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Abstract

This paper presents a three-dimensional Progressive Failure Model based on the chain of

bundles able to represent the stiffness loss in unidirectional composite materials loaded in

the fibre direction. A representative volume element with a random distribution of fibres

with their own radius is considered. Complete stress distributions around fibre breaks are

obtained by associating a damage variable to the loss of stress transfer capability along the

ineffective length and applying local stress concentrations. The model has been validated

by comparing it against the literature results and exhibits good agreement with hybrids

and non-hybrid composites. The aim of this model is to simulate the tensile response

of unidirectional composite systems dominated by fibre fragmentation mechanisms us-

ing a very reduced computational effort, even for larger representative volume elements,

compared to micro-mechanical finite element models.

Keywords: A. Hybrid, A. Polymer-matrix composites (PMCs), C. Computational

modelling, C. Micro-mechanics

1. Introduction

Fibre reinforced polymers (FRP) are widely used in lightweight structures mainly

thanks to their high specific strength and stiffness. However, their quasi-brittle behaviour

and low toughness leads to fibre tensile failure with hardly any prior damage symptoms,

thus limiting their use and applicability [1]. One potential way to solve this problem is

with fibre hybridization [2]. In a hybrid composite, two kinds of fibres with different
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longitudinal failure strains are mixed. The mixture can be arranged on three different

scales [2], which are also able to be combined into: i) interlayer or layer-by-layer i.e. by

mixing layers of different fibres, ii) intralayer or yarn-by-yarn i.e. by mixing the fibres

within the layers but not within the separate yarns, and iii) intrayarn or fibre-by-fibre i.e.

by mixing the fibres completely at the yarn/tow.

A low elongation fibre (LE) has a low failure strain and a high elongation fibre (HE)

has a high failure strain. Thanks to this combination, the LE failure strain in a hybrid can

be larger than that in a non-hybrid composite. This phenomenon is known as the hybrid

effect [3]. Moreover, with the appropriate hybridization design, a progressive failure of

fibres under tensile load can be induced leading to pseudo-ductile behaviour [4]. Currently

[2], to explain the hybrid effect the scientific community outlines three main reasons: i)

changes in the development of the failure, ii) thermal residual stresses and iii) dynamic

effects.

Nowadays, changes in the failure propagation are assumed to be the main reason for

the hybrid effect. Because of the presence of flaws, the strength of brittle fibres is not

deterministic and follows a statistical distribution. When a fibre breaks, shear stresses are

transferred from the fibre to the matrix. As a consequence, the broken fibre recovers its

stress in a distance called the ineffective length, whereas the surrounding fibres withstand

stress concentration. Eventually, the neighbouring fibres of each broken fibre fail, thus

initiating several clusters of broken fibres which grow further upon loading. When one of

these clusters reaches a certain size, it propagates unstably and leads to the final failure.

Other phenomena, such as debonding, matrix cracking or yielding and fibre pullout, may

also contribute. Notwithstanding, in a hybrid composite the differences between the elas-

tic and geometrical properties and the failure strains can alter and delay the formation of

clusters. Moreover, by reducing the quantity of LE fibres in the hybrid, LE failure strain

can also be increased because of the size effects [5].

An additional and secondary cause of the hybrid effect is related to the residual stresses

generated during the manufacturing process [2]. Residual stresses appear when mixing

different populations of fibres with dissimilar thermal expansion coefficients, which leads

to different residual stresses in each fibre population.

The third reason given for the hybrid effect is the dynamic effect in the process of
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tensile failure. When a fibre breaks, the elastic energy that was sustained by that fibre is

released and becomes kinetic energy which dampens after some time. During this period,

dynamic loads propagate through the composite and increase the probability of failure.

However, in the case of a hybrid composite, the dynamic phenomena can be altered. Xing

et al. [6] demonstrated that in a hybrid composite two out-of-phase stress waves, one for

each fibre population, propagate after an LE fibre break. If both waves compensate each

other, lower dynamic loads are produced, leading to larger failure strains. However, this

topic has not been studied in depth and its importance remains unclear [2, 7].

In addition, the hybrid effect is also influenced somewhat by different parameters

which include the relative volume fraction between both fibres, strength distribution, fibre

dispersion, fibre stiffness ratios and the failure strain ratio. Other parameters, such as the

matrix stiffness or debonding, have no clear influence [3]. Moreover, the specimen size

effect on the hybrid effect is also unknown [8].

Over the past decades different authors have attempted to study hybrid composites

under fibre tensile loading. Hayashi [9] was the first author who observed the hybrid

effect in a carbon-glass layer-by-layer hybrid in an experimental test. Later, Zweben [10]

extended a shear-lag model to hybrid composites to obtain the hybrid effect analytically.

While Fukuda [11] improved the model further, it still has major limitations. According

to Swolfs et al. [3], Fukuda’s and Zweben’s models can be used as the upper and lower

bounds for predicting the hybrid effect.

Recently, Tavares et al. [12] presented a fibre-by-fibre micro-mechanical finite ele-

ment model (FEM) simulating fibre, matrix and fibre-matrix interphase damage [13]. The

results demonstrated the importance of the failure strain ratio of both fibres, the statistical

strength distribution and a progressive failure between both HE and LE fibres in obtain-

ing pseudo-ductility. However, the model requires high computational resources and is

limited to simulating a small number of fibres.

Okabe et al. [14, 15] presented an advanced shear-lag model able to represent the fibre

failure process of composite materials. The model represents the fibres through tensile

springs and the matrix through shear springs. The advantage of these types of models

is that they are simpler, faster and cheaper in computational cost than FEM models are.

Furthermore, they are still able to simulate the key physics involved, without being limited
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to only a few fibres as in the FEM approach. However, Okabe et al.’s model is limited

to hexagonal or square packings, which do not allow hybrid composites with fibres of

different radii to be studied.

