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A B S T R A C T

While the Municipality of Amsterdam wants to expand the electric vehicle public charging infrastructure to
reach carbon-neutral objectives, the Distribution System Operator cannot allow new charging stations where
low-voltage transformers are reaching their maximum capacity. To solve this situation, a smart charging project
called Flexpower is being tested in some districts. Charging power is limited during peak times to avoid grid
congestion and, therefore, enable the expansion of charging infrastructure while deferring grid investments.
This work simulates the implementation of the Flexpower strategy with high penetration of electric vehicles,
considering dynamic and local power limits, to assess the impact on both the satisfaction of electric vehicle
users and the business model of the Charging Point Operator. A stochastic approach, based on Gaussian Mixture
Models, has been used to model different profiles of electric vehicle users using data from the Amsterdam public
electric vehicle charging infrastructure. Several key performance indicators have been defined to assess the
impact of such charging limitations on the different stakeholders. The results show that, while Amsterdam’s
existing public charging infrastructure can host just twice the current electric vehicle demand, the application
of Flexpower will enable the growth in charging stations without requiring grid upgrades. Even with 7 times
more charging sessions, Flexpower could provide a power peak reduction of 57% while supplying 98% of the
total energy required by electric vehicle users.
1. Introduction

Electric vehicles (EVs) are seen as an essential part of the energy
transition towards a low-carbon system while reducing the number of
local pollutants. Therefore, cities with strong clean air plans are at the
forefront of the transition to electric mobility and they are investing
in charging infrastructure to facilitate this transition. The adoption
of EVs is directly related to the development of the public charging
infrastructure [1], especially in dense urban areas where EV drivers
require charging points at both home and workplace.

However, a city-scale deployment of a public EV charging infras-
tructure poses a chain of challenges for both the Distribution System
Operators (DSO) — who have to ensure the quality of power supply
— and the Municipalities — who want to expand the public charging
infrastructure. The EV peak demand largely aligns with the demand
from households, increased by the electrification of energy-intensive
domestic activities such as space-heating (e.g. heat pumps) and cook-
ing [2–6]. Consequently, this leads to larger daily demand peaks that
may exceed the maximum capacity of certain low-voltage transformers,
resulting in a bottleneck in the distribution system. To avoid this
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congestion scenario, the DSO should incur in costly investments to
upgrade the congested transformers [5], which may not be performed
in a short period of time. Deferring the upgrade would imply that no
more charging stations could be installed downstream of the congested
transformers, and the low-carbon objectives of cities and governments
could be affected. Thus, since a grid upgrade is not expected in the short
term, the only option to continue expanding the charging infrastructure
is to apply a ‘smart charging’ strategy, reducing the reserved capacity
for every charging station according to the grid availability.

However, the flexibility potential of EVs is significant since when
using public charging stations, they are often connected (parked) for
a time significantly longer than needed for charging. This happens
overnight, during work time or when visiting the city [7], giving the
potential to shift power demand over time without interfering with
the charging needs of the EV user. Such smart charging strategies are
widely discussed in the literature with different objectives — technical
(e.g. load balancing or increasing PV usage) or financial (e.g. reduc-
ing energy cost) —, control architectures (centralized or distributed
charging) and control algorithms (e.g. linear programming, quadratic
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programming, rule-based algorithms, etc.) [8]. Moreover, to a certain
extent some smart charging pilots have already been tested in the field
with public charging infrastructure [9,10] and private home charging
points [11–13]. However, a city-scale smart charging deployment is still
a challenge due to a combination of technical, economic and societal
issues [14]. Especially in the public charging market at city-scale, the
high penetration of EVs has to deal with a complex equilibrium among
technical requirements of the DSO (congestion and peak avoidance,
voltage control, etc.), the energy-intensive business model of the Charg-
ing Point Operator (CPO), the mobility and charging behaviour of EV
users and the charging infrastructure deployment plans of cities and/or
governments. Also, it is important to remark that, even though the
real impact of Distributed Energy Resources (DER) like EVs appears in
the low-voltage distribution level and this impact is diverse depending
on the location and time, most of the literature does not consider
these local grid constraints and mainly adopt a global perspective and
refer to approaches linked to implicit flexibility strategies based on
the electricity price [15–17], the impact of renewable production at
transmission-level [17–20], national flexibility markets [12] or mod-
elling user profiles at wide-scale [11,21,22]. Thus, despite the low
degree of instrumentation of these infrastructures, low-voltage lines
and transformers are the first assets that have to be protected from
the volatility of DER. To solve this issue, it is crucial to promote
decentralized smart charging programs based on local grid signals, like
the Flexpower project [23] in Amsterdam, the Netherlands, which is
described in more detail in Section 2.

Flexpower is a novel smart charging approach for future smart
cities, where the CPO controls the power of public charging stations
according to the capacity signals sent by the DSO. These capacity
signals are local (low-voltage transformer level) and dynamic (15-
minute resolution). Therefore, the aim of this work is to simulate and
analyse the Flexpower impact given scenarios with high penetration of
EV in the public charging infrastructure, taking into account the main
interests, objectives and concerns of all stakeholders involved:

• Municipality: the objective of the city council is to expand the
charging infrastructure to incentivize the citizens to buy EVs and
reach their low-carbon city objectives. Their main concern is
that the DSO could not host the expected charging infrastructure
growth in the near future. Moreover, they do not want Flexpower
to affect the quality of the charging service, controlling the EV
load without noticeable changes by the user.

• Distribution System Operator (DSO): their objective is to ensure
a high-quality power supply with a minimum cost, so manag-
ing power congestion to defer investments in infrastructure up-
grades. Flexpower will allow them to avoid grid congestion while
expanding the charging infrastructure.

• Charging Point Operator (CPO): their objective is to provide a
good and reliable service to all EV users of the public charging
infrastructure, supplying all energy requirements the users have.
Flexpower could limit their benefits if EV charging is curtailed,
but also could increase them if the charging infrastructure is
expanded.

• EV users: their objective is to connect the vehicle when they need
it and charge all the energy needed. Their main concern would be
that Flexpower could limit their charge and affect their routes or
plans.

This work wants to provide answers to these multiple concerns and
ffer more information to all stakeholders involved in the project. With
his purpose, Section 2 gives first an introduction to the Flexpower
roject as a context for the study and the methodology proposed in
ection 3. Following, Section 4 describes the calculations performed
sing real data from a trial at 124 public charging points to model the
xisting EV user profiles and uses these models to generalize the study
cross different locations in the city. The results from these calculations

re analysed in Section 5 and, finally, Section 6 concludes the paper
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with the main outcomes from the analysis and the recommendations
for the further development of the Flexpower project in the city of
Amsterdam.

2. The context: Flexpower project in Amsterdam

The city of Amsterdam has been at the forefront of the transition to
electric mobility since the installation of the first public charge point
in 2009. By 2030 the city aims to only allow zero-emission mobility
into the city with an estimated total of 254.000 passenger cars (100%
electric) [24]. To accommodate electric mobility, the city has set out
a plan to install a total of 82.000 charging points across the city by
2030 [25]. Of those, 18.000 should be publicly accessible. By Novem-
ber 2022, there are 6.000 charging points (i.e. 3000 charging stations)
installed in public areas [26]. The majority of charging should be
done at private (50.000) and semi-public locations (13.000). Significant
growth in infrastructure is thus expected.

Every public charging station has a grid connection of 3 × 25
amperes, which means that, traditionally, every charging station had
a technical capacity of 25 A. However, to allow the planned charg-
ing infrastructure expansion by the municipality and, at the same
time, to avoid the congestion of low-voltage transformers, the reserved
capacity for every charging station has to be reduced according to
the grid availability. In that line, the Municipality of Amsterdam has
been working on a smart charging project called Flexpower since the
beginning of 2018. Initially, Flexpower was a pilot project within the
EU Interreg project SEEV4City [27] and currently, the project is being
further developed with high interest from all the partners involved in
the project, including the DSO and the CPO.

In the first two iterations of the Flexpower project
(i.e. Flexpower1 [28] and Flexpower2 [3]) a static load profile was
deployed to 200 charging stations (each with two charging points)
in Amsterdam. During the project, the physical grid connection was
upgraded to 3 × 35 A to allow higher loads during periods with high
PV solar generation. The aim was to allow more locally produced
renewable energy to be charged. During peak hours (16:00–19:00) a
lower load (max. 3 × 8 A per charging session) was allowed to prevent
peak load. The results of the project showed that such a profile was par-
tially effective. Allowing higher charging power during sunny days was
hardly effective since, on one hand, only a very small portion of cars
could charge faster than 3 × 16 A and, on the other hand, it required
a considerable investment for the grid upgrade. A lower load during
peak hours worked but resulted in a rebound demand peak when the
charging signal profile allowed higher loads. The profile was applied in
a similar manner each day (depending on the weather forecast) without
information about the actual load on the local low-voltage transformer.

In the third phase of Flexpower project in 2022 (i.e. Flexpower3 [29,
30]), the power regulation of the charging station is done with a
dynamic capacity signal for all charging stations under the same low-
voltage transformer, middenspanningsruimte (MSR) in Dutch [31]. The
current pilot consists in 62 public charging stations (124 charging
sockets), under 9 different MSRs, with a maximum charging power of
11 kW per socket (3 × 16 A). The dynamic capacity signal is calculated
by the DSO considering the nominal power capacity of every MSR and
the forecasted demand of the other loads. The EV demand is controlled
to avoid peaks in the aggregated power demand, while a minimum
charging capacity is always guaranteed by the DSO. Then, according
to this capacity signal, the CPO has to limit the output power of the EV
charging stations installed downstream the corresponding MSR. Fig. 1
illustrates an example of this dynamic capacity signal established by
the DSO during one day of September 2022.

Fig. 1 also shows two red dashed lines representing the minimum
and maximum capacity limits, which are obtained according to Eqs. (1)
and (2) respectively, and are given by the number of charging stations
installed downstream the MSR and the values of 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 and

𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦:
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Fig. 1. MSR (low-voltage transformer) capacity sent by the DSO.

• 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: power capacity for the connection of every
charging station in the power grid, which is currently of
25 amps∕phase. When a new charging station is installed in a
street, the DSO registers this new point of demand and assigns
it to the corresponding MSR.

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑛𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 × 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (1)

• 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: guaranteed power capacity that will be provided
to a charging station at any moment, which is currently of
4 amps∕phase. This is a regulation measure to ensure a good
charging service for all EV users even though the charging power
is limited.

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑛𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 × 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (2)

Observe that the capacity limit in Fig. 1 is represented in power
units to facilitate the understanding of the power system, despite the
DSO defining it in amperes per phase (i.e. power current 𝐼). Thus,
the limits obtained with Eqs. (1) and (2), as the results of multiplying
the 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 and the 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 by the number of charging
stations (6 charging stations in the example from Fig. 1), are converted
to power capacity considering an equilibrated three-phase low-voltage
system using Eq. (3).

𝑃𝐼𝐼𝐼 =
√

3 × 400 × 𝐼 (3)

The current 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 of every MSR has been established
with the current number of charging stations (See Table 1). These
are the capacity limits that reduce the possibility of supplying extra
EV demand without upgrading the grid infrastructure (i.e transformer,
lines and protections). On the other hand, the 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 could be
decreased to allow the charge of more users under the same Maxi-
mumCapacity. However, very low values of 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 could result
in a higher amount of uncompleted sessions due to longer charging
times. Thus, a relevant part of the calculations done in Section 4
assesses multiple values of 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 for every scenario. This allows
for identifying which value ensures a good charging service to EV
users and at the same time guarantees reliable demand profiles for the
distribution grid.
3 
Fig. 2. Methodology block diagram.

Table 1
𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 values for every MSR.

