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Abstract
We study cooperation and group pressure on social networks by introducing a new 
concept termed norm-enforcing ties. By combining network characteristics and 
agents’ actions, direct and indirect norm-enforcing ties extend and refine the concept 
of social ties as well as the role of the tightness of a group as drivers of group pres-
sure and cooperation. The results show that a strong commitment by agents with 
collective interests, or a high degree of confrontation between agents minimizes 
the effect of indirect norm-enforcing ties on cooperation. The analysis in terms of 
the agent’s utility reveals that an increase in indirect norm-enforcing ties does not 
necessarily lead to a decrease in the critical mass of compliers supporting coopera-
tion. We demonstrate that network-oriented policies are more efficient in promoting 
cooperation than are standard economic policy instruments when the expected value 
of direct norm-enforcing ties is sufficiently large compared to the tightness of the 
group. Otherwise, standard economic policy instruments are more efficient.

Keywords Social norms · Social network · Cooperation · Social dilemma · Network-
oriented policies

JEL Classification D85 · D91

1 Introduction

1.1  Motivation

In the presence of a social dilemma, social norms of cooperation may emerge as 
informal enforcement mechanisms that place collective interests above individual 
interests (Elster 1989; Bicchieri 2010; Nyborg 2018). The emergence and prevalence 
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of such norms cannot be understood without considering the underlying social net-
work structure and reciprocity rules (Granovetter 1973; Young 2015; FeldmanHall 
et al. 2018). The decision to cooperate is often voluntary, especially if it is techni-
cally infeasible or if costs are too high to rely on formal enforcement policies, such 
as fines or subsidies. In such cases, group pressure plays a crucial role in promoting 
cooperation so that agents comply with norms to avoid their group’s disapproval 
(Akerlof 1997; Fehr et al. 2002; Ali and Miller 2016; Bicchieri 2016; Gätcher et al. 
2017). The key element that distinguishes this study from the existing literature is 
that it considers the structure of the social network and the behavior of agents to 
explain sustained cooperation. It departs from the observation that the existing liter-
ature has been concerned primarily with describing the relationship between group 
pressure and cooperation based on the social network structure but does not ana-
lyze how the joint profiles of agents’ actions and link structure relate to the strength 
of group pressure and support for cooperation. Thus far, models of group pressure 
have offered little insight into determining the extent to which the consideration of 
the joint profiles of agents’ actions and the links structure between norm-complying 
agents allows agents to increase group pressure by coordinating their effort. Con-
sequently, explaining social norm enforcement by the theory of conformity, where 
pressured agents are induced to match the behavior of pressuring agents (Bernheim 
1994), is likely to be incomplete and may lead to a misspecification of group pres-
sure. Furthermore, additional group-level mechanisms, such as confrontation, can 
potentially amplify specification errors.

The previous literature identified network structure (Axelrod and Hamilton 1981; 
Nowak 2006; Ohtsuki et al. 2006; Calvó‐Armengol and Jackson 2010; Allen et al. 
2017) or the available information about other agents’ behavior (Battigalli and 
Dufwenberg 2007; Chaudhuri 2011; Fehr and Schurtenberger 2018; Harrell and 
Wolff 2023) as an important driver for group pressure. However, previous studies 
have neither developed a modeling approach nor a measure to determine the influ-
ence of these two elements on cooperation. Within the framework of a sequence of 
simultaneous choice games, this paper presents a refinement of the concept of group 
cohesiveness by considering whether agents have demonstrated cooperative or non-
cooperative behavior in the past. For this purpose, this paper presents a new concept, 
termed “norm-enforcing ties”, as a means to analyze group pressure and cooperation 
in social networks, together with its implications for the design of public policies.

1.2  Cooperation within groups: norm‑enforcing ties as an extension of social ties 
and cohesiveness

The economic literature predominantly relies on the “set of dyads” (group size) to 
present social interaction between two agents that cause group pressure (Bramoullé 
et al. 2020; Urschev and Zenou 2020). Dyads are interpreted as avenues for observa-
tion and interaction between agents, for example, the observation of other agents’ 
behavior and peer pressure. Yet, among sociologists—with roots in Simmel and 
Wolff (1950) and Coleman (1988)—it is widely acknowledged that the effective 
enforcement of norms also depends on another characteristic of social networks. 
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This is given by the “set of triads” (group cohesiveness), because it is the third agent 
that allows groups to coordinate actions against norm violations. Group size and 
group cohesiveness take into account all existing social ties within a group, but they 
do not offer a complete understanding of how social norms support the formation of 
cooperation. For example, consider a scenario with a close-knit group comprising 
three agents (closed triad), where one agent ( i ) complies with the norm (complier) 
and the other two ( j and k ) do not (deviators). In this situation, there are two social 
ties, that is two dyads involving agent i that contribute to norm enforcement. The 
triad does not play a role because there is no avenue for coordinating actions against 
deviators. In contrast, in a scenario with two compliers ( i and j ) and one deviator 
( k ), there are three social ties that actively contribute to norm enforcement: the two 
dyads involving agent k and the triad involving agents i and j . Hence, the presence 
of triads is a necessary yet insufficient condition for enhancing the enforcement of 
norms. Along this line, our concept of norm-enforcing ties (Sect. 2.1) differentiates 
between direct norm-enforcing ties (all agents i ’s dyads involve compliers) and indi-
rect norm-enforcing ties (all agents i ’s triads involve two compliers). The measure 
of norm-enforcing ties combines the agents’ actions (compliance with the norm or 
not) with measurable network characteristics (group size and group cohesiveness) 
and allows us to quantify the capacity of compliers to exercise and coordinate group 
pressure on deviators. To analyze the influence of norm-enforcing ties on coopera-
tion, we consider two additional factors that are important for cooperation at the 
group level: the agents’ commitment to the collective interests (Sect. 2.2) and group 
confrontation (Sect. 2.3).

1.3  Scaling up cooperation: from groups to networks

In a recent empirical study, Piskorski and Gorbatâi (2017) not only validated the 
hypothesis that agents embedded in cohesive groups are less likely to deviate from 
the norm but also found that an agent’s norm-complying behavior is reinforced 
when the neighbors1 of that agent are part of cohesive groups that are formed by 
norm-complying neighbors of that agent. The concept of norm-enforcing ties lends 
itself to a theoretical underpinning of this empirical finding, as it allows us to extend 
the analysis of the role of norm-enforcing ties from the group to the network level. 
In this way, we shift the focus of our study from a more variable or fragile topology 
at the group level to a more robust topology at the network level. For this purpose, 
we calculate the expected value and variance of norm-enforcing ties at the network 
level. These statistical metrics allow us to identify the minimum and maximum 
influence of indirect norm-enforcing ties on cooperation for different types of net-
works of any size.

1 The term “neighbor” refers to agents, e.g., family, acquaintances, or friends, whose actions matter for 
agent i  ’s decisions.
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1.4  Outline of our analysis

Based on a socioeconomic model at the group level, we determine the minimum num-
ber of compliers (critical mass) where the deviator’s disutility from group pressure is 
equal to the agents’ threshold in terms of the utility of their private net benefits. In gen-
eral, the level of the critical mass of compliers is less demanding as the tightness of 
indirect norm-enforcing ties increases. We illustrate our main theoretical findings for 
the case of a negative externality (public bad) in Figs. 1, 2, 3 and show that, for any 
group or network, the importance of indirect norm-enforcing ties in affecting agents’ 
thresholds of private net benefits increases with the group cohesiveness of compliers. 
At the network level, we determine the extent to which an increase in the expected 
cohesiveness of the network heightens the expected tightness of indirect norm-enforc-
ing ties. Similarly, we determine the functional relationship between the expected tight-
ness of direct norm-enforcing ties and indirect norm-enforcing ties. Analyzing the sign 
and magnitude of changes in norm-enforcing ties at the network level allows us to 
derive conditions for the design of efficient policies that aim to enhance cooperation. 
We find that policies that promote group cohesiveness are more efficient than those that 
promote direct norm-enforcing ties if the expected tightness of direct norm-enforcing 
ties is at least twice the value of expected group cohesiveness. Conversely, policies 
should focus on increasing direct norm-enforcing ties. Finally, our findings indicate that 
formal enforcement policies are the only efficient policy option for networks with rela-
tively few or many social ties.   

1.5  Organization of the paper

The remainder of this paper is organized as follows. Section 2 presents the theoretical 
framework and underlying assumptions. Section 3 presents the socioeconomic model. 
Section 4 provides a numerical example for identifying thresholds and equilibria. Sec-
tion 5 analyzes the influence of norm-enforcing ties on individual decision-making and 
presents graphical illustrations of the main results. Section  6 analyzes the tightness 
of norm-enforcing ties at the network level and discusses the implications for policy 
design. Section 7 concludes.

2  Theoretical framework and assumptions

This section presents the concepts, building elements, and measures used to study 
cooperation in social networks. It focuses on promoting and impairing factors of coop-
eration at the group level and justifies the underlying assumptions of the modeling 
approach.
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2.1  Norm‑enforcing ties: concept, building elements, and measure

2.1.1  Concept of norm‑enforcing ties

Consistent with previous research (Shweder et  al. 1997; Tomasello 2016; Yudkin 
et  al. 2021), we interpret norm-enforcing ties as agents’ interactions that increase 
their perceived obligation to realize an action, such as cooperation in social dilem-
mas. Norm-enforcing ties are related to expectations shared by groups: the greater 
the tightness of the norm-enforcing ties within a group, the more agent i ’s neighbors 
expect cooperation from agent i . Norm-enforcing ties emerge and spread through 
interactions between agents. They may take the form of an implicit informal contract 
between group members that encourages the subordination of agents to collective 
interests.

2.1.2  Group size and group cohesiveness

Group size and group cohesiveness measure the total number of dyads and triads 
agent i has, respectively. Social networks are formally represented by g = (V , L) , 
where V ∶ {1, ..., n} is the set of agents and L is the set of links (dyads) among 
them. The elements in set L consist of the values of the indicatrix link func-
tion � ∶ V × V → {0, 1} , where �ij ∈ {0, 1} indicates whether any pair of agents 
(i, j) ∈ V  are neighbors, �ij = 1 , or not, �ij = 0 . Agent i ’s group is defined by their2 
neighbors and is denoted by Ni(g) =

{
j ∈ V�{i} ∶ �ij = 1

}
 . The size of the group is 

given by ki = ||Ni(g)
|| ∈ [1, n − 1].3

Economic theory focuses mainly on dyads to study cooperation in social net-
works (Bramoullé et al. 2020). In contrast, sociological theory also considers group 
cohesiveness, since this concept helps identify the mechanisms by which dyads are 
affected by triads at the group level, such as impartial mediation (Simmel and Wolff 
1950) or the formation of coalitions (Caplow 1969). For example, in a triad, a form 
of coalition interaction emerges when two agents (the majority) request cooperation 
from a third agent (the minority) under the threat of group pressure (Miller 2007). 
The cohesiveness of agent i ’s group depends on its total number of triads, mi , which 
is defined by.

where m
i
= 0 occurs when agent i ’s neighbors cannot interact at all, for example, 

agent i ’s group has the form of a star, and mi =
(
ki
(
ki − 1

))
∕2 occurs when agent 

i ’s neighbors form a completely cohesive group so that every neighbor can interact 

(1)mi =
|||
{
�uv ∶ u, v ∈ Ni(g),�uv = 1

}||| ∈
[
m

i
,mi

]
,

2 Instead of binary male–female pronouns, we use the plural form.
3 A gentle introduction into social networks and economic behavior is given by Jackson et al. (2017) and 
a more rigorous introduction by Jackson (2010).
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with all other neighbors. Group cohesiveness is measured by the individual cluster-
ing coefficient4 (Jackson 2010) that is defined as.

(2)�i =
mi

mi

∈ [0, 1].

