

Contents lists available at ScienceDirect

# Sustainable Energy, Grids and Networks





# Increasing hosting capacity of low-voltage distribution network using smart charging based on local and dynamic capacity limits



Marc Cañigueral<sup>a,\*</sup>, Rick Wolbertus<sup>b</sup>, Joaquim Meléndez<sup>a</sup>

<sup>a</sup> University of Girona, Campus Montilivi, Girona, 17003, Catalonia, Spain
<sup>b</sup> Hogeschool van Amsterdam, Amstelcampus, Amsterdam, 1091 GC, The Netherlands

## ARTICLE INFO

Keywords: Charging infrastructure Electric vehicles Gaussian Mixture Models Smart charging User profiles

## ABSTRACT

While the Municipality of Amsterdam wants to expand the electric vehicle public charging infrastructure to reach carbon-neutral objectives, the Distribution System Operator cannot allow new charging stations where low-voltage transformers are reaching their maximum capacity. To solve this situation, a smart charging project called Flexpower is being tested in some districts. Charging power is limited during peak times to avoid grid congestion and, therefore, enable the expansion of charging infrastructure while deferring grid investments. This work simulates the implementation of the Flexpower strategy with high penetration of electric vehicles, considering dynamic and local power limits, to assess the impact on both the satisfaction of electric vehicle users and the business model of the Charging Point Operator. A stochastic approach, based on Gaussian Mixture Models, has been used to model different profiles of electric vehicle users using data from the Amsterdam public electric vehicle charging limitations on the different stakeholders. The results show that, while Amsterdam's existing public charging infrastructure can host just twice the current electric vehicle demand, the application of Flexpower will enable the growth in charging stations without requiring grid upgrades. Even with 7 times more charging sessions, Flexpower could provide a power peak reduction of 57% while supplying 98% of the total energy required by electric vehicle users.

## 1. Introduction

Electric vehicles (EVs) are seen as an essential part of the energy transition towards a low-carbon system while reducing the number of local pollutants. Therefore, cities with strong clean air plans are at the forefront of the transition to electric mobility and they are investing in charging infrastructure to facilitate this transition. The adoption of EVs is directly related to the development of the public charging infrastructure [1], especially in dense urban areas where EV drivers require charging points at both home and workplace.

However, a city-scale deployment of a public EV charging infrastructure poses a chain of challenges for both the Distribution System Operators (DSO) — who have to ensure the quality of power supply — and the Municipalities — who want to expand the public charging infrastructure. The EV peak demand largely aligns with the demand from households, increased by the electrification of energy-intensive domestic activities such as space-heating (e.g. heat pumps) and cooking [2–6]. Consequently, this leads to larger daily demand peaks that may exceed the maximum capacity of certain low-voltage transformers, resulting in a bottleneck in the distribution system. To avoid this

congestion scenario, the DSO should incur in costly investments to upgrade the congested transformers [5], which may not be performed in a short period of time. Deferring the upgrade would imply that no more charging stations could be installed downstream of the congested transformers, and the low-carbon objectives of cities and governments could be affected. Thus, since a grid upgrade is not expected in the short term, the only option to continue expanding the charging infrastructure is to apply a 'smart charging' strategy, reducing the reserved capacity for every charging station according to the grid availability.

However, the flexibility potential of EVs is significant since when using public charging stations, they are often connected (parked) for a time significantly longer than needed for charging. This happens overnight, during work time or when visiting the city [7], giving the potential to shift power demand over time without interfering with the charging needs of the EV user. Such smart charging strategies are widely discussed in the literature with different objectives — technical (e.g. load balancing or increasing PV usage) or financial (e.g. reducing energy cost) —, control architectures (centralized or distributed charging) and control algorithms (e.g. linear programming, quadratic

\* Corresponding author. E-mail addresses: marc.canigueral@udg.edu (M. Cañigueral), r.wolbertus@hva.nl (R. Wolbertus), joaquim.melendez@udg.edu (J. Meléndez).

https://doi.org/10.1016/j.segan.2025.101626

Received 2 July 2024; Received in revised form 25 December 2024; Accepted 14 January 2025 Available online 22 January 2025

2352-4677/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

programming, rule-based algorithms, etc.) [8]. Moreover, to a certain extent some smart charging pilots have already been tested in the field with public charging infrastructure [9,10] and private home charging points [11–13]. However, a city-scale smart charging deployment is still a challenge due to a combination of technical, economic and societal issues [14]. Especially in the public charging market at city-scale, the high penetration of EVs has to deal with a complex equilibrium among technical requirements of the DSO (congestion and peak avoidance, voltage control, etc.), the energy-intensive business model of the Charging Point Operator (CPO), the mobility and charging behaviour of EV users and the charging infrastructure deployment plans of cities and/or governments. Also, it is important to remark that, even though the real impact of Distributed Energy Resources (DER) like EVs appears in the low-voltage distribution level and this impact is diverse depending on the location and time, most of the literature does not consider these local grid constraints and mainly adopt a global perspective and refer to approaches linked to implicit flexibility strategies based on the electricity price [15–17], the impact of renewable production at transmission-level [17-20], national flexibility markets [12] or modelling user profiles at wide-scale [11,21,22]. Thus, despite the low degree of instrumentation of these infrastructures, low-voltage lines and transformers are the first assets that have to be protected from the volatility of DER. To solve this issue, it is crucial to promote decentralized smart charging programs based on local grid signals, like the Flexpower project [23] in Amsterdam, the Netherlands, which is described in more detail in Section 2.

Flexpower is a novel smart charging approach for future smart cities, where the CPO controls the power of public charging stations according to the capacity signals sent by the DSO. These capacity signals are local (low-voltage transformer level) and dynamic (15minute resolution). Therefore, the aim of this work is to simulate and analyse the Flexpower impact given scenarios with high penetration of EV in the public charging infrastructure, taking into account the main interests, objectives and concerns of all stakeholders involved:

- Municipality: the objective of the city council is to expand the charging infrastructure to incentivize the citizens to buy EVs and reach their low-carbon city objectives. Their main concern is that the DSO could not host the expected charging infrastructure growth in the near future. Moreover, they do not want Flexpower to affect the quality of the charging service, controlling the EV load without noticeable changes by the user.
- Distribution System Operator (DSO): their objective is to ensure a high-quality power supply with a minimum cost, so managing power congestion to defer investments in infrastructure upgrades. Flexpower will allow them to avoid grid congestion while expanding the charging infrastructure.
- Charging Point Operator (CPO): their objective is to provide a good and reliable service to all EV users of the public charging infrastructure, supplying all energy requirements the users have. Flexpower could limit their benefits if EV charging is curtailed, but also could increase them if the charging infrastructure is expanded.
- EV users: their objective is to connect the vehicle when they need it and charge all the energy needed. Their main concern would be that Flexpower could limit their charge and affect their routes or plans.

This work wants to provide answers to these multiple concerns and offer more information to all stakeholders involved in the project. With this purpose, Section 2 gives first an introduction to the Flexpower project as a context for the study and the methodology proposed in Section 3. Following, Section 4 describes the calculations performed using real data from a trial at 124 public charging points to model the existing EV user profiles and uses these models to generalize the study across different locations in the city. The results from these calculations are analysed in Section 5 and, finally, Section 6 concludes the paper

with the main outcomes from the analysis and the recommendations for the further development of the Flexpower project in the city of Amsterdam.

## 2. The context: Flexpower project in Amsterdam

The city of Amsterdam has been at the forefront of the transition to electric mobility since the installation of the first public charge point in 2009. By 2030 the city aims to only allow zero-emission mobility into the city with an estimated total of 254.000 passenger cars (100% electric) [24]. To accommodate electric mobility, the city has set out a plan to install a total of 82.000 charging points across the city by 2030 [25]. Of those, 18.000 should be publicly accessible. By November 2022, there are 6.000 charging points (i.e. 3000 charging stations) installed in public areas [26]. The majority of charging should be done at private (50.000) and semi-public locations (13.000). Significant growth in infrastructure is thus expected.

Every public charging station has a grid connection of  $3 \times 25$ amperes, which means that, traditionally, every charging station had a technical capacity of 25 A. However, to allow the planned charging infrastructure expansion by the municipality and, at the same time, to avoid the congestion of low-voltage transformers, the reserved capacity for every charging station has to be reduced according to the grid availability. In that line, the Municipality of Amsterdam has been working on a smart charging project called Flexpower since the beginning of 2018. Initially, Flexpower was a pilot project within the EU Interreg project SEEV4City [27] and currently, the project is being further developed with high interest from all the partners involved in the project, including the DSO and the CPO.

In the first two iterations of the Flexpower project (i.e. Flexpower1 [28] and Flexpower2 [3]) a static load profile was deployed to 200 charging stations (each with two charging points) in Amsterdam. During the project, the physical grid connection was upgraded to  $3 \times 35$  A to allow higher loads during periods with high PV solar generation. The aim was to allow more locally produced renewable energy to be charged. During peak hours (16:00-19:00) a lower load (max.  $3 \times 8$  A per charging session) was allowed to prevent peak load. The results of the project showed that such a profile was partially effective. Allowing higher charging power during sunny days was hardly effective since, on one hand, only a very small portion of cars could charge faster than  $3 \times 16$  A and, on the other hand, it required a considerable investment for the grid upgrade. A lower load during peak hours worked but resulted in a rebound demand peak when the charging signal profile allowed higher loads. The profile was applied in a similar manner each day (depending on the weather forecast) without information about the actual load on the local low-voltage transformer.

In the third phase of Flexpower project in 2022 (i.e. Flexpower3 [29, 30]), the power regulation of the charging station is done with a dynamic capacity signal for all charging stations under the same low-voltage transformer, middenspanningsruimte (MSR) in Dutch [31]. The current pilot consists in 62 public charging stations (124 charging sockets), under 9 different MSRs, with a maximum charging power of 11 kW per socket ( $3 \times 16$  A). The dynamic capacity signal is calculated by the DSO considering the nominal power capacity of every MSR and the forecasted demand of the other loads. The EV demand is controlled to avoid peaks in the aggregated power demand, while a minimum charging capacity is always guaranteed by the DSO. Then, according to this capacity signal, the CPO has to limit the output power of the EV charging stations installed downstream the corresponding MSR. Fig. 1 illustrates an example of this dynamic capacity signal established by the DSO during one day of September 2022.

Fig. 1 also shows two red dashed lines representing the minimum and maximum capacity limits, which are obtained according to Eqs. (1) and (2) respectively, and are given by the number of charging stations installed downstream the MSR and the values of *ReservedCapacity* and *FirmCapacity*:



Fig. 1. MSR (low-voltage transformer) capacity sent by the DSO.

• *ReservedCapacity*: power capacity for the connection of every charging station in the power grid, which is currently of 25 amps/phase. When a new charging station is installed in a street, the DSO registers this new point of demand and assigns it to the corresponding MSR.

## $MaximumCapacity = nChargingStations \times ReservedCapacity$ (1)

• *FirmCapacity*: guaranteed power capacity that will be provided to a charging station at any moment, which is currently of 4 amps/phase. This is a regulation measure to ensure a good charging service for all EV users even though the charging power is limited.

$$MinimumCapacity = nChargingStations \times FirmCapacity$$
(2)

Observe that the capacity limit in Fig. 1 is represented in power units to facilitate the understanding of the power system, despite the DSO defining it in amperes per phase (i.e. power current I). Thus, the limits obtained with Eqs. (1) and (2), as the results of multiplying the *ReservedCapacity* and the *FirmCapacity* by the number of charging stations (6 charging stations in the example from Fig. 1), are converted to power capacity considering an equilibrated three-phase low-voltage system using Eq. (3).

$$P_{III} = \sqrt{3 \times 400 \times I} \tag{3}$$

\_

The current *MaximumCapacity* of every MSR has been established with the current number of charging stations (See Table 1). These are the capacity limits that reduce the possibility of supplying extra EV demand without upgrading the grid infrastructure (i.e transformer, lines and protections). On the other hand, the *FirmCapacity* could be decreased to allow the charge of more users under the same MaximumCapacity. However, very low values of *FirmCapacity* could result in a higher amount of uncompleted sessions due to longer charging times. Thus, a relevant part of the calculations done in Section 4 assesses multiple values of *FirmCapacity* for every scenario. This allows for identifying which value ensures a good charging service to EV users and at the same time guarantees reliable demand profiles for the distribution grid.



Fig. 2. Methodology block diagram.

## Table 1

| MSR     | Charging stations | Max.capacity<br>(A/phase) | Max. capacity<br>(kW) |
|---------|-------------------|---------------------------|-----------------------|
| 9020467 | 7                 | 175                       | 120.75                |
| 9006775 | 7                 | 175                       | 120.75                |
| 3023573 | 9                 | 225                       | 155.25                |
| 9015800 | 6                 | 150                       | 103.50                |
| 3023598 | 8                 | 200                       | 138.00                |
| 3016877 | 6                 | 150                       | 103.50                |
| 3002819 | 6                 | 150                       | 103.50                |
| 3002917 | 7                 | 175                       | 120.75                |
| 3006277 | 10                | 250                       | 172.50                |

## 3. Materials and methods

This section details the data, algorithms, and methods used to analyse the impact of the Flexpower project in Amsterdam. A summary of the methodology is illustrated in Fig. 2.

## 3.1. Data sets

The following real data sets used in this work were provided by the University of Applied Sciences of Amsterdam (Hogeschool van Amsterdam) in the scope of a research collaboration. The EV charging data sets are not public but available under request through evdata.nl [32].

#### 3.1.1. Electric vehicle charging sessions

A real data set of electric vehicle charging sessions from the city of Amsterdam was used in this study to create EV stochastic models and to obtain the current charging picture of the city. This data set consists of more than 2.6 million sessions during 2020 and 2021, every session being defined by connection times, energy charged, type of connection  $(1 \times 16 \text{ A}, 2 \times 16 \text{ A} \text{ or } 3 \times 16 \text{ A})$ , charging point ID and MSR ID.

## 3.1.2. Operational limits of the grid

Another real data set used in this work is the grid capacity limits that the DSO sends to the CPO in the scope of the Flexpower project, as explained in the Introduction section. The real capacity limits (in amperes per phase) for every one of the 9 MSR participating in the project during the month of September 2022 were provided in a resolution of 15 min.

Moreover, the number of charging stations supplied by every MSR was also provided. Therefore, the *MaximumCapacity* for every MSR is shown in Table 1, considering a *ReservedCapacity* of 25 amperes.

## 3.2. Models of electric vehicle charging sessions

The simplified demand profile of a charging session can be characterized by the connection times, the charging power and the energy required [33]. The duration of connections highly depends on the user behaviour (e.g. daily activities or work timetable), whereas the charging power depends on the type of connection (single-phase, twophase or three-phase) and the maximum current per phase that either the EV or the charging station permits (usually 16 A). Finally, the energy that the vehicle can charge depends on both the user behaviour (i.e. the distance travelled, level of the battery), the size of the EV battery and the charging power (i.e. how fast it can charge the energy requirements). Thus, while the charging power is a simulation parameter that can be defined according to the charging infrastructure of a specific use case (e.g. 20% of sessions charging at 3.7 kW and 80% at 7.4 kW), the EV user behaviour in terms of connection patterns and energy requirement must be defined by stochastic models that capture the uncertainty associated with the EV demand at issue [34].

Therefore, stochastic models are built from the real Amsterdam data set described in Section 3.1.1 to characterize EV user profiles, understanding a "user profile" as a pattern in the connection times of charging sessions. These stochastic models are then used to simulate multiple levels of EV penetration in the public charging infrastructure of Amsterdam. The modelling methodology proposed can be summarized with the following steps:

- Clustering of charging sessions: Resulting clusters will represent generic user profiles (i.e. connection patterns that reflect different user behaviours)
- 2. Building the connection models for every user profile: Associating every profile with a connection start time and a duration.
- 3. Building the energy models for every user profile and different charging powers.

Below, this section describes in more detail the methods used to cluster and model user profiles using a real data set of EV charging sessions. It is worth mentioning that the methodology has been wrapped into an open-source R package, called "evprof", for free use in any other use case where charging session data is available [35].

## 3.2.1. Clustering EV sessions into user profiles

In the first step, a Gaussian Mixture Models (GMM) clustering is applied to the data set of EV charging sessions. Gaussian Mixture Models is a model-based clustering technique that groups data points into Gaussian distributions. The clustering methodology is widely explained in previous works, first in [36] and later improved in [37]. In this application, two variables are used to cluster sessions using a bivariate GMM: connection start hour and duration (connection hours).

As raised in [37], model-based algorithms are sensitive to outliers so first, the full data set is divided into smaller sets with similar density levels and taking into account the different time cycles where the EV users have different behaviour (day of the week, season, etc.). Then, every sub-set is cleaned after detecting the outliers with the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) method. Since the outlying sessions are not part of the main connection pattern during peak hours, they do not suppose a relevant power demand for grid congestion analysis. After cleaning the outliers, every cleaned sub-set is evaluated with the Bayesian Information Criterion (BIC) to define the optimal number of clusters to describe the data points and avoid overfitting. The BIC indicator is the value of the maximized log-likelihood with a penalty on the number of parameters in the model, so it allows a comparison of models with different numbers of clusters. This comparison is done in a plot visualization using the evprof R package [35]. Once the number of clusters is defined, the GMM clustering method is applied to every subset to obtain the bivariate clusters. Finally, every cluster is labelled with a user profile name, corresponding to informative behaviours in terms of connection start

time and duration. Thus, for example, a cluster with an average start tie at 9:00 and an average duration of 8 h is tagged as "Worktime". A single user profile can have multiple clusters assigned to it. Some clusters may represent a very specific behaviour, but others could have a high variability that does not allow a clear identification of a user profile.

#### 3.2.2. Modelling EV user profiles

This work proposes to model the EV charging sessions in terms of connection times and energy demand since these variables are defined by the behaviour of the EV users. EV user behaviour is interpreted in multiple ways in current literature. For example in [38] the EV user behaviour is modelled in terms of importance given by the user to aspects such as charging price, comfort or the battery state of charge. However, modelling the EV demand at this high-detail level requires EV user information (e.g. vehicle ID, state of charge, distance driven, etc.) that was not available in the data set of this work. Thus, the stochastic modelling methodology used in this work for city-scale simulations makes use of basic charging variables like connection times, energy and power to model generic EV user profiles (i.e. connection patterns) that will have a specific presence depending on the district of the city or the area under study.

