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A B S T R A C T

Objective: Segmentation of brain sulci in pre-term infants is crucial for monitoring their development. While mag-
netic resonance imaging has been used for this purpose, cranial ultrasound (cUS) is the primary imaging tech-
nique used in clinical practice. Here, we present the first study aiming to automate brain sulci segmentation in
pre-term infants using ultrasound images.
Methods: Our study focused on segmentation of the Sylvian fissure in a single cUS plane (C3), although this
approach could be extended to other sulci and planes. We evaluated the performance of deep learning models,
specifically U-Net and ResU-Net, in automating the segmentation process in two scenarios. First, we conducted
cross-validation on images acquired from the same ultrasound machine. Second, we applied fine-tuning techni-
ques to adapt the models to images acquired from different vendors.
Results: The ResU-Net approach achieved Dice and Sensitivity scores of 0.777 and 0.784, respectively, in the cross-
validation experiment. When applied to external datasets, results varied based on similarity to the training
images. Similar images yielded comparable results, while different images showed a drop in performance. Addi-
tionally, this study highlighted the advantages of ResU-Net over U-Net, suggesting that residual connections
enhance the model’s ability to learn and represent complex anatomical structures.
Conclusion: This study demonstrated the feasibility of using deep learning models to automatically segment the
Sylvian fissure in cUS images. Accurate sonographic characterisation of cerebral sulci can improve the under-
standing of brain development and aid in identifying infants with different developmental trajectories, potentially
impacting later functional outcomes.
Keywords:
Pre-term infants
Brain sulci
Sylvian fissure
Segmentation
Deep learning
Ultrasonic imaging
mputer Vision and Robotics, University of Girona, Campus Montilivi, Ed. P-IV17003, Girona, Catalunya, Spain
(M. Regalado), nuria.carrerasb@sjd.es (N. Carreras), christian.mata@upc.edu (C. Mata), aoliver@eia.udg.edu (A.
sjd.es (T. Agut).

6
ccepted 15 November 2024

vier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. This is an open access article under
ses/by/4.0/)
Introduction

In the second half of pregnancy, the fetal brain goes through major
developmental processes. Cerebral volume increases sixfold from weeks
21 to 38 of gestational age (wGA) and the smooth surface of the fetal
brain undergoes a folding process that gives rise to the cerebral sulci
and gyri [1]. This gyrification process takes place in a chronologically
predictable manner, and at the end of gestation the distinctive convo-
luted pattern of the human brain is already perceptible. This folding pro-
cess shows fast progression from 25 to 35 wGA and starts to decline after
term birth [2]. If we consider that premature birth can happen as early
as 22−23 wGA, the importance of the first weeks of life for these infants
becomes apparent. Premature infant brain development presents a
unique challenge to clinicians and researchers, as its occurrence in
extra-uterine conditions may impact brain maturation during a critical
period of development. Up to 50% of very pre-term infants will show
impaired neurological outcomes, and in a non-neglectable number of
them brain damage is not identifiable using conventional neuroimaging
studies [3]. Recent research suggests that brain dysmaturation may be
the underlying substrate of some neurological deficits observed in chil-
dren born pre-term. Information about ways to assess such dysmatura-
tion is largely lacking and mostly limited to magnetic resonance
imaging (MRI) studies [4,5].

It has been shown that specific brain sulci and gyri are related to
functional development [6,7], and that pre-term infants show alterations
in sulcal patterns [8−13]. However, spatiotemporal details on pre-term
dysmaturation and its functional impact still harbour unresolved ques-
tions. The first step in being able to identify an altered folding process is
to map the “normal” developing brain. For this reason, research regard-
ing pre-term brain segmentation is becoming of particular interest
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[14,15]. Most authors use MRI due to its high resolution, although it has
inherent limitations for performing sequential studies. In contrast, cere-
bral ultrasound (cUS) is the most common imaging modality used in
neonatal units due to ease of use in a sequential and cost-effective man-
ner, although, as image quality is lower, the segmentation of structures
becomes more challenging. However, the possibility of performing
sequential examinations makes it of great use for studying the gyrifica-
tion process in pre-term infants in vivo.

