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Abstract. In this work, we consider the so-called correlated random walk

system (also known as correlated motion or persistent motion system), used

in biological modelling, among other fields, such as chromatography. This is a
linear system which can also be seen as a weakly damped wave equation with

certain boundary conditions. We are interested in the long-time behaviour of
its solutions. To be precise, we will prove that the decay of the solutions to this

problem is of exponential form, where the optimal decay rate exponent is given

by the dominant eigenvalue of the corresponding operator. This eigenvalue can
be obtained as a particular solution of a system of transcendental equations.

A complete description of the spectrum of the operator is provided, together

with a comprehensive analysis of the corresponding eigenfunctions and their
geometry.

1. Introduction and main results. The so-called correlated random walk sys-
tem, sometimes known as the Goldstein-Kac system (see [8, 15]), has been widely
used to model several biological processes, such as Movement Ecology as in G.H.
Weiss [29], J. Masoliver and G.H. Weiss [18], K.P. Hadeler [11, 12], T. Hillen [13],
and V. Méndez, D. Campos, and F. Bartumeus [20], among others. The system can
be written as 

ut + γux = µ(−u+ v) x ∈ (0, L)

vt − γvx = µ(u− v) x ∈ (0, L)

u(0, t) = v(L, t) = 0.

(1)

In this case, the variables u(x, t) and v(x, t) represent the probability density of a
single individual to be at the point x at time t moving respectively right or left
with velocity γ > 0. Individuals can change direction depending on the difference
u(x, t)−v(x, t) with a rate µ > 0 (see [15, 11, 12]). The individual leaves the system
when it arrives at some of the ends. In some biological models, it leaves the system
because it has found there the food it was looking for.
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An interesting nonlinear modification of this model (see [11, 12]) is{
ut + γux = µ(−u+ v) + F (u+ v) x ∈ (0, L)

vt − γvx = µ(u− v) + F (u+ v) x ∈ (0, L),

that admits homogeneous equilibrium solutions u0(x, t) ≡ v0(x, t) ≡ c when F (2c) =
0. In this case, when adding the boundary conditions u(0, t) = v(L, t) = c, the
linearized system around this homogeneous equilibrium is of particular interest,
and if F ′(2c) = a it can be written as{

ut + γux = −(µ+ a)u+ (µ+ a)v + 2au x ∈ (0, L)

vt − γvx = (µ+ a)u− (µ+ a)v + 2av x ∈ (0, L)
(2)

with boundary conditions u(0, t) = v(L, t) = 0. The previous system has the same
form as (1), as long as µ+ a > 0 (except that the eigenvalues have been translated
by the addition of the constant quantity 2a). Therefore, the analysis of eigenvalues
and eigenfunctions of (1) that will be done in the present paper will remain the
same, except for the translation. And this is very relevant for the stability of such
equilibria.

Another interest in studying system (1) as the linearization around a homoge-
neous positive state is that the non-positive solutions or eigenfunctions of (2) will
still have physical meaning, being understood as small perturbations of the homo-
geneous state.

In the new variables t′ = µt and x′ = x/L−1/2 and defining the non-dimensional
parameter S = γ/(µL) > 0 system (1) can be written in the following non-
dimensional form: 

ut + Sux = −u+ v x ∈ (−1/2, 1/2)

vt − Svx = u− v x ∈ (−1/2, 1/2)

u(−1/2, t) = v(1/2, t) = 0,

(3)

where we have written t and x instead of t′ and x′.
It is usual to consider the previous system as a model in Movement Ecology as

we have said above, but other applications are possible. For example, to model the
phenomenon of durotaxis, which consists of the movement of certain biological cells
towards the stiffer parts of substrate tissue (see C.R. Doering et al.[4]), or to model
the spatial distribution of growing cytoskeletal elements (see A. Büttenschön and L.
Edelstein-Keshet in [2]). Also, this system was a starting point for other models of
chemotaxis and self-organized biological aggregations (F. Lutscher [17], R. Eftimie
[5]).

But it is interesting to notice that the same system also appears in such a dif-
ferent field as Chemical Engineering or Biotechnology as a model of countercurrent
parallel-flow heat exchangers (J.H. Chen and L. Malinowski [3]), and in chromatog-
raphy as a linear model of countercurrent operation for species separation (see
V.T.M. Silva et al [26], F. Wei et al. [28], V. Grosfils et al. [9], P. Satzer et al. [25],
Y. Guo et al. [10]).

More concretely, in J. Menacho and J. Solà-Morales [19] the state of a single
chromatography column of a true-moving bed adsorber is represented by the solute
concentrations c(x, t) in the liquid phase, and q(x, t) in the solid phase in the interval
−L/2 < x < L/2. Then it is considered as boundary conditions that this single
column is being washed out by the injection of pure solvent through the entrance
port x = −L/2 in the liquid phase, and the injection of pure adsorbent at x = L/2
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in the solid phase. Then, these concentrations evolve according to the following
system of equations:

ct + vℓcx = −FK(Hc− q) x ∈ (−L/2, L/2)

qt − vsqx = K(Hc− q) x ∈ (−L/2, L/2)

c(−L/2, t) = 0, q(L/2, t) = 0,

where all the parameters are positive: vℓ, vs are the liquid and solid phase velocities,
respectively, H is the phase equilibrium constant, F is the volume ratio between the
solid and liquid phases, and K is the adsorption kinetic constant. We consider the
simplified version of this system, which can be called reversible, where the roles of
c(x, t) and q(x, t) can be interchanged. That is, if (c(x, t), q(x, t)) = (u(x, t), v(x, t))
is a solution, then (c(x, t), q(x, t)) = (v(−x, t), u(−x, t)) is also a solution. This
happens only when vℓ = vs = v and F = H = 1. The problem would then become

ct + vcx = −K(c− q) x ∈ (−L/2, L/2)

qt − vqx = K(c− q) x ∈ (−L/2, L/2)

c(−L/2, t) = q(L/2, t) = 0.

By using the non-dimensional variables x′ = x/L, t′ = Kt, we obtain system (3)
with S = v/(KL). As we will see, our goal in this work is to see the exponential rate
at which these solutions approach the unique equilibrium c0(x, t) ≡ q0(x, t) ≡ 0,
that is, how long will it take to be completely cleaned off. Observe that if in these
new variables, we obtain a decay like e−αt, then in the original variables it would
be e−αKt. In fact, the present work partially completes the previous one in [19], in
the sense that now we will be able to obtain the exact rate of decay of the solutions.