MSR Charging Max.capacity Max. capacity
stations (A/phase) (kW)

9020467 7 175 120.75
9006775 7 175 120.75
3023573 9 225 155.25
9015800 6 150 103.50
3023598 8 200 138.00
3016877 6 150 103.50
3002819 6 150 103.50
3002917 7 175 120.75
3006277 10 250 172.50

3. Materials and methods

This section details the data, algorithms, and methods used to
analyse the impact of the Flexpower project in Amsterdam. A summary
of the methodology is illustrated in Fig. 2.

3.1. Data sets

The following real data sets used in this work were provided by the
University of Applied Sciences of Amsterdam (Hogeschool van Amster-
dam) in the scope of a research collaboration. The EV charging data
sets are not public but available under request through evdata.nl [32].

3.1.1. Electric vehicle charging sessions
A real data set of electric vehicle charging sessions from the city of

Amsterdam was used in this study to create EV stochastic models and
to obtain the current charging picture of the city. This data set consists
of more than 2.6 million sessions during 2020 and 2021, every session
being defined by connection times, energy charged, type of connection
(1 × 16 A, 2 × 16 A or 3 × 16 A), charging point ID and MSR ID.

3.1.2. Operational limits of the grid
Another real data set used in this work is the grid capacity limits

that the DSO sends to the CPO in the scope of the Flexpower project,
as explained in the Introduction section. The real capacity limits (in
amperes per phase) for every one of the 9 MSR participating in the
project during the month of September 2022 were provided in a
resolution of 15 min.

Moreover, the number of charging stations supplied by every MSR
was also provided. Therefore, the 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 for every MSR is
shown in Table 1, considering a 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 of 25 amperes.
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3.2. Models of electric vehicle charging sessions

The simplified demand profile of a charging session can be charac-
terized by the connection times, the charging power and the energy
required [33]. The duration of connections highly depends on the
user behaviour (e.g. daily activities or work timetable), whereas the
charging power depends on the type of connection (single-phase, two-
phase or three-phase) and the maximum current per phase that either
the EV or the charging station permits (usually 16 A). Finally, the
energy that the vehicle can charge depends on both the user behaviour
(i.e. the distance travelled, level of the battery), the size of the EV
battery and the charging power (i.e. how fast it can charge the energy
requirements). Thus, while the charging power is a simulation param-
eter that can be defined according to the charging infrastructure of a
specific use case (e.g. 20% of sessions charging at 3.7 kW and 80% at
7.4 kW), the EV user behaviour in terms of connection patterns and
energy requirement must be defined by stochastic models that capture
the uncertainty associated with the EV demand at issue [34].

Therefore, stochastic models are built from the real Amsterdam
data set described in Section 3.1.1 to characterize EV user profiles,
understanding a ‘‘user profile’’ as a pattern in the connection times
of charging sessions. These stochastic models are then used to simu-
late multiple levels of EV penetration in the public charging infras-
tructure of Amsterdam. The modelling methodology proposed can be
summarized with the following steps:

1. Clustering of charging sessions: Resulting clusters will repre-
sent generic user profiles (i.e. connection patterns that reflect
different user behaviours)

2. Building the connection models for every user profile: Associat-
ing every profile with a connection start time and a duration.

3. Building the energy models for every user profile and different
charging powers.

Below, this section describes in more detail the methods used to
luster and model user profiles using a real data set of EV charging ses-
ions. It is worth mentioning that the methodology has been wrapped
nto an open-source R package, called ‘‘evprof’’, for free use in any other
se case where charging session data is available [35].

.2.1. Clustering EV sessions into user profiles
In the first step, a Gaussian Mixture Models (GMM) clustering is

pplied to the data set of EV charging sessions. Gaussian Mixture Mod-
ls is a model-based clustering technique that groups data points into
aussian distributions. The clustering methodology is widely explained

n previous works, first in [36] and later improved in [37]. In this
pplication, two variables are used to cluster sessions using a bivariate
MM: connection start hour and duration (connection hours).

As raised in [37], model-based algorithms are sensitive to outliers
o first, the full data set is divided into smaller sets with similar density
evels and taking into account the different time cycles where the EV
sers have different behaviour (day of the week, season, etc.). Then,
very sub-set is cleaned after detecting the outliers with the Density-
ased Spatial Clustering of Applications with Noise (DBSCAN) method.
ince the outlying sessions are not part of the main connection pattern
uring peak hours, they do not suppose a relevant power demand
or grid congestion analysis. After cleaning the outliers, every cleaned
ub-set is evaluated with the Bayesian Information Criterion (BIC) to
efine the optimal number of clusters to describe the data points and
void overfitting. The BIC indicator is the value of the maximized
og-likelihood with a penalty on the number of parameters in the
odel, so it allows a comparison of models with different numbers of

lusters. This comparison is done in a plot visualization using the evprof
package [35]. Once the number of clusters is defined, the GMM

lustering method is applied to every subset to obtain the bivariate
lusters. Finally, every cluster is labelled with a user profile name,

orresponding to informative behaviours in terms of connection start
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time and duration. Thus, for example, a cluster with an average start
tie at 9:00 and an average duration of 8 h is tagged as ‘‘Worktime’’.
A single user profile can have multiple clusters assigned to it. Some
clusters may represent a very specific behaviour, but others could have
a high variability that does not allow a clear identification of a user
profile.

3.2.2. Modelling EV user profiles
This work proposes to model the EV charging sessions in terms of

connection times and energy demand since these variables are defined
by the behaviour of the EV users. EV user behaviour is interpreted in
multiple ways in current literature. For example in [38] the EV user
behaviour is modelled in terms of importance given by the user to
aspects such as charging price, comfort or the battery state of charge.
However, modelling the EV demand at this high-detail level requires EV
user information (e.g. vehicle ID, state of charge, distance driven, etc.)
that was not available in the data set of this work. Thus, the stochastic
modelling methodology used in this work for city-scale simulations
makes use of basic charging variables like connection times, energy and
power to model generic EV user profiles (i.e. connection patterns) that
will have a specific presence depending on the district of the city or the
area under study.

The GMM clustering method raised in Section 3.2.1, based on the
connection start time and the connection duration, is a parametric
method that allows classifying EV charging sessions into clusters at
the same time that provides a centre of each model and a measure of
dispersion. Therefore, the models of these connection variables for a
specific user profile are built as an additive combination of the multiple
bivariate Gaussian distributions (i.e. clusters) associated with that user
profile. These connection GMM are defined by the mixture weight (%),
the means vector (𝜇) and a covariance matrix (𝛴). The connection
GMM of the current study case are described in Appendix B.

On the other hand, the energy models are not part of the clustering
process and have to be built afterwards. Previous work from the au-
thors [39] presented a methodology to build GMM of a single variable,
i.e. the energy charged per charging session, for every user profile.
However, in the case study of the current paper, the research showed
that the energy charged in every session not only depends on the user
profile but also on the charging power (see Section 4.1). New EV models
tend to have larger batteries but also charge at higher rates, so the
higher the charging power, the larger the energy demand. Thus, every
user profile has been associated with several energy models correspond-
ing to the multiple charging rates. In particular, in the data set used
in this work, there are three main charging rates: 3.7 kW (i.e. single-
phase connection at 16 A), 7.4 kW (i.e. two-phase connection at 16 A)
and 11 kW (i.e. three-phase connection at 16 A) [3]. Therefore, the
full data set of sessions has been first split by user profile and second
by charging rates to obtain the corresponding energy GMM, defined by
the mixture weight (%), the mean (𝜇) and a standard deviation (𝜎). The
energy GMM of the current study case are described in Appendix B. This
improvement in the methodology respective to the initial method raised
in [39] has been also introduced in the latest version of the open-source
R package ‘‘evprof’’ [35].

Even though the charging power is now considered for building
the energy models, it is not a variable to model with GMM since
the charging power depends on the specific charging environment,
like the characteristics of the charging infrastructure or the EV fleet.
The methodology followed to simulate the charging power of charging
sessions is further described in Section 3.3.

3.3. Simulation of charging sessions

The stochastic EV models built with the methodology of Section 3.2
allow estimating new charging sessions from the Gaussian distributions
that describe every user profile in the different time cycles (e.g. day of

the week, year, season, etc.) considered during the clustering process.
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On the other hand, connection patterns and user needs vary from
district to district. Thus, the share of the identified user profiles and
the share of every charging rate (e.g. 3.7 kW, 7.4 kW, 11 kW, etc.)
for every location (street, neighbourhood, district, etc.) has been used
to obtain the final energy models that represent the charging profiles
explained in Section 3.2.2.

The simulation process of EV sessions has been done on a daily
basis, taking into account the time cycle of that day (if considered
different time cycles), the number of sessions to simulate during this
day, the share of user profiles relative to the total number of daily
sessions, and the share of the three main charging rates (3.7 kW, 7.4 kW
and 11 kW). Thus, the connection variables are estimated first with the
connection GMM of the time cycle and the user profile. Second, the
charging power is assigned to every session randomly considering the
share of every charging rate over the total. Finally, the energy value is
estimated using the energy GMM corresponding to the time cycle, the
user profile and the charging power of the session.

The open-source R package ‘‘evsim’’ [40] collects the functions
described above to simulate new EV sessions using the Gaussian models
created with the ‘‘evprof’’ R package already mentioned in Section 3.2.

3.4. Sizing of the charging infrastructure

The charging sessions have been simulated considering that all
of them would be assumed by the public charging infrastructure in
Amsterdam. Thus, the required growth of the charging infrastructure
has been calculated according to the simulated sessions.

Every charging station can handle only two simultaneously con-
nected EVs since there are two sockets per charging station. Thus, it
is necessary to first calculate the number of charging stations required
according to the maximum number of simultaneous connections; and
second, to allocate every incoming session to the available socket.
This second step is important to afterwards simulate the Flexpower
program since it is required to know how many vehicles are charging
simultaneously in a charging station. These calculations have been done
using R package ‘‘evsim’’ [40].

3.5. Simulation of flexpower

As already introduced in Section 1, Flexpower is a smart charging
project currently deployed in Amsterdam. In its third development
phase, the DSO sends to the CPO the maximum current per phase that
the MSR can assume with a 15 minute resolution. Thus, every 15 min
the CPO must compare the number of charging vehicles charging,
their respective demand and the maximum capacity of the MSR. If
the demand is higher than the maximum capacity, then this maximum
current per phase at MSR level is split among all charging vehicles. At
the same time, another physical constraint is present in the Amsterdam
pilot. The public charging stations have two sockets of 16 A, while the
grid connection has a maximum of 25 A. Then, a vehicle can charge
at 16 A when it is alone in the charging station, but the maximum
current will be reduced to 12 A when any phase of the charging station
is shared. However, charging two single-phase vehicles or one single-
phase vehicle and one two-phase vehicle would allow the maximum
rate of 16 A per phase since the charging stations are smart enough to
distribute phases among the two sockets.

Considering all these constraints, Algorithm 1 describes how Flex-
power is simulated, considering a time resolution of 15 min like the
DSO capacity signals. The nomenclature of variables used in Algo-
rithm 1 is described in Table 2.