To address this issue, we aimed to generate a weekly atlas of brain
maturation using cUS images. In order to accomplish this, segmentation
of the main cerebral sulci was required. During the first attempt at atlas
generation, a semi-automatic sulci segmentation tool was developed
[16]. This tool employed traditional image-processing methods such as
K-means, active contour and thresholding to perform the segmentation
task. However, the process of segmenting the different sulci using this
application still required significant manual intervention, making it
time-consuming and error prone. In addition, recent developments in
deep learning algorithms have surpassed the accuracy of traditional
image-processing algorithms.

This study presents the first attempt at segmenting brain sulci and gyri
in the cUS images of pre-term infants using deep learning-based segmenta-
tion algorithms. To test the feasibility of our approach, we focused on a
single sulcus, the Sylvian fissure, in a single cUS plane (C3). Figure 1a
shows an example of a cUS image of the C3 plane of a pre-term newborn,
while Figure 1b schematically shows the principal sulcus.

To automate segmentation of the Sylvian fissure, we introduced and
analysed different approaches for segmentation, namely the well-known
U-Net [17] and ResU-Net [18] models. These methods were selected
due to their proven effectiveness and robustness in medical image seg-
mentation, particularly in applications requiring high precision at pixel
level, including ultrasound images [19−21]. U-Net in particular is
known for its ability to handle small datasets, which is often a constraint
in medical imaging studies, while maintaining reliable performance.
Although more recent architectures have been developed, the primary
goal of this work was to address a novel problem, i.e., brain sulci seg-
mentation in ultrasound images, which had not been previously
explored. Given the complexity and novelty of this task, we prioritised
the use of well-established methods with a track record of success in sim-
ilar medical imaging challenges to ensure accuracy and interpretability.

These techniques were evaluated quantitatively with a dataset created
in this study and validated by two clinical experts in the field. Further-
more, images external to the original dataset were segmented to evaluate
Figure 1. (a) C3 cranial ultrasound plane of a pre-term infant showing the main prin
sulcus; lf, lateral or Sylvian fissure; scs, sulcus circularis superior; sci, sulcus circular
occipitotemporalis; scoll, sulcus collateralis. (b) Anatomic references for each plane: c
c4, fourth ventricle; c5, choroid plexus; c6, visibility of parieto-occipital sulcus in the
s4, lateral fissure at the bottom of the image.

544
generalisation of the models on a dataset different from the original one;
in particular, a dataset with images of pre-term newborn brains taken
with other US scanners. Fine-tuning techniques were used to segment
these new images, providing a comparative study to evaluate the perfor-
mance of the different configurations used to segment the new images.
Materials and methods

Database

Subjects originated from a prospective, longitudinal cohort of pre-
term infants born in two tertiary neonatal units. Pre-term infants born
before 32 weeks of gestation between January 2019 and June 2020,
without suspicion of genetic disease or major malformations, were eligi-
ble. The original database was constructed from 146 infants, and after
exclusion of 15 infants with intrauterine growth restriction, 44 from
multiple gestation, 4 with relevant brain injury in the first exam and 10
with a C3 plane that did not pass image quality control (the Sylvian fis-
sure was not identifiable in the image), 73 subjects were included for
development of the automatic segmentation model. Written consent
after oral and written information was provided was obtained from all
subjects’ parents. The study was approved by the ethical committee of
the participant hospital.

