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An LMI Approach to //_ Synchronization of Second-Order
Neutral Master-Slave Systems

H.R. Karimi, M. Zapateiro, N. Luo, J.M. Rossell

Abstract— The H_ synchronization problem of the master and
slave structure of a second-order neutral master-slave systems
with time-varying delays is presented in this paper. Delay-
dependent sufficient conditions for the design of a delayed
output-feedback control are given by Lyapunov-Krasovskii
method in terms of a linear matrix inequality (LMI). A
controller, which guarantees H_ synchronization of the master
and slave structure using some free weighting matrices, is then
developed. A numerical example has been given to show the
effectiveness of the method.

I. INTRODUCTION

In the last few years, synchronization in chaotic dynamical
systems has received a great deal of interest among scientists
from various fields [1, 2]. The results of chaos
synchronization are utilized in  biology, secret
communication and cryptography, nonlinear oscillation
synchronization and some other nonlinear fields. The first
idea of synchronizing two identical chaotic systems with
different initial conditions was introduced by Pecora and
Carroll [3], and the method was realized in electronic
circuits. The methods for synchronization of the chaotic
systems have been widely studied in recent years, and many
different methods have been applied theoretically and
experimentally to synchronize chaotic systems, such as
feedback control [4-8], adaptive control [9, 10],
backstepping [11] and sliding mode control [12].

One of the most attractive dynamical systems is the second-
order systems which capture the dynamic behaviour of many
natural phenomena, and have found applications in many
fields, such as vibration and structural analysis, spacecraft
control, electrical networks, robotics control and, hence,
have attracted much attention (see, [13-16]). It has been
proved that in special situations a second-order system may
show chaotic dynamics, for instance, in [17], a second-order
linear plant containing a relay with hysteresis type
nonlinearity shows the chaotic nature of its dynamical
behavior. Moreover, complex dynamical behavior of second-
order linear plants controlled with conventional controllers is
investigated in [18, 19]. On the other hand, in view of the
time-delay phenomenon, which is frequently encountered in
practical situations, this delay may induce complex
behaviors for the systems concerned (see [20, 21]). Up to
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now, to the best of the authors’ knowledge, no results about
the synchronization of second-order master-slave systems
with time-varying delays using delayed output-feedback
control are available in the literature, which remains to be
important and challenging.

In this paper, we make an attempt to develop an efficient
approach for H_synchronization problem of second-order

neutral master-slave systems with time-varying state delays.
The main merit of the proposed method lies in the fact that it
provides a convex problem via introduction of additional
decision variables such that the control gains can be found
from the LMI formulations without reformulating the system
equations into a standard form of a first-order neutral
system. By using a Lyapunov-Krasovskii method and some
free weighting matrices, new sufficient conditions are
established in terms of a delay-dependent LMI for the
existence of desired delayed output-feedback control such
that the resulting closed-loop system is asymptotically stable
and satisfies a prescribed H_performance. A significant

advantage of our result is that the desired control is designed
directly instead of coupling the model to a first-order neutral
system and then designing the control law in a higher
dimensional space. Therefore, our result can be implemented
in a numerically stable and efficient way for high-
dimensional second-order systems. Furthermore, retaining
the model in matrix second-order form has many advantages
such as preserving physical insight of the original problem,
preserving system matrix sparsity and structure, preserving
uncertainty structure and entailing easier implementation.
Finally, the simulation results are given to illustrate the
usefulness of our results.

II. PROBLEM DESCRIPTION

Consider a model of second-order neutral master-slave
systems in the form of

M, (O)+M x,(—-dt)+ Ax,, (1) + 4, x,(t —r())+ Bx,, (1)
+ B, X, (t=r(1) + N, f(x,, () + N,g(x,, (t = (1)) =0,

X, (0) = 9(0), te [-max{d,.n,}, 0]

i, () = 6(0). te [-maxid, .n,}, 0}

2, (t) = C, x,,(t) + C, x,, (1 = (1)),

V(1) = Cs x,, (D),

(M
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ME () +M, %t —d(@) + Ax, () + 4, x,(t = r(0)) + Bx, ()

+ By x, (1 = r(@) + Ny f(x, (1)) + Ny g(x, (¢ = (1)) = By u(t) + Dw(t),
x, (1) = (1),
%, () = (1), te[-max{d, ,r,}, 0l
z,(t) =C, x, (1) + C, x, (t — r(1)),

V(1) =C5 x,(2),

te [—max{dM,rM}, 0],

()
where x, (¢),x,(¢) are the nx1 state vector of the master and
slave systems, respectively; u(z) is the rx1 control input;
w(t) is the external excitation (disturbance),
z,(¢),z,(¢) are the s X1 controlled output and y, (¢),,(¢) is

gx1

the /x1 measured output. The time-varying vector valued
initial functions ¢(¢) and ¢(¢r) are continuously differentiable
functionals, and the time-varying delays d(¢) and r(¢) are
functions satisfying, respectively,
0<d(t)<d,,,
0<r(t)<ry,,

1(t) <

d.(t) <d,<l, 3)
r(t)<rp.