Algorithm 1 iterates over all time slots in the simulation time
sequence to assign the available charging power to the connected
vehicles, according to the DSO capacity signal. With this purpose, the
simulated schedule of charging sessions (i.e. 𝑆), with the connection

times, energy and power variables for every session, is expanded among

5 
Table 2
Nomenclature of Flexpower algorithm.

Parameter Description

𝑆 Schedule of charging sessions, see example in Table A.1
𝑆𝐸 Expanded schedule of charging sessions along all time slots, see

example in Table A.2
𝑃𝑜𝑤𝑒𝑟𝑠,𝑡 Charging power of session 𝑠 at time slot 𝑡. Corresponds to a cell

in 𝑆𝐸 and is defined during the iterations of Algorithm 1
𝐸𝑛𝑒𝑟𝑔𝑦𝑠,𝑡 Energy charged by session 𝑠 at time slot 𝑡. Corresponds to a cell

in 𝑆𝐸 and is defined during the iterations of Algorithm 1
𝐸𝑛𝑒𝑟𝑔𝑦𝐿𝑒𝑓𝑡𝑠 Energy to be charged by session 𝑠. It is updated in 𝑆𝐸 during

the iterations of Algorithm 1. The initial value corresponds to
𝐸𝑛𝑒𝑟𝑔𝑦𝑠 in schedule 𝑆

𝑃ℎ𝑎𝑠𝑒𝑠𝑠 Number of power phases of session 𝑠 (single-phase=1,
two-phase=2 and three-phase=3). It is defined in 𝑆

𝑇 Date and time sequence
𝛥𝑇 Time sequence resolution, i.e. time difference between values in

𝑇
𝐴𝑠,𝑡 Charging current (in amps) of the session 𝑠 at timeslot 𝑡
𝐴𝑚𝑎𝑥,𝑚𝑠𝑟,𝑡 Maximum charging current for transformer 𝑚𝑠𝑟 at timeslot 𝑡
𝐴𝑚𝑎𝑥,𝑐𝑠,𝑡 Maximum charging current for charging station 𝑐𝑠 at timeslot 𝑡

all time slots to create a time-series table (i.e. 𝑆𝐸) with the correspond-
ing value of power and energy charged by every charging session after
the simulation of Flexpower program. In order to better visualize the
process, Appendix A includes Table A.1, which shows an example of
a simulated schedule of sessions (𝑆), and Table A.2, which shows an
example of the same schedule but expanded in time (𝑆𝐸). The 𝑃𝑜𝑤𝑒𝑟
and 𝐸𝑛𝑒𝑟𝑔𝑦 variables of the expanded schedule 𝑆𝐸 are initialized at 0
to be filled by Algorithm 1, while the 𝐸𝑛𝑒𝑟𝑔𝑦𝐿𝑒𝑓𝑡 variable corresponds
to the 𝐸𝑛𝑒𝑟𝑔𝑦 value from the original schedule 𝑆.

For every time slot in the date and time sequence, first, the number
of vehicles charging is calculated by filtering the expanded schedule
𝑆𝐸 to find all charging sessions charging at that specific time slot. This
number of vehicles charging is used to calculate the maximum phase
current per vehicle according to the MSR capacity limit sent by the
DSO. Second, it is assigned to every charging station that is charging
a vehicle a maximum current according to the number of phases used
in the station. Then, the charging current of every session would be
the minimum between the MSR and the station limits. Finally, the
𝑃𝑜𝑤𝑒𝑟 and 𝐸𝑛𝑒𝑟𝑔𝑦 of every session for this time slot are calculated and
updated to the schedule 𝑆𝐸. The sessions are considered to be charging
until their 𝐸𝑛𝑒𝑟𝑔𝑦𝐿𝑒𝑓𝑡 value is 0, i.e. they have already charged all
their requirements.

4. Calculations

The calculations performed in this work can be differentiated into
two main blocks: (1) modelling of EV user profiles, and (2) simulation
of Flexpower. This section describes the steps followed in each block
and their main outcomes to later analyse in the next section the results
obtained from these simulations.

4.1. Amsterdam EV models

After submitting the real set of charging sessions described in Sec-
tion 3.1.1 to the modelling process from Section 3.2, seven user profiles
have been discovered on seven different time cycles corresponding to
the days of the week.

The real data set of charging sessions described in Section 3.1.1 has
been submitted to the clustering methodology exposed in Section 3.2.1.
The clustering has been performed separately by day of the week,
since no relevant difference has been detected among the months of
the year, using the connection start time (i.e. arrival time) and the
connection duration (in hours) for the bi-variate Gaussian Mixture Mod-
els (GMM) clustering. Since every cluster obtained has a characteristic
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Input : expanded schedule of charging sessions 𝑆𝐸, time sequence 𝑇 , time sequence resolution 𝛥𝑇 , MSR capacity limits 𝐴𝑚𝑎𝑥,𝑚𝑠𝑟

Output: Modified schedule of charging sessions 𝑆𝐸

1 for 𝑡 in 𝑇 do
2 𝑆𝐸𝑡 = sessions charging during timeslot 𝑡
3 if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐸𝑡) = 0 then
4 𝑛𝑒𝑥𝑡 // No sessions charging at this timeslot
5 end

/* Find the maximum charging current allowed by the MSR at this timeslot */
6 𝐴𝑚𝑎𝑥,𝑚𝑠𝑟,𝑡 = 𝐴𝑚𝑎𝑥,𝑚𝑠𝑟∕𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐸𝑡)

/* Find the maximum charging current allowed by every Charging Station */
7 𝐶𝑆𝑡, unique charging 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 names for sessions in 𝑆𝐸𝑡

8 for 𝑐𝑠 in 𝐶𝑆𝑡 do
9 𝑆𝑐𝑠,𝑡 = sessions charging in station 𝑐𝑠 at timeslot 𝑡
10 𝑃𝐻𝑐𝑠,𝑡 = sum of 𝑃ℎ𝑎𝑠𝑒𝑠 used by sessions 𝑆𝑐𝑠,𝑡

11 if 𝑃𝐻𝑐𝑠,𝑡 ≤ 3 then
12 𝐴𝑚𝑎𝑥,𝑐𝑠,𝑡 = 16
13 end
14 else
15 𝐴𝑚𝑎𝑥,𝑐𝑠,𝑡 = 12.5
16 end
17 end

/* For every session set the maximum current, power and energy */
18 for 𝑠 in 𝑆𝐸𝑡 do
19 𝑐𝑠 = 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠
20 𝐴𝑠,𝑡 = 𝑚𝑖𝑛(𝐴𝑚𝑎𝑥,𝑚𝑠𝑟,𝑡, 𝐴𝑚𝑎𝑥,𝑐𝑠,𝑡) // Allowed charging current
21 𝑃𝑜𝑤𝑒𝑟𝑠,𝑡 = (𝐴𝑠,𝑡 × 230 × 𝑃ℎ𝑎𝑠𝑒𝑠𝑠)∕1000 // Update 𝑃𝑜𝑤𝑒𝑟 in 𝑆𝐸

22 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑃𝑜𝑤𝑒𝑟𝑠,𝑡 × 𝛥𝑇

23 𝐸𝑛𝑒𝑟𝑔𝑦𝑠,𝑡 = 𝑚𝑖𝑛(𝐸𝑛𝑒𝑟𝑔𝑦𝑠,𝑡, 𝑒𝑙) // Update 𝐸𝑛𝑒𝑟𝑔𝑦 in 𝑆𝐸

24 𝐸𝑛𝑒𝑟𝑔𝑦𝐿𝑒𝑓𝑡𝑠 = 𝐸𝑛𝑒𝑟𝑔𝑦𝐿𝑒𝑓𝑡𝑠 − 𝐸𝑛𝑒𝑟𝑔𝑦𝑠,𝑡 // Update 𝐸𝑛𝑒𝑟𝑔𝑦𝐿𝑒𝑓𝑡 in 𝑆𝐸

25 end
26 end

Algorithm 1: Algorithm to simulate Flexpower
onnection pattern (i.e. Gaussian distribution) that can be interpreted
s generic daily human behaviour, the most similar clusters have been
rouped resulting in seven different user profiles. The average values
f the connection start time and the connection duration, with the
orresponding behaviour interpretations, are described in Table 3 for
ach one of the seven EV user profiles identified. These average values
re just descriptive since every user profile has a specific Gaussian
istribution for every day of the week. This is seen in Fig. 3, which
hows the classification of all charging sessions (i.e. a single points in
he plot) into these user profiles for every day of the week indepen-
ently. The bi-variate Gaussian Mixture Models associated to every user
rofile’s clusters are described in Tables B.2–B.8 of Appendix B with the
orresponding location and variance parameters.

Besides connection models, that only gather the temporal
ehaviours, every user profile has a specific energy requirement, that
omehow is related to the connection duration. Moreover, as exposed
n Section 3.3, Fig. 4 validates that the charging power has also a clear
mpact on the amount of energy charged by the vehicle, plotting the
ensity of 𝐸𝑛𝑒𝑟𝑔𝑦 values for every different charging rate (i.e. 3.7,
.4 or 11 kW) and user profile. On one hand, it is clear that the
.7 kW sessions have a lower average energy consumption, but a lower
ariation as well since the density distribution is narrower than the
ther charging rates. On the other hand, the 11 kW sessions have con-
iderably different distribution for short sessions like the Shortstay or
6 
Dinner sessions. For these reasons, the Energy Gaussian Mixture Models
have been fitted separately for every user profile and charging rate. The
statistic values of the energy GMM are included in Tables B.9–B.55 of
Appendix B.

4.2. Simulation of charging sessions and flexpower

Since the objective is to assess the performance of Flexpower when
different levels of EV penetration are given, an increase in the number
of charging sessions has been simulated by applying a factor 𝑘 between
2 and 7 over the current number of sessions per week (current values
of weekly sessions are shown for every MSR in Fig. 5). The share of
every user profile in every MSR is shown in Fig. 6, for every different
time cycle (i.e. day of the week in this case). This figure shows how
different the demand can be from neighbourhood to neighbourhood.

The charging power distribution has been assumed to be equal
for all the MSR since no considerable differences have been observed
between them. Thus, the share of every charging power used in the
simulations, shown in Table 4, corresponds to the current charging
power distribution in the city of Amsterdam during 2021.

After simulating the sessions in the 7 different scenarios of EV pen-
etration (i.e. factor 𝑘 from 1 to 7), the charging infrastructure (i.e. the
number of charging stations) required to handle the corresponding EV
demand has been calculated according to the methodology described in
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Table 3
Amsterdam EV user profiles interpretations.

EV user profile Average connection Average connection Behaviour interpretation
start time duration (hours)

Dinner 18:28 2,8 Short connections during the evening
Shortstay 13:51 0,418 Short connection all over the day
Visit 11:32 4,84 Connections over the day with a high variability on both connection start

and duration
Worktime 8:41 8,62 Morning connections with a duration about 8 h (working time)
Commuters 18:21 15 Afternoon connections until next morning
Home 14:20 18,9 Generally early-afternoon connections until next morning, but with

high variability on both connection start and duration
Pillow 21:29 13,3 Night connections generally until next morning
Fig. 3. Real data set of EV charging sessions classified into generic User profiles.
Fig. 4. Density curves for energy values of sessions belonging to every user profile and charging rate.
Fig. 5. Current weekly sessions for every MSR of the study.
7 
Fig. 6. Share of user profiles for every MSR of the study.
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Table 4
Distribution of maximum charging powers in Amsterdam at the end of
2021.

Charging rate (kW) Percentage of sessions (%)

3.7 29
7.4 20
11.0 51

Fig. 7. Infrastructure growth according to sessions/week.

Section 3.4. Finally, after simulating the charging sessions and sizing
the charging infrastructure for every scenario, the different data sets
of charging sessions have been submitted to the Flexpower algorithm
described in Section 3.5.

5. Results and discussion

This section exposes the analysis of the simulation of Flexpower
with different levels of EV penetration in the Amsterdam pilot. The
analysis is done from the perspectives of the main stakeholders involved
in the project: the Municipality, the Distribution System Operator
(DSO), the Charging Point Operator (CPO) and the EV user. Spe-
cific performance indicators for each stakeholder have been defined
and analysed for the different MSRs under multiple values of the
𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 in order to assess its impact.

5.1. Municipality perspective

The implementation of the Flexpower project aims to allow the in-
stallation of more charging stations downstream of MSRs that currently
cannot reserve more power capacity for the EV charging infrastructure.
Therefore, more charging sessions within the same maximum capacity
are expected (see Table 1 in Section 3.1.2). Effectively, Fig. 7 shows
that, in almost all MSR, the current charging infrastructure could
double the number of weekly charging sessions. For 𝑘 greater than 3,
he growth of charging sessions has to be linked to the growth of the
nfrastructure.