The GMM clustering method raised in Section 3.2.1, based on the connection start time and the connection duration, is a parametric method that allows classifying EV charging sessions into clusters at the same time that provides a centre of each model and a measure of dispersion. Therefore, the models of these connection variables for a specific user profile are built as an additive combination of the multiple bivariate Gaussian distributions (i.e. clusters) associated with that user profile. These connection GMM are defined by the mixture weight (%), the means vector ( $\mu$ ) and a covariance matrix ( $\Sigma$ ). The connection GMM of the current study case are described in Appendix B.

On the other hand, the energy models are not part of the clustering process and have to be built afterwards. Previous work from the authors [39] presented a methodology to build GMM of a single variable, i.e. the energy charged per charging session, for every user profile. However, in the case study of the current paper, the research showed that the energy charged in every session not only depends on the user profile but also on the charging power (see Section 4.1). New EV models tend to have larger batteries but also charge at higher rates, so the higher the charging power, the larger the energy demand. Thus, every user profile has been associated with several energy models corresponding to the multiple charging rates. In particular, in the data set used in this work, there are three main charging rates: 3.7 kW (i.e. singlephase connection at 16 A), 7.4 kW (i.e. two-phase connection at 16 A) and 11 kW (i.e. three-phase connection at 16 A) [3]. Therefore, the full data set of sessions has been first split by user profile and second by charging rates to obtain the corresponding energy GMM, defined by the mixture weight (%), the mean ( $\mu$ ) and a standard deviation ( $\sigma$ ). The energy GMM of the current study case are described in Appendix B. This improvement in the methodology respective to the initial method raised in [39] has been also introduced in the latest version of the open-source R package "evprof" [35].

Even though the charging power is now considered for building the energy models, it is not a variable to model with GMM since the charging power depends on the specific charging environment, like the characteristics of the charging infrastructure or the EV fleet. The methodology followed to simulate the charging power of charging sessions is further described in Section 3.3.

## 3.3. Simulation of charging sessions

The stochastic EV models built with the methodology of Section 3.2 allow estimating new charging sessions from the Gaussian distributions that describe every user profile in the different time cycles (e.g. day of the week, year, season, etc.) considered during the clustering process.

On the other hand, connection patterns and user needs vary from district to district. Thus, the share of the identified user profiles and the share of every charging rate (e.g. 3.7 kW, 7.4 kW, 11 kW, etc.) for every location (street, neighbourhood, district, etc.) has been used to obtain the final energy models that represent the charging profiles explained in Section 3.2.2.

The simulation process of EV sessions has been done on a daily basis, taking into account the time cycle of that day (if considered different time cycles), the number of sessions to simulate during this day, the share of user profiles relative to the total number of daily sessions, and the share of the three main charging rates (3.7 kW, 7.4 kW and 11 kW). Thus, the connection variables are estimated first with the connection GMM of the time cycle and the user profile. Second, the charging power is assigned to every session randomly considering the share of every charging rate over the total. Finally, the energy value is estimated using the energy GMM corresponding to the time cycle, the user profile and the charging power of the session.

The open-source R package "evsim" [40] collects the functions described above to simulate new EV sessions using the Gaussian models created with the "evprof" R package already mentioned in Section 3.2.

## 3.4. Sizing of the charging infrastructure

The charging sessions have been simulated considering that all of them would be assumed by the public charging infrastructure in Amsterdam. Thus, the required growth of the charging infrastructure has been calculated according to the simulated sessions.

Every charging station can handle only two simultaneously connected EVs since there are two sockets per charging station. Thus, it is necessary to first calculate the number of charging stations required according to the maximum number of simultaneous connections; and second, to allocate every incoming session to the available socket. This second step is important to afterwards simulate the Flexpower program since it is required to know how many vehicles are charging simultaneously in a charging station. These calculations have been done using R package "evsim" [40].

#### 3.5. Simulation of flexpower

As already introduced in Section 1, Flexpower is a smart charging project currently deployed in Amsterdam. In its third development phase, the DSO sends to the CPO the maximum current per phase that the MSR can assume with a 15 minute resolution. Thus, every 15 min the CPO must compare the number of charging vehicles charging, their respective demand and the maximum capacity of the MSR. If the demand is higher than the maximum capacity, then this maximum current per phase at MSR level is split among all charging vehicles. At the same time, another physical constraint is present in the Amsterdam pilot. The public charging stations have two sockets of 16 A, while the grid connection has a maximum of 25 A. Then, a vehicle can charge at 16 A when it is alone in the charging station, but the maximum current will be reduced to 12 A when any phase of the charging station is shared. However, charging two single-phase vehicles or one singlephase vehicle and one two-phase vehicle would allow the maximum rate of 16 A per phase since the charging stations are smart enough to distribute phases among the two sockets.

Considering all these constraints, Algorithm 1 describes how Flexpower is simulated, considering a time resolution of 15 min like the DSO capacity signals. The nomenclature of variables used in Algorithm 1 is described in Table 2.

Algorithm 1 iterates over all time slots in the simulation time sequence to assign the available charging power to the connected vehicles, according to the DSO capacity signal. With this purpose, the simulated schedule of charging sessions (i.e. S), with the connection times, energy and power variables for every session, is expanded among

| Table | 2 |
|-------|---|
|-------|---|

| Nomenclature | of | Flexpower | algorithm. |
|--------------|----|-----------|------------|
|              |    |           |            |

| Parameter            | Description                                                            |
|----------------------|------------------------------------------------------------------------|
| S                    | Schedule of charging sessions, see example in Table A.1                |
| SE                   | Expanded schedule of charging sessions along all time slots, see       |
|                      | example in Table A.2                                                   |
| Power <sub>s,t</sub> | Charging power of session $s$ at time slot $t$ . Corresponds to a cell |
|                      | in $SE$ and is defined during the iterations of Algorithm 1            |
| $Energy_{s,t}$       | Energy charged by session $s$ at time slot $t$ . Corresponds to a cell |
|                      | in $SE$ and is defined during the iterations of Algorithm 1            |
| $EnergyLeft_s$       | Energy to be charged by session s. It is updated in SE during          |
|                      | the iterations of Algorithm 1. The initial value corresponds to        |
|                      | $Energy_s$ in schedule S                                               |
| Phases <sub>s</sub>  | Number of power phases of session s (single-phase=1,                   |
|                      | two-phase=2 and three-phase=3). It is defined in $S$                   |
| Т                    | Date and time sequence                                                 |
| $\Delta T$           | Time sequence resolution, i.e. time difference between values in       |
|                      | Т                                                                      |
| $A_{s,t}$            | Charging current (in amps) of the session $s$ at timeslot $t$          |
| $A_{max,msr,t}$      | Maximum charging current for transformer msr at timeslot t             |
| $A_{max,cs,t}$       | Maximum charging current for charging station $cs$ at timeslot $t$     |

all time slots to create a time-series table (i.e. *SE*) with the corresponding value of power and energy charged by every charging session after the simulation of Flexpower program. In order to better visualize the process, Appendix A includes Table A.1, which shows an example of a simulated schedule of sessions (*S*), and Table A.2, which shows an example of the same schedule but expanded in time (*SE*). The *Power* and *Energy* variables of the expanded schedule *SE* are initialized at 0 to be filled by Algorithm 1, while the *EnergyLeft* variable corresponds to the *Energy* value from the original schedule *S*.

For every time slot in the date and time sequence, first, the number of vehicles charging is calculated by filtering the expanded schedule SE to find all charging sessions charging at that specific time slot. This number of vehicles charging is used to calculate the maximum phase current per vehicle according to the MSR capacity limit sent by the DSO. Second, it is assigned to every charging station that is charging a vehicle a maximum current according to the number of phases used in the station. Then, the charging current of every session would be the minimum between the MSR and the station limits. Finally, the *Power* and *Energy* of every session for this time slot are calculated and updated to the schedule SE. The sessions are considered to be charging until their *EnergyLeft* value is 0, i.e. they have already charged all their requirements.

## 4. Calculations

The calculations performed in this work can be differentiated into two main blocks: (1) modelling of EV user profiles, and (2) simulation of Flexpower. This section describes the steps followed in each block and their main outcomes to later analyse in the next section the results obtained from these simulations.

#### 4.1. Amsterdam EV models

After submitting the real set of charging sessions described in Section 3.1.1 to the modelling process from Section 3.2, seven user profiles have been discovered on seven different time cycles corresponding to the days of the week.

The real data set of charging sessions described in Section 3.1.1 has been submitted to the clustering methodology exposed in Section 3.2.1. The clustering has been performed separately by day of the week, since no relevant difference has been detected among the months of the year, using the connection start time (i.e. arrival time) and the connection duration (in hours) for the bi-variate Gaussian Mixture Models (GMM) clustering. Since every cluster obtained has a characteristic



connection pattern (i.e. Gaussian distribution) that can be interpreted as generic daily human behaviour, the most similar clusters have been grouped resulting in seven different user profiles. The average values of the connection start time and the connection duration, with the corresponding behaviour interpretations, are described in Table 3 for each one of the seven EV user profiles identified. These average values are just descriptive since every user profile has a specific Gaussian distribution for every day of the week. This is seen in Fig. 3, which shows the classification of all charging sessions (i.e. a single points in the plot) into these user profiles for every day of the week independently. The bi-variate Gaussian Mixture Models associated to every user profile's clusters are described in Tables B.2–B.8 of Appendix B with the corresponding location and variance parameters.

Besides connection models, that only gather the temporal behaviours, every user profile has a specific energy requirement, that somehow is related to the connection duration. Moreover, as exposed in Section 3.3, Fig. 4 validates that the charging power has also a clear impact on the amount of energy charged by the vehicle, plotting the density of *Energy* values for every different charging rate (i.e. 3.7, 7.4 or 11 kW) and user profile. On one hand, it is clear that the 3.7 kW sessions have a lower average energy consumption, but a lower variation as well since the density distribution is narrower than the other charging rates. On the other hand, the 11 kW sessions have considerably different distribution for short sessions like the Shortstay or

Dinner sessions. For these reasons, the Energy Gaussian Mixture Models have been fitted separately for every user profile and charging rate. The statistic values of the energy GMM are included in Tables B.9–B.55 of Appendix B.

## 4.2. Simulation of charging sessions and flexpower

Since the objective is to assess the performance of Flexpower when different levels of EV penetration are given, an increase in the number of charging sessions has been simulated by applying a factor k between 2 and 7 over the current number of sessions per week (current values of weekly sessions are shown for every MSR in Fig. 5). The share of every user profile in every MSR is shown in Fig. 6, for every different time cycle (i.e. day of the week in this case). This figure shows how different the demand can be from neighbourhood to neighbourhood.

The charging power distribution has been assumed to be equal for all the MSR since no considerable differences have been observed between them. Thus, the share of every charging power used in the simulations, shown in Table 4, corresponds to the current charging power distribution in the city of Amsterdam during 2021.

After simulating the sessions in the 7 different scenarios of EV penetration (i.e. factor k from 1 to 7), the charging infrastructure (i.e. the number of charging stations) required to handle the corresponding EV demand has been calculated according to the methodology described in

## Table 3

Amsterdam EV user profiles interpretations.

| EV user profile | Average connection start time | Average connection<br>duration (hours) | Behaviour interpretation                                                  |
|-----------------|-------------------------------|----------------------------------------|---------------------------------------------------------------------------|
| Dinner          | 18:28                         | 2,8                                    | Short connections during the evening                                      |
| Shortstay       | 13:51                         | 0,418                                  | Short connection all over the day                                         |
| Visit           | 11:32                         | 4,84                                   | Connections over the day with a high variability on both connection start |
|                 |                               |                                        | and duration                                                              |
| Worktime        | 8:41                          | 8,62                                   | Morning connections with a duration about 8 h (working time)              |
| Commuters       | 18:21                         | 15                                     | Afternoon connections until next morning                                  |
| Home            | 14:20                         | 18,9                                   | Generally early-afternoon connections until next morning, but with        |
|                 |                               |                                        | high variability on both connection start and duration                    |
| Pillow          | 21:29                         | 13,3                                   | Night connections generally until next morning                            |





Fig. 3. Real data set of EV charging sessions classified into generic User profiles.



Charging rate (kW) 🔝 3.7 🔝 7.4 📃 11

Fig. 4. Density curves for energy values of sessions belonging to every user profile and charging rate.



Fig. 5. Current weekly sessions for every MSR of the study.



Fig. 6. Share of user profiles for every MSR of the study.

#### Table 4

Distribution of maximum charging powers in Amsterdam at the end of 2021.



Fig. 7. Infrastructure growth according to sessions/week.

Section 3.4. Finally, after simulating the charging sessions and sizing the charging infrastructure for every scenario, the different data sets of charging sessions have been submitted to the Flexpower algorithm described in Section 3.5.

## 5. Results and discussion

This section exposes the analysis of the simulation of Flexpower with different levels of EV penetration in the Amsterdam pilot. The analysis is done from the perspectives of the main stakeholders involved in the project: the Municipality, the Distribution System Operator (DSO), the Charging Point Operator (CPO) and the EV user. Specific performance indicators for each stakeholder have been defined and analysed for the different MSRs under multiple values of the *FirmCapacity* in order to assess its impact.

## 5.1. Municipality perspective

The implementation of the Flexpower project aims to allow the installation of more charging stations downstream of MSRs that currently cannot reserve more power capacity for the EV charging infrastructure. Therefore, more charging sessions within the same maximum capacity are expected (see Table 1 in Section 3.1.2). Effectively, Fig. 7 shows that, in almost all MSR, the current charging infrastructure could double the number of weekly charging sessions. For *k* greater than 3, the growth of charging sessions has to be linked to the growth of the infrastructure.

Moreover, the municipality is not only interested in expanding the charging infrastructure but also to ensure a high-quality public charging service. The implementation of Flexpower, limiting the charging power during demand peak hours, could increase the number of uncompleted sessions at the end of their connection time, understanding 'uncompleted session' as the charging session that charges less than



Fig. 8. Uncompleted sessions according to sessions/week.

the original (i.e. simulated) energy requirement. If the percentage of uncompleted sessions grows significantly, the reputation of the public charging infrastructure could decrease resulting in a loss of confidence by the users followed by a reduction of its use. Fig. 8 represents the percentage of uncompleted sessions for every firm capacity according to the value of sessions per week k, across all MSRs. This figure shows how the global percentage of uncompleted sessions increases inversely with the magnitude of the firm capacity. Using only a Firm capacity of 1 A in the current scenario (k = 1) would suppose 25% of uncompleted sessions whereas a Firm capacity of 4 A, reduces it until a 5%, and the 25% with this Firm Capacity is reached when k = 7. Increasing Firm capacity to 6 A results in a percentage of uncompleted sessions around 10% for all the EV penetration scenarios.

## 5.2. DSO perspective

Fig. 9 shows, for every MSR, the maximum peak demand obtained in every scenario of the number of sessions (i.e. the value of k), relative to the corresponding existing maximum capacity (values of Table 1 in Section 3.1.2). For the current scenario (k = 1), most of MSRs have a peak demand between 20% and 40% of their maximum capacity reserved for public charging stations, except MSRs 9006775 and 3002819 reaching 40% and 50% of the capacity respectively.

For MSR 9006775, the peak demand is the same for all Firmcapacity values from 1 to 5 A. This is because the MSR capacity limit for one specific day was higher than normal and the demand could also be high. This situation is represented in Fig. 10, for firm capacity values of 1 A (left) and 4 A (right), where the MSR limit is represented by the red dashed line, the static EV demand by the green dashed line, and the Flexpower EV demand by the green shaded line. In the right graph of Fig. 10, there is a visible gap between the MSR capacity limit and the Flexpower demand, even though the static demand is surpassing the MSR limit. This gap is also shown in Fig. 9, where the maximum values of the capacity level are between 80% and 90%, even for 7 times the current EV penetration. This gap in the power limitation of Flexpower is the result of two factors: (1) an important share of single-phase and two-phase vehicles in the system (i.e. 50% of sessions), which causes the limitation of phases that are not fully used, and (2) the representation of the MSR limit in power units (kW) considering a three-phase system. Therefore, the gap would decrease in the case of considering an EV fleet with a higher share of three-phase vehicles, which is expected to happen in the future.



Fig. 9. MSR capacity reached according to sessions/week.

Another interesting result is that, for some MSRs, the maximum peak demand is higher for lower firm capacity values, when the power limitation is supposed to be harder. An example is the MSR 3023573. This is because during peak demand hours the limitation is higher with a low firm capacity and this results in a considerable rebound effect. This situation is represented in Fig. C.1 from Appendix C.

However, if we look at the peak reduction between the static and the flexible case, it is observed that the lower the firm capacity, the higher the peak reduction. Fig. 11 shows the reduction of the EV power demand achieved with Flexpower at the moment when it would have been the peak of demand without Flexpower. Therefore, the figure shows the reduction of demand in the flexible scenario with respect to the static scenario. It is visible that the peak reduction increases proportionally with the firm capacity, with the values varying depending on the MSR, but mainly constant over the number of sessions per week because the peak reduction is relative to the demand itself. For most MSRs, the peak reduction with a firm capacity of 1 A remains between 80% and 90%, with 4 A between 70% and 80%, with 6 A around 60% and with 8 A between 40% and 50%. Another important aspect is that the MSR capacity limits, which are created by the DSO, allow the rebound effect. As shown in Fig. 12, the MSR limit (red dashed line) is less constrained during valley hours (green shaded area) of the rest of the demand (blue shaded line) from households, offices, etc. This proves that the DSO calculates these EV capacity limits with the objective to obtain a flatter total demand profile. However, currently, this is not done in real-time but with a two-day ahead forecasting. This means that the forecasting must be done properly to avoid a rebound effect during peak demand hours, like the example seen in the left graph of Fig. C.1.

## 5.3. CPO perspective

The implementation of Flexpower will allow the charging infrastructure to grow and host more sessions. This will suppose more energy to be sold by the CPO, so higher income. However, the use of Flexpower also implies limiting charging power during peak demand hours, which could lead to a reduction of the energy charged for users with short connection times. Fig. 13 shows the percentage of the total amount of energy charged to all EV sessions relative to the originally required energy. In general, the total energy sold to users decreases considerably with firm capacity values lower than 4 amperes. In most cases, with a firm capacity value of 4 A and higher, the percentage of energy charged remains around 95% (red dashed line), which could be an acceptable value by the CPO.

