 3D 
equivalents. The critical point is all about selecting the most appro-
priate, consistent, and efficient model, not only in classification but also 
in multivariate inference (Egozcue et al., 2015). 

In this research, an orogenic gold commodity (OGC), represented by 
a vector of chemical elements including Au, Ag, As, Sb, Te, and W, is 
selected among the whole set of elements available, obtained from till 
samples collected and analysed by the Geological Survey of Sweden 
(SGU: Andersson et al., 2014) from throughout the whole country. One 
objective here is to demonstrate what transformation works more 

efficiently. To evaluate the OGC from a multivariate point of view, 
principal component (PCA) and robust principal component (RPCA) 
analysis are applied respectively to isometric logratio (ilr) and centred 
logratio (clr) transformed data, and are compared with principal bal-
ances (PB), which are useful to obtain sparse balances which are as close 
as possible to the principal components gained by clr and are useful in 
the interpretation of the PCs when they are close. In the end, the 
continuous interpolated maps of the first principal components, PC1 and 
RPC1, are generated and classified using a number-size (N-S) fractal 
model, and the OGC anomalies in Sweden are identified. 

2. Geology and mineralization of Sweden 

Sweden is geologically dominated by the Fennoscandian Shield (FS) 
metamorphic and crystalline rock in the north, Caledonian orogeny in 
NW and northern Sweden and, shortly, Phanerozoic sedimentary units 
in the south (Beckholmen and Tirén, 2009). Around 22% of the country 
area is covered by 42 metallogenic sub-provinces (Hallberg et al., 2012; 
Andersson et al., 2014), including 16 base-metal deposits (Cu, Pb, Zn, Ni 
and Co), 13 ferrous metal deposits (Fe, Mn, Ti, V and Cr), and four 
precious metal deposits (Au, Ag and PGE). All these sub-provinces are 
classified as four main mining districts (Allen et al., 1996; Eilu, 2012; 
Andersson et al., 2014; Sadeghi and Cohen, 2021b, 2021a): (1) the 
Northern Norrbotten, (2) Skellefte districts, both in Northern Sweden, 
dominated by sulfidic mineral deposits, (3) the Caledonides in NW 
Sweden, and (4) the Bergslagen area in South-Central Sweden, domi-
nated by sulfidic mineral deposits (Fig. 1a). The detailed geology of 
Sweden is out of the scope of this paper. It can be found in Andersson 
et al. (2014); Sadeghi (2020); Sadeghi and Cohen (2021b) or in Sadeghi 
and Cohen (2021a). A number of 2, 578 till samples, collected by the 
Geological Survey of Sweden (SGU), are used in the present research to 
illustrate how compositional data methods can focus on the Au miner-
alization (through a multivariate study on Au, Ag, As, Sb, Te, and W) 
throughout Sweden (Andersson et al., 2014, Fig. 1b). Table 1 shows 
descriptive statistics of the 6 elements. 

The sample density and sample spacing correspond to the recon-
naissance studies defined by McMartin and McClenaghan (2001) 
(Table 2). 

The Au raw data map is presented in (Fig. 1c). An inverse distance 
weighted (IDW) interpolated map was generated using the above- 
mentioned data to give an initial overview of the Au throughout Swe-
den (Fig. 1d). This map is generated by interpolation of the whole ilr 
vector and backtransformation of the interpolated values to the simplex. 
The map demonstrates that the high concentrations of Au are mainly 
located in Southern Sweden and Bergslagen (Eastern Sweden), followed 
by Skellefte, Southern Caledonides (i.e., Jämtland) and Norrbotten (NE 
Sweden). 

3. Methodologies and data processing 

3.1. Characterisation and basic assumptions 

Geological evaluation and models are highly influenced by a variety 
of errors and sources of uncertainties such as (Sadeghi, 2020; Sadeghi 
et al., 2021): lack of samples, unclear understanding of the geology, 
relevant errors in geochemical lab analysis, data analysis, interpolation, 
misunderstanding of geological and geochemical processes, measure-
ment and analysing instrument errors, etc. Moreover, further potential 
biases may be caused by not taking into account the above-mentioned 
compositional nature of the data. Such biases are a consequence of an 
inappropriate sample space and/or structure and can be avoided using 
an adequate framework, consistent with the nature of the data. Such a 
framework is given for compositional data by considering the sim-
plex—endowed with the Aitchison geometry—as sample space (Paw-
lowsky-Glahn and Egozcue, 2001, 2006; Filzmoser et al., 2009; 
Carranza, 2011; Pawlowsky-Glahn and Egozcue, 2011; Gallo and 

Table 1 
Descriptive compositional statistics of the 6 elements in the present study.  