Moreover, the municipality is not only interested in expanding the
harging infrastructure but also to ensure a high-quality public charg-
ng service. The implementation of Flexpower, limiting the charging
ower during demand peak hours, could increase the number of un-
ompleted sessions at the end of their connection time, understanding
uncompleted session’ as the charging session that charges less than
8 
Fig. 8. Uncompleted sessions according to sessions/week.

the original (i.e. simulated) energy requirement. If the percentage of
uncompleted sessions grows significantly, the reputation of the public
charging infrastructure could decrease resulting in a loss of confidence
by the users followed by a reduction of its use. Fig. 8 represents the
percentage of uncompleted sessions for every firm capacity according
to the value of sessions per week 𝑘, across all MSRs. This figure shows
how the global percentage of uncompleted sessions increases inversely
with the magnitude of the firm capacity. Using only a Firm capacity of
1 A in the current scenario (𝑘 = 1) would suppose 25% of uncompleted
sessions whereas a Firm capacity of 4 A, reduces it until a 5%, and the
25% with this Firm Capacity is reached when 𝑘 = 7. Increasing Firm
capacity to 6 A results in a percentage of uncompleted sessions around
10% for all the EV penetration scenarios.

5.2. DSO perspective

Fig. 9 shows, for every MSR, the maximum peak demand obtained
in every scenario of the number of sessions (i.e. the value of 𝑘),
relative to the corresponding existing maximum capacity (values of
Table 1 in Section 3.1.2). For the current scenario (𝑘 = 1), most of
MSRs have a peak demand between 20% and 40% of their maximum
capacity reserved for public charging stations, except MSRs 9006775
and 3002819 reaching 40% and 50% of the capacity respectively.

For MSR 9006775, the peak demand is the same for all 𝐹 𝑖𝑟𝑚𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
values from 1 to 5 A. This is because the MSR capacity limit for one
specific day was higher than normal and the demand could also be
high. This situation is represented in Fig. 10, for firm capacity values
of 1 A (left) and 4 A (right), where the MSR limit is represented by the
red dashed line, the static EV demand by the green dashed line, and
the Flexpower EV demand by the green shaded line. In the right graph
of Fig. 10, there is a visible gap between the MSR capacity limit and
the Flexpower demand, even though the static demand is surpassing
the MSR limit. This gap is also shown in Fig. 9, where the maximum
values of the capacity level are between 80% and 90%, even for 7
times the current EV penetration. This gap in the power limitation
of Flexpower is the result of two factors: (1) an important share of
single-phase and two-phase vehicles in the system (i.e. 50% of sessions),
which causes the limitation of phases that are not fully used, and (2)
the representation of the MSR limit in power units (kW) considering
a three-phase system. Therefore, the gap would decrease in the case
of considering an EV fleet with a higher share of three-phase vehicles,
which is expected to happen in the future.
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Fig. 9. MSR capacity reached according to sessions/week.

Another interesting result is that, for some MSRs, the maximum
eak demand is higher for lower firm capacity values, when the power
imitation is supposed to be harder. An example is the MSR 3023573.
his is because during peak demand hours the limitation is higher with
low firm capacity and this results in a considerable rebound effect.

his situation is represented in Fig. C.1 from Appendix C.
However, if we look at the peak reduction between the static and the

lexible case, it is observed that the lower the firm capacity, the higher
he peak reduction. Fig. 11 shows the reduction of the EV power de-
and achieved with Flexpower at the moment when it would have been

he peak of demand without Flexpower. Therefore, the figure shows the
eduction of demand in the flexible scenario with respect to the static
cenario. It is visible that the peak reduction increases proportionally
ith the firm capacity, with the values varying depending on the MSR,
ut mainly constant over the number of sessions per week because the
eak reduction is relative to the demand itself. For most MSRs, the
eak reduction with a firm capacity of 1 A remains between 80% and
0%, with 4 A between 70% and 80%, with 6 A around 60% and with
A between 40% and 50%. Another important aspect is that the MSR

apacity limits, which are created by the DSO, allow the rebound effect.
s shown in Fig. 12, the MSR limit (red dashed line) is less constrained
uring valley hours (green shaded area) of the rest of the demand (blue
haded line) from households, offices, etc. This proves that the DSO
alculates these EV capacity limits with the objective to obtain a flatter
otal demand profile. However, currently, this is not done in real-time
ut with a two-day ahead forecasting. This means that the forecasting
ust be done properly to avoid a rebound effect during peak demand
ours, like the example seen in the left graph of Fig. C.1.

.3. CPO perspective

The implementation of Flexpower will allow the charging infrastruc-
ure to grow and host more sessions. This will suppose more energy to
e sold by the CPO, so higher income. However, the use of Flexpower
lso implies limiting charging power during peak demand hours, which
ould lead to a reduction of the energy charged for users with short
onnection times. Fig. 13 shows the percentage of the total amount
f energy charged to all EV sessions relative to the originally required
nergy. In general, the total energy sold to users decreases considerably
ith firm capacity values lower than 4 amperes. In most cases, with a

irm capacity value of 4 A and higher, the percentage of energy charged
9 
remains around 95% (red dashed line), which could be an acceptable
value by the CPO.

For some MSRs the value of firm capacity plays a more critical role
than others, depending on how the EV demand is limited by the DSO.
For example, the affectation of different values of firm capacity in MSR
3002917 is similar, while in MSR 9015800 the reduction of energy
charged highly depends on the firm capacity magnitude. The difference
between the EV load and DSO constraints for MSRs 3002917 and
9015800 is shown in Figs. C.2 and C.3 from Appendix C respectively.
Fig. C.2 shows how the EV demand in MSR 3002917 is lower than the
maximum capacity, while Fig. C.3 shows that the EV demand in MSR
9015800 surpasses by far the MSR capacity limit. Another specific case
is MSR 9006775, showing a non-linear evolution of the charged energy
because the firm capacity only plays a role from higher 𝑘 values since its
capacity limit is mainly between the minimum and maximum capacity
(see Fig. 10).

5.4. EV user perspective

The implementation of Flexpower will increase the charging in-
frastructure availability, allowing EV users to have charging stations
on their streets and better accessibility to EV charging. Section 5.1
describes the number of uncompleted sessions, which could also be a
service quality indicator from the EV user’s point of view. However,
the number of uncompleted sessions is represented from an aggregated
perspective and, for a proper analysis of the impact’s magnitude at an
individual scale, it is necessary to analyse the proportion of the energy
that is charged and missed by session. For this reason, Fig. 14 shows,
according to the Firm capacity, the average value from all sessions’
percentage of energy charged. The figure shows that a Firm capacity
of minimum 5 A would have a reasonable impact on EV users, keeping
the average charge around 95% of the energy requirements even in
scenarios with high penetration of EVs.

Another critical concern about Flexpower from the user perspective
is the impact that charging limitation will have on low-power users.
Charging at 3.7 kW (i.e. single-phase EVs) could have a higher impact
than charging at 11 kW (i.e. three-phase EVs) since with less time the
latter can charge more. To answer this question, Fig. 15 shows the
average percentage of energy charged for every charging rate and 𝑘
scenario, considering a Firm capacity of 4 A (the value currently used).
This figure shows that, in terms of the average percentage of energy
charged, there is no relevant difference between the three different
charging powers considered in the simulation. This is explained by the
fact that high charging powers are related to larger batteries, which
tend to charge more and require more energy. Moreover, for all 𝑘
scenarios, the histogram of this variable results in a great majority of
sessions charging 100% of their required energy, while the average
values shown in Fig. 15 decrease due to outlying sessions with really
high energy demand.

Finally, it is also interesting to see the impact by user profile,
represented in Fig. 16. The most impacted user profiles are Dinner, Visit
and Shortstay, in this order, due to their short connection times and the
coincidence with the most constrained hours (i.e. peak demand hours).
On the other hand, the users charging overnight like Commuters, Home
and Pillow have a null impact with a firm capacity of 4 A for all
scenarios, and a minimum impact with lower values of firm capacity.

5.5. Summary of main results

This section aims to summarize the results from all MSRs to extract
general conclusions and recommendations at an aggregated city level.
With this purpose, the average values of the four main indicators
described in Section 4 have been calculated, each one representing
the interest of the corresponding stakeholder in the Flexpower project.
Currently, some of these indicators have a minimum or maximum value
from which the Flexpower project would not be accepted by some of

the stakeholders, even though they can change in the future.
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Fig. 10. MSR 9006775 with 𝑘 = 7, comparing 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 1 (left) and 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 4 (right). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Fig. 11. MSR peak reduction according to sessions/week.

Fig. 12. MSR limit according to total power demand. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)
10 
Fig. 13. Share of total energy charged according to sessions/week.

Fig. 14. Average percentage of energy charged according to sessions/week and firm
capacity.
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Fig. 15. Average percentage of energy charged according to sessions/week and
charging power with FirmCapacity of 4 A.

Fig. 16. Average percentage of energy charged according to sessions/week, firm
capacity and user profile.

• Uncompleted sessions, in percentage, representing the Munici-
pality’s objective to ensure a high-quality charging service to
Amsterdam EV users. The lower the better, and the acceptable
maximum is assumed to be 10%.

• Demand peak reduction, in percentage, representing the grid
congestion scenarios that the DSO wants to avoid. The higher the
better, and the current acceptable minimum is assumed to be 0%
since it is not a critical variable yet.

• Total energy charged, in percentage, being the share of energy
that has been sold by the CPO to EV users from the total energy
that users would have charged without Flexpower. The higher the
better, and the acceptable minimum is assumed to be 95%.

• Average energy charged, in percentage, representing the Flex-
power limitation impact on EV users at an individual scale. The
higher the better, and the acceptable minimum is assumed to be
90%.
11 
Fig. 17. Summary of results from current EV penetration (𝑘 = 1).

These indicators are calculated for every scenario of firm capacity
and EV penetration (𝑘) and represented in coloured tables. Fig. 17
shows the indicators for the current EV penetration (𝑘 = 1), while
the future scenarios with higher EV penetration are represented in
Figs. D.1–D.6 in Appendix D. Since all variables are expressed in per-
centages, they go from 0 to 100%, but the cells’ colour also depends on
the minimum/maximum accepted values described above, representing
with red colour the non-accepted situations and a red-to-green gradient
for the positive scenarios. This type of representation lets to understand
in a more comprehensive way the ‘‘warning’’ situations. For example,
Fig. 17 (i.e. current scenario) shows that a Firm capacity of 1 A only
provides an acceptable scenario for the DSO, and that the optimal
value of Firm capacity would be 4 A (i.e. the actual configuration)
to ensure a small impact on EV users but still a considerable demand
peak reduction. However, for the future EV penetration scenarios,
i.e. Figs. D.1–D.6, the recommended firm capacity value to ensure an
equilibrated scenario for all stakeholders would go up to 6 A, where the
percentage of uncompleted sessions remains around 10%, the demand
peak reduction around 60%, the total energy sold higher than 98% and
the average energy charged by users higher than 97%.

6. Conclusions, further research and recommendations

This section summarizes the main conclusions obtained in this work,
as well as some recommendations that arise from the results.

The main conclusions obtained from simulating Flexpower in dif-
ferent scenarios of EV penetration can be summarized in the following
points:

• The majority of MSRs analysed can accommodate twice the cur-
rent number of EV sessions without requiring additional charging
stations.

• When the CPO-DSO communication operates seamlessly, and
Flexpower functions without interruptions, grid congestion can
be avoided even as charging infrastructure grows.

• In the MSRs where the Flexpower project works properly, expand-
ing the charging infrastructure can improve service availability
for EV users.

• The actual firm capacity value of 4 A balances stakeholder in-
terests effectively, allowing a peak demand reduction of approx-
imately 70% with a minimal user impact of 6% of uncompleted
sessions.