For some MSRs the value of firm capacity plays a more critical role than others, depending on how the EV demand is limited by the DSO. For example, the affectation of different values of firm capacity in MSR 3002917 is similar, while in MSR 9015800 the reduction of energy charged highly depends on the firm capacity magnitude. The difference between the EV load and DSO constraints for MSRs 3002917 and 9015800 is shown in Figs. C.2 and C.3 from Appendix C respectively. Fig. C.2 shows how the EV demand in MSR 3002917 is lower than the maximum capacity, while Fig. C.3 shows that the EV demand in MSR 9015800 surpasses by far the MSR capacity limit. Another specific case is MSR 9006775, showing a non-linear evolution of the charged energy because the firm capacity only plays a role from higher *k* values since its capacity limit is mainly between the minimum and maximum capacity (see Fig. 10).

#### 5.4. EV user perspective

The implementation of Flexpower will increase the charging infrastructure availability, allowing EV users to have charging stations on their streets and better accessibility to EV charging. Section 5.1 describes the number of uncompleted sessions, which could also be a service quality indicator from the EV user's point of view. However, the number of uncompleted sessions is represented from an aggregated perspective and, for a proper analysis of the impact's magnitude at an individual scale, it is necessary to analyse the proportion of the energy that is charged and missed by session. For this reason, Fig. 14 shows, according to the Firm capacity, the average value from all sessions' percentage of energy charged. The figure shows that a Firm capacity of minimum 5 A would have a reasonable impact on EV users, keeping the average charge around 95% of the energy requirements even in scenarios with high penetration of EVs.

Another critical concern about Flexpower from the user perspective is the impact that charging limitation will have on low-power users. Charging at 3.7 kW (i.e. single-phase EVs) could have a higher impact than charging at 11 kW (i.e. three-phase EVs) since with less time the latter can charge more. To answer this question, Fig. 15 shows the average percentage of energy charged for every charging rate and k scenario, considering a Firm capacity of 4 A (the value currently used). This figure shows that, in terms of the average percentage of energy charged, there is no relevant difference between the three different charging powers considered in the simulation. This is explained by the fact that high charging powers are related to larger batteries, which tend to charge more and require more energy. Moreover, for all kscenarios, the histogram of this variable results in a great majority of sessions charging 100% of their required energy, while the average values shown in Fig. 15 decrease due to outlying sessions with really high energy demand.

Finally, it is also interesting to see the impact by user profile, represented in Fig. 16. The most impacted user profiles are Dinner, Visit and Shortstay, in this order, due to their short connection times and the coincidence with the most constrained hours (i.e. peak demand hours). On the other hand, the users charging overnight like Commuters, Home and Pillow have a null impact with a firm capacity of 4 A for all scenarios, and a minimum impact with lower values of firm capacity.

#### 5.5. Summary of main results

This section aims to summarize the results from all MSRs to extract general conclusions and recommendations at an aggregated city level. With this purpose, the average values of the four main indicators described in Section 4 have been calculated, each one representing the interest of the corresponding stakeholder in the Flexpower project. Currently, some of these indicators have a minimum or maximum value from which the Flexpower project would not be accepted by some of the stakeholders, even though they can change in the future.





Fig. 10. MSR 9006775 with k = 7, comparing *FirmCapacity* = 1 (left) and *FirmCapacity* = 4 (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 11. MSR peak reduction according to sessions/week.



Fig. 12. MSR limit according to total power demand. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 13. Share of total energy charged according to sessions/week.



Fig. 14. Average percentage of energy charged according to sessions/week and firm capacity.



Fig. 15. Average percentage of energy charged according to sessions/week and charging power with FirmCapacity of 4 A.



Fig. 16. Average percentage of energy charged according to sessions/week, firm capacity and user profile.

- Uncompleted sessions, in percentage, representing the Municipality's objective to ensure a high-quality charging service to Amsterdam EV users. The lower the better, and the acceptable maximum is assumed to be 10%.
- Demand peak reduction, in percentage, representing the grid congestion scenarios that the DSO wants to avoid. The higher the better, and the current acceptable minimum is assumed to be 0% since it is not a critical variable yet.
- Total energy charged, in percentage, being the share of energy that has been sold by the CPO to EV users from the total energy that users would have charged without Flexpower. The higher the better, and the acceptable minimum is assumed to be 95%.
- Average energy charged, in percentage, representing the Flexpower limitation impact on EV users at an individual scale. The higher the better, and the acceptable minimum is assumed to be 90%.

Sustainable Energy, Grids and Networks 41 (2025) 101626

| Firm capacity<br>(A) | Uncompleted<br>sessions (%) | Demand peak<br>reduction (%) | Total energy<br>charged (%) | Avg. energy<br>charged (%) |
|----------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|
| 1                    | 26                          | 89                           | 89                          | 87                         |
| 2                    | 16                          | 81                           | 96                          | 93                         |
| 3                    | 10                          | 72                           | 99                          | 97                         |
| 4                    | 6                           | 63                           | 99                          | 99                         |
| 5                    | 3                           | 55                           | 100                         | 99                         |
| 6                    | 1                           | 46                           | 100                         | 100                        |
| 7                    | 1                           | 36                           | 100                         | 100                        |
| 8                    | 1                           | 27                           | 100                         | 100                        |

Fig. 17. Summary of results from current EV penetration (k = 1).

These indicators are calculated for every scenario of firm capacity and EV penetration (k) and represented in coloured tables. Fig. 17 shows the indicators for the current EV penetration (k = 1), while the future scenarios with higher EV penetration are represented in Figs. D.1-D.6 in Appendix D. Since all variables are expressed in percentages, they go from 0 to 100%, but the cells' colour also depends on the minimum/maximum accepted values described above, representing with red colour the non-accepted situations and a red-to-green gradient for the positive scenarios. This type of representation lets to understand in a more comprehensive way the "warning" situations. For example, Fig. 17 (i.e. current scenario) shows that a Firm capacity of 1 A only provides an acceptable scenario for the DSO, and that the optimal value of Firm capacity would be 4 A (i.e. the actual configuration) to ensure a small impact on EV users but still a considerable demand peak reduction. However, for the future EV penetration scenarios, i.e. Figs. D.1-D.6, the recommended firm capacity value to ensure an equilibrated scenario for all stakeholders would go up to 6 A, where the percentage of uncompleted sessions remains around 10%, the demand peak reduction around 60%, the total energy sold higher than 98% and the average energy charged by users higher than 97%.

## 6. Conclusions, further research and recommendations

This section summarizes the main conclusions obtained in this work, as well as some recommendations that arise from the results.

The main conclusions obtained from simulating Flexpower in different scenarios of EV penetration can be summarized in the following points:

- The majority of MSRs analysed can accommodate twice the current number of EV sessions without requiring additional charging stations.
- When the CPO-DSO communication operates seamlessly, and Flexpower functions without interruptions, grid congestion can be avoided even as charging infrastructure grows.
- In the MSRs where the Flexpower project works properly, expanding the charging infrastructure can improve service availability for EV users.
- The actual firm capacity value of 4 A balances stakeholder interests effectively, allowing a peak demand reduction of approximately 70% with a minimal user impact of 6% of uncompleted sessions.
- For future scenarios, a general firm capacity value of 6 A is recommended, offering an optimal balance between peak demand reduction (60%), uncompleted sessions (10%), and high energy delivery efficiency (> 98%).
- Differences in charging rates (3.7 kW, 7.4 kW, 11 kW) have no significant impact on individual EV charging outcomes.

As a general conclusion, Flexpower proves to be a reliable peakshaving tool for DSOs during peak demand hours, even considering high EV penetration in the current low-voltage distribution system. However, accurate demand forecasting remains crucial to avoid rebound effects and minimize the risk of real congestion.

Table A.1

| tample of a simulated sendate of by second by |             |         |                |                 |        |          |        |
|-----------------------------------------------|-------------|---------|----------------|-----------------|--------|----------|--------|
| MSR                                           | Station     | Session | ConnectionTime | ConnectionHours | Phases | MaxPower | Energy |
| 9020467                                       | 9020467CHS1 | S1      | 05/09 08:15    | 0.77            | 1      | 3.7      | 2.84   |
| 9020467                                       | 9020467CHS2 | S2      | 05/09 08:15    | 9.83            | 2      | 7.4      | 28.19  |
| 9020467                                       | 9020467CHS3 | S3      | 05/09 10:45    | 4.83            | 2      | 7.4      | 2.71   |
| 9020467                                       | 9020467CHS4 | S4      | 05/09 12:45    | 20.40           | 2      | 7.4      | 33.09  |
| 9020467                                       | 9020467CHS5 | S5      | 05/09 13:45    | 4.18            | 2      | 7.4      | 7.30   |
| 9020467                                       | 9020467CHS6 | S6      | 05/09 18:00    | 13.25           | 1      | 3.7      | 5.97   |

Example of a simulated schedule of EV sessions S.

In terms of EV user impact, a recommendation for future studies could be to explore prioritization strategies based on user profiles, specially for short-connection user profiles (e.g., Visitors, Shortstay, Dinner).

Finally, note that the simulations of Flexpower considering high EV penetration scenarios have assumed that the MSR capacity limits sent by the DSO were identical to the capacity limits sent during September 2022. In that sense, updated data sets of charging sessions and MSR power demand would be crucial for proper simulations since the capacity limits may increase together with the EV demand. However, obtaining access to these data sets from the DSO or CPO is frequently challenging due to data privacy and confidentiality constraints.

Regular access to updated data sets of charging sessions is strongly recommended for more accurate insights. While the characteristics of specific EV user profiles may remain stable over time, periodic validation of EV models is essential to ensure the accuracy and relevance of the simulations.

## CRediT authorship contribution statement

**Marc Cañigueral:** Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. **Rick Wolbertus:** Writing – original draft, Validation, Methodology, Investigation, Conceptualization. **Joaquim Meléndez:** Writing – review & editing, Supervision.

## Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Marc Canigueral reports financial support was provided by Spanish Ministry of Education and Culture. Joaquim Melendez reports financial support was provided by Horizon Europe.

### Acknowledgements

The author Marc Cañigueral has been awarded a PhD grant (Ref. FPU18/03626) by the Spanish Ministry of Education and Culture through the Training program for Academic Staff (FPU program). This work has been carried out in the scope of a research collaboration between the Hogeschool van Amsterdam (HvA) and the University of Girona (UdG) during a 3-month stay in Amsterdam funded by the mobility grant EST22/00891 of the Spanish Ministry of Education and Culture. The authors also want to acknowledge the support received by the Municipality of Amsterdam and the Flexpower team, especially Hugo Niesing. This work has been partially developed in the framework of the project RESCHOOL, which received funding from the Horizon Europe program under the grant agreement n°. 101096490. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

#### Appendix A. Schedules of charging sessions

This appendix shows examples of the schedules of charging sessions used in Algorithm 1 to simulate Flexpower implementation.

| Table A.2               |               |       |          |     |
|-------------------------|---------------|-------|----------|-----|
| Example of an expansion | nded schedule | of EV | sessions | SE. |

|         | *           |             |        |       |        |            |
|---------|-------------|-------------|--------|-------|--------|------------|
| Session | Station     | Timeslot    | Phases | Power | Energy | EnergyLeft |
| S1      | 9020467CHS1 | 05/09 06:15 | 1      | 0     | 0      | 2.84       |
| S1      | 9020467CHS1 | 05/09 06:30 | 1      | 0     | 0      | 2.84       |
| S1      | 9020467CHS1 | 05/09 06:45 | 1      | 0     | 0      | 2.84       |
| S1      | 9020467CHS1 | 05/09 07:00 | 1      | 0     | 0      | 2.84       |
| S1      | 9020467CHS1 | 05/09 07:15 | 1      | 0     | 0      | 2.84       |
| S2      | 9020467CHS2 | 05/09 06:15 | 2      | 0     | 0      | 28.19      |
| S2      | 9020467CHS2 | 05/09 06:30 | 2      | 0     | 0      | 28.19      |
| S2      | 9020467CHS2 | 05/09 06:45 | 2      | 0     | 0      | 28.19      |
|         |             |             |        |       |        |            |

## Appendix B. Amsterdam EV GMM models

The Gaussian Mixture Models clustering method parametrizes the statistic parameters of the Gaussian distributions found in the data through multiple iterations of the Expectation–Maximization (EM) algorithm. These parameters are the mixture weight ( $\pi$ ), the means vector ( $\mu$ ) and a covariance matrix ( $\Sigma$ ). After initialization, the EM algorithm iterates between Expectation–Maximization steps until the log-likelihood function of the model converges with the predefined tolerance. The main equations of the Expectation–Maximization process are detailed in Eqs. (B.1) to (B.7), and the corresponding nomenclature described in Table B.1.

The log-likelihood is computed with Eq. (B.1), referring to each data point as  $x_i$ , with *i* being from 1 to *M*, and the parameters of each cluster or Gaussian Model, being *c* being from 1 to *K*.  $N(x_i|\mu_c, \Sigma_c)$  represents the multivariate Gaussian Mixture Model, defined in Eq. (B.2). The log-likelihood is the logarithmic expression of the weighted description of Gaussian mixture models among all data points. If the Gaussian equation fits the data well, the likelihood increases, so it is used to select the optimal result of several iterations.

$$\log \ p(X|\pi,\mu,\Sigma) = \sum_{i=1}^{M} \log(\sum_{c=1}^{K} \pi_c N(x_i|\mu_c,\Sigma_c))$$
(B.1)

$$N(x_i, \mu_c, \Sigma_c) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma_c|^{\frac{1}{2}}} exp(-\frac{1}{2}(x_i - \mu_c)^T \Sigma_c^{-1}(x_i - \mu_c))$$
(B.2)

In the Expectation step, the probability of each data point being generated by each of the Gaussian models is computed. In contrast to the K-Means' hard assignments, the Expectation assignments are called soft assignments since we are using these probabilities known as responsibilities. Each probability or responsibility is calculated with Eq. (B.3). Therefore if  $x_i$  is very close to one Gaussian distribution c, it will obtain a high  $r_ic$  value for this Gaussian and relatively low values otherwise.

$$\frac{1}{r_c} = \frac{\pi_c N(x_i | \mu_c, \Sigma_c)}{\sum_{k=1}^K \pi_k N(x_i | \mu_k, \Sigma_k)}$$
(B.3)

In the Maximization step, the mixture weights (Eq. (B.5)), the mean (Eq. (B.6)) and the covariance (Eq. (B.7)) are updated for each Gaussian mixture model or cluster according to the total responsibility  $m_c$  allocated to each cluster (Eq. (B.4)).

$$m_c = \sum_i r_{ic} \tag{B.4}$$

$$\pi_c = \frac{m_c}{M} \tag{B.5}$$

r

Nomenclature of Expectation-Maximization algorithm.

| Parameter | Description                                                 |
|-----------|-------------------------------------------------------------|
| X         | Sample                                                      |
| M         | Size of the sample                                          |
| x         | Data point from the sample                                  |
| i         | Index of the data point                                     |
| Κ         | Number of clusters (Gaussian models)                        |
| с         | Index of the cluster                                        |
| π         | Weight of the model over the mixture                        |
| μ         | Means vector of the Gaussian model                          |
| Σ         | Covariance matrix of the Gaussian model                     |
| n         | Number of dimensions of the Gaussian model (2 in this case) |

| Connection GMM — Time cycle: Tuesday. |                      |                       |                       |           |  |  |
|---------------------------------------|----------------------|-----------------------|-----------------------|-----------|--|--|
| User profile                          | Centroid $(\mu)$     | Covariance ( $\Sigma$ | )                     | Share (%) |  |  |
| Dinner                                | 2.915739<br>0.991892 | 0.007222<br>-0.013563 | -0.013563<br>0.203771 | 100       |  |  |
|                                       | 2.595682             | 0.055806              | -0.014146             |           |  |  |

| User profile | Centroid $(\mu)$ | Covariance ( | Σ)        | Share (%) |
|--------------|------------------|--------------|-----------|-----------|
| Dinner       | 2.90615          | 0.008184     | -0.015188 | 100       |
| Diffici      | 0.876571         | -0.015188    | 0.271821  | 100       |
| Shortetay    | 2.602059         | 0.054892     | -0.013443 | 100       |
| Shortstay    | -0.844344        | -0.013443    | 0.113669  | 100       |
|              | 2.224958         | 0.012919     | -0.017804 | 20        |
| Visit        | 0.648561         | -0.017804    | 0.615099  | 20        |
| VIOIC        | 2.647424         | 0.036988     | -0.042734 | 46        |
|              | 0.409364         | -0.042734    | 0.426892  | 40        |
|              | 2.450714         | 0.059209     | -0.03352  | 24        |
|              | 1.60023          | -0.03352     | 0.132128  | 34        |
| Moulstine    | 2.159093         | 0.016015     | -0.006231 | 100       |
| Worktime     | 2.151399         | -0.006231    | 0.017814  | 100       |
|              | 2.909311         | 0.001833     | -0.002482 | 20        |
| Commuters    | 2.622853         | -0.002482    | 0.005332  | 39        |
|              | 2.854041         | 0.00779      | -0.007672 | 61        |
|              | 2.7055           | -0.007672    | 0.021309  | 01        |
|              | 2.802377         | 0.029315     | -0.008855 | 64        |
| Home         | 3.089042         | -0.008855    | 0.014277  | 04        |
|              | 2.616463         | 0.019211     | -0.01384  | 26        |
|              | 2.925533         | -0.01384     | 0.013821  | 30        |
|              | 3.024335         | 0.012213     | -0.014331 | 50        |
| Pillow       | 2.697385         | -0.014331    | 0.057154  | 50        |
|              | 3.056247         | 0.006836     | -0.012762 | 50        |
|              | 2.382308         | -0.012762    | 0.035988  | 50        |

| Shortstay | 2.595682<br>-0.877011 | 0.055806<br>-0.014146 | -0.014146<br>0.101967 | 100 |
|-----------|-----------------------|-----------------------|-----------------------|-----|
| Visit     | 2.274761<br>0.530679  | 0.020701<br>-0.026512 | -0.026512<br>0.543125 | 26  |
| VIDIC     | 2.697359<br>0.412169  | 0.032097<br>-0.040317 | -0.040317<br>0.462128 | 45  |
|           | 2.428679<br>1.602524  | 0.056506<br>-0.027404 | -0.027404<br>0.126708 | 29  |
| Worktime  | 2.161591<br>2.154182  | 0.018226<br>-0.006287 | -0.006287<br>0.018026 | 100 |
| Commuters | 2.853544<br>2.707496  | 0.007125<br>-0.006621 | -0.006621<br>0.020018 | 61  |
|           | 2.911855<br>2.619137  | 0.001783<br>-0.002441 | -0.002441<br>0.005518 | 39  |
| Home      | 2.623292<br>2.92207   | 0.018666<br>-0.013757 | -0.013757<br>0.014303 | 34  |
|           | 2.819282<br>3.073179  | 0.027405<br>-0.008251 | -0.008251<br>0.013994 | 66  |
| Pillow    | 3.058212<br>2.381142  | 0.006828<br>-0.013278 | -0.013278<br>0.037803 | 50  |
|           | 3.032819<br>2.675989  | 0.011879<br>-0.013404 | -0.013404<br>0.056227 | 50  |