Assumption 1: The nonlinear functions f,g:R" —R" are
continuous and satisfy f(0)=g(0)=0 and the Lipschitz

condition, i.€., | 7(x, - y,)|<|f(x) - f o) <|F(xo - 0| 2nd
Hg(xo _yo)H < Hg(xo)_g(YO)H Sug(xo _yo)H for all Xo>Yo € R" and

f,f,g,g are some known matrices.

Now, the synchronization error of the master and slave
systems (1) and (2) is defined as e(¢) = x, (t) — x,,(¢) , then the
error dynamics between (1) and (2), namely synchronization
error system, can be expressed by

Me(t)+ M, e(t—d(t)+ Ae(t) + A et —r(t)) + Be(t)

+ B, e(t = (1) + N, f (e(t) + N,g(e(t (1)) = B,u(t) + Dw(z), @)
z(D=Ce(t)+C,e(t —r()),
y.(t) = Cyelt),

where  z,(6) =z, (1)~ 2, (1), f(e(t) = £ (x, (1))~ [ (x, (t))
glet—r(0)=g(x,(t—r(®) —g(x,t—r@).

m

and

The problem to be addressed in this paper is formulated as
follows: given the second-order neutral master-slave systems
(1) and (2) with any time-varying delays satisfying (3) and a
prescribed level of disturbance attenuationy >0, find a
delayed output-feedback control u(¢) of the form
u@®) =K,y (O+K,y, )+ K,y ((-r)+ K, y,(t—r@) 5)

=KCEX)+K, CE@—r(0)

K=[K, K,], K, =[K, K,], C=diag{C,,C,},
&(t)=col{e(t),e(t)} and the matrices {K,}., are the control
gains to be determined such that

1) the synchronization error system (4) is asymptotically
stable for any time delays satisfying (3);

where

2) under zero initial conditions and for all non-zero
w(t)e L,[0,], the H_ performance measure, i.e.,

J. =L@z, -y W (Ow@) dt, satisfies J, <0;
0

in this case, the systems (1) and (2) are said to be
asymptotically stable with H_ performance measures.

III. MAIN RESULTS

In this section, sufficient conditions for the solvability of the
delayed output-feedback control design problem are
proposed using the Lyapunov method and an LMI approach.

Lemma 1 ([22]): For any arbitrary positive definite matrix
H and a matrix W the following inequality holds:

t t r
-2 I b(s)" a(s) ds < I {a(s)} {H TH W: }{a(s)} s
o solb@®) | | ¥ HW+I) H (HW+1) || b(s)
where the symbol * denotes the elements below the main
diagonal of a symmetric block matrix.

Lemma 2: ([23]) For a given Me R”™ with
rank (M) = p <n , assume that Z e R" is a symmetric matrix,
then there exists a matrix Ze R”” such that MZ=ZMif
and only if
Z =V .diag{Z,,Z,}.V" and Z=UMZ M'U",

where Z, € R ,Z, e R Pand  the
decomposition of the matrix M is  represented as
M =U[M 0]/" with the unitary matrices Ue R,V € R

singular  value

and a diagonal matrix Me R”” with positive diagonal
elements in decreasing order.