Swolfs et al. [3, 5, 16–18] presented a strength model under the assumption of a

local load sharing rule, based on the chain of bundles approach from Rosen [19], Okabe

et al. [14, 15] and others [20, 21]. Unlike the model of Okabe et al., a random fibre

packing with each fibre with its own radius was considered. With their model, Swolfs et

al. demonstrated that larger LE strength dispersions, lower number of LE fibres, higher

HE fibre stiffness or larger failure strain ratios all ultimately lead to greater hybrid effects.

Fibre dispersion also showed an evident impact. However, Swolfs’ model [3, 5, 16–18]

attempts to predict the behaviour only up to the onset of LE fibre fragmentation, because

it does not capture a non-linear response attributable to fragmentation mechanisms. Thus,

it is unable to predict pseudo-ductility.

In recent years, an increase in the amount of experimental work conducted concern-

ing fibre hybridization has also been seen. Czél and Wisnom [22] hybridized thin carbon

fibre prepreg plies with standard thick plies of glass fibres. They found pseudo-ductility

with specimens of one and two plies of thin carbon. However, specimens with three and

four plies failed with unstable delamination. Later, Wisnom et al. [8] obtained simi-

lar findings. Moreover, they compared their results with a simplified version of Swolfs

et al. [5] strength model and obtained good agreement. Yu et al. [23] also manufac-

tured intermingled hybrid composites using aligned discontinuous fibres. By combining

high-modulus carbon and E-glass in the hybrid, good pseudo-ductile responses were also

obtained as a result of the carbon fibres fragmentation. Further to this, Jalalvand et al.

[24] developed a new simple analytical method to predict all possible damage mode maps

in unidirectional hybrid composites. By using the method as a design guideline, new hy-

brid specimens of a standard-thickness glass/thin-ply carbon hybrid were manufactured

and tested, leading to a good pseudo-ductile response. Quite recently, Fotouhi et al. [25]

tested quasi-isotropic high performance thin-ply carbon/glass hybrid laminates. Pseudo-

ductility was also obtained in all fibre orientations under tensile loading. Last but no least,

Czél et al. [26] hybridized thin-ply unidirectional interlayer all carbon-epoxy composites

comprising high modulus and high strength. Again, large pseudo-ductile responses were
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obtained.

Despite advances in the modelling and understanding of hybrid composites, there is

no local load sharing model for these materials that is capable of representing the pseudo-

ductile behaviour within a random distribution of fibres. At the moment, the exception to

this are the micro-mechanics FEM models which require huge computational resources

and so are unsuitable as a design tool or to perform parametric studies.

In the present work, the authors propose a new three-dimensional Progressive Failure

Model, (called here PFM) based on the chain of bundles which is able to accurately repre-

sent both progressive damage and pseudo-ductile behaviour in unidirectional composites.

The proposed model implicitly allows fibre fragmentation mechanisms to be captured,

thus estimating multiple breaks along the length of the fibre. A random distribution of

fibres of a given radius is considered. The methodology leads to different deformations

along the model, using the hypothesis that fibres work in parallel but taking into account

the local stress fields around each fibre break. The complete stress distribution around

the fibre breaks is obtained through two dependent approaches. Firstly, a damage vari-

able related to fibre breaks and to a shear-lag model is computed. Secondly, local stress

concentrations are applied through all stress recoveries. Thermal residual stresses and

dynamic loads are omitted but the model framework allows for its future implementa-

tion. The remainder of this paper is as follows: firstly, we present the model, which we

then validate by comparing it with the literature results, and finally some conclusions are

drawn.

2. Chain of bundles progressive failure model

2.1. Definition of the fibre random distributed RVE

A representative volume element (RVE) with a random distribution of fibres is gen-

erated to capture the interaction between the fibres and the matrix. The RVE represents,

on a micro-mechanical scale, a portion of a real material model containing the matrix

and a sufficient number of fibres. According to Trias et al. [27] and Zangernberg et al.

[28], the minimum transversal size of the RVE in an elastic model should be 50 times the

fibre radius (50×R). However, in a model with damage, the minimum size of the RVE

could be even larger to capture the fibre effects. Similarly, the RVE length in the fibre
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longitudinal direction should be long enough to ensure that the ineffective length will be

well captured. Some studies employed RVEs with a length of between 15×R and 40×R

[12, 29]. However, an RVE using these length values does not ensure a good prediction

of the fibre fragmentation. A congruent RVE length depends on the fibre and matrix elas-

tic properties as well the ineffective and debonding lengths. Thus, RVEs length with an

order of magnitude equal to several times the ineffective length should be used [5, 18].

Furthermore, size effects may occur. Therefore, the RVE must be big enough to capture

the micro-mechanisms of the damage, the stress redistribution around the broken fibres

during the failure process, and the clusters of fibre breaks on the different planes.

The model proposed considers an RVE that contains a certain number of parallel fibres

randomly allocated, with a total length L, height a, and width b. All the fibres are divided

into elements of constant length l. This leads to a domain consisting of a number of fibres

working in parallel and divided into different planes working in series, also known as

chain of bundles [19]. The RVE may represent a hybrid, where each fibre has its own

radius and properties, or a non-hybrid composite. Each fibre element is noted by the

sub-indices (p, q), where p is the plane identity ranging from 1 to Np, with Np being the

total number of planes, and q is the fibre identity ranging from 1 to Nq, with Nq being

the total number of fibres. The matrix is not really represented, but it is accounted for by

means of its stiffness and a shear-lag model. Fibres at the outskirts of the RVE are cut and

symmetric so that the geometry obtained is completely periodic. This schema is illustrated

in Figure 1. The random distribution of fibres is generated using the formulation of Melro

et al. [30], and extended to hybrid composites by Tavares et al. [12].

