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Abstract

We study the problem of path computation in Cayley Graphs (CG) from an

approach of word processing in groups. This approach consists in encoding

the topological structure of CG in an automaton called Diff , then techniques

of word processing are applied for computing the shortest paths. We present

algorithms for computing the K-shortest paths, the shortest disjoint paths and

the shortest path avoiding a set of nodes and edges. For any CG with diameter

D, the time complexity of the proposed algorithms is O(KD|Diff |), where |Diff |

denotes the size of Diff . We show that our proposal outperforms the state of art

of topology-agnostic algorithms for disjoint shortest paths and stays competitive

with respect to proposals for specific families of CG. Therefore, the proposed

algorithms set a base in the design of adaptive and low-complexity routing

schemes for networks whose interconnections are defined by CG.
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pere.vila@udg.edu (P. Vilà), david.coudert@inria.fr (D. Coudert)



1. Introduction

Let G = 〈S|R〉 be a finitely presented group, where S and R are the set of

generators and relators, respectively [1, Section 2.2]. The Cayley Graph (CG)

of G with respect to S is denoted by Γ(G,S). The set of vertices is given by

the set of group elements. Let g, h ∈ G, there is an edge from g to h if and

only if g · s = h for some s ∈ S ∪ S−1, where S−1 is the set of inverses of G.

Cayley graphs are vertex-transitive graphs with degree ∆ = |S ∪ S−1|. In the

remainder of this paper, the elements of G and vertices in Γ(G,S) are used

interchangeably.

Since S. Akers introduced a group theoretic model for interconnection net-

works [2], CG have been used as model of a wide variety of communication

networks [3, 4, 5, 6, 7]. Traditional routing schemes such as the Valiant Routing

algorithm [8] and the Universal Globally-Adaptive Load-balanced algorithm [9]

have been proposed to work on these topologies. These schemes apply topology-

agnostic algorithms of K-shortest paths [10] and K-shortest disjoint paths [11]

which have high memory and time requirements.

However, routing schemes with low space and time complexity can be de-

signed taking advantage of the vertex-transitive property of CG [12]. Recent

proposals in this direction include algorithms for path computation in specific

families of CG [13, 14]. To the best of our knowledge, there is no topology-

agnostic algorithms for path computation in CG.

To overcome this limitation, this paper presents low time complexity algo-

rithms for path computation in CG. These algorithms extend the work presented

in [15], where the topological structure of CG is encoded in a Deterministic Fi-

nite Automaton (DFA) called Diff . Then, techniques of word processing are

applied to design a simple shortest path routing scheme for CG. We use the

same approach to propose algorithms for computing the K-shortest paths, the

shortest disjoint paths and the shortest path avoiding a set of nodes and edges.

For a CG with diameter D, the time complexity of the proposed algorithms

is O(KD|Diff |). We show that our algorithm for disjoint paths outperforms
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the topology-agnostic solution [10]. Moreover, we show that for many families

of CG used as model of communication networks, our algorithm for K-shortest

disjoint paths stays competitive with respect to the algorithms presented in

[11, 13].

The remainder of the paper is as follows. Section 2 surveys the recent propos-

als of path computation in CG. Section 3 introduces the theoretical background

about word processing in groups. Sections 4, 5 and 6 present, respectively, the

algorithms for computing the K-shortest paths, the shortest disjoint paths and

the shortest path avoiding a set of nodes and edges. Finally, Section 7 gives the

conclusions.

2. Related work

Most of the routing schemes proposed for CG based networks apply topology-

agnostic algorithms for path computation. The best-know algorithms for com-

puting the K-shortest paths and K-disjoint paths in a graph with n vertices

and m edges, run in time, respectively, O(n + m + K) and O(Knm) [10, 11].

In order to reduce the time and space complexity, path computation algorithms

have been proposed for specific families of CG.

A routing algorithm for Boreal CG, which is fault-tolerant but is not shortest

path and does not ensure packet delivery is proposed in [14]. A shortest path

algorithm for pancake graphs is presented in [16]. This algorithm runs in time

O(K∆3) if the computed paths have length less than 2∆+16. An algorithm for

computing the K-shortest vertex-disjoint paths in CG of abelian groups, which

includes several families of CG such as hypercubes and buble-sort graphs, is

presented in [13]. This algorithm has time complexity in O(K∆D). Finally,

[15] presents a shortest path algorithm for CG based data center networks with

time complexity O(D2).