Theorem 1: For given scalars d,,,r, >0,d, <1,r, and

¥ >0, the second-order neutral master-slave systems (1) and
(2) with any time-varying delays satisfying (3) is robustly
stabilizable by (5) and satisfies the H_ performance

measure, if there exist some matrices P, P,, W, {F};,,
{0, ,H and positive-
definite diagonal matrices {A,}.,, such that the following

positive-definite matrices P,

inequality is feasible,
coh| s
H.w[( - }[C.l o m, T,

= * M, II,|<O0 (6)
* * H33

. _0 0 |~ T _ NT 2
with IT,, = P"( }—WTHL }1)+[FZ d +(§C‘1) Czl},
2 1

M, ==(1-7,)Q, —sym{F,} ~sym{(g ) A, g I}+1"C]C, 1,

P[ 0 Hf’(.f+1)’AIHIA’<§+@’AZ}
N, 0 0

0 01[F N
PT{ },—PT{ Mo‘ﬂ I, = [O,O,O,Ir(g+§)TA3,O,F2],
2

D
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I, =diagi~(1-d )0, ~sym{A,} =symiA, } =symiA} =7’ 11, R} ,
I, =sym{P" {IAI j\/]}}—sym{[ }l fTA fI} vym{|: } TAng}

1

T T 0
+sym{P" W' H 4

}[7 0} +r, P*(W™H+I)H ™ (HW +I)P
7ol [7 o

di s

+ mg{QIHym{E},QZHVM{O [} P'{o J

gl
+— H [0 1
I-r, | 1|4, A,

where 4 =BI+(4+A4)[-B,KC , 4, =[B, 0]-

B,K, C, the
operator sym{A} denotes A+ A" and the matrices / and I are

defined, respectively, as I=[I 0]and 7 =[0 I].

Proof: Firstly, we represent the synchronization error system
(4) in an equivalent descriptor model form as

e =n(),
0=M1(t)+M, 0t —d(O)+ A EO) + Ay Et—r(e) 4, [n(s) ds
t=r(t)
+N, f(e0))+ Ny g(elt —r(6) - Dw(?),
(7
Define the Lyapunov-Krasovskii functional
rn=2r®, ®)
where
— T — T T g(t)
V()=E0 P ED=[E0" n)'1TP|” |,
()
V= [0 &) ds. V(0= [n(s) 0,n(s) ds.

t—r(t) 1=d(1)

o= | [E) R &) dsde,

—r(t) t+6

j (s - t+r(t))77(s){ } H[ﬂn(s) ds

Vi =
1- b 1)

. P 0
with T =diag {I, 0} and Pz{ : },where 0<P =P".
PP

Differentiating ¥,(¢) along the system trajectory becomes

2071 P F(t)}

j; }Fm [ }ﬂ(t d(t))-{oj )

Xf(l—r(t))+[ }f(e(l)){ }g(é(t rO)- [ }W(I)Hﬂ(l)

Vit)=2&0" R &0 =2[£0)"

=2[50)" N0 PT{{

where g(r)=-2 J [E@)" ﬂ(t)T]PTL :|77(s) ds. Using Lemma 1

t—r(t)

for a(s)=col{0, 4,}n(s) and b= Pcol{&(t),n(¢)} we obtain

f(l)}
7(t) (10)

By <ry[E@)" n@)" 1PTWTH+DH™ (HW + I)P[

0|~
+2[&0)" ﬂ(t)T]PTWTH{A }1(5(1)—5040)))
1

T
0
+ j n(s)” [ } HL }7(‘?) ds
t=r(t) 1

Also, differentiating the second to forth Lyapunov terms in
(8) give

V(0 S E@) Q.60 — (- r,)E (1 —r(0) 0, Et—r(t), (1)
V,(0) <) 0, nt) — (1=, i (¢ —dO) Qi —d(@), (12)
V) <n, SOV R 0 [V R Esds  (13)

t—r(t)
and the time derivative of the last term of V' (¢) in (8) is

y " ' 0
tosem ] o Lo [{] o« s

Moreover, from the Leibniz-Newton formula, the following
equation holds for any matrices {F,};, with appropriate

dimensions:

2ETOF +&7 (¢ = r)F,)E0 =&t —r(1) - jf(S) ds)=0

1—r(1)
On the other hand, for any positive scalars {A,}’, we have:

0<=2(f (e(t)— f e(®)" A, (f(e(®) - f e(t)
0<=2(&(e(t) - e(t)” A, (&(e(t) g e(t))
0 <=2(&(elt—r(1)) - Z e(t—r(t)) As(&(e(t—r(0)—ge(t—r(1)

(16)
Using the obtained derivative terms (9)-(15) and adding the
right-hand sides of equation (16) into, we obtain the

following result for V (),

e NITT T E® 0
V(t)_iZ:l:Vi(t)Sz[f(t) nw'1P {|: 4 :l{ (ZJ-'—LV[J

(15)

. 07 .
x1(t— d(¢))+[ }5(1 V(t))+[ }f(e(t)){]v}g(e(t—r(t)))