Because of the strength scatter of the fibres, each fibre element has a different tensile

strength, σu
p,q. To do this, a random number between 0 and 1 is applied to all elements,

Pp,q. Then, the strength σu
p,q of each element is obtained according to a statistical dis-

tribution, the element length l and Pp,q. Any statistical distribution could be adopted and

implemented in the proposed model. In the literature, the Weibull distribution [31] is most

commonly used to represent fibre strength, although other variants such as the bimodal

and the power-law accelerated Weibull distribution are also employed [32, 33].
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2.2. Constitutive equation

The model assumes the complete stress distribution on the RVE in two dependent

ways. On the one hand, when a fibre breaks, shear-lag stresses are transferred between

the fibre and the matrix, which can lead to debonding, matrix cracking, yielding, or a

combination of these [14, 34, 35]. Consequently, an ineffective length appears so that the

stress in the fibre is recovered. A shear-lag model is used to obtain the ineffective length

of a broken fibre element. According to Xia et al. [36], shear-lag models are accurate

in polymer matrix composites if the fibre stiffness is much larger than the matrix, the

matrix yields and the fibre volume fraction is relatively high. Assuming that the loss of

stress transfer capability produces a reduction in local effective stiffness, the shear-lag

model is implemented by simply updating the damage variable of all the elements inside

the ineffective length of the broken fibre. On the other hand, local stress concentration

factors (SCF) are applied through all stress recoveries, so that the neighbouring fibres to

a break are locally overloaded, increasing their failure probability. Therefore, the (SCF)

is assumed as a dimensionless parameter equal to 1 if the fibre element is not affected

by any break, or higher than 1 if it is affected by breaks. In the literature, the SCFp,q is

measured as the ratio between the real local fibre stress, σp,q, and the fibre far field stress,

σ∞p,q, where the stress is not influenced by the damage, fibre breaks or stress concentration

σp,q = SCFp,qσ
∞
p,q (1)

In this work, the main hypothesis is that all fibre elements in each plane work in parallel,

while all planes work in series. This means that all fibre elements in the plane undergo the

same deformation, εp, (evaluated in Section 2.4). As damage is different on each plane, a

different deformation is obtained along the model. Therefore, the effective stress is given

by relating the effective Young’s modulus and the deformation of the plane

σ̃p,q = Eq

(
1 − Dp,q

)
εp (2)

where Eq is the Young’s modulus of fibre q and Dp,q is the state damage variable on

element p, q. Therefore, the effective stress, σ̃p,q, depends on the stiffness and damage

distribution: the plane stiffness -by εp-, and the element stiffness -directly by Dp,q-, but it

does not take into account the stress concentration.

To obtain the real fibre stress, σp,q, it is necessary to relate the effective stress σ̃p,q,
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and the far-field stress, σ∞p,q, that appear in the definition of SCFp,q. To do that, a stress

ratio, Ωp, is defined

Ωp =
σ̃p,q

σ∞p,q
(3)

The stress ratio associated to each plane p is evaluated according to the plane level equi-

librium condition explained in Section 2.4. By putting together equations (1), (2) and (3),

the constitutive equation of a fibre element relates the real local longitudinal fibre stress

with the longitudinal plane strain

σp,q =
SCFp,q

Ωp
Eq

(
1 − Dp,q

)
εp (4)

When the element’s tensile stress σp,q exceeds its strength σu
p,q, the element fails and its

damage variable Dp,q is set equal to 1. This causes an ineffective length in the broken fibre

which is represented as damage in all the elements inside the ineffective length. Therefore,

damage is equal to 0 for a pristine fibre element, equal to 1 for a broken fibre element, or

between 0 and 1 for a fibre element that is influenced by the ineffective length predicted

by a shear-lag model. In the following, how to evaluate Dp,q and SCFp,q is explained.

The PFM is able to use any model to predict the ineffective length. In this work,

the widely used Kelly-Tyson [35] shear-lag model is adopted, which assumes a perfectly

plastic matrix leading to a linear stress recovery. Therefore, the ineffective length Lin
p,q of

a broken fibre is given by

Lin
p,q =

Eqrq

2τq
εp (5)

where τq is the shear yield strength of the matrix for fibre q and rq is the radius of fibre q.

Note that both can be different for each fibre population in the case of a hybrid composite.

The Kelly-Tyson model leads to different ineffective lengths depending on the elastic and

geometrical properties and increases with the strain as the load is incremented.

As previously outlined, the damage variable, (calculated assuming the loss of stress

transfer capability in the ineffective length), produces a reduction of local effective stiff-

ness. Thus, a gradual decrease of damage from 1 at the position of the break, to 0 at both

ends of the ineffective length (see Figure 2a and Figure 2b) is applied. As fibres may fail

many times along their length, different ineffective lengths may overlap. Then, the highest

damage always prevails for each element inside overlapping stress recoveries. Another
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potential case is an element failure located close to the boundaries of the model. In that

case, the ineffective length is not fully recovered, (see Figure 2 c). According to these

hypotheses, an element p, q is affected by each break in the fibre q at each plane i with

Dp,q =


max

Lin
i,q − |i − p| l

Lin
i,q

 ∀i :
(
Di,q = 1

)
∪

(
|i − p| l < Lin

i,q

)
0 otherwise.

(6)

In general, according to the literature [29, 37, 38], the SCF of an affected fibre element

(p, q) around a broken element (i, j) can be predicted with two interacting functions: one

which depends on the radial distance between both fibres, δ(q− j), and the other which

depends on the plane position along the ineffective length, λ(p−i). A schematic example of

the SCF for a fibre around a broken one is shown in Figure 3. The interaction functions

δ(q− j) and λ(p−i) can be parametrized with computational micro-mechanics studies (for

example the work of Swolfs et al. [16, 18, 29, 39]), or can be formulated with analytical

approaches (such as the Zhou and Wagner [37], and Eitan and Wagner [38] models). The

corresponding functions are shown in Table 1.

It should be highlighted that in order to simplify the model, the widely used Kelly-

Tyson shear-lag model was adopted to predict the ineffective length. Nonetheless, the SCF

models of Eitan and Wagner and Zhou and Wagner are based on Cox’s shear-lag model

[34, 38] and Nayfeh’s shear-lag model [37] respectively. This means that the SCFs are

calculated using a different physical principle than the ineffective length. Nevertheless,

we assume it is a reasonable approach considering the complexity involved in the process

of fibre breakage. In any case, the functions to predict the SCF and the ineffective length

are an ‘exchangeable part’ in the proposed Progressive Failure Model. Thus, any another

model to predict the SCF or the ineffective length could be used instead.