• For future scenarios, a general firm capacity value of 6 A is
recommended, offering an optimal balance between peak demand
reduction (60%), uncompleted sessions (10%), and high energy
delivery efficiency (> 98%).

• Differences in charging rates (3.7 kW, 7.4 kW, 11 kW) have no
significant impact on individual EV charging outcomes.

As a general conclusion, Flexpower proves to be a reliable peak-
shaving tool for DSOs during peak demand hours, even consider-
ing high EV penetration in the current low-voltage distribution sys-
tem. However, accurate demand forecasting remains crucial to avoid
rebound effects and minimize the risk of real congestion.
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Table A.1
Example of a simulated schedule of EV sessions 𝑆.

MSR Station Session ConnectionTime ConnectionHours Phases MaxPower Energy

9020467 9020467CHS1 S1 05/09 08:15 0.77 1 3.7 2.84
9020467 9020467CHS2 S2 05/09 08:15 9.83 2 7.4 28.19
9020467 9020467CHS3 S3 05/09 10:45 4.83 2 7.4 2.71
9020467 9020467CHS4 S4 05/09 12:45 20.40 2 7.4 33.09
9020467 9020467CHS5 S5 05/09 13:45 4.18 2 7.4 7.30
9020467 9020467CHS6 S6 05/09 18:00 13.25 1 3.7 5.97
𝑁

g
t
c
a
E
w

m
G
𝑚

𝑚

In terms of EV user impact, a recommendation for future studies
ould be to explore prioritization strategies based on user profiles,
pecially for short-connection user profiles (e.g., Visitors, Shortstay,
inner).

Finally, note that the simulations of Flexpower considering high EV
enetration scenarios have assumed that the MSR capacity limits sent
y the DSO were identical to the capacity limits sent during Septem-
er 2022. In that sense, updated data sets of charging sessions and
SR power demand would be crucial for proper simulations since the

apacity limits may increase together with the EV demand. However,
btaining access to these data sets from the DSO or CPO is frequently
hallenging due to data privacy and confidentiality constraints.

Regular access to updated data sets of charging sessions is strongly
ecommended for more accurate insights. While the characteristics of
pecific EV user profiles may remain stable over time, periodic valida-
ion of EV models is essential to ensure the accuracy and relevance of
he simulations.
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Appendix A. Schedules of charging sessions

This appendix shows examples of the schedules of charging sessions
used in Algorithm 1 to simulate Flexpower implementation.
12 
Table A.2
Example of an expanded schedule of EV sessions 𝑆𝐸.

Session Station Timeslot Phases Power Energy EnergyLeft

S1 9020467CHS1 05/09 06:15 1 0 0 2.84
S1 9020467CHS1 05/09 06:30 1 0 0 2.84
S1 9020467CHS1 05/09 06:45 1 0 0 2.84
S1 9020467CHS1 05/09 07:00 1 0 0 2.84
S1 9020467CHS1 05/09 07:15 1 0 0 2.84
S2 9020467CHS2 05/09 06:15 2 0 0 28.19
S2 9020467CHS2 05/09 06:30 2 0 0 28.19
S2 9020467CHS2 05/09 06:45 2 0 0 28.19

Appendix B. Amsterdam EV GMM models

The Gaussian Mixture Models clustering method parametrizes the
statistic parameters of the Gaussian distributions found in the data
through multiple iterations of the Expectation–Maximization (EM) al-
gorithm. These parameters are the mixture weight (𝜋), the means
vector (𝜇) and a covariance matrix (𝛴). After initialization, the EM
algorithm iterates between Expectation–Maximization steps until the
log-likelihood function of the model converges with the predefined
tolerance. The main equations of the Expectation–Maximization process
are detailed in Eqs. (B.1) to (B.7), and the corresponding nomenclature
described in Table B.1.

The log-likelihood is computed with Eq. (B.1), referring to each data
point as 𝑥𝑖, with 𝑖 being from 1 to 𝑀 , and the parameters of each cluster
or Gaussian Model, being 𝑐 being from 1 to 𝐾. 𝑁(𝑥𝑖|𝜇𝑐 , 𝛴𝑐 ) represents
the multivariate Gaussian Mixture Model, defined in Eq. (B.2). The log-
likelihood is the logarithmic expression of the weighted description
of Gaussian mixture models among all data points. If the Gaussian
equation fits the data well, the likelihood increases, so it is used to
select the optimal result of several iterations.

log 𝑝(𝑋|𝜋, 𝜇, 𝛴) =
𝑀
∑

𝑖=1
log(

𝐾
∑

𝑐=1
𝜋𝑐𝑁(𝑥𝑖|𝜇𝑐 , 𝛴𝑐 )) (B.1)

(𝑥𝑖, 𝜇𝑐 , 𝛴𝑐 ) =
1

(2𝜋)
𝑛
2
|𝛴𝑐 |

1
2

𝑒𝑥𝑝(−1
2
(𝑥𝑖 − 𝜇𝑐 )𝑇𝛴−1

𝑐 (𝑥𝑖 − 𝜇𝑐 )) (B.2)

In the Expectation step, the probability of each data point being
enerated by each of the Gaussian models is computed. In contrast
o the K-Means’ hard assignments, the Expectation assignments are
alled soft assignments since we are using these probabilities known
s responsibilities. Each probability or responsibility is calculated with
q. (B.3). Therefore if 𝑥𝑖 is very close to one Gaussian distribution 𝑐, it
ill obtain a high 𝑟𝑖𝑐 value for this Gaussian and relatively low values

otherwise.

𝑟𝑖𝑐 =
𝜋𝑐𝑁(𝑥𝑖|𝜇𝑐 , 𝛴𝑐 )

∑𝐾
𝑘=1 𝜋𝑘𝑁(𝑥𝑖|𝜇𝑘, 𝛴𝑘)

(B.3)

In the Maximization step, the mixture weights (Eq. (B.5)), the
ean (Eq. (B.6)) and the covariance (Eq. (B.7)) are updated for each
aussian mixture model or cluster according to the total responsibility
𝑐 allocated to each cluster (Eq. (B.4)).

𝑐 =
∑

𝑖
𝑟𝑖𝑐 (B.4)

𝜋 =
𝑚𝑐 (B.5)
𝑐 𝑀
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Table B.1
Nomenclature of Expectation–Maximization algorithm.

Parameter Description

𝑋 Sample
𝑀 Size of the sample
𝑥 Data point from the sample
𝑖 Index of the data point
𝐾 Number of clusters (Gaussian models)
𝑐 Index of the cluster
𝜋 Weight of the model over the mixture
𝜇 Means vector of the Gaussian model
𝛴 Covariance matrix of the Gaussian model
𝑛 Number of dimensions of the Gaussian model (2 in this case)

Table B.2
Connection GMM — Time cycle: Monday.

User profile Centroid (𝜇) Covariance (𝛴) Share (%)

Dinner 2.90615
0.876571

0.008184 −0.015188
−0.015188 0.271821

100

Shortstay 2.602059
−0.844344

0.054892 −0.013443
−0.013443 0.113669

100

Visit

2.224958
0.648561

0.012919 −0.017804
−0.017804 0.615099

20

2.647424
0.409364

0.036988 −0.042734
−0.042734 0.426892

46

2.450714
1.60023

0.059209 −0.03352
−0.03352 0.132128

34

Worktime 2.159093
2.151399

0.016015 −0.006231
−0.006231 0.017814

100

Commuters
2.909311
2.622853

0.001833 −0.002482
−0.002482 0.005332

39

2.854041
2.7055

0.00779 −0.007672
−0.007672 0.021309

61

Home
2.802377
3.089042

0.029315 −0.008855
−0.008855 0.014277

64

2.616463
2.925533

0.019211 −0.01384
−0.01384 0.013821

36

Pillow
3.024335
2.697385

0.012213 −0.014331
−0.014331 0.057154

50

3.056247
2.382308

0.006836 −0.012762
−0.012762 0.035988

50

𝜇𝑐 =
1
𝑚𝑐

∑

𝑖
𝑟𝑖𝑐𝑥𝑖 (B.6)

𝛴𝑐 =
1
𝑚𝑐

∑

𝑖
𝑟𝑖𝑐 (𝑥𝑖 − 𝜇𝑐 )𝑇 (𝑥𝑖 − 𝜇𝑐 ) (B.7)

Following, the rest of this appendix exposes the statistical features
f the bivariate GMM for the connection variables (i.e. connection start
ime and connection duration), in Tables B.2 to B.8, and the univariate
MM for the energy variable, in Tables B.9 to B.55. For the bivariate
MM, the first value of the vectors corresponds to the connection start

ime and the second one to the connection duration. All values are in
ogarithmic scale.
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able B.3
onnection GMM — Time cycle: Tuesday.
User profile Centroid (𝜇) Covariance (𝛴) Share (%)

Dinner 2.915739
0.991892

0.007222 −0.013563
−0.013563 0.203771

100

Shortstay 2.595682
−0.877011

0.055806 −0.014146
−0.014146 0.101967

100

Visit

2.274761
0.530679

0.020701 −0.026512
−0.026512 0.543125

26

2.697359
0.412169

0.032097 −0.040317
−0.040317 0.462128

45

2.428679
1.602524

0.056506 −0.027404
−0.027404 0.126708

29

Worktime 2.161591
2.154182

0.018226 −0.006287
−0.006287 0.018026

100

Commuters
2.853544
2.707496

0.007125 −0.006621
−0.006621 0.020018

61

2.911855
2.619137

0.001783 −0.002441
−0.002441 0.005518

39

Home
2.623292
2.92207

0.018666 −0.013757
−0.013757 0.014303

34

2.819282
3.073179

0.027405 −0.008251
−0.008251 0.013994

66

Pillow
3.058212
2.381142

0.006828 −0.013278
−0.013278 0.037803

50

3.032819
2.675989

0.011879 −0.013404
−0.013404 0.056227

50

Table B.4
Connection GMM — Time cycle: Wednesday.

User profile Centroid (𝜇) Covariance (𝛴) Share (%)

Dinner 2.915956
0.979706

0.006567 −0.012189
−0.012189 0.202099

100

Shortstay 2.605417
−0.873139

0.054066 −0.012329
−0.012329 0.106951

100

Visit

2.469057
1.577391

0.057871 −0.028818
−0.028818 0.130551

28

2.67724
0.398201

0.035844 −0.040479
−0.040479 0.432049

47

2.248364
0.580657

0.016989 −0.023225
−0.023225 0.58306

24

Worktime 2.157691
2.154932

0.019779 −0.005807
−0.005807 0.018087

100

Commuters
2.913923
2.616466

0.002988 −0.003973
−0.003973 0.007209

38

2.884976
2.713653

0.006782 −0.005749
−0.005749 0.023596

62

Home
2.662363
2.899304

0.021479 −0.016534
−0.016534 0.018084

44

2.840337
3.086729

0.025366 −0.008999
−0.008999 0.014551

56

Pillow
3.083557
2.588354

0.007549 −0.007957
−0.007957 0.056774

49

3.078029
2.343394

0.005544 −0.010729
−0.010729 0.032241

51
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Table B.5
Connection GMM — Time cycle: Thursday.

User profile Centroid (𝜇) Covariance (𝛴) Share (%)

Dinner 2.916082
1.030949

0.007287 −0.012564
−0.012564 0.207311

100

Shortstay 2.627719
−0.872916

0.055625 −0.01074
−0.01074 0.107096

100

Visit

2.444955
1.60318

0.054289 −0.02414
−0.02414 0.124819

28

2.265233
0.533386

0.017056 −0.022796
−0.022796 0.572466

24

2.690537
0.431032

0.035126 −0.04257
−0.04257 0.448349

48

Worktime 2.16498
2.15764

0.018645 −0.005582
−0.005582 0.01937

100

Commuters
2.86405
2.764058

0.005729 −0.002486
−0.002486 0.019574

56

2.919412
2.609813

0.002544 −0.003431
−0.003431 0.007533

44

Home
2.828282
3.082398

0.027628 −0.011494
−0.011494 0.015056

64

2.663211
2.906163

0.020831 −0.015887
−0.015887 0.017075

36

Pillow
3.067254
2.588419

0.009803 −0.009799
−0.009799 0.055162

60

3.076995
2.353319

0.006027 −0.012883
−0.012883 0.038617

40

Table B.6
Connection GMM — Time cycle: Friday.

