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• Pseudo-ductility reduces stress concentration factor (Kt) by up to 50%.

• Increased nominal strength (σN ) recovery of notched pseudo-ductile spec-

imens due to reduced Kt.

• Closed form solution to determine pseudo-ductile Kt of elliptical and open

hole specimens.
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Abstract

Quasi-brittle materials like composites are notch-sensitive, and the stress

concentration factor (Kt) determines their strength knock-down. To alleviate

this notch sensitivity, researchers are pursuing pseudo-ductility to stimulate

stress redistribution around the notches. However, how such a pseudo-ductile

material reduces Kt or improves the nominal strength (σN ) in notched sub-com-

ponents (centre crack, elliptical hole and open hole) is unclear. In this work,

we analytically determine the Kt of typical notched specimens made of an ide-

alised pseudo-ductile material and show its accuracy using Finite Element (FE)

models. Kt increases after the specimen transitions from localised yielding to

net-section yielding. Then, we elucidate the size-effect behaviour of the notched

sub-components using FE models. The study reveals that the notched pseudo-

ductile specimens recover higher σN than their linear elastic counterparts, in

proportion to the Kt. However, pseudo-ductility decreases the σN for smaller

specimens, and the notch shape is unimportant in this region.

Keywords: Stress concentration factor, Pseudo-ductility, Nominal strength,

Numerical analysis, Analytical modeling

1. Introduction

Cut-outs, holes, and notches typically increase local stresses in a composite

structure. Through the stress concentration factor (Kt), these stress intensifiers

magnify the applied stress (σ) to Ktσ in the notch vicinity. This results in a
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structural response that falls between two extremes of notch sensitivity: “Totally5

notch in-sensitive” and “completely notch sensitive” (see Fig. 1). If the material

is ideally plastic, the magnified stresses will be redistributed once the applied

stress exceeds the plastic strength (σy), σ > σy, and this redistribution will cease

only when the entire failure plane surrounding the notch plasticises. Conversely,

if the material is brittle, the specimen will fail once the magnified stresses reach10

the material strength (Ktσ = σf ).

In a notched material, plasticity reduces the stress concentration factor and,

in consequence, the material retains more of the un-notched strength by moving

the elastic limit line (σf/Kt) upward (Fig. 1). Though composite materials lack

ductility, ply clustering (stacking plies of the same orientation together) leads15

to specimens with reduced notch sensitivity [1–3] thanks to stress relaxation

from splitting (intralaminar cracks) and delaminations [1]. However, these large

delaminations induce unacceptable nominal strength reduction, especially under

compression and bending loads. The quest for thin ply laminates (20 − 70 µm

per ply, which enhance un-notched strength and lesser manufacturing defects),20

exacerbates the issue of notch sensitivity due to their increased brittleness to

stress concentrators [1, 4, 5]. Therefore, reducing notch sensitivity is highly

desirable.

Pseudo-ductility features among the efforts to reduce the notch sensitivity

of composite laminates and aims to introduce controlled sub-critical damage25

mechanisms that redistribute the magnified stresses [6–8]. Ply level hybridi-

sation utilising thin-ply laminates – ply-by-ply stacks of alternating low and

high ultimate strain lamina – is the typical way of achieving pseudo-ductile

laminates [6, 9–12]. See Fig. 2 for the idealised stress-strain behaviour of such

a pseudo-ductile uni-directional and quasi-isotropic laminate. Despite several30

studies on notched pseudo-ductile specimens [6, 9–11], its influence on the stress

concentration factor is still unclear.

Nominal strengths of quasi-brittle materials are size-dependent, i.e., σN de-

creases when the specimens are scaled up for constant geometric ratios and

material properties (Fig. 1). Though stress redistribution is expected to re-35
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duce the Kt across all specimen sizes, this effect is apparent only in larger

specimens (Fig. 1). However, reduced notch sensitivity has been demonstrated

experimentally only in smaller single-radius pseudo-ductile specimens, R=3 mm

[10, 11, 13]. Furthermore, the nominal strength of single radius specimens is

inadequate to characterise size-effect (σN from several different scaled notch40

radii are necessary). Thus, numerical models offer a way to characterise the

impact pseudo-ductility has on the stress concentration factor and the nominal

strength.

The objective of this work is to examine the impact pseudo-ductility has on

the stress concentration factor and nominal strength of typical notches: Centre45

Crack (CC), Elliptical Hole (EH), and Open Hole (OH). The numerical analysis

relies on a previously implemented user-material model by the same authors [14]

representing pseudo-ductility. For completeness, we have a succinct overview

of this model in Appendix A. We extend the existing analytical Kt estimates

to incorporate pseudo-ductility (Neuber [15], Molski-Glinka [16] and Stowell50

[17]). In Section 4, we validate the Kt accounting for pseudo-ductility with FE

simulations of EH and OH specimens. We use the FE models to determine

the nominal strength of notched pseudo-ductile specimens considering the size

effect (Section 5.2). Then, we summarise the impact pseudo-ductility has on

nominal strengths by comparing the size-effect behaviour of linear elastic and55

pseudo-ductile materials for all three notches (Section 5.2.3). The estimated Kt

provides the nominal strength limits. Finally, we compare stress distribution

at peak load across the failure plane for small and large specimens of all three

notches for a pseudo-ductile material (Section 5.2.4).