Remark 1.1. When we consider system (3) as a model in chromatography, the
application interest is for small values of the parameter S > 0. Indeed, taking
S > 1 would mean that the transfer velocity between the liquid and solid phases
would be much smaller than the velocity at which these phases move, making the
first one negligible in practice. In ecology applications, however, large values of
S > 0 would mean a very fast emigration (compared to the number of direction
changes), and this could be of practical interest.

System (3) is strongly related to the telegraph equation, also known as the weakly
damped wave equation. The first relation, and the most usually present in the
bibliography, is the following one. According to [29, 18, 11, 12], system (3) can be
transformed to an equivalent system for the total population density p = u+v, and
the population flow q = (u− v):{

pt + Sqx = 0

qt + Spx = −2q.

Taking derivatives in the first equation with respect to t, and in the last equation
with respect to x, combining both new equations, and observing that the variable q
can be eliminated using that pt = −Sqx, we arrive at the following equation, known
as the telegraph equation, or also weakly damped wave equation,

ptt + 2pt − S2pxx = 0. (4)
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Concerning the boundary conditions, it can be seen that they are translated into
the following dynamic boundary conditions

pt(−1/2, t)− Spx(−1/2, t) + 2p(−1/2, t) = 0,

pt(1/2, t) + Spx(1/2, t) + 2p(1/2, t) = 0
(5)

(see formula (60) in [11]). Observe that following a very similar process we can see
that q also satisfies the telegraph equation (4), now with boundary conditions

qt(−1/2, t)− Sqx(−1/2, t) = 0,

qt(1/2, t) + Sqx(1/2, t) = 0.
(6)

If one repeats the previous procedure for the dimensional form of the equation (that

is (1)), one gets 1
2µ ptt + pt − γ2

2µ pxx = 0. Letting the parameters µ and γ go to

infinity such that the quotient γ2

2µ converges to a finite value D > 0, we obtain, in

the formal limit, the parabolic diffusion equation pt = Dpxx.
But there is a second relation between (3) and the weakly damped wave equation.

Indeed, we can see that if u and v satisfy system (3) then both u and v also satisfy
the scalar weakly damped wave equation

wtt + 2wt − S2wxx = 0. (7)

This is a well-known fact (maybe not so usual in the literature as the previous one),
but it is worth to be discussed here. Applying the differential operator ∂t − S∂x to
the first equation in (3) one gets utt − S2uxx = (vt − Svx) − ut + Sux, and using
the second equation utt −S2uxx = (u− v)−ut +Sux. Using now the first equation
again one has utt − S2uxx = (−ut − Sux)− ut + Sux = −2ut.

Concerning the boundary conditions one has of course u(−1/2, t) = 0, but the
condition at x = 1/2 becomes more complicated: the only reasonable thing seems to
be to evaluate at x = 1/2 the terms of the first equation in (3), use that v(1/2, t) = 0,
and obtain a dynamic boundary condition. Therefore, the boundary conditions are:

u(−1/2, t) = 0, and ut(1/2, t) + Sux(1/2, t) + u(1/2, t) = 0. (8)

Something similar happens with the unknown v(x, t), except that the boundary
condition at x = −1/2 is slightly different. In this case:

vt(−1/2, t)− Svx(−1/2, t) + v(−1/2, t) = 0,

v(1/2, t) = 0.
(9)

The reverse property is now very easy. Suppose that u(x, t) satisfies the wave
equation (7) together with the boundary conditions (8). Then, define v(x, t) =
ut(x, t) + Sux(x, t) + u(x, t). By this definition, it is clear that u and v satisfy the
first equation in (3). It is also clear that v(1/2, t) = 0 and also, (∂t − S∂x)v =
utt − S2uxx − (∂t − S∂x)u = −2ut + ut − Sux = −ut + Sux = u − v, the second
equation in (3). A similar process allows us to prove the bi-directionality between
(3) and (7) and (9) for v.

It has to be said that, although it can seem that both problems are uncoupled
and, hence, one can obtain u or v independently, they are indeed weakly coupled
through the necessary initial conditions that relate one variable to the other one.
For instance, ut(0, x) = −Sux(0, x)− u(0, x) + v(0, x).

The difference between these two relations between system (3) with the weakly
damped wave equation mainly relies on two facts. First, in (4)-(5) and (4)-(6) (the
approach used in [11], among others) one is dealing with p = u+v and q = u−v, not
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with u, v separately. In this case, the equivalence is not completely straightforward
(see the comment on the one-parameter family of solutions mentioned on p.138 of
[11]), and it may depend on the boundary conditions. But the relation and the
physical interpretation between the solutions of system (3) and those of the wave
equations (7)-(8) and (7)-(9) is direct in our case, as we have just seen. Second,
observe that the dynamic boundary conditions (5) for p or (8) and (9) for u, v are
not exactly the same.

The equivalence between system (3) and the weakly damped wave equation (in
both approaches) seems a very relevant property, but we recognize that we have
not used it in the present paper. The weakly damped wave equation with Dirichlet
boundary conditions has been widely studied. A recent work on damped wave
equations with dynamic boundary conditions but with strong damping instead of
weak one is N. Fourrier and I. Lasiecka [7], for instance. However, to our knowledge,
the weakly damped wave equation with dynamic boundary conditions (8) or (9) (or
even (5) or (6)) are not very considered in the literature, and they are equivalent
to system (3) in the sense described above. From our point of view, this also adds
more interest to the present work.

As we said, dissipative wave equations are a very active research field nowa-
days. We will see in Section 2 that system (3) behaves similarly: the solutions
oscillate in space and time, move and, finally, dissipate. Moreover, we will see
that we have Sturm-Liouville-type space oscillations, in the sense that the n-th
eigenfunction makes n complete half-turns in the complex plane (see Proposition
2.10). In particular, as the long-time behaviour is given by the first eigenvalue
and the corresponding eigenfunction, the solutions oscillate less and less as time in-
creases. This is a behaviour that was first observed in the heat equation by Sturm:
as time increases, the quick oscillatory and dissipative effect of higher eigenvalues
(and eigenfunctions) tends to decrease, finally ending with the asymptotic decay
rate and the non-oscillatory asymptotic profile given by the dominant eigenvalue
and the corresponding eigenfunction.