User profile Centroid (𝜇) Covariance (𝛴) Share (%)

Dinner 2.927753
1.267123

0.008435 −0.015669
−0.015669 0.160917

100

Shortstay 2.689094
−0.845723

0.057665 −0.008531
−0.008531 0.115222

100

Visit

2.697067
0.520512

0.038664 −0.026562
−0.026562 0.400258

56

2.409645
1.579068

0.047276 −0.01622
−0.01622 0.118676

25

2.258562
0.476156

0.014785 −0.020624
−0.020624 0.550194

19

Worktime 2.166143
2.151984

0.01873 −0.004876
−0.004876 0.018589

100

Commuters 2.945413
2.684162

0.010853 −0.012398
−0.012398 0.028048

100

Home

2.703612
2.938624

0.026907 −0.01801
−0.01801 0.017656

20

2.644204
3.156936

0.020781 −0.004694
−0.004694 0.008312

17

2.897279
2.933279

0.008299 −0.00452
−0.00452 0.020621

62

Pillow
3.138736
2.325692

0.006657 −0.009075
−0.009075 0.035011

54

3.146108
2.659584

0.006337 −0.008052
−0.008052 0.034012

46
14 
Table B.7
Connection GMM — Time cycle: Saturday.

User profile Centroid (𝜇) Covariance (𝛴) Share (%)

Dinner 2.902284
1.365015

0.011843 −0.02312
−0.02312 0.15948

100

Shortstay 2.72743
−0.908894

0.055581 0.002613
0.002613 0.099182

100

Visit

2.231113
2.113825

0.018042 −0.010755
−0.010755 0.022106

3

2.345898
0.321927

0.020576 −0.031789
−0.031789 0.488004

18

2.708548
0.353022

0.035505 −0.008343
−0.008343 0.326618

47

2.559902
1.332923

0.035843 −0.018856
−0.018856 0.201322

33

Commuters 2.911365
2.79135

0.012366 −0.012574
−0.012574 0.028159

100

Home

2.546875
3.251953

0.011942 −0.001784
−0.001784 0.004562

8

2.853921
2.99875

0.016394 −0.006766
−0.006766 0.020225

72

2.578714
3.07055

0.015061 −0.007194
−0.007194 0.00878

19

Pillow
3.112993
2.586651

0.007507 −0.005299
−0.005299 0.040104

88

3.204042
2.228861

0.003842 −0.000944
−0.000944 0.016972

12

Table B.8
Connection GMM — Time cycle: Sunday.

User profile Centroid (𝜇) Covariance (𝛴) Share (%)

Dinner 2.859852
1.243677

0.01202 −0.021409
−0.021409 0.169777

100

Shortstay 2.699098
−0.922504

0.042817 −0.006393
−0.006393 0.094184

100

Visit

2.490542
1.968693

0.039866 −0.016501
−0.016501 0.04973

7

2.682302
0.423113

0.034394 −0.033529
−0.033529 0.351487

47

2.586016
1.302041

0.032118 −0.014735
−0.014735 0.149935

31

2.333055
0.493641

0.019582 −0.050075
−0.050075 0.510673

16

Commuters
2.852936
2.742745

0.007078 −0.005937
−0.005937 0.02089

55

2.897143
2.636487

0.012786 −0.016074
−0.016074 0.02178

45

Home
2.620554
2.906539

0.017555 −0.012306
−0.012306 0.012196

41

2.801567
3.105664

0.025445 −0.009202
−0.009202 0.017436

59

Pillow
3.052354
2.66243

0.009105 −0.010265
−0.010265 0.054658

57

3.057295
2.363174

0.007323 −0.013692
−0.013692 0.03684

43
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Table B.9
Energy GMM — Time cycle: Monday, User profile: Worktime.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7
1.171579 0.273411 11
1.926286 0.273411 83
2.780341 0.273411 7

7.4

1.441493 0.232724 4
2.039606 0.232724 18
2.671234 0.232724 30
3.279565 0.232724 27
3.280311 0.232724 20

11

1.77521 0.331344 9
2.688591 0.392355 29
3.28925 0.174041 19
3.626921 0.160194 26
3.965773 0.092573 14
4.125019 0.041119 4

Table B.10
Energy GMM — Time cycle: Monday, User profile: Visit.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.081093 0.189728 4
0.890668 0.296225 27
1.306538 0.19794 14
1.588346 0.145296 14
1.856218 0.11094 19
2.119571 0.163025 20
2.499017 0.083861 3

7.4

1.17271 0.38776 26
1.869486 0.310054 32
2.574977 0.292072 33
3.158822 0.140989 9

11

0.855169 0.22689 4
1.730613 0.378774 20
2.073448 0.213369 15
2.44397 0.150056 13
2.74435 0.138939 13
3.079792 0.168286 14
3.451959 0.166696 17
3.753966 0.096707 5

Table B.11
Energy GMM — Time cycle: Monday, User profile: Shortstay.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

−0.860226 0.217848 8
−0.124081 0.209308 24
0.063342 0.185919 12
0.195338 0.100148 17
0.416844 0.086968 23
0.594035 0.066683 14
0.731726 0.014009 2

7.4

−0.167996 0.104911 8
0.136737 0.104911 15
0.436761 0.104911 23
0.695869 0.104911 20
0.961176 0.104911 16
1.233334 0.104911 17

11

−0.007754 0.095729 3
0.615876 0.294919 17
1.06463 0.132487 22
1.323474 0.091867 20
1.526953 0.086496 21
1.688666 0.058297 14
1.800562 0.025718 3
15 
Table B.12
Energy GMM — Time cycle: Monday, User profile: Dinner.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.358421 0.169327 4
1.107533 0.337466 25
1.5258 0.167266 22
1.843163 0.107609 26
2.141308 0.164055 22
2.486009 0.045353 2

7.4

0.813069 0.20754 3
1.4118 0.20754 14
1.940671 0.20754 30
2.427294 0.20754 36
2.921834 0.20754 18

11

1.484966 0.366127 11
2.110163 0.292354 17
2.430252 0.162947 15
2.679002 0.132762 14
2.973907 0.136237 19
3.313875 0.146608 20
3.604156 0.072681 4

Table B.13
Energy GMM — Time cycle: Monday, User profile: Commuters.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.987202 0.253257 10
1.530403 0.159849 16
1.8653 0.089981 19
2.055209 0.157739 19
2.191557 0.420463 33
3.183334 0.101226 2

7.4

1.935936 0.419316 23
2.746574 0.277678 35
3.334398 0.243034 36
3.851481 0.080791 6

11

1.952648 0.391363 14
2.831681 0.310344 27
3.252189 0.171361 15
3.595927 0.166648 27
3.94306 0.108928 13
4.136201 0.044388 4

Table B.14
Energy GMM — Time cycle: Monday, User profile: Home.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.023832 0.325169 16
1.555933 0.16483 17
1.891151 0.113105 26
2.154169 0.207525 31
2.840015 0.320813 9

7.4

1.988837 0.56826 28
2.690594 0.271386 28
3.338188 0.250544 37
3.923863 0.090518 7

11

2.016964 0.490128 20
2.942442 0.28177 23
3.365381 0.175815 20
3.715689 0.172577 27
4.047439 0.078934 10
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Table B.15
Energy GMM — Time cycle: Monday, User profile: Pillow.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.06881 0.308327 15
1.538233 0.164438 16
1.806623 0.077033 14
1.933371 0.081621 17
2.149771 0.11446 16
2.530188 0.272835 19
3.200928 0.091808 3

7.4

2.03044 0.528638 26
2.626175 0.216021 20
3.042619 0.167019 19
3.397277 0.202044 31
3.829945 0.083809 4

11

1.893113 0.36666 12
2.470427 0.225744 9
2.731987 0.155008 12
3.090993 0.133316 14
3.315706 0.099336 11
3.490053 0.084408 11
3.671606 0.085671 11
3.89921 0.109176 14
4.112621 0.0643 6

Table B.16
Energy GMM — Time cycle: Tuesday, User profile: Worktime.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.08728 0.199401 7
1.551971 0.1568 20
1.877632 0.098466 29
2.112914 0.154842 33
2.531366 0.333756 12

7.4

1.656559 0.250841 10
2.023304 0.13779 13
2.602858 0.205921 34
3.033565 0.132848 16
3.350834 0.13743 24
3.677209 0.06731 4

11

2.08906 0.490065 21
2.797495 0.276756 21
3.299043 0.179151 21
3.695085 0.189329 28
4.053491 0.079072 8

Table B.17
Energy GMM — Time cycle: Tuesday, User profile: Visit.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.019547 0.154907 3
0.685209 0.27714 16
1.000841 0.177749 13
1.289773 0.122772 12
1.518369 0.102475 12
1.725932 0.09185 11
1.897689 0.09426 15
2.143216 0.154398 16
2.480869 0.054515 2

7.4

0.913773 0.302748 15
1.504288 0.239929 24
2.008088 0.210392 23
2.550009 0.258822 31
3.10587 0.125343 8

11

0.847233 0.214733 5
1.615904 0.315826 17
1.944342 0.161579 12
2.243963 0.132156 11
2.468594 0.120787 11
2.717883 0.12033 12
3.01162 0.144888 12
3.379346 0.1708 16
3.705264 0.091537 4
16 
Table B.18
Energy GMM — Time cycle: Tuesday, User profile: Shortstay.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

−1.054353 0.10667 3
−0.614652 0.184506 6
−0.106246 0.166958 30
0.184074 0.107098 24
0.408302 0.093803 27
0.603393 0.050473 9
0.697841 0.015247 1

7.4

−0.176043 0.108204 8
0.124438 0.108204 17
0.417208 0.108204 22
0.667159 0.108204 20
0.933147 0.108204 18
1.203047 0.108204 15

11

0.010129 0.101311 3
0.519625 0.251924 14
1.0806 0.179876 33
1.390212 0.120784 29
1.599102 0.084646 15
1.744541 0.042225 6

Table B.19
Energy GMM — Time cycle: Tuesday, User profile: Dinner.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.965404 0.373687 18
1.577843 0.207525 29
1.854195 0.100838 20
2.10453 0.175168 28
2.477557 0.059866 4

7.4

1.483534 0.525629 17
2.058346 0.318773 39
2.584308 0.233177 36
3.045736 0.10795 8

11

1.248806 0.277857 5
1.932534 0.281704 16
2.392931 0.169684 15
2.649384 0.119076 12
2.856342 0.106245 11
3.106513 0.122944 18
3.406317 0.138093 20
3.678147 0.043908 2

Table B.20
Energy GMM — Time cycle: Tuesday, User profile: Commuters.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.970495 0.20724 9
1.536978 0.196738 21
1.877454 0.08997 18
2.055368 0.165348 20
2.221733 0.391076 28
3.161608 0.156491 4

7.4

1.984349 0.419171 24
2.689788 0.251996 30
3.283485 0.249061 39
3.826536 0.08222 7

11

1.968728 0.359497 15
2.651195 0.226742 15
3.038332 0.187383 14
3.298975 0.141721 15
3.545583 0.11792 16
3.832547 0.133885 19
4.073983 0.072752 7
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Table B.21
Energy GMM — Time cycle: Tuesday, User profile: Home.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.972279 0.242452 11
1.917299 0.087702 12
1.921595 0.364888 72
2.969089 0.201011 5

7.4

1.948314 0.632002 27
2.653681 0.324939 35
3.339299 0.260065 32
3.929502 0.09389 6