The algorithms proposed in this paper extend the work of [15]. In contrast

to the algorithms presented in [13, 14, 16], our algorithms are topology-agnostic

and have no constraints on the size of the computed paths. In addition, we
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present an algorithm for computing the shortest path avoiding a set of nodes

and edges, which is useful in the design of fault-tolerant routing schemes.

3. Word processing in Cayley graphs

3.1. Words as Paths and Nodes

Before explaining how paths and nodes in a CG can be represented through

words, it is necessary to introduce some definitions and notation from geometric

group theory. Let A be an alphabet, such that there is a bijective map

φ : S ∪ S−1 → A, (1)

where S and S−1 are the sets of generators and inverses of G, respectively.

Eq. (1) assigns each generator and its inverse to lowercase and uppercase variants

of the same letter. A letter X ∈ A is said to be the inverse of a letter x ∈ A if

and only if X = φ(s−1) and x = φ(s), where s−1 is the inverse of s ∈ S ∪ S−1.

Let w be a word over A. We define the following words:

• The inverse of w, denoted by w−1, is given by the reverse string of the

inverse letters of w.

• A substring of w, denoted by w(i), is given by the first i letters in w. If

i > |w|, w(i) = w.

• The reduced form of w, denoted by wred, results from removing substrings

of the form uu−1 from w.

Definition 1. Let F (A) be the free group over A, which consists of all reduced

words over A including the symbol eA that denotes the null string. Then, there

is a group homomorphism γ : F (A) → G that assigns a unique set of words in

F (A) to each group element in G. The symbol eA is assigned to the identity

element, i.e. Id, [17, Definition 2.1.8]. We define an equivalence relation on

F (A), denoted by =G, such that w =G v if and only if w and v represent the

same group element under γ. The set of words representing the same group

element is defined by the equivalence class [w].
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Figure 1: Cayley graph of the symmetric group Sym(4) generated by the permutations S =

{(2, 1, 3, 4), (1, 3, 2, 4), (1, 2, 4, 3)}, where S = S−1. (a) Each generator is assigned to a letter

in the alphabet A = {a, b, c} as follows: (2, 1, 3, 4) → a, (1, 3, 2, 4) → b and (1, 2, 4, 3) → c.

(b) Nodes are labelled with a word representing the shortest path from node eA to each of

them.
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Turning now to the CG of G, i.e. Γ(G,S), let us assume that each edge

is labelled according to Eq. (1), see Fig. 1a. Thereby paths in Γ(G,S) can be

represented by words in F (A), where the symbol eA represents the empty path.

In Fig. 1a, the word abc represents a path between nodes (1234) and (2341).

Moreover, words in the same equivalence class [w] represent paths between the

same pair of nodes. In Fig. 1a, the words abc and babca are in the same equiv-

alence class as they represent the same permutation and thus the same group

element (2341).

Let w ∈ [w], such that γ(w) = g. Hereafter w denotes the node g, whereas

ŵ denotes a path represented by the word wred, see Fig. 1b. Since ŵ represents

different paths, to refer a specific path in this notation it is necessary to indicate

the first node in the path. Then, ŵ(w1) denotes a path starting at node w1 and

given by a list of nodes [w1, . . . , wl]. In Fig. 1b, the path âbc(b) is given by the

list of nodes [b, ba, aba, abac]. In particular, ŵ(eA) represents a path from eA to

w. In Fig. 1b, the path âbc(eA) represents a path from eA to abc. To give a

unique representation in F (A) for nodes and paths in Γ(G,S), we need to define

a canonical form over the set of equivalence classes of Definition 1.

Definition 2. Let <A be a lexicographical order over A. Let w, v ∈ F (A), we

say that w is ShortLex than v, if w is shorter than v, i.e. |w| < |v|, or w and

v have the same length but w comes before v in the order <A. We define the

language of the ShortLex words in F (A) representing a unique group element in

G as

L = {w ∈ F (A) : w ≤A v, ∀v ∈ F (A) s.t. w =G v}. (2)

Therefore there is a bijective map π : G→ L that assigns each group element

in G to its ShortLex representative word in F (A) [12, Definition 13.6]. Language

L defines a canonical form for the set of equivalence classes of Definition 1. Hence

words in L give a unique representation for nodes in Γ(G,S), and the shortest

paths between any pair of nodes in Γ(G,S). From now on, we refer to these

paths as ShortLex paths.
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3.2. Computing the Shortest Path

From the previous subsection, there is a path between any two nodes u to

v given by the word u−1v. The path û−1v goes from u to eA and from eA

to v. Then, the problem of computing the shortest path between u and v is

equivalent to computing the canonical form of the word u−1v, i.e. w ∈ L such

that w =G u−1v. This problem is called the Minimum Word Problem (MWP)

and can be resolved in time O(|u−1v|2) for ShortLex Automatic Groups1 (SAG)

[17, Theorem 2.3.10].

