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A B S T R A C T

Network slicing is gaining traction in Fifth Generation (5G) deployments and Beyond 5G (B5G) designs. In
a nutshell, network slicing virtualizes a single physical network into multiple virtual networks or slices, so
that each slice provides a desired network performance to the set of traffic flows (source–destination pairs)
mapped to it. The network performance, defined by specific Quality of Service (QoS) parameters (latency, jitter
and losses), is tailored to different use cases, such as manufacturing, automotive or smart cities. A network
controller determines whether a new slice request can be safely granted without degrading the performance
of existing slices, and therefore fast and accurate models are needed to efficiently allocate network resources
to slices. Although there is a large body of work of network slicing modeling and resource allocation in the
Radio Access Network (RAN), there are few works that deal with the implementation and modeling of network
slicing in the core and transport network.

In this paper, we present GNNetSlice, a model that predicts the performance of a given configuration
of network slices and traffic requirements in the core and transport network. The model is built leveraging
Graph Neural Networks (GNNs), a kind of Neural Network specifically designed to deal with data structured
as graphs. We have chosen a data-driven approach instead of classical modeling techniques, such as Queuing
Theory or packet-level simulations due to their balance between prediction speed and accuracy. We detail the
structure of GNNetSlice, the dataset used for training, and show how our model can accurately predict the
delay, jitter and losses of a wide range of scenarios, achieving a Symmetric Mean Average Percentage Error
(SMAPE) of 5.22%, 1.95% and 2.04%, respectively.
1. Introduction

In recent years, the surge of interest in Beyond 5G (B5G) net-
works has been fueled by their significant enhancements in bandwidth,
latency, and innovative capabilities, promising benefits for both con-
sumers and operators. These improvements aim to support the growing
demands of connected devices and applications requiring high-speed,
low-latency connectivity. Despite the considerable progress in this field,
the implementation of these networks requires further development to
fully unlock their potential.

Efficient management of network resources is one of the key re-
quirements to successfully build next-generation networks. Resource
management is still under discussion and development in B5G net-
works, particularly in the context of network slicing [1,2], which
remains a subject of ongoing discussion and development. Network
slicing involves the virtualization of physical infrastructure, allowing
the network to be divided into multiple isolated virtual networks. Each
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slice can be tailored with different Quality of Service (QoS) and traffic
parameters such as latency and bandwidth, enabling a wide range
of use cases like Enhanced Mobile Broadband (eMBB), massive Inter-
net of Things (mIoT), or Ultra-Reliable Low-Latency Communication
(URLLC), as defined by 3GPP (TS-23.501 [3]).

However, effective resource management for diverse network slices
is computationally expensive due to three main challenges. First, the in-
crease in traffic volume: 5G/B5G networks are expected to handle more
traffic than previous generations due to the incorporation of massive
amounts of connected devices (e.g. smart meters, remote tags, etc.), as
well as new services (e.g. AR/VR). Second, the variety of SLA demands
of the different network slices and types of RAN networks connected to
the core, that range from delay tolerant and low throughput slices to
limited delay and high bandwidth slices. Third, a fast prediction time,
in order to be able to dynamically adjust the network configuration
parameters as network conditions evolve over time.
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Fig. 1. Black-box representation of the GNNetSlice model.

To overcome these obstacles, resource management in B5G net-
works requires sophisticated prediction algorithms in combination with
decision-making processes. In order to guarantee network Key Per-
formance Indicators (KPIs), e.g. latency or losses, network operators
need accurate and fast tools to manage the allocation of resources to
each network slice. A critical part are network models that predict
the performance of all the flows, with the aim of ensuring that the
network can meet the Service Level Agreements (SLAs) for all flows and
slices. This way, either the network operator or an automatic resource
allocator can easily determine if a new flow or slice can be allocated,
making it possible to respond faster to dynamic flow requests.

In this context, several tools can estimate network performance,
such as Queuing Theory or Discrete Event Simulators. Traditional
network modeling is based on Queuing Theory, that leverages mathe-
matical analysis of the network behavior, but it relies on simplifications
that often do not reflect the complexity and dynamism of current
network models [4]. In contrast, network simulators offer highly ac-
curate results at the packet level. However, their processing time
and usage of computer resources grows exponentially with the net-
work size and parameter configuration, especially in case of frequently
changing network conditions. Consequently, existing networks are chal-
enging to analyze, monitor, and manage in near real-time with current

solutions [5].
Numerous studies have investigated the application of Artificial In-

elligence (AI) and Machine Learning (ML) techniques to B5G resource
anagement. As depicted in Section 3, data-driven approaches such as

Deep Learning, Reinforcement Learning, and Graph Neural Networks
GNNs) have demonstrated promising results in optimizing resource
llocation, fault detection, and traffic management and prediction in
5G networks [6]. By leveraging the massive amounts of data gener-

ated by B5G networks, data-driven approaches can learn and adapt
to changing network conditions and optimize resource usage. Their
fast computation speed, along with the capacity to adapt to different
scenarios, offer an interesting trade-off between Queuing Theory and
network simulators.

In this paper, we present GNNetSlice, a novel approach to build a
model to predict the network Key Performance Indicators (KPIs), which
can be used to determine flow performance when allocating network
slices to a given physical network. This usage is in line with the concept
of a Digital Twin (DT) [7], a virtual replica of a physical network, that
mimics one or more characteristics of the physical network. GNNetSlice
predicts performance metrics (delay, jitter, losses) for network slices in
core and transport networks. Fig. 1 depicts the input data of the model,
nd the output predictions. This tool allows operators to assess network
onfigurations in near real-time (e.g. add new slice, add/remove flows,
tc.) before deploying them in production, ensuring the satisfaction of
etwork slicing demands.

GNNetSlice is built using a Graph Neural Network (GNN), offering
high accuracy in predicting network slicing KPIs. Using a GNN also
provides a swift prediction of the behavior of the network for each
cenario, which is a pivotal element to use the model as a DT [8].

Furthermore, we describe our approach to create the dataset, an-
lyze the network properties, build the model, train it, and obtain
redictions. We evaluate GNNetSlice and compare it with recent state-
f-the-art GNN approaches, as well as the results of a packet-level
imulator.
2 
Our contributions can be summarized as: (i) creating a state-of-
the-art dataset with simulations of network slicing reservations, (ii)
providing a GNN model design, (iii) proposing an accurate model for
network slicing performance metrics estimation, and (iv) presenting an
extensive set of experimental evaluations.

The rest of the paper is structured as follows. Section 3 reviews
methods for predicting network KPIs. Section 2 introduces the GNN
and the network slicing concepts. The dataset generated for testing
he models is outlined in Section 5, while GNNetSlice, our GNN-based

solution for predicting KPIs of network slices, is presented in Section 6.
The evaluation of the best GNN model is discussed in Section 7, and
we conclude the paper in Section 8.