Whenever different broken fibres are present, the SCF of an affected fibre (p, q) is

obtained by assuming a linear superposition of the contribution given by all the breaks on

the fibres. However, the SCF is bounded by the limitation of transfering load to the fibre

by shear-lag. On the one hand, the elements inside any ineffective length (elements where

0 < Dp,q < 1) have their stress limited by the shear-lag model. Therefore, only intact

fibre elements (Dp,q = 0) can be over loaded by the SCF. On the other hand, another

important related fact is to secure the stress continuity at the end of an ineffective length
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of a broken fibre. In the last element in the ineffective length region, no SCF is applied,

but the subsequent elements can cover part of the SCF. To achieve this continuity, SCF

is limited in the elements close to ineffective length regions also in accordance with the

shear-lag limitation over load transfer to the fibre. Thus, the SCFp,q expressed in a general

form is

SCFp,q =

 min
(
SCF0

p,q, SCFL
p,q

)
∀p, q : Dp,q = 0

1 otherwise,
(7)

where SCF0
p,q is the SCF predicted by the linear superposition of the contribution of all

the fibre breaks using the interacting functions as

SCF0
p,q = 1 +

Np∑
i=1

Nq∑
j=1

δ(q− j) λ(p−i)

[
Di, j = 1

]
(8)

where here [•] are the Iverson brackets and define 1 if • is true, and 0 if it is false. SCFL
p,q

is the SCF limit according to the shear-lag capacity to transfer load to the fibre, and is

calculated as the slope defined by the stress gradient of the nearest ineffective length:

SCFL
p,q = min

 1
Lin

i,q

|i − p| l

 ∀i : Di,q = 1 (9)

The constitutive equation presented here allows the fibre fragmentation mechanism

to be captured by means of the fibre breaks and its associated damage variable. The

redistribution of stress using the shear-lag model permits several breaks along the length

of any fibre. However, other mechanisms, such as delamination, are ignored by the model.

Nonetheless, neglecting delamination is an acceptable assumption in the failure prediction

of non-hybrids and of an intrayarn hybrid, where the different fibre populations are mixed

at the fibre level. In other hybrid configurations, such as an interlayer hybrid where the

different fibres are located in different layers, delamination should be considered.

2.3. Element stiffness, plane stiffness and global RVE stiffness

As previously mentioned, the proposed methodology leads to different elongations

through the domain, causing a dissimilar strain for each plane εp. The approach proposed

is to compute the strains of each plane according to the element’s stiffness and the initial

hypothesis that fibres work in parallel and planes in series.

The progressive failure is formulated using the stiffness damage of each fibre element,
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Dp,q. To do so, Hooke’s law of an element under tensile stress defines the longitudinal

stiffness of a single fibre element, kp,q, with

kp,q = Eq

(
1 − Dp,q

) Aq

l
(10)

where Aq is the cross-sectional area of fibre q given by Aq = sq πr2
q, and where sq is a

factor which guarantees the appropriate area of not entire fibres on the domain will be

considered (sq = 1 for entire fibres and sq < 1 for fibres located at the corners, or the

outskirts of the RVE).

The total stiffness of each plane can be obtained by assuming that all fibre elements in

the plane and the matrix stiffness work in parallel

kp =

Nq∑
q=1

kp,q + Em
Am

l
(11)

where the matrix behaviour is assumed to be linear elastic, with Em being the matrix

Young’s modulus, and Am the matrix cross-sectional area of the RVE, Am = a b−
∑Nq

q=1 Aq.

Similarly, the total stiffness is calculated by assuming that all planes work in series

K =

 Np∑
p=1

1
kp


−1

(12)

2.4. External and internal equilibrium

Because of mechanical equilibrium, the internal force of each plane, Fp, must be equal

to the total external force, F, sustained by the system so that F = Fp. The total external

force can be found by relating the current total stiffness, K, and the global longitudinal

homogenized strain, ε0, given in Section 2.6. Similarly, the force of each plane can also

be obtained by relating the plane stiffness and the strain of the plane leading to

F = Fp K ε0 L = kp εp l (13)

Therefore, εp is obtained as a function of ε0 with

εp =
K L
kp l

ε0 (14)

To maintain local load equilibrium, the aggregation of the loads of the fibres and the

matrix, must be equal to the load of the plane, therefore

Fp = kp εp l =

Nq∑
q=1

σp,qAq + εpEmAm (15)
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By substituting equation (4) in (15), and re-organizing, Ωp can be found as

Ωp =

∑Nq

q=1 SCFp,qEq

(
1 − Dp,q

)
Aq

kp l − EmAm

(16)

where Ωp as result of a plane level equilibrium becomes constant to all fibre elements in

plane p. An additional formulation of Ωp is obtained by substituting (11) in (16) leading

to

Ωp =

∑Nq

q=1 SCFp,qEq

(
1 − Dp,q

)
Aq∑Nq

q=1 Eq

(
1 − Dp,q

)
Aq

(17)

Once Ωp has been evaluated, all σp,q can be calculated from equation (4) and com-

pared with their strengthσu
p,q. It is worth mentioning that small deformations are assumed.

Thus, the element length l, total RVE length L and cross-sectional areas Aq, Am remain

constant.

2.5. Composite homogenized stress and break density

The homogenized composite stress is obtained as an average of both element stresses

and matrix stress, weighed by their volume fraction. For a non-hybrid, this leads to

σ0 =
vf

NpNq

Np∑
p=1

Nq∑
q=1

σp,q +
1 − vf

Np

Np∑
p=1

Emεp (18)

where vf is the total fibre volume fraction.

For a hybrid composite, the average of the fibre stress must be calculated indepen-

dently for each fibre type to capture the differences in the cross-sectional area

σ0 =
vf1

NpN1

Np∑
p=1

∑
q∈f1

σp,q +
vf2

NpN2

Np∑
p=1

∑
q∈f2

σp,q +
1 − vf1 − vf2

Np

Np∑
p=1

Emεp (19)

where vf1 and vf2 are the relative fibre volume fractions of each fibre population in the case

of a hybrid, and N1 and N2 are the number of fibres in populations f1 and f2, respectively.