Lemma 1. We say that G = 〈S|R〉 is a ShortLex Automatic Group (SAG), if G

satisfies the k-fellow-traveler property, which states that there exists a constant

k (depending on G), such that for all ShortLex paths û(u1) = [u1, . . . , ul] and

v̂(v1) = [v1, . . . , vl−1] in Γ(G,S) beginning at the same node, i.e. u1 = v1, and

whose end nodes are adjacent, the uniform distance between û and v̂ is bounded

by k, i.e. d(ui, vi) ≤ k, where i ∈ [1, l − 1], and thus d(û, v̂) ≤ k [17, Lemma

2.3.2].

The process of computing the canonical form of u−1v consists in applying

a set of rewriting rules to u−1v. For CG arising from SAG, these rules can

be encoded in DFA called Word-Difference Automaton (Diff ), which is used

in the algorithms presented in this paper. Given a group presentation of a

SAG, i.e. G = 〈S|R〉 and an alphabet A satisfying Eq. (1), the Knuth-Bendix

completion algorithm [18] is able to compute Diff 2 and others DFA such as

the word-acceptor that recognizes the language defined by Eq. (2). Let us now

explain what is Diff and how it is used for computing the canonical form of a

word.

Definition 3. The word-difference automaton of G, i.e. Diff = (WD,B, δ, eA),

is a DFA consisting of: a set of states given by WD = {w ∈ L : |w| ≤ k}, where

1It includes all finite groups and several infinite groups.
2The software package KBMAG [19] implements the Knuth-Bendix completion algorithm.

Details of the time requirements can be found in [12, Section 13.3.6].
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Figure 2: Geometric representation of a tuple of words (r, t) accepted by the automaton Diff ,

such that the final state is q(r,t). The ShortLex path between the end nodes of paths r̂ and t̂,

i.e. r and t, is given by ̂q(r,t).
eA is the start state; an alphabet B = A ∪ {eA} × A ∪ {eA}; and a transition

function δ : WD × B → WD. This automaton accepts a tuple of words (r, t),

where |r| = |t|, if and only if r ≤A t and the canonical form of any word

r(i)−1t(i) is in WD. The state after reading a tuple of substrings (r(i), t(i)), i.e.

q(r(i),t(i)), is given by the canonical form of r(i)−1t(i) [12, Section 13.2.2].

Corollary 1. If Diff accepts (r, t), then paths r̂ and t̂, beginning at the same

node, satisfy the following conditions: 1) d(r̂, t̂) ≤ k; 2) |r̂| ≤ |t̂| due to r could

be not in canonical form; and 3) the ShortLex path from r to t is q̂(r,t), see Fig. 2.

Therefore, if q(r,t) = eA, r̂ and t̂ join the same pair of nodes, i.e. r =G t; and if

q(r,t) 6= eA, r̂ and ̂t(q(r,t))−1 join the same pair of nodes, i.e. r =G t(q(r,t))−1.

The computation of the shortest path between any pair of nodes u and v in

Γ(G,S) consists in searching in w = u−1v for the shortest substring w(i) /∈ L.

After finding w(i), we search for the word r ∈ L, such that q(r,w(i)) = eA [12,

Section 13.1.7]. Then w(i) is replaced by rred in w. This process is repeated until

the canonical form of w is found. The resulting word represents the ShortLex

path between u and v [15, Algorithm 4].

The algorithms presented in the following sections assume that nodes are

labeled with their ShortLex representative word in L according to Definition 2.

Algorithm 1 of [15] presents the steps to perform this label assignment. Let

u, v, w ∈ L, the notations used in the following sections are presented in Table 1.
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Table 1: Notation

Parameter Definition

Γ(G,S) Cayley graph of G = 〈S|R〉

∆ = |S ∪ S−1| Degree of Γ(G,S)

D Diameter of Γ(G,S)

k Fellow-traveler constant of Γ(G,S)

K A positive integer

u, v Two nodes in Γ(G,S)

ŵ The shortLex path between u and v

4. Computing the K -shortest paths

In this subsection, recursive algorithms for computing (in increasing order)

the K-shortest paths between any u and v are presented. This process is equiv-

alent to compute the K-ShortLex words p ∈ F (A), such that p =G w.