Ultrasound study protocol included a scan within the first 3 days
of life, followed by weekly scans until discharge or 40 weeks’ gesta-
tional age. For this study, we included all scans performed before
32 weeks of post-menstrual age. Hence, the final number of C3 planes
used in this work was 240, as each subject may have had several
ultrasound scans. All ultrasound images were obtained by a neonatol-
ogist with experience in the field (N.C.) using a My Lab Alpha
(Esaote, Genova, Italy) microconvex probe (4−9 MHz), properly ano-
nymised and stored digitally.
External dataset

In addition to the previous dataset, another dataset of images was used to
evaluate the generalisation of the models. This new dataset consisted of 36
new C3 planes of pre-term infants born from 24 to 31 wGA. These images
were taken using Siemens Acuson S3000 and Canon Applio i700 ultrasound
scanners as opposed to the original images, which were taken with an Esaote
ultrasound scanner.
cipal sulcus. f1, superior frontal sulcus; f2, inferior frontal sulcus; cing, cingulate
is inferior; sts, superior temporal sulcus; sti, inferior temporal sulcus; sot, sulcus
1, orbital border; c2, sphenoidal ridge; c3, foramina of Monro and third ventricle;
inferior tier of the image; s1, midsagittal; s2, lateral ventricles; s3, lateral fissure;



Figure 2. Example of the ultrasound image (left) and its corresponding binary mask of Sylvian sulcus segmentation (right).
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Data pre-processing

Before segmentation of the Sylvian fissure, pre-processing of the
images was carried out. The original images provided by the clinicians
were 800 × 1068 pixels in size, and including labels and tags. During
the pre-processing stage the images were cropped to eliminate those
tags and labels, allowing the segmentation algorithm to focus only on
the neonatal brain. The result of this step produced images of
550 × 868 pixel size.

Ground truth data annotation

In order to both perform training of the deep learning-based segmen-
tation algorithms and evaluate the result of the algorithms, we required
manual segmentation of the Sylvian sulcus. To create the manual seg-
mentation masks for the 240 images, we used the MATLAB graphical
interface “Image Segmenter” (Image Processing Toolbox, v. R2022b,
The MathWorks Inc., MA, USA). In this interface there is a tool called
Draw ROIs that allows the creation of regions of interest. All segmenta-
tions were validated by two expert clinicians. Figure 2 shows an example
of the ultrasound and its corresponding binary mask. Notice that the Syl-
vian sulcus may appear in both right and left hemispheres (although in
some images only one of the two is visible in the image, as we have
shown in the results section).

Methodology

Deep learning architectures. To perform the segmentation task, we
explored the use of both U-Net and ResU-Net architectures. The U-Net
model has a two-stage U-shaped architecture, with the descending stage
called the encoder and the ascending stage called the decoder. In the
encoder part, convolutions and max-pooling operations are applied to
extract features from the image at the same time as spatial resolution is
reduced, allowing for context capturing. In the decoder stage, trans-
posed convolutions and feature concatenation are used to gradually
increase the spatial resolution and generate a detailed output and pre-
cise localisation of the image mask. The encoder and decoder parts are
joined by the bottleneck, with the bottom transition layer compressing
information before passing it to the expanding path. Skip connections
link corresponding layers in the encoder and decoder paths, ensuring
the transfer of fine-grained details for accurate segmentation.

The ResU-Net model is a variant of the U-Net model that uses resid-
ual connections to improve gradient propagation during training. These
residual blocks are used in both encoder and decoder parts, as well as in
the bottleneck. These residual blocks allow information to flow directly
through connection hops, avoiding degradation problems during deep
network training. Each residual block in ResU-Net consists of two convo-
lutional layers followed by normalisation and activation layers. In addi-
tion to the residual blocks, there is another difference between the
U-Net and the ResU-Net models implemented in our work. While the
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U-Net model uses a ReLU activation layer in the final output, the ResU-
Net model uses a Softmax activation layer in the channel dimension.
This allows generation of a segmentation output with a smoother proba-
bility distribution instead of simply a binary mask. In summary, the
ResU-Net model allows for more parameters and layers compared with
the classical U-Net model. This is due to the introduction of residual
blocks, which allow the capture of more complex features and higher
level representations.

Figure 3 shows a scheme of the U-Net and ResU-Net models used in
this study, detailing the number of levels and the size of each convolu-
tional step.