Element Center Min. 1st quartile Median 3rd quartile Max. 

Ag (ppb)  44.45  4.62  32.51  44.93  59.31  517.42 
As (ppm)  2.431  0.16  1.06  2.31  5.41  253.28 
Au (ppb)  0.5546  0.05  0.27  0.67  1.29  120.34 
Sb (ppm)  0.1420  0.02  0.08  0.13  0.25  2.33 
Te (ppm)  17.77  1.63  11.61  17.34  25.88  328.19 
W (ppm)  0.3552  0.01  0.21  0.37  0.60  8.85  

Table 2 
Scales of till geochemical samples.  

Scale Sampling 
density (sites 
per km2) 

Dispersal 
length trains 
detected 

Objectives, target 

Reconnaissance <0.01 (0.15 in 
Sweden) 

500 to 1000 km Geochemical provinces, 
continental glacial 
dynamics 

Regional 0.01 − 0.1 10 to 100km Mineral belt, kimberlite 
cluster 

Local 1 − 10 1 to 5km Mineralised ground, tails 
of dispersal trains from 
orebodies 

Detailed >10 100m to 1km Individual orebodies 

(After McMartin and McClenaghan (2001).) 

Table 3 
Loadings and vector of the variances of PCs obtained from clr-data.   

PC1 PC2 PC3 PC4 PC5 

clrAu 0.88 − 0.15 0.14 − 0.047 − 0.90 
clrAg − 0.024 0.32 − 0.22 − 0.16 0.81 
clrAs − 0.30 − 0.59 0.33 0.50 0.20 
clrSb − 0.31 − 0.24 0.10 − 0.78 − 0.24 
clrTe − 0.094 − 0.014 − 0.79 0.27 − 0.37 
clrW − 0.16 0.68 0.44 0.22 − 0.31 
Var. 1.41 0.72 0.51 0.26 0.16 
% cum. var. 46.19 69.61 86.29 94.87 100.00  

Table 4 
Loadings and vector of the variances of RPCA applied to ilr-data.   

RPC1 RPC2 RPC3 RPC4 RPC5 

ilr1 0.45 − 0.36 − 0.21 − 0.28 0.74 
ilr2 0.61 0.59 0.23 0.45 0.16 
ilr3 0.63 − 0.40 − 0.19 − 0.01 − 0.64 
ilr4 − 0.039 − 0.57 0.71 0.40 0.10 
ilr5 − 0.17 − 0.20 − 0.61 0.74 0.12 
Var. 1.42 0.712 0.501 0.262 0.140 
% cum. var. 46.75 70.23 86.73 95.38 100.00  
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Buccianti, 2013; Buccianti and Grunsky, 2014; Nazarpour et al., 2015; 
Daya Sagar et al., 2018; Zuzolo et al., 2018; Pospiech et al., 2020; 
Sadeghi et al., 2021). In Pawlowsky-Glahn and Egozcue (2001) it was 
shown that for x = (x1, x2,…, xD) a D-part composition, and κ a constant 
representing the sum of the components, the simplex, defined as 

S
D
c =

{

x = (x1,…, xD) |xi > 0, i = 1,…,D;
∑D

i=1
xi = κ

}

, (1)  

with perturbation and powering as alternatives of addition and multi-
plication by a scalar in real space, can be endowed with a Euclidean 
space structure by adding an inner product and its associated norm and 
distance (Pawlowsky-Glahn and Egozcue, 2001). It would be rational to 
work with compositions in the simplex, as it defines an interpretable and 
meaningful structure. 

Note that compositions can be projected onto particular directions by 
the inner product and then compositional vectors can be studied for the 
angle between vectors and, in particular, for the orthogonality between 
them. With the norm, the length of a composition, or distance from the 
neutral element, where all components or parts are identical, can be 
calculated. For the computation of distances in the simplex, the Aitch-
ison distance is available. It is a measure of the difference between two 
compositions. In practice, the Aitchison distance can be calculated as the 
Euclidean distance of two clr transformed data. The Aitchison distance is 
known to be scale invariant, permutation invariant, perturbation 
invariant, and sub-compositionally dominant. Therefore, it is a sensible 
criterion for calculating the dissimilarity - namely, the distance between 
two compositions. 