The break density is calculated by dividing the number of broken elements into the

total RVE volume as

ρb =
1

a b L

Np∑
p=1

Nq∑
q=1

[
Dp,q = 1

]
(20)

where [•] is the Iverson bracket. In the case of a hybrid composite, the break density of

each population can also be calculated with the respective number of broken elements.

12



2.6. Algorithm procedure

A controlled monotonic increment of longitudinal displacement is performed along z

direction to guarantee a stable tensile damage process. Hence, each new loading step t

starts by increasing the current longitudinal displacement applied, (u)t, with

(u)t = (u)t−1 + (∆u)t (21)

where (u)t−1 is the displacement from the previous step, and (∆u)t is the displacement

increment. In each load step, the longitudinal displacement and the global longitudinal

homogenized strain, ε0, assuming a uni-axial behaviour, are both related by the total

length of the model with (
ε0

)
t
=

(u)t

L
(22)

Following this, the stiffness, forces, strains and Ωp are first estimated with the dam-

age variable and the SCF from the previous step with equations (10), (11), (12), (14) and

(17). Note that, in the first step t = 1, all damage variables Dp,q are equal to zero, and all

SCFp,q are equal to one. If there are broken elements, then the ineffective length, damage

variable and the SCF are calculated with the estimated stiffness, forces, strains and Ωp

using equations (5), (6) and (7). As the damage has changed, the stiffness, forces, strains

and Ωp are re-calculated to obtain the true actual current magnitudes. Next, the element

stresses are computed with equation (4). If no elements break, the composite stress and

break densities are evaluated with equations (18), (19) and (20). If new elements fail, the

damage Dp,q of all new broken elements is set equal to 1 and the same procedure is re-

peated without increasing the applied displacement and with the current damage and latest

calculated SCF, until no more failures happen in the current step. When no new elements

fail, a new step is started by updating (u)t and
(
ε0

)
t

with equations (21) and (22). This

procedure is shown in the flowchart in Figure 4. The model stops when either all elements

in a plane are damaged, or the composite stress has decreased by a pre-defined percentage

of maximum load value. For non-hybrid composites, where a brittle failure is expected,

the simulation is stopped when the stress decreases 10% from the maximum reached. In

a hybrid composite, LE fibre population could fail originating a large load drop. To avoid

an early end of the simulation before HE fibre failure, the calculation is stopped when

the stress decreases more than 80%. The model was implemented in MatLab (The Math-
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Works Inc., USA) [40] and Python programming language (Python Software Foundation,

https://www.python.org/). The results can be exported into ParaView (Kitware Inc., USA)

[41] for visual post-processing.

3. Results and discussion

3.1. Non-hybrid UD T700S and M40 carbon fibre epoxy

Two different non-hybrid UD composites consisting of T700S-Epoxy and M40-Epoxy

were simulated using the proposed PFM. The results were compared with the reported

experimental data in Swolfs et al. [18] and Koyanagi et al. [42] respectively, in an attempt

to validate the model. All model properties shown in Table 2, except the estimated matrix

and SCF related properties, were also taken from [18] and [42]. The tensile behaviour of

each composite system was performed with all three models shown in Table 1 to observe

their impact on the final failure. The parameters P1 and P2 were taken to be P1 = 6.12

and P2 = 7.74, as in [18].

Like [18], a bimodal Weibull distribution was applied to assign the strength, σu
p,q, to

each fibre element of the T700S composite with

Pp,q = 1 − exp
(
−

(
l

L0

) (
σu

p,q

σ01

)m1

−

(
l

L0

) (
σu

p,q

σ02

)m2)
(23)

Whereas, according to [42], a traditional Weibull distribution was applied for the M40

composite using

Pp,q = 1 − exp
(
−

l
L0

(
σu

p,q

σ0

)m)
(24)

where Pp,q is a random number between 0 and 1, L0,m, σ0, σ01,m1, σ02 and m2 are Weibull

parameters and σu
p,q is the corresponding strength of the fibre element.

A stiffening effect was assumed for the T700S composite only, to be consistent with

[18]. Hence, the Young’s modulus of the fibres at a step t was given as described in

Toyama and Takatsubo [43](
Eq

)
t
= E0 + 1000

(
4133.6

(
ε0

)
t
− 70331

(
ε0

)2

t

)
(25)

The initial Young’s modulus, E0, was chosen to be consistent with [18].

The main issue in defining the model was to decide on the appropriate width, thick-

ness and length of the RVE. These dimensions had to be as close as possible to the real
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specimen but still ensure that the model would be workable. To observe the influence the

RVE size has on the results, RVEs of a width and thickness of 50×R, 100×R, 150×R and

200×R —where R is the fibre radius— were generated. Figure 5 shows a cross-section

view of an example of the fibre distributions obtained.

The RVE length of the T700S was 1.54 mm for all cases, which corresponded to the

length of the testing coupon [18]. However, for the M40, the experimental length was

150 mm [42], which is too long to be simulated while maintaining an appropriate small

element length. Thus, a first previous study was performed with the M40 composite to

determine the sensitivity of the results for both the RVE length L and the element length

l. The results obtained from this analysis (Figure 6) suggested that an element length

below 3×R is small enough, while an RVE length of 25 mm is acceptably long enough.

Hence, the RVE length L of the M40 composite was set to 25 mm. Consequently, an

element length l of 3.5 × 10−3 and 8.3 × 10−3 mm for the T700S and M40 composites,

respectively, was applied. These values were taken as a compromise between accuracy

and computational time.

In addition, the variability in the results caused by the randomness of fibre position

and fibre strengths had to be considered. Thus, all simulations of each size and SCF

model were solved 40 times with different fibre distributions, leading to a total of 480

simulations for each composite.