Lemma 2. Let Pj(w) ⊂ F (A) be the set of words representing the shortest

paths between u and v that are at distance at most jk from ŵ, i.e. Pj(w) =

{t ∈ F (A) : t =G w, |t| = |w| and d(t̂, ŵ) ≤ jk}. Then, Pj(w) can be built

recursively as follows:

Pj(w) = {t ∈ F (A) : ∃r ∈ Pj−1(w) s.t. q(r,t) = eA}, (3)

where j > 0 and P0(w) = {w}.

Proof. Clearly, two paths are at distance 0 if and only if they are the same

path. So, P0(w) = {w}. We now proceed by induction. Assuming Eq. (3) holds

for Pj−1(w), we will prove it for Pj(w). Eq. (3) implies that: 1) t =G w due to

t =G r (by Corollary 1) and r =G w (by the induction hypothesis); 2) |t| = |w|

due to |t| = |r| (by Definition 3) and |r| = |w| (by the induction hypothesis);

and 3) by the triangle inequality d(t̂, ŵ) ≤ jk due to d(r̂, t̂) ≤ k (by Corollary 1)

and d(r̂, ŵ) ≤ (j − 1)k (by the induction hypothesis). Therefore Eq. (3) defines

the shortest paths between u and v that are at distance at most jk from ŵ and

Lemma 2 holds for j ≥ 0.
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Given the set Pj−1(w), Algorithm 1 computes Pj(w). The algorithm imple-

ments Eq. (3) as follows: for each word r ∈ Pj−1(w), the set of words t ∈ F (A)

such that q(r,t) = eA, i.e. Ur, is computed (line 3). The set Pj(w) results from

the union of all Ur (line 4).

Lemma 3. Algorithm 1 computes Pj(w) in time O(|Pj−1(w)||w||Diff|).

Proof. The set Ur is computed |Pj−1(w)| times. The computation of Ur can

be done by traversing each state of the automaton Diff at most |r| = |w|

times [12, Section 13.1.7]. Therefore, Algorithm 1 computes Pj(w) in time

O(|Pj−1(w)||w||Diff |).

Corollary 2. Words in PdD/ke(w) represent all the shortest paths between u

and v due to d(ŵ, p̂) ≤ D for any path p̂ between u and v.

Algorithm 1 Compute the set of paths Pj(w).

Input: The automaton Diff = (WD, B, δ, eA).

Input: The set of words Pj−1(w) ⊂ F (A).

Output: The set of words Pj(w) ⊂ F (A).

1: Pj ← Pj−1

2: for r ∈ Pj−1 do

3: Ur ← {t ∈ F (A): q(r,t) = eA}

4: Pj ← Pj ∪ Ur
5: return Pj
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Algorithm 2 Compute the set of paths [w]i.

Input: The automaton Diff = (WD, B, δ, eA).

Input: The set of words [w]i−1 ⊂ F (A).

Output: The set of words [w]i ⊂ F (A).

1: [w]i ← [w]i−1

2: R ← {r ∈ [w]i−1 : |r| > |w|+ (i− 2)k}

3: for r ∈ R do

4: Vr ← {p ∈ F (A) : p = (t(q(r,t))−1)red and ∃t ∈ F (A) s.t. q(r,t) ∈WD}

5: [w]i ← [w]i ∪ Vr
6: return [w]i

Theorem 1. Let [w]i ⊂ F (A) be the set of words representing the paths between

u and v whose length is at most |w|+ ik for i ≥ 0, i.e. [w]i = {p ∈ F (A) : p =G

w and |p̂| ≤ |ŵ|+ ik}. Then, [w]i can be built recursively as follows:

[w]i = {p ∈ F (A) : p = (t(q(r,t))−1)red,

∃r ∈ [w]i−1 and t ∈ F (A) s.t. q(r,t) ∈WD},
(4)

where i > 0 and [w]0 = PdD/ke(w).