## Table B.4

Table B.3

| Connection | GMM — | Time | cycle: | Wednesday. |  |
|------------|-------|------|--------|------------|--|
|------------|-------|------|--------|------------|--|

|              | This eyeler we        | ancouaji              |                       |           |
|--------------|-----------------------|-----------------------|-----------------------|-----------|
| User profile | Centroid (µ)          | Covariance (2         | Σ)                    | Share (%) |
| Dinner       | 2.915956<br>0.979706  | 0.006567<br>-0.012189 | -0.012189<br>0.202099 | 100       |
| Shortstay    | 2.605417<br>-0.873139 | 0.054066<br>-0.012329 | -0.012329<br>0.106951 | 100       |
| Visit        | 2.469057<br>1.577391  | 0.057871<br>-0.028818 | -0.028818<br>0.130551 | 28        |
|              | 2.67724<br>0.398201   | 0.035844<br>-0.040479 | -0.040479<br>0.432049 | 47        |
|              | 2.248364<br>0.580657  | 0.016989<br>-0.023225 | -0.023225<br>0.58306  | 24        |
| Worktime     | 2.157691<br>2.154932  | 0.019779<br>-0.005807 | -0.005807<br>0.018087 | 100       |
| Commuters    | 2.913923<br>2.616466  | 0.002988<br>-0.003973 | -0.003973<br>0.007209 | 38        |
|              | 2.884976<br>2.713653  | 0.006782<br>-0.005749 | -0.005749<br>0.023596 | 62        |
| Home         | 2.662363<br>2.899304  | 0.021479<br>-0.016534 | -0.016534<br>0.018084 | 44        |
|              | 2.840337<br>3.086729  | 0.025366<br>-0.008999 | -0.008999<br>0.014551 | 56        |
| Pillow       | 3.083557<br>2.588354  | 0.007549<br>-0.007957 | -0.007957<br>0.056774 | 49        |
|              | 3.078029<br>2.343394  | 0.005544<br>-0.010729 | -0.010729<br>0.032241 | 51        |

$$\mu_c = \frac{1}{m_c} \sum_i r_{ic} x_i \tag{B.6}$$

$$\Sigma_{c} = \frac{1}{m_{c}} \sum_{i} r_{ic} (x_{i} - \mu_{c})^{T} (x_{i} - \mu_{c})$$
(B.7)

Following, the rest of this appendix exposes the statistical features of the bivariate GMM for the connection variables (i.e. connection start time and connection duration), in Tables B.2 to B.8, and the univariate GMM for the energy variable, in Tables B.9 to B.55. For the bivariate GMM, the first value of the vectors corresponds to the connection start time and the second one to the connection duration. All values are in logarithmic scale.

## Connection GMM — Time cycle: Thursday.

| User profile | Centroid (µ)          | Covariance $(\Sigma)$                                                        | Share (%) |
|--------------|-----------------------|------------------------------------------------------------------------------|-----------|
| Dinner       | 2.916082<br>1.030949  | 0.007287 -0.012564<br>-0.012564 0.207311                                     | 100       |
| Shortstay    | 2.627719<br>-0.872916 | 0.055625 -0.01074<br>-0.01074 0.107096                                       | 100       |
| Visit        | 2.444955<br>1.60318   | $\begin{array}{rrrr} 0.054289 & -0.02414 \\ -0.02414 & 0.124819 \end{array}$ | 28        |
|              | 2.265233<br>0.533386  | 0.017056 -0.022796<br>-0.022796 0.572466                                     | 24        |
|              | 2.690537<br>0.431032  | 0.035126 -0.04257<br>-0.04257 0.448349                                       | 48        |
| Worktime     | 2.16498<br>2.15764    | 0.018645 -0.005582<br>-0.005582 0.01937                                      | 100       |
| Commuters    | 2.86405<br>2.764058   | 0.005729 -0.002486<br>-0.002486 0.019574                                     | 56        |
|              | 2.919412<br>2.609813  | 0.002544 -0.003431<br>-0.003431 0.007533                                     | 44        |
| Home         | 2.828282<br>3.082398  | 0.027628 -0.011494<br>-0.011494 0.015056                                     | 64        |
|              | 2.663211<br>2.906163  | 0.020831 -0.015887<br>-0.015887 0.017075                                     | 36        |
| Pillow       | 3.067254<br>2.588419  | 0.009803 -0.009799<br>-0.009799 0.055162                                     | 60        |
|              | 3.076995<br>2.353319  | 0.006027 -0.012883<br>-0.012883 0.038617                                     | 40        |

| Sustainable Energy, | Grids and Networks 41 | (2025) 101626 |
|---------------------|-----------------------|---------------|
|                     |                       |               |

## Table B.7

| User profile | Centroid $(\mu)$ | Covariance ( | Σ)        | Share (%) |
|--------------|------------------|--------------|-----------|-----------|
| Dinner       | 2.902284         | 0.011843     | -0.02312  | 100       |
| Dimie        | 1.365015         | -0.02312     | 0.15948   | 100       |
| Shortstay    | 2.72743          | 0.055581     | 0.002613  | 100       |
| Shorway      | -0.908894        | 0.002613     | 0.099182  | 100       |
|              | 2.231113         | 0.018042     | -0.010755 | 3         |
|              | 2.113825         | -0.010755    | 0.022106  | 5         |
| Visit        | 2.345898         | 0.020576     | -0.031789 | 18        |
|              | 0.321927         | -0.031789    | 0.488004  | 10        |
|              | 2.708548         | 0.035505     | -0.008343 | 47        |
|              | 0.353022         | -0.008343    | 0.326618  | 47        |
|              | 2.559902         | 0.035843     | -0.018856 | 22        |
|              | 1.332923         | -0.018856    | 0.201322  | 33        |
| Commutors    | 2.911365         | 0.012366     | -0.012574 | 100       |
| Commuters    | 2.79135          | -0.012574    | 0.028159  | 100       |
|              | 2.546875         | 0.011942     | -0.001784 | Q         |
| Home         | 3.251953         | -0.001784    | 0.004562  | 0         |
|              | 2.853921         | 0.016394     | -0.006766 | 70        |
|              | 2.99875          | -0.006766    | 0.020225  | 12        |
|              | 2.578714         | 0.015061     | -0.007194 | 10        |
|              | 3.07055          | -0.007194    | 0.00878   | 19        |
|              | 3.112993         | 0.007507     | -0.005299 | 99        |
| Pillow       | 2.586651         | -0.005299    | 0.040104  | 00        |
|              | 3.204042         | 0.003842     | -0.000944 | 12        |
|              | 2.228861         | -0.000944    | 0.016972  | 12        |
|              |                  |              |           |           |

## Table B.6

| Connection GMM | I — Time cycle: Fric  | lay.                                     |           |
|----------------|-----------------------|------------------------------------------|-----------|
| User profile   | Centroid (µ)          | Covariance $(\Sigma)$                    | Share (%) |
| Dinner         | 2.927753<br>1.267123  | 0.008435 -0.015669<br>-0.015669 0.160917 | 100       |
| Shortstay      | 2.689094<br>-0.845723 | 0.057665 -0.008531<br>-0.008531 0.115222 | 100       |
| Visit          | 2.697067<br>0.520512  | 0.038664 -0.026562<br>-0.026562 0.400258 | 56        |
| V LOIT         | 2.409645<br>1.579068  | 0.047276 -0.01622<br>-0.01622 0.118676   | 25        |
|                | 2.258562<br>0.476156  | 0.014785 -0.020624<br>-0.020624 0.550194 | 19        |
| Worktime       | 2.166143<br>2.151984  | 0.01873 -0.004876<br>-0.004876 0.018589  | 100       |
| Commuters      | 2.945413<br>2.684162  | 0.010853 -0.012398<br>-0.012398 0.028048 | 100       |
| Home           | 2.703612<br>2.938624  | 0.026907 -0.01801<br>-0.01801 0.017656   | 20        |
|                | 2.644204<br>3.156936  | 0.020781 -0.004694<br>-0.004694 0.008312 | 17        |
|                | 2.897279<br>2.933279  | 0.008299 -0.00452<br>-0.00452 0.020621   | 62        |
| Pillow         | 3.138736<br>2.325692  | 0.006657 -0.009075<br>-0.009075 0.035011 | 54        |
|                | 3.146108<br>2.659584  | 0.006337 -0.008052<br>-0.008052 0.034012 | 46        |

## Table B.8

| onnection GMM | l — Time | cycle: | Sunday. |  |
|---------------|----------|--------|---------|--|
|---------------|----------|--------|---------|--|

| <ul> <li>Time cycle: Sun</li> </ul> | iday.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Centroid $(\mu)$                    | Covariance (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Σ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Share (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.859852                            | 0.01202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.021409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.243677                            | -0.021409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.169777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.699098                            | 0.042817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.006393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.922504                           | -0.006393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.094184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.490542                            | 0.039866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.016501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.968693                            | -0.016501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.682302                            | 0.034394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.033529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.423113                            | -0.033529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.351487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.586016                            | 0.032118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.014735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.302041                            | -0.014735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.149935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.333055                            | 0.019582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.050075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.493641                            | -0.050075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.510673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.852936                            | 0.007078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.005937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.742745                            | -0.005937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.897143                            | 0.012786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.016074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.636487                            | -0.016074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.620554                            | 0.017555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.012306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.906539                            | -0.012306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.012196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.801567                            | 0.025445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.009202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.105664                            | -0.009202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.017436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.052354                            | 0.009105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.010265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.66243                             | -0.010265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.054658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.057295                            | 0.007323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.013692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.363174                            | -0.013692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     | $- \begin{tabular}{ c c c c } \hline - \begin{tabular}{ c c } \hline - \b$ | $\begin{tabular}{ c c c c } \hline - & Time cycle: Sunday. \\\hline \hline Centroid $(\mu$)$ Covariance $(]$ Covariance $($ | - Time cycle: Sunday.           Centroid (μ)         Covariance (Σ)           2.859852         0.01202         -0.021409           1.243677         -0.021409         0.169777           2.699098         0.042817         -0.006393           -0.922504         -0.003393         0.094184           2.490542         0.039866         -0.016501           1.968693         -0.016501         0.04973           2.682302         0.034394         -0.033529           0.423113         -0.03529         0.351487           2.586016         0.032118         -0.014735           1.302041         -0.014735         0.149935           2.333055         0.019582         -0.050075           0.493641         -0.050075         0.510673           2.852936         0.007078         -0.005937           2.742745         -0.005937         0.02089           2.897143         0.012786         -0.016074           2.630554         0.017555         -0.012306           2.906539         -0.012306         0.012196           2.801567         0.025445         -0.009202           3.105664         -0.009202         0.017436           3.052354         < |

Energy GMM - Time cycle: Monday, User profile: Worktime.

| Charging rate (kW) | Mean (µ) | Std. deviation $(\sigma)$ | Share (%) |
|--------------------|----------|---------------------------|-----------|
|                    | 1.171579 | 0.273411                  | 11        |
| 3.7                | 1.926286 | 0.273411                  | 83        |
|                    | 2.780341 | 0.273411                  | 7         |
|                    | 1.441493 | 0.232724                  | 4         |
|                    | 2.039606 | 0.232724                  | 18        |
| 7.4                | 2.671234 | 0.232724                  | 30        |
|                    | 3.279565 | 0.232724                  | 27        |
|                    | 3.280311 | 0.232724                  | 20        |
|                    | 1.77521  | 0.331344                  | 9         |
|                    | 2.688591 | 0.392355                  | 29        |
| 11                 | 3.28925  | 0.174041                  | 19        |
| 11                 | 3.626921 | 0.160194                  | 26        |
|                    | 3.965773 | 0.092573                  | 14        |
|                    | 4.125019 | 0.041119                  | 4         |
|                    |          |                           |           |

Energy GMM — Time cycle: Monday, User profile: Dinner.

Table B.12

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 0.358421     | 0.169327                    | 4         |
|                    | 1.107533     | 0.337466                    | 25        |
| 2.7                | 1.5258       | 0.167266                    | 22        |
| 3.7                | 1.843163     | 0.107609                    | 26        |
|                    | 2.141308     | 0.164055                    | 22        |
|                    | 2.486009     | 0.045353                    | 2         |
|                    | 0.813069     | 0.20754                     | 3         |
|                    | 1.4118       | 0.20754                     | 14        |
| 7.4                | 1.940671     | 0.20754                     | 30        |
|                    | 2.427294     | 0.20754                     | 36        |
|                    | 2.921834     | 0.20754                     | 18        |
|                    | 1.484966     | 0.366127                    | 11        |
|                    | 2.110163     | 0.292354                    | 17        |
|                    | 2.430252     | 0.162947                    | 15        |
| 11                 | 2.679002     | 0.132762                    | 14        |
|                    | 2.973907     | 0.136237                    | 19        |
|                    | 3.313875     | 0.146608                    | 20        |
|                    | 3.604156     | 0.072681                    | 4         |

| Table B.10               |         |      |        |
|--------------------------|---------|------|--------|
| Energy GMM — Time cycle: | Monday. | User | profil |

| Energy GMM — Time cycle: Monday, User profile: Visit. |              |                             |           |  |
|-------------------------------------------------------|--------------|-----------------------------|-----------|--|
| Charging rate (kW)                                    | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |  |
|                                                       | 0.081093     | 0.189728                    | 4         |  |
|                                                       | 0.890668     | 0.296225                    | 27        |  |
|                                                       | 1.306538     | 0.19794                     | 14        |  |
| 3.7                                                   | 1.588346     | 0.145296                    | 14        |  |
|                                                       | 1.856218     | 0.11094                     | 19        |  |
|                                                       | 2.119571     | 0.163025                    | 20        |  |
|                                                       | 2.499017     | 0.083861                    | 3         |  |
|                                                       | 1.17271      | 0.38776                     | 26        |  |
| 7.4                                                   | 1.869486     | 0.310054                    | 32        |  |
|                                                       | 2.574977     | 0.292072                    | 33        |  |
|                                                       | 3.158822     | 0.140989                    | 9         |  |
|                                                       | 0.855169     | 0.22689                     | 4         |  |
|                                                       | 1.730613     | 0.378774                    | 20        |  |
|                                                       | 2.073448     | 0.213369                    | 15        |  |
| 11                                                    | 2.44397      | 0.150056                    | 13        |  |
| 11                                                    | 2.74435      | 0.138939                    | 13        |  |
|                                                       | 3.079792     | 0.168286                    | 14        |  |
|                                                       | 3.451959     | 0.166696                    | 17        |  |
|                                                       | 3.753966     | 0.096707                    | 5         |  |

| Table B.13                    |                               |
|-------------------------------|-------------------------------|
| Energy GMM — Time cycle: Mono | lay, User profile: Commuters. |

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 0.987202     | 0.253257                    | 10        |
|                    | 1.530403     | 0.159849                    | 16        |
| 0.7                | 1.8653       | 0.089981                    | 19        |
| 3./                | 2.055209     | 0.157739                    | 19        |
|                    | 2.191557     | 0.420463                    | 33        |
|                    | 3.183334     | 0.101226                    | 2         |
|                    | 1.935936     | 0.419316                    | 23        |
| 74                 | 2.746574     | 0.277678                    | 35        |
| 7.4                | 3.334398     | 0.243034                    | 36        |
|                    | 3.851481     | 0.080791                    | 6         |
|                    | 1.952648     | 0.391363                    | 14        |
|                    | 2.831681     | 0.310344                    | 27        |
| 11                 | 3.252189     | 0.171361                    | 15        |
| 11                 | 3.595927     | 0.166648                    | 27        |
|                    | 3.94306      | 0.108928                    | 13        |
|                    | 4.136201     | 0.044388                    | 4         |

## Table B.11

Energy GMM — Time cycle: Monday, User profile: Shortstay.

| Charging rate (kW) | Mean (µ)  | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|-----------|-----------------------------|-----------|
|                    | -0.860226 | 0.217848                    | 8         |
|                    | -0.124081 | 0.209308                    | 24        |
|                    | 0.063342  | 0.185919                    | 12        |
| 3.7                | 0.195338  | 0.100148                    | 17        |
|                    | 0.416844  | 0.086968                    | 23        |
|                    | 0.594035  | 0.066683                    | 14        |
|                    | 0.731726  | 0.014009                    | 2         |
|                    | -0.167996 | 0.104911                    | 8         |
| 7.4                | 0.136737  | 0.104911                    | 15        |
|                    | 0.436761  | 0.104911                    | 23        |
|                    | 0.695869  | 0.104911                    | 20        |
|                    | 0.961176  | 0.104911                    | 16        |
|                    | 1.233334  | 0.104911                    | 17        |
|                    | -0.007754 | 0.095729                    | 3         |
|                    | 0.615876  | 0.294919                    | 17        |
|                    | 1.06463   | 0.132487                    | 22        |
| 11                 | 1.323474  | 0.091867                    | 20        |
|                    | 1.526953  | 0.086496                    | 21        |
|                    | 1.688666  | 0.058297                    | 14        |
|                    | 1.800562  | 0.025718                    | 3         |

| Table B.14      |           |         |      |          |       |
|-----------------|-----------|---------|------|----------|-------|
| Energy GMM — Ti | ne cycle: | Monday, | User | profile: | Home. |