Considering all the inevitable inaccuracies in the modelling assumptions and in the

input data, the predicted ultimate strain and strength presented remarkable agreement with

the given experimental data for both the T700S and M40 composites, especially for the

largest RVE sizes. For the T700S composite, the proposed PFM predicted in the largest

RVE, a mean failure strain of 2.14% with the Swolfs SCF model, and of 2.07%, using

the Eitan SCF and the Zhou SCF models which over-predict the experimental result of

1.89%, but are close to the 2.17% prediction of Swolfs’ strength model [18]. Similarly,

for the M40 composite the models predicted a mean failure strength between 2511 MPa

and 2572 MPa, albeit with a small over-prediction of 2310 MPa for the experimental one

as well.

The obtained failure strain and stress decreased as the RVE cross-sectional size in-

creased; which is coherent with the size effect. These findings suggest that an RVE with a

15



width and thickness size of 50×R (adequate for elastic predictions according to [27, 28])

is not enough to predict unidirectional composite failure mechanisms. The error bars

within the 95% confidence intervals in Figures 7 and 8, decrease with larger RVE sizes.

The size effect was remarkably less pronounced in the Swolfs et al. [18] SCF model.

To better understand the differences between the SCF models implemented, a plot exam-

ple of the predicted SCF with all models is shown in Figure 9. As can be seen, the Swolfs

SCF model predicts a much larger SCF at a smaller centre-to-centre distance, dc
q− j, to the

broken fibre. However, the SCF decreases much faster by increasing, dc
q− j, in comparison

to the other models. Therefore, the Swolfs SCF model is more localized than the others.

This should explain why the size effect is smaller with the Swolfs model: causing SCF

in a smaller centre-to-centre distance means that fewer fibres are needed to accurately

represent stress re-distribution around fibre breaks. The Zhou and Wagner and Eitan and

Wagner SCF models both estimate the same stress peak, but the SCF along the ineffective

length is different. For the Eitan and Wagner model, the SCF distribution along the inef-

fective length is narrower and affects only a small region of the intact fibres close to the

broken fibre. By increasing dc
q− j, the SCF distribution along the ineffective length tends

to coincide with the Zhou and Wagner model.

The cluster evolutions, with the T700S composite for each SCF model, are shown

at different instants close to final failure in Figure 10. It can be observed that groups of

clusters formed with all models. These clusters increased in size as the load was incre-

mented until a critical cluster propagated and led to final failure. Even though the same

fibre strengths were used with all three SCF models, the failure procedure was clearly dif-

ferent. Not only was the failure strain different, but so too were the clusters formed at the

different places in the model. Moreover, final failure, due to unstable cluster propagation,

also happened at a different location.

By observing the results obtained, it is not possible to conclude if an SCF approach

is more accurate than the others. Indeed, the results show that the SCF model has only

a relative influence on the predicted failure. The significant difference between the SCF

models analysed is the formulation basics and the nature of the identification parameters.

The Zhou and Wagner model and the Eitan and Wagner model are formulations totally

based on theoretical shear-lag assumptions. These models need a major number of pa-
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rameters, which are not always simple to estimate, such as ψ or rm. However, the Swolfs

SCF model proposes a completely different approach, by where the SCF is obtained by

fitting results from a micro-mechanic finite element analysis using a relatively large RVE

with hundreds of fibres and a long length.

Both composites presented a different failure. The T700S composite experimented

some stiffness loss before final failure, whereas the M40 composite exhibited a very brittle

failure, as seen in Figures 11a and 12a. This effect is highlighted by the evolution of the

break densities in Figures 11b and 12b, as the curve of the M40 presents a more sudden

degradation than that of T700S. The break density of T700S was over-predicted by the

model compared to the experimental results, as in Swolfs et al. [18], which could be the

consequence of inaccuracies in the model or in the experimental data. A summary of

the results obtained is presented in Table 3. The total computational time is also shown

for each set of simulations and presented a strong exponential increase by increasing the

width/thickness of the RVE. The simulations using the Swolfs SCF model needed smaller

computational time in the PFM. However, it must be remarked that the two constants

(P1 and P2) used by this SCF model are obtained from micromechanical finite element

analyses which represent a considerable effort.

3.2. Hybrid UD AS4-M50S carbon fibres/epoxy

A UD intrayarn hybridization within M50S carbon (LE fibre) and AS4 Carbon (HE

fibre) with epoxy matrix was simulated at different LE relative hybrid volume fractions.

All data, shown in Table 2, was taken from Tavares et al. [12]. In order to carry out a

clean comparison with [12] FEM results, the simulations were performed using the same

RVE dimensions. Thus, RVEs with width, thickness and length of 15×R were generated,

with R being the largest fibre radius in the RVE. It is important to remark that while such

a small RVE is not big enough to properly represent the failure process accurately, it is

the appropriate configuration to compare the PFM simulation with the micro-mechanical

FEM results. A Weibull distribution extrapolated to the total gauge length (instead of the

element length) was also used:

Pp,q = 1 − exp
(
−

L
L0

(
σu

p,q

σ0

)m)
(26)

where the element length L was set to 0.35 × 10−3mm.
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The SCF model used was from Swolfs et al. [18]. In a hybrid composite the ap-

propriate SCFs profiles depend on the stiffness ratio between the broken and the intact

fibre (E j/Eq). Three combination cases are then possible: i) a broken LE fibre causing

SCF to an HE fibre (E j/Eq = 2.05), ii) a broken HE fibre causing SCF to an LE fibre

(E j/Eq = 0.49), and iii) a broken fibre (LE or HE) causing SCF to a fibre of the same

population (E j/Eq = 1). Swolfs et al. [39] provided the SCF for E j/Eq = 3.71 and

E j/Eq = 1.85. Thus, interpolation and extrapolation was performed in between to obtain

the SCF for E j/Eq = 2.05 and E j/Eq = 0.49, respectively. These profiles are shown in

Figure 13a. When either a broken LE fibre causes SCF to an intact LE, or a broken HE fi-

bre causes SCF to an intact HE fibre, the profile shown in Figure 13b was assumed, which

was also taken from [39]. Thus, the corresponding parameters P1 and P2 from Table 1 are

P1 = 2.982, P2 = 3.068 for E j/Eq = 3.71, P1 = 1.908, P2 = 1.975 for E j/Eq = 1.85, and

P1 = 3.656, P2 = 3.053 for the SCF profile between fibres of the same population. Note

that for the two non-hybrid cases (a 100% HE composite and a 100% LE composite), the

same Swolfs et al. [18] SCF model used in Section 3.1 was applied. Moreover, it is worth

mentioning that the stress re-distribution between fibres of the same type (Figure 13b),

which share the same stiffness and radius, differs from the one obtained between fibres of

different type (Figure 13a), with distinct stiffness and fibre radii. Therefore, the SCF for

E j/Eq = 1 does not fit in between the curves of E j/Eq = 0.49 and E j/Eq = 1.85.