2. Background

2.1. Graph neural networks

A graph representation can better capture the relationships between
nodes in a network, providing a direct mapping between the network
topology and the graph representation. This allows the GNN model to
predict multiple unseen topologies.

The expressive power of GNNs [9] allows them to model graphs
with higher accuracy, offering advantages in accurate and fast network
analysis [10]. GNNs have demonstrated success in solving combina-
torial optimization problems [11] and can achieve relational reason-
ing [12]. GNNs have emerged as a robust approach to address var-
ious problems associated with graph-structured data, such as social
networks, molecular structures, and computer networks [13,14]. Lever-
aging interactions between nodes and edges in a graph, GNNs excel in
making predictions, as well as performing regression and classification
tasks [15]. At the core of a GNN lies the concept of message-passing,
where information exchange between neighboring nodes is employed
to update the features of the target node.

In a GNN, a graph is represented as a set of nodes and edges, with
each node and edge including associated features. The architecture
consists of multiple layers, and at each layer, information is propa-
ated through the graph, assimilating information from neighboring
odes and edges. The message-passing process involves three key steps:

message transformation, aggregation, and update:

1. Message transformation functions dictate how nodes and edges
generate messages.

2. Aggregation functions combine these messages.
3. Update functions integrate aggregated messages to update the

features of the target node.

Finally, a readout function executes the classification of regression
ask of the GNN. Fig. 2 illustrates the iterative nature of the message

passing process across an input graph. This figure shows the architec-
ure of a simple GNN, where nodes with distinct colors incorporate
heir features into vectors. The primary goal is to predict values for
he target node labeled as ‘‘A’’. The message transformation phase is
pplied initially, followed by the aggregation function and, finally,
n update to the values of the target node. In cases where a specific
ode’s attributes are missing, a pooling technique is employed to gather
nformation from it [16], enhancing the overall information flow within

the network.
GNNs can provide predictions at different levels of detail:

1. Graph-Level tasks: categorize entire graphs, useful for social
network analysis and text classification.

2. Node-Level tasks: label individual nodes, e.g., predicting user
relations in social networks.

3. Link-Level tasks: predict connections between nodes or predict
properties of the edges, providing link prediction for potential
friendships in social networks.
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Fig. 2. Basic operation of a GNN, showing the input graph (left) and the equivalent
1-layer GNN (right) with the 3 key steps of message-passing for predicting node A’s
eatures [17].

2.2. Network slicing

Network slicing is commonly defined as a virtualization technology
hat allows dividing the resources of a physical network into multiple

virtual networks or slices [18]. Each slice provides a desired net-
work performance to the set of traffic flows (source–destination pairs)
mapped to it, e.g., reduced latency or high bandwidth, depending on
the use case. Its importance in B5G is strongly tied to the use cases
it enables in different verticals, such as manufacturing, automotive,
or smart cities. Moreover, there is a set of standardized slice types
defined by 3GPP that aim to capture the majority of these use cases in
5G and B5G networks (3GPP TS-23.501 [3]). The slices are Enhanced
Mobile Broadband (eMBB), Ultra-Reliable Low-Latency Communication
(URLLC), and massive Internet of Things (mIoT). Those slices require
basic functions: (i) ability to be dynamically created and destroyed, (ii)
span end-to-end paths in the network, and (iii) be isolated between
them.

These requirements make resource allocation essential to guarantee
he QoS of each slice. A network controller determines whether a new
lice request can be safely granted without degrading the performance

of existing slices, and is in charge of determining which flows can
be allocated to the network. There is a wide range of data models
and interfaces that allow fine-grained control of network resources to
create, modify, and delete network slices [19]. Due to the fact that
slicing is implemented end-to-end (Radio Access Network (RAN), core,
and transport network), most slicing architectures incorporate one or
more controllers or orchestrators to coordinate the resource allocation.

In the data plane, network slicing is implemented with different
mechanisms, combining resource reservation, traffic conditioning and
ueue scheduling algorithms. Packets are mapped to slices. Packets

are mapped to slices using common tunneling and labeling protocols
uch as Ethernet Virtual Private Network (EVPN) or Multiprotocol Label
witching (MPLS), and routers are centrally controlled via Software
efined Networking (SDN) southbound protocols.

3. Related work

3.1. Traditional techniques for network performance prediction

In the literature, various techniques are explored to predict net-
work performance, primarily relying on analytical modeling methods
uch as Queuing Theory [20], Markov chains [21,22], and similar
pproaches. However, despite these models often yield fast predic-

tions, their accuracy degrades due to their dependence on unrealistic
and static assumptions about packet arrival processes and real-world
networks [23].

To obtain more realistic results, packet-level network simulators are
commonly employed, thanks to their packet-level visibility and fine
granularity. However, their computational complexity and execution
times, especially with larger networks, cannot be used in scenarios that
require near real-time predictions [24]. Nevertheless, these simulators
enerate highly accurate data that proves valuable for training different
L models, as demonstrated in [25].
3 
3.2. ML-based network performance prediction

When it comes to network slicing, the demand for rapid network
analysis algorithms in evolving scenarios has led to exploration in AI
and ML techniques for accurate predictions with low response time.
Significant efforts include a zero-touch control for network slicing
roposed in [26], predicting the network capacity needs of each slice,

using the previous traffic demands of mobile traffic data to shape the
future requirements. Results of two forecasting blocks, one short term,
and the other long term, are combined to aggregate the demand of the
total shared capacity and allocate it in the short-term.

Other ML methods, such as Logistic Regression (LR), Support Vector
Machine (SVM) and Decision Trees, have been implemented in [27]
to predict packet’s Round-Trip Time (RTT), where data of RTT mea-
surements for training the models are obtained from mobile operators
in Italy. Then, the aforementioned methods are used to predict the
acket’s RTT, concluding that Decision Trees had a much better pre-

cision. Still, this was an initial approach to demonstrate the usability
f the dataset.

Additionally, a DT approach in [28] predicts network traffic han-
ling in a similar way to [26,29], but using Recurrent Neural Networks
RNNs). RNNs, more concretely Long Short-Term Memory (LSTM),
ncrease the long term memory function, saving a selected history of
ast predictions that may be relevant for the current prediction. Static
nd in-vehicle 5G data is used to train and predict using three different
ethods: Convolutional Neural Network (CNN), Gated Recurrent Unit

GRU), and LSTM, the last obtaining their best results.
RNNs are also employed in [30] to predict delays in 5G networks for

the Internet of Things (IoT) and Tactile Internet. The model is trained
in a simulated IoT system, collecting and later predicting the IoT traffic
network delays.