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 1.023832     | 0.325169                    | 16        |
|                    | 1.555933     | 0.16483                     | 17        |
| 3.7                | 1.891151     | 0.113105                    | 26        |
|                    | 2.154169     | 0.207525                    | 31        |
|                    | 2.840015     | 0.320813                    | 9         |
|                    | 1.988837     | 0.56826                     | 28        |
| 74                 | 2.690594     | 0.271386                    | 28        |
| 7.4                | 3.338188     | 0.250544                    | 37        |
|                    | 3.923863     | 0.090518                    | 7         |
|                    | 2.016964     | 0.490128                    | 20        |
|                    | 2.942442     | 0.28177                     | 23        |
| 11                 | 3.365381     | 0.175815                    | 20        |
|                    | 3.715689     | 0.172577                    | 27        |
|                    | 4.047439     | 0.078934                    | 10        |
|                    |              |                             |           |

| Energy GMM — Time cycle | : Monday, User profile: Pillow. |
|-------------------------|---------------------------------|
|-------------------------|---------------------------------|

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 1.06881  | 0.308327                    | 15        |
|                    | 1.538233 | 0.164438                    | 16        |
|                    | 1.806623 | 0.077033                    | 14        |
| 3.7                | 1.933371 | 0.081621                    | 17        |
|                    | 2.149771 | 0.11446                     | 16        |
|                    | 2.530188 | 0.272835                    | 19        |
|                    | 3.200928 | 0.091808                    | 3         |
|                    | 2.03044  | 0.528638                    | 26        |
|                    | 2.626175 | 0.216021                    | 20        |
| 7.4                | 3.042619 | 0.167019                    | 19        |
|                    | 3.397277 | 0.202044                    | 31        |
|                    | 3.829945 | 0.083809                    | 4         |
|                    | 1.893113 | 0.36666                     | 12        |
|                    | 2.470427 | 0.225744                    | 9         |
|                    | 2.731987 | 0.155008                    | 12        |
|                    | 3.090993 | 0.133316                    | 14        |
| 11                 | 3.315706 | 0.099336                    | 11        |
|                    | 3.490053 | 0.084408                    | 11        |
|                    | 3.671606 | 0.085671                    | 11        |
|                    | 3.89921  | 0.109176                    | 14        |
|                    | 4.112621 | 0.0643                      | 6         |

| Sustainable Energy, Grias and Networks 41 (2023) 101020 | Sustainable Energy, | Grids | and Networks 41 | (2025) 101626 |
|---------------------------------------------------------|---------------------|-------|-----------------|---------------|
|---------------------------------------------------------|---------------------|-------|-----------------|---------------|

Table B.18

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | -1.054353    | 0.10667                     | 3         |
|                    | -0.614652    | 0.184506                    | 6         |
|                    | -0.106246    | 0.166958                    | 30        |
| 3.7                | 0.184074     | 0.107098                    | 24        |
|                    | 0.408302     | 0.093803                    | 27        |
|                    | 0.603393     | 0.050473                    | 9         |
|                    | 0.697841     | 0.015247                    | 1         |
|                    | -0.176043    | 0.108204                    | 8         |
|                    | 0.124438     | 0.108204                    | 17        |
| 7 4                | 0.417208     | 0.108204                    | 22        |
| 7.4                | 0.667159     | 0.108204                    | 20        |
|                    | 0.933147     | 0.108204                    | 18        |
|                    | 1.203047     | 0.108204                    | 15        |
|                    | 0.010129     | 0.101311                    | 3         |
|                    | 0.519625     | 0.251924                    | 14        |
| 11                 | 1.0806       | 0.179876                    | 33        |
| 11                 | 1.390212     | 0.120784                    | 29        |
|                    | 1.599102     | 0.084646                    | 15        |
|                    | 1.744541     | 0.042225                    | 6         |

## Table B.16

Energy GMM — Time cycle: Tuesday, User profile: Worktime.

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 1.08728  | 0.199401                    | 7         |
|                    | 1.551971 | 0.1568                      | 20        |
| 3.7                | 1.877632 | 0.098466                    | 29        |
|                    | 2.112914 | 0.154842                    | 33        |
|                    | 2.531366 | 0.333756                    | 12        |
|                    | 1.656559 | 0.250841                    | 10        |
| 7.4                | 2.023304 | 0.13779                     | 13        |
|                    | 2.602858 | 0.205921                    | 34        |
| 7.4                | 3.033565 | 0.132848                    | 16        |
|                    | 3.350834 | 0.13743                     | 24        |
|                    | 3.677209 | 0.06731                     | 4         |
|                    | 2.08906  | 0.490065                    | 21        |
|                    | 2.797495 | 0.276756                    | 21        |
| 11                 | 3.299043 | 0.179151                    | 21        |
|                    | 3.695085 | 0.189329                    | 28        |
|                    | 4.053491 | 0.079072                    | 8         |

# Table B.19 Energy GMM — Time cycle: Tuesday, User profile: Dinner.

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 0.965404 | 0.373687                    | 18        |
|                    | 1.577843 | 0.207525                    | 29        |
| 3.7                | 1.854195 | 0.100838                    | 20        |
|                    | 2.10453  | 0.175168                    | 28        |
|                    | 2.477557 | 0.059866                    | 4         |
|                    | 1.483534 | 0.525629                    | 17        |
| 7.4                | 2.058346 | 0.318773                    | 39        |
| 7.4                | 2.584308 | 0.233177                    | 36        |
|                    | 3.045736 | 0.10795                     | 8         |
|                    | 1.248806 | 0.277857                    | 5         |
|                    | 1.932534 | 0.281704                    | 16        |
|                    | 2.392931 | 0.169684                    | 15        |
| 11                 | 2.649384 | 0.119076                    | 12        |
| 11                 | 2.856342 | 0.106245                    | 11        |
|                    | 3.106513 | 0.122944                    | 18        |
|                    | 3.406317 | 0.138093                    | 20        |
|                    | 3.678147 | 0.043908                    | 2         |

## Table B.17

Energy GMM — Time cycle: Tuesday, User profile: Visit.

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 0.019547     | 0.154907                    | 3         |
|                    | 0.685209     | 0.27714                     | 16        |
|                    | 1.000841     | 0.177749                    | 13        |
|                    | 1.289773     | 0.122772                    | 12        |
| 3.7                | 1.518369     | 0.102475                    | 12        |
|                    | 1.725932     | 0.09185                     | 11        |
|                    | 1.897689     | 0.09426                     | 15        |
|                    | 2.143216     | 0.154398                    | 16        |
|                    | 2.480869     | 0.054515                    | 2         |
|                    | 0.913773     | 0.302748                    | 15        |
|                    | 1.504288     | 0.239929                    | 24        |
| 7.4                | 2.008088     | 0.210392                    | 23        |
|                    | 2.550009     | 0.258822                    | 31        |
|                    | 3.10587      | 0.125343                    | 8         |
|                    | 0.847233     | 0.214733                    | 5         |
|                    | 1.615904     | 0.315826                    | 17        |
|                    | 1.944342     | 0.161579                    | 12        |
|                    | 2.243963     | 0.132156                    | 11        |
| 11                 | 2.468594     | 0.120787                    | 11        |
|                    | 2.717883     | 0.12033                     | 12        |
|                    | 3.01162      | 0.144888                    | 12        |
|                    | 3.379346     | 0.1708                      | 16        |
|                    | 3.705264     | 0.091537                    | 4         |

Energy GMM — Time cycle: Tuesday, User profile: Commuters.

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 0.970495     | 0.20724                     | 9         |
|                    | 1.536978     | 0.196738                    | 21        |
| 27                 | 1.877454     | 0.08997                     | 18        |
| 3./                | 2.055368     | 0.165348                    | 20        |
|                    | 2.221733     | 0.391076                    | 28        |
|                    | 3.161608     | 0.156491                    | 4         |
|                    | 1.984349     | 0.419171                    | 24        |
| 74                 | 2.689788     | 0.251996                    | 30        |
| 7.4                | 3.283485     | 0.249061                    | 39        |
|                    | 3.826536     | 0.08222                     | 7         |
|                    | 1.968728     | 0.359497                    | 15        |
| 11                 | 2.651195     | 0.226742                    | 15        |
|                    | 3.038332     | 0.187383                    | 14        |
|                    | 3.298975     | 0.141721                    | 15        |
|                    | 3.545583     | 0.11792                     | 16        |
|                    | 3.832547     | 0.133885                    | 19        |
|                    | 4.073983     | 0.072752                    | 7         |

Energy GMM — Time cycle: Tuesday, User profile: Home.

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 0.972279 | 0.242452                    | 11        |
| 27                 | 1.917299 | 0.087702                    | 12        |
| 3./                | 1.921595 | 0.364888                    | 72        |
|                    | 2.969089 | 0.201011                    | 5         |
|                    | 1.948314 | 0.632002                    | 27        |
| 74                 | 2.653681 | 0.324939                    | 35        |
| 7.4                | 3.339299 | 0.260065                    | 32        |
|                    | 3.929502 | 0.09389                     | 6         |
|                    | 2.061703 | 0.483798                    | 22        |
|                    | 2.897094 | 0.265791                    | 22        |
| 11                 | 3.338283 | 0.17922                     | 20        |
|                    | 3.703313 | 0.180134                    | 29        |
|                    | 4.046617 | 0.074301                    | 8         |

## Table B.22

Energy GMM — Time cycle: Tuesday, User profile: Pillow.

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 1.069973     | 0.309213                    | 16        |
|                    | 1.553681     | 0.159182                    | 17        |
|                    | 1.809805     | 0.065799                    | 11        |
| 3.7                | 1.908431     | 0.082997                    | 16        |
|                    | 2.119301     | 0.134839                    | 18        |
|                    | 2.524579     | 0.298336                    | 20        |
|                    | 3.229709     | 0.108315                    | 3         |
|                    | 1.260579     | 0.264717                    | 4         |
|                    | 1.995831     | 0.274242                    | 15        |
|                    | 2.513433     | 0.177566                    | 17        |
| 7.4                | 2.890302     | 0.160644                    | 19        |
|                    | 3.228864     | 0.149854                    | 24        |
|                    | 3.556283     | 0.173679                    | 18        |
|                    | 3.904282     | 0.044153                    | 2         |
|                    | 1.870273     | 0.369803                    | 11        |
| 11                 | 2.505673     | 0.264935                    | 12        |
|                    | 2.749722     | 0.167996                    | 12        |
|                    | 3.112514     | 0.136494                    | 13        |
|                    | 3.363156     | 0.117176                    | 15        |
|                    | 3.619828     | 0.117814                    | 18        |
|                    | 3.914513     | 0.117336                    | 15        |
|                    | 4.129545     | 0.049098                    | 4         |

| Table B.23            |               |              |           |
|-----------------------|---------------|--------------|-----------|
| Energy GMM — Time cyc | e: Wednesday, | User profile | Worktime. |

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 0.932523 | 0.168769                    | 5         |
|                    | 1.441405 | 0.180566                    | 14        |
|                    | 1.628252 | 0.084702                    | 8         |
| 0.7                | 1.827439 | 0.068618                    | 16        |
| 3./                | 1.963054 | 0.067891                    | 18        |
|                    | 2.168064 | 0.108333                    | 17        |
|                    | 2.279299 | 0.360121                    | 20        |
|                    | 3.148222 | 0.054449                    | 1         |
|                    | 1.489265 | 0.178523                    | 4         |
|                    | 1.996225 | 0.178523                    | 18        |
| 7.4                | 2.54588  | 0.178523                    | 25        |
| 7.4                | 2.942738 | 0.178523                    | 21        |
|                    | 3.322037 | 0.178523                    | 17        |
|                    | 3.34612  | 0.178523                    | 15        |
|                    | 1.796727 | 0.300342                    | 11        |
|                    | 2.512704 | 0.26119                     | 16        |
|                    | 2.891503 | 0.214175                    | 14        |
| 11                 | 3.274137 | 0.160904                    | 19        |
|                    | 3.613044 | 0.178668                    | 25        |
|                    | 3.966763 | 0.099403                    | 12        |
|                    | 4.149179 | 0.023549                    | 2         |

|  | Sustainable E | Energy, | Grids an | d Networks | 41 | (2025) | 101626 |
|--|---------------|---------|----------|------------|----|--------|--------|
|--|---------------|---------|----------|------------|----|--------|--------|

Table B.24 Enormy CMM

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation $(\sigma)$ | Share (%) |
|--------------------|--------------|---------------------------|-----------|
|                    | 0.043684     | 0.131754                  | 2         |
|                    | 0.783831     | 0.307252                  | 23        |
|                    | 1.120862     | 0.197528                  | 14        |
| 27                 | 1.406694     | 0.145221                  | 12        |
| 5./                | 1.638048     | 0.129478                  | 12        |
|                    | 1.854201     | 0.103118                  | 16        |
|                    | 2.111769     | 0.15495                   | 18        |
|                    | 2.44555      | 0.063968                  | 2         |
|                    | 0.900947     | 0.331671                  | 15        |
|                    | 1.365477     | 0.208968                  | 16        |
|                    | 1.689925     | 0.166936                  | 12        |
| 7.4                | 1.981101     | 0.155636                  | 15        |
|                    | 2.314872     | 0.17071                   | 16        |
|                    | 2.716092     | 0.222803                  | 21        |
|                    | 3.159213     | 0.108559                  | 6         |
|                    | 0.818765     | 0.206374                  | 4         |
|                    | 1.590892     | 0.341296                  | 16        |
|                    | 1.943702     | 0.178965                  | 14        |
|                    | 2.263208     | 0.13778                   | 12        |
| 11                 | 2.502227     | 0.120851                  | 11        |
|                    | 2.740656     | 0.122025                  | 11        |
|                    | 3.009582     | 0.134042                  | 11        |
|                    | 3.344072     | 0.167731                  | 16        |
|                    | 3.664745     | 0.094606                  | 5         |

## Table B.25

Energy GMM - Time cycle: Wednesday, User profile: Shortstay.

|                    | ,,,,,,    |                             |           |
|--------------------|-----------|-----------------------------|-----------|
| Charging rate (kW) | Mean (µ)  | Std. deviation ( $\sigma$ ) | Share (%) |
|                    | -0.762247 | 0.272689                    | 8         |
|                    | -0.095884 | 0.182892                    | 32        |
| 3.7                | 0.166029  | 0.107644                    | 20        |
|                    | 0.431678  | 0.110183                    | 32        |
|                    | 0.640681  | 0.047893                    | 6         |
|                    | -0.153676 | 0.176866                    | 12        |
|                    | 0.314928  | 0.211922                    | 31        |
| 7.4                | 0.699771  | 0.217183                    | 37        |
|                    | 1.095994  | 0.111553                    | 16        |
|                    | 1.301634  | 0.034772                    | 3         |
|                    | 0.007534  | 0.101901                    | 3         |
|                    | 0.596892  | 0.282773                    | 16        |
| 11                 | 1.068402  | 0.144448                    | 24        |
| 11                 | 1.368406  | 0.122486                    | 32        |
|                    | 1.611061  | 0.089503                    | 21        |
|                    | 1.77474   | 0.038594                    | 4         |

## Table B.26

Energy GMM — Time cycle: Wednesday, User profile: Dinner.

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation $(\sigma)$ | Share (%) |
|--------------------|--------------|---------------------------|-----------|
|                    | 1.081134     | 0.412974                  | 23        |
|                    | 1.568519     | 0.175635                  | 23        |
| 3.7                | 1.842891     | 0.105598                  | 20        |
|                    | 2.098298     | 0.171015                  | 30        |
|                    | 2.465851     | 0.056704                  | 4         |
|                    | 0.858155     | 0.248412                  | 4         |
|                    | 1.974846     | 0.384342                  | 48        |
| 7.4                | 2.467693     | 0.177837                  | 29        |
|                    | 2.868517     | 0.153815                  | 15        |
|                    | 3.152018     | 0.06818                   | 4         |
|                    | 0.925559     | 0.150745                  | 2         |
|                    | 1.851865     | 0.372578                  | 19        |
|                    | 2.392869     | 0.193068                  | 16        |
| 11                 | 2.690598     | 0.135468                  | 15        |
| 11                 | 2.946509     | 0.111316                  | 14        |
|                    | 3.157793     | 0.106631                  | 12        |
|                    | 3.400045     | 0.125366                  | 17        |
|                    | 3.652566     | 0.069844                  | 4         |

Energy GMM — Time cycle: Wednesday, User profile: Commuters.

| Charging rate (kW) | Mean (µ) | Std. deviation $(\sigma)$ | Share (%) |
|--------------------|----------|---------------------------|-----------|
|                    | 0.974382 | 0.222606                  | 9         |
|                    | 1.572238 | 0.212203                  | 21        |
| 37                 | 1.876431 | 0.093168                  | 19        |
| 3.7                | 2.092087 | 0.153416                  | 19        |
|                    | 2.242761 | 0.405484                  | 29        |
|                    | 3.185298 | 0.132381                  | 3         |
|                    | 1.991066 | 0.444096                  | 24        |
| 74                 | 2.689202 | 0.274274                  | 29        |
| 7.4                | 3.295246 | 0.260673                  | 41        |
|                    | 3.860751 | 0.091589                  | 7         |
|                    | 1.93847  | 0.358336                  | 14        |
|                    | 2.73041  | 0.277602                  | 21        |
| 11                 | 3.168964 | 0.182196                  | 17        |
|                    | 3.444237 | 0.139687                  | 17        |
|                    | 3.748905 | 0.153113                  | 22        |
|                    | 4.045471 | 0.090776                  | 9         |

| Sustainable Energy, Grias and Networks 41 (2025) 10102 | Sustainable Energy, | Grids a | and Networks | 41 | (2025) | 10162 |
|--------------------------------------------------------|---------------------|---------|--------------|----|--------|-------|
|--------------------------------------------------------|---------------------|---------|--------------|----|--------|-------|

Table B.30

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation $(\sigma)$ | Share (%) |  |  |  |
|--------------------|--------------|---------------------------|-----------|--|--|--|
|                    | 0.943028     | 0.210794                  | 6         |  |  |  |
|                    | 1.649272     | 0.225486                  | 32        |  |  |  |
|                    | 1.78876      | 0.044694                  | 6         |  |  |  |
| 27                 | 1.87853      | 0.042093                  | 8         |  |  |  |
| 5./                | 1.963522     | 0.056919                  | 12        |  |  |  |
|                    | 2.162259     | 0.113753                  | 24        |  |  |  |
|                    | 2.52678      | 0.28088                   | 11        |  |  |  |
|                    | 3.106057     | 0.058609                  | 2         |  |  |  |
|                    | 1.233812     | 0.225108                  | 4         |  |  |  |
|                    | 1.961623     | 0.225108                  | 19        |  |  |  |
| 7.4                | 2.606355     | 0.225108                  | 33        |  |  |  |
|                    | 3.243187     | 0.225108                  | 24        |  |  |  |
|                    | 3.244404     | 0.225108                  | 20        |  |  |  |
|                    | 2.036793     | 0.407149                  | 20        |  |  |  |
|                    | 2.817786     | 0.287302                  | 24        |  |  |  |
| 11                 | 3.284006     | 0.175463                  | 19        |  |  |  |
|                    | 3.650285     | 0.189192                  | 27        |  |  |  |
|                    | 4.012437     | 0.088769                  | 10        |  |  |  |

| Table | <b>B.28</b> |
|-------|-------------|
|-------|-------------|

Energy GMM — Time cycle: Wednesday, User profile: Home.