Fig. 1  Norm-enforcing ties as an extension of social ties and cohesiveness. The green circles and red 
squares represent agent i’s (  j′s ) neighbors, who are compliers and deviators, respectively. Norm-enforc-
ing ties are represented by a continuous line (green), whereas the remaining social ties are represented 
by a discontinuous line (red). In Panel A, agent i  has three direct norm-enforcing ties and one indirect 
norm-enforcing tie. In Panel B, agent j has three direct norm-enforcing ties, and no indirect norm-enforc-
ing ties

Fig. 2  Effects of indirect norm-enforcing ties on the location of the critical mass of compliers, C∗
i
 . The 

solid black line represents the sum of the deviator’s extra benefits and the pressuring costs. The dashed 
orange and dotted-dashed blue lines represent group pressure when Ii is maximal and minimal, respec-
tively. The vertical dotted blue and orange lines represent the locations of C∗

i
 when Ii = 0 and Ii = 1 , 

respectively

4 Other statistical measures of cohesiveness can also be found in the literature (Jackson 2010, Jackson 
et al. 2012) but they either do not relate to agent i’s group or they are not based on closed triads.
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It indicates the total number of triads with respect to the maximum number of 
triads within agent i ’s group. In the remainder of the paper, we maintain the term 
“cohesiveness” as it describes the idea of tightness of the group more intuitively 
than the term “clustering.

2.1.3  Actions: individual versus collective interests

Let a community consist of n ∈ ℕ identical agents, whose action profiles are 
denoted by the vector � =

(
ai
)
1≤i≤n

∈ ℝ
n
≥0 . For analytical convenience, and with-

out loss of generality, let agents face a binary choice between their actions, such 
that ∀i ∈ V , ai ∈ {0, 1} . The action ai = 0 (complier) indicates that agent i adheres 
to the social norm, while ai = 1 (deviator) indicates that agent i deviates from it. 
Each agent i receives private benefits from individual actions, ai ∈ ℝ≥0 , and suffers 

Fig. 3  Effects of indirect norm-enforcing ties on the location of C∗
i
 . The solid black line represents the 

sum of the normalized deviators’ extra benefits and the pressuring costs. The dashed orange and dotted-
dashed blue lines represent group pressure when Ii is maximal and minimal, respectively. Vertical dashed 
black lines represent the locations of C∗

i
 when Ii = 0 and Ii = 0.34 , respectively. The parameter values are 

S = 2 , �1 = 10 , �2 = 5 , �3 = 0.3 , �i
(
ki
)
= 1, v0 = 0.35 , and v1 = v2 = 0
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economic losses from a negative externality in the form of a public bad as a result 
of the aggregate actions of all agents, A =

∑n

i=1
ai.5, 6. For example, the public bad 

may originate from the agents’ action in form of air or water pollution, noise, self-
medication with antibiotics (thereby creating resistance), light contamination, or 
congestion of public infrastructure. The net benefits of agent i include the costs of 
the negative externality and are denoted by �i

(
ai,A

)
 , where �i ∶ ℝ

2
≥0 → ℝ is a con-

tinuous, twice differentiable, and strictly concave function with 𝜕𝜋i
/
𝜕ai > 0 and 

𝜕𝜋i
/
𝜕A < 0. We assume that the agents’ net benefits are anonymous and social wel-

fare is given by the sum of individually separable net benefits, that is, W =
∑n

i=1
�i.

Let ai = 0 and ai = 1 denote agent i ’s actions that uniquely maximize private net 
benefits and social welfare (collective interest), respectively. As described widely in 
the literature (Cornes and Sandler 1996; Chaudhuri 2011; Baldassarri 2015) the pres-
ence of a public bad leads to a social dilemma that for ∀i ∈ V  and any A can be char-
acterized at the individual level by 𝜋i

(
ai = 0,A

)
< 𝜋i

(
ai = 1,A

)
 but at the collective 

level by W
�
a
i
= 0,A

�
=

∑n

i=1
�
i

�
a
i
= 0,A

�
  > W

�
a
i
= 1,A

�
=

∑n

i=1
𝜋
i

�
a
i
= 1,A

�
.

This social dilemma arises because the action profile that maximizes social 
welfare is not optimal for self-interested agents seeking to maximize their pri-
vate net benefits. The higher the number of agents who choose ai = 0 , the lower 
the negative externality—for example, less congested public infrastructure or 
a lower concentration of air pollutants. Once ai = 0 has been determined, and 
is known to all agents, it may emerge as a social norm7 to promote collective 
interests within the community.

2.1.4  Measure for norm‑enforcing ties

The measure8 for norm-enforcing ties takes account of two different types of links: 
(1) links between any agent i and their norm-complying neighbors, and (2) links 
between the agent i ’s norm-complying neighbors (only links between compliers). 
The first type of links is called “direct norm-enforcing ties”, depends on dyads, 
and captures the significance of the social norm within agent i ’s group, that is, 
the dissimilarity between the agent’s own actions and those of the group. Direct 

5 The analysis in this study concentrates on the case of negative externalities. However, our theoretical 
framework can be easily adjusted to consider positive externalities such as the production of a public 
good.
6 If all agents are deviators, it holds that A = n , and if all agents are compliers, it holds that A = 0.
7 In our context, norms describe ways to behave in specific situations that are socially shared and infor-
mally enforced by agents. Consequently, shared knowledge about how to behave to maximize social wel-
fare is a prerequisite for norms to emerge and prevail. Given the focus of this paper, we prefer to abstain 
from analyzing the emergence of a social norm since it may distract from our focus on the influence of 
direct and indirect norm-enforcing ties on cooperation. For studies that cover the emergence of social 
norms see for example, (Young 1993, Henrich and Boyd 2001, Bicchieri and Xiao 2009, Krupka and 
Weber 2013, Acemoglu and Jackson 2015).
8 The code, written in Python and R, allows us to calculate norm-enforcing ties in groups for different 
types of networks of any size and can be downloaded at https:// doi. org/ 10. 5281/ zenodo. 13371 113.

https://doi.org/10.5281/zenodo.13371113
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norm-enforcing ties, k0
i
 , indicate the number of compliers that form part of agent i ’s 

group and are computed as.

where N0
i
(g) =

{
j ∈ V�{i} ∶

(
1 − aj

)
�ij = 1

}
 denotes the set formed by all com-

pliers within agent i ’s group, such that N0
i
(g) ⊆ N

i
(g) and k0

i
≤ ki . Superscript 0 

relates to the chosen action of norm compliance, that is, ai = 0 . The second type of 
links is called “indirect norm-enforcing ties”, depends on triads, and captures the 
capacity of norm-complying neighbors to coordinate group pressure on agent i when 
deviating from the social norm. The computation of the number of indirect norm-
enforcing ties, m0

i
 , is given by.

This indicates the number of triads involving two of agent i ’s neighbors who 
comply with the norm. Since not all triads are formed by compliers, it holds 
that m0

i
≤ mi . According to Eq. (4), m0

i
= 0 occurs, for example, when k0

i
= 0 or 

mi = m
i
= 0 . This implies that m0

i
 depends on k0

i
 and mi . More precisely, it holds 

that indirect norm-enforcing ties tend to increase with the number of compliers 
and the number of triads involving compliers that form part of agent i ’s group, 
i.e., �m0

i

/
�ki ≈ m0

i

(
k0
i
+ 1

)
− m0

i

(
k0
i

)
≥ 0 and �m0

i

/
�mi ≥ 0.9, 10 More impor-

tantly, differences in m0
i
 may appear even in groups with identical ki , k0i  and mi . 

See Fig. 1 for an illustration. The groups Ni(g) and Nj(g) have identical dyads, 
ki = kj = 5 , acceptance of the social norm, k0

i
= k0

j
= 3 , and triads, mi = mj = 2 . 

However, they differ in the number of indirect norm-enforcing ties, 
m0

i
= 1 > m0

j
= 0 , because agent j ’s neighbors act in such a way that norm-com-

plying neighbors are not linked.

(3)k0
i
=
|||N

0
i
(g)

||| = ki −
∑

j∈Ni(g)

aj,

(4)m0
i
=
|||
{
�uv ∶ u, v ∈ N0

i
(g),�uv = 1

}||| ∈
[
m

i
,mi

]
.

9 In mathematical terms our notation is not correct since ki is a natural number and the derivative 
�m0

i

/
�ki is not well defined. For this reason, �m0

i

/
�ki should be interpreted as an approximation given 

by �m0

i

/
�ki ≈ m0

i

(
k0
i
+ 1

)
− m0

i

(
k0
i

)
≥ 0 . Another way to interpret �m0

i

/
�ki would be to think of it as 

an arithmetic derivative that operates strictly within the realm of integers. It measures how changes in 
the prime factorization of an integer translate into a discrete “rate of change”. Throughout the paper we 
consider �m0

i

/
�ki ≈ m0

i

(
k0
i
+ 1

)
− m0

i

(
k0
i

)
≥ 0 . Although this approximation may be inaccurate for a 

particular group its accuracy is high if the derivative represents the average ki within the network. Thus, 
when we use a derivative with respect to ki we interpret it as the average effect of a change in the degree 
of agent i  ‘s group.
10 The sign of the first derivative is not strictly positive, because an increase in the number of agent 
i  ’s norm-complying neighbors, k0

i
 , does not lead to an increase in m0

i
 if a new neighbor adhering to the 

social norm is not linked to the existing norm-complying neighbors. Similarly, the sign of the second 
derivative is not strictly positive because an increase in the number of triads within agent i  ’s group, mi , 
does not lead to an increase in m0

i
 if the new triad does not involve two norm-complying neighbors.
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2.2  Group pressure: concept, building elements, and measure

A predominant idea in the literature is that there is a very limited social distance11 at 
which agents are expected to enforce norms (Manski 1993; Bicchieri 2016; Nyborg 
2018). Therefore, we focus on group pressure (only neighbors can exert pressure) 
instead of social pressure (any agent can exert pressure). Groups portray the circle 
of trust of agent i (Duernecker and Vega-Redondo 2017); therefore, the behavior of 
agents who lie outside the circle has virtually no influence on agent i′s behavior12 
(Banfield 1958; Platteu 2000).

2.2.1  Building elements of group pressure

Group pressure supports cooperation and has the following key ingredients: (a) 
norm-enforcing ties, and (b) the level of agents’ commitment to collective interest. 
With respect to norm-enforcing ties, we focus on the two building elements that 
translate into group pressure: (1) the acceptance of the social norm within agent i ’s 
group, and (2) the level of coordination among agent i ’s norm-complying neighbors. 
The strength of the social norm within agent i ’s group is computed as follows.

The measure Ci indicates the tightness of direct norm-enforcing ties at the group 
level, as it measures the proportion of agent i ’s dyads that involve norm-complying 
neighbors. The level of coordination among agent i ’s norm-complying neighbors is 
computed by.

The measure Ii is based on a modification of the individual clustering coef-
ficient by considering only agents that are compliers. It indicates the tightness of 
indirect norm-enforcing ties at the group level, by measuring how close N0

i
(g) is to 

a completely cohesive group. Note that the measures �i and Ii , defined in Eqs.  (2) 
and (6), involve triads. However, the measure of �i is different from the definition 
of Ii because the former measures the links among agent i ’s neighbors, regardless 
of whether they are compliers, whereas Ii only measures the links among agent i ’s 
norm-complying neighbors. Hence, Ii ≤ �i always holds, because not all neighbors 

(5)Ci =
k0
i

ki
∈ [0, 1].

(6)Ii =
m0

mi

∈ [0, 1].

12 Another reason for selecting group pressure instead of social pressure is motivated by the results 
from Balafoutas and Nikiforakis (2012). In their paper, the authors conducted a natural field experiment 
and observed that only 35 out of 300 agents were willing to exercise costly social pressure on strangers 
(agents who are not neighbors) to enforce social norms. A possible explanation for the low reciprocity 
rate may be that there are no social ties between agents, whereas our study is based on a social network 
in which agents are connected and interact.

11 In a connected social network, the social distance between two agents refers to the number of links 
required to connect them. Social distance is equal to one when agents are neighbors. It is equal to two 
when agents have neighbors in common but are not linked to each other, and so forth.
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are compliers, that is N0
i
(g) ⊆ Ni(g) . Based on Eq.  (6) we make the following 

assumption.

Assumption 1 Compliers that are linked always coordinate group pressure.13

Next, we define how direct and indirect norm-enforcing ties translate into group 
pressure.