11

2.061703 0.483798 22
2.897094 0.265791 22
3.338283 0.17922 20
3.703313 0.180134 29
4.046617 0.074301 8

Table B.22
Energy GMM — Time cycle: Tuesday, User profile: Pillow.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.069973 0.309213 16
1.553681 0.159182 17
1.809805 0.065799 11
1.908431 0.082997 16
2.119301 0.134839 18
2.524579 0.298336 20
3.229709 0.108315 3

7.4

1.260579 0.264717 4
1.995831 0.274242 15
2.513433 0.177566 17
2.890302 0.160644 19
3.228864 0.149854 24
3.556283 0.173679 18
3.904282 0.044153 2

11

1.870273 0.369803 11
2.505673 0.264935 12
2.749722 0.167996 12
3.112514 0.136494 13
3.363156 0.117176 15
3.619828 0.117814 18
3.914513 0.117336 15
4.129545 0.049098 4

Table B.23
Energy GMM — Time cycle: Wednesday, User profile: Worktime.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.932523 0.168769 5
1.441405 0.180566 14
1.628252 0.084702 8
1.827439 0.068618 16
1.963054 0.067891 18
2.168064 0.108333 17
2.279299 0.360121 20
3.148222 0.054449 1

7.4

1.489265 0.178523 4
1.996225 0.178523 18
2.54588 0.178523 25
2.942738 0.178523 21
3.322037 0.178523 17
3.34612 0.178523 15

11

1.796727 0.300342 11
2.512704 0.26119 16
2.891503 0.214175 14
3.274137 0.160904 19
3.613044 0.178668 25
3.966763 0.099403 12
4.149179 0.023549 2
17 
Table B.24
Energy GMM — Time cycle: Wednesday, User profile: Visit.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.043684 0.131754 2
0.783831 0.307252 23
1.120862 0.197528 14
1.406694 0.145221 12
1.638048 0.129478 12
1.854201 0.103118 16
2.111769 0.15495 18
2.44555 0.063968 2

7.4

0.900947 0.331671 15
1.365477 0.208968 16
1.689925 0.166936 12
1.981101 0.155636 15
2.314872 0.17071 16
2.716092 0.222803 21
3.159213 0.108559 6

11

0.818765 0.206374 4
1.590892 0.341296 16
1.943702 0.178965 14
2.263208 0.13778 12
2.502227 0.120851 11
2.740656 0.122025 11
3.009582 0.134042 11
3.344072 0.167731 16
3.664745 0.094606 5

Table B.25
Energy GMM — Time cycle: Wednesday, User profile: Shortstay.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

−0.762247 0.272689 8
−0.095884 0.182892 32
0.166029 0.107644 20
0.431678 0.110183 32
0.640681 0.047893 6

7.4

−0.153676 0.176866 12
0.314928 0.211922 31
0.699771 0.217183 37
1.095994 0.111553 16
1.301634 0.034772 3

11

0.007534 0.101901 3
0.596892 0.282773 16
1.068402 0.144448 24
1.368406 0.122486 32
1.611061 0.089503 21
1.77474 0.038594 4

Table B.26
Energy GMM — Time cycle: Wednesday, User profile: Dinner.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.081134 0.412974 23
1.568519 0.175635 23
1.842891 0.105598 20
2.098298 0.171015 30
2.465851 0.056704 4

7.4

0.858155 0.248412 4
1.974846 0.384342 48
2.467693 0.177837 29
2.868517 0.153815 15
3.152018 0.06818 4

11

0.925559 0.150745 2
1.851865 0.372578 19
2.392869 0.193068 16
2.690598 0.135468 15
2.946509 0.111316 14
3.157793 0.106631 12
3.400045 0.125366 17
3.652566 0.069844 4
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Table B.27
Energy GMM — Time cycle: Wednesday, User profile: Commuters.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.974382 0.222606 9
1.572238 0.212203 21
1.876431 0.093168 19
2.092087 0.153416 19
2.242761 0.405484 29
3.185298 0.132381 3

7.4

1.991066 0.444096 24
2.689202 0.274274 29
3.295246 0.260673 41
3.860751 0.091589 7

11

1.93847 0.358336 14
2.73041 0.277602 21
3.168964 0.182196 17
3.444237 0.139687 17
3.748905 0.153113 22
4.045471 0.090776 9

Table B.28
Energy GMM — Time cycle: Wednesday, User profile: Home.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.274792 0.407832 26
1.892391 0.078451 9
1.992101 0.298026 58
2.948294 0.244568 7

7.4

2.013595 0.547442 28
2.652766 0.294474 29
3.308731 0.278782 37
3.938944 0.106558 6

11

1.984671 0.495345 19
2.93058 0.312272 27
3.37953 0.170025 20
3.725338 0.166736 24
4.040498 0.086177 9

Table B.29
Energy GMM — Time cycle: Wednesday, User profile: Pillow.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.235186 0.412497 24
1.533515 0.132672 8
1.68851 0.148832 6
1.828766 0.069232 14
1.956934 0.083036 13
2.16411 0.131004 16
2.568789 0.274005 18
3.187863 0.070768 2

7.4

1.865957 0.434002 16
2.679837 0.300739 35
3.292382 0.231554 43
3.797981 0.107325 6

11

1.974255 0.40714 13
2.730375 0.247951 25
3.293054 0.181926 24
3.684376 0.187769 28
4.050304 0.097406 10
18 
Table B.30
Energy GMM — Time cycle: Thursday, User profile: Worktime.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.943028 0.210794 6
1.649272 0.225486 32
1.78876 0.044694 6
1.87853 0.042093 8
1.963522 0.056919 12
2.162259 0.113753 24
2.52678 0.28088 11
3.106057 0.058609 2

7.4

1.233812 0.225108 4
1.961623 0.225108 19
2.606355 0.225108 33
3.243187 0.225108 24
3.244404 0.225108 20

11

2.036793 0.407149 20
2.817786 0.287302 24
3.284006 0.175463 19
3.650285 0.189192 27
4.012437 0.088769 10

Table B.31
Energy GMM — Time cycle: Thursday, User profile: Visit.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.064851 0.180047 4
0.729016 0.266838 17
0.997853 0.161433 12
1.287469 0.112199 11
1.502576 0.100115 12
1.712912 0.096032 12
1.891601 0.090732 14
2.130888 0.154076 17
2.476482 0.057542 2

7.4

0.978084 0.350196 19
1.518246 0.21981 19
1.89834 0.181069 15
2.242276 0.187117 18
2.679177 0.229667 23
3.138528 0.102419 6

11

0.764842 0.17862 3
1.539884 0.347929 15
1.904264 0.166969 13
2.223486 0.130701 11
2.465106 0.126429 12
2.708912 0.132292 13
3.026026 0.157949 14
3.407878 0.173907 16
3.739998 0.072142 3

Table B.32
Energy GMM — Time cycle: Thursday, User profile: Shortstay.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

−0.812987 0.224338 8
−0.013359 0.232277 47
0.342768 0.134767 29
0.564178 0.083859 16

7.4

0.015078 0.228429 24
0.448043 0.176996 32
0.865373 0.179418 32
1.200598 0.089997 12

11

−5.7e−05 0.099586 3
0.638956 0.304351 18
1.020899 0.109867 16
1.257925 0.096653 21
1.454244 0.085023 19
1.632916 0.078424 18
1.776074 0.040245 5
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Table B.33
Energy GMM — Time cycle: Thursday, User profile: Dinner.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.03482 0.401456 22
1.623443 0.191532 27
1.868762 0.098138 19
2.1155 0.171578 27
2.460298 0.077804 5

7.4

0.841336 0.217909 3
1.848726 0.39223 31
2.232346 0.246114 22
2.577821 0.181988 28
2.977973 0.131752 13
3.213106 0.058288 3

11

0.999106 0.143109 2
1.908494 0.370549 19
2.429831 0.173691 16
2.707558 0.113661 14
2.951527 0.106088 13
3.143408 0.111265 12
3.372214 0.13247 19
3.622484 0.067242 5

Table B.34
Energy GMM — Time cycle: Thursday, User profile: Commuters.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.982737 0.230391 9
1.563351 0.192191 22
1.864163 0.083316 18
2.063399 0.132134 18
2.239511 0.261094 26
3.009997 0.212324 7

7.4

2.05384 0.479113 26
2.743198 0.264027 30
3.318618 0.229954 37
3.834686 0.085682 7

11

1.881986 0.340182 10
2.541995 0.26506 13
2.867568 0.187757 11
3.13077 0.123385 11
3.329862 0.091184 10
3.497851 0.083336 11
3.678698 0.092646 14
3.923226 0.105981 15
4.115036 0.053884 4

Table B.35
Energy GMM — Time cycle: Thursday, User profile: Home.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.041258 0.335345 17
1.550499 0.152718 16
1.894931 0.111904 23
2.142122 0.230798 35
2.921393 0.295131 8

7.4

2.045437 0.57228 30
2.649663 0.274235 25
3.291217 0.271721 38
3.892539 0.107807 6

11

1.872551 0.404465 14
2.695708 0.319523 17
3.06378 0.196393 15
3.344416 0.116571 13
3.584634 0.105567 16
3.847418 0.129053 18
4.092445 0.07162 6
19 
Table B.36
Energy GMM — Time cycle: Thursday, User profile: Pillow.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.053641 0.302739 13
1.529498 0.171202 16
1.840559 0.08907 21
2.045172 0.143863 20
2.438895 0.334676 27
3.230904 0.099488 3

7.4

2.076857 0.507819 24
2.611527 0.199497 19
3.036044 0.172717 21
3.385007 0.200029 32
3.822133 0.090096 5

11

1.97716 0.377784 13
2.558039 0.202443 10
2.760162 0.158809 11
3.058748 0.119004 11
3.270275 0.090047 11
3.451627 0.082691 11
3.64068 0.095276 14
3.888088 0.120134 15
4.110992 0.063326 6

Table B.37
Energy GMM — Time cycle: Friday, User profile: Worktime.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.968739 0.161193 5
1.589399 0.234315 29
1.893768 0.11348 28
2.148784 0.153799 30
2.706832 0.236145 8

7.4
1.997139 0.3787 26
2.704396 0.228472 30
3.28747 0.209787 43

11

2.100851 0.48646 19
2.828387 0.289831 23
3.306575 0.170363 22
3.669443 0.18935 26
4.029803 0.085525 10

Table B.38
Energy GMM — Time cycle: Friday, User profile: Visit.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.129089 0.169711 4
0.572284 0.169711 7
0.973802 0.169711 19
1.378027 0.169711 19
1.542699 0.169711 7
1.854163 0.169711 16
1.862802 0.169711 17
2.247885 0.169711 11

7.4

1.018988 0.333332 17
1.575121 0.244413 22
2.031239 0.219792 22
2.553899 0.25876 32
3.107559 0.132923 8

11

0.932611 0.203074 4
1.621974 0.299704 15
2.007562 0.168284 14
2.303488 0.129093 11
2.535275 0.118318 12
2.767661 0.116249 12
3.037096 0.140812 13
3.374486 0.160148 16
3.686605 0.088503 4
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Table B.39
Energy GMM — Time cycle: Friday, User profile: Shortstay.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

−0.937694 0.076198 2
−0.5764 0.17536 7
−0.094325 0.168184 26
0.089839 0.04761 7
0.217061 0.054153 8
0.39262 0.10455 30
0.610397 0.062202 17
0.724956 0.016515 3

7.4

−0.149983 0.188143 11
0.221032 0.141386 18
0.560698 0.13997 29
0.922416 0.155967 28
1.202464 0.076914 9
1.333426 0.033723 5

11

0.002334 0.100143 2
0.644798 0.291964 18
1.016653 0.108993 14
1.190441 0.064233 9
1.309756 0.049776 9
1.429254 0.06542 15
1.592405 0.077387 18
1.748016 0.04947 11
1.836879 0.021723 3