| Energy GMM — Time cycle: Wednesday, User profile: Home. |              |                             |           |  |  |  |
|---------------------------------------------------------|--------------|-----------------------------|-----------|--|--|--|
| Charging rate (kW)                                      | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |  |  |  |
|                                                         | 1.274792     | 0.407832                    | 26        |  |  |  |
| 0.7                                                     | 1.892391     | 0.078451                    | 9         |  |  |  |
| 3./                                                     | 1.992101     | 0.298026                    | 58        |  |  |  |
|                                                         | 2.948294     | 0.244568                    | 7         |  |  |  |
| 7.4                                                     | 2.013595     | 0.547442                    | 28        |  |  |  |
|                                                         | 2.652766     | 0.294474                    | 29        |  |  |  |
|                                                         | 3.308731     | 0.278782                    | 37        |  |  |  |
|                                                         | 3.938944     | 0.106558                    | 6         |  |  |  |
|                                                         | 1.984671     | 0.495345                    | 19        |  |  |  |
|                                                         | 2.93058      | 0.312272                    | 27        |  |  |  |
| 11                                                      | 3.37953      | 0.170025                    | 20        |  |  |  |
|                                                         | 3.725338     | 0.166736                    | 24        |  |  |  |
|                                                         | 4.040498     | 0.086177                    | 9         |  |  |  |
|                                                         |              |                             |           |  |  |  |

| Table B.29 |  |  |  |
|------------|--|--|--|

| Energy GMM — Time cycle: | Wednesday, | User | profile: | Pillow. |  |
|--------------------------|------------|------|----------|---------|--|
|--------------------------|------------|------|----------|---------|--|

| Charging rate (kW) | Mean (µ)             | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------------------|-----------------------------|-----------|
|                    | 1.235186             | 0.412497                    | 24        |
|                    | 1.533515             | 0.132672                    | 8         |
|                    | 1.68851              | 0.148832                    | 6         |
| 0.7                | 1.828766             | 0.069232                    | 14        |
| 3./                | 1.956934             | 0.083036                    | 13        |
|                    | 2.16411              | 0.131004                    | 16        |
|                    | 2.568789             | 0.274005                    | 18        |
|                    | 3.187863             | 0.070768                    | 2         |
|                    | 1.865957             | 0.434002                    | 16        |
| 74                 | 2.679837             | 0.300739                    | 35        |
| 7.4                | 3.292382             | 0.231554                    | 43        |
|                    | 3.797981             | 0.107325                    | 6         |
|                    | 1.974255             | 0.40714                     | 13        |
|                    | 2.730375             | 0.247951                    | 25        |
| 11                 | 3.293054             | 0.181926                    | 24        |
|                    | 3.684376             | 0.187769                    | 28        |
|                    | 4.050304             | 0.097406                    | 10        |
|                    | 3.684376<br>4.050304 | 0.187769<br>0.097406        | 28<br>10  |

| Table B.31   |
|--------------|
| En anous CMM |

Energy GMM — Time cycle: Thursday, User profile: Visit.

|                    | 27 1     |                             |           |
|--------------------|----------|-----------------------------|-----------|
| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|                    | 0.064851 | 0.180047                    | 4         |
|                    | 0.729016 | 0.266838                    | 17        |
|                    | 0.997853 | 0.161433                    | 12        |
|                    | 1.287469 | 0.112199                    | 11        |
| 3.7                | 1.502576 | 0.100115                    | 12        |
|                    | 1.712912 | 0.096032                    | 12        |
|                    | 1.891601 | 0.090732                    | 14        |
|                    | 2.130888 | 0.154076                    | 17        |
|                    | 2.476482 | 0.057542                    | 2         |
|                    | 0.978084 | 0.350196                    | 19        |
|                    | 1.518246 | 0.21981                     | 19        |
| 7.4                | 1.89834  | 0.181069                    | 15        |
| 7.4                | 2.242276 | 0.187117                    | 18        |
|                    | 2.679177 | 0.229667                    | 23        |
|                    | 3.138528 | 0.102419                    | 6         |
|                    | 0.764842 | 0.17862                     | 3         |
|                    | 1.539884 | 0.347929                    | 15        |
|                    | 1.904264 | 0.166969                    | 13        |
|                    | 2.223486 | 0.130701                    | 11        |
| 11                 | 2.465106 | 0.126429                    | 12        |
|                    | 2.708912 | 0.132292                    | 13        |
|                    | 3.026026 | 0.157949                    | 14        |
|                    | 3.407878 | 0.173907                    | 16        |
|                    | 3.739998 | 0.072142                    | 3         |
|                    |          |                             |           |

| Tab | ole | B.3 | 2 |  |
|-----|-----|-----|---|--|
| _   |     |     | _ |  |

Energy GMM — Time cycle: Thursday, User profile: Shortstay.

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | -0.812987    | 0.224338                    | 8         |
| 27                 | -0.013359    | 0.232277                    | 47        |
| 5.7                | 0.342768     | 0.134767                    | 29        |
|                    | 0.564178     | 0.083859                    | 16        |
|                    | 0.015078     | 0.228429                    | 24        |
| 7.4                | 0.448043     | 0.176996                    | 32        |
|                    | 0.865373     | 0.179418                    | 32        |
|                    | 1.200598     | 0.089997                    | 12        |
|                    | -5.7e-05     | 0.099586                    | 3         |
|                    | 0.638956     | 0.304351                    | 18        |
|                    | 1.020899     | 0.109867                    | 16        |
| 11                 | 1.257925     | 0.096653                    | 21        |
|                    | 1.454244     | 0.085023                    | 19        |
|                    | 1.632916     | 0.078424                    | 18        |
|                    | 1.776074     | 0.040245                    | 5         |

Energy GMM — Time cycle: Thursday, User profile: Dinner.

| Charging rate (kW) | Mean (µ) | Std. deviation $(\sigma)$ | Share (%) |
|--------------------|----------|---------------------------|-----------|
|                    | 1.03482  | 0.401456                  | 22        |
|                    | 1.623443 | 0.191532                  | 27        |
| 3.7                | 1.868762 | 0.098138                  | 19        |
|                    | 2.1155   | 0.171578                  | 27        |
|                    | 2.460298 | 0.077804                  | 5         |
|                    | 0.841336 | 0.217909                  | 3         |
|                    | 1.848726 | 0.39223                   | 31        |
| 7.4                | 2.232346 | 0.246114                  | 22        |
| 7.4                | 2.577821 | 0.181988                  | 28        |
|                    | 2.977973 | 0.131752                  | 13        |
|                    | 3.213106 | 0.058288                  | 3         |
|                    | 0.999106 | 0.143109                  | 2         |
|                    | 1.908494 | 0.370549                  | 19        |
|                    | 2.429831 | 0.173691                  | 16        |
| 11                 | 2.707558 | 0.113661                  | 14        |
| 11                 | 2.951527 | 0.106088                  | 13        |
|                    | 3.143408 | 0.111265                  | 12        |
|                    | 3.372214 | 0.13247                   | 19        |
|                    | 3.622484 | 0.067242                  | 5         |

| Table B.36<br>Energy GMM — Time cycle: Thursday, User profile: Pillow. |              |                             |           |  |
|------------------------------------------------------------------------|--------------|-----------------------------|-----------|--|
| Charging rate (kW)                                                     | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |  |
|                                                                        | 1.053641     | 0.302739                    | 13        |  |
|                                                                        | 1.529498     | 0.171202                    | 16        |  |
| 0.7                                                                    | 1.840559     | 0.08907                     | 21        |  |
| 3./                                                                    | 2.045172     | 0.143863                    | 20        |  |
|                                                                        | 2 42000E     | 0 224676                    | 27        |  |

| 27  | 1.840559                                                                        | 0.08907                                                                          | 21                                           |
|-----|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|
| 3.7 | 2.045172                                                                        | 0.143863                                                                         | 20                                           |
|     | 2.438895                                                                        | 0.334676                                                                         | 27                                           |
|     | 3.230904                                                                        | 0.099488                                                                         | 3                                            |
|     | 2.076857                                                                        | 0.507819                                                                         | 24                                           |
|     | 2.611527                                                                        | 0.199497                                                                         | 19                                           |
| 7.4 | 3.036044                                                                        | 0.172717                                                                         | 21                                           |
|     | 3.385007                                                                        | 0.200029                                                                         | 32                                           |
|     | 3.822133                                                                        | 0.090096                                                                         | 5                                            |
|     | 1 07716                                                                         | 0.277794                                                                         | 12                                           |
|     | 1.97710                                                                         | 0.3///04                                                                         | 15                                           |
|     | 2.558039                                                                        | 0.202443                                                                         | 10                                           |
|     | 2.558039<br>2.760162                                                            | 0.202443<br>0.158809                                                             | 13<br>10<br>11                               |
|     | 2.558039<br>2.760162<br>3.058748                                                | 0.202443<br>0.158809<br>0.119004                                                 | 10<br>11<br>11                               |
| 11  | 2.558039<br>2.760162<br>3.058748<br>3.270275                                    | 0.202443<br>0.158809<br>0.119004<br>0.090047                                     | 10<br>11<br>11<br>11                         |
| 11  | 2.558039<br>2.760162<br>3.058748<br>3.270275<br>3.451627                        | 0.202443<br>0.158809<br>0.119004<br>0.090047<br>0.082691                         | 13<br>10<br>11<br>11<br>11<br>11             |
| 11  | 2.558039<br>2.760162<br>3.058748<br>3.270275<br>3.451627<br>3.64068             | 0.202443<br>0.158809<br>0.119004<br>0.090047<br>0.082691<br>0.095276             | 13<br>10<br>11<br>11<br>11<br>11<br>11<br>14 |
| 11  | 2.558039<br>2.760162<br>3.058748<br>3.270275<br>3.451627<br>3.64068<br>3.888088 | 0.202443<br>0.158809<br>0.119004<br>0.090047<br>0.082691<br>0.095276<br>0.120134 | 13<br>10<br>11<br>11<br>11<br>11<br>14<br>15 |

Table B.34

Energy GMM — Time cycle: Thursday, User profile: Commuters.

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 0.982737 | 0.230391                    | 9         |
|                    | 1.563351 | 0.192191                    | 22        |
| 2.7                | 1.864163 | 0.083316                    | 18        |
| 3.7                | 2.063399 | 0.132134                    | 18        |
|                    | 2.239511 | 0.261094                    | 26        |
|                    | 3.009997 | 0.212324                    | 7         |
|                    | 2.05384  | 0.479113                    | 26        |
| 74                 | 2.743198 | 0.264027                    | 30        |
| 7.4                | 3.318618 | 0.229954                    | 37        |
|                    | 3.834686 | 0.085682                    | 7         |
|                    | 1.881986 | 0.340182                    | 10        |
|                    | 2.541995 | 0.26506                     | 13        |
|                    | 2.867568 | 0.187757                    | 11        |
|                    | 3.13077  | 0.123385                    | 11        |
| 11                 | 3.329862 | 0.091184                    | 10        |
|                    | 3.497851 | 0.083336                    | 11        |
|                    | 3.678698 | 0.092646                    | 14        |
|                    | 3.923226 | 0.105981                    | 15        |
|                    | 4.115036 | 0.053884                    | 4         |

## Table B.37 Energy GMM - Time cycle: Friday, User profile: Worktime.

| 0, ,               | <b>5</b> 7 I |                             |           |
|--------------------|--------------|-----------------------------|-----------|
| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|                    | 0.968739     | 0.161193                    | 5         |
|                    | 1.589399     | 0.234315                    | 29        |
| 3.7                | 1.893768     | 0.11348                     | 28        |
|                    | 2.148784     | 0.153799                    | 30        |
|                    | 2.706832     | 0.236145                    | 8         |
|                    | 1.997139     | 0.3787                      | 26        |
| 7.4                | 2.704396     | 0.228472                    | 30        |
|                    | 3.28747      | 0.209787                    | 43        |
|                    | 2.100851     | 0.48646                     | 19        |
|                    | 2.828387     | 0.289831                    | 23        |
| 11                 | 3.306575     | 0.170363                    | 22        |
|                    | 3.669443     | 0.18935                     | 26        |
|                    | 4.029803     | 0.085525                    | 10        |
|                    |              |                             |           |

## Table B.38

Energy GMM — Time cycle: Friday, User profile: Visit.

| Table B.35<br>Energy GMM — Time cy | cle: Thursday, Use | r profile: Home.   |           |
|------------------------------------|--------------------|--------------------|-----------|
| Charging rate (kW)                 | Mean (µ)           | Std. deviation (σ) | Share (%) |
|                                    | 1.041258           | 0.335345           | 17        |
|                                    | 1.550499           | 0.152718           | 16        |
| 3.7                                | 1.894931           | 0.111904           | 23        |
|                                    | 2.142122           | 0.230798           | 35        |
|                                    | 2.921393           | 0.295131           | 8         |
|                                    | 2.045437           | 0.57228            | 30        |
| 7.4                                | 2.649663           | 0.274235           | 25        |
| 7.4                                | 3.291217           | 0.271721           | 38        |
|                                    | 3.892539           | 0.107807           | 6         |
|                                    | 1.872551           | 0.404465           | 14        |
|                                    | 2.695708           | 0.319523           | 17        |
|                                    | 3.06378            | 0.196393           | 15        |
| 11                                 | 3.344416           | 0.116571           | 13        |
|                                    | 3.584634           | 0.105567           | 16        |
|                                    | 3.847418           | 0.129053           | 18        |
|                                    | 4.092445           | 0.07162            | 6         |

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 0.129089     | 0.169711                    | 4         |
|                    | 0.572284     | 0.169711                    | 7         |
|                    | 0.973802     | 0.169711                    | 19        |
| 2.7                | 1.378027     | 0.169711                    | 19        |
| 3./                | 1.542699     | 0.169711                    | 7         |
|                    | 1.854163     | 0.169711                    | 16        |
|                    | 1.862802     | 0.169711                    | 17        |
|                    | 2.247885     | 0.169711                    | 11        |
|                    | 1.018988     | 0.333332                    | 17        |
|                    | 1.575121     | 0.244413                    | 22        |
| 7.4                | 2.031239     | 0.219792                    | 22        |
|                    | 2.553899     | 0.25876                     | 32        |
|                    | 3.107559     | 0.132923                    | 8         |
|                    | 0.932611     | 0.203074                    | 4         |
|                    | 1.621974     | 0.299704                    | 15        |
|                    | 2.007562     | 0.168284                    | 14        |
|                    | 2.303488     | 0.129093                    | 11        |
| 11                 | 2.535275     | 0.118318                    | 12        |
|                    | 2.767661     | 0.116249                    | 12        |
|                    | 3.037096     | 0.140812                    | 13        |
|                    | 3.374486     | 0.160148                    | 16        |
|                    | 3.686605     | 0.088503                    | 4         |

Energy GMM - Time cycle: Friday, User profile: Shortstay.

| Charging rate (kW) | Mean (µ)  | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|-----------|-----------------------------|-----------|
|                    | -0.937694 | 0.076198                    | 2         |
|                    | -0.5764   | 0.17536                     | 7         |
|                    | -0.094325 | 0.168184                    | 26        |
| 27                 | 0.089839  | 0.04761                     | 7         |
| 5./                | 0.217061  | 0.054153                    | 8         |
|                    | 0.39262   | 0.10455                     | 30        |
|                    | 0.610397  | 0.062202                    | 17        |
|                    | 0.724956  | 0.016515                    | 3         |
|                    | -0.149983 | 0.188143                    | 11        |
|                    | 0.221032  | 0.141386                    | 18        |
| 74                 | 0.560698  | 0.13997                     | 29        |
| 7.4                | 0.922416  | 0.155967                    | 28        |
|                    | 1.202464  | 0.076914                    | 9         |
|                    | 1.333426  | 0.033723                    | 5         |
|                    | 0.002334  | 0.100143                    | 2         |
|                    | 0.644798  | 0.291964                    | 18        |
|                    | 1.016653  | 0.108993                    | 14        |
|                    | 1.190441  | 0.064233                    | 9         |
| 11                 | 1.309756  | 0.049776                    | 9         |
|                    | 1.429254  | 0.06542                     | 15        |
|                    | 1.592405  | 0.077387                    | 18        |
|                    | 1.748016  | 0.04947                     | 11        |
|                    | 1.836879  | 0.021723                    | 3         |

Table B.40

Energy GMM - Time cycle: Friday, User profile: Dinner.

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 1.102256 | 0.366708                    | 18        |
|                    | 1.670272 | 0.224065                    | 22        |
| 3.7                | 1.895147 | 0.105045                    | 24        |
|                    | 2.193818 | 0.151503                    | 26        |
|                    | 2.551497 | 0.112093                    | 10        |
|                    | 1.349076 | 0.37921                     | 8         |
|                    | 2.086009 | 0.257727                    | 25        |
| 7.4                | 2.543335 | 0.184394                    | 34        |
|                    | 2.988675 | 0.172038                    | 27        |
|                    | 3.309604 | 0.076302                    | 6         |
|                    | 2.0869   | 0.540162                    | 22        |
|                    | 2.680928 | 0.31528                     | 30        |
| 11                 | 3.118135 | 0.145417                    | 15        |
|                    | 3.413472 | 0.156686                    | 26        |
|                    | 3.729909 | 0.100246                    | 8         |

## Table B.41

Energy GMM - Time cycle: Friday, User profile: Commuters.