2.2.2  Measure for group pressure

The strength of group pressure, �i , on agent i is defined by,

where the group pressure function �i ∶ ℝ
3
≥0 → ℝ≥0 is a continuous, twice dif-

ferentiable, and increasing function in Ci , Ii and A , with �i(0, 0, 0) = 0 and 
max

{
𝜔i

}
∈ ℝ>0 . The group pressure function includes the pressure from individual 

compliers alone and its intensification if the compliers are linked. If agent i com-
plies with the social norm, ai = 0 , norm-complying neighbors do not exert pressure 
on agent i , that is ai�i = 0 . Otherwise, �i

(
Ci, Ii,�i

(
ai = 1,A

)
− �i

(
ai = 0,A

))
 . The 

difference 
(
𝜋i
(
ai = 1,A

)
− 𝜋i

(
ai = 0,A

))
∈ ℝ>0 denotes the extra benefits that an 

agent obtains from deviation. The extra benefits of a deviator indicate the difference 
between the net benefits an agent obtains from choosing to be a deviator compared 

(7)�i

(
Ci, Ii,�i

(
ai = 1,A

)
− �i

(
ai = 0,A

))
,

13 The coordination of group pressure among compliers may depend not only on the existence of a link 
between them (Coleman 1988) but also on factors related to the tightness of their links. For example, 
among other factors, homophily (“birds of a feather flock together”) may favor coordination (McPherson 
et al. 2001). Consequently, the effective number of indirect norm-enforcing ties, m̃0

i
 , may be lower than 

the nominal number of indirect norm-enforcing ties, m0

i
 , such that m̃0

i
≤ m0

i
≤ mi . We recognize that tri-

ads and homophily are related and intensify the similarity of actions within a group (Kossinets and Watts 
2006). However, because the principal objective of this paper is to present and analyze norm-enforcing 
ties, we focus on group cohesiveness as a driving factor for coordination and do not consider the homo-
phily. At first glance, this might be viewed as a shortcoming. However, assuming m̃0

i
= m0

i
 , does not 

exclude the analysis of the case where m̃0

i
< m0

i
 by considering different values of m0

i
 as a function of Ci . 

The analysis of social networks, presented in Sect. 6, particularly Theorem 1 and Appendix H, shows that 
the share of direct norm-enforcing ties and the type of social network are approximately related to indi-
rect norm-enforcing ties. Thus, given the type of network (random, scale-fee or complete) and any share 
of compliers Ci , we can calculate the expected share of indirect norm-enforcing ties m0

i
 (Theorem  1). 

The analysis of equilibria and thresholds in Sect. 5 is based on variations in Ci that are synonymous with 
changes in m0

i
 . Thus, the case m̃0

i
< m0

i
 can be analyzed by considering values of Ci that are lower than 

those that correspond to m0

i
 . Likewise, one can consider types of networks whose maximal number of 

triads formed by all agents, regardless of whether they are compliers, is lower for a given number of Ci . 
Thus, Theorem 1 and Appendix H warrant that Assumption 1 is innocuous because the analysis can be 
easily extended to the case in which not all compliers coordinate group pressure with other compliers.
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to those from choosing to be a complier. If the deviators extra benefits are negative 
the agents choose to be a complier.14

Conceptual frameworks and empirical evidence developed in game theory and labo-
ratory experiments suggest that group pressure is the result of negative reciprocity; that 
is, the group exerts pressure in proportion to the severity of the deviation (Fehr et al. 
2002; Dohmen et  al. 2009; FeldmanHall et  al. 2018). Hence, compliers are not only 
motivated by the deviation itself, but also by the fact that the deviators’ extra benefits 
result in higher costs for compliers. In other words, deviators inflict economic losses on 
compliers, and the privation suffered by compliers provides incentives to exercise group 
pressure. For the actual realization of group pressure, we make the following assumption.

Assumption 2 All agents are perfectly informed about their neighbors’ actions. 
There is no time delay between detecting deviators and exercising group pressure.15

2.3  Costs of exerting pressure and group confrontation: concepts and measure

Exerting pressure on deviators is costly for compliers because it can lead to repris-
als (Fehr and Gätcher 2000 and 2002; Calvó-Armengol and Jackson 2010; Bala-
foutas and Nikiforakis 2012). Let �i denote agent i ’s costs of exerting pressure on 
their neighbors who are deviators. The more deviators a complier is linked to, the 
higher the complier’s total cost of exerting pressure. Likewise, the more compliers 
are within agent i ’s group the higher the coordination costs between them. For agent 
i , the pressuring costs, �i , are defined by.

where �i ∶ ℝ
2
≥0 → ℝ≥0 is a continuous, twice differentiable, and nondecreas-

ing function in ki , and is increasing and/or nonincreasing with respect to Ci with 
�i
(
ki, 1

)
= 0.

The pressuring costs are also likely to be affected by the degree of confronta-
tion between compliers and deviators of the group. A high degree of confrontation 
may occur when deviators observe that they are not isolated agents but form part of 

(8)�i
(
ki,Ci

)
,

15 Under imperfect monitoring, coordination of group pressure requires specification of a mechanism 
that determines how agents coordinate their actions. However, because this extension does not offer any 
additional insights into the analysis of norm-enforcing ties, we abstain from its specification. For any 
specification of the agents’ coordination effort, imperfect monitoring likely leads to a reduction in group 
pressure. However, as mentioned in footnote 12, reduced group pressure can be analyzed within the 
existing framework. It does not lead to a loss of generality of our analysis because imperfect monitoring 
is analogous to a decrease in direct norm-enforcing ties or a change in the type of network.

14 Group pressure is a function of the link structure, the number of compliers, their position within in the 
network and the corresponding deviator’s extra benefits. The combinations of these four factors give rise 
to a specific group pressure. Some of these combination may lead to identical pressure, but they differ 
at least in one of the four factors. Thus, the strength of group pressure does not allow to deduce the link 
structure of the network, the number of compliers, their positions within the network and/or the devia-
tor’s extra benefit. Only if all four factors are known group pressure is uniquely defined, but the reverse 
does not hold. Since the measure of group pressure takes account of all four factors, the proposed meas-
ure of group pressure is not only applicable to certain link structures (types of networks) but to any.
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a larger group of deviators. A larger group of deviators strengthens their identity, 
which in turn reinforces their willingness to defend their choice of norm deviation. 
This situation may result in the formation of well-balanced subgroups of deviators 
and compliers. More strongly defended viewpoints imply that compliers have higher 
pressuring costs, since deviators may be more reluctant to change their actions.

The concepts of norm-enforcing ties and group pressure assume that agents tend 
to match their actions to those of other agents in the group. The fact that agent i ’s 
pressuring costs depend on the number of compliers and deviators, coordination 
and resistance, motivates the assumption that the specification of the cost function 
should allow for flexible functions including in form of a bell with respect to Ci . 
If the cost function is bell-shaped, we define the value at which the confrontation 
between the subgroups and, therefore, the pressuring costs are maximal. The maxi-
mum value is achieved when the subgroups are of equal size.

Definition 1 [Value of maximal group confrontation] Within a group, confrontation 
occurs only if compliers and deviators coexist. If the pressuring cost function is bell-
shaped with respect to Ci the value at which confrontation within the group is maxi-
mal is denoted by C̃i.

In the presence of a social dilemma and pressuring costs, we make the following 
assumption regarding compliers’ motivation.

Assumption 3 Compliers are willing to pressure deviators based on their norm-
enforcing code, even at a cost to themselves, and they do not free ride on each other. 
Deviators do not exercise group pressure.16

The norm-enforcing code is shared by all compliers. The strength of the norm-
enforcing code depends on agents’ commitment to the collective interest; that is, 
choosing the action that, if chosen by all agents, would lead to social welfare maxi-
mization (Alger and Weibull 2013).17, 18 If compliers are highly committed, the 

16 Reinterpreting and respecifying the compliers’ pressure as a net pressure function of compliers and 
deviators would allow for an analysis of the effect of deviators’ group pressure. As a result, a compli-
er’s pressure function would start its transition with an increase in the share of compliers from low to 
high pressure later, and it requires more compliers to reach the maximal group pressure compared to the 
case where deviators do not exercise group pressure. Basically, it leads to a countereffect of the group 
pressure of compliers on deviators, originating from the group pressure of deviators on compliers. The 
specification of a net pressure function within the existing modeling framework is possible because the 
form of the complier’s pressure function is flexible. By appropriately selecting the parameter values, the 
behavior of the compliers’ pressure function can portray the behavior of the net pressure function. How-
ever, we do not include this analysis since it does not seem to produce new qualitative insights.
17 We assume that agents are intrinsically motivated but not in form of an absolute value. Instead, the analyt-
ical and empirical framework allows for the graduation of intrinsic motivation in the form of the agent’s com-
mitment to the collective interest. In Sect. 5 the agent’s commitment can be adjusted by varying the param-
eters �2 and �3 . The specification of flexible function allows us to maintain the generality of the analysis.
18 The level of agents’ commitment to collective interest is high if they share similarly high values of 
fairness and justice (Enke 2019). One expects that the higher the level of the agents’ commitment to the 
collective interest, the more likely agents consider the effects of their individual actions on the public bad 
and exercise group pressure on deviators.
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group pressure increases rapidly with the number of compliers, and they already 
start pressuring even if the number of compliers is low. Lowly committed agents 
start pressuring only if the number of compliers is high. Without intrinsic motiva-
tion, compliers may not necessarily exercise group pressure and may free ride on 
each other. In the latter case, we must distinguish between compliers who exert pres-
sure and those who do not. Embedding a social dilemma between compliers into a 
more general social dilemma between compliers and deviators is beyond the scope 
of this study.19

At the end of this section, Table  1 presents a summary of the most important 
functions, variables, and parameters of the theoretical framework.

3  The socioeconomic model

The socioeconomic model defines (1) the agents’ utility, taking into account both 
promoting and impairing factors for cooperation; (2) agents’ decision rule, with a 
threshold that marks the difference between cooperation and noncooperation; and 
(3) conditions for the existence and stability of equilibria at the group and network 
levels.

3.1  Utility

The agent i ’s utility is given by.

As defined above, the evaluation of the first term of Eq.  (9) yields 
𝜋i(0,A) < 𝜋i(1,A) , for all A ∈ [0, n] . Since compliers do not receive group pres-
sure, it holds that u0

i
= �i(0,A) − �i , and deviators do not exert pressure, so that 

u1
i
= �i(1,A) − �i.

3.2  Context of the decision process

To simplify our study of the effects of norm-enforcing ties on cooperation, the deci-
sion-making process is embedded in the following context.

3.2.1  Setup

The context of the decision process is characterized by.

(9)u
ai∈{0,1}

i
= �i

(
ai,A

)
− ai�i −

(
1 − ai

)
�i.

19 If some compliers fail to exert pressure on deviators, other compliers might pressure them to exercise 
group pressure. This behavior can be explained by the existence of a meta-norm (Axelrod 1986). How-
ever, to keep our analysis focused on norm-enforcing ties, we did not consider the so-called second-order 
dilemma of public goods.
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• Social networks. Networks are of any size and are described by the joint distri-
bution of links and agents’ actions. The number of agents and the link structure 
do not change over time.20 Links are undirected and unweighted, and no agent 
is isolated. At the outset of the sequence of the simultaneous choice game, the 
group size and cohesiveness of the agents are distributed randomly in line with 
topological characteristics of the network across agents.

• Social norm. The action that maximizes social welfare is known and achievable 
to all agents.

• Initial profile of actions. An initially randomly distributed subset of agents 
chooses to comply with the norm, whereas the complement of this subset is 
formed by the deviators.

• Timeline. Within each sequence of the game, all agents decide whether to com-
ply or deviate simultaneously and to act nonstrategically. The game ends when 
an equilibrium is reached.

3.2.2  Individual decision‑making

Agents’ decisions are based on previous actions taken at the group level and the 
magnitude of the negative externality, without considering the actions that other 
agents take at this moment. The calculation of agent i ’s best-response function is 
limited because agent i has no information about the influence of the agents’ deci-
sions lying outside the group of agent i ’s neighbors. Thus, any best-response func-
tion based only on the current actions of agent i ’s neighbors is erroneous by con-
struction, and there is no guarantee that the underlying decision process leads to 
more efficient outcomes than assuming nonstrategic behavior.21 Additionally, we 
focus on the likely situation in which the number of agents is sufficiently large so 
that the marginal effect of agent i ’s action on the negative externality in the form of 
a public bad is negligible. Thus, agents do not consider the influence of their actions 
on the negative externality.

The agent’s decision rule is given by.

(10)u0
i
≥ u1

i
.