Fine-tuning. It is well known that deep learning algorithms show a
drop in performance when testing images acquired with a different scan-
ner machine to the one(s) used in training. Fine-tuning strategies help to
adapt a pre-trained model to the specific characteristics and nuances of
the new data domain. Fine-tuning also allows the model to adjust its
parameters through continued training on the new data, aligning its rep-
resentations and predictions with the target dataset. This process ena-
bles the model to leverage its prior knowledge while also
accommodating the idiosyncrasies of the specific data it will be applied
to, ultimately enhancing its performance, generalisation and applicabil-
ity to the task at hand.

In this work we explored the use of fine-tuning our previous models
trained with the in-house data and evaluated their performance using
the external dataset acquired with different scanners. For the fine-tuning
phase, the full U-Net/ResU-Net models were retrained using a small sub-
set of images from the second dataset. This process involved adjusting
the pre-trained model, which was initially trained on a large dataset,
with a limited number of new examples. To facilitate gradual and stable
adaptation, the learning rate was reduced by a factor of 10 during this
phase, where all the network parameters were updated. This approach
allowed effective fine-tuning of the model to better align with the new
dataset while preserving knowledge gained from the initial training.
The combination of using a smaller dataset and a lower learning rate
ensured precise adjustments and maintained stability throughout the
training process.

Evaluation. The metrics used for evaluating the results of Sylvian
fissure segmentation were the dice similarity co-efficient (DSC) and sen-
sitivity. DSC measured the similarity between predicted and ground
truth segmentations, indicating how well the model captures the overall
shape and overlap. Sensitivity evaluated the proportion of actual posi-
tives correctly identified by the model, reflecting its ability to detect
true segmented pixels.

Paired t-tests were done to compute the statistical significance of the
results. A p-value less than 0.05 was considered significant.

Implementation details

Both models were trained individually. The training process involved
running the models for a maximum of 100 epochs, with a patience of 10



Figure 3. U-Net and ResU-Net architectures used for Sylvian fissure segmentation in pre-term infants. The difference between both architectures is the use or not of
residual blocks in the grey-coloured blocks.

Table 2
Results of the U-Net and ResU-Net models when testing the independent dataset

U-Net ResU-Net

DSC Sensitivity DSC Sensitivity
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epochs. The learning rate for optimisation was set at 0.0001 using the
Adam optimiser. To implement the models the PyTorch Lightning
library was utilised, with PyTorch serving as the underlying framework.
All experiments were conducted on a server equipped with a single NVI-
DIA GeForce GTX 1080 GPU.
Independent test 0.710 ± 0.079 0.706 ± 0. 079 0.777 ± 0.072 0.784 ± 0. 090

DSC, dice similarity co-efficient.
Experimental evaluation

In-house dataset

For evaluating the performance of deep learning methods, we trained
the nets using a cross-validation approach and validated them in an
independent set. We therefore divided the dataset into two disjointed
parts of 204 images for training and 36 for testing. Subsequently, we
divided the training data into 6 different folds, each containing 34
images. In the cross-validation strategy, 5 folds where used for training
and the remaining fold was used for validation. This process was
repeated 6 times, each time using a different part for validation. Finally,
the results were averaged to obtain an overall evaluation of the model’s
performance. Notice that we ensured that images of the same patient
were assigned to the same partition.

To provide an example of the training results, Table 1 presents the
results obtained by the ResU-Net model during the six-fold cross-valida-
tion of each fold. We can see that the results are similar and stable dur-
ing each fold, therefore suggesting that the model was not heavily
overfitted to any specific subset of the training data, and its predictive
ability was relatively uniform across the entire dataset.
Table 1
Results of the six-fold cross-validation
when ResU-Net model is tested.