2. Size effect of notched quasi-brittle materials60

Due to the presence of holes or cut-outs, there is a ductile to brittle failure

mode transition depending on the specimen size (Fig. 1). This embrittlement

resulting from the specimen size increase is attributed to the change in relative

length of the Fracture Process Zone, ℓFPZ , to specimen size (notch radius,
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R), ℓFPZ/R. The material’s characteristic length (ℓM ) introduced by Irwin65

[18] greatly captures ℓFPZ (ℓM ∝ ℓFPZ). The Irwin length, ℓM , is a material

property relating translaminar fracture toughness (GIc), elastic modulus (E),

and the ultimate strength (σf ). If the stress perturbation caused by the notch

is small with respect to the ℓFPZ (or cohesive zone), as in extremely small

specimens (R → 0), plastic collapse is expected and the nominal strength tends70

to material strength (σN → σf , un-notched strength line in Fig. 1). On the

other extreme, if stress perturbation is large in comparison to the ℓFPZ , as in

very large specimens (R → ∞), brittle failure is expected. This elastic limit

(Fig. 1) corresponds to σf/Kt except for sharp notches. The size effect, σN

vs ℓFPZ/R, for a geometrically similar structure results from asymptotically75

matching the elastic limit and the un-notched strength. The nominal strength

is the ratio of the peak load, Fu, to the net-section area, 2(W −R)t, given by,

σN =
Fu

2(W −R)t
(1)

where W and t are specimen width and thickness, respectively. The nominal

strength (σN ) of any notched structure, normalised by the un-notched material

strength (σf ), is [19, 20]:80

sN =
σN

σf
=

(
K−r

t + ℓ̄SEL

1 + ℓ̄SEL

)( 1
r )

ℓ̄SEL =
ℓSEL

R
=

ℓM
RF 2

=
EGIc

RF 2σ2
f

r = 2

[
1−

(
1

Kt

)] (2)

where ℓ̄SEL(= ℓFPZ/RF 2) is the normalised ℓFPZ accounting for the finite

width geometric correction factor, ℓFPZ = EGIc/σ
2
f . The parameter, r, is a

fitting parameter. Since the sN of the cracked specimens must also agree with

Linear Elastic Fracture Mechanics (LEFM) when R → ∞, r is defined as a

function of Kt (as r should be 2 in the elastic limit, when Kt → ∞). F is given85

by [21],

F =

[
1− 0.025

(
R

W

)2

+ 0.06

(
R

W

)4
]√

sec

(
πR

2W

)
(3)
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3. Methodology

3.1. Numerical characterisation of pseudo-ductility

Pseudo-ductility is typically achieved by sandwiching low strain (LS) plies

between high strain (HS) plies in the same orientation (ply-blocking) [6, 9, 22],90

see Fig. 2b, for example, glass-carbon-glass. Under uniaxial loading, the LS plies

fragment and delaminate from these fragment ends. Once fragmentation and

delamination saturate, the residual stiffness primarily originates from the high

strain (HS) plies, resulting in a stress-strain response mimicking that of metals,

Fig. 2a. To achieve quasi-isotropic stiffness with pseudo-ductile behaviour, these95

unidirectional (sub)laminates are stacked in desired orientations [9–11, 23], see

Fig. 2 for the stress-strain response. The resulting uniaxial stress-strain response

of such a quasi-isotropic laminate is shown in Fig. 2a. Indeed, the experimental

response lacks the plateau region [9–11, 23, 24].

We opted for a macro-scale model at the laminate level to characterise the100

quasi-isotropic pseudo-ductile behaviour. Accordingly, the entire laminate is

treated as an equivalent homogeneous material [25] and only the stress-strain

response is necessary for our purposes. Further, this approach enables a rapid

evaluation of various pseudo-ductile materials without being hindered by the

subjacent intricacies. For example, several parameters, such as the relative105

thickness, thickness, modulus, strength, and failure strain ratios of the LS to

HS materials, and interlaminar toughness, must all work in harmony to achieve

pseudo-ductility. However, macro-scale approaches can only capture the sub-

critical damage mechanisms that contribute to pseudo-ductility through changes

in stiffness, not its underlying mechanisms.110

We created a custom material subroutine to characterise the quasi-isotropic

pseudo-ductility – elastic linear-“plastic” behaviour – under plane-stress loading

with only in-plane damage mechanisms (see Figs. 2 and 3). For a detailed

description of the material model, refer to Appendix A and Subramani et al.,

[14]. In brief, the failure surface is determined by the principal strain criterion,115

and the principal directions are fixed at the damage onset. In the elastic regime,
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the slope is defined by E, while after yielding (ε > εy, pseudo-ductile regime),

a reduced slope of hE (0 < h < 1) is assumed until failure strength is reached.

During unloading in the pseudo-ductile regime (εy < ε < εf ), the response can

be traced back to the origin with slope miE, where mi is initially set to 1 to120

represent the integrity. It is not necessary to implement material softening after

failure initiation (ε > εf ) since we set the ultimate material strength to be equal

to the cohesive traction strength (σf = σc). Thus, the crack will be forced to

propagate in the a priori crack path, as illustrated in Fig. 4.

3.2. Non-dimensional analysis and design of experiments125

The nominal strength – or the nominal stress concentration factor – of any

notched structure is a function of both geometric and material parameters [19,

26, 27]. σN can be adequately characterised by,

σN = f (E, σy, εd, σf ,GIc, R,W, b) (4)

where b is the semi-minor notch radius (y-direction in Fig. 4).

Using principles of dimensional analysis [28, 29], Eq. 4 can be rewritten as130

p − q dimensionless parameters, where p and q are the number of independent

variables (p = 8) and the number of primary dimensions, respectively. Con-

sidering, force, N , and length, L, as primary dimensions (q = 2), we have six

non-dimensional variables, accordingly,

σN

σf
= fu

(
εy, εd,

σf

σy
,
EGIc

Rσ2
f

,
R

W
,
b

R

)
(5)