20 The literature also considers the case where the behavior of the agents gives rise to new social net-
works whose formation process follows a particular pattern generating a random, scale-free or complete 
network (Jackson et al. 2008, Currarini et al. 2010, Jackson 2010, Boucher 2016, Christakis et al. 2020). 
However, this aspect is not considered explicitly in this study, as it is beyond its scope. Indirectly, how-
ever, this aspect is considered because the analysis of social networks in Sect.  6 shows that the share 
of direct norm-enforcing ties and the type of social network are related to indirect norm-enforcing ties. 
Thus, given a type of network and share of compliers, we can calculate the maximal share of indirect 
norm-enforcing ties of a random, scale-free or complete network. In other words, the paper does not 
model the link formation process itself but allows to relate possible outcomes of the link formation pro-
cess with the strength of group pressure.
21 Moreover, we do not consider strategic behavior because the determination of the optimal strategic 
response to, for instance, hundreds of other agents, each of whom occupies a unique position in the social 
network, could stretch the assumption of rationality beyond its limits owning to the interdependency of 
the agents’ strategic decision problem.
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Thus, agent i chooses to comply with the norm if the utility derived from cooper-
ation, u0

i
 , is at least as high as the utility derived from noncooperation, u1

i
 . The equal-

ity between u0
i
 and u1

i
 represents an individual threshold22 that marks the difference 

between cooperation and noncooperation, as stated in Definition 2.
Our analysis focuses on the effect of norm-enforcing ties on individual thresh-

olds and equilibria of the game, but we do not model the evolution of ki , Ci , m0
i
 and 

A over time. The analysis of the trajectories of these four state variables requires 
implementation of complex numerical approximation techniques that are beyond the 
scope of this paper.

Definition 2 [Individual threshold] An individual threshold for cooperation is 
the proportion of agent i ’s group that must comply with the norm before agent i 

Table 1  Enumeration and description of the most relevant functions, variables and parameters of the the-
oretical framework

Functions, variables and parameters

N
i
(g) =

{
j ∈ V�{i} ∶ �

ij
= 1

}
Agent i  ’s group

ki =
||Ni(g)

|| The size of agent i  ’s group

mi ∈
[
m

i
,mi

]
The number of triads of agent i  ’s group

�i ∈ [0, 1] The cohesiveness of agent i  ’s group measured by the individual cluster-
ing coefficient

ai ∈ {0, 1},A =
∑n

i=1
ai Set of agent i  ’s possible actions and the aggregate actions of all agents. 

The value A indicates the magnitude of the negative externality
�i
(
ai,A

)
Agent i  ’s net benefit

k0
i

The number of compliers that form part of agent i  ’s group

N0

i
(g) The set of all compliers within agent i  ’s group

m0

i
=∈

[
m

i
,mi

]
The number of triads that involves two compliers of agent i  ’s neighbors

Ci The tightness of direct norm-enforcing at the group level
Ii The tightness of indirect norm-enforcing ties at the group level
�i The tightness of group pressure on agent i  at the group level
�i Agent i  ’s pressuring costs

u
ai∈{0,1}

i
Agent i  ’s utility (to be introduced below)

Functions and parameter values (to be introduced below)
S Maximal attainable group pressure
�1, �2, �3 Parameters of the group pressure function
v1, v2, v3 Parameters of the pressuring cost function
C̃i

Value at which confrontation within the group is maximum when 
v2 ≥ v1 ≥ 0

22 Since Granovetter (1978), the use of thresholds has become common practice for analyzing social 
dilemmas. Other authors such as Bicchieri (2006) refer to thresholds as “conditional cooperation”. In our 
model, agents are neither pure cooperators nor pure deviators; whereas other authors condition coopera-
tion on the existence of individual thresholds (Torren-Peraire et al. 2024).



Social networks, norm-enforcing ties and cooperation  

complies. This is denoted by C∗
i
∈ (0, 1] , where Ci < C∗

i
 leads to u0

i
< u1

i
 and Ci ≥ C∗

i
 

to u0
i
≥ u1

i
.

Individual thresholds are specific for each agent because they result from the links 
between the members of agent i ’s group and the location of compliers and deviators 
within the group. Different compositions of locations can yield different thresholds.

3.3  Equilibrium

The existence and stability of equilibria at the group and network levels are deter-
mined as follows.

Definition 3 [Existence of groupwise equilibrium]. An equilibrium where agent j 
and agent j ’s neighbors exercise costly pressure exists and is temporarily groupwise 
stable if there exists a profile of actions �G =

(
ai
)
1≤i≤kj+1

∈ {0, 1}kj+1 such that 

∀ai ∈ Ω = {0, 1} , ∀j ∈
{
Nj(g) ∪ {j}

}
⊆ V  : uâi

i
≤ u

ai
i
 where, âi ∈ Ω�

{
ai
}
.

Equilibrium conditions require that each agent of the group Nj(g) ∪ {j} chooses 
the action that offers at least the utility of the alternative action, given all neighbors’ 
actions. In other words, agent j and all their neighbors have no incentive to modify 
their current actions. However, because the group is embedded in the large social 
network, the stability of a groupwise equilibrium does not imply an equilibrium at 
the network level. Any agent lying outside the group may choose a different action 
than before, which in turn alters the profile of actions. Unlike the case for groups, 
the existence of an equilibrium at the network level can be determined.

Definition 4 [Existence and stability of a network equilibrium]. An equi-
librium in which agents exercise costly pressure is stable at the network 
level if there exists a profile of actions �N =

(
ai
)
1≤i≤n

∈ {0, 1}n such that 
∀ai ∈ Ω = {0, 1},∀i ∈ V ∶ u

âi
i
≤ u

ai
i
 , where âi ∈ Ω�

{
ai
}
.

Definition 4 allows us to identify multiple equilibria, including not only the all-
deviator, A =

�∑n

i=1
a
i
= 1

�
= n , and all-complier, A =

�∑n

i=1
a
i
= 0

�
= 0 , equilib-

ria, but also interior equilibria, 0 < A∗ < n , where compliers and deviators coexist.23 
In the case of an interior equilibrium, none of the agents of the entire social network 
have an incentive to modify their current actions. The case A = n represents a Nash 
equilibrium in which none of the agents have economic incentives to change the 
status quo; therefore, a social norm is not likely to be established. The case A = 0 
represents the situation in which the equilibrium coincides with the unique Pareto-
efficient allocation of actions; that is, the community achieves social welfare maxi-
mization as a result of the emergence and prevalence of the social norm. Any interior 

23 We cannot rule out that cyclical equilibria exist. However, a more detailed analysis is beyond the 
scope of this paper.
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equilibria, A∗ , can be interpreted as a second-best solution of the social dilemma 
because the resulting negative externality is below A = n but still above A = 0.

4  Numerical example for identifying thresholds and equilibria

This section illustrates the influence of norm-enforcing ties on the location of a 
groupwise equilibrium and the agent’s decision, taking into account the tightness of 
direct and indirect norm-enforcing ties at the group level, the degree of group con-
frontation, and pressuring costs. To illustrate the influence of norm-enforcing ties on 
the individual threshold, we have chosen simple forms of the employed functions. 
Let agent i ‘s net benefit function be given by �ai = 1 + ai − 0.01(A∕n) , group pres-
sure by �i = 1.3Ci + 0.7Ii , and its cost for compliers by �i =

(
1 − Ci

)
Ci . The func-

tion �ai also shows that the deviator’s extra benefits 
(
�i
(
ai = 1,A

)
− �i

(
ai = 0,A

))
 

are constant and equal to one. Thus, according to Definition 3, a group equilibrium 
requires for ∀aj ∈ Ω = {0, 1} ∀j ∈

{
Nj(g) ∪ {j}

}
 that.

Based on the specification of the functions �i,�i, �i Eq. (11) becomes24

According to Definition 4, Eq.  (12) also defines an equilibrium at the network 
level if the inequality holds not only for all agents of the neighborhood but also for 
all agents of the network.

Agent i chooses to be a complier if u0
i
− u1

i
≥ 0 which translates to 

�i
(
ai = 0,A

)
− �i −

(
�i
(
ai = 1,A

)
− �i

)
 = �i − 1 − �i ≥ 0 . Based on the chosen 

specification, Fig.  2 presents the graphs of �i,�i, �i as a function of the share of 
compliers (direct norm-enforcing ties). The influence of the tightness of indirect 
norm-enforcing ties at the group level is presented in Fig. 2 by an area where the 
upper boundary line of group pressure corresponds to the minimal tightness of indi-
rect norm-enforcing ties at the group level, Ii = 0 , and the lower boundary line of 
group pressure corresponds to the maximal tightness of indirect norm-enforcing ties 
at the group level Ii = 1 . Agent i decides to comply if u0

i
− u1

i
≥ 0 , that is, if 

�i ≥ 1 + �i . Thus, the solution of �i = 1 + �i indicates the critical mass of compli-
ers necessary for agent i to become a complier. The critical mass is denoted by C∗

i
 , 

and yields C∗
1
= 0.721 and C∗

i, Ii=0
= 0.855 for the cases of Ii = 0 and Ii = 1 , respec-

tively. The location of the solution is marked in Fig. 2 by an orange circle in the 

(11)
𝜋j
(
âj,A

)
− âj𝜔j −

(
1 − âj

)
𝜗j ≤ 𝜋j

(
aj,A

)
− aj𝜔j −

(
1 − aj

)
𝜗j where âj ∈ Ω�

{
aj
}
.

(12)
1 + âi − 0.01

A

n
− âi

(
1.3Ci + 0.7Ii

)
−
(
1 − âi

)(
1 − Ci

)
Ci

≤ 1 + ai − 0.01
A

n
− ai

(
1.3Ci + 0.7Ii

)
−
(
1 − ai

)(
1 − Ci

)
Ci

24 The index j refers to all neighbors of agent i  and agent i  itself. For this reason, we make use of the 
index j instead of i .
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former case and by a blue square in the latter case. If the solution of �i = 1 + �i for a 
particular Ii ∈ [0, 1] holds for all agents of a group, it indicates a groupwise equilib-
rium (Definition 3). If the solution holds for all agents of the social network, it indi-
cates a stable network equilibrium (Definition 4).25

The solution of �i = 1 + �i also presents an individual threshold with respect to 
the tightness of direct and indirect norm-enforcing ties at the group level. Once it 
holds that 𝜔i > 1 + 𝜗i , agents decide to comply, because group pressure is higher 
than the sum of the deviator’s extra benefits and pressuring costs. Fig 2 illustrates 
that the individual threshold is a function of direct and indirect norm-enforcing ties, 
the specification of the functions �i,�i, �i and the type of social network. Advanc-
ing findings of Sect. 6 (Theorem 1, Appendix H) allows us to relate direct norm-
enforcing ties and the type of network to the tightness of indirect norm-enforcing 
ties at the group level. Utilizing this relationship Fig. 2 shows that a random network 
where Ii = 0 requires a substantially higher share of compliers than a complete net-
work where Ii = 1 . The equilibria-supporting share of compliers for a scale-free net-
work are situated between these two extremes.

5  Flexible functions of group pressure and pressuring costs and their 
influence on thresholds

To generalize the findings in Sect. 4, we define group-pressure and pressuring-cost 
functions in a flexible form where different forms present specific conditions that 
agents face. In this way, we analyze the influence of the specifications of these func-
tions on the location of the threshold.

5.1  Flexible functions

With respect to the group pressure function �i ≡ �i

(
Ci, Ii,A

)
 we define its flexible 

form as.

where S ∈ ℝ>0 denotes the maximal attainable group pressure agents can receive 
from their norm-complying peers. A high value of �1 ∈ ℝ≥0 indicates that agent i 
is not highly motivated to exercise strong group pressure whereas a high value of 
�2 ∈ ℝ≥0 indicates the opposite. Parameter �3 ∈ ℝ≥0 determines the minimum nec-
essary tightness of direct norm-enforcing ties at the group level at which group pres-
sure is sufficiently strong to affect the deviators’ utility. In other words, it affects the 
number of compliers from where on group pressure increases with an increase in 

(13)�i =
S(

1 + �1e
−�2(Ci−(�3−Ii))

)(�i
(
ai = 1,A

)
− �i

(
ai = 0,A

))
.