3.3. Application of graph neural networks to computer networks

In the context of computer networks, GNNs learn directly from
graph-structured data. This data includes network topologies, routings,
and offered traffic, in order to predict network KPIs. Research has been
conducted on applying GNNs in various scenarios of computer net-
works. For example, autonomous network management is exemplified
in [31], where GNNs are used to enable reinforcement learning agents
to adapt policies of autonomous mobility-on-demand. Another applica-
tion in network slicing monitoring [32] demonstrates the effectiveness
of GNNs, combined with genetic algorithms, for locating network moni-
tors. GNNs have also been utilized to predict network delay in standard
transit networks, represented as fixed-size graphs [33]. Finally, SDN
end-to-end delay prediction in [34] employs advanced techniques, such
as Spatial–Temporal Graph Convolutional Networks (STGCN), which
integrates the RNN technique to GNNs, enhancing the delay prediction.

The main differences of GNNetSlice, in comparison to recent meth-
ds utilizing ML, Deep Learning (DL), and GNNs, are summarized in

Table 1. GNNetSlice offers several key advantages, including fast train-
ing, high accuracy, a simple and unified model, a focus on predicting
network slicing environment performance, and the public availability
of both code and datasets. While GNNs have emerged as excellent
models for graph representation in networks, they face challenges due
to a lack of datasets for model training, particularly in the field of
network slicing. Our contributions address this gap by generating a
network slicing dataset and developing a GNN model for predicting the
KPIs of simulated network slices.

4. Scenario

The network consists of a core network and a transport network,
with the RAN falling outside of the scope. We consider the following
unctions in the admission control block (Fig. 3): the Core Controller

receives slice requests and decides if they can be allocated in the
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Table 1
Comparison GNNetSlice and other contributions focusing on GNN and network slicing.

Contribu-
tion

Deep learning
model

Architecture Ground truth Source code
availability

Hyperparam-
eter tune

Fast train Feature
engineering

Multiple
models

Focused on
network slicing

[26] CNN 4D-CNN + MLPs Real scenario Private N/A N/A Yes No No

[28] RNN SLSTM Real data On request N/A N/A Yes No No

[30] RNN NARX AnyLogic Simulator Private N/A Yes Yes No No

[27] Classification
models

SVM, DT, LR Real data Private N/A Yes Yes No No

[31] GNN GCN + MLPs Real data Public N/A N/A Yes No No

[32] GNN GAT + MLPs +
genetic algorithm

Genetic Algorithm +
greedy solution

Private Yes N/A Yes Yes Yes

[34] GNN STGCN OMNeT++ simulation Private Yes No Yes No No

[35] GNN MPNN + GRU OPNET simulation Private N/A Yes Yes No Yes

[36] GNN GCN/MTDRL Open dataset, Tor
[37] + OpenDayLight
scenario

Private N/A N/A Yes No Yes

[38] GNN MPNN + GRU OMNeT++ simulation Public Yes No Yes No No

GNNet-
Slice

GNN GRCN OMNeT++ simulation Public Yes Yes Yes No Yes
Fig. 3. Functional block diagram of the slice admission controller.
i

t

t
c
p
c

network. The slice admission module incorporates GNNetSlice, that
cts as a Slice Performance Model, which, given the network topology,
raffic requirements, and slice configurations, outputs the performance

KPIs of each flow. Subsequently, the SLA validation module acts as
an admission control algorithm, ensuring that all flows comply with
redefined SLAs. The Core Controller syncs the configurations with the
AN Controller, to align the configurations for the changing network
equirements.

We consider three distinct slice types, specifically those defined by
the 3rd Generation Partnership Project (3GPP) [39]: eMBB, URLLC,
and mIoT. Each slice type is designed for different use cases (Table 2).
For each slice, a set of QoS metrics is used, such as network size,
number of clients, and application requirements. Delay, jitter and losses
constitute the primary KPIs used to measure network performance for
each network slice. These KPIs are defined for each slice type, although
jitter values per slice are yet to be precisely defined in the existing
literature. However, jitter is expected to be minimal, especially for the
most critical usage, URLLC.

We assume that both the transport and core networks implement a
acket labeling mechanism. Output links in the routers map these la-
eled packets to queues using a WFQ algorithm. WFQ queues facilitate
4 
the isolation of the slice instances, as the weight for each slice instance
s determined during the admission step [40]. This isolation among

queues guarantees the allocated bandwidth for each slice, and implies
hat excess traffic in one queue does not affect traffic in other queues;

each queue has a guaranteed minimum portion of the link’s capacity.
If a slice experiences a reduction in traffic, the rest of the queues
can benefit from the extra capacity. The weights of each WFQ queue
are adjusted to allocate a given portion of link capacity to the slice.
Algorithms are dynamically adjusted to meet the traffic requirements
of each slice. Each WFQ queue serves a different slice, spanning from
the originating RAN node(s) to the transport network’s exit point.

Concerning the flows, multiple flows of the same type are assigned
o each slice instance, and several instances of the same slice type can
oexist. Additionally, a slice instance can include multiple paths, each
ath represented by an origin and a destination, allowing to create
onnections between the required nodes in the network inside a specific

slice instance. In Fig. 4, an example illustrates the concept. The URLLC
slice instance 1 traverses the top three nodes of the figure with 5 flows,
while mIoT instance 1 (2 flows) and URLLC instance 2 (6 flows) are
routed through the lower node. The WFQ queues facilitate the isolation
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Table 2
Slice types considered and flow characteristics [41,42].

Type of
flow

Maximum
delay

Maximum
packet loss

Intended use Bitrate Packet size

eMBB 10 ms 10% Broadcasting, media
delivery, gaming, general
usage

18 Mbps Average: 6000 bits
Minimum: 800 bits
Maximum: 18000 bits

URLLC 0.5 ms 0.001% High reliability, ultra-low
latency, high availability

3.5 Mbps Average: 800 bits
Minimum: 256 bits
Maximum: 1600 bits

mIoT Up to 10s 1% Long battery, low cost
devices, extreme coverage

0.2 Mbps Average: 160 bits
Minimum: 320 bits
Maximum: 480 bits
t

Fig. 4. Mapping of flows to slices and slices to WFQ queues across several paths.

of these instances, as the weight for each slice instance is determined
during the admission step.

More details on the step-by-step methodology performed for gener-
ting the scenario and the dataset can be found in [43].

5. Methodology

In order to build the GNNetSlice GNN-based model for estimating
lice performance, we adopt a data-driven approach, typical in ML
orkflows (Fig. 5). First, we generate a dataset using a network simula-

or, comprising pairs of (scenario, performance), representing
the model’s inputs and outputs, respectively. The scenario includes
ll configuration parameters of the network scenario, such as the num-
er and type of slices, traffic flows in each slice, arrival processes, WFQ
ueue weights, topology, and routing configuration. performance
ncludes the KPIs needed to validate whether the slice’s SLA is met,
uch as per-flow delay or packet losses.

Next, we train a GNN model to predict network performance based
on parameters such as network topology, routing, traffic and network
lice configuration. The dataset is split into training, validation and
esting sets, and hyperparameters are adjusted until an acceptable
ccuracy is achieved, typically below 20% of error. To accomplish this,
he model is trained multiple times, trying multiple hyperparameter
alues. Finally, the trained model would be ready to be deployed in
 production network as part of the slice admission controller.