Owing to many variables, we further simplify Eq. 5. We have numerically135

verified the insignificance of the pseudo-yield strain, εy, so we exclude it; as

has also been done by others in [14, 30, 31]. Secondly, we assume a constant

half-notch radius-to-width ratio (R/W ) of 1/6 for all geometries. Rigorously,

the laminate thickness, t, must also be included in Eq. 4, but we exclude it by

assuming a unit thickness. Thus, Eq. 5 results in:140

σN

σf
= fu∗

(
εd,

σf

σy
,
EGIc

Rσ2
f

,
b

R

)
(6)
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Through the “one-factor-at-a-time” approach, we first consider varying the

material’s non-dimensional groups: εd and σf/σy(= sH), as we did in [14]. In

brief, we consider two studies (see Fig. 5): εdi study (constant sH = 1.6) and sHi

study (constant εd = 6.75%). Typical quasi-isotropic pseudo-ductile laminate

properties were considered in both studies, E1 = E2 = 25 GPa (e.g., glass-145

carbon-glass quasi-isotropic laminate [11]) and a pseudo-yield strain of 1.25%

(σy = 312.5 MPa). Further, εdi took the values of 0.75%, 1.75%, and 6.75% (h

= 0.5, 0.3, and 0.1) in the εdi study, Fig. 5a. In the sHi study, we considered

five strength ratios (sH) ranging from 1.075 to 2, Fig. 5b. We included a pure

linear-elastic case (εd = 0, εy = εf = 2%, σf = 500.0 MPa) to validate and150

benchmark the FE models.

Nominal strengths are notch shape-dependent [19, 26, 27], b/R, in Eq. 6.

We selected three different ratios of b/R (≈0, 0.5, and 1), to represent CC,

EH, and OH geometries, respectively, Fig. 4. In Eq. 6, we investigate size

dependency, EGIc/Rσ2
f , by increasing the half-notch size, R, from 0.2 to 160155

mm (10 different R). For EH, we considered only an elastic and a pseudo-ductile

material for all the notch sizes. While the length-to-width ratio does not affect

the nominal strength (Eq. 6), one must avoid potential edge effects along the

length direction. Given the computational cost of larger specimens, we selected

a variable length-to-width ratio but ensured a minimum of 1.6W , consistent160

with Xu et al. [32].

3.3. FE Models

We used the CC, EH and OH models to extract the nominal strength (or

the peak load) for each specimen size and material. We maintained a con-

stant translaminar fracture toughness, GIc, of 75 Nmm−1 in the cohesive ele-165

ments for all the models. We utilised the linear traction-separation-based co-

hesive elements (COH2D4) available in Abaqus (version 6.14) to represent the

crack. The constitutive model presented in Appendix A and in [14] were used

in the continuum plane-stress (CPS4) elements with the corresponding mate-

rial properties. We used an implicit solver with direct integration available in170
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Abaqus/Standard (*DYNAMIC, APPLICATION=TRANSIENT FIDELITY)

due to the non-linear dynamic nature of the strength analysis and created two-

dimensional, half-symmetric plane-stress models for each notch shape and notch

radius, R, ranging from 0.2 to 160 mm. The FE models and their associated

boundary conditions are shown in Fig. 4. Different meshes are created for each175

specimen width. The cohesive zone size (ℓFPZ = EGIc/σ
2
f ), stemming from

material softening, determines the element size. We ensure adequate cohesive

elements in the softening region [33]. Using these element sizes, we verified mesh

convergence in the models without pseudo-ductility, then scaled them based on

specific pseudo-ductile material properties (GIc and σf ). Elements also have180

a two-way bias (from the notch) towards both edges to minimise the element

count.

Finite element models allow the stress concentration factor (Kt) and the

elastic limit of notched specimens to be determined (Fig. 1). Furthermore,

they permit the validation of the analytical Kt models [15, 16] accounting for185

pseudo-ductility in Section 4. The pseudo-ductile Kt (K
P
t ) is determined using

a single half-notch-radius specimen (R = 4 mm). In this case, we perform

a linear elastic analysis by removing the cohesive elements in the FE models

described above. We determine the Kt (= σmax/σmean) by recording the notch

tip stresses (σmax) and the net mean stresses (σmean) from initial loading (zero190

stress) until material failure (σf ) for the EH and OH models.

4. Stress concentration factor for pseudo-ductile materials

Commonly, the elastic strength limits (σf/Kt) of EH or OH specimens are

determined using the Kt, given by handbooks such as [34], that assume the

material to be elastic. Pseudo-ductile materials re-distribute stresses and, in195

consequence, lower the concentration factor. Therefore, we modify existing Kt

models for metal plasticity (Neuber [15], Molski-Glinka [16] and Stowell [17]) to

account for pseudo-ductility. The modified KP
t can be represented by,(

KP
t

)
i
=

KE
t√

1 + Πi

(7)
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where, the subscript i indicate N , for Neuber, and MG, for Molski-Glinka and

KE
t is the elastic stress concentration factor. With ed = εd/εy, ΠN and ΠMG200

are given by,

ΠN =
ed
sH

ΠMG =
ed
sH

(
1 +

1

sH

)
= ΠN

(
1 +

1

sH

) (8)

Both Neuber,
(
KP

t

)
N
, and Molski-Glinka,

(
KP

t

)
MG

, predict a monotonically

decreasing KP
t with ed/sH . However, KP

t is expected to increase once the entire

crack plane is nearly “plasticised” (σmean > σy), i.e., the average stress in the

crack-plane is greater than the material yield strength. Thus, a better model205

is required to capture this phenomenon. The model of Stowell [17] captures it

for a circular hole in an infinite plate. Later Herbert et al.,[35], generalised it

to arbitrary notch configurations. The predictions of the Stowell model agreed

well with the experiments for a wide range of notches/fillets [35] – even at deep

‘plasticity”. Therefore, we modify the Stowell model for an idealised pseudo-210

ductile material (Fig. 2) in detail below.