All above-mentioned operations define a real Euclidean space 
structure in the simplex, which was termed in Pawlowsky-Glahn and 
Egozcue (2001) for the first time Aitchison geometry to avoid confusion 
with the usual Euclidean geometry in real space. This property is crucial, 
as real Euclidean spaces have the appropriate property that working in 
coordinates using standard methods devised for real random variables is 
equivalent to working in the simplex with the operations mentioned 
above (Queysanne, 1973). It is important to be aware that all standard 
methods assume explicitly or implicitly the real space endowed with the 
usual Euclidean geometry as the sample space. 

3.2. Exploratory data analysis 

An exploratory analysis of compositional data starts with the calcu-
lation of the center, variation matrix, and total variance. Initially, it is 
mandatory to check for outliers, censored data, and especially, rounded 
zeros and, if necessary, to apply methods that take the outliers into ac-
count. A series of recent developments can be found in Martín-Fernán-
dez et al. (2012) or Palarea-Albaladejo et al. (2022). 

Note that standard descriptive statistics, such as arithmetic mean and 
variance, are not suitable representatives of central tendency and data 
dispersion. The reason is that these statistics do not fit with the Aitchison 
geometry. Alternatively, the concept of center, variation matrix, and 
total variance were introduced by Aitchison (1986). The center is simply 
defined as the geometric mean of the desired parts in their raw, closed 
form. A variation matrix can be defined as the matrix of variances of 
logratios of pairs of parts. In the following, the total variance is the sum 
of all values of the calculated variation matrix divided by 2D where D is 
the number of parts. It is notable that the two latter parameters do not 
depend on the closure constant, as the constant cancels out when taking 
ratios. 

Another step for compositional data exploratory analysis is to 
calculate and interpret biplots. A biplot can be built by considering any 
two principal components (PCs) of clr transformed data; e.g. the first two 
PCs, which explain the greatest variance. Biplots can be defined as 
graphical tools to simultaneously represent the rows and columns of a 
matrix by means of a rank-2 approximation (Aitchison, 1983; Aitchison 
and Greenacre, 2002; Pawlowsky-Glahn et al., 2015). The usefulness of 
clr biplots as a tool to identify the mutual behaviour of parts in a proper 
geometry is discussed in numerous studies. This property helps the an-
alyst to properly perform the grouping of parts and subsequently, define 
the intended isometric balances. Examples of this procedure can be 
found in Olea and Luppens (2015), Molayemat et al. (2018) and 
Molayemat et al. (2022). 

More complicated for exploratory analysis of compositional data is to 
interpret the PCs computed on clr transformed data. In addition to the 
availability of dimension reduction, this technique can be used as an 
appropriate modelling tool when the presence of a trend in the data is 
suspected without knowing about any possible external controlling 
variable. 

Fig. 2. Q-Q plots of the a) PC1 vs PC2 clr-scores, and b) RPC1 vs RPC2 ilr-scores in Sweden.  

B. Sadeghi et al.                                                                                                                                                                                                                                 



Journal of Geochemical Exploration 259 (2024) 107425

5

Another debatable aspect of compositional data exploratory analysis 
is the computation and interpretation of correlation coefficients, which 
are by definition used to measure pairwise association. The problem is 
that the known correlation coefficients are subcompositionally inco-
herent. It is crucial to be aware that logratio measures such as the cor-
relation of clr components, pivot coordinates (Stefelova et al., 2021), 
and symmetric balances (Kynčlová et al., 2017) are also subcomposi-
tionally incoherent (Egozcue et al., 2019; Egozcue and Pawlowsky- 
Glahn, 2023). They appear when closure is involved in the coefficient 
functions and may drastically affect geological and mineral exploration 

studies, as they use the correlations to choose pathfinder elements (e.g., 
for gold exploration), to delineate a target area for detailed exploration, 
and to reveal geochemical patterns in general. A known treatment is to 
define a sequential binary partition (SBP) matrix, based on the explor-
atory project's requirements, and then compute the desired correlation 
coefficients between the calculated orthonormal balances. Examples can 
be found in Pawlowsky-Glahn et al. (2015) and Egozcue et al. (2019). A 
newer way of quantifying the relation of compositional parts is intro-
duced in Egozcue and Pawlowsky-Glahn (2023). There, a Proportion-
ality Index of Parts (PIP) is proposed. The PIP ranges from 0 to 1 and 