It is important to note that our approach is training the GNNetSlice
odel offline, meaning it is trained in the lab and later expected to

be deployed in a production network. This approach is analogous to
autonomous cars, which are trained by the vendor and then sold to
5 
customers already trained. The key reason for this approach is that
he GNN model needs to learn various extreme scenarios, such as high

delays, broken links, or high packet losses, and replicating these situ-
ations in a production network would be challenging due to potential
disruptions and SLA degradation.

5.1. Packet level simulations

The ground truth is generated using a packet-level simulator, a
modified version of OMNeT++ [38]. The 130 network topologies are
obtained from the Internet Topology Zoo [44], simulating a wide range
of slicing configurations and traffic intensities for each topology. Traffic
originates from different nodes connected just after the RAN and exits
the network in a set of nodes selected as output nodes on the other end.
A simplified example can be observed in Fig. 6, where multiple source
nodes generate input traffic to the network and an exit node is placed at
the right side. The destinations of the generated flows are common for
each type of flow, having three different types of destination located at
the outgoing port of the exit node (eMBB, mIoT, URLLC). The different
simulation scenarios are generated using the following steps:

1. Retrieve a network topology from the Internet Topology Zoo
[44].

2. Randomly allocate link capacities from a predefined range of 25
to 500 Mbps.

3. Designate at least two nodes as sources. A maximum of N/3
nodes should serve as source nodes, where 𝑁 represents the total
number of nodes in the graph.

4. Define the three destinations (eMBB, mIoT, URLLC). The remain-
ing nodes are categorized as transport nodes.

5. Randomly set the number of slice instances between 1 and N.
6. Specify the slice type and traffic for each slice.
7. Assign one eMBB flow for each source node, while determining

the others based on link capacity and reservations. Routing
will be accomplished using the NetworkX Python library [45],
obtaining first the shortest path and using the other possible
routes when the link capacity is complete in any link of the path.

8. Perform under and overprovisioning tests using a custom access
control script in Python to prevent exceeding the link capacity.
The over and underprovisioning are calculated based on the sum
of reserved bitrate (𝑉𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑) of the slices that traverse each link.

9. Eliminate any empty slices.
10. Execute the simulation using the network simulator.

The slices exhibit the following characteristics:

• Three different network slices types (eMBB, mIoT and URLLC)
with a variable number of instances.

• The proportion of slice types is variable in each simulation, with
each slice possibly existing in one or multiple source nodes.

• Each slice has at least one assigned flow.
• At least one eMBB flow is included for each simulated source

node, serving as the standard network usage. Other flows for each
source node and slice are randomly assigned.
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Fig. 5. Machine Learning workflow, from dataset generation to model deployment, for constructing the GNN-based Slice Performance model.
Fig. 6. An example of the Ai3 network topology: routers with antennas (the RAN part)
would be the source nodes of the transport network while the exit router would be
the destination node.

• Flows are created to fill link capacities, and reservations are made
based on each flow’s required average bit rate.

• The bit rate reservation for each slice is allocated on each output
port using WFQs. This allows the implementation of resource
isolation of each slice from the others, a key characteristic for
network slices.

• Each slice instance contains different flows with the traffic char-
acteristics outlined in Table 2.

• A standard proportion of 1 eMBB flow, 7 URLLC flows and 2 mIoT
flows is used, derived from [41].

Finally, simulations allow different scenarios, ranging from under
provisioning to overprovisioning, controlled by a tunable parameter 𝛿 ∈
[0, 1] that adjusts the amount of under and overprovisioning as shown in
Eq. (1). 𝑉𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 represents the actual reserved bitrate in the simulation,
while 𝛿 is the resource provisioning parameter, randomly assigned with
a value [0, 1] for flows within the same slice. 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 denote
the minimum and maximum bitrate for each flow, respectively. This
configuration allows for a flexible range from underprovisioning at 𝑉𝑚𝑖𝑛
to overprovisioning at 𝑉𝑚𝑎𝑥.

In line with the methodology in [43], 𝛿 is used to expose the
networks to different traffic intensities, allowing to observe how KPIs
vary under different provisioning conditions. Specifically, the minimum
and maximum bitrates are set based on the average flow bitrate,
with underprovisioning defined as 10% below the average and over-
provisioning as 20% above. This approach provides a simulation of
traffic conditions across different scenarios and allows a comprehensive
analysis of network performance.
𝑉𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 = 𝑉𝑚𝑖𝑛 + 𝛿(𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) (1)

6 
After generating the necessary files (routing, traffic, and topology)
for simulating the scenarios, the OMNeT++ simulator is utilized to
produce samples for the dataset.

5.2. Dataset

The used dataset from [43] comprises 7900 samples, each consisting
of the following components:

1. Topology: includes links and nodes. The example topology in
Fig. 6 has 11 nodes representing a router, 3 final nodes rep-
resenting the destination of each type of slice, connected to
the source nodes. The quantity of these flows depends on the
remaining capacities of each link of the path. This group of data
includes the queue configurations, with features such as weight,
utilization, losses, delay and max. occupancy.

2. Routing: the path of each flow is defined by a shortest path
algorithm from source to destination. If the shortest path is
already fully reserved, the next shortest path available is used.

3. Flow traffic: based on the standards defined in Table 2, spec-
ifying flow-level source–destination time and size distributions
(e.g., AvgLnDelay, jitter, delay, 𝛿, packet loss).

4. Slice reservations: origin and destination nodes, source nodes
used, traffic reservation (𝑉𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑), 𝛿, slice type and unique iden-
tifier.

5. Link performance: performance measurements at the link level,
such as bandwidth, utilization, losses and offered traffic inten-
sity.

6. Flow performance: Per-flow QoS measurements such as dropped
packets, average delay, jitter.

In terms of individual samples, the node count ranges from 17 to
765 nodes. Simulation durations span between 1.4 h and 16 h, while
the memory utilization varies from 161 MB to 27 GB.

Since the ability to generalize is critical in ML-based algorithms, we
have performed an extensive analysis of the entire dataset, separated
by links, flows, and queues for each slice type. This way, we can
ensure that the algorithm is presented with a wide range of network
scenarios, that include varying degrees of network load, packet loss or
link bandwidth. The following subsections analyze the distribution of
different flow, link and queue features, and more details can be found
in [43].

Fig. 7 shows the values distribution of several flow features. For
each type of slice, it can be observed that the delay and logarithm of
the delay (AvgLnDelay) is higher for the mIoT slices, while it is lower
for the URLLC and eMBB slices. The jitter is low in all cases, being
slightly higher for the mIoT slices. The 𝛿 values are mostly uniform for
each type of slice, while packet loss is lower in the URLLC slices.