DSC Sensitivity

Fold 1 0.791 ± 0.076 0.775 ± 0.101
Fold 2 0.774 ± 0.070 0.783 ± 0.085
Fold 3 0.793 ± 0.073 0.799 ± 0.088
Fold 4 0.786 ± 0.075 0.777 ± 0.100
Fold 5 0.792 ± 0.069 0.790 ± 0.078
Fold 6 0.774 ± 0.070 0.783 ± 0.085

Each fold has 34 testing images.
DSC, dice similarity co-efficient.
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Table 2 shows the results obtained for both U-Net and ResU-Net
models when testing the deep learning architectures in the independent
dataset of 36 images. Notice that testing the performance in a dataset
not used during training was critical for unbiased validation. In general,
the results showed good performance, although the ResU-Net results
were significantly better (p = 0.017) than that obtained by U-Net. In
addition, in both models we obtained similar results for both DSC and
sensitivity. This indicates that our model demonstrated a good balance
between detecting true positives and the overall accuracy of the segmen-
tation, showing that the model not only successfully identified most of
the positive areas (high sensitivity), but also that these predicted areas
closely matched the actual areas (high DSC). In other words, the model
accurately segmented in terms of both coverage and spatial precision.

Figure 4 shows some qualitative results. The first column showcases
the original pre-processed images, while the second column shows a
zoomed-in view of the original plane focused on the region of interest,
the Sylvian fissure. The third column shows the ground truth, while the
fourth and five columns present the automated Sylvian fissure segmenta-
tion obtained by U-Net and ResU-Net, respectively. Both algorithms
were able to detect the Sylvian fissure in all images, although ResU-Net
achieved more consistent segmentation. However, in Figure 4f both
algorithms produced a false positive at the location where the Sylvian
fissure should have been but did not appear in the original image.

External dataset

In this experiment we explored the ability of the algorithm to seg-
ment similar images acquired with a different imaging scanner. Using a
testing set of seven different images, we performed three different tests:

� Segmenting the new images directly with the ResU-Net model
trained with the in-house dataset;



Figure 4. Example of Sylvian fissure segmentation of eight differ-
ent cranial ultrasound images acquired using the same machine as
the images used for training the deep learning models.

M. Regalado et al. Ultrasound in Medicine& Biology 51 (2025) 543−550
� Fine-tuning the models using a small part of the new images;
� Training from scratch a new model using most of the new images (29
images, excluding the testing ones).

Table 3 shows the results of the three experiments, again in terms of
DSC and sensitivity. When directly using the model trained with the in-
house dataset, the results indicated that the model was able to detect the
region where the Sylvian fissure was located in almost all images (except
image 2). However, in some images sensitivity was significantly lower than
DSC, indicating a larger number of false positives. These results are also
graphically shown in Figure 5, where we can see that in some cases the
resulting segmentation was rather inadequate, leading to poorer outcomes
when compared with segmentations achieved using the original dataset.

The results obtained while fine-tuning the previous model and while
retraining the full ResU-Net are also shown in Table 3. In all cases, fine-
tuning the model or retraining it achieved better performance than the
direct test. In addition, the fine-tuning strategy obtained better results
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than retraining all the models, likely due to the small number of images
used during retraining. The superior performance of the fine-tuning
strategy can be qualitatively seen in Figure 5. Interestingly, the algo-
rithms were able to detect that there was only one Sylvian fissure visible
in Image 3.

Regarding performance based on the vending machine, the results
obtained with images acquired using the Siemens machine were much
better than those acquired from the Canon machine. In Figure 5, we can
see that the appearance of the Siemens images were more similar to the
training images (Fig. 4) than the Canon images, which had lower bright-
ness and a different field of view. In both cases, however, the fine-tuning
strategy allowed us to improve segmentation performance.

Discussion

In this work we demonstrated the feasibility of deep learning
approaches for brain sulci segmentation in ultrasound images used in



Table 3
Results obtained by the ResU-Net model when testing the external dataset.