Fig. 3. Covariance biplot and eigenvector plots of PCA applied to clr-data (69.6 % explained variance).  
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coherently is defined based on the properties linking the space of parts 
and observations. The PIP can be computed using the Aitchison distance 
in the space of parts and is invariant under subcomposition. 

3.3. Logratio transformations 

Aitchison (1986) demonstrated a transformation, which is compat-
ible with the equivalence class character of compositional data. This 
transformation is a scale-invariant logratio, which is in fact a log- 
contrast: 

∑D

i=1
ailnxi = ln

(
∏D

i=1
xai

i

)

,
∑D

i=1
ai = 0, (2)  

where the data set is an (n × D) matrix X, x = (x1, x2,…, xD) is a row of 
X, and ai, i = 1, 2,…, d are real numbers subject to a zero sum constraint. 

In the framework of the Aitchison geometry, CoDa can be repre-
sented in several different systems of log-contrasts, which are more or 
less convenient depending on the research question to be answered. As a 
general rule, orthonormal logratio coordinates, denoted as olr-co-
ordinates or ilr-coordinates, as they were previously known (Egozcue 
and Pawlowsky-Glahn, 2005, 2019a, 2019b; Pawlowsky-Glahn and 
Egozcue, 2011; Martín-Fernández et al., 2017) can be used without 
further limitations. One particular type of ilr coordinates is balances, 
which can be defined based on Sequential Binary Partitions (SBP). 

Frequently, for computational convenience, the clr representation is 
applied as: 

clrk

⎛

⎜
⎝x

⎞

⎟
⎠ = ln

xk
[( ∏D

i=1xi
)1/D

], k = 1, 2,…,D. (3) 

The computational simplicity of clr and its isometric properties make 

it comparable to ilr. However, it is essential to note that clr is not a 
representation in orthonormal coordinates. It is, mathematically, rep-
resenting vectors that are subject to a zero-sum constraint. These 
problems could be handled e.g., with generalised inverses. In other 
words, the major problem is not computational, but about the inter-
pretation. As pointed out by Aitchison (2002), there is a potential risk in 
associating the components of clrk(x) solely with the numerator, over-
looking the fact that all parts present in the composition contribute to 
each term. This poses a significant issue as it may lead to mis-
interpretations (see Egozcue and Pawlowsky-Glahn (2023) for further 
details). 

There is no standard or canonical ilr representation. For instance, PCs 
obtained using the clr result in an ilr which in each component involves 
all parts, i.e. it is an ilr not made up of balances. 

Balances (Egozcue and Pawlowsky-Glahn, 2005) are a number of 
logratios with the geometric mean of rk parts in the numerator and of sk 
parts in the denominator and a normalising coefficient as stated in 4, 

bk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rk⋅sk

rk + sk

√

ln

(
xn1 ⋯xnrk

)1/rk

(
xd1 ⋯xdsk

)1/sk
, k = 1, 2,…,D − 1, (4)  

where both sets of parts are disjoint. To guarantee that the obtained 
logratios define coordinates on an orthonormal basis it is sufficient that 
they follow a sequential binary partition (SBP) (Egozcue and 
Pawlowsky-Glahn, 2006; Pawlowsky-Glahn et al., 2011a). 

Once an SBP has been chosen, it is interesting to visualise it in a 
CoDa-dendrogram (Pawlowsky-Glahn et al., 2015), particularly when 
there are groups in the data. In this case, the CoDa-dendrogram can be 
considered as a visual ANOVA, as it is easy to detect which balances are 
very different and which behave similarly in the groups. 