We can see that the features present a wide range of values in order
to cover as many scenarios as possible. For example, the 𝛿 parameter
presents a quasi-uniform distribution between 0 and 1.
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Fig. 7. Probability Density Function (PDF) of several flow features for each slice type.
Fig. 8. Probability Density Function (PDF) of several link features.
Fig. 9. Probability density function (PDF) of the reservations of the links.
d
D

Fig. 8 illustrates the values distribution of several link features,
howing high utilization, as it was intended in the scenarios, low losses
n most cases, varied bandwidth and an offered traffic intensity (𝑂𝑡) with
ost values around 0 and 1, although other values also exist. 𝑂𝑡 is a

eature created from other existing features and it is detailed in Eq. (2).
It is defined as the sum of traffic (𝑇𝑓 ) of all flows 𝑓 passing through the
network link 𝑁𝑙 divided by the bandwidth 𝐶𝑙 of that link, resulting in
a scalar feature assigned to the link state.

𝑂𝑡 =

∑

𝑓∈𝑁𝓁
𝑇𝑓

𝐶𝓁
(2)

Fig. 9 shows the values distribution of link’s reservations. The
majority of links have a total reservation close to 1, meaning that the
algorithm to fill the network as much as possible with reservations is
working correctly. The percentage of reservations in each link is higher
in the case of eMBB as expected, because this type of slices has higher
bandwidth and the requirement of having at least one eMBB slice for
each source node.

Finally, Fig. 10 shows several queue features values distribution. It
can be seen that most values for the weight attribute of the WFQ queues
are under 50%. The utilization of the queues is higher for the eMBB
slices, while it is very low for the mIoT case. The losses are lower in
he URLLC queues analyzed as also seen in the links, while the delay
s also lower in the URLLC. The max. occupancy measured in number
f packets is on average a little bit higher for the URLLC slices, but
he total max. occupancy is reached more commonly by the mIoT slice
ypes. Moreover, in some occasions the queues are full, which is the

expected behavior in the situations where there are packet losses. The
queues have a capacity of 31 packets, and it can be seen that the max.
ccupancy in number of packets has a peak between 25 and 31 packets.
7 
6. GNNetSlice model

Our objective is to predict delay, jitter, and loss for the generated
ataset. For constructing the GNNetSlice model we have used the
eep Graph Library (DGL) for PyTorch [46] is used, as it provides

good documentation and support for multiples types of graphs. The
overview of the most significant steps for creating the GNN model are
the following:

1. Load the dataset using an adapted version of Barcelona Neural
Networking Center’s Application Programming Interface (API)
[47]. Split it into training, validation, and testing sets, with
percentages of 80%, 10% and 10%, respectively. Transform the
original network topology graphs into input graphs [48].

2. Define the GNN model structure, and choose the hyperparame-
ters values and relations

3. Select the input features and normalize using a min–max nor-
malization (Eq. (3)).

4. Train and validate the model for 𝑛 epochs. Predict the testing
set labels to verify the correct training and accuracy. Optimize
hyper-parameters to improve the training time and accuracy.

𝑁𝑥 =
𝑋 −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
(3)

6.1. Input graph

The GNNetSlice model has the ability to predict multiple attributes
simultaneously using a single model. The model is trained to predict
delay, jitter, and losses of the flows in the network. Relational Graph
Convolutional Networks (RGCNs) [49], the type of model used for
building GNNetSlice, are designed to process and update node informa-
tion based on the relationships between nodes, making them suitable
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Fig. 10. Probability Density Function (PDF) of several queue features for each slice type.
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for tasks like node classification and link prediction. However, RGCNs
re not built to predict values directly associated with edges, such as
ink delay or utilization, because they do not have a way to learn or
epresent edge-specific information directly GNNs. To overcome this,
e transform link attributes into nodes within the graph, allowing the
GCN to handle link properties indirectly by treating them as node at-

ributes. This approach enables the model to work with heterogeneous
raphs, to perform edge prediction tasks.

To address this problem, the input graph is reshaped by transform-
ing links into nodes. This reshaping creates an input graph, allowing
GNNs to indirectly predict link attributes as node attributes and bridg-
ing the gap between GNN capabilities and link attribute regression
challenges [50]. More concretely, to predict flow features using link
and queue features, we need to create an input graph that translates the
original network topology graph to an input graph. This transformation
involves converting individual links, queues and flows into nodes,
creating an input graph structure for each sample. This results in three
distinct node classifications: flow nodes, queue nodes, and link nodes.
The goal is to establish a clear distinction and relation in data treatment
between features at the flow level (e.g., end-to-end delay and packet
losses), the queue level (e.g., WFQ weights and utilization), and the
link level (e.g., link delay and utilization).

In Fig. 11 we show an example of how the GNN input graph is
generated from the original network topology graph. In the original
etwork topology graph, the queues are represented as Q_1_1, Q_2_1,
nd Q_2_2. The original router nodes are R1, R2, and R3. F1 and F2

are two flows, and L1 and L2 are the links in the network. The status
of a flow is tied to the states of all the links traversed by that flow,
establishing the relation flow traverses link. Conversely, the status of
a particular link is influenced by the conditions of all the flows that
traverse that link, creating the relation link composes flow. In addition,
a flow goes trough n queues, with the relation uses, and a queue serves
paths using the relation serves. Finally, a link output port can host
ueues, establishing the relation hosts, and that queue is related to the

link using the relation resides.

6.2. Algorithm

The GNNetSlice model uses a RGCN for predictions. This model sup-
ports multiple relation types in the input graph, a crucial functionality
for defining relations between flows, queues, and links, enabling the
usage of the designed input graph node types and features. RGCNs
re chosen mainly because they can be used in scenarios involving
ulti-relational data, where edges have different types or relationships,

as they are designed to incorporate heterogeneous edge types into
the node update process. In contrast, Graph Isomorphism Networks
(GINs) [51] excel at distinguishing graph structures, which could use
he original network graph without modifications, but these are typ-
cally limited to homogeneous graphs. In our case, network slicing
nvolves diverse node types that impact flow attributes differently.
hus, RGCN is chosen, as it can learn from these varied relations,

providing predictions by modeling the diverse interactions between
nodes.

GNNetSlice consists of two GraphConv layers [52], which are graph
onvolutional layers, each using a ReLu [53] activation function to
 s

8 
Fig. 11. Example of an original network topology graph (top) transformation to the
input graph (bottom).

regularize the outputs, where the hidden states of each node are trained
and later predicted. The model calculates a hidden state for all the
nodes in the input graph. Then, the HeteroGraphConv module, a mod-
ule from DGL for computing convolutions on heterogeneous graphs, is
used to create the RGCN model with the GraphConv layers. This module
structure is applied to each type of relation defined in the graph, to
later perform the message passing between related nodes. In addition,
the aggregation function is applied, in this case the summation. Algo-
rithm 1 describes the architecture of the model in detail while Fig. 12
shows the relations between the building modules of GNNetSlice, rep-
resenting the algorithm more graphically. The algorithm operates on an
heterogeneous input graph 𝐺, which consists of various types of nodes
epresenting different components of the network. These components
nclude flows (𝐹 ), queues (𝑄), and links (𝐿). The blue, orange and red
rrows in Fig. 12 represent the relations between the three types of
ode.