Within each hybrid relative volume fraction modelled (see Figure 14), 40 simulations

were solved leading to a total of 360 simulations, with each set of 40 simulations taking

approximately 9 minutes to be completed. The tensile stress-strain curves obtained are

shown and compared with the [12] FEM results in Figure 14 at LE hybrid volume frac-

tions of 0, 25, 50, 75 and 100%. A good agreement was obtained, which led to similar

failure responses.

Pseudo-ductility was predicted at LE relative volume fractions between 10 and 30%.

The other composites either failed prematurely, or the interaction between fibres was not

evident enough. This failure process is highlighted in Figure 15. For nearly all the hybrid

configurations it is possible to observe that the LE fibre break density does not increase

once a certain point is reached. That means that the LE fibre is fully fragmented and

is incapable of breaking further, even when the applied load is incremented. At low LE
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volume fractions between 10 and 30%, the breaks of the LE fibre saturated while the HE

fibre was failing, which led to pseudo-ductility until the final failure. However, at higher

LE volume fractions the failure was sudden and brittle. These results demonstrate that the

proposed model is able to capture fibre fragmentation, which is one of the most relevant

mechanisms associated to pseudo-ductility.

The hybrid failure strain is also presented in Figure 16. For LE volume fractions

lower than 70%, the hybrid failure strain was considered as the corresponding strain at

the second maximum in the stress-strain curve, which corresponded to the failure of the

HE fibre in the hybrid. However, for larger LE volume fractions, the first maximum was

considered as failure strain instead, because the drop in stress afterwards did not show

any evidence of a second maximum. These failure strain values correspond to the failure

of the LE fibres.

The small discrepancies between PFM and FEM are attributed to the shear-lag model,

the prediction of SCF and, in particular, the omission of dynamic phenomena. Nonethe-

less, the proposed model predicted similar results using a very simple model that can be

run on a regular computer in a short time, whereas Tavares et al’s [12] model requires an

enormous computational effort in a high power computational facility.

Future work should try to address the problems omitted here such as matrix damage,

thermal residual stresses and dynamic effects. Further parametric studies to design hybrid

configurations to maximise pseudo-ductility and the effect of unknown parameters such

as the effect of debonding or the effect of the size in the hybrid effect should also be

included.

4. Conclusions

A 3D progressive failure model based on the chain of bundles approach [19], was de-

veloped and validated. The model accurately represents the failure curve of unidirectional

composite materials with a random distribution of fibres. A complete stress distribution is

obtained by associating a damage variable to the loss of stress transfer capability along the

ineffective length, which produces a reduction of local effective stiffness. Consequently,

local stress concentrations are applied through all stress recoveries, so that the neighbour-

ing fibres are locally overloaded. The method, formulated in an explicit form, leads to
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different deformations along the length of the model.

The model has been validated with results available in the literature. Each simulation,

with different random distribution of fibres, has been repeated multiple times to evaluate

the uncertainly of the results. For non-hybrids, T700S-Epoxy and M40-Epoxy UD com-

posites were simulated and compared to results from Swolfs et al. [18] and Koyanagi

et al. [42], respectively. Moreover, an RVE size with transversal dimensions larger than

200×R is needed to capture the size effect inherent to the failure process, which is more

exigent than the required 50×R for elastic RVE predictions according to [27, 28]. Three

SCF models corresponding to the models of Swolfs et al. [18], Zhou and Wagner [37]

and Eitan and Wagner [38] were compared and found to have a slightly different failure

prediction. A significant difference between these formulations is the parameters iden-

tification method. The Zhou and Wagner model and the Eitan and Wagner model are

entirely based on theoretical assumptions. They need a significant number of parame-

ters and some of them are not easy to calculate or estimate. Meanwhile, the Swolfs SCF

model is parametrized with a simpler set of values. The exact identification of these must

be performed by a micro-mechanical finite element approach. However, all three models

led to a similar failure procedure which showed a tendency to form clusters of broken

fibres and which led to final failure. In any case, the Swolfs SCF model generates more

localized stress concentration factors, leading to predictions significantly less sensitive

to the size effect when compared to the other models. Finally, a hybrid carbon-carbon

(M50S-AS4) epoxy composite was simulated and pseudo-ductility was obtained at LE

volume fractions between 10 and 30%. The results were compared with those of Tavares

et al. [12] micro-mechanical FEM and also obtained good agreement, but with a much

faster and simpler model than the FEM is.
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Figure 1: Schema of the RVE for the Progressive Failure Model. The enumeration of the planes is sorted
from 1 to Np, with plane 1 always being the plane to the extreme right and plane Np to the extreme left.
Fibre numeration is random from 1 to Nq.