Our goal will be to study the long-time behaviour of the solutions of system
(3). For that purpose, it will be convenient to write it in an abstract form. So,
we consider the function space X = L2(−1/2, 1/2)× L2(−1/2, 1/2) with the usual
inner product, and write (3) as the following first order evolution equation:

d

dt
U(t) = AU(t), t ∈ [0,+∞) (10)

where U(t) = (u, v)T , and A : D(A) ⊂ X −→ X is the linear operator

A =

(
−S d

dx − Id Id
Id S d

dx − Id

)
with domain

D(A) = H1
l (−1/2, 1/2)×H1

r (−1/2, 1/2).

Here, H1
l (−1/2, 1/2) and H1

r (−1/2, 1/2) are the subspaces of the Sobolev space
H1(−1/2, 1/2) of the functions that vanish, respectively, at the left and the right
end of the interval.

One can see that problem (10) is well-posed. Actually, this is proved in Theorem
3.4 of T. Hillen [13], which we include here for the sake of completeness of the
present work.
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Theorem 1.2. [Theorem 3.4 of [13]] The operator A is the generator of a C0-
semigroup on X, {T (t) = eAt, t ≥ 0}. In particular, for any U0 ∈ D(A), there
exists a unique solution U = T (t)U0 ∈ C1([0,∞);X))∩C0([0,∞);D(A)) satisfying
(10). If U0 ∈ X, then U = T (t)U0 is the unique solution in C0([0,∞);X) satisfying
(10) in the mild sense.

As we said, Theorem 1.2 is a result given in [13]. Actually, he proves that A is
the generator of a C0- semigroup on Lp(−1/2, 1/2)×Lp(−1/2, 1/2), for 1 ≤ p < ∞.
For the purpose of the current work, p = 2 suffices.

A C0-semigroup T (t) on a Banach space X is called eventually compact if there
exists t0 > 0 such that T (t) is compact for t > t0 (see K.J. Engel and R. Nagel
[6], for example). The next result shows that our semigroup becomes compact for
t > 1/S. This is consistent with the ideas in [12] Sect. 4 and in [13], that the
irregularities of the initial conditions are washed out to the boundary after a time
t = 1/S.

Theorem 1.3. The operator (A,D(A)) given in (10) is the infinitesimal generator
of an eventually compact semigroup T (t) with t0 = 1/S.

The proof of this result will be given in Section 4, and will be a key point in
the proof of the decay rate of the solutions of our problem (given in Theorem 1.4
below).

The aim of this work is to prove that the solutions of the problem (3) decay
exponentially in the norm of X, and this decay is optimal; that this optimal decay
rate is given by the dominant eigenvalue of A, which can be calculated as a particular
solution of a system of transcendental equations; and that the solutions tend to 0
with a certain asymptotic profile. These results are given in the following theorem,
which summarizes the main results of the present work.

Theorem 1.4. For the correlated random walk system (3) (with abstract form given
in (10)), the following assertions are true:

1. For each S > 0 there exists a real number λ0(S) < 0 and a real number M ≥ 1
such that

∥eAt∥ ≤ Meλ0(S)t, for all t ≥ 0

where the norm is the usual one in the space X where the semigroup eAt is
defined.

2. The previous decay is optimal. That is, there exists a solution of (3) (the
eigenfunction whose eigenvalue is λ0(S)) such that decays exactly at the pre-
vious rate.

3. For all S > 0, this number λ0(S) < 0 is the dominant eigenvalue of A. That
is, all the other eigenvalues λ of A satisfy the inequality and gap condition

Re(λ(S)) < λ0(S)− ε

for some ε = ε(S) > 0. Also, λ0(S) has geometric and algebraic multiplicity
equal to 1.

4. For an open and dense set of initial conditions, the solutions have an asymp-
totic profile when t → ∞ that is a multiple of the eigenfunction corresponding
to the eigenvalue λ0(S), (u0(x), v0(x)), in the sense that they tend to multiples
of this function at a faster velocity than the one at which they tend to 0. This
means that they turn into the eigenfunction before becoming 0.
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The explicit description of the dominant eigenvalue λ0(S) and its corresponding
eigenfunction (u0(x), v0(x)) is given in point 5 of Proposition 2.5 and Remark 2.6,
respectively. It has to be said that some of the results of point 5 of Proposition
2.5 can be found in [11, 12], although there the dominant eigenvalue λ0 is given as
a solution of a characteristic equation of an equivalent problem, and also given in
a different form (although equivalent) to ours. In this sense, we can say that we
resume and complete the spectral analysis started by K.P. Hadeler in these works,
as we also describe the rest of the eigenvalues, and eigenfunctions of this problem.

Comparing our approach with the one in the works of K.P. Hadeler, we would
say that in our case we formulate the problem in a way that highlights the sym-
metries of the problem. To begin with, system (3) is posed in (−1/2, 1/2) instead
of (0, L) (as in [11]). Also, we will see that the fact of working with u, v (instead
of p = u + v, q = u − v as in [11]), and the way in which we write and compute
the eigenvalues and eigenfunctions of (3) makes explicit the symmetric and anti-
symmetric character of the eigenfunctions, that remains hidden in the p, q approach
(see Remark 2.3). Also, the way in which we ultimately compute the eigenvalues,
with an auxiliary parameter ν, substantially simplifies the characterization of the
spectrum (see Propositions 2.2 and 2.5)

Remark 1.5. The results in Theorem 1.4 above imply that S > 0 is a dissipative
parameter in the following sense: for S large, the solutions tend to 0 faster than for
smaller S (see also, for instance, Figure 3).

Remark 1.6. A complete description of λ0(S) and (u0(x), v0(x)), together with
the rest of the spectrum λn,j(S) and eigenfunctions (un,j(x), vn,j(x)), n ≥ 1, j =
1, 2, is given in Lemma 2.1, and Propositions 2.2 and 2.5, in Section 2 below.
Indeed, we will see that all the eigenfunctions and the eigenvalues (in particular the
dominant ones, λ0(S) and (u0(x), v0(x)) are solution of an explicit and relatively
simple transcendental system of equations.

Similar spectral analysis techniques were used by part of the authors of the
present work in the recent paper [24], where also a comprehensive and accurate
spectrum description was necessary to obtain the optimal exponential decay rate of
the solutions of a Moore-Gibson-Thompson equation.

In the present work, this complete description of the eigenfunctions and eigenva-
lues is the first step in the proof of Theorem 1.4, and is given in Section 2, together
with the Sturm-Liouville type space oscillations result. Once this description is
done, we start with the proof of part 3 of Theorem 1.4, that is, by proving that
λ0(S) is, indeed, the dominant eigenvalue (see Section 3). After this, we proceed
with the proofs of parts 1, 2, and 4 of Theorem 1.4, which are done in Section 4.
In this section we also give the proof of the compactness result stated in Theorem
1.3, which turns out to be crucial to prove the optimal asymptotic decay rate of the
solutions of the problem.