The algorithm starts by initializing the hidden state variables ℎ𝑓 , ℎ𝑞 ,
and ℎ𝑙 for flows, queues, and links, respectively. They are initialized

ith the feature embeddings 𝑋𝑓 , 𝑋𝑞 , and 𝑋𝑙 encoding the initial
eatures of flows, queues, and links (lines 1–3).

Then, the message passing phase begins (lines 4–14), which consists
of 𝑇 iterations. In each iteration, the algorithm updates the hidden
tates of flows ℎ , queues ℎ , and links ℎ , based on their interactions
𝑓 𝑞 𝑙
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Fig. 12. Schematic representation of GNNetSlice.
within the graph 𝐻 . Each hidden state captures contextual information
needed to predict the KPIs.

For each flow 𝑓 (lines 6–8), the algorithm updates its hidden
state ℎ𝑓 using the function 𝑀 , which aggregates information from the
queues and links through which the flow passes. This enables ℎ𝑓 to
capture the behavior of queues and links depending on the traffic of
the flow.

Similarly, for each queue 𝑞, the algorithm updates its hidden state
ℎ𝑞 using the same function 𝑀 , now considering the states of the flows
passing through it and the link where it is located. This allows ℎ𝑞 to
capture information about local congestion and flow intensity, that will
be used to update future ℎ𝑓 states, which are used for the predictions.

Likewise, for each link 𝑙 (lines 9–11), the algorithm updates its
hidden state ℎ𝑙, considering the states of the queues and the flows.
Following the previous steps, for each link 𝑞, the hidden state ℎ𝑙 is up-
dated (lines 12–14) with the states of the related links and flows. This is
possible due the characteristic of the HeteroGraphConv module, where
each type of relation has its own GraphConv layers, which are trained
differently according to the relations seen during training. Therefore,
𝑀 can be seen as 6 different configurations of the model, depending
on the relation needed to update the hidden states. These hidden
states collectively enable the network to output accurate predictions
of traffic-related KPIs.

This iterative process continues for 𝑇 iterations, allowing the algo-
rithm to refine the hidden states of flows, queues, and links based on
their interactions within the network. Finally, the algorithm returns the
updated node features 𝑋𝐹 ’, using the readout function for the flows 𝑅𝑓
(lines 15–16).

6.3. Input features

The selection of input features is crucial for the convergence of
a ML model, in addition increased precision and also to improve
the training speed [54]. The features used in the model are detailed
in Table 3. Each type of node has four features. For nodes of type
flow, Traffic and Packets are obtained directly from the simulation
results, while Path length is calculated from the input graph, and 𝛿
is derived from the slice properties defined before the simulation. For
nodes of type link, the features include Capacity (defined before the
simulation), Utilization (𝑈𝑙), AvgPktSize, and 𝑂𝑡. Finally, the nodes of
type queue contain the Weight (𝑤) in the WFQ (already defined before
simulating), utilization (𝑈𝑞), theoretically calculated losses (𝐶𝑙), and
theoretical MaxDelay (𝑀𝑑). These queue-related features are derived
using traditional Queuing Theory.

Feature engineering was employed to create new features from the
existing data in the training dataset, aiding the model in generalizing
and improving the prediction accuracy, as introduced in [55]. Three
engineered input features are created for the GNNetSlice model. Firstly,
9 
Algorithm 1 Model architecture
Input: Hypergraph 𝐻 , queue features 𝑋𝑞 , link features 𝑋𝑙, flow

features 𝑋𝑓
Output: Updated flow features 𝑋𝑓 ’

1: ℎ0f ← 𝐻𝑓 (𝑋𝑓 )
2: ℎ0q ← 𝐻𝑞(𝑋𝑞)
3: ℎ0l ← 𝐻𝑙(𝑋𝑙)
4: for t = 0 to T-1 do
5: 𝑀1 ← 𝐺 𝑟𝑎𝑝ℎ𝐶 𝑜𝑛𝑣(ℎ𝑡)
6: 𝑀2 ← 𝐺 𝑟𝑎𝑝ℎ𝐶 𝑜𝑛𝑣(ℎ𝑡)
7: for 𝑓 in 𝐻 do
8: ℎ𝑡+1𝑓 ← ℎ𝑡𝑓 +𝑀1(ℎ𝑡𝑙 , ℎ𝑡𝑓 )
9: ℎ𝑡+1𝑓 ← ℎ𝑡+1𝑓 +𝑀2(ℎ𝑡𝑞 , ℎ𝑡+1𝑓 )

10: for 𝑙 in 𝐻 do
11: ℎ𝑡+1𝑙 ← ℎ𝑡𝑙 +𝑀1(ℎ𝑡𝑓 , ℎ𝑡𝑙)
12: ℎ𝑡+1𝑙 ← ℎ𝑡+1𝑙 +𝑀2(ℎ𝑡𝑞 , ℎ𝑡+1𝑙 )
13: for 𝑞 in 𝐻 do
14: ℎ𝑡+1𝑞 ← ℎ𝑡𝑞 +𝑀1(ℎ𝑡𝑙 , ℎ𝑡𝑞)
15: ℎ𝑡+1𝑞 ← ℎ𝑡+1𝑞 +𝑀2(ℎ𝑡𝑓 , ℎ𝑡+1𝑞 )
16: 𝑋𝑓 ’ ← 𝑅𝑓 (ℎ𝑡f)
17: return 𝑋𝑓 ’

𝑂𝑡, as defined in Section 5. Secondly, Calculated losses (𝐿), which are
determined by the Eq. (4). 𝐿 is defined as the 𝑂𝑡 minus the product of
weight 𝑤 and capacity 𝐶𝑙 of the output link, which is the carried traffic,
and divided by 𝑂𝑡, resulting in a scalar feature assigned to the link
state. Thirdly, MaxDelay 𝑀𝑑 is created, which represents the maximum
delay an average size packet might experience in a full queue. It is
calculated using Eq. (5), where 𝑄𝑠 is the queue size in number of
packets, multiplied by the AvgPktSize 𝐴𝑝 in number of bits and in the
queue, and divided by the product of weight 𝑤 and the output link
capacity 𝐶𝑙.

𝐿 =
(
∑

𝑓∈𝑄 𝑇𝑓 ) − (𝑤 × 𝐶𝓁)
∑

𝑓∈𝑄 𝑇𝑓
(4)

𝑀𝑑 =
𝑄𝑠 × 𝐴𝑝

𝑤 × 𝐶𝓁
(5)

These engineered features can help to enhance the accuracy of
GNNetSlice predictions, as they are guiding the model to an approxi-
mated estimation of the prediction. For example, while not giving exact
values, the Symmetric Mean Average Percentage Error (SMAPE) of 𝐿
in eMBB, URLLC, and mIoT slices, in comparison to the real losses of
each flow, stands at 5.34%, 14.92%, and 5.12%, respectively.
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Table 3
Input features used in GNNetSlice.