Proof. We proceed by induction. By Corollary 2, [w]0 = PdD/ke(w). Assum-

ing Eq. (4) to hold for [w]i−1, we will prove it for [w]i. Eq. (4) implies that:

1) p =G w due to p =G r (by Corollary 1) and r =G w (by the induction

hypothesis); and 2) |p̂| ≤ |ŵ| + ik due to |p| = |t| + |q(u,v)|, where |q(u,v)| ≤ k

(by Definition 3), |t| = |r| (by Definition 3) and |r| ≤ |w| + (i − 1)k (by the

induction hypothesis). Therefore, Eq. (4) defines the set of paths p̂ between u

and v that satisfy |p̂| ≤ |ŵ|+ ik and Theorem 1 holds for i ≥ 0.

Corollary 3. Let i be the smallest positive integer such that [w]i = [w]i−1.

Then, words in [w]i−1 represent all paths between u and v.

Corollary 4. The set of words p representing the paths between u and v such
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that |ŵ|+ (i− 1)k < |p̂| ≤ |ŵ|+ ik is given by:

[w]i \ [w]i−1 = {p ∈ F (A) \ [w]i−1 : p = (t(q(r,t))−1)red,

∃ r ∈ [w]i−1 \ [w]i−2 and t ∈ F (A) s.t. q(r,t) ∈WD}.
(5)

Given the set [w]i−1, Algorithm 2 computes [w]i. First, [w]i is initialized

to [w]i−1 (line 1). Then, [w]i−1 \ [w]i−2 is computed and stored in R (line 2).

Finally, Eq. (5) is implemented (for loop at line 3). The set [w]i results from

the union of [w]i−1 and [w]i \ [w]i−1.

Lemma 4. Algorithm 2 computes [w]i in time O(|[w]i−1 \ [w]i−2|D|Diff|).

Proof. The set Vr is computed |[w]i−1 \ [w]i−2| times. The computation of

Vr can be done by traversing each state of the automaton Diff at most |r| ≤

D times [12, Section 13.1.7]. Therefore, Algorithm 2 computes [w]i in time

O(|[w]i−1 \ [w]i−2|D|Diff |).

Corollary 5. Algorithm 2 computes the K-shortest paths in time O(KD|Diff|).

5. Computing the shortest disjoint paths

Let DE(u, v) ⊂ L be the set of words representing the shortest edge-disjoint

paths between u and v. Algorithm 3 presents the steps for computing DE(u, v),

where |DE(u, v)| = ∆ since CG are vertex-transitive [20]. First, DE(u, v) is

initialized to w (lines 1-2). The strategy to identify edge-disjoint paths is to

record the edges of paths in DE(u, v), which is given by the set ED (line 3).

The shortest edge-disjoint path from paths inDE(u, v) is searched in [w]i\[w]i−1.

For each z ∈ [w]i\ [w]i−1, the intermediate edges in the path ẑ(u) are computed,

i.e. Ez (line 6). If ED ∩Ez = ∅, then ẑ is edge-disjoint from paths in DE(u, v) (if

condition at line 7). Thereby z is added to DE(u, v) and ED is updated (lines

8-9). In addition, it is checked if all edge-disjoint paths have been computed,

if so DE(u, v) is returned (if condition at line 10). Otherwise, this process is

repeated for i+ 1, and so on until |DE(u, v)| = ∆ (while loop at line 4).

12



Algorithm 3 Compute the shortest edge-disjoint paths.

Input: Two words u, v ∈ L representing two nodes.

Output: A set of words DE(u, v) ⊂ F (A) representing the ∆-shortest edge-

disjoint paths from u to v.

1: w ← the canonical form of u−1v

2: i← 1, [w]i−1 ← ∅, [w]i ← {w}, DE ← {w}

3: ED ← {(e, f) ∈ L× L : e =G uw(i) and f =G uw(i+ 1), for 0 < i < |w|}

4: while [w]i 6= [w]i−1 do

5: for z ∈ [w]i \ [w]i−1 do

6: Ez = {(e, f) ∈ L× L : e =G uz(i) and

f =G uz(i+ 1), for 0 < i < |z|}

7: if ED ∩ Ez = ∅ then

8: Add z to DE

9: ED ← ED ∪ Ez
10: if |DE | = ∆ then

11: return DE

12: [w]i−1 ← [w]i, i← i+ 1

13: Compute [w]i

14: return DE

Similarly, the set of shortest node-disjoint paths, i.e. DV (u, v), can be com-

puted. The record of the intermediate nodes of paths in DV (u, v) is kept in a set

VD. Then, the shortest node-disjoint path from paths in DV (u, v) is searched

in [w]i \ [w]i−1. A path whose intermediate nodes are not in VD is node-disjoint

from paths in DV (u, v). In CG that are not edge-transitive, the number of

node-disjoint paths could be less than ∆ [20]. In this case, the algorithm will

finish when all paths between u and v have been computed. This condition is

satisfied when [w]i = [w]i−1 due to Corollary 3 (while loop at line 4).