2. Eigenfunctions and eigenvalues. In this section, we give a complete descrip-
tion of the eigenvalues and eigenfunctions of the system whose abstract form is
defined in (10).

Lemma 2.1. The spectrum of the operator A defined in (10) consists only of ei-
genvalues (which will be described in Proposition 2.5).
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Proof. We observe that A has compact resolvent, because of the compact embedding
D(A) = H1

ℓ (−1/2, 1/2) × H1
r (−1/2, 1/2) ⊂ L2(−1/2, 1/2) × L2(−1/2, 1/2) = X.

Therefore, A has only point spectrum.

Proposition 2.2. (Eigenfunctions and eigenvalues)
Given S > 0, we consider the following eigenvalue system

−Su′(x)− u(x) + v(x) = λu(x) − 1/2 < x < 1/2,

Sv′(x) + u(x)− v(x) = λv(x) − 1/2 < x < 1/2,

u(−1/2) = 0,

v(1/2) = 0.

(11)

The solutions of this system give the eigenvalues λ ∈ C and the eigenfunctions
(u(x), v(x))T of the operator A defined in (10). Then, the following assertions hold.

1. System (11) admits nontrivial solutions in the following three cases, and only
in these cases:
(a) there exists a ν ∈ C \ {0} such that{

sin(ν) = Sν,

λ = −1− cos(ν),
(12)

(and then λ ̸= −2).
(b) λ = −2, only when S = 1
(c) there exists a ν ∈ C \ {0} such that{

sin(ν) = −Sν,

λ = −1 + cos(ν)
(13)

(and then λ ̸= 0).

In the cases (a) and (c) we have ν =
√
−λ2 − 2λ /S, but both signs of the

square root are admissible, as they will give the same eigenfunction (see Re-
mark 2.4).

2. The previous eigenvalues are geometrically simple, that is the space of solu-
tions has dimension one. The corresponding eigenfunction in each previous
case is:
(a) (

u(x)
v(x)

)
=

(
sin(ν(1/2 + x))
sin(ν(1/2− x))

)
(14)

(b) (
u(x)
v(x)

)
=

(
1 + 2x
1− 2x

)
(15)

(c) (
u(x)
v(x)

)
=

(
sin(ν(1/2 + x))
− sin(ν(1/2− x))

)
. (16)

Remark 2.3. In cases (a) and (b) the corresponding eigenfunctions can be called of
a symmetric type because they are of the form (u(x), u(−x)). In case (c), they can
be called of antisymmetric type since it has the form (u(x),−u(−x)). See Figure 1.

Remark 2.4. (Notation Remark) For a complex number z, to avoid the ambiguity
of

√
z, we will use from now on the notation sqrt(z) to denote the unique square

root of z that satisfies sqrt(0) = 0 and −π/2 < arg(sqrt(z)) ≤ π/2.
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Figure 1. Some eigenfunctions for S = 0.8, real and imaginary
parts respect to x ∈ [−1/2, 1/2]. From left to right, and up to
down, plots from u0, v0, and real and imaginary part of un,1, vn,1
for n = 2, 4 (symmetric case, top), and n = 1, 3 (antisymmetric
case, bottom). In all cases, the blue-cross line corresponds to un,1,
and the red-circle one to vn,1. The plots for the corresponding
(un,2, vn,2) are similar, so we do not include them. In these graphs,
we can also see the oscillatory behaviour of the n-th eigenfunction,
described in Proposition 2.10 below.

.

Proof. The system of equations for the eigenfunctions of eigenvalue λ of the operator
A defined in (10) is

d

dx

(
u
v

)
=

(
(−1− λ)/S 1/S

−1/S (1 + λ)/S

)(
u
v

)
, (17)

where, in general, λ will be a non-real complex number.
For λ ̸= 0,−2 let us define the auxiliary parameter ν = ν(λ, S) = sqrt(−λ2 −

2λ)/S (see Remark 2.4). Observe that the excluded values λ = 0,−2 are precisely
the values such that −λ2 − 2λ = 0.

For λ ̸= 0,−2, it is easy to see that the general solution of (17) is(
u
v

)
= C1e

iνx

(
1

1 + λ+ iSν

)
+ C2e

−iνx

(
1 + λ+ iSν

1

)
. (18)

Imposing the boundary conditions u(−1/2) = v(1/2) = 0 we get the system of
equations {

C1e
−iν/2 + C2e

iν/2(1 + λ+ iSν) = 0,

C1e
iν/2(1 + λ+ iSν) + C2e

−iν/2 = 0,
(19)

that in order to have nontrivial solutions requires eiν(1 + λ + iSν)2 = e−iν , or,
equivalently,

(1 + λ+ iSν) = ±e−iν . (20)
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By taking the − sign in (20), the two equations in system (19) become the
single equation C1e

−iν/2 − C2e
−iν/2 = 0, that implies C1 = C2. In this case, the

eigenfunction given by (18) is(
u
v

)
= C1e

iνx

(
1

−e−iν

)
+ C1e

−iνx

(
−e−iν

1

)
= 2iC1e

−iν/2

(
sin(ν(1/2 + x))
sin(ν(1/2− x))

)
,

and no other non-trivial solutions of (19) exist with (1 + λ+ iSν) = −e−iν .
Now, with the + sign in (20) the two equations in system (19) become the

single equation C1e
−iν/2 + C2e

−iν/2 = 0, that implies C1 = −C2. In this case, the
eigenfunction given by (18) is(

u
v

)
= C1e

iνx

(
1

e−iν

)
− C1e

−iνx

(
e−iν

1

)
= 2iC1e

−iν/2

(
sin(ν(1/2 + x))
− sin(ν(1/2− x))

)
,

and no other solutions of (19) exist with (1 + λ+ iSν) = e−iν .
Summarizing, if λ ̸= 0,−2 is an eigenvalue of (10), then there are two alternative

possibilities for the eigenfunctions, and no more than these two: (14) or (16), that
is (

u
v

)
=

(
sin(ν(1/2 + x))
sin(ν(1/2− x))

)
or else

(
u
v

)
=

(
sin(ν(1/2 + x))
− sin(ν(1/2− x))

)
,

where ν = ν(λ, S) = sqrt(−λ2 − 2λ)/S. The first one corresponds to the − sign in
(20), and the second one corresponds to the + sign.