Table B.40
Energy GMM — Time cycle: Friday, User profile: Dinner.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.102256 0.366708 18
1.670272 0.224065 22
1.895147 0.105045 24
2.193818 0.151503 26
2.551497 0.112093 10

7.4

1.349076 0.37921 8
2.086009 0.257727 25
2.543335 0.184394 34
2.988675 0.172038 27
3.309604 0.076302 6

11

2.0869 0.540162 22
2.680928 0.31528 30
3.118135 0.145417 15
3.413472 0.156686 26
3.729909 0.100246 8

Table B.41
Energy GMM — Time cycle: Friday, User profile: Commuters.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.016421 0.293672 12
1.504157 0.154661 12
1.873723 0.096362 22
2.104537 0.152897 19
2.233003 0.423762 30
3.191443 0.162585 5

7.4

1.17756 0.185683 2
1.982252 0.309802 15
2.542143 0.182943 17
2.885526 0.142358 17
3.170284 0.118204 15
3.427776 0.131114 21
3.768734 0.108258 9
3.966508 0.045762 3

11

1.787604 0.288967 7
2.429193 0.293813 12
2.799374 0.171648 12
3.090952 0.138768 11
3.282247 0.101802 11
3.475109 0.08966 13

(continued on next page)
20 
Table B.41 (continued).
Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.70862 0.117659 20
3.985759 0.088152 12
4.149102 0.031346 2

Table B.42
Energy GMM — Time cycle: Friday, User profile: Home.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.064883 0.328607 16
1.564695 0.166677 16
1.850132 0.095658 15
1.989653 0.138527 17
2.177263 0.253354 28
3.052051 0.270198 8

7.4

2.081696 0.592659 33
2.694858 0.284212 26
3.314061 0.26641 36
3.90728 0.100226 6

11

1.996901 0.436171 16
2.714507 0.250026 15
3.060396 0.170613 13
3.344367 0.129286 15
3.578259 0.108736 16
3.844074 0.124725 18
4.08032 0.066623 7

Table B.43
Energy GMM — Time cycle: Friday, User profile: Pillow.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.459418 0.153072 3
0.98009 0.153072 8
1.440066 0.153072 15
1.867003 0.153072 15
1.880221 0.153072 15
1.907986 0.153072 12
2.249817 0.153072 16
2.67536 0.153072 13
3.16431 0.153072 5

7.4

1.841655 0.373229 12
2.713952 0.318886 39
3.319979 0.251892 44
3.84963 0.085834 4

11

1.944226 0.334096 10
2.713127 0.256522 27
3.311677 0.20025 29
3.717463 0.190291 27
4.074917 0.083764 8

Table B.44
Energy GMM — Time cycle: Saturday, User profile: Visit.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.114795 0.130674 2
0.762644 0.28139 19
1.021784 0.172397 11
1.310739 0.110342 11
1.507963 0.088321 11
1.678319 0.078745 9
1.863087 0.095668 15
2.082307 0.179952 19
2.473955 0.085267 3

7.4

0.842049 0.233704 9
1.341995 0.219196 15
1.626041 0.149578 11
1.918734 0.136727 14
2.204179 0.145846 14
2.497131 0.146828 17
2.900269 0.183332 16

(continued on next page)
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Table B.44 (continued).
Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.23686 0.083545 4

11

0.867412 0.17435 3
1.638786 0.336579 16
1.973909 0.165251 13
2.273662 0.121656 11
2.508683 0.112629 11
2.735923 0.110794 12
2.98763 0.13325 13
3.320488 0.169614 16
3.652555 0.09405 4

Table B.45
Energy GMM — Time cycle: Saturday, User profile: Shortstay.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

−0.726341 0.26728 8
−0.128009 0.164711 28
0.204876 0.125099 31
0.461121 0.09239 26
0.630212 0.03714 7

7.4

−0.013155 0.23207 21
0.58206 0.267002 55
1.090577 0.12874 18
1.318374 0.043261 5

11

−0.004336 0.096982 3
0.644126 0.278886 19
1.013113 0.105762 16
1.243309 0.087182 19
1.425699 0.081989 19
1.599425 0.074053 17
1.732376 0.03285 6

Table B.46
Energy GMM — Time cycle: Saturday, User profile: Dinner.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.034847 0.320906 14
1.617694 0.198014 20
1.888357 0.103307 27
2.164843 0.123226 23
2.511368 0.167668 17

7.4

1.056701 0.268114 4
2.107717 0.371184 29
2.454157 0.186885 15
2.644866 0.146449 15
2.973002 0.137165 22
3.254229 0.097775 14
3.440834 0.021964 2

11

2.000636 0.465901 15
2.644475 0.312334 31
3.182168 0.167129 23
3.494036 0.164168 28
3.822899 0.061574 4

Table B.47
Energy GMM — Time cycle: Saturday, User profile: Commuters.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.025267 0.259671 11
1.580413 0.191724 18
1.837099 0.074549 14
1.955516 0.083147 13
2.157455 0.14738 20
2.436218 0.41192 20
3.275342 0.178405 5

7.4

1.901668 0.438405 15
2.718625 0.317922 35
3.339157 0.244935 41

(continued on next page)
21 
Table B.47 (continued).
Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.898714 0.088503 8

11

2.025392 0.349224 10
2.957718 0.347203 31
3.444967 0.189558 29
3.819524 0.151023 22
4.085958 0.06918 8

Table B.48
Energy GMM — Time cycle: Saturday, User profile: Home.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.096347 0.34272 16
1.905975 0.080467 9
1.959516 0.327516 68
3.122686 0.303164 7

7.4

0.921478 0.122298 1
2.029797 0.477369 24
2.526584 0.147514 13
2.720309 0.044149 3
2.922883 0.112149 14
3.180856 0.107533 15
3.43581 0.128179 17
3.832064 0.125952 10
4.054226 0.056565 3

11

1.854971 0.327311 10
2.820794 0.364021 25
3.283425 0.213425 20
3.623494 0.165 26
3.941067 0.106657 15
4.12459 0.050042 5

Table B.49
Energy GMM — Time cycle: Saturday, User profile: Pillow.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.121935 0.382194 15
1.530458 0.150322 13
1.860753 0.097405 28
2.127962 0.128361 20
2.594168 0.235366 19
3.274879 0.141824 5

7.4

1.877998 0.329937 12
2.531936 0.197572 18
2.870422 0.123704 14
3.123214 0.10599 15
3.351387 0.126715 22
3.669741 0.151555 16
3.964524 0.046719 3

11

1.996818 0.374863 10
2.70948 0.203309 20
3.155823 0.14612 14
3.417877 0.120693 18
3.708616 0.137699 23
3.991117 0.086326 11
4.141948 0.039333 4

Table B.50
Energy GMM — Time cycle: Sunday, User profile: Visit.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.287138 0.180776 4
0.908531 0.240202 22
1.344141 0.171673 16
1.614415 0.144786 17
1.867342 0.103707 18
2.134666 0.176417 19
2.530853 0.07932 3

7.4

0.967908 0.324782 13
1.553136 0.22467 20

(continued on next page)
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Table B.50 (continued).
Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

1.988679 0.183407 19
2.390648 0.169199 19
2.819623 0.221786 22
3.23501 0.099427 7

11

0.890052 0.189977 3
1.759482 0.374495 18
2.047709 0.196151 12
2.406005 0.143931 12
2.653487 0.126449 11
2.88263 0.13171 12
3.177365 0.145246 15
3.512406 0.151286 14
3.797781 0.063331 2

Table B.51
Energy GMM — Time cycle: Sunday, User profile: Shortstay.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

−0.696297 0.27396 9
−0.096969 0.159167 31
0.103193 0.044476 9
0.263163 0.077811 19
0.44157 0.081644 24
0.593843 0.035344 9

7.4

0.012557 0.250587 23
0.593306 0.259024 55
1.067954 0.117849 15
1.268368 0.047501 7

11

−0.049269 0.197528 5
0.689712 0.316987 19
1.072166 0.140069 23
1.382185 0.128812 33
1.612485 0.068881 13
1.724512 0.033107 6

Table B.52
Energy GMM — Time cycle: Sunday, User profile: Dinner.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

0.985074 0.312153 14
1.597075 0.206091 20
1.868598 0.108346 30
2.158158 0.159442 28
2.525912 0.10667 8

7.4

1.32485 0.414834 10
2.170574 0.298141 36
2.490403 0.107716 14
2.811552 0.141826 23
3.15732 0.121971 15
3.383804 0.039424 3

11

1.179076 0.168469 2
2.099464 0.35527 19
2.586843 0.195213 15
2.881779 0.134815 9
3.043332 0.097539 9
3.190147 0.087319 10
3.360387 0.102233 16
3.593798 0.115195 17
3.823709 0.038277 2

Table B.53
Energy GMM — Time cycle: Sunday, User profile: Commuters.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.042938 0.314879 13
1.520828 0.122741 10
1.865159 0.099445 22
2.099008 0.167535 22

(continued on next page)
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Table B.53 (continued).
Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

2.238169 0.439994 29
3.252299 0.156226 4

7.4

2.045522 0.534484 23
2.831171 0.315403 33
3.403564 0.22208 35
3.885567 0.086892 8

11

1.920705 0.32299 9
2.792789 0.316224 21
3.236847 0.176265 15
3.470178 0.12002 16
3.718123 0.108391 19
3.983259 0.092644 16
4.152795 0.038475 4

Table B.54
Energy GMM — Time cycle: Sunday, User profile: Home.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.107553 0.380746 18
1.570809 0.14135 13
1.822013 0.066297 12
1.951138 0.071217 14
2.147338 0.136034 18
2.296246 0.394958 22
3.260426 0.161838 3

7.4

2.039114 0.521925 22
2.739473 0.314578 28
3.365529 0.245732 40
3.975853 0.113088 10

11

1.863179 0.33666 10
2.889446 0.367012 27
3.368369 0.188471 22
3.68393 0.145701 23
3.975059 0.097962 14
4.14488 0.043603 5

Table B.55
Energy GMM — Time cycle: Sunday, User profile: Pillow.

Charging rate (kW) Mean (𝜇) Std. deviation (𝜎) Share (%)

3.7

1.118632 0.412432 17
1.575953 0.191332 17
1.814923 0.064828 11
1.932111 0.073806 14
2.130719 0.115457 17
2.544329 0.256278 19
3.262032 0.137752 4

7.4

1.929276 0.463627 16
2.769087 0.330794 37
3.360976 0.246669 43
3.894336 0.076859 4

11

2.052186 0.430069 13
2.697816 0.195298 16
3.087522 0.129339 10
3.296396 0.097109 11
3.487852 0.090815 13
3.699953 0.109732 17
3.973843 0.104073 15
4.157585 0.047094 4
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Fig. C.1. MSR 3023573 with 𝑘 = 7, comparing 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 1 (left) and 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 4 (right). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Fig. C.2. MSR 3002917 with 𝑘 = 7, comparing 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 1 (left) and 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 4 (right). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Fig. C.3. MSR 9015800 with 𝑘 = 7, comparing 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 1 (left) and 𝐹 𝑖𝑟𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 4 (right). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Appendix C. Flexpower simulations

This appendix shows some examples of the Flexpower simulations,
concerning different MSR, EV penetration scenarios (𝑘) and firm capac-
ity values. The MSR limits set by the DSO are represented in red dashed
lines, the static EV demand in green dashed lines, and the Flexpower
EV demand in green shaded lines.
23 
Appendix D. Summary tables of results

This appendix contains the coloured tables with the average indi-
cators described in Section 5.5. The six figures represent future EV
penetration scenarios in a range of 𝑘 ∈ [2, 7].
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Fig. D.1. Summary of results from EV penetration scenario 𝑘 = 2. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. D.2. Summary of results from EV penetration scenario 𝑘 = 3. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. D.3. Summary of results from EV penetration scenario 𝑘 = 4. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Data availability

The authors do not have permission to share data.
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