A particular type of balances is principal balances. They have the 
same structure, but they are built in a different way (Martín-Fernández 
et al., 2017). They attempt to emulate the PCs. They are built as sparse 
log-contrasts, the first one maximising the explained part of the total 
variance in the data, and the second one maximising the explained part 
of the remaining variance, and this is continued until the last principal 
balance is created. They can be written as log-linear functions: 

pbk =
∑D

i=1
akilnxi, k = 1, 2,…,D − 1, (5)  

in which xi is the random part for i = 1,2,…,D, X = (X1,X2,…,XD) is a 
D-part random composition, and ak = (ak1, ak2,…, akD) is a vector of 
constants that can take up only three values, namely zero for those parts 
that do not participate in the balance, those that are positive have an 
expression 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
s/[(r + s)r]

√
and those that are negative are −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r/[(r + s)s]

√
, 

with r the number of the positive loadings and s the number of negative 
loadings. Note that the coefficients in balances always sum to zero, as 
they are log-contrasts. The PBs maximize the explained variance. They 
include three main algorithms, namely: (1) optimal PBs (O), (2) con-
strained PCs (C), and (3) Ward hierarchical clustering (W) (Table 5). For 
a reduced number of parts, optimal PBs can be computed with affordable 
time and computer memory (Martín-Fernández et al., 2017). 

Historically, one of the first transformations that was introduced was 
the additive logratio (alr) (Aitchison, 1986). For a D-part composition of 
x = (x1, x2,…, xD), alr is defined as: 

alr
(

x
)

=

(

ln
x1

xD
, ln

x2

xD
,…, ln

xD− 1

xD

)

, (6)  

where the denominator xD can be any part of the composition. In the 
framework of the Aitchison geometry, this transformation represents the 
data in oblique coordinates, a fact that introduces a new difficulty to any 
analysis. 

Table 5 
Loadings and vector of the variances of the PBs generated by O, C, and W hi-
erarchical clustering (defined in Section 3.3). The PB order is based on the 
variances.   

O1 O4 O2 O5 O3 

Au 0.87 0.00 − 0.22 0.00 − 0.18 
Ag 0.00 0.00 0.00 0.00 0.91 
As − 0.29 0.41 − 0.22 0.71 − 0.18 
Sb − 0.29 0.41 − 0.22 0.71 − 0.18 
Te 0.00 0.00 0.89 0.00 − 0.18 
W − 0.29 − 0.82 − 0.223 0.00 − 0.18 
Var. 1.39 0.65 0.48 0.29 0.25 
% cum. var. 45.48 66.68 82.53 91.85 100.00    

C1 C4 C3 C2 C5 

Au − 0.87 0.00 − 0.18 − 0.22 0.00 
Ag 0.00 0.00 − 0.18 0.89 0.00 
As 0.29 − 0.41 − 0.18 − 0.22 − 0.71 
Sb 0.29 − 0.41 − 0.18 − 0.22 0.71 
Te 0.00 0.00 0.91 0.00 0.00 
W 0.29 0.82 − 0.18 − 0.22 0.00 
Var. 1.39 0.65 0.44 0.29 0.29 
% cum. var. 45.48 66.68 81.07 90.67 100.00    

W1 W2 W3 W4 W5 

Au 0.91 0.00 0.00 0.00 0.00 
Ag − 0.18 − 0.37 − 0.41 0.00 0.71 
As − 0.18 0.55 0.00 0.71 0.00 
Sb − 0.18 0.55 0.00 − 0.71 0.00 
Te − 0.18 − 0.37 − 0.41 0.00 − 0.71 
W − 0.18 − 0.37 0.82 0.00 0.00 
Var. 1.36 0.68 0.48 0.29 0.26 
% cum. var. 44.35 66.50 82.31 91.64 100.00  
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Fig. 4. Covariance biplots and eigenvector plots of RPCA applied to ilr-data (70.2 % explained variance).  
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3.4. Principal component analysis (PCA) and its robust version (RPCA) 

One of the most significant and commonly used dimension reduction 
models in multivariate analysis is PCA. Such dimension reduction 
models provide a simple and easy overview of the whole data set, i.e., if 
a big number of elements are available to review, a limited number of 
representative factors are provided by such models (Reimann, 2005). 
This results in a straightforward statistical analysis. PCA is based on 
variance-covariance matrices, and it is extremely sensitive to the 
available data and particularly to extreme values such as outliers. 
Therefore, their results could be highly biased if the raw data with 
retained outliers is evaluated (Zuo et al., 2013; Nazarpour et al., 2015; 

Sadeghi, 2020). To diminish the outliers' side effects on the PCA results, 
RPCA was developed (Filzmoser et al., 2009). It needs to be applied to ilr 
values (Egozcue et al., 2003) as the covariance matrix is not necessarily 
singular. RPCA works based on the minimum covariance determinant 
estimator (MCD) rather than the classic covariance matrix. 