Let us consider now the exceptional cases λ = 0,−2. If λ = 0, the general
solution of (17) is (

u
v

)
= C1

(
1
1

)
+ C2

(
x

S + x

)
,

and no possibility of adjusting to u(−1/2) = v(1/2) = 0 exists except when C1 =
C2 = 0. The only possibility would be when S = −1, which is out of our scope.
Therefore, λ = 0 will never be an eigenvalue for S > 0.

The case λ = −2 is different. In this case, the general solution of (17) is(
u
v

)
= C1

(
1
−1

)
+ C2

(
x

S − x

)
. (21)

It is impossible to adjust the boundary conditions for a nontrivial solution when
S > 0 except when S = 1. In this case, there is no such obstruction, and the
eigenfunction corresponding to λ = −2, S = 1 would be (15), that is(

u
v

)
=

(
1 + 2x
1− 2x

)
.

At this moment we can prove the geometric simplicity of the eigenvalues. The
expression (20) can be written more explicitly as 1 + λ + iSν(λ, S) = ±e−iν(λ,S).
Since we have taken care of defining ν(λ, S) in an unambiguous way, and as e−ν(λ,S)

is never zero, the previous equality can be satisfied with the + sign or with the −
sign, but not with the two signs at the same time for the same values of λ and
S. This means that only one of the two forms (14) or (16) will be possible for
given λ and S. And they are linearly independent, since ν(λ, S) ̸= 0, once we have
excluded the cases λ = 0,−2. In the case λ = −2, S = 1 it is easy to see that
(21) admits only the nontrivial solution C2 = 2C1. Hence, we have proved the
geometric simplicity of the eigenvalues. We will discuss the algebraic multiplicity
of the dominant eigenvalue in Section 3.
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Let us now analyse λ, the eigenvalues of (10). Our goal is to obtain a charac-
teristic equation for them. We start with the symmetric case, that is (14). We
substitute u(x) = sin(ν(1/2 + x)) and v(x) = sin(ν(1/2 − x)) into the first row of
the system A(u, v)T = λ(u, v)T , where A is given in (10), and we get

−Sν cos(ν(1/2 + x))− sin(ν(1/2 + x)) + sin(ν(1/2− x)) = λ sin(ν(1/2 + x)). (22)

Now, writing sin(ν(1/2− x)) as − sin(ν(1/2 + x− 1)), and this last expression as

− sin(ν(1/2 + x)) cos(ν) + cos(ν(1/2 + x)) sin(ν)

we get

−Sν cos(ν(1/2 + x))− (1 + λ) sin(ν(1/2 + x))

− sin(ν(1/2 + x)) cos(ν) + cos(ν(1/2 + x)) sin(ν) = 0,

or, rearranging terms,

(−Sν + sin(ν)) cos(ν(1/2 + x))− (1 + λ+ cos(ν)) sin(ν(1/2 + x)) = 0.

Due to the linear independence between the functions cos(ν(1/2+x)) and sin(ν(1/2+
x)) when ν ̸= 0, we conclude that system (12) holds, that is:{

sin ν = Sν

λ = −1− cos ν.

Therefore, we have proved that if λ ̸= −2 is an eigenvalue with a symmetric
eigenfunction of the form (14) then (12) must be satisfied with ν = ν(λ, S) =
sqrt(−λ2 − 2λ)/S, ν ̸= 0.

We also observe that ν = 0, λ = −2 is a solution of system (12) for all values of
S, but we know that it is a spurious solution unless S = 1 (in the sense that it does
not have a non-zero eigenfunction).

From the proof, we can observe that the reciprocal is also true. That is, if
λ ∈ C \ {−2} and there exists a ν ∈ C \ {0} such that (12) holds, then then λ will
be an eigenvalue with a symmetric eigenfunction of the form given (14).

To continue the analysis of the eigenvalues λ of (10), we proceed now, in a similar
way, with the antisymmetric case, that is (16). We substitute u(x) = sin(ν(1/2+x))
and v(x) = − sin(ν(1/2− x)) into the first row of A(u, v)T = λ(u, v)T and we get

−Sν cos(ν(1/2 + x))− sin(ν(1/2 + x))− sin(ν(1/2− x)) = λ sin(ν(1/2 + x)).

Now we write again sin(ν(1/2−x)) as − sin(ν(1/2+x−1)) and this last expression
as

− sin(ν(1/2 + x)) cos(ν) + cos(ν(1/2 + x)) sin(ν).

And substituting we get

−Sν cos(ν(1/2 + x))− (1 + λ) sin(ν(1/2 + x))

+ sin(ν(1/2 + x)) cos(ν)− cos(ν(1/2 + x)) sin(ν) = 0,

or, rearranging terms,

(−Sν − sin(ν)) cos(ν(1/2 + x))− (1 + λ− cos(ν)) sin(ν(1/2 + x)) = 0.

Due again to the linear independence between the functions cos(ν(1/2 + x)) and
sin(ν(1/2 + x)) when ν ̸= 0, we obtain system (13), that is:{

sin ν = −Sν

λ = −1 + cos ν.
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We have proved that if λ is an eigenvalue with an antisymmetric eigenfunction of
the form (16), then λ ̸= 0 and (13) is satisfied with ν = ν(λ, S) = sqrt(−λ2−2λ)/S.

And we observe again the existence of a spurious solution of (13), ν = 0, λ = 0,
for all values of S > 0.

From the proof, we can also observe that the reciprocal property is also true.
That is, if λ ∈ C \ {0} and there exists a ν ∈ C \ {0} such that equation (13) is
fulfilled, then λ is an eigenvalue with an antisymmetric eigenfunction of the form
(16).

With all this, we have proved all the parts of Proposition 2.2.

Let us now proceed to a detailed analysis of the solutions of the characteristic
equations (12) and (13).

Proposition 2.5. (Description of the eigenvalues)
The eigenvalues λ = λ(S) ∈ C \ {−2} of (10), and the values ν = ν(S) = sqrt(λ2−
2λ)/S ̸= 0, S > 0, given in Proposition 2.2 satisfy the following properties (see also
Figures 2 and 3 below).

1. For each S > 0, the values of ν, come in pairs (except the first one) and con-
stitute an infinite sequence {ν0, ν1,1, ν1,2, ν2,1, ν2,2, . . . νn,1, νn,2, . . .} ⊂ C,
where n even corresponds to solutions of equation (12) and n odd corresponds
to solutions of (13).