&t)}

0 T T T T -1
—|:D}w(t)}+rM[§(t) ne 1P W H+1H (HW+1)P|:77(t)

+2[&0)" Mt)T]PTWTH[ }l(f(t) - V(t)))+ ﬂ(t)[ }

0
H[ p }nmf«)f@. +F+ F)ED) =& (= r)(1=1,) 0, +F,
+FDE@ =) +260) (F = F)§ = r(0)+1, £ B §0)+n(0)" 0,
x(t) = (1= d, )" (t = d(0) O, 1t = d(0) + 1, (OF B F9(t)
—2(f ()~ FIED) A(flet) - f TE0)~2&(e)~g &) A,
X (&(e(t) ~ g 1) =2(&(elt—r(t)~g 1 &t —r(0)) Ay(&(elt—r(1))

—g [&a—rO)— [ OF +EGOR)E" (& F +&(s)R)" ds

t=r(t)

(17)

where the vectors #(¢) and N are, respectively,
19(t) = col {f(l‘), ﬂ(t): g(t - r(t))’ ﬂ(t - d(t))’ W(t)} s (1 8)
F = col {F,,0,F,,0, 0} . (19)
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Under zero initial conditions, the H_ performance measure
can be rewritten as

J. = E[(zs ()= 2, (0) (2,() =2, ) = 7> wO) W)+ V()] dt
(20)
Substituting the terms of g(t)z[iff 7 T]coz{f(z),n(t)},
z.()—z,(t)=C,1 &t)+C,1&(t—r(1)), and upper bound of
V(t) in (17) results in (20) being less than the integrand

(t)" T %(¢) where the matrix IT, by Schur complement, is
given in (6). Now, if [T <0, then J_ <0.m

Remark 1: It is easy to see that the inequality (6) imply
I1, <0. Hence by Proposition 4.2 in the reference [24], the

matrix P is nonsingular. Then, according to the structure of
the matrix P, the matrix X := P™' has the form

X, 0
X = R
X3 XZ
where X, =P7'(i=1,2)and X,=-X,P,X,.

Remark 2: According to structure of matrixC, i.e.,
C =diag {C,,C,}, with rank (C,)=I1<n, Lemma 2 proposes
that an equivalent condition on equation CX, = X,C is

X, =V.diag{X,, X,,}V", X, =UCX,C"U",
where X, € R*** | X,, € R0 and C=U[C 0]V" (the
singular value decomposition of the matrixC), with
rank (C)=21, Ue R** | Ve R** and Ce R*.

Theorem 2: Consider the second-order neutral master-slave
systems (1) and (2) with any time-varying delays satisfying
(3). For given scalars d,,,r, >0,d, <1,r, and y >0, there

exits an output-feedback control in the form of (5) such that
the resulting closed-loop system is robustly asymptotically
stable and satisfies H_ performance measure in Definition
1, if there exist a scalar & , matrices {£}>,,{X}2,,X,, X;,
positive-definite matrices X,,, X,,, {0,}>,, H and positive
definite diagonal matrices {A,},, satisfying the LMI

=19

l_[ll 1:112 R ﬁl} H14 l:IIS
# (=)0 —symify) Ty 0 Ty
* * I,; 0 Tl (<0
* * * l:[44 l:[45
* * * * ﬁss
(21)
where

I'TX, + X, TTT+F+E") (X, (BI+(A+(1+a)4)])
=l +7T7x, +XIT+0, ~CTXTBI +1"X,+X'M"
* MX,+XM"

>

e
M, N, 0 0 N, |

/\T _ A~ |
I1,, =[0a0a0aX11T(§+g)T];H12 = A FZN b =
i - (B]]—aA]l)Xl—BZXZC_

1 5, =diag{—(1-d, )QZ ,—sym{X1 },—sym{K2 } ,—sym{K3 1

R 0 - Try T nNT __
| O] A T e
D|'lo XIT 0

l2144 = diag{_yzl’_r/v[ X1y X, —=1,-ry, ﬁ}

- X3T 0 X3TA1T I T T I IT— T |
“”’Hxﬂ’{o vl e el

M, = [0,0,0,0,[iT§ frg_’]]

l—r — — _— _— _ _ _
L3 7y Ny Ny Ry G gy o

ﬁss = diag {_gz’_
rM
The desired control gains in (5) are given by
K=XX" K =X,X" from LMI (21), (22)

where the matrices X, and X, follow from Remark 2.