In the following, a number-size (N-S) multifractal model is consid-
ered to study the geochemical patterns via modelling PCA and RPCA of 
clr and ilr transformed data. Data was processed using CoDaPack and 
ioGAS v.7.4 in addition to an R code developed by Martín-Fernández 
et al. (2017). which is available in the R-package zCompositions. 

4. Discussion and results 

Here, to avoid the closure effect of the data, PCA was applied to the 
clr transformed data, and RPCA was applied to ilr transformed data of 
Au, Ag, As, Sb, Te and W, as the specific elements in orogenic gold 
mineralization (Tables 3 and 4; Figs. 2 and 3), with the aim of demon-
strating the higher efficiency of the latter one in case a sub-composition 
(a group of elements, i.e., a commodity among the whole available el-
ements) is studied (Figs. 1 and 3). Fig. 2 shows that the Q-Q plot of PC1- 
PC2 and RPC1-RPC2 pairs are almost identical. This is a sign of similar 
distribution of the two pairs. At the first sight, it is expected to see 

Table 6 
Thresholds obtained by number-size fractal model applied to PC1 and RPC1.   

PC1 RPC1 

Background <0.09 <0.17 
Weakly Anomalous 0.09 − 0.59 0.17 − 0.66 
Moderately Anomalous 0.59 − 1.0 0.66 − 1.70 
Strongly Anomalous 1.0 − 2.19 1.70 − 4.83 
Very Strongly Anomalous 2.19 − 4.88 −

Fig. 5. Number-size fractal modelling applied to a) PC1 and b) RPC1.  
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similar maps and outputs derived from PCA and RPCA variables. 
The biplots of the first couple of clr PCs (i.e., PC1 with explained 

variance 46.19 % and PC2 with cumulative explained variance 69.61 %; 
Table 3) demonstrates positive loading of clrAu, but negative loadings of 
clrAg, clrAs, clrTe, clrSb and clrW for PC1, in addition to the positive 
loadings of clrAg and clrW and negative loadings of clrAu, clrAs, clrSb, and 
clrTe for PC2 (Fig. 3). 

The biplots of the couple of ilr RPCs (i.e., PC1 with 46.75 % explained 
variance and PC2, explaining jointly 70.23 % of the variance; Table 4) 
show that in PC1, ilr1, ilr2 and ilr3 have positive loadings, and ilr4 and 
ilr5 have negative loadings; also in PC2, only ilr2 is positive and the rest 
of the ilrs are negative. 

Based on Table 5, O1 indicates that the maximum variability in the 
data corresponds to the relative proportion of Au compared to As, Sb, 
and W, followed by O4 reflecting the relative proportion of W compared 
to As and Sb, and similar for the others. Note that O1 and C1 are the 
same, only the sign is changed, which does not affect the interpretation; 
same for O4 and C4. O3 and C3 are similar, but the role of Ag and Te is 
exchanged, same as in C2 and O2. O5 and C5 are again identical except 
for the sign (Fig. 4). 

The clrAu ray separation from the other rays clearly demonstrates the 
most widespread features which are the Au primary hosts in Sweden. To 
help with better imagination of the relevant anomalies, the spatial dis-
tribution maps were generated based on PC1 and RPC1, and then clas-
sified using N-S multifractal model (Tables 5 and 6 and Figs. 5 and 6). 

Fig. 6 demonstrates that PCA applied to clr looks similar to RPCA 
applied to ilr in the definition of the orogenic gold anomalies in Northern 
Norrbotten and Bergslagen. This is also the same in Skellefte and 

Jämtland. Moreover, it is evident that no very strong anomalous zone is 
introduced by the RPCA, while the PCA demonstrated sparse very strong 
anomalous zones in the south, center, and north of the map. Another 
visible result is that the RPCA map delivers proportionally smaller 
anomalous zones in general. 