2. There exists a decreasing sequence of values of S, say {Sm},m ≥ 1, with
0 < Sm < 1, satisfying that the equation sin(ν) = Smν (m even) or the
equation sin(ν) = −Smν (m odd) has a double real root νm ∈ [mπ, (m+1/2)π].
Naturally, Sm → 0 as m → ∞. We call Scrit := S1 ≃ 0.2172.

3. Regarding νn,j, n ≥ 1, j = 1, 2, we can say that (see Figures 2 and 4):
(a) For a fixed 0 < S ≤ Scrit with S ∈ (Sm+2, Sm], m ≥ 1, the following

assertions hold.
(i) If 1 ≤ n < m (or if n = m and S ̸= Sm), we have νn,j = νn,j(S) ∈

R, j = 1, 2, with νn,1 ̸= νn,2. In this case,

νn,j ∈ (nπ, (n+ 1)π), j = 1, 2.

(ii) If n = m and S = Sm, we have νn,1(S) = νn,2(S) ∈ R (double real
root). In this case,

νn,j ∈ (nπ, (n+ 1/2)π), j = 1, 2.

(iii) If n > m, we have νn,1(S) = νn,2(S) ∈ C\R. In this case, νn,1 ∈ Qn

and νn,2 ∈ Qn, where

Qn = {z ∈ C; nπ < Re(z) < (n+ 1/2)π, Im(z) > 0}. (23)

Also, for n → ∞ and S > 0 fixed, we have

νn,j(S) = (n+ 1/2)π − (−1)j log(2S(n+ 1/2)π) i+ o(1), j = 1, 2. (24)

That is, to a leading order we have

Re(νn,j(S)) ≃ nπ, Im(νn,j(S)) ≃ −(−1)j log(n), j = 1, 2.

(b) For a fixed S > Scrit, all νn,j(S), n ≥ 1, j = 1, 2, the same conclusions
as in point (iii) above hold.

4. Regarding λn,j, n ≥ 1, j = 1, 2, we can say that (see also Figures 2 and 3):
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(a) In case (i), we have λn,1(S) ̸= λn,2(S), both in R, with

λn,1(S) = −1− sqrt(1− S2(νn,1(S))
2), n ≥ 1,

and

λn,2(S) = −1± sqrt(1− S2(νn,2(S))
2), n ≥ 1.

The minus or plus (most common) sign of λn,2 depends on the parity of n
and the sign of cos(νn,2) (which can also be zero). In particular, λn,1(S)
tend to −2 when S → 0, and λn,2(S) tend to 0 when S → 0.

(b) In cases (ii) and (iii) (including (3b)), we have

λn,j(S) = −1− sqrt(1− S2(νn,j(S))
2), n ≥ 1, j = 1, 2.

(in case (ii) we have λn,1(S) = λn,2(S) ∈ R).
(c) In case (iii) (including (3b)) we have

Re(λn,j(S)) < −1− S. (25)

Also, for S or n large, we have

λn,j(S) = −1−
(
(−1)jSνn,j(S) i

)
+ o(1), j = 1, 2. (26)

In particular, when n → ∞ and S > 0 is fixed, we have

λn,j(S) = −1− S log(2S(n+ 1/2)π)− (−1)jS(n+ 1/2)π i+ o(1), j = 1, 2 (27)

which is,

Re(λn,j(S)) ≃ −S log(n), Im(λn,j(S)) ≃ −(−1)jSnπ, j = 1, 2.

5. The case n = 0 is a bit different (see Figures 2 and 3).
First, we consider ν0(S). In general, ν0(S) is the solution of the transcen-

dental equation sin(ν) = Sν whose real part is in [0, π). Specifically,
(a) if 0 < S < 1, we have ν0(S) ∈ R and ν0(S) ∈ (0, π). In the particular

case S = 2
π , we have ν0(S) =

π
2 ;

(b) if S = 1, ν0(S) = 0 (ν(S) = 0 is a spurious solution for all S ̸= 1, since
it does not have a non-zero eigenfunction);

(c) if S > 1, we have ν0(S) ∈ iR, with Im(ν0(S)) > 0 (observe that we are

not considering ν0(S), see Remark 2.4).
Second, we consider λ0(S). Then, it is fulfilled that:
(a) we have λ0(S) = −1 − cos(ν0(S)). In particular, if S = 1, we have

λ0(S) = −2, and if S = 2
π , we have λ0(S) = −1;

(b) λ0(S) is real for all the values of S, and decreases in S;
(c) λ0(S) → 0 as S → 0, λ0(S) → −∞ as S → ∞.

Remark 2.6. If we denote by (u0(x), v0(x)) the eigenfunction corresponding to
the eigenvalue λ0(S) (given by ν0(S) both described in point 5 of Proposition 2.5
above), we can say that:

1. if S < 1, we have (u0(x), v0(x)) = (sin (ν0(1/2 + x)) , sin (ν0(1/2− x))), x ∈
(−1/2, 1/2);

2. if S = 1, (u0(x), v0(x)) = (1 + 2x, 1− 2x), x ∈ (−1/2, 1/2);
3. if S > 1, (u0(x), v0(x)) = (sinh (ν′0(1/2 + x)) , sinh (ν′0(1/2− x))), x ∈ (−1/2, 1/2),

where ν′0 = −iν0 ∈ R.
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This fact follows directly from point 2 of Proposition 2.2 and point 5 of Proposition
2.5. But we wanted to include this explicit description of (u0(x), v0(x)) here because
it gives the asymptotic profile of the solutions (see Theorem 1.4), and it can be
interesting to have this explicit form if one is dealing with some applications of the
problem.

Remark 2.7. The sequence of νn,j can be naturally ordered by the increasing
value of the real part of its elements: 0 ≤ Re(ν0) < π ≤ . . . ≤ nπ < Re(νn,1) ≤
Re(νn,2) < (n+ 1)π for all n ≥ 1.

Remark 2.8. As we will see in the proof of Proposition 2.5, the criterion for the
subindex j in νn,j and λn,j will be the following one. We choose Im(νn,j) > 0 if
j = 1, and Im(νn,j) < 0 if j = 2. Then, we will see that the criterion happens to
be the same for λn,j .