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 1.016421     | 0.293672                    | 12        |
|                    | 1.504157     | 0.154661                    | 12        |
| 2.7                | 1.873723     | 0.096362                    | 22        |
| 3.7                | 2.104537     | 0.152897                    | 19        |
|                    | 2.233003     | 0.423762                    | 30        |
|                    | 3.191443     | 0.162585                    | 5         |
|                    | 1.17756      | 0.185683                    | 2         |
|                    | 1.982252     | 0.309802                    | 15        |
|                    | 2.542143     | 0.182943                    | 17        |
| 7.4                | 2.885526     | 0.142358                    | 17        |
| 7.4                | 3.170284     | 0.118204                    | 15        |
|                    | 3.427776     | 0.131114                    | 21        |
|                    | 3.768734     | 0.108258                    | 9         |
|                    | 3.966508     | 0.045762                    | 3         |
|                    | 1.787604     | 0.288967                    | 7         |
|                    | 2.429193     | 0.293813                    | 12        |
|                    | 2.799374     | 0.171648                    | 12        |
|                    | 3.090952     | 0.138768                    | 11        |
| 11                 | 3.282247     | 0.101802                    | 11        |
|                    | 3.475109     | 0.08966                     | 13        |

(continued on next page)

Sustainable Energy, Grids and Networks 41 (2025) 101626

| Table B.41 (continued). |              |                             |           |
|-------------------------|--------------|-----------------------------|-----------|
| Charging rate (kW)      | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|                         | 3.70862      | 0.117659                    | 20        |
|                         | 3.985759     | 0.088152                    | 12        |
|                         | 4.149102     | 0.031346                    | 2         |

## Table B.42

Energy GMM — Time cycle: Friday, User profile: Home.

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 1.064883     | 0.328607                    | 16        |
|                    | 1.564695     | 0.166677                    | 16        |
| 2.7                | 1.850132     | 0.095658                    | 15        |
| 3.7                | 1.989653     | 0.138527                    | 17        |
|                    | 2.177263     | 0.253354                    | 28        |
|                    | 3.052051     | 0.270198                    | 8         |
|                    | 2.081696     | 0.592659                    | 33        |
| 74                 | 2.694858     | 0.284212                    | 26        |
| 7.4                | 3.314061     | 0.26641                     | 36        |
|                    | 3.90728      | 0.100226                    | 6         |
|                    | 1.996901     | 0.436171                    | 16        |
|                    | 2.714507     | 0.250026                    | 15        |
|                    | 3.060396     | 0.170613                    | 13        |
| 11                 | 3.344367     | 0.129286                    | 15        |
|                    | 3.578259     | 0.108736                    | 16        |
|                    | 3.844074     | 0.124725                    | 18        |
|                    | 4.08032      | 0.066623                    | 7         |

## Table B.43

| Tuble D. 10              |                    |                             |
|--------------------------|--------------------|-----------------------------|
| Energy GMM — Time cycle: | Friday, User profi | le: Pillow.                 |
| Charging rate (kW)       | Mean (µ)           | Std. deviation ( $\sigma$ ) |

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 0.459418     | 0.153072                    | 3         |
|                    | 0.98009      | 0.153072                    | 8         |
|                    | 1.440066     | 0.153072                    | 15        |
|                    | 1.867003     | 0.153072                    | 15        |
| 3.7                | 1.880221     | 0.153072                    | 15        |
|                    | 1.907986     | 0.153072                    | 12        |
|                    | 2.249817     | 0.153072                    | 16        |
|                    | 2.67536      | 0.153072                    | 13        |
|                    | 3.16431      | 0.153072                    | 5         |
|                    | 1.841655     | 0.373229                    | 12        |
| 74                 | 2.713952     | 0.318886                    | 39        |
| 7.4                | 3.319979     | 0.251892                    | 44        |
|                    | 3.84963      | 0.085834                    | 4         |
|                    | 1.944226     | 0.334096                    | 10        |
|                    | 2.713127     | 0.256522                    | 27        |
| 11                 | 3.311677     | 0.20025                     | 29        |
|                    | 3.717463     | 0.190291                    | 27        |
|                    | 4.074917     | 0.083764                    | 8         |

| Table H | 3.44 |
|---------|------|
|---------|------|

Energy GMM - Time cycle: Saturday, User profile: Visit.

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 0.114795 | 0.130674                    | 2         |
|                    | 0.762644 | 0.28139                     | 19        |
|                    | 1.021784 | 0.172397                    | 11        |
|                    | 1.310739 | 0.110342                    | 11        |
| 3.7                | 1.507963 | 0.088321                    | 11        |
|                    | 1.678319 | 0.078745                    | 9         |
|                    | 1.863087 | 0.095668                    | 15        |
|                    | 2.082307 | 0.179952                    | 19        |
|                    | 2.473955 | 0.085267                    | 3         |
|                    | 0.842049 | 0.233704                    | 9         |
|                    | 1.341995 | 0.219196                    | 15        |
|                    | 1.626041 | 0.149578                    | 11        |
| 7.4                | 1.918734 | 0.136727                    | 14        |
| 7.4                | 2.204179 | 0.145846                    | 14        |
|                    | 2.497131 | 0.146828                    | 17        |
|                    | 2.900269 | 0.183332                    | 16        |
|                    |          |                             |           |

(continued on next page)

## Table B.44 (continued).

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 3.23686  | 0.083545                    | 4         |
|                    | 0.867412 | 0.17435                     | 3         |
|                    | 1.638786 | 0.336579                    | 16        |
|                    | 1.973909 | 0.165251                    | 13        |
|                    | 2.273662 | 0.121656                    | 11        |
| 11                 | 2.508683 | 0.112629                    | 11        |
|                    | 2.735923 | 0.110794                    | 12        |
|                    | 2.98763  | 0.13325                     | 13        |
|                    | 3.320488 | 0.169614                    | 16        |
|                    | 3.652555 | 0.09405                     | 4         |

## Table B.45

Energy GMM - Time cycle: Saturday, User profile: Shortstay.

| Charging rate (kW) | Mean (u)  | Std deviation (a) | Share (%)   |
|--------------------|-----------|-------------------|-------------|
| Charging rate (KW) | mean (µ)  |                   | 511112 (90) |
|                    | -0.726341 | 0.26728           | 8           |
|                    | -0.128009 | 0.164711          | 28          |
| 3.7                | 0.204876  | 0.125099          | 31          |
|                    | 0.461121  | 0.09239           | 26          |
|                    | 0.630212  | 0.03714           | 7           |
|                    | -0.013155 | 0.23207           | 21          |
| 7.4                | 0.58206   | 0.267002          | 55          |
| 7.4                | 1.090577  | 0.12874           | 18          |
|                    | 1.318374  | 0.043261          | 5           |
|                    | -0.004336 | 0.096982          | 3           |
|                    | 0.644126  | 0.278886          | 19          |
|                    | 1.013113  | 0.105762          | 16          |
| 11                 | 1.243309  | 0.087182          | 19          |
|                    | 1.425699  | 0.081989          | 19          |
|                    | 1.599425  | 0.074053          | 17          |
|                    | 1.732376  | 0.03285           | 6           |

## Table B.46

Energy GMM - Time cycle: Saturday, User profile: Dinner.

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 1.034847     | 0.320906                    | 14        |
|                    | 1.617694     | 0.198014                    | 20        |
| 3.7                | 1.888357     | 0.103307                    | 27        |
|                    | 2.164843     | 0.123226                    | 23        |
|                    | 2.511368     | 0.167668                    | 17        |
|                    | 1.056701     | 0.268114                    | 4         |
|                    | 2.107717     | 0.371184                    | 29        |
|                    | 2.454157     | 0.186885                    | 15        |
| 7.4                | 2.644866     | 0.146449                    | 15        |
|                    | 2.973002     | 0.137165                    | 22        |
|                    | 3.254229     | 0.097775                    | 14        |
|                    | 3.440834     | 0.021964                    | 2         |
|                    | 2.000636     | 0.465901                    | 15        |
|                    | 2.644475     | 0.312334                    | 31        |
| 11                 | 3.182168     | 0.167129                    | 23        |
|                    | 3.494036     | 0.164168                    | 28        |
|                    | 3.822899     | 0.061574                    | 4         |

#### Table B.47

Energy GMM — Time cycle: Saturday, User profile: Commuters.

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation $(\sigma)$ | Share (%) |
|--------------------|--------------|---------------------------|-----------|
|                    | 1.025267     | 0.259671                  | 11        |
|                    | 1.580413     | 0.191724                  | 18        |
|                    | 1.837099     | 0.074549                  | 14        |
| 3.7                | 1.955516     | 0.083147                  | 13        |
|                    | 2.157455     | 0.14738                   | 20        |
|                    | 2.436218     | 0.41192                   | 20        |
|                    | 3.275342     | 0.178405                  | 5         |
|                    | 1.901668     | 0.438405                  | 15        |
| 7.4                | 2.718625     | 0.317922                  | 35        |
| 7.4                | 3.339157     | 0.244935                  | 41        |

(continued on next page)

## Sustainable Energy, Grids and Networks 41 (2025) 101626

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 3.898714 | 0.088503                    | 8         |
|                    | 2.025392 | 0.349224                    | 10        |
|                    | 2.957718 | 0.347203                    | 31        |
| 11                 | 3.444967 | 0.189558                    | 29        |
|                    | 3.819524 | 0.151023                    | 22        |
|                    | 4.085958 | 0.06918                     | 8         |

## Table B.48

Energy GMM — Time cycle: Saturday, User profile: Home.

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | 1.096347     | 0.34272                     | 16        |
| 27                 | 1.905975     | 0.080467                    | 9         |
| 5./                | 1.959516     | 0.327516                    | 68        |
|                    | 3.122686     | 0.303164                    | 7         |
|                    | 0.921478     | 0.122298                    | 1         |
|                    | 2.029797     | 0.477369                    | 24        |
|                    | 2.526584     | 0.147514                    | 13        |
|                    | 2.720309     | 0.044149                    | 3         |
| 7.4                | 2.922883     | 0.112149                    | 14        |
|                    | 3.180856     | 0.107533                    | 15        |
|                    | 3.43581      | 0.128179                    | 17        |
|                    | 3.832064     | 0.125952                    | 10        |
|                    | 4.054226     | 0.056565                    | 3         |
|                    | 1.854971     | 0.327311                    | 10        |
|                    | 2.820794     | 0.364021                    | 25        |
| 11                 | 3.283425     | 0.213425                    | 20        |
| 11                 | 3.623494     | 0.165                       | 26        |
|                    | 3.941067     | 0.106657                    | 15        |
|                    | 4.12459      | 0.050042                    | 5         |

## Table B.49

Energy GMM — Time cycle: Saturday, User profile: Pillow.

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 1.121935 | 0.382194                    | 15        |
|                    | 1.530458 | 0.150322                    | 13        |
| 27                 | 1.860753 | 0.097405                    | 28        |
| 3.7                | 2.127962 | 0.128361                    | 20        |
|                    | 2.594168 | 0.235366                    | 19        |
|                    | 3.274879 | 0.141824                    | 5         |
|                    | 1.877998 | 0.329937                    | 12        |
|                    | 2.531936 | 0.197572                    | 18        |
|                    | 2.870422 | 0.123704                    | 14        |
| 7.4                | 3.123214 | 0.10599                     | 15        |
|                    | 3.351387 | 0.126715                    | 22        |
|                    | 3.669741 | 0.151555                    | 16        |
|                    | 3.964524 | 0.046719                    | 3         |
|                    | 1.996818 | 0.374863                    | 10        |
|                    | 2.70948  | 0.203309                    | 20        |
|                    | 3.155823 | 0.14612                     | 14        |
| 11                 | 3.417877 | 0.120693                    | 18        |
|                    | 3.708616 | 0.137699                    | 23        |
|                    | 3.991117 | 0.086326                    | 11        |
|                    | 4.141948 | 0.039333                    | 4         |

| Energy GMM — Time cycle: Sunday, User profile: Visit. |          |                  |                         |  |
|-------------------------------------------------------|----------|------------------|-------------------------|--|
| Charging rate (kW)                                    | Mean (µ) | Std. deviation ( | <i>σ</i> ) Share (%)    |  |
|                                                       | 0.287138 | 0.180776         | 4                       |  |
|                                                       | 0.908531 | 0.240202         | 22                      |  |
|                                                       | 1.344141 | 0.171673         | 16                      |  |
| 3.7                                                   | 1.614415 | 0.144786         | 17                      |  |
|                                                       | 1.867342 | 0.103707         | 18                      |  |
|                                                       | 2.134666 | 0.176417         | 19                      |  |
|                                                       | 2.530853 | 0.07932          | 3                       |  |
|                                                       | 0.967908 | 0.324782         | 13                      |  |
|                                                       | 1.553136 | 0.22467          | 20                      |  |
| 7.4                                                   |          | (                | continued on next page) |  |

M. Cañigueral et al.

## Table B.50 (continued).

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 1.988679 | 0.183407                    | 19        |
|                    | 2.390648 | 0.169199                    | 19        |
|                    | 2.819623 | 0.221786                    | 22        |
|                    | 3.23501  | 0.099427                    | 7         |
|                    | 0.890052 | 0.189977                    | 3         |
|                    | 1.759482 | 0.374495                    | 18        |
|                    | 2.047709 | 0.196151                    | 12        |
|                    | 2.406005 | 0.143931                    | 12        |
| 11                 | 2.653487 | 0.126449                    | 11        |
|                    | 2.88263  | 0.13171                     | 12        |
|                    | 3.177365 | 0.145246                    | 15        |
|                    | 3.512406 | 0.151286                    | 14        |
|                    | 3.797781 | 0.063331                    | 2         |

Table B.51

Energy GMM — Time cycle: Sunday, User profile: Shortstay.

| Charging rate (kW) | Mean $(\mu)$ | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|--------------|-----------------------------|-----------|
|                    | -0.696297    | 0.27396                     | 9         |
|                    | -0.096969    | 0.159167                    | 31        |
| 27                 | 0.103193     | 0.044476                    | 9         |
| 3.7                | 0.263163     | 0.077811                    | 19        |
|                    | 0.44157      | 0.081644                    | 24        |
|                    | 0.593843     | 0.035344                    | 9         |
|                    | 0.012557     | 0.250587                    | 23        |
| 74                 | 0.593306     | 0.259024                    | 55        |
| 7.4                | 1.067954     | 0.117849                    | 15        |
|                    | 1.268368     | 0.047501                    | 7         |
|                    | -0.049269    | 0.197528                    | 5         |
|                    | 0.689712     | 0.316987                    | 19        |
| 11                 | 1.072166     | 0.140069                    | 23        |
| 11                 | 1.382185     | 0.128812                    | 33        |
|                    | 1.612485     | 0.068881                    | 13        |
|                    | 1.724512     | 0.033107                    | 6         |

## Table B.52

Energy GMM — Time cycle: Sunday, User profile: Dinner.

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 0.985074 | 0.312153                    | 14        |
|                    | 1.597075 | 0.206091                    | 20        |
| 3.7                | 1.868598 | 0.108346                    | 30        |
|                    | 2.158158 | 0.159442                    | 28        |
|                    | 2.525912 | 0.10667                     | 8         |
|                    | 1.32485  | 0.414834                    | 10        |
|                    | 2.170574 | 0.298141                    | 36        |
| 74                 | 2.490403 | 0.107716                    | 14        |
| 7.4                | 2.811552 | 0.141826                    | 23        |
|                    | 3.15732  | 0.121971                    | 15        |
|                    | 3.383804 | 0.039424                    | 3         |
|                    | 1.179076 | 0.168469                    | 2         |
|                    | 2.099464 | 0.35527                     | 19        |
|                    | 2.586843 | 0.195213                    | 15        |
|                    | 2.881779 | 0.134815                    | 9         |
| 11                 | 3.043332 | 0.097539                    | 9         |
|                    | 3.190147 | 0.087319                    | 10        |
|                    | 3.360387 | 0.102233                    | 16        |
|                    | 3.593798 | 0.115195                    | 17        |
|                    | 3.823709 | 0.038277                    | 2         |

## Table B.53

Energy GMM — Time cycle: Sunday, User profile: Commuters.

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 1.042938 | 0.314879                    | 13        |
|                    | 1.520828 | 0.122741                    | 10        |
| 9.7                | 1.865159 | 0.099445                    | 22        |
| 3.7                | 2.099008 | 0.167535                    | 22        |

(continued on next page)

Sustainable Energy, Grids and Networks 41 (2025) 101626

| Table B.53 (continued). |          |                             |           |
|-------------------------|----------|-----------------------------|-----------|
| Charging rate (kW)      | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|                         | 2.238169 | 0.439994                    | 29        |
|                         | 3.252299 | 0.156226                    | 4         |
| 7.4                     | 2.045522 | 0.534484                    | 23        |
|                         | 2.831171 | 0.315403                    | 33        |
|                         | 3.403564 | 0.22208                     | 35        |
|                         | 3.885567 | 0.086892                    | 8         |
|                         | 1.920705 | 0.32299                     | 9         |
|                         | 2.792789 | 0.316224                    | 21        |
|                         | 3.236847 | 0.176265                    | 15        |
| 11                      | 3.470178 | 0.12002                     | 16        |
|                         | 3.718123 | 0.108391                    | 19        |
|                         | 3.983259 | 0.092644                    | 16        |
|                         | 4.152795 | 0.038475                    | 4         |

#### Table B.54 Eı

| able b.54   |        |        |         |      |          |       |
|-------------|--------|--------|---------|------|----------|-------|
| nergy GMM — | - Time | cycle: | Sunday, | User | profile: | Home. |

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 1.107553 | 0.380746                    | 18        |
|                    | 1.570809 | 0.14135                     | 13        |
|                    | 1.822013 | 0.066297                    | 12        |
| 3.7                | 1.951138 | 0.071217                    | 14        |
|                    | 2.147338 | 0.136034                    | 18        |
|                    | 2.296246 | 0.394958                    | 22        |
|                    | 3.260426 | 0.161838                    | 3         |
|                    | 2.039114 | 0.521925                    | 22        |
| 74                 | 2.739473 | 0.314578                    | 28        |
| 7.4                | 3.365529 | 0.245732                    | 40        |
|                    | 3.975853 | 0.113088                    | 10        |
|                    | 1.863179 | 0.33666                     | 10        |
|                    | 2.889446 | 0.367012                    | 27        |
| 11                 | 3.368369 | 0.188471                    | 22        |
| 11                 | 3.68393  | 0.145701                    | 23        |
|                    | 3.975059 | 0.097962                    | 14        |
|                    | 4.14488  | 0.043603                    | 5         |

## Table B.55

Energy GMM — Time cycle: Sunday, User profile: Pillow.

| Charging rate (kW) | Mean (µ) | Std. deviation ( $\sigma$ ) | Share (%) |
|--------------------|----------|-----------------------------|-----------|
|                    | 1.118632 | 0.412432                    | 17        |
|                    | 1.575953 | 0.191332                    | 17        |
|                    | 1.814923 | 0.064828                    | 11        |
| 3.7                | 1.932111 | 0.073806                    | 14        |
|                    | 2.130719 | 0.115457                    | 17        |
|                    | 2.544329 | 0.256278                    | 19        |
|                    | 3.262032 | 0.137752                    | 4         |
|                    | 1.929276 | 0.463627                    | 16        |
| 7.4                | 2.769087 | 0.330794                    | 37        |
| 7.4                | 3.360976 | 0.246669                    | 43        |
|                    | 3.894336 | 0.076859                    | 4         |
|                    | 2.052186 | 0.430069                    | 13        |
|                    | 2.697816 | 0.195298                    | 16        |
|                    | 3.087522 | 0.129339                    | 10        |
| 11                 | 3.296396 | 0.097109                    | 11        |
| 11                 | 3.487852 | 0.090815                    | 13        |
|                    | 3.699953 | 0.109732                    | 17        |
|                    | 3.973843 | 0.104073                    | 15        |
|                    | 4.157585 | 0.047094                    | 4         |



Fig. C.1. MSR 3023573 with k = 7, comparing *FirmCapacity* = 1 (left) and *FirmCapacity* = 4 (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. C.2. MSR 3002917 with k = 7, comparing *FirmCapacity* = 1 (left) and *FirmCapacity* = 4 (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. C.3. MSR 9015800 with k = 7, comparing *FirmCapacity* = 1 (left) and *FirmCapacity* = 4 (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

## Appendix C. Flexpower simulations

This appendix shows some examples of the Flexpower simulations, concerning different MSR, EV penetration scenarios (*k*) and firm capacity values. The MSR limits set by the DSO are represented in red dashed lines, the static EV demand in green dashed lines, and the Flexpower EV demand in green shaded lines.