According to Stowell [17] and Herbert [35], the plastic stress concentration

factor (KP
t ) for any notch is given by,

KP
t = 1 +

(
KE

t − 1
) ES (σmax)

ES (σmean)
(9)

where, ES(σmax) is the secant modulus of the material at the point of maximum

stress, i.e., crack-tip, and ES(σmean) is the secant modulus corresponding to the215

average stress in the failure plane, σmean. The adaptation to pseudo-ductility

is straightforward, see Appendix B, and the final form of the KP
t is given by:

Kt
P =


Kt

E if σmax < σy

KE
t +ΠN

1+ΠN
if σmax > σy and σmean < σy

KE
t −1+h(1+ΠN )

1+(KE
t −2)(1−h(1+ΠN ))

if σmean > σy

(10)
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5. Results

5.1. Effect of pseudo-ductility on the stress concentration factor

To validate the pseudo-ductile stress concentration factor analytical models,220

we compared their evolution (Eq. 7 and Eq. 10 for EH and OH for the case of

εd4), from yielding onset to material failure (εy < ε < εf ) with FE solutions.

The elastic stress concentration factor (KE
t ) for EH (b/R = 1/2, R/W = 1/6,

Fig. 4) and OH (R/W = 1/6) are 4.24 and 2.58, respectively [34]. The KE
t

obtained with the linear-elastic FE models (εd1) agree within 0.5% of the hand-225

book solutions for both the notches, thus validating the chosen approach.

The FE models display a pseudo-ductile Kt (K
P
t ) behaviour similar to that

of an elastic-plastic material [36], as seen in Fig. 6. The KP
t decreases from KE

t

until the entire failure plane “plasticised” and then increases. Only the Stowell

model (Eq. 10) captures such behaviour. Regardless of the notch shape, Neuber230

(Eq. 7) is in good agreement with the FE predictions under small-scale yielding

conditions, while Molski-Glinka (Eq. 7) over-predicts for both notches.

The agreement of the Neuber model (Eq. 7) with the FE solutions depends

on the notch shape. As Neuber modelled the notches as hyperbolic contours for

mathematical simplicity, the agreement range with the FE solutions decreases235

from an ed/sH of 3.5 for an EH to 2 for an OH, see Fig. 6. On the other hand,

the Molski-Glinka solutions agree only for very small ed/sH(< 1) regardless of

the notch geometry. The solutions of Stowell (Eq. 10) agree well with the FE

solution for the entire range of ed/sH , especially for the OH. Comparing at

the specific ed/sH (3.375) of the selected pseudo-ductile material (εd4), Stowell240

KP
t (1.51) is within 0.6% of the FE solution (1.52), whereas Neuber (1.23) and

Molski-Glinka (1.01) underpredict by 19 and 33%, respectively for an OH. On

the other hand, for an EH, at the same ed/sH , Neuber (2.02) predicts within

0.5% of the FE (2.03) solution, whereas Stowell (1.74) and Molski-Glinka (1.66)

underpredict by 14 and 18%, respectively.245

To further corroborate the Stowell model (Eq. 10), and later calculate the

elastic limit of σN , we obtained the OH pseudo-ductile Kt (KP
t ) using finite
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element (FE) models for all cases in the design of experiments, DOE (Fig. 5).

Fig. 7 demonstrates that the Stowell predictions are in good agreement with the

FE models for the entire range of ed/sH and for all the DOE in Fig. 5. The only250

deviation occurs in the case of sH1 (sH = 1.075, εd = 6.75%), where the Stowell

solution slightly overestimates the FE solution by 5% at worst. The significant

markers in the figure represent the exact ed/sH of the corresponding cases in

Fig. 5. Thus, the Stowell model (Eq. 10) can be reliably used to determine

the KP
t of any pseudo-ductile material represented by the behaviour shown in255

Fig. 3b.

Furthermore, we expect the presented KP
t responses to be general, as the

fracture process is characterised by the significant non-dimensional parameters

(Eq. 5). By carrying out the same process outlined in Section 4, we illustrate

this generality, see Appendix C. The Stowell model (Eq. 10), correlates well260

with a coefficient of determination (R2) of 0.87 and 0.99 for EH and OH cases,

respectively (See Fig. C.11).

The Stowell model’s success in Figs. 6 and 7 suggests that it can be adapted

to other material behaviours. We validate this by extending it to the stan-

dard plasticity model (Ramberg-Osgood power law) typical of metals [37] and265

verifying it with Chen et al.’s [38] results in Appendix D.

5.2. Effect of pseudo-ductility on the nominal strength

Un-notched strength (σN → σf ) represents the maximum possible nominal

strength, when R → 0, independent of the notch shape. However, the minimum

possible nominal strength is notch shape dependent: LEFM limit for sharp270

notches (CC),
√

ℓM/ (πF 2), or elastic limit, σf/Kt, for other notch shapes (EH

or OH) when R → ∞.

We had observed pseudo-ductility to enhance the translaminar toughness

[14]. With half-symmetric compact tension specimens (similar to [39]) and

the pseudo-ductile constitutive model (refer to Appendix A and [14]), paired275

with a constant translaminar toughness (GIc), we used the J-integral to cap-

ture this toughness increment. To avoid ambiguity; translaminar toughnesses
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are represented by GIc and J SS for linear elastic and pseudo-ductile material,

respectively. Thus, it is necessary to replace the linear elastic material fracture

toughness (GIc) with the pseudo-ductile material fracture toughness (J SS) for280

the size-effect predictions, refer to [14].

Previously, in [14], we had conducted a size effect study of pseudo-ductile

CC specimens for the same material DOE as Fig. 5 following Section 3. Here,

we use only the specific σN results (εd1 and εd4 studies) for comparison with

other notch shapes (Section 5.2.3).285

5.2.1. Nominal strength of open-hole specimens

The nominal strengths of the OH linear elastic models (εd1) agree well with

the Bažant SEL Eq. 2, thus validating the models, Fig. 8a. Moreover, all the

size-effect behaviour presented in Fig. 8, for all the DOE cases (Fig. 5), tend

to both the un-notched strength and the elastic limit extremes set by the notch290

radius.