Feature Definition

Flow

Traffic Average bandwidth of the flow
(bits/time unit)

Packets Packets generated by the flow
(packets/time unit)

Path length Total number of hops of the flow,
including first and last nodes

𝛿 Resource provisioning parameter of the
slice the flow belongs to

Link

Capacity Bandwidth of the link (bits/time unit)

Utilization 𝑈𝑙 Occupation of the link (in the range
[0,1])

AvgPktSize 𝐴𝑝 Average packet size of all outgoing
packets through the link, in bits

Offered Traffic
Intensity 𝑂𝑡

Sum of Traffic of all flows passing
through link divided by the link’s
Capacity, derived from Queuing Theory

Queue

Weight 𝑤 WFQ queue’s weight (in the range [0,1])

Utilization 𝑈𝑞 Occupation of the queue (in the range
[0,1])

Calculated losses
𝐿

Packet losses derived from Queuing
Theory (in the range [0,1])

MaxDelay 𝑀𝑑 Maximum queuing delay derived from
Queuing Theory (in time units)

Table 4
Tested values for optimization of the hyperparameters.

Hyperparameter Tested values Optimized
values

Batch size 1, 5, 10, 15, 20, 25, 50, 100,
200, 500, 1000

1000

Early stopping
window

10, 20, 30, 40 40

Learning rate 0.1, 0.01, 0.005, 0.001 0.005

Layer size 4, 6, 8, 10, 20, 30, 40, 50, 60,
80, 100

80

6.4. Model training

We use MSE (Mean Squared Error) as the training loss metric. To
measure and compare the prediction accuracy in the test phase, the
ymmetric Mean Average Percentage Error (SMAPE) is used as metric,
s it is symmetrical in comparison to Mean Average Percentage Er-
or (MAPE), and human-understandable. SMAPE quantifies prediction
ccuracy as the average percentage of relative errors (Eq. (6)). This
elative error is obtained comparing the predicted value 𝑦𝑙 with the
ctual value 𝑦𝑖 in absolute value, the result of which is divided by the
um of 𝑦𝑙 and 𝑦𝑖, both in absolute value and divided by two. Lower
MAPE scores indicate more accurate predictions. The key difference
n comparison to the MAPE metric is that the MAPE degenerates into
ositive infinity when actual values are zero or close to zero. The usage

of SMAPE or similar variants correcting this problem is essential, as
many values for losses and jitter are zero in the simulations.

𝑆 𝑀 𝐴𝑃 𝐸 = 100%
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑙 − 𝑦𝑖||
(|
|

𝑦𝑖|| + |

|

𝑦𝑙||)∕2
(6)

After hyper-parameter tuning, our best GNNetSlice model has been
trained during 95 epochs. We found that, generally, larger values
of the hyperparameters result in higher precision. Generally, when
creating ML models, a good hyperparameter selection is crucial [56]
see Table 4).

The training lasted 4 h and 15 min (95 epochs with batches of size
1000) to achieve the best SMAPE results for the three KPIs predicted
 h

10 
Table 5
Symmetric Mean Average Percentage Error (SMAPE) of GNNetSlice with the different
lice types.

Delay Losses Jitter

eMBB 2.26 2.07 2.01
URLLC 2.17 1.99 1.91
mIoT 7.71 2.04 1.96
All slices 5.22 2.04 1.95

in this work. The training of was performed using only the CPU, as the
model performed slower on Graphics Processing Unit (GPU) than on the
CPU. This occurs because the acceleration provided by the GPU does
not sufficiently compensate for the overhead generated by copying the
batches of data. This enhances the model’s usability across a broader
range of devices, reducing requirements without sacrificing training
time or obtaining subpar results. The training hardware consisted of
an AMD Ryzen 5 5600X CPU 3.7 GHz and 64 GB of DDR4 RAM.

7. Evaluation

For the evaluation of the GNNetSlice model we use a suite of es-
ablished metrics including Symmetric Mean Average Percentage Error
SMAPE), Mean Square Error (MSE), Mean Average Error (MAE), and

Coefficient of Determination (R2). The SMAPE serves as a measure of
accuracy, quantifying the average percentage difference between actual
nd predicted values, offering a symmetric approach that addresses
ssues related to scale and zero values, as introduced in Section 6.

MSE and MAE provide insights into prediction errors by assessing the
verage squared and absolute differences, respectively, allowing to

measure the model’s performance with varying degrees of emphasis
on error magnitudes and directions. Finally, R2 is used as a concise
measure to gauge how well a model explains the variability in the
ependent variable, where higher and closer to 1 values indicates a
tronger fit and better predictive performance.

The model is evaluated through a wide range of test,s categorized
as follows:

1. Prediction error of eMBB, URLLC, and mIoT flows.
2. 10-fold cross-validation using the entire dataset.
3. Prediction error depending on the topological properties, such as

graph size and nodal degree, to demonstrate the generalization
capabilities of the model.

4. Comparison with an state-of-the-art model for predicting net-
work KPIs.

5. Inference and training speed.

Apart from 10-fold cross-validation, the tests are performed with
the testing subset. This subset is obtained dividing the dataset selecting
samples randomly, in a proportion of 80% training, 10% validation and
10% testing.

7.1. Prediction error with different slice types

Firstly, the prediction error is evaluated across the different types of
network slices: eMBB, URLLC, and mIoT. The performance of GNNet-
Slice is analyzed using the SMAPE. Table 5 presents the SMAPE errors
for each slice type, indicating the level of prediction accuracy achieved.

Furthermore, Fig. 13 illustrates the cumulative distribution func-
ions (CDFs) of the relative error in predictions for each slice type:
MBB, mIoT, and URLLC. The relative error was calculated as the per-
entage difference between predicted and actual values relative to the
ctual values. Each CDF curve represents the proportion of predictions
alling below a given relative error threshold, showing the accuracy
istribution across the three slice types. In all cases, the curves indicate
hat most relative errors are close to zero, demonstrating the model’s
igh predictive accuracy. The mIoT slice shows a slightly broader error
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Fig. 13. Cumulative Distribution Functions (CDF) of the relative error of the predictions testing the presented model.
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distribution compared to eMBB and URLLC, yet it remains within an
cceptable range, as further seen by the results in Table 5. This suggests

that GNNetSlice is able to maintain reliable predictions across various
ervice classes.

Additionally, we observed that the SMAPE errors for delay, jitter
nd losses, when analyzed with respect to the parameter 𝛿, exhibit
tability within a regular and bounded range. This underscores the
obustness of GNNetSlice in maintaining consistent prediction accuracy
or multiple over and underprovisioning scenarios.

Summing up, these results demonstrate GNNetSlice’s effectiveness
in accurately predicting network performance metrics across diverse
network slices, with minor variations observed in prediction error
across different slice types.