25 The latter is the case if the social network is regular so that all agents have the same degree (e.g., lat-
tices or complete networks).
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compliers. Hence, in the case of Eq. (13), the strength of the agent’s commitment to 
collective interests is reflected by the values of the parameters �2 and �3 . Depending 
on the chosen parameter values �i∈{1,2,3} the function is concave or sigmoidal26 and 
can grow slowly or rapidly as the number of norm-complying peers increases. This 
mirrors real-world scenarios in which the influence can either build up gradually or 
decrease after it has reached a peak. See Appendix A for further details on the speci-
fications of the group-pressure function.

The flexible form of pressuring-cost function �i ≡ �i
(
ki,Ci

)
 is specified as.

where 𝛾i
(
ki
)
∈ ℝ>0 increases in ki , and vi∈{0,1,2} ∈ ℝ are parameters. This flexible 

form allows us to consider four different cases.
Case 1 Fixed costs: Agents have individual pressuring costs v0 that cannot be 

shared with other compliers, that is, the costs are fixed, and it holds that v1 = v2 = 0 . 
This could be the case if an agent needs to install a device or contract a guard to 
monitor the actions of their peers. In this case, compliers face only individual pres-
suring costs.

Case 2 Decreasing costs: The term v0 − v1Ci , with v0 ≥ v1 ≥ 0 , indicates the 
extent to which the individual costs of exerting pressure can be shared with other 
compliers. Moreover, it holds that v2 = 0 . Thus, pressuring costs �i are nonincreas-
ing in the tightness of direct norm-enforcing ties at the group level, Ci . The latter 
effect may be the result of cost sharing among compliers, either because of technical 
reasoning or because of lower coordination costs among compliers due to a high 
level of indirect norm-enforcing ties. If compliers can share the costs of group pres-
sure, economies of scale could reduce individual pressuring costs. This would be the 
case if an installed device can monitor not only the actions of agent i ’s group but 
also of agent j ’s group.

Case 3 Bell-shaped costs: The term v2
(
1 − Ci

)
Ci , with v2 ≥ v1 ≥ 0 , indicates that 

the higher the confrontation of the subgroups of deviators and compliers, the higher 
the pressuring costs. This leads to bell-shaped pressuring costs which are maximal 
at C̃i = argmax

Ci

(
𝜗i
)
=

1

2

(
1 −

v1

v2

)
 . Well-balanced subgroups of deviators and com-

pliers (confrontation) support the deviators’ identity which in turn increases the 
resistance of deviators to adhere to the norm. For example, consider a scenario 
where two opposing sides in a group clash, making it harder for the norm-conform-
ing side to apply pressure without facing pushback. As a result, the compliers’ pres-
suring costs increase. As shown in Appendix B, C̃i ∈ (0, 0.5].

Case 4 U-shaped costs: When v1, v2 < 0 pressuring costs are U-shaped, reflect-
ing the fact that there are economies of scale as the number of compliers increases, 
but it is reversed by coordination costs as the share of compliers increases even 
more. A U-shaped cost function arises if the benefits from economies of scale are 

(14)�i = �i
(
ki
)(
v0 − v1Ci + v2

(
1 − Ci

)
Ci

)
,

26 Other functional forms also satisfy the requirement that group pressure increases with norm-enforcing 
ties and reaches its maximum value when all agents are compliers. However, they do not offer any quali-
tative insights that differ from those presented here.
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overcompensated by an increase in coordination costs as the number of compliers 
increases.

Based on the different forms of the functions �i and �i we analyze how changes in the 
network structure or in the behavior of agents i ’s neighbors affect the location of agent 
i ’s thresholds and possible location of equilibria. We analyze the extent to which the sign 
and magnitude of these effects are influenced by group confrontation or by the level of 
the agents’ commitment to collective interest. We summarize our results in Proposition 1.

Proposition 1 [Comparative statics] If the pressuring costs are constant, decreasing, or 
bell-shaped, vi∈{0,1,2} ∈ ℝ≥0, an increase in indirect norm-enforcing ties, Ii, leads to a 
decrease in the critical mass C∗

i
 (substitutability), and an increase in group size, ki, leads 

to an increase in the critical mass C∗
i
 (complementarity). If the pressuring costs are 

U-shaped, v0 > 0, vi∈{1,2} ∈ ℝ<0 depending on the shares of compliers, the critical mass 
decreases or increases with the tightness of indirect norm-enforcing ties at the group 
level (complementary, substitutive). The sign of the changes in the critical mass with an 
increase in group size is opposite to that of an increase in the tightness of indirect norm-
enforcing ties at the group level.

Proof See Appendix C.

Proposition 1 summarizes the effects different forms of the pressuring costs (cases 
1—4) have on the critical mass of compliers if the indirect norm-enforcing ties or the 
group size increases. In Appendix C, we show that Ii and C∗

i
 are substitutes, 𝜕C∗

i
∕𝜕Ii < 0 , 

and ki and C∗
i
 are complements, 𝜕C∗

i
∕𝜕ki > 0 . However, this general finding is not sup-

ported when the pressuring costs are U-shaped. In this case, Ii and C∗
i
 are substitutes, and 

ki and C∗
i
 , are complements if the share of compliers is low. However, if the share of com-

pliers is high, it holds that Ii and C∗
i
 are complements and that ki and C∗

i
 are substitutes.

5.2  Influence on thresholds: graphical illustrations

For a graphical representation of the influence different shapes of the pressur-
ing costs (cases 1 and 3) and type of networks have on the critical mass of compliers 
we start by normalizing the above-described functions u0

i
, u1

i
,�i and �i with respect to 

the deviator’s extra benefits, �i(1,A) − �i(0,A) , such that the threshold is defined by 
u0
i
− u1

i
= �i − 1 − �i = 0 and the deviators’ extra benefits are 1. We maintain the pre-

vious notation for utilities, group pressure, and pressuring costs, in order to reduce nota-
tional burden, but we implicitly understand that these functions have been normalized. 
For all the following examples, we consider S = 2 so that group pressure is at most twice 
the value of the normalized deviator’s extra benefits.27 The employed parameter values of 
the functions �i and �i are specified in the captions of Figs. 3 and 4. We concentrate on 
two important factors for cooperation at the group level—direct and indirect norm-enforc-
ing ties and group confrontation—and analyze their effects on the agent’s thresholds.

27 The maximum value of S has been chosen such that its value influences but does not dictate the out-
come of the agent’s decision.
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5.2.1  Effects of direct and indirect norm‑enforcing ties on the critical mass 
of compliers

We start by considering Case 1 (fixed costs) where there is no group confrontation 
and compliers incur fixed costs only. Fig 3 illustrates the functions 1 + �i (solid black 
line) and �i (dashed orange and dotted-dashed blue lines). The intersections between 
1 + �i and �i indicate the location of the agent’s threshold, C∗

i
.

In Fig. 3 (bell-shaped costs), the locations of thresholds C∗
i,Ii=0

 and C∗
i,Ii=0.34

 (verti-
cal dashed black lines) represent how individual thresholds are determined as a 
result of Ci and how they change as a result of Ii = 0 and Ii = 0.34 , respectively. The 
comparison between the locations of C∗

i,Ii=0
= 0.91 and C∗

i,Ii=0.34
= 0.58 allows the 

signpost of the minimum and maximum values of Ii on C∗
i
 , and indicates the interval 

of influence of Ii on C∗
i
 . As mentioned above, the findings of Sect. 6 (Theorem 1, 

Appendix H) allow us to relate direct norm-enforcing ties and the type of the net-
work with the tightness of indirect norm-enforcing ties at the group level.28 The 
threshold C∗

i,Ii=0
= 0.91 results from group pressure, where only direct norm-enforc-

ing ties but no indirect norm-enforcing ties are present (dotted-dashed blue line), for 
example, the group has the form of a star, or is part of a random network. The 
threshold C∗

i,Ii=0.34
= 0.58 results from group pressure, where compliers form a cohe-

sive group (complete network) with �i = 1 (dashed orange line). This result is in line 
with Proposition 1, which predicts substitutability between Ii and C∗

i
 when 

C∗
i
≥ 0.5 ≥ C̃i . Utilizing this relationship, Fig. 3 shows that a random network where 

Ii = 0 requires a substantially higher share of compliers than a complete network 
where Ii = 0.34 . The equilibria-supporting share of compliers for scale-free net-
works are situated between these two extremes.

5.2.2  Effects of group confrontation on the critical mass of compliers

Next, we analyze Case 3 (bell-shaped costs), in which pressuring costs are predomi-
nantly the result of group confrontation. For Fig. 4, we maintained the parameter 
values employed in Fig. 3, except for the group confrontation, v2 > 0 . Confrontation 
within the group implies higher pressuring costs; therefore, the tightness of indirect 
norm-enforcing ties at the group level necessary to attain an agent’s threshold needs 
to be higher. Fig 4 illustrates the case in which group confrontation likely leads to 
the all-deviator equilibrium because pressuring costs dominate group pressure up to 
the value of C∗

i,Ii=0.63
= 0.79 . If compliers do not coordinate group pressure, norm 

compliance must be very close to the maximum value of one, C∗
i,Ii=0

= 0.97 . Again, 
the locations of C∗

i,Ii=0
 and C∗

i,Ii=0.74
(vertical dashed black lines) indicate the mini-

mum and maximum influence of Ii on C∗
i
 . The minimum and maximum influence of 

Ii on C∗
i
 correspond to random and complete networks, respectively, and equilibria 

28 In Sect.  6 (Theorem 1 and Appendix E), we show that the expected strength of indirect moral ties 
can be computed as Ii ≃ �iC

2

i
 . Since �i ∈ [0, 1] , it holds that Ii ∈

[
0,C2

i

]
 . Thus, for the example illus-

trated in Fig. 3, the minimum value of indirect norm-enforcing ties is Ii = 0 and their maximum value is 
Ii =

(
C∗
i
= 0.58

)2
= 0.34.
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related with scale-free networks are situated between these two extremes. Note that 
the interval of influence of Ii on C∗

i
 has been reduced by more than half compared to 

the situation depicted in Fig. 3. In line with Proposition 1, we observe substitutabil-
ity between Ii and C∗

i
 because C∗

i
≥ 0.5 ≥ C̃i.

Fig 4 shows that the critical mass of compliers must be high in the presence of 
group confrontation. The agent decides to comply only if a very high level of com-
pliers is reached. However, as shown in Appendix D, if the level of the agents’ com-
mitment to the collective interest is high ( �2 = 45, �3 = 0.1 ) even a low critical mass 
of compliers allows the support of cooperation. Moreover, if the agents’ commit-
ment to the collective interest is high, the influence of indirect norm-enforcing ties 
on the level of the critical mass is rather limited compared to the case where no 
group confrontation is present.

6  Norm‑enforcing ties at the network level: Policy implications

In this section, we evaluate the importance of norm-enforcing ties in policy design. 
We assume that the regulator lacks detailed knowledge about the agents’ behavior and 
their underlying network structure but can use surveys to collect data about the total 
number of compliers and the agents’ cohesiveness at the network level. These data 
allow for the determination of the type of social network (e.g., random, scale-free, or 
complete) and the expected value and variance of norm-enforcing ties at the network 
level. These statistical insights enable us to compare the efficiency of policies based 
on subsidies or fines (formal enforcement) with network-oriented instruments aimed 
at tightening indirect norm-enforcing ties at the group level (informal enforcement).

Fig. 4  Effects of group confrontation on the location of the critical mass of compliers C∗
i
 . The horizontal 

dashed black line represents the normalized deviator’s extra benefits, and the solid black line represents 
the sum of the deviators’ extra benefits and the pressuring costs. The dashed orange and dotted-dashed 
blue lines represent group pressure when Ii is maximal and minimal, respectively. Vertical dashed black 
lines represent the locations of C∗

i
 when Ii = 0 and Ii = 0.63 . The parameter values are S = 2 , �1 = 10 , 

�2 = 5 , �3 = 0.3 , �i
(
ki
)
= 1 , v0 = 0.1 , v1 = 0 , and v2 = 5
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6.1  Expected value and variance of norm‑enforcing ties at the network level

Within our conceptual framework of social networks with fixed links, the share of 
compliers Ci and local cohesiveness �i can be considered at every moment of time 
as independent variables that are randomly distributed over the social network.29 
Thus, we can take the social network and profile of actions as given and predict the 
expected tightness of norm-enforcing ties at the group-level ties, C and I , at the net-
work level. For its calculation we measure cohesiveness at the network level by the 
global clustering coefficient � , defined by the total number of triads with respect to 
the maximum number of triads of the entire network. The results that hold for net-
works of any size, joint distribution of links and agents’ actions, are summarized in 
the following theorem.