Significant improvements in strength recovery were observed for the large OH

specimens (in proportion to pseudo-ductility), thanks to the improvements in

both Kt and GIc. The improvements in GIc are thought to have little influence

on the nominal strengths of large OH specimens [27], while the reduction of295

Kt due to pseudo-ductility plays a significant role. For example, in the case

of εd4 (σf=500 MPa), a 41% reduction of Kt (from 2.58 to 1.52) leads to an

improvement over the elastic strength of 60% for 2R=320 mm, i.e., from 210 to

336 MPa, Fig. 8a. In other words, the largest pseudo-ductile (εd4) specimen lost

only 33% (1 - 336/500) of material strength due to the presence of the notch300

(1− sN ), whereas the linear elastic specimen (εd1) lost 58% (1 - 210/500) of σf .

Though, pseudo-ductility appears to negatively influence the nominal strengths

by up to 14% in small specimens, the improvements in the large specimens

outweigh this.

The nominal strengths for the cases in sHi study also tend to material305

strength and elastic limit, respectively, as expected (Fig. 8b). The KP
t of sHi

cases are reduced by up to 50% for sH1 (from 2.58 to 1.26), but the Kt increases

12



with the increasing sH (from 1.26 to 1.73) – only a 33% reduction for sH5. Even

though the pseudo-ductile translaminar toughness is only marginally accentu-

ated for the sH1 case (σf=336 MPa) – J SS = 1.06GIc – the 50% reduction in310

Kt results in a strength recovery that is two times higher, 130 MPa (σf/K
E
t ) to

272 MPa (σN ). Similar comparison for sH5 (σf=625 MPa) shows only a recov-

ery of 1.5 times, 242 MPa (σf/K
E
t ) to 365 MPa (σN ), despite a 40% increase

in translaminar toughness – J SS = 1.41GIc. In other words, sH1 lost only 19%

(1 - 272/336) of material strength due to the notch (1− sN ), whereas sH5 lost315

42% (1 - 365/625) of the material strength for the largest specimen considered.

In summary, the nominal strength results from Fig. 8 corroborate that the

reduction in KP
t due to pseudo-ductility is a substantial contributing factor

to the strength recovery in the OH specimens. To determine the elastic limit,

we directly use the KP
t from Stowell predictions (Eq. 10) as they are nearly320

equal to the FE models (within 5%), see Section 5.1. As such, by utilising the

KP
t from the Stowell model, the elastic limits of all the pseudo-ductile models

are captured within an error of 6%. Chen et al., [38] also presented a similar

nominal strength retention behaviour of OH specimens made of metallic foams

(Ramberg-Osgood material) under plane-strain conditions.325

5.2.2. Nominal strength of elliptical-holed specimens

We anticipate a similar nominal strength behaviour for pseudo-ductile spec-

imens containing EH [19, 40], as this lies between the extremes of the previously

considered notch shapes, CC [14] and OH (Section 5.2.1). Therefore, we only

consider a linear elastic (εd1) and a pseudo-ductile case (εd4). Fig. 9 focuses on330

the size effect behaviour of EH (represented by orange diamond markers).

The linear elastic FE models (εd1) match well with the Bažant SEL over

the entire range of radii considered and follow the well-established nominal

strength limits. Additionally, the nominal strength (σN ) of the elliptical-holed

pseudo-ductile models (εd4) follows similar trends to that of the OH models335

(Section 5.2.1), with a positive effect for larger models due to a sharp reduction

in KP
t , and a negative influence for smaller models. As such, the σN of εd4 is
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recovered by 103% in comparison to the linear elastic case εd1, from 129 MPa

((σN )εd1) to 263 MPa ((σN )εd4). In other words, the linear elastic specimen,

2R = 320 mm, lost 74% of the material strength (1 - 129/500), whereas, the340

pseudo-ductile specimen lost only half of it (47%, 1 - 263/500). The predictions

for the elastic limit were not as accurate as those for the OH models, with the

Stowell model under-predicting the KP
t by 18% compared to the FE models.

The difference between the elastic limit predictions using the KP
t from the FE

model (σf/2.03) and the Stowell model (σf/1.74) was -7% (246/263) and 9%345

(287/263), respectively.

5.2.3. Size effect of pseudo-ductile materials containing typical notches

To assess the impact pseudo-ductility has on notched specimens, including

size-effect, we compare the nominal strengths of linear elastic (εd1) and pseudo-

ductile models (εd4), Fig. 9. The σN of all linear elastic specimens agree with350

the Bažant size effect law (solid lines in Fig. 9). Furthermore, the linear elastic

(empty markers) and the pseudo-ductile models (filled markers) exhibit the typ-

ical behaviour of notched specimens (see Fig. 1), including un-notched strength

for smaller specimens and elastic limit for larger specimens.

The elastic limit of notched specimens scales in inverse proportion to the355

stress concentration factor (σN = K−1
t ), with CC having the lowest nominal

strength (σN ) due to its highest Kt (Kt → ∞), followed by EH (KE
t = 4.24) and

OH (KE
t = 2.58). Because of the notch, the largest elastic specimen (2R=320

mm) loses 86, 74, and 58% (σN=70, 129, 210 MPa) of the material strength for

CC, EH and OH, respectively, i.e., 1 - σN/σf . Incorporating pseudo-ductility360

recovers more strength in general, thanks to the reduction of Kt for EH and

OH specimens, and due to the J SS for the CC, Fig. 9. The nominal strengths

for the identical (2R = 320 mm) pseudo-ductile specimens are 25, 103, and 60%

(σN=87, 263, 336 MPa) – (σN )εd4/(σN )εd1 − 1 – higher than their linear elastic

counterpart for CC, EH and OH, respectively.365

However, the nominal strengths of smaller specimens (2R < EJ SS/σ2
yF

2)

are negatively influenced by pseudo-ductility by up to 14%, see Fig. 9. In
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this region, the hole shape does not play a significant role (2R → 0) due to

“plasticity”-dominated failure mode, resulting in almost equal nominal strength

regardless of the notch type, see Section 5.2.4. This suggests the existence370

of an intermediate asymptotic behaviour typical of plastic-hardening materials

[41, 42].