## Appendix D. Summary tables of results

This appendix contains the coloured tables with the average indicators described in Section 5.5. The six figures represent future EV penetration scenarios in a range of  $k \in [2, 7]$ .

| Firm capacity<br>(A) | Uncompleted<br>sessions (%) | Demand peak<br>reduction (%) | Total energy<br>charged (%) | Avg. energy<br>charged (%) |
|----------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|
| 1                    | 33                          | 93                           | 81                          | 80                         |
| 2                    | 26                          | 86                           | 88                          | 87                         |
| 3                    | 20                          | 80                           | 93                          | 92                         |
| 4                    | 14                          | 75                           | 96                          | 95                         |
| 5                    | 10                          | 67                           | 98                          | 97                         |
| 6                    | 7                           | 62                           | 99                          | 98                         |
| 7                    | 4                           | 55                           | 99                          | 99                         |
| 8                    | 3                           | 49                           | 100                         | 100                        |

**Fig. D.1.** Summary of results from EV penetration scenario k = 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

| Firm capacity<br>(A) | Uncompleted<br>sessions (%) | Demand peak<br>reduction (%) | Total energy<br>charged (%) | Avg. energy<br>charged (%) |
|----------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|
| 1                    | 40                          | 94                           | 80                          | 75                         |
| 2                    | 32                          | 87                           | 87                          | 83                         |
| 3                    | 25                          | 80                           | 91                          | 89                         |
| 4                    | 19                          | 75                           | 95                          | 93                         |
| 5                    | 14                          | 69                           | 97                          | 95                         |
| 6                    | 10                          | 62                           | 98                          | 97                         |
| 7                    | 6                           | 55                           | 99                          | 99                         |
| 8                    | 4                           | 50                           | 99                          | 99                         |

**Fig. D.2.** Summary of results from EV penetration scenario k = 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

| Firm capacity<br>(A) | Uncompleted<br>sessions (%) | Demand peak<br>reduction (%) | Total energy<br>charged (%) | Avg. energy<br>charged (%) |
|----------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|
| 1                    | 45                          | 93                           | 79                          | 72                         |
| 2                    | 37                          | 87                           | 84                          | 80                         |
| 3                    | 28                          | 80                           | 91                          | 87                         |
| 4                    | 21                          | 74                           | 95                          | 91                         |
| 5                    | 14                          | 66                           | 97                          | 95                         |
| 6                    | 10                          | 59                           | 98                          | 97                         |
| 7                    | 6                           | 53                           | 99                          | 99                         |
| 8                    | 3                           | 46                           | 100                         | 100                        |

**Fig. D.3.** Summary of results from EV penetration scenario k = 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

## Data availability

The authors do not have permission to share data.

#### References

- R.R. Kumar, A. Chakraborty, P. Mandal, Promoting electric vehicle adoption: Who should invest in charging infrastructure? Transp. Res. E 149 (2021) 102295, http://dx.doi.org/10.1016/J.TRE.2021.102295.
- [2] D. Fischer, A. Harbrecht, A. Surmann, R. McKenna, Electric vehicles' impacts on residential electric local profiles — A stochastic modelling approach considering socio-economic, behavioural and spatial factors, Appl. Energy 233–234 (2019) 644–658, http://dx.doi.org/10.1016/j.apenergy.2018.10.010.

Sustainable Energy, Grids and Networks 41 (2025) 101626

| Firm capacity<br>(A) | Uncompleted<br>sessions (%) | Demand peak<br>reduction (%) | Total energy charged (%) | Avg. energy<br>charged (%) |
|----------------------|-----------------------------|------------------------------|--------------------------|----------------------------|
| 1                    | 49                          | 94                           | 76                       | 69                         |
| 2                    | 40                          | 87                           | 78                       | 78                         |
| 3                    | 31                          | 81                           | 89                       | 85                         |
| 4                    | 22                          | 74                           | 94                       | 90                         |
| 5                    | 16                          | 68                           | 97                       | 94                         |
| 6                    | 11                          | 61                           | 98                       | 97                         |
| 7                    | 6                           | 54                           | 99                       | 99                         |
| 8                    | 4                           | 47                           | 100                      | 99                         |

**Fig. D.4.** Summary of results from EV penetration scenario k = 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

| Firm capacity<br>(A) | Uncompleted<br>sessions (%) | Demand peak<br>reduction (%) | Total energy<br>charged (%) | Avg. energy<br>charged (%) |
|----------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|
| 1                    | 54                          | 93                           | 67                          | 66                         |
| 2                    | 44                          | 87                           | 76                          | 76                         |
| 3                    | 33                          | 80                           | 87                          | 84                         |
| 4                    | 23                          | 73                           | 94                          | 91                         |
| 5                    | 15                          | 66                           | 97                          | 95                         |
| 6                    | 9                           | 59                           | 99                          | 98                         |
| 7                    | 6                           | 52                           | 99                          | 99                         |
| 8                    | 5                           | 46                           | 100                         | 99                         |

**Fig. D.5.** Summary of results from EV penetration scenario k = 6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

| Firm capacity<br>(A) | Uncompleted<br>sessions (%) | Demand peak<br>reduction (%) | Total energy<br>charged (%) | Avg. energy<br>charged (%) |
|----------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|
| 1                    | 58                          | 93                           | 62                          | 63                         |
| 2                    | 48                          | 86                           | 71                          | 73                         |
| 3                    | 36                          | 79                           | 86                          | 83                         |
| 4                    | 25                          | 72                           | 94                          | 90                         |
| 5                    | 13                          | 65                           | 97                          | 95                         |
| 6                    | 9                           | 57                           | 98                          | 97                         |
| 7                    | 8                           | 54                           | 99                          | 98                         |
| 8                    | 7                           | 48                           | 99                          | 98                         |

**Fig. D.6.** Summary of results from EV penetration scenario k = 7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

- [3] P. Bons, A. Buatois, G. Ligthart, R. van den Hoed, J. Warmerdam, Final Report — Amsterdam Flexpower Operational Pilot: A Detailed Analysis of the Effects of Applying a Static Smart Charging Profile for Public Charging Infrastructure, Interreg, North Sea Region, 2020, URL https://hdl.handle.net/20.500.11884/ cca57bfa-3e28-48ec-8ed7-a31e7961c4c5.
- [4] C.B. Jones, W. Vining, M. Lave, T. Haines, C. Neuman, J. Bennett, D.R. Scoffield, Impact of electric vehicle customer response to time-of-use rates on distribution power grids, Energy Rep. 8 (2022) 8225–8235, http://dx.doi.org/10.1016/j.egyr. 2022.06.048.
- [5] A. Jenn, J. Highleyman, Distribution grid impacts of electric vehicles: A California case study, IScience 25 (1) (2022) 103686, http://dx.doi.org/10.1016/j.isci. 2021.103686.
- [6] A. Mangipinto, F. Lombardi, F.D. Sanvito, M. Pavičević, S. Quoilin, E. Colombo, Impact of mass-scale deployment of electric vehicles and benefits of smart charging across all European countries, Appl. Energy 312 (2022) 118676, http: //dx.doi.org/10.1016/j.apenergy.2022.118676.
- [7] R. Wolbertus, M. Kroesen, R. van den Hoed, C. Chorus, Fully charged: An empirical study into the factors that influence connection times at EV-charging stations, Energy Policy 123 (2018) 1–7, http://dx.doi.org/10.1016/J.ENPOL. 2018.08.030.

- [8] R. Fachrizal, M. Shepero, D. van der Meer, J. Munkhammar, J. Widén, Smart charging of electric vehicles considering photovoltaic power production and electricity consumption: A review, ETransportation 4 (2020) 100056, http://dx. doi.org/10.1016/J.ETRAN.2020.100056.
- [9] M. Zweistra, S. Janssen, F. Geerts, Large scale smart charging of electric vehicles in practice, Energies 13 (2020) 298, http://dx.doi.org/10.3390/EN13020298, https://www.mdpi.com/1996-1073/13/2/298.
- [10] P.C. Bons, A. Buatois, G. Ligthart, F. Geerts, N. Piersma, R. van den Hoed, Impact of smart charging for consumers in a real world pilot, World Electr. Veh. J. 11 (2020) 21, http://dx.doi.org/10.3390/WEVJ11010021, https://www.mdpi.com/ 2032-6653/11/1/21.
- [11] M. Berende, N. Refa, P. van Bokhoven, L. Gardien, Network peak load reduction by home charge management of electric vehicles, CIRED - Open Access Proc. J. 2020 (2020) 337–340, http://dx.doi.org/10.1049/OAP-CIRED.2021.0052.
- [12] D. Geelen, N. Refa, R. Spiering, Smart charging electric vehicles based on a flexibility market, in: 25th International Conference and Exhibition on Electricity Distribution, CIRED 2019, AIM, 2019, pp. 1–5, http://dx.doi.org/10.34890/669, URL https://www.cired-repository.org/handle/20.500.12455/443.
- [13] I.M. Henriksen, W. Throndsen, M. Ryghaug, T.M. Skjølsvold, Electric vehicle charging and end-user motivation for flexibility: A case study from Norway, Energy Sustain. Soc. 11 (2021) 1–10, http://dx.doi.org/10.1186/S13705-021-00319-Z/TABLES/1, https://link.springer.com/article/10.1186/s13705-021-00319-z.
- [14] R. Wolbertus, S. Jansen, M. Kroesen, Stakeholders' perspectives on future electric vehicle charging infrastructure developments, Futures 123 (2020) 102610, http: //dx.doi.org/10.1016/J.FUTURES.2020.102610.
- [15] G. Rancilio, F. Bovera, M. Delfanti, Tariff-based regulatory sandboxes for EV smart charging: Impacts on the tariff and the power system in a national framework, Int. J. Energy Res. 46 (11) (2022) 14794–14813, http://dx.doi.org/ 10.1002/er.8183.
- [16] M. Lagomarsino, M. van der Kam, D. Parra, U.J.J. Hahnel, Do I need to charge right now? Tailored choice architecture design can increase preferences for electric vehicle smart charging, Energy Policy 162 (2022) 112818, http: //dx.doi.org/10.1016/j.enpol.2022.112818.
- [17] R. Lauvergne, Y. Perez, M. Françon, A.T. De La Cruz, Integration of electric vehicles into transmission grids: A case study on generation adequacy in Europe in 2040, Appl. Energy 326 (2022) 120030, http://dx.doi.org/10.1016/j.apenergy. 2022.120030.
- [18] P.A. Gunkel, C. Bergaentzlé, I.G. Jensen, F. Scheller, From passive to active: Flexibility from electric vehicles in the context of transmission system development, Appl. Energy 277 (2020) 115526, http://dx.doi.org/10.1016/j.apenergy. 2020.115526.
- [19] F. Manríquez, E. Sauma, J. Aguado, S. de la Torre, J. Contreras, The impact of electric vehicle charging schemes in power system expansion planning, Appl. Energy 262 (2020) 114527, http://dx.doi.org/10.1016/j.apenergy.2020.114527.
- [20] S. Bellocchi, K. Klöckner, M. Manno, M. Noussan, M. Vellini, On the role of electric vehicles towards low-carbon energy systems: Italy and Germany in comparison, Appl. Energy 255 (2019) 113848, http://dx.doi.org/10.1016/j. apenergy.2019.113848.
- [21] N. Brinkel, T. AlSkaif, W. van Sark, Grid congestion mitigation in the era of shared electric vehicles, J. Energy Storage 48 (2022) 103806, http://dx.doi.org/ 10.1016/j.est.2021.103806.
- [22] C. Crozier, T. Morstyn, M. McCulloch, The opportunity for smart charging to mitigate the impact of electric vehicles on transmission and distribution systems, Appl. Energy 268 (2020) 114973, http://dx.doi.org/10.1016/j.apenergy.2020. 114973.

- [23] elaad.nl, Flexpower Amsterdam, 2022, https://elaad.nl/en/projects/flexpoweramsterdam/. (Accessed 5 April 2023).
- [24] C. of Amsterdam, Clean air action plan, 2019, URL https://www.amsterdam.nl/ en/policy/sustainability/clean-air/.
- [25] G. Amsterdam, Laad me strategisch plan laadinfrastructuur, 2020, URL https://openresearch.amsterdam/nl/page/65641/strategisch-planlaadinfrastructuur-2020-2030.
- [26] Amsterdam plaatst 3000e openbaar toegankelijke laadpaal | pompshop, 2022, URL https://www.pompshop.com/nieuws/amsterdam-plaatst-3000e-openbaartoegankelijke-laadpaal. (Accessed 22 March 2023).
- [27] SEEV4-city, interreg VB North Sea Region programme, 2017, URL https:// northsearegion.eu/seev4-city/. (Accessed 22 March 2023).
- [28] A. Buatois, P. Bons, R. van den Hoed, N. Piersma, R. Prateek, SEEV4-city Flexpower 1: Analysis Report of the First Phase of the Flexpower Pilot, Hogeschool van Amsterdam, 2019, URL https://hdl.handle.net/20.500.11884/ 55350cc8-5423-4785-9f82-5a6f3e90216f.
- [29] M. Groen, T. Hoogvliet, H. Niesing, R. Wolbertus, W. van Zalingen, M. Zweistra, Flexpower3: Meer Laden Op Een Vol Elektriciteitsnet, Hogeschool van Amsterdam, 2022, URL https://hdl.handle.net/20.500.11884/224b9940-e32c-42f3a88d-69745c97eb94.
- [30] M.J. Zweistra, F. Geerts, W.F. van den Akker, R. Wolbertus, Flexpower3: Significant increase in grid hosting capacity without comfort loss, by smart charging based on clustering and non-firm capacity, in: Electric Vehicle Symposium 35, EVS35, 2022, pp. 1–10, Conference date: 11-06-2022 Through 15-06-2022. URL https://hdl.handle.net/20.500.11884/b3e12f79-2bbc-4b74-908e-c2a352ffd7fa.
- [31] M. Schreurs, Themastudie elektriciteitsinfrastructuur openresearch.amsterdam, 2021, URL https://openresearch.amsterdam/nl/page/46981/themastudieelektriciteitsinfrastructuur.
- [32] evdata.nl, Data delen evdata.nl, 2023, https://www.evdata.nl/data-delen/. (Accessed 08-11-2023).
- [33] R. van den Hoed, S. Maase, J. Helmus, R. Wolbertus, Y. el Bouhassani, J. Dam, M. Tamis, B. Jablonska, E-mobility: Getting Smart with Data, Hogeschool van Amsterdam, Netherlands, 2019, p. 164, URL https://hdl.handle.net/20.500. 11884/716c8c58-8cb2-41ed-bea6-abb0ff9001fb.
- [34] S. Powell, G.V. Cezar, R. Rajagopal, Scalable probabilistic estimates of electric vehicle charging given observed driver behavior, Appl. Energy 309 (2022) 118382, http://dx.doi.org/10.1016/j.apenergy.2021.118382.
- [35] M. Cañigueral, evprof: Electric vehicle charging sessions profiling and modelling, 2023, R package version 1.0.0. URL https://github.com/mcanigueral/evprof/.
- [36] M. Cañigueral, J. Meléndez, Flexibility management of electric vehicles based on user profiles: The arnhem case study, Int. J. Electr. Power Energy Syst. 133 (2021) 107195, http://dx.doi.org/10.1016/J.IJEPES.2021.107195.
- [37] M. Cañigueral, J. Meléndez, Electric vehicle user profiles for aggregated flexibility planning, in: 2021 IEEE PES Innovative Smart Grid Technologies Europe, ISGT Europe, IEEE, 2021, pp. 1–5, http://dx.doi.org/10.1109/isgteurope52324. 2021.9639931.
- [38] B. Canizes, J. Soares, Z. Vale, J.M. Corchado, Optimal distribution grid operation using DLMP-based pricing for electric vehicle charging infrastructure in a smart city, Energies 12 (4) (2019) 686, http://dx.doi.org/10.3390/en12040686.
- [39] M. Cañigueral, L. Burgas, J. Massana, J. Meléndez, J. Colomer, Assessment of electric vehicle charging hub based on stochastic models of user profiles, Expert Syst. Appl. 227 (2023) 120318, http://dx.doi.org/10.1016/j.eswa.2023.120318.
- [40] M. Cañigueral, evsim: Electric vehicle simulations, 2023, R package version 1.1.0. URL https://github.com/mcanigueral/evsim/.