Proof: Let  {=diag{X", X, X,,A,A,,A,,1,X,,X,,[,H}
where A, == A7 and H = H™'. By introducing 7= HWP as a
new decision variable (with T X =« 1), applying the Schur
complement to the matrix inequality (6) in Theorem 1 and
premultiplying ¢ and postmultiplying {7 where A, := A}

and H = H'and using the inequalities

—sym{|:(1):|inAl£i} S{é}f’fAjl{l} +ITf A ST

I\~ _ A I, _ A1
—sym{ol gAh,gl}<| |I'gA,g]
—sym{iT§A3gi}SfT§A3§f+fT§A3§f
(23)

and considering X, =K X,, 0, =X'0.X, and F, = X'F.X,,
we obtain the LMI (21). m

IV. SIMULATION RESULTS

Consider the second-order neutral master-slave systems (1)
and (2), where the system matrices are given by

1 0 05 0 1 05
M = b M] = 9 A = 9
0 0.8 0 04 0.3 0.5
0.25 0.125 04 0.1 0.1 0.025
Al = b B = 9 B[ = 9
0.075 0.125 0.2 03 0.05 0.075
0.8 0.5 02 0.125 1]
N, = , N, = ,C,=C, = ,
0.4 0.5 0.1 0.125 1
1 05 0.1
C, = ,D=| "|.
1 1 0.1
The delays 7(t) =d()=(1-e™)/(1+e™) are time-varying and

satisfy 0<r(r)=d(t)<1 and #(r)=d(r)<0.5. For simulation
purpose, a uniformly distributed random signal with
minimum and maximum -1 and 1, respectively, as the
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disturbance is imposed on the response system. With the
above parameters, the neutral master-slave systems (1) and
(2) exhibit chaotic behaviours such the x, 6 —x, and
with  £(0) = col {0.4,0.6,— 0.3,— 0.2} ,
£(0)=col {0.8,-0.7,0.1,0.1} , respectively, are shown in
Fig. 1.

X, —X, planes

8 T -
| | | |
|
7= m— -t -4 - - -
|
|
6 — [t Ittt el Sy
sE-A- T - - NN\ ------ —— -4
me(t)
b NP NN D N _
Y MR \ W B (W ___
Py R R\ 7/ | | E S S N, _
| | | |
| | | |
1 I I I I I
5 -4 3 2 -1 0 1
X (1)

(b)

Figure 1. The phase trajectories: a)x, —x,, plot and b)

ml

X, —X,, plot.

ml

----------------------------------------------------------------

0 10 20 0 40 50
Time (sec)
Figure 2. The synchronization errors: a) e, (¢) (solid line) and

b) e,(¢) (dashed line).

It is required to design the control law (5) such that the
closed-loop system is asymptotically stable and satisfies the
H_, performance measure. To this end, in light of Theorem
2, we solved LMI (21) with the disturbance attenuation
y=02 and obtained the following control gains by using
Matlab LMI Control Toolbox

K =[8.9681 -9.0207 37.1101 -30.0309],
K, =[-0.0250 0.1896 0.5152 -2.1808].

12 T T T

{11 O R A 4

=) O R A 4

=3 O R A 4
s ) g SIS FO I A 4

a 5 10 15 20
Time (sec)

Figure 3. Time-response of the control law for system.

Time (sec)
Figure 4. Comparison of the controlled outputs: a) closed-
loop system (solid line) and b) open-loop system (dashed
line).

Now, by applying the delayed state feedback controller (5)
with the parameters above, the synchronization -error
between the drive system and response system, i.e.
e(t)=x,(t)—x,(t), is shown in Fig. 2. It is seen that the
e ) =x,(0)—x,, 1)
e,()=x,(t)-x,,(t) converge to zero. The curve of output-
feedback control is also shown in Fig. 3. To observe the H
performance, the response of the controlled output, i.e.,

synchronization

errors and
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z,(t), is depicted and compared with the output signal in the
open-loop system under the disturbance in Fig. 4.

V. CONCLUSION
This paper presented the H_ synchronization problem of the

master and slave structure of a second-order neutral chaotic
system with time-varying delays. Delay-dependent sufficient
conditions for the design of a delayed output-feedback
control were given by Lyapunov-Krasovskii method in terms
of an LMI. A controller guaranteeing asymptotic stability,
and H_ synchronization of the master and slave structure

using some free weighting matrices was developed directly
instead of coupling the model to a first-order neutral chaotic
system.
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