5.2.4. Stress distribution across the failure plane of notched pseudo-ductile spec-

imens.

The nominal strength response of a quasi-brittle material is determined by375

the relative size of the stress perturbation to the FPZ length (Fig. 1b). We

represent the normalised normal stress in the failure plane (σyy/σf ) of all the

notches considered (Fig. 10) to compare the FPZ lengths. The fracture processs

zone is the non-linear region surrounding the crack tip, which is the sum of the

cohesive (o−a in Fig. 10) and “plastic” zone (a−b in Fig. 10) lengths, see Fig. 3.380

Note that, these stresses are obtained just before specimen failure (σ ≈ σN ).

Normal stress distribution in the failure plane is similar for all notches con-

sidered (for a given radius, 2R=2 mm), shown in Fig. 10a. Similar stress distri-

butions emphasise that the Kt (= σf/σmean) is independent of the notch shape,

as the σmean is the average of the normal stress in the failure plane. This results385

in nominal strengths that are independent of the notch shape (Fig. 9) for a given

radius in the intermediate region (2R < EJ SS/σ2
yF

2).

The fracture processs zone (o − b in Fig. 10a) spans most of the specimen

width in the limit of zero specimen size (very small specimens) and hence the

entire width must be “plasticised”, leading to σN ≈ σf . Whereas, ℓFPZ spans390

only a small fraction of the width as the specimen size increases. For example,

considering an OH specimen, the FPZ spans the entire specimen width for 2R=2

mm (Fig. 10a). In contrast, FPZ spans only 25% for 2R=320 mm, Fig. 10b.

6. Discussion

A notched pseudo-ductile composite coupon exhibits two different scales of395

damage mechanisms. Firstly, splitting and delamination [4, 43], act on the
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scales of specimen width (as observed in conventional composite laminates).

Secondly, additional damage mechanisms (like ply/fibre fragmentation and dis-

persed delamination from the fragment ends) act on a much smaller length scale

[10, 11, 13], in the order of ℓFPZ . In this study, we intend to capture only this400

FPZ length scale damage mechanisms, which are responsible for pseudo-ductility

through stiffness change. Given that pseudo-ductility is generally achieved by

ply-blocking (clustered HS ply in LS plies), ply splitting and delamination will

play a non-negligible role in the stress redistribution. Although notched strength

predictions must include them, interlaminar and intralaminar damage requires405

computationally expensive and complex mesoscale models (for e.g., [44]) to

be captured. Therefore, the stress concentration factor we have obtained for

pseudo-ductile materials (Section 4) is a conservative estimate, i.e., actual Kt

might even be lower.

There are two main hindrances to comparing the nominal strengths of pseudo-410

ductile laminates presented in the literature [10, 11, 13], related to the small

size of the explored specimens. Firstly, the assumption Kt = σf/σN is only

valid when ℓFPZ/W ≈ 0, and this does not hold for small specimens (Fig. 10).

In small pseudo-ductile specimens, the cohesive traction at the crack tip is rel-

evant, so the experimental results should not be compared to the analytical415

expressions of Kt (Eqs. 8 and 10). Secondly, nominal strengths obtained from

a single small specimen (2R=3 mm in [10, 11, 13]) are insufficient to reveal the

influence pseudo-ductility has on size-effect.

Achieving a near perfectly-“plastic” pseudo-ductile material represents the

optimum configuration (sH ≈ 1, ed → ∞) from a purely notched strength420

perspective. For instance, sH1 displays 50% less Kt (1.26) and two times better

strength recovery than an equivalent linear elastic material. To achieve such a

material, (εf )HS must be 4.4 times higher than (εf )LS together with the lowest

possible σf difference (sH ≈ 1). Through mesoscale models, Jalalvand et al.

[45] also presented a similar reduction in the Kt of pseudo-ductile materials425

(ed=4, sH=1) in an OH under plane stress conditions (Kt was extracted from

0◦ layer). However, achieving perfect plasticity in practice is not feasible, so one
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must attempt to maximise ed and minimise sH .

7. Conclusions

We have presented a numerical study to characterise the influence of pseudo-430

ductility on the stress concentration factor (Kt) and nominal strength (σN )

of composite laminates with typical notches (CC, EH, and OH). We utilised

a user-material model that represents pseudo-ductility implemented in an FE

environment. We explored the effect of the most significant variables affecting

pseudo-ductility: pseudo-ductile strain (εd) and the material strength-to-yield435

strength ratio (σf/σy).

Firstly, we determined the pseudo-ductile stress concentration factor, KP
t , of

EH and OH by modifying existing models (Neuber, Molski-Glinka, and Stowell)

and validated them with FE results. Neuber and Molski-Glinka agree well in the

small-scale “yielding” regime but predict a monotonic decrease in KP
t . Only the440

Stowell model predicts the increase in Kt when the specimens transition to net-

section “yielding”. Our results indicate that the modified Stowell model agrees

with the FE results, especially for OH specimens. The predictions correspond to

FE within 5% across the ed/sH range. This suggests a clear potential of pseudo-

ductility to decrease Kt by as much as 50% for both EH and OH specimens.445

Next, from the FE models, we demonstrated that the pseudo-ductility en-

hances the stress recovery of notched specimens. Notably, at the elastic limit

(R → ∞), pseudo-ductile specimens experience a nominal strength recovery be-

tween 25% and 103% compared to their linear elastic counterparts in the CC,

EH and OH specimens. The adapted Stowell model captures the elastic limits450

of EH and OH specimens within 6% and 9%, respectively. However, pseudo-

ductility hinders σN in the intermediate region, where it is independent of the

notch-shape.