Direct test Fine-tuning Retraining from scratch

DSC Sensitivity DSC Sensitivity DSC Sensitivity

Image 1 (Canon) 0.491 0.369 0.706 0.652 0.505 0.377
Image 2 (Canon) 0.021 0.015 0.452 0.331 0.337 0.234
Image 3 (Canon) 0.603 0.693 0.771 0.767 0.631 0.528
Image 4 (Canon) 0.289 0.226 0.605 0.487 0.615 0.501
Image 5 (Siemens) 0.566 0.426 0.726 0.638 0.649 0.613
Image 6 (Siemens) 0.704 0.638 0.762 0.719 0.710 0.623
Image 7 (Siemens) 0.459 0.396 0.643 0.606 0.543 0.594

DSC, dice similarity co-efficient.

Figure 5. Segmentation results from external dataset images. Images 1−4: Canon scanner; images 5−7: Siemens scanner.

M. Regalado et al. Ultrasound in Medicine& Biology 51 (2025) 543−550
clinical practice as well as tested the use of U-Net and ResU-Net for this
task. Both models demonstrated the ability to detect the Sylvian fissure
structure, indicating that they were successful at capturing desired ana-
tomical features. Figure 4 qualitatively shows the performance of both
algorithms, obtaining correct segmentation results in almost all images.

However, the segmentations produced by ResU-Net appeared to be
more continuous and smooth, indicating better preservation of the
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structural coherence of the Sylvian fissure. In contrast, U-Net segmenta-
tions exhibited more fragmented and irregular boundaries, which was
reinforced by looking at the results of Table 2, where ResU-Net consis-
tently obtained better DSC and sensitivity values in all images. These
findings support the idea that incorporating residual connections in the
U-Net architecture is able to improve the ability of the model to learn
and represent complex anatomical structures with greater results.
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Table 1 reaffirms these results, as it presents the outcomes of six-fold
cross-validation using the ResU-Net model, showing robustness and con-
sistently delivering accurate and reliable segmentations across the dif-
ferent folds. Furthermore, it is worth highlighting that ResU-Net
demonstrated a reduced number of false-positive regions and detected
fewer smaller regions that were incorrectly labelled as part of the Syl-
vian fissure. This indicates that ResU-Net has a better ability to discrimi-
nate and focus on accurately capturing the desired structure while
minimising false detections.

In addition, we tested the generalisation results obtained when test-
ing images acquired from different cUS vendors. Our results showed dif-
fering behaviour depending on the vendor. For the Siemens images, the
obtained results were only slightly worse than those obtained when test-
ing the same dataset. However, the results from the Canon images were
definitively worse, and even failed to detect the Silvian sulcus in some
images. By visually comparing the images, we noticed that images
acquired using Canon ultrasound equipment were visually very different
from the original dataset images compared with images acquired using
the Siemens equipment.

To improve our results, retraining and fine-tuning strategies with
additional images from the two vendors were employed. Fine-tuning
strategies showed superior performance to retraining the models, likely
due to the small amount of data. Thanks to the fine-tuning process, the
algorithm successfully detected the position of the Sylvian fissure in all
images and enhanced the segmentation of structures that were already
well-segmented even without fine-tuning. We performed the fine-tuning
experiment using different sets of images (1, 3, 5, 10, 20 and 29), and
our results showed that from 10 images onward the network successfully
adapted to the new data, yielding consistent outcomes with no statisti-
cally significant differences. However, when using fewer than 10
images, performance decreased. We also found that fine-tuning with a
smaller subset of images mitigated the risk of catastrophic forgetting,
preventing the model from overfitting to the new domains and preserv-
ing its performance in the original domain. Moreover, the improved
computational efficiency achieved by reducing training time enabled us
to refine the model without the need for extensive manual annotations.
This approach is particularly relevant in scenarios where acquiring and
annotating new data is difficult or expensive. Nevertheless, it is impor-
tant to note that the segmentations still did not achieve the same level of
accuracy as those obtained in images from the original dataset. In Image
2, the algorithm failed to segment the Sylvian fissure as a single uniform
region and instead divided it into two separate regions. Additionally,
small regions were detected that were not part of the ground truth.
These findings indicate that there are remaining challenges in achieving
optimal segmentations in these specific cases. Despite these limitations,
the fine-tuning process proved to be effective at improving segmenta-
tions, enabling the algorithm to detect the position of the Sylvian fissure
in all test images.