Theorem 1 [Expected tightness of norm-enforcing ties at the network level] At the 
network level, the expected tightness of direct and indirect norm-enforcing ties are C 
and I ≃ �C2, respectively, where C = E

[
ai
]
 and � = E

[
�i
]
.

Proof See Appendix E.

Assumption 1 establishes that the level of coordination coincides with agents’ 
capacity for coordination. Theorem 1 shows that an increase in the expected group 
cohesiveness, � , heightens the expected tightness of indirect norm-enforcing ties, I , 
at the network level. The magnitude of these effects depends on the expected tight-
ness of direct norm-enforcing ties, C at the network level, such that �I∕�� ≃ C2 . 
Similarly, we find that an increase in C produces positive and nonlinear effects on I . 
The magnitude of these effects depends jointly on � and C such that �I∕�C ≃ 2�C . 
If C = 2τ, the effects are identical, because �I∕�C ≃ �I∕��.

Analyzing the sign and magnitude of changes in � and C allows us to evaluate 
the efficiency of different policy options for increasing indirect norm-enforcing ties 
as a function of direct norm-enforcing ties and expected group cohesiveness at the 
network level. We compare two alternative formulations: (1) formal enforcement 
policies aimed at increasing indirect norm-enforcing ties, I , by increasing direct 
norm-enforcing ties, C , and (2) informal enforcement policies aimed at increasing 
indirect norm-enforcing ties, I , by strengthening the expected group cohesiveness 
of the network, � . For example, network-oriented policies may offer financial sup-
port to associations whose membership is open only to norm-complying agents. The 
association may assist its members by offering support for their economic activi-
ties, or for organizing seminars and workshops (Cumming 2018), or other forms 
of members’ privileges. In  situations with negative externalities, one can imagine 
network-oriented policies articulated by means of fiscal deductions or subsidies 
for compliers’ associations or nongovernmental support organizations. Likewise, 

29 When actions and social interactions depend on each other (e.g., Boucher 2016), one cannot easily 
distinguish between the cases where links are formed because agents are similar, or agents develop simi-
lar behavior from the formed links.
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community-engagement programs based on volunteer activities or neighborhood 
improvement projects may help compliers to develop new links with each other.

Our comparison shows that conditions exist for designing efficient formal and 
informal enforcement policies to promote coordination between compliers at the 
network level. These are summarized in the following theorem.

Theorem  2 [Conditions for efficient policy implementation]  Provided that the 
implementation costs of formal and informal enforcement policies are identical, 
an increase in � (informal enforcement) is more efficient in promoting coordination 
among compliers than is an increase in C (formal enforcement) if C > 2𝜏. Other-
wise, if C < 2𝜏, then an increase in C is more efficient. When C = 2�, both policy 
options are equally efficient.

Proof See Appendix F.

Next, we analyze the extent to which norm-enforcing ties at the group level are 
similar to their expected values at the network level. In other words, we compute the 
variance of Ci and Ii in the network as a measure of the dispersion of norm-enforcing 
ties. We summarize the main results in the following theorem.

Theorem 3 [Variance in norm-enforcing ties] The variance in direct norm-enforcing 
ties depends on the profile of actions and group size. It is maximal at C = 0.5, and 
minimal at C = 0 or C = 1. The variance in indirect norm-enforcing ties depends on 
the profile of actions and group cohesiveness. It is maximal at C = 1 and � = 0.5 (or 
� = 1 and C = 0.5), and minimal at C = � = 0.

Proof See Appendix G.30

The variance of norm-enforcing ties is partially controlled by the type of net-
work. When cohesiveness is very high or maximal (e.g., very dense or complete 
networks) the variance in norm-enforcing ties is minimal. The same occurs when 
cohesiveness is low and the regularity of the network31 is high, for example, lattices, 
circles, and random networks. However, the literature shows that real-world social 
networks are to some extent cohesive and highly irregular (Broido and Clauset, 
2019). Hence, these networks are characterized by a significant variance in norm-
enforcing ties. Based on the survey mentioned at the beginning of this section, a 
social planner can estimate C and � but not Ci and �i . In this case, the magnitude 
of the variance in norm-enforcing ties allows a social planner to deduce informa-
tion about the agents’ choices and/or the underlying social network structure of the 
group. If the variance in norm-enforcing ties is zero, a social planner has complete 

30 The code, written in R, that allows calculation of the variance of norm-enforcing ties for networks of 
different types and any size can be downloaded at https:// doi. org/ 10. 5281/ zenodo. 13371 113.
31 The term “regularity” refers to the distributions of group size, 

{
ki
}
1≤i≤n

 , and group cohesiveness, {
�i
}
1≤i≤n

 , within the network. In regular networks, all agents have equal or similar group sizes and group 
cohesiveness.

https://doi.org/10.5281/zenodo.13371113
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information at the group level. However, if it is positive, the planner has incomplete 
information, which limits the design of efficient policies. To advance our analysis of 
policy design and implementation, we next analyze the influence of different types 
of networks on indirect norm-enforcing ties and determine efficient policy options, 
whether formal or informal, to increase the tightness of indirect norm-enforcing ties 
at the network level.

6.2  Influence of the type of network on indirect norm‑enforcing ties

By Theorem  1 it holds that �C2 ≤ � for any network, because C ∈ [0, 1] . Conse-
quently, we only need to compute � to determine the upper and lower limits of I . 
More precisely, we can determine the extent to which � allows us to narrow the pos-
sible values of I to promote cooperation. For illustrative purposes, we focus on three 
representative network topologies: complete networks (CN), sparse random net-
works (RN), and real-world social networks presented by scale-free networks (SN). 
They differ significantly in the value of � . In CN, group cohesiveness is maximal for 
all groups, such that � = 1 . In RN, group cohesiveness is very low for all groups, 
such that � ≈ 0 . In contrast, in SN, group cohesiveness has a wide range of possible 
values. The influence of different types of networks on indirect norm-enforcing ties 
is summarized in the following proposition.

Proposition 2 [Type of network and indirect norm‑enforcing ties] For any C ∈ [0, 1], 
the expected tightness of indirect norm-enforcing ties in CN is maximal, ICN = C2. 
In RN, it is minimal, IRN ∈

�
2C2

(n−1)
,
2C2√

n

�
. In SN, it always ranges between RN and CN, 

ISN ∈
(
0,

4C2

5

]
.

Proof See Appendix H.

CN topologies represent the upper limits of I because all compliers are linked 
and can coordinate group pressure. RN and SN topologies are characterized by 
many possible network configurations.32 However, the interval of � is much larger 
in SN than in RN owing to the documented “small-world” phenomenon (Broido 
and Clauset 2019)—that is, in SN, agents tend to form communities that consist of 
different aggregations of separated groups (“cliques”), and links within and among 
cliques are facilitated by agents with the highest group sizes (“hubs”). Moreover, 

32 The number of network configurations in both SN and RN fluctuates between 
⎛⎜⎜⎝

�
n

2

�

n

⎞⎟⎟⎠
 and 

⎛⎜⎜⎝

�
n

2

�

n
√
n

⎞⎟⎟⎠
 

(see Appendix F). Since it can be a large number, depending on n , the influence of the type of network on 
norm-enforcing ties is difficult to study analytically. Simple representations of networks, such as stars, 
trees, lattices or circles, do not take into account the complexity of social networks (Jackson et al. 2017). 
To overcome this limitation, the use of numerical simulations has become common practice in the litera-
ture on social networks, (e.g., Morsky and Akçay 2019). However, Theorem 1 allows the analytical study 
of the influence of network topology on indirect norm-enforcing ties.
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hubs are agents that contribute disproportionately to an increase in the cohesiveness 
of the network, as each connected pair of agents is more likely to be linked to a hub 
than to any other agent in the network (Watts and Strogatz 1998). In contrast, the 
formation of RN is characterized by the setting in which every agent initially does 
not know any other agent. All links between agents are randomly formed with the 
same probability. As a result of this formation pattern, hubs are absent in RN, and 
the group size and group cohesiveness of all agents are very similar. Consequently, 
RN topologies represent the lower limits of I because the compliers’ capacity for 
coordination is strongly limited.

The wide variety of SN topologies opens the door for the implementation of dif-
ferent informal enforcement policies. Regulators or compliers may take the initiative 
in implementing these policies.

7  Conclusions

Although cooperation within social networks has attracted substantial interest in eco-
nomics and social sciences, little attention has been paid to how agents’ behavior, in 
combination with the structure of their links, affects the strength of social influence. 
The concept of norm-enforcing ties adds another element in determining the drivers 
of cooperation. Apart from its conceptual formulation, this study offers a measure that 
allows measurement of the tightness of norm-enforcing ties at the group level. There-
fore, this study aims to guide theoretical and empirical research on how to align collec-
tive and individual interests to identify patterns of social interaction that support coop-
eration within groups. Our results identify the agents’ threshold of net benefits at which 
they switch from noncooperation to cooperation. We further determine the extent to 
which group confrontation and the type of pressuring costs condition whether indirect 
norm-enforcing ties or group size are complements or substitutes for the critical mass 
of compliers. In general, the tightness of indirect norm-enforcing ties is a complement, 
and group size is a substitute for the critical mass of compliers. Only when the pres-
suring costs are U-shaped can it be for a certain range of the share of compliers that 
the relationship between these variables is reversed. Moreover, the influence of indirect 
norm-enforcing ties decreases with group confrontation and the level of agents’ com-
mitment to collective interests. Furthermore, our analysis shows that informal enforce-
ment policies are more efficient in promoting coordination among compliers than are 
formal enforcement policies if the share of compliers is at least twice the value of group 
cohesiveness at the network level. Otherwise, formal enforcement policies are more 
efficient.

This paper assumes that compliers’ exercise costly group pressure but do not free 
ride on each other. This supposition may be neglectable if the share of free-riding com-
pliers is small, but as it increases, it may induce all compliers not to exercise group pres-
sure. In this case the only possible outcome of the game is the all-deviator equilibrium.

As an extension of this paper, it may be interesting to determine the critical mass 
of free-riding compliers that sentences the outcome of the game to be an all-deviator 
equilibrium. Another extension of this line of research may involve testing the validity 
of the theoretical framework in a laboratory setting or through field experiments. For 



 R. Goetz, J. Marco 

example, conducting a laboratory or field experiment on charity-giving allows for the 
assessment of the influence of norm-enforcing ties. In this setup, the participants were 
informed of the donations made by others. These participants may be acquaintances of 
the respondent, but they are not connected to each other. By gradually increasing social 
ties among acquaintances and observing the actual donations made by the respondents, 
we can evaluate the tightness of both direct and indirect norm-enforcing ties. A natu-
ral application of our theoretical framework can also incorporate the concept of norm-
enforcing ties into a game played on a social network. The objective would be to exam-
ine the extent to which complex interactions between network properties and agents’ 
actions can help resolve social dilemmas. To achieve this, future research must assess 
the suitability of available analytical and numerical techniques to determine the optimal 
trajectory for cooperation.

Appendix A

When facing a social dilemma, agents are torn between giving preference to individ-
ual or collective interests. The outcome of the agents’ decisions affects the strength of 
group pressure exercised by compliers. The weight of the preferences for one alterna-
tive or the other is captured by parameters 𝛽1 ∈ ℝ>0 and �2 ∈ ℝ≥0 of Eq. (13). On the 
one hand, parameter �1 indicates the weight that group members attach to individual 
interests and therefore any increase in this parameter decreases group pressure, such 
that 𝜕𝜔i∕𝜕𝛽1 < 0 and 𝛽1 ≫ K , 𝛽1 >> e−𝛽2(Ci−(𝛽3−Ii)) lead to �i ≈ 0 . On the other hand, 
parameter �2 indicates the weight that group members attach to collective interests. An 
increase in this parameter leads to higher group pressure. For �1 sufficiently large and 
fixed, we obtain that 𝜕𝜔i∕𝜕𝛽2 > 0 , where �2 = 0 leads to �i ≈ 0 and 𝛽2 ≫ 0 leads to 
�i ≈ K . Parameter �3 ∈ ℝ≥0 determines the minimum necessary tightness of direct 
norm-enforcing ties at the group level at which group pressure gains sufficient momen-
tum to become noticeable to deviators.