Our study highlights two potential avenues for application. First, presented

Kt modifications offer insights to refine the size-effect laws for pseudo-ductility.455

Pseudo-ductile damage, post-yield, could be depicted as a ratio of the secant to
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the elastic modulus. Validation of such modified size-effect laws could leverage

the presented FE results. Additionally, the Stowell model may be crucial for

determining Kt in pseudo-ductile materials, essential to define the large-scale

asymptote in modified size effect laws.460
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[26] Z. P. Bažant, Size effect on structural strength: a review, Archive of applied550

Mechanics 69 (1999) 703–725.
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Figure 1: Size dependency of the nominal strength (σN ) of quasi-brittle materials. Un-notched

strength and elastic limit represent the totally notch insensitive and completely notch sensitive

responses, respectively. EGIc/(Rσ2
f ) is the normalised material characteristic length.

Figure 2: a) Idealised uni-axial tensile response of unidirectional (solid) and quasi-isotropic

(dotted) pseudo-ductile composite laminates and b) Example of a typical pseudo-ductile uni-

directional and quasi-isotropic laminate.
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Figure 3: Description of a) fracture processs zone and associated lengths b) pseudo-ductile

constitutive behaviour and c) traction-separation behaviour (Cohesive law).
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Figure 4: Representative half-symmetric FE models of (a) centre-crack, (b) elliptical hole

and (c) open hole specimens and their boundary conditions. R and W are notch radius and

specimen half-width respectively.
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Figure 5: Design of experiments for the quasi-isotropic pseudo-ductile material. (a) εdi study

with the constant non-dimensional variable sH (=1.6) with εd values of 0, 0.75%, 1.75% and

6.75% and (b) sHi study with the constant non-dimensional variable εd (= 6.75%) with sH

values of 1.075, 1.3, 1.6, 1.8 and 2.0. Note that εd4 and sH3 are equivalent.

Figure 6: Comparison of the modified analytical stress concentration factor estimates to FE

solution (markers) for a pseudo-ductile material (εd4). The analytical models are Neuber

(dotted lines, Eqs. 7 and 8), Molski-Glinka (dashed lines, Eqs. 7 and 8) and Stowell (solid

lines, Eq. 10). Note the cross marker (x) represents the ed/sH
(
(εd/εy)

(
σy/σf

))
of εd4

(ed = 5.4, sH=1.6) case. Here, ed is the pseudo-ductile to “yield” strain ratio, while sH

denotes the un-notched to pseudo-yield strength ratio.
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Figure 7: Open-hole Kt determined by the modified Stowell model (Eq. 10) for (a) εdi study,

and (b) sHi study in Fig. 5 compared to FE results. Empty markers represent the FE results

and the single filled marker represent the corresponding ed/sH = (εd/εy)
(
σy/σf

)
of all cases

selected for εdi and sHi studies. Note that εd4 and sH3 are equivalent. Here, ed is the pseudo-

ductile to “yield” strain ratio, while sH denotes the un-notched to pseudo-yield strength ratio.
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Figure 8: Nominal strengths of the pseudo-ductile open-hole specimens in (a) εdi study, and

(b) sHi study in Fig. 5. The continuous solid line for the linear elastic material (εd1) is

determined by the Bažant SEL (Eq. 2). The short dashed lines represent the elastic limit,

σf/K
P
t , and the KP

t is determined from modified Stowell Eq. 10. Note that the y-axis scales

are different between (a) and (b).
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(εd4, filled markers) specimens. The continuous solid line for the linear elastic material is de-

termined by the Bažant SEL (Eq. 2). Note that the elastic limit
(
σf/K

P
t

)
here is determined

with the KP
t from the finite element models.
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Figure 10: Normal stress distribution across the specimen width for pseudo-ductile centre-

crack, elliptical-hole and open-hole specimens, (a) 2R = 2 mm with εd4, towards un-notched

strength limit and (b) 2R = 320 mm with sH1, towards elastic limit. Regions: o−a represent

length of the cohesive zone (ℓcz), o−b represent the total fracture processs zone length (ℓFPZ)

and b− c represent the linear elastic zone.
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Appendices

A. Constitutive model to characterise pseudo-ductility

Under isothermal conditions, the complementary Gibbs free energy density

(Ψ) for an idealised quasi-isotropic pseudo-ductile laminate (as in Fig. 3b), fol-

lowing [46], is postulated as,615

Ψ :=
1

2E

(
σ2
11

m1
+

σ2
22

m2
− 2νσ11σ22 + 2σ2

12

[
1 + ν

√
m1 m2√

m1 m2

])
(A.1)

where E and ν are the elastic modulus and the poissons’ ratio of the undamaged

material, respectively. The integrity functions m1 and m2 start with a value

of 1 and decreases with the degradation, accounting for potential anisotropy

in damage evolution. Note that the shear modulus (G) is embedded within

Eq. A.1, as E
√
m1m2/2(1 + ν

√
m1m2) = G. We can derive the strain tensor620

(ε) from Ψ using the Clausius-Duhem inequality [47], as,

ε = ∂Ψ
∂σ = Hσ where: H = 1

E


1

m1
−ν 0

−ν 1
m2

0

0 0 E
G

 (A.2)

where, H is the compliance tensor. The principal directions of damage are

defined by two damage surfaces (longitudinal and transversal) using,

Fi =
√
⟨ε̄ii⟩2 + ηε̄212 − κi − εy ≤ 0 for i = 1, 2 (A.3)

where κ1 and κ2 are internal variables initialised to 0, and η represents the

shear contribution set to 1 throughout. The integrity of the material point is625

determined by scalar damage variables (di), ranging from 0 (undamaged) to

1 (fully damaged), such that mi = 1 − di. The functions Fi are calculated

in the principal strain directions when there is no damage and later frozen in

the damage direction. Thus, degradation initiates according to the maximum

principal strain criterion. The model is then integrated as follows,630

κi = max
s=0,t

{√
< ε̄ii >2 +ηε̄212

}
− εy (A.4)

29



The integrity function is defined as:

mi =
H (κi + εy) + σy

E (κi + εy)
if εy < κi (A.5)

where H = (σf − σy) / (εf − εy) is the tangent modulus of the linear strain

“hardening” region and h = H/E is the “hardening” modulus ratio.