Figure 2: a) Schema of the ineffective length around a broken element, b) resultant damage distribution, c)
overlapping ineffective lengths and not fully-recovered stresses in a fibre with two breaks.
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Figure 5: Cross-section view examples of RVEs with T700S fibre a) 50×R, b) 100×R, c) 150×R, d) 200×R.
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Figure 8: M40 error bars for 40 simulations for each simulated RVE size for each SCF model compared
with Koyanagi et al. [42] experimental results, a) failure strain, b) composite failure stress.
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Figure 14: Stress-strain curves obtained for hybrid M50S-AS4 fibre compared with Tavares et al. [12] FEM
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shown.
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Figure 15: Break density-strain curves obtained for hybrid M50S-AS4 fibre composite when varying the
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SCF model Functions: radial distance δ(q− j) and ineffective length λ(p−i)

Swolfs et al.
[18] (∗)

δ(q− j) = −P1 ln

dc
q− j −

(
r j + rq

)
r j

 + P2

where P1 and P2 are two constants from a micro-mechanic model
and dc

q− j is the centre-to-centre distance between fibres q and j

λ(p−i) =
Lin

i, j − l |i − p|

Lin
i, j

∀(i, j) : l |i − p| < Lin
i, j

Eitan and
Wagner [38]

δ(q− j) =
ϕ j

π

where ϕ j = arcsin
(
r j/dc

q− j

)
λ(p−i) =

sinh βc
(q− j)

(
Lin

i, j − l |i − p|
)

sinh βc
(q− j)L

in
i, j

∀(i, j) : l |i − p| < Lin
i, j

where βc
(q− j) is Cox’s [34] shear-lag parameter:

βc
(q− j) =

1
r j

√√√√√√ 2Gm

E j ln
0.5dc

q− j

r j

where Gm is the matrix shear modulus.

Zhou and
Wagner [37]
(∗∗)

δ(q− j) =

(
1 −

ψl
r j

)
2ϕ j

π

where ψ is a friction coefficient

λ(p−i) =
sinh β j

(
Lin

i, j + 0.5l − l |i − p|
)

sinh β jLin
i, j

∀(i, j) : l |i − p| < Lin
i, j

where β j is Nayfeh’s shear-lag parameter, as given in [37]:

β2
j =

2
r2

j E jEm


E j

r2
j

r2
m

+ Em

(
1 −

r2
j

r2
m

)
1

4G j

(
1 −

r2
j

r2
m

)
+

1
2Gm

(
r2

m
r2

m−r2
j
ln

(
r2

m
r2

j

)
− 1

2

(
3 −

r2
j

r2
m

))


where G j and rm are the broken fibre shear modulus and the ra-
dius of the shear-carrying matrix cylinder

Table 1: Functions to obtain the stress concentration factor according to three different models. (∗) Swolfs
et al. [18] function along the ineffective length has been assumed. (∗∗) Zhou and Wagner [37] provided
equations for debonding and non-debonding regions. Here, only non-debonding regions are considered.
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Composite Fibre properties Weibull properties Matrix properties SCF properties RVE data
E, E0 G r m σ0 L0 Em Gm τ rm ψ L v f
[GPa] [GPa] [mm] [–] [MPa] [mm] [GPa] [GPa] [MPa] [mm] [–] [mm] [%]

T700S-Epoxy 197.9 78.53 3.5×10−3 m1 = 4.8 σ01 = 5200
10 3.0 1.11 40 42×10−3 0.5 1.54 55

m2 = 12 σ02 = 6100
M40-Epoxy 392.0 155.55 3.0×10−3 16 4500 25 3.5 1.29 50 36×10−3 0.18 25 60

AS4
-Epoxy

234.0 92.85 3.5×10−3 10.7 4275 12.7
3.76 1.39 50

- -
15×R 60

M50S 480.0 190.48 2.65×10−3 9 4600 10 - -

Table 2: UD composites and model properties.

Composite Experimental test SCF model Variable RVE width and thickness size (R is the fibre radius)
50×R 100×R 150×R 200×R

T700S-Epoxy 1.89 % [18] Swolfs et al. Failure strain [%] 2.23 ± 0.07 2.18 ± 0.08 2.16 ± 0.07 2.15 ± 0.07
Failure stress [MPa] 5341 ± 143 5287 ± 121 5264 ± 124 5243 ± 123
CPU time [h:mm:ss] 0:01:28 0:06:00 0:15:10 0:34:50

Eitan and Wagner Failure strain [%] 2.33 ± 0.05 2.22 ± 0.04 2.15 ± 0.03 2.07 ± 0.02
4740 MPa (*) Failure stress [MPa] 5491 ± 121 5352 ± 64 5219 ± 62 5075 ± 52

CPU time [h:mm:ss] 0:03:20 0:28:12 1:49:47 4:37:00
Zhou and Wagner Failure strain [%] 2.31 ± 0.06 2.20 ± 0.05 2.13 ± 0.05 2.07 ± 0.04

Failure stress [MPa] 5486 ± 112 5332 ± 84 5203 ± 104 5081 ± 73
CPU time [h:mm:ss] 0:03:14 0:25:59 1:40:16 4:59:00

M40-Epoxy 0.976 % (*) Swolfs et al. Failure strain [%] 1.09 ± 0.03 1.08 ± 0.02 1.07 ± 0.03 1.06 ± 0.03
Failure stress [MPa] 2584 ± 73 2561 ± 51 2534 ± 66 2511 ± 60
CPU time [h:mm:ss] 0:02:08 0:13:36 0:45:41 1:09:00

Eitan and Wagner Failure strain [%] 1.18 ± 0.03 1.13 ± 0.03 1.11 ± 0.02 1.09 ± 0.01
2310 MPa [42] Failure stress [MPa] 2768 ± 52 2657 ± 57 2610 ± 46 2572 ± 31

CPU time [h:mm:ss] 0:03:42 0:22:43 0:42:28 2:53:00
Zhou and Wagner Failure strain [%] 1.14 ± 0.02 1.10 ± 0.02 1.08 ± 0.02 1.07 ± 0.02

Failure stress [MPa] 2676 ± 50 2589 ± 51 2546 ± 49 2521 ± 54
CPU time [h:mm:ss] 0:02:51 0:27:26 0:24:22 2:30:00

Table 3: Obtained failure strains and stress with 95% normal distribution confidence intervals for 40 realiza-
tions of each RVE size and SCF model. T700S failure stress corresponds to the fibre failure stress, whereas
M40 corresponds to the composite failure stress. The CPU times are the mean values for each realization
(simulation). Simulations were run on an Intel i7-5820K 3.3GHz processor. (*) Estimated values.
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