5. Conclusions 

Mineral exploration, particularly on a regional scale, involves 
handling compositional data with a multitude of components. Effec-
tively representing geochemical data necessitates employing dimension 
reduction techniques, such as PCA, while also translating them into 
coordinates applicable in real space. In this research, we employed PCA 
on clr transformed data derived from till geochemical samples 
throughout Sweden. A challenge arises from the inherent singularity of 
the covariance matrix in clr-transformed data, rendering robust versions 
of PCA inapplicable. The reason for the clr not constituting an ortho-
normal coordinate system is that the sample space of CoDa is D-1 
dimensional and there are D clr components; so, there is one more than 
needed. To address this, an ilr transformation is employed, supple-
mented by SBP to define balances. The SBP is tailored to incorporate 
pathfinder elements indicative of orogeny gold. To discriminate the 
anomalous areas and background, the N-S multifractal model was 
applied. The results exhibit that while RPCA identifies anomalous zones 
more accurately, PCA and RPCA converge in highlighting almost similar 
regions. It can be inferred that for regional geochemical data represen-
tation, both PCA and RPCA yield analogous maps. However, their 
applicability might vary on a local scale or under different sampling 

Fig. 6. Number-size fractal model classified maps based on a) PC1 and b) RPC1. The samples are categorized in five and four classes based on the model applied to 
PC1 and RPC1, respectively. It is notable that RPC1 map shows no very strong anomalous zones while the PC1 map indicates very strong anomalies. Moreover, ilr 
suggests relatively smaller strong anomalous areas, especially in the north part of the map. 
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densities. This study underscores the need for additional research to 
achieve optimal representation of compositional data in scenarios 
involving local scale analysis or sparse sampling. 
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Egozcue, Pawlowsky-Glahn, 2019a. Compositional data: the sample space and its 
structure. TEST 28 (3), 599–638. 

Egozcue, Pawlowsky-Glahn, 2019b. Rejoinder on: compositional data: the sample space 
and its structure. TEST 28 (3), 658–663. 

Egozcue, J., Pawlowsky-Glahn, V., 2023. Subcompositional coherence and a novel 
proportionality index of parts. SORT 47 (2), 229–244 (DOI: 10.57645/ 
20.8080.02.7).  

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barcelo-Vidal, C., 2003. 
Isometric logratio transformations for compositional data analysis. Math. Geol. 35, 
279–300. 

Egozcue, J., Pawlowsky-Glahn, V., Cheng, Q., 2015. Compositional approach to mineral 
singularity assessment. In: Proceedings of IAMG'2015. 

Egozcue, J.J., Pawlowsky-Glahn, V., Molayemat, H., 2019. Correlations, 
subcompositional coherence, and misinterpretations. In: Proceedings of IAMG’2019, 
The 20th Annual Conference of the International Association for Mathematical 
Geosciences. 

Eilu, P., 2012. Mineral deposits and metallogeny of Fennoscandia. In: Geological Survey 
Finland Special Paper 53. 

Filzmoser, P., Hron, K., Reimann, C., Garrett, R., 2009. Robust factor analysis for 
compositional data. Comput. Geosci. 35, 1854–1861. 

Foody, G., 1997. Fully fuzzy supervised classification of land cover from remotely sensed 
imagery with an artificial neural network. Neural Comput. & Applic. 5, 238–247. 

Gallo, M., Buccianti, A., 2013. Weighted principal component analysis for compositional 
data: application example for the water chemistry of the Arno river (Tuscany, 
Central Italy). Environmetrics 24, 269–277. 

Greenacre, M., 2010. Logratio analysis is a limiting case of correspondence analysis. 
Math. Geosci. 42, 129–134. 

Greenacre, M., 2018a. Compositional Data Analysis in Practice. Chapman and Hall/CRC 
(136 p.).  

Greenacre, M., 2018b. Variable selection in compositional data analysis, using pairwise 
log-ratios. Math. Geosci. 51, 649–682. 

Grunsky, E., de Caritat, P., 2020. State-of-the-art analysis of geochemical data for 
mineral exploration. Geochem.: Explor., Environ., Anal. 20 (2), 217–232. 

Grunsky, E., Kjarsgaard, B., 2016. Recognizing and validating structural processes in 
geochemical data. In: Martn-Fernández, J.A., Thió-Henestrosa, S. (Eds.), 
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