B. Modification of the Stowell stress concentration factor to account

for pseudo-ductility635

According to Stowell, the plastic Kt depends on the secant modulus ra-

tio, ES(σmax)/ES(σmean). For the idealised pseudo-ductile material considered

here (Fig. 2a), there exist three distinct regions of the secant modulus ratios,

ES(σmax)/ES(σmean), and so the stress concentration factor. They are:

1. Completely elastic (no “yielding” anywhere): σmax < σy,640

2. Small-scale yielding (some “yielding” in the failure plane): σmax > σy and

σmean < σy, and

3. Large-scale yielding (entire failure plane is “yielding”): σmean > σy

The failure stress, σf , for a quasi-isotropic pseudo-ductile material (see

Fig. 2) can be expressed as,645

σf = (εf − εy)H + σy (B.1)

whereH is the “hardening” modulus. We present three different forms of Eq. B.1

in terms of the non-dimensional material parameters, h, ed and sH to obtain

simplified KP
t :

h =
H

E
=

sH − 1

sH − 1 + ed

ed =
εd
εy

=
(1− h) (sH − 1)

h

sH =
σf

σy
= 1 +

hed
1− h

=
1− h

1− h−
(

hed
sH

)
(B.2)

With the above material relationships (Eq. B.2), the secant modulus, ES ,

for any arbitrary stress (σk) in the “hardening” region (σk > σy) can be defined650
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as,

ES (σk) =
σk

εk
=

σk

εy + (εk − εy)
=

(sH − 1)Eσk

σk (sH − 1 + ed)− edσy
(B.3)

We consider failure strength to be the maximum stress anywhere in the

specimen, σmax = σf , and the mean net stress across the failure plane to be

the failure strength by Kt
P , σmean = σf/K

P
t . Substituting these assumptions

and the secant modulus (Eq. B.3) to the respective regions presented earlier,655

elastic, small scale yielding (SSY) and large scale yielding (LSY), in Eq. 9, we

can obtain the piecewise KP
t for each regime,

Kt
P =


Kt

E if σmax < σy

KE
t +ΠN

1+ΠN
if σmax > σy and σmean < σy

KE
t −1+h(1+ΠN )

1+(KE
t −2)(1−h(1+ΠN ))

if σmean > σy

(B.4)

C. Stress concentration factor of other pseudo-ductile materials

To verify the general applicability of the modified Stowell relations (Eq. 10),

we conducted a complementary set of design-of-experiments similar to Sec-660

tion 3.2. Here, we considered three additional logarithmically increasing pseudo-

ductile strains (0.5%, 1.2%, and 2.85%) with the same five strength ratios (rang-

ing from 1.075 to 2), resulting in 20 additional pseudo-ductile materials. We

recorded the pseudo-ductile stress concentration factor (KP
t ) for each material

and notch (elliptical and open-hole) using the procedure outlined in Section 3.3.665

We present the results as a “1:1” plot of the KP
t predicted by the Stowell model

(Eq. 10) in comparison to the FE results, see Fig. C.11, with only a scalar KP
t at

the corresponding ed/sH of each pseudo-ductile material for clarity. The results

show that the modified Stowell model (Eq. 10) works well for both EH and OH.

D. Stress concentration factor of power-law materials670

The adaptation of stress concentration factor to the power-law materials

is straightforward to the linear “hardening” plasticity presented earlier in Ap-

pendix B. Hence, only a brief description is provided here.
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(a) (b)

Figure C.11: The “1:1” plot of pseudo-ductile stress concentration factor, comparison of FE

solutions to modified Stowell relations (Eq. 10). a) Elliptical hole and b) Open-hole. Dash-

dotted line represents the elastic KE
t for the geometric configuration considered.

The standard plasticity model (Ramberg-Osgood) is represented by,

ε =


σ
E if σ ≤ σy

εy

(
σ
σy

)1/N
if σ > σy

(D.1)

The secant modulus (ES) variation past yielding can be obtained by modi-675

fying Eq. D.1,

ES (σk) =
σk

εk
=

σk

εy

(
σk

σy

)(1/N)
(D.2)

Substituting the secant modulus (Eq. D.2) with Stowell KP
t in Eq. 9 for the

corresponding SSY and LSY conditions, results in:

KP
t = 1 +

(
KE

t − 1
)
sH

(N−1
N ) if σmax > σy and σmean < σy (D.3)

KP
t ≈ 1 +

(
KE

t − 1
)( 1

KP
t

)( 1−N
N )

if σmax > σy and σmean > σy (D.4)

In Fig. D.12, we depict Kt(ed/sH). Although unconventional in standard680

plasticity models, this choice aligns with Figs. 6 and 7, it is defined by,

ed
sH

= sH
( 1

N −1) − 1 (D.5)

After the transition to large-scale yielding (LSY), solving the plastic stress

concentration factor (Eq. D.4) requires an iterative approach. The solutions
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Figure D.12: KP
t for a Ramberg-Osgood material obtained using Eqs. D.3 and D.4. Markers

represent the finite element solution presented by Chen et al. [38]. Analytical elastic Kt of

2.63 for open-hole is used, provided by the same authors [38].

obtained using Eqs. D.3 and D.4 agree well with the finite element (FE) solutions

from [38] for OH specimens, see Fig. D.12. Compared to linear “hardening”685

plasticity (Fig. 7), the notable feature of plastic Kt for power-law materials is

that it is constant when σmax > σy and σmean > σy, which depends solely on

the exponent N .
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