7.2. Cross-validation

Secondly, the results of a 10-fold cross-validation are presented,
using the entire dataset to assess the generalization of GNNetSlice. The
cross-validation results are depicted in Fig. 14, where boxplots illustrate
the distribution of SMAPE errors for delay, losses, and jitter prediction
across the folds. The procedure of the 10-fold cross-validation is to
eparate the entire dataset in 10 random splits, and test the model with
 different split each time, using the rest of splits available to train the
odel. The typical number of folds of a cross-validation is 10, as seen

n [57].
Overall, the cross-validation reveals a stable performance of GN-

NetSlice across different network performance metrics. Specifically,
the SMAPE errors for delay prediction range between 2% and 5%,
indicating consistently accurate predictions within a narrow range of
error. Similarly, the errors for losses prediction fall between 1.8% and
.5%, while the errors for jitter prediction range from 0.8% to 3.3%.
hese results demonstrate the robustness of GNNetSlice in capturing
nd predicting various network performance metrics, generalizing well
o unseen data.

7.3. Topological generalization

Thirdly, we evaluate the performance of GNNetSlice using two
topological properties: the number of nodes of each original graph ob-
tained from the Internet Topology Zoo, and the average nodal degree.
The results of this analysis are presented in Fig. 15. The first column
llustrates the SMAPEs of GNNetSlice when predicting flow delay, losses

and jitter across different graph sizes, from 5 to 100 nodes. Across
ll scenarios, the model consistently demonstrates low levels of error,
ndicating its robustness in accurately predicting the desired flow KPIs.
he second column focuses on the SMAPE of the flow predictions,
ategorized by the average nodal degree of the original graph. Despite
he variety of configurations, with an average nodal degree from 1.5
o 4.5, GNNetSlice maintains stable and low error rates. Some outliers
re observed, mainly because of the large number of graphs inside the
 a
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Fig. 14. SMAPE errors for delay, losses, and jitter prediction with the 10-fold cross-
validation.

Table 6
Ablation study GNNetSlice model SMAPE results on test dataset for different modifica-
ions, including the average error change for each modification.
Modification Delay Loss Jitter Change

GNNetSlice (no changes) 5.22 2.04 1.95 N/A
Remove GraphConv layer 12.16 13.79 9.30 +357.5%
Remove queue input data 9.26 13.54 7.02 +280.9%
Remove ReLU 11.11 14.07 6.92 +301.3%

range of 10–19 nodes and nodal degree 2–2.5. Another example is an
increased SMAPE in the range 3–3.5, as the number of samples is much
ower in that range. Even in this cases, the prediction error stays in an
cceptable range.

Overall, this analysis provides an evidence of GNNetSlice’s effective-
ess in producing accurate predictions. The stable and low error rates
bserved across diverse number of nodes and nodal degrees highlight

the model’s ability to generalize well and make reliable predictions.

7.4. Ablation study

An ablation study is applied on the GNNetSlice model, to check the
mportance of the different model components. The SMAPE for delay,
oss, and jitter is analyzed under three different modifications of key
omponents of the network: removing one layer of the two GraphConv
ayers, removing input data from the queues in the input graph, and
inally the deletion of the intermediate ReLU activation function. The
mpact of these modifications is shown in Table 6.

The ablation study demonstrates that each component removed
lays a critical role in the GNNetSlice performance. Removing any of
hese components leads to increased prediction errors for delay, loss,
nd jitter, with the greatest impact observed when a layer is removed.
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Fig. 15. SMAPE of the predictions of GNNetSlice, per number of nodes and average
odal degree.

Table 7
Comparison of the most common error metrics of the predictions between GNNetSlice
nd Routenet-Fermi.

GNNetSlice RouteNet-Fermi

Delay Losses Jitter Delay Losses Jitter

SMAPE 5.22 2.04 1.95 65.5 6.87 4.86
MAE 0.0042 0.0022 0.0019 0.259 0.071 0.124
MSE 0.0016 0.0003 0.0002 11.868 0.005 0.008
R2 0.89 0.95 0.88 0.56 0.76 0.84

This analysis suggests that the original configuration of the model is
optimal for minimizing prediction errors, as all the main elements are
required to maintain good accuracy.

7.5. Comparison with state of the art models

Next, we compare the performance of GNNetSlice with a state-
of-the-art model, RouteNet-Fermi [38], in predicting network perfor-

ance metrics such as delay, losses, and jitter. Both models are trained
nd tested using the same subsets of the simulated data.

Table 7 presents a comprehensive comparison of SMAPE, MAE,
SE, and R2 values obtained by both models across the three prediction

asks with the provided dataset. Remarkably, GNNetSlice consistently
utperforms RouteNet-Fermi across all evaluated metrics. GNNetSlice
emonstrates lower SMAPE, MAE and MSE values, indicating more
ccurate predictions with reduced errors. Additionally, the higher R2

alues for GNNetSlice indicate a stronger correlation between predicted
nd actual values, signifying superior explanatory power.

These findings confirm the capabilities of GNNetSlice to model
complex network slicing behaviors.
12 
7.6. Inference and training speed

During the testing stage, our model demonstrated an average pre-
diction time of 26 ms per sample for delay, jitter, and losses. Each sim-
ulation, aimed at achieving slightly more accurate results, required an
average of 1.7 h. This exemplifies the capabilities of AI/ML approaches
n B5G network management.

A notable strength of our proposed model is its remarkable ef-
ficiency during training. The model achieves swift convergence and
learning, exclusively using CPU resources. This not only contributes
to lower resource consumption but also facilitates rapid updates, en-
abling the model to adapt quickly to evolving datasets from real-world
scenarios.

8. Conclusions and future work

This paper introduces GNNetSlice, a model built to predict the
performance of network slicing in core and transport segment in 5G
and B5G networks. The model predicts essential performance metrics
(delay, jitter, losses) of all network flows. This predictive capability
empowers the network controller to make decisions regarding flow al-
locations, ensuring compliance with the SLAs of the associated network
slices. This makes it possible to safely test various slice configurations
before deploying them in production.

Our methodology relies on a data-driven approach, achieving a
good balance between speed and accuracy. Initially, we constructed a
dataset capturing the performance metrics of a network implementing
network slicing across the three primary use cases (eMBB, URLLC,
nd mIoT). This dataset was generated using a packet-level simulator.
ubsequently, we designed and trained a Graph Neural Network to

predict these metrics. The results demonstrate that GNNetSlice can be
sed effectively to provide accurate predictions for delay, jitter and
osses across diverse network scenarios. Notably, GNNetSlice exhibits
ow resource requirements, near-real-time prediction capabilities, and
n efficient training process.

In terms of future work, some encouraging improvements are fur-
her optimization of the attributes used, advanced feature engineering,
he incorporation of additional relations into the input graph, and
esting GNNetSlice on data from real testbed.
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