Segmenting the pre-term brain has gained increased interest in the
last decade. Great advances have been made in the field using MRI, and
segmentation of the sulci and gyri, as well as the quantification of prop-
erties such as tortuosity and depth, have become a reality in the research
setting [22−24]. However, as far as we know, segmentation of cerebral
sulci using ultrasound images has not been reported before. If we con-
sider that there is a link between sulcal pattern and neurological func-
tion, and that the gyrification process takes place during the pre-term
period, mapping the changing pre-term brain constitutes an opportunity
for better definition of the spatiotemporal characteristics of brain gyrifi-
cation to identify shape variants and assess how morphological charac-
teristics affect function. Unlike MRI, cUS facilitates the frequency of
exams required for this purpose.

Our research focused on the Sylvian fissure, which is one of the
major and more characteristic sulci on the surface of the brain. Its con-
formation following frontal and temporal growth, covering the insular
lobe, is unique regarding cerebral sulcal formation [25]. Two different
areas can be distinguished related to the Sylvian fissure. External to it,
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the peri-Sylvian regions are involved in language function, including
speech perception and production [26]. In the depths of the Sylvian fis-
sure lies the insular cortex, which is partially responsible for sensorimo-
tor, socioemotional and cognitive processing [27], all of which are
functions commonly deficient in the pre-term population [28,29].

Moreover, morphological abnormalities of the Sylvian fissure may
indicate post-migrational disorders such as polymicrogyria, which
could be present in metabolic, infectious or genetic diseases [30].
Therefore, automatic segmentation could be useful for identifying
pathological processes. Furthermore, enlargement of the Sylvian fis-
sure may indicate increased subarachnoid spaces, which is a common
feature in the longitudinal evolution of pre-term infants [31,32] and
is often accompanied by microcephaly due to brain atrophy in some,
as well as in the context of macrocephaly in others [33]. Enlarged
subarachnoid spaces have been associated with poor outcomes in
term and pre-term infants [33,34]. Hence, segmentation of the Syl-
vian fissure may allow the study of its morphology in relation to
enlarged subarachnoid spaces and to investigate a possible associa-
tion with neurological delays. Furthermore, structural asymmetries
within the Sylvian fissure have been related to functional lateralisa-
tion in language processing [35,36].

The results of this study open the door to characterise brain-matura-
tion trajectories in pre-term infants in an attempt to identify which kind
of deviation from the standard pathway is linked to altered neurological
functions. cUS appears to be a promising tool for complementing MRI
data, offering the sequential information that is inevitably lacking from
MRI studies.

We would like to remark that the segmentation methods employed in
this study have demonstrated strong performance in the task of brain
sulcal segmentation in ultrasound images. These architectures are well-
established and widely recognised for their effectiveness in medical
image segmentation tasks, providing reliable and interpretable results.
However, it is important to acknowledge that these methods are not the
most recent advances in the field of deep learning-based segmentation.
While newer architectures such as transformer-based models or
advanced attention mechanisms have emerged, our focus was on ensur-
ing robust and interpretable segmentation in this novel application
rather than prioritising the use of the latest algorithms. Future work
may benefit from exploring these more modern approaches to poten-
tially improve performance further.
Conclusion

In conclusion, this study demonstrated the feasibility of deep learn-
ing models for automatically segmenting the Sylvian fissure in cUS
images. In addition, we showed the superiority of the ResU-Net model
over the U-Net model with regard to accuracy. The outcome of this work
contributes to the field of automated brain segmentation in pre-term
infants and emphasises the importance of incorporating deep learning
models with residual connections for accurate and reliable segmenta-
tions. Sonographic characterisation of the cerebral sulci may allow a bet-
ter understanding of brain development as well as be useful for
identifying infants with different trajectories of development, which
could have an impact on later functional development.
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