Appendix B

Maximizing �i = �i
(
ki
)(
v0 − v1Ci + v2

(
1 − Ci

)
Ci

)
 with respect to Ci shows that 

C̃
i
= argmax

C
i

(
𝜐
i

)
=

1

2

(
1 −

v1

v2

)
 , for any ki . Since v2 ≥ v1 ≥ 0 it holds that 

C̃i ∈ (0, 0.5] . To guide the intuition of this result, note that the expected number of 
links that connect compliers with deviators is maximum at Ci = 0.5 . Thus, pressur-
ing costs are expected to be maximally close to this point because of group confron-
tation. However, the location of this maximum depends on the ratio v1∕v2 that grad-
uates the degrees of confrontation within agent i ’s group, where v1 = v2 implies no 
confrontation and v2 >> v1 ≥ 0 implies a high degree of confrontation (maximal if 
v1∕v2 approaches zero and C̃i tends to 0.5). As Ci increases further, Ci > C̃i , the 
expected number of links between compliers and deviators decreases, as does the 
group confrontation and pressuring costs.
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Appendix C

Proof of Proposition 1

Provided that the denominator of equation (15) is not equal to zero for the points of 
interest we can conduct comparative statics of Eqs. (13) and (14) for Ii and ki at indi-
vidual thresholds. It shows for u0

i
= u1

i
 that.

where 𝜕𝜔i

/
𝜕C

i
=

𝛽1𝛽2Ke
𝛽2(Ci+Ii−𝛽3)(

e𝛽2(Ci+Ii−𝛽3)+𝛽1

)2 > 0, 𝜕𝜔i

/
𝜕Ii > 0, d𝜗i

/
dki > 0 , and for con-

stant, decreasing or bell-shaped pressuring costs, vi∈{0,1,2} ∈ ℝ≥0 , we obtain that.

To determine the signs in equation (15), we use the relationship between C∗
i
 and 

C̃i . If C∗
i
≥ C̃i we know that C∗

i
 is located to the right of the zenith of the pressuring 

costs and therefore the marginal pressuring costs are nonincreasing. For the opposite 
case, C∗

i
≤ C̃i we know that C∗

i
 is located to the left of the zenith of the pressuring 

costs and therefore, the marginal pressuring costs are nondecreasing.
The substitutability between Ii and C∗

i
 , 𝜕C∗

i
∕𝜕Ii < 0 , and complementarity 

between ki and C∗
i
 , 𝜕C∗

i
∕𝜕ki > 0 , require the denominators in equation (15) to be 

positive. Equation (16) allows us to determine the sign of 
(
−��i

/
�Ci + ��i

/
�C

i

)
 

unequivocable for C∗
i
≥ C̃i but not for C∗

i
≤ C̃i Note that 𝜕𝜗i

/
𝜕Ci < 0 always holds 

when C∗
i
≥ C̃i . However, when 0.5 > C̃i ≥ C∗

i
> 0 , the inequality v2 >

𝜑𝛽2K+𝛾i(ki)v1
𝛾i(ki)(1−2Ci)

 is 

a necessary and sufficient condition for 
(
−𝜕𝜗i

/
𝜕Ci + 𝜕𝜔i

/
𝜕C

i

)
< 0 to hold, where 

� =
�1e

−�2(Ci+Ii−�3)(
1+�1e

−�2(Ci+Ii−�3)
)2 . This condition depends on the composition of the parameter 

values v1, v2, �1
, �

2
, �3 which makes its interpretation difficult.

(15)

𝜕C∗
i

𝜕Ii
=

⎧
⎪⎨⎪⎩

−𝜕𝜔i∕ 𝜕Ii

−𝜕𝜗i∕ 𝜕Ci+𝜕𝜔i∕ 𝜕C
i

< 0 if C∗
i
≥ C̃i

−𝜕𝜔i∕ 𝜕Ii

−𝜕𝜗i∕ 𝜕Ci+𝜕𝜔i∕ 𝜕Ci

>

<
0 if C∗

i
< C̃i

𝜕C∗
i

𝜕ki
=

⎧
⎪⎨⎪⎩

d𝜐𝜗i∕ dk
i

−𝜕𝜗i∕ 𝜕Ci+𝜕𝜔i∕ 𝜕Ci

> 0 if C∗
i
≥ C̃i

d𝜗i∕ dk
i

−𝜕𝜗i∕ 𝜕Ci+𝜕𝜔i∕ 𝜕Ci

>

<
0 if C∗

i
< C̃i

,

(16)

𝜕𝜗i

𝜕Ci

= 𝛾
�
ki
��
v2
�
1 − 2Ci

�
− v1

�⎧⎪⎨⎪⎩

≤ 0 ifC∗
i
≥ C̃i ≥ 0.5

≤ 0 if 0.5 > C∗
i
≥ C̃i, it implies that v2 ≤

v1

1−2Ci

≥ 0 if 0.5 > C̃i ≥ C∗
i
, it implies that v2 ≥

v1

1−2Ci

.
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A numerical sensitivity analysis33 provides further insight and allows us to rule 
out that 𝜕C∗

i
∕𝜕Ii > 0, 𝜕C∗

i
∕𝜕ki < 0 . Fig 5 shows the contour plot of �i − 1 − �i 

which corresponds to the graphs of the functions, �i, 1, �i presented in Fig. 3.
The threshold is given by the nullcline, that is, where �i − 1 − �i = 0 . The 

nullcline on the right side of the figure is downward-sloping indicating that the 
share of compliers C∗ and indirect norm-enforcing ties are substitutes. However, the 
nullcline at the upper-left corner is upward sloping which indicates that the share 
of compliers C∗ and indirect norm-enforcing ties are complementary. Although this 
nullcline represents a threshold it does not present an admissible solution of the 
equation �i − 1 − �i = 0 . As demonstrated in Theorem 1 the set of admissible values 
is represented by the area below the discontinuous red line. Theorem 1 establishes a 
functional relationship between the share of compliers and the tightness of indirect 
norm-enforcing ties at the group level. The tightness of indirect norm-enforcing ties 
at the group level is at most approximately equal to C2 . Using the same parameter 
set as before, Fig 6 shows the graphs of the functions �i, 1, �i . This confirms that the 
share of compliers and indirect norm-enforcing ties complement the set of indirect 
norm-enforcing ties and the share of compliers, as indicated by the nullcline in the 
upper-left corner of Fig 5. The threshold C∗ increases with the tightness of indirect 
norm-enforcing ties at the group level, that is, the movement from the blue square to 
the orange circle in Fig 6.

For the case of U-shaped pressuring costs, however, one can also find admissi-
ble combinations of the threshold and indirect norm-enforcing ties where they are 
complements.  Fig 7 shows an example of this case for the set of parameter values 
displayed on the side panel.

Figure  8 confirms that this set of parameter values leads to complementary 
between the threshold and indirect norm-enforcing ties—presented by the increase 
in the threshold as the indirect norm-enforcing ties increases from 0.43 to 0.51.

The numerical analysis of the changes in the critical mass as a result of 
changes in the group size shows that the signs of the changes are opposite to the 
changes in the tightness of indirect norm-enforcing ties at the group level. For 
brevity, a sensitivity analysis with respect to an increase in the group size is not 
presented here. Its influence on the critical mass can be easily verified by chang-
ing the slider of the parameter g (group size) of Fig 5, 6, 7, 8 utilizing the Math-
ematica® code available at https:// doi. org/ 10. 5281/ zenodo. 13371 113.

33 The Mathematica® code for Fig.  5, 6, 7, 8 can be downloaded at https:// doi. org/ 10. 5281/ zenodo. 
13371 113. The code reproduces the figures and allows to analyze the effects of changes in the parameters 
on the group pressure function and its related costs. The results of the sensitivity analysis can be visual-
ized by moving the corresponding sliders of the figures that present the values of the parameters. The 
same link also contains the code for Figs. 2, 3, 4 and 9.

https://doi.org/10.5281/zenodo.13371113
https://doi.org/10.5281/zenodo.13371113
https://doi.org/10.5281/zenodo.13371113
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Appendix D

The social dilemma can be overcome even in the presence of a high group con-
frontation if the agents’ commitment to the collective interest is very high. Fig-
ure 9 illustrates the case in which agents’ level of commitment to collective inter-
est is very high. The transition of group pressure from zero to its maximum 
occurs quickly. It starts when the tightness of direct norm-enforcing ties at the 
group level is still very low. Moreover, Fig. 4 illustrates the possible emergence 

Fig. 5  Contour plot of the equation �i − 1 − �i = 0 with the same parameter set as in Fig. 3

Fig. 6  Graph of the functions �i, 1, �i with the same parameter set as in Fig. 3
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of multiple individual thresholds, from one to three, where the influence of Ii on 
C∗
i
 is minimal. In line with Proposition 1, for thresholds C∗

i,Ii=0
= 0.23 and 

C∗
i,Ii=0.04

= 0.19 we still observe conditional substitutability between Ii and C∗
i
 

because C∗
i
< C̃i and 

(
−𝜕𝜐i

/
𝜕Ci + 𝜕𝜔i

/
𝜕C

i

)
> 0.

Fig. 7  Contour plot of the equation �i − 1 − �i = 0 for the parameter values shown in the side panel

Fig. 8  Graph of the functions �i, 1, �i with the same set of parameters as in the side panel of Fig 7
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Appendix E

Proof of Theorem 1

Recall that actions and links are independent random variables. The expected 
tightness of direct norm-enforcing ties at the group level is C = E

[
Ci

]
= E

[
ai
]
 , 

that is, it depends on the agents’ profile of actions, � =
(
ai
)
1≤i≤n

∈ {0, 1}n . Since 
agents face a binary choice, ai ∈ {0, 1} , the profile of actions � follows a binomial 
distribution, ai ∼ Bin(n, q) , where n ∈ ℕ denotes the number of agents and q the 
probability of success (cooperation), such that C = q . To calculate the expected 
tightness of indirect norm-enforcing ties at the group level, I , we need to find 
the probability pi that a link between two agents connects two compliers (u, v) in 
N
i
(g) . To find pi , we imagine a box with ki marbles. The box contains Ciki mar-

bles that are compliers and the rest, ki
(
1 − Ci

)
 , are deviators. We want to find the 

probability pi of drawing two consecutive marbles that are compliers, which is 
given by.

Let SCi represent success, that is, the case in which an existing link connects two 
compliers (u, v) in N

i
(g) . The variable SCi follows a binomial distribution, such that 

E
[
SCi

]
= nipi . Note that ni represents the number of attempts to connect two neigh-

bors within N
i
(g) and that 0 ≤ ni ≤

ki(ki−1)

2
 . Using the upper limits of ni , which is 

ni =
ki(ki−1)

2
 , we can normalize SCi as follows 

∼

SCi =
nipi

ni
∈ [0, 1] . The ratio 

(17)pi =

(Ciki)!

2!(Ciki−2)!

ki!

2!(ki−2)!

=
(Ciki)!(ki − 2)!

ki!(Ciki − 2)!
=

(Ciki)(Ciki − 1)

ki(ki − 1)
≃ C2

i
∈ [0, 1].

Fig. 9  Effects of the level of the agents’ commitment to the collective interest, �2 , on the location of C∗
i
 . 

The solid black line represents the sum of the deviator’s extra benefit normalized to one and the pressur-
ing costs. The horizontal dashed black line represents the deviator’s extra benefits. The dashed orange 
and the dotted-dashed blue lines represent group pressure when Ii = 0.04 and Ii = 0 , respectively. The 
dashed black vertical lines represent the locations of individual thresholds, when Ii = 0 and Ii = 0.04 . 
Parameter values are S = 2 , �1 = 50 , �2 = 45 , �3 = 0.1 , �i

(
ki
)
= 1 , v0 = v1 = 0 , and v2 = 4.5
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�i =
ni

ni
∈ [0, 1] is the group cohesiveness in N

i
(g) . As we measure the number of 

links among compliers within a group, 
∼

SCi represents the expected tightness of indi-
rect norm-enforcing ties at the group-level agent i has, such that 

∼

SCi = Ii = �ipi . 
Using Eq. (17), it yields 

∼

SCi = Ii = �iC
2
i
 . At the network level, the expected tight-

ness of indirect norm-enforcing ties at the group level, I , can be calculated as the 
product of two independent random variables, �i and Ci , such that 
∼

SCi = I = E
[
�i
]
E
[
C2
i

]
= �

(
C2 + Var(Ci)

)
 . For the derivation of Theorem  2, we 

approximate I = �
(
C2 + Var(Ci)

)
 by I = �C2 . Note that Var(Ci) is zero or very close 

to zero when networks are regular, very dense or sparse, or when C tends to either 0 
or 1. Hence, for all these cases, the approximation error is very small. Moreover, 
Theorem 2 demonstrates that this approximation does not affect the determination of 
efficient policies.  ◻.