Lemma 5. Algorithm 3 computes DE(u, v), in time O(|[w]i−1||w||Diff|).

Proof. The set [w]i is computed once. Therefore, Algorithm 3 finishes in time
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O(|[w]i−1||w||Diff |) due to Lemma 4.

Corollary 6. If the largest path in DE(u, v) is the K-th shortest path between

u and v. Then, Algorithm 3 computes DE(u, v) in time O(KD|Diff|) due to

Corollary 5.

6. Computing the shortest path avoiding a set of nodes and edges

Let Vf ⊂ L representing a set of nodes in Γ(G,S), such that u, v /∈ Vf .

Let z ∈ F (A) representing the shortest path from u to v avoiding nodes in Vf .

Algorithm 4 computes z, if it exists. Otherwise, it returns Null. Algorithm 4

starts computing [w]i, for i = 0 (lines 1-2). Then, the word avoiding nodes in Vf

is searched in [w]i as follows: for each z ∈ [w]i \ [w]i−1, the intermediate nodes

in the path ẑ(u) are computed, i.e. Vz, (line 5). If Vf ∩ Vz = ∅, then ẑ(u) does

not contain nodes in Vf and z is returned (if condition at line 6). Otherwise,

the process is repeated for i + 1, and so on until the path is found, if it exists

(while loop at line 3).

Similarly, the shortest path avoiding a set of edges Ef ⊂ L × L can be

computed. It is searched in [w]i as follows: for each z ∈ [w]i \ [w]i−1, the

intermediate edges in the path ẑ(u) are computed, i.e. Ez. If Ef ∩ Ez = ∅, then

ẑ(u) does not contain edges in Ef .

Lemma 6. Algorithm 4 runs in time O(|[w]i−1||w||Diff|).

Proof. The set [w]i is computed once. Therefore, Algorithm 4 finishes in time

O(|[w]i−1||w||Diff |) due to Lemma 4.

Corollary 7. If ẑ is the K-th shortest path between u and v. Then, Algorithm 4

computes z in time O(KD|Diff|) due to Corollary 5.
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Algorithm 4 Compute the shortest paths avoiding a set of nodes.

Input: Two words u, v ∈ L representing two nodes.

Input: A set of words Vf ⊂ L representing a set of nodes, such that u, v /∈ Vf .

Output: A word z ⊂ F (A) representing the shortest path from u and v that

does not contains nodes in Vf . Null, if such a word does not exist.

1: w ← the canonical form of u−1v

2: i← 0, [w]i−1 ← ∅, [w]i ← {w}

3: while [w]i 6= [w]i−1 do

4: for z ∈ [w]i \ [w]i−1 do

5: Vz = {v ∈ L : v =G uz(i), 1 < i < |z|}

6: if Vf ∩ Vz = ∅ then

7: return z

8: [w]i−1 ← [w]i, i← i+ 1

9: Compute [w]i

10: return Null

7. Conclusions

We have presented algorithms for computing theK-shortest paths, the short-

est disjoint paths and the shortest path avoiding a set of nodes and edges in CG.

The proposed algorithms use a DFA called Diff , which encodes the topological

structure of CG. Then, techniques of word processing are applied to compute

the shortest paths. For a CG with diameter D, our algorithms run in time

O(KD|Diff |).

The best-known algorithms for computing the K-shortest paths and the K-

shortest disjoint paths in a graph with n vertices and m edges, run in time,

respectively, O(n + m + K) and O(Knm) [10, 11]. On the other hand, the

algorithm for computing the K-shortest disjoint paths in CG of abelian groups

runs in time O(K∆D) [13].

Since Diff has size O(n + m) = O(∆n) our algorithm for shortest dis-

joint paths outperforms the state of the art. Furthermore, our solution for
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K-shortest disjoint paths stays competitive whenever Diff and D are small,

say |Diff | = O(∆) and D = logO(1)(n), that happens to be the case for many

families of CG used as model of communication networks, such as hypercubes

and bubble-sort graphs [15]. Therefore, the proposed algorithms set a base in

the design of adaptive and low-complexity routing schemes for networks whose

interconnections are defined by CG.
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