Remark 2.9. The study of λ0(S) will be continued in Sections 3 and 4. In Section
3 we will prove that it is indeed the dominant eigenvalue of the problem. More
concretely, we will prove the inequality and gap condition Re(λn,j(S)) < λ0(S)− ε
for some ε = ε(S) > 0, and for all n ≥ 1, j = 1, 2 (which is point 3 of Theorem
1.4). Moreover, in Section 4, we will see that it gives the optimal decay rate of the
solutions of problem (10) (see the rest of Theorem 1.4).

0 2 4 6 8 10 12 14
Re( n,j(S) )

-5

-3

-1

1

3

5

Im
( 

n,
j(S

) 
)

0

2 3 4

0 2 4 6 8 10 12 14
Re( n,j(S) )

-3

-1

1

3

Im
( 

n,
j(S

) 
)

0

2 3 4

-10 -8 -6 -4 -2 0
Re( n,j(S) )

-30

-20

-10

0

10

20

30

Im
( 

n,
j(S

) 
)

-2.5 -2 -1.5 -1 -0.5 0
Re( n,j(S) )

-8

-6

-4

-2

0

2

4

6

8

Im
( 

n,
j(S

) 
)

Figure 2. νn,j(S) (up) and λn,j(S) (bottom) in the complex plane
for j = 1, 2, n = 0, 1, 2, 3, 4 (from left to right in the top row, and
from the real axis up (or down), in the bottom row). We have
S ∈ (0, 2] (first column) and S ∈ (0, 0.5] (second column). Note
that the eigenvalues overlap on the real line. Also, as S increases,
the values of νn,j(S) and λn,j(S) become non-real, and λn,j(S)
tend to −∞± i∞.
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Figure 3. Re(λn,j(S)) (top) and Im(λn,j(S)) (bottom) for j =
1, 2, n = 0, 1, 2, 3, 4 (top to down), with S ∈ (0, 2] (first column)
and S ∈ (0, 0.5] (second column). Again, increasing S makes
the values of λn,j(S), n ≥ 1, become non-real and λ0(S) and
Re(λn,j(S)), n ≥ 1, decrease to −∞. In this sense, we say that
S is, indeed, a dissipative parameter: the larger it is, the faster the
solutions tend to 0.

Proof. In Proposition 2.2 we have seen that the eigenvalues λ ∈ C \ {−2} of (10)
are the solutions of (12) or (13), with ν = sqrt(λ2 − 2λ)/S, with ν ̸= 0. Looking
at the graphs of the real functions sin ν and ±Sν for S > 0, we can see that these
solutions occur in pairs (see Figure 4). For small values of S > 0 they are real and
different, and belong to (nπ, (n+ 1)π) (with n even in the case of a plus sign, and
n odd in case of a minus sign), may become equal for certain values of S > 0, and
become complex conjugate for larger values of S > 0. As we have said in part 1 of
the present proposition, we call them νn,1(S) and νn,2(S) (n even in the symmetric
case, n odd in the antisymmetric one).

To be more precise, we call Sm the value of 0 < S < 1 that makes either the
equation sin(ν) = Sν or the equation sin(ν) = −Sν to admit a double real root
ν in [mπ, (m + 1/2)π], m ≥ 1 (even or odd). Observe that the sequence of Sm is
decreasing in m, and that Sm → 0 as m → ∞. And that for all S ≥ Scrit = S1,
all the solutions of sin(ν) = Sν or sin(ν) = −Sν are non-real (except the solution
ν0(S) in (0, π) for S ∈ [Scrit, 1]), with Scrit ≃ 0.2172 (see Figure 4). This proves
parts 1 and 2 of this proposition.

We now consider the symmetric case, that is, the νn,1, νn,2 (n even) that are
solution of the first equation of (12). Observe that for a fixed S ∈ (Sm+2, Sm] with
m ≥ 2 and even, we have νn,1(S), νn,2(S) ∈ (nπ, (n+1)π) for 1 < n < m, or n = m
and S ̸= Sm, n even, and that both are real and different. In fact, as S increases,
νn,1(S) increases, and νn,2(S) decreases, up to the value S = Sm, where νm,1(S)



16 JOAQUÍN MENACHO, MARTA PELLICER∗ AND J. SOLÀ-MORALES

and νm,2(S) collide (this is in fact the double real root of sin(ν) = Sν). In this last
case, νn,1(Sn) = νn,2(Sn) ∈ (nπ, (n+ 1/2)π) (n even).

Figure 4. Intersections of the graphs of sinx, and Sx and −Sx
for different values of S > 0

Now, for a fixed S ∈ (Sm+2, Sm] with m ≥ 2, and for n > m, the solutions
νn,1(S) and νn,2(S) become non-real, the first with positive imaginary part, say,
and the other its conjugate value. In particular, if S > Scrit = S1 this happens for
all n ≥ 1. These non-real νn,1 and νn,2 will necessarily be in the interior of the strip

Qn defined in (23) and its conjugate Qn, respectively. That is,

Qn = {z ∈ C; nπ < Re(z) < (n+ 1/2)π, Im(z) > 0}.
We prove this fact by continuation on the parameter S, based on the so-called

Argument Principle of Complex Analysis. One has to observe that along the bound-
ary Im(z) = 0 of Qn the only possible solutions of sin ν = Sν are the νn,1(S) and
νn,2(S), that exist only for 0 < S ≤ Sm with n ≤ m, already considered. Along
the boundary Re(z) = nπ of Qn one has sin z = i sinh(Im(z)) (remember that n
is even), and a solution of sin ν = Sν would be impossible. Along the boundary
Re(z) = (n+1/2)π of Qn one has sin z = cosh(Im(z)), and a solution of sin ν = Sν
would also be impossible. Finally, to see that the solutions νn,1 cannot leave Qn

through any upper boundary, and thus become unbounded, let us write ν = α+ iβ
where α and β are real. Then, the equation sin(ν) = Sν can be written as the
real system sin(α) cosh(β) = Sα, and cos(α) sinh(β) = Sβ. Squaring and adding
the two equalities, and using that | sinhβ| < coshβ one gets the two inequalities
sinh2 β < S2(α2 + β2) < cosh2 β.

The first one is enough for our purposes since it means that 1 < S2((n+1/2)2π2+
β2)/ sinh2 β, but this quotient tends to zero when β → ∞. Therefore, for fixed n it
would be impossible to have a bounded sequence Sk, and the corresponding sequence
νn,1(Sk) = αk + iβk ∈ Qn such that βk → ∞ when k → ∞. The argument for νn,2
and Qn is the same.