Appendix F

Proof of Theorem 2

Provided that the policy implementation costs are identical, we compare the effi-
ciency of informal and formal enforcement policies in promoting coordination 
among compliers. As shown in Theorem  2 the effects of increases in � (informal 
enforcement) on I , or of increases in C (formal enforcement) on I are given, respec-
tively, by.

where.

Since �Var(Ci)
�C

= 0 , informal enforcement is more efficient than formal enforce-
ment if the following condition holds.

Note that Var
(
Ci

)
 tends to zero when networks are regular, very dense, or sparse, 

or when C either tends to 0 or 1. In all of these cases, the condition presented in 

(18)�I

�C
= 2�C +

�Var
(
Ci

)
�C

, and
�I

��
= C2 + Var

(
Ci

) �I
��

= C2 + Var
(
Ci

)
,

(19)

�Var
(

Ci
)

�C
= 1

n

[ �
�C

(

Ci − C
)2 + �

�C
(

Cj − C
)2 + ... + �

�C
(

Cn − C
)2
]

= 1
n
[

2
(

C − Ci
)

+ 2
(

C − Cj
)

+ ... + 2
(

C − Cn
)]

= 2
n

[

nC −
n
∑

i=1
Ci

]

= 2C − 2C = 0.

(20)
�I

��
≥

�I

�C
→ C ≥

(
2� −

Var
(
Ci

)
C

)
.
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equation (20) can be simplified to C ≥ 2� . In the main text, we approximate 
�I∕�C = 2� − Var

(
Ci

)/
C by 2� . However, meeting the inequality C ≥ 2� guaran-

tees that the exact inequality C > 2𝜏 − Var
(
Ci

)/
C always holds. In other words, the 

inequality C ≥ 2� marks the lower limits of C for informal enforcement to always be 
more efficient for any value of Var

(
Ci

)/
C . However, if Var

(
Ci

)
> 0 , then the level 

of C at which informal enforcement becomes more efficient decreases. Hence, the 
approximation I = �C2 employed in Theorem 2 does not affect the lower limits of 
C for informal enforcement to be more efficient than for formal enforcement when 
promoting coordination among compliers.   ◻.

Appendix G

Proof of Theorem 3

Recall that Ci, �i ∈ [0, 1] . The variance of the tightness of direct norm-enforcing ties 
at the group level is given by.

where C = E
[
Ci

]
= E

[
ai
]
 (see Theorem 1). This variance of Ci reaches its mini-

mal value, Var(Ci) = 0 , when C = 0 or C = 1 , and its maximal value, Var(Ci) =
1

4
 , 

when C = 0.5 . Maximal variance occurs when Ci takes only the values of 0 and 1, 
Ci ∈ {0, 1} , and the probability of taking either 0 or 1 is equal to one half, such that 
P
(
Ci = 0

)
= P

(
Ci = 1

)
=

1

2
 . The proof is provided by the variance of the binomial 

distribution, Var(Ci) = C − C2.
The variance of the tightness of indirect norm-enforcing ties at the group level 

is computed as the variance of the product of two independent random variables, �i 
and Ci , as follows.

where � = E
[
�i
]
. This variance is bounded, 0 ≤ Var(Ii) ≤

1

4
 . It reaches its minimal 

value, Var(I) = 0 , when C = � = 0 or C = � = 1 , and its maximal value, Var(I) = 1

4
 , 

when C = � = 0.5 . Maximal variance of group cohesiveness occurs when �i takes 
only the values of 0 and 1, �i ∈ {0, 1} , and the probability of taking either 0 or 1 is 
equal to one half, such that P

(
�i = 0

)
= P

(
�i = 1

)
=

1

2
 . Given that Ci, �i ∈ {0, 1} , 

then Var(C2
i
) = Var(Ci) = C − C2 , C = E

[
Ci

]
= E

[
C2
i

]
 , and Var(�i) = � − �2 . Thus, 

equation (22) can be rewritten as Var(Ii) =
(
C − C2

)
� +

(
� − �2

)
C2 . It is easy to 

observe that this variance is maximal when C = 1 and � = 0.5 (or � = 1 and C = 0.5 ) 
and minimal when C = � = 0.  ◻.

(21)Var(Ci) =
1

n

n∑
i=1

(
Ci − C

)2
,

(22)Var(Ii) = Var(C2
i
)Var(�i) + Var(C2

i
)�2 + Var(�i)

(
E
[
C2
i

])2
,
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Appendix H

We introduce the background information on social networks (Part 1) before pro-
ceeding with the proof of Proposition 2 (Part 2).

Part 1 of Appendix H: Necessary condition for the power‑law distribution 
to emerge.

Observation H1 [Power-law distribution]. Social networks are nonregular, sparse 
networks, and the power-law distribution is a statistically plausible model for 
explaining their group size sequence, 

{
ki
}
1≤i≤n, such that P(k) ∝ k−� for k ≥ 1 with 

2 < 𝛾 < 3.
In a recent study, Broido and Clauset (2019) analyzed nearly 1000 social, biologi-

cal, technological, transportation, and information networks and found that the log-
normal and the power-law distributions are good approximations of these networks. 
However, our study is based on a power-law distribution, because its statistical prop-
erties are easy to interpret analytically.

Definition H1 [Regular networks] Regular networks are those in which all agents 

have the same group size, Var(k) = 1

n

n∑
i=1

�
ki − k

�2
= 0 . Nonregular networks have 

Var(k) > 0.
The regularity of a social network depends on its power-law exponent, 2 < 𝛾 < 3 , 

with � → 3 leading to more regular social networks. In the literature, sparse net-
works are defined as follows.

Definition H2 [Sparse networks] Sparse networks are characterized by a low total 
number of links, 0 < |L| << |L|max , where |L| denotes the total number of links in 
the network and  |L|max =

n(n−1)

2
 its maximal number.

Although sparsity is an important characteristic of social networks, the threshold 
between sparsity and nonsparsity is not well defined in the literature. Next, we show 
that the sparsity of social networks is specifically bounded by the network size.

Proposition H1 [Sparsity and social networks] The condition n ≤ �L� ≤ n
√
n is a 

necessary condition for the power-law distribution of social networks to emerge.

Proof Let F(k) = P(K ≥ k) denote the cumulative distribution function of the power-
law distributed variable k (in this case, group size). In the continuous case, 

F(k) = ∫ ∞

k
P(k)dk =

(
k

kmin

)1−�

 . The integral of P(k) over two different group sizes 

( k1 , k2 ) is computed as F(k) = ∫ k2
k1

P(k)dk , where k1 < k2 , and it provides the proba-
bility that a randomly chosen agent i has a group size between these two values, 
such that k1 < ki < k2.



Social networks, norm-enforcing ties and cooperation  

To calculate kmax , we assume that in a social network of n agents we expect at 
most one agent whose group size exceeds kmax ; then 

F(k) = ∫ ∞

kmax
P(k)dk =

(
kmax

kmin

)1−�

=
1

n
 . It yields kmax = kminn

(
1

�−1

)
 . Solving the last 

equation in the limits of the power-law exponent 2 ≤ � ≤ 3 , we obtain that

Since neither self-loops nor multiple links are considered, it holds that 
1 < kmax ≤ n − 1 . Equation (23) indicates that kmin needs to be bounded between 
1 ≤ kmin <

√
n . Using the Barabasi and Albert model (1999) as the reference model for 

power-law networks, we know that the average group size is k = 2kmin , and the total num-
ber of links is |L| = nk

2
 . According to equation (23), we obtain the condition for the power-

law distribution of social networks to emerge, which is n ≤ �L� ≤ n
√
n.  ◻.

According to Definition H2 and Proposition H1, the condition for sparsity 
0 < n ≤ �L� ≤ n

√
n << �L�max holds when n is sufficiently large (e.g., n ≥ 1000 ). 

This means that social networks represent only a small fraction of all possible net-
works. Let G|L| be the set of all networks of size n with any number 0 ≤ |L| ≤ |L|max 
of links. Let G̃|L| be the set of all possible social networks, which implies size n 
with 0 < n ≤ �L� ≤ n

√
n links (Proposition H1). Then, we can easily observe that 

G̃|L| ⊂ G|L|.

Part 2 of Appendix H: Proof of Proposition 2

In a complete network (CN), all agents are linked such that ∀i ∈ V , �i = � = 1 . The 
expected tightness of indirect norm-enforcing ties in CN is maximal, ICN = C2 , due 
to � = 1.

To calculate the lower and upper limits of average group cohesiveness in social 
networks (SN), we use two different power-law networks generative models: the 
Barabasi and Albert (BA) model (1999) and the pseudo-fractal (PF) model (Doro-
govtsev et al. 2002). The lower limit of � in SN is given by the BA model. In this 
model, average group cohesiveness is � =

(kmin−1)(log n)2

8n
 (Klemm and Eguíluz 2002; 

Fronczak et al. 2003; Szabó et al. 2003). Since  kmin ∈
�
1,
√
n
�
  (Proposition F1), 

then � ∈
�
0,

(log n)2

8
√
n

�
.

(23)

⎧
⎪⎨⎪⎩

kmax = nkmin, if �= 2

kmax =
√
nkmin, if �= 3
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Using the PF model, the upper limit of � in the SN can be approximated.34 This 
model is used to generate a SN with remarkably high average group cohesiveness, 
e.g., a network of scientific collaborators (Foster et  al. 2011). The pseudo-fractal 
model is deterministic because network growth depends exclusively on calendar 
time t ∈ ℝ≥0 . Thus, the network size is n =

3(3t+1)

2
 , total number of links is |L| = 3t+1 , 

and average degree is k = 4

1+3−t
 (Figure 10). The distribution of group cohesiveness 

follows a power-law distribution that depends on individual group size, with �i =
2

ki
 . 

The resulting average group cohesiveness approaches a constant value � =
4

5
 . 

According to these network generative models, the expected tightness of indirect 
norm-enforcing ties in SN ranges in-between ISN ∈

[
0,

4C2

5

]
.

The Erdös-Rényi model (Erdös and Rényi 1960) is the original random-network 
(RN) generative model. Although the topology of the RN is not observed in social 
networks, the model is interesting because its characteristics can be studied 

Fig. 10  The pseudo-fractal network generative model (Dorogovtsev et al. 2002). Starting from a single 
link that connects two agents at time t = 1 , every link in the network generates at each time step a new 
agent that connects to both of the end-agents of the link. Figure 10 shows the structure of the pseudo-
fractal network at times t = {2, 3, 4, 5} which corresponds to networks in panels A, B, C and D, respec-
tively

34 Klemm and Eguíluz (2002) proposed an alternative model to reproduce power-law networks with 
higher average group cohesiveness, � = 5∕ 6 , but we based our analysis on pseudo-fractal networks 
because they are more easy to analyze analytically.
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analytically. The RN network is typically denoted by g = (n, p) for its two compo-
nents: (1) n ∈ [2,∞) the number of isolated agents; and (2) p ∈ [0, 1] the probability 
that a link between any pair (i, j) in g exists. All links have identical probability p to 
exist. Average group size is k = (n − 1)p , total number of links is |L| = nk

2
 , and aver-

age group cohesiveness is � =

⎛⎜⎜⎝
n

3

⎞⎟⎟⎠
p3

⎛⎜⎜⎝
n

3

⎞
⎟⎟⎠
p2

= p.

To compare RN and SN, the networks have to be of identical size n subject to the 
sparsity condition, n ≤ �L� ≤ n

√
n (Proposition H1). This condition leads to 

k ∈
�
2, 2

√
n
�
 and � ∈

�
2

(n−1)
,

2√
n

�
 . Consequently, the expected tightness of indirect 

norm-enforcing ties in sparse RN is minimal, IRN ∈
�

2C2

(n−1)
,
2C2√

n

�
 , because � ≈ 0 ; 

especially in RN with large n.  ◻.
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