Let us study now the antisymmetric eigenfunctions case, that is, ν satisfying the
first equation of (13), sin ν = −Sν. Looking at the graphs of the real functions sin ν
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and −Sν for S > 0 (see Figure 4) observe that we obtain exactly the same results
for νn,j(S) than for the symmetric case.

In order to prove (24), the asymptotic expansion of νn,j when n → ∞ and S > 0
fixed, we write νn,j = αn,j + iβn,j , with βn,j ̸= 0 (observe that when n → ∞ this
is always the case). The equation sin(νn,j) = ±Sνn,j can be written as the real
system of two equations{

sin(αn,j) cosh(βn,j) = ±Sαn,j

cos(αn,j) sinh(βn,j) = ±Sβn,j .
(28)

Since nπ < αn,j < (n+1/2)π we have that αn,j → ∞. As from the first equation
of (28) we have αn,j = ± 1

S sin(αn,j) cosh(βn,j), we obtain that βn,j → ±∞. In fact,
recalling the sign criterion for the subindex j, we have βn,1 → ∞ and βn,2 → −∞.

Then, necessarily limn→∞
βn,j

sinh(βn,j)
= 0, and using the second equation in the

system (28), we get limn→∞ cos(αn,j) = 0. Since we know that nπ < αn,j <
(n+ 1/2)π, this necessarily implies that αn,j = (n+ 1/2)π + o(1) when n → ∞.

Also, necessarily limn→∞ | sin(αn,j)| = 1, or, in other words, | sin(αn,j)| = 1 +

o(1), and we can go to the first equation to obtain cosh(βn,j) =
Sαn,j

| sin(αn,j)| = S(n+

1/2)π + o(1). Since d/dy (argcosh(y)) → 0 as y → ∞, we deduce that βn,j =

argcosh(S(n+1/2)π)+o(1) = ± log
(
S(n+1/2)π+

√
S2(n+ 1/2)2π2 − 1

)
+o(1) =

± log(2S(n + 1/2)π) + o(1) = ± log(2Snπ) + o(1). Again, recalling that we have
chosen that Im(νn,1) > 0 and Im(νn,2) < 0, this completes the proof of (24) and,
hence, of part 3 of this proposition.

Once we have analysed νn,j(S) we can say something about the corresponding
eigenvalues λn,j , given by the second equations of (12) if n is even, or (13) if n is
odd. That is, λn,j = −1− cos(νn,j), j = 1, 2, n > 1 even, or λn,j = −1 + cos(νn,j),
j = 1, 2, n ≥ 1 odd. We can see that, if λn,j ∈ C \ R, the subindex j in λn,j ∈
C \ R actually follows the same criterion than in νn,j : that is, Im(λn,1) > 0 and
Im(λn,2) < 0 (to prove this, just recall that Re(νn,j) ∈ (nπ, (n+ 1/2)π) if n ≥ 1).

When one knows sin(ν) one can calculate cos(ν) as±
√
1− sin2 ν, but it is still not

clear which one of the two signs one has to take. In the case that νn,1 = νn,2 ∈ C\R,
we have that nπ < Re(ν) < (n+1/2)π since νn,j ∈ Qn∪Qn. Therefore Re(cos ν) > 0
for n even, and Re(cos ν) < 0 for n odd. Then, if n is even, we have cos(νn,j) =

sqrt(1− sin2 νn,j), and if n is odd, we have cos(νn,j) = −sqrt(1− sin2 νn,j). Using
(12) if n is even, or (13) if n is odd, in both cases we obtain

λn,j(S) = −1− sqrt(1− S2(νn,j(S))
2), n ≥ 1, j = 1, 2.

The above expression λn,j(S) = −1− sqrt(1−S2(νn,j(S))
2) also holds if S = Sm

and n = m, as νn,1 = νn,2 ∈ (nπ, (n + 1/2)π). But the same analysis cannot be
applied exactly if S ∈ (Sm+2, Sm] and n < m, as the sign of Re(cos ν) = cos ν
depends on the sub-indexes n and j. More concretely, since νn,1 ∈ (nπ, (n+1/2)π),
the same kind of arguments above allow us to say that

λn,1(S) = −1− sqrt(1− S2(νn,1(S))
2), n ≥ 1.

For j = 2, however, the argument is a bit more tricky and the best we can say is

λn,2(S) = −1± sqrt(1− S2(νn,2(S))
2), n ≥ 1.

Indeed, for most S, n, we have νn,2(S) ∈ ((n+1/2)π, (n+1)π), hence, cos(νn,2(S)) <
0 if n even, and cos(νn,2(S)) > 0 if n is odd. That gives λn,2(S) = −1 + sqrt(1 −



18 JOAQUÍN MENACHO, MARTA PELLICER∗ AND J. SOLÀ-MORALES

S2(νn,2(S))
2) for these values of S, n. But there are still some values of S, n for which

νn,2(S) ∈ (nπ, (n + 1/2)π) (essentially, those S, n that make νn,2(S) almost equal
to νn,1(S), that is S close to Sm, n close to m). If this happens, cos νn,2(S) > 0 if n
even, and cos νn,2(S) < 0 if n odd. This gives λn,2(S) = −1−sqrt(1−S2(νn,2(S))

2)
for those values of S, n. Note that when S → 0, we have λn,2(S) = −1 + sqrt(1 −
S2(νn,2(S))

2) for a fixed n ≥ 1. In particular, using the expressions above, it is
direct to see that λn,1(S) → −2 and λn,2(S) → 0 when S → 0.

We now proceed to prove inequality (25). If we express ν = x+ iy, the real part
of the first equations of (12) and (13) can be expressed as sin(x) cosh(y) = ±Sx (see
(28)). Observe that if νn,j(S) /∈ R each of the previous equations can be written as
a function y = y(x) with domain inside the strip nπ < x < (n + 1)π, with n ≥ 1,
and with y > 0 (see point 3 of this proposition and Figure 5 below). Observe that
y(x) → ∞ when x → nπ or (n + 1)π, and has a positive minimum at a certain
point en. Taking derivatives, we can see that en = tan(en), which ensures that
en ∈ (nπ, (n+ 1/2)π).

Figure 5. Graph of the function y(x) for S = 0.05. We observe
that it is well defined and has a minimum in each (nπ, (n+ 1)π)
from n ≥ 6 (which corresponds to νn,j /∈ R). The blue continuous
line corresponds to the function obtained using (12), and the red
discontinuous one corresponds to (13).

Since the point (xn,1, yn,1) has to be in the graph of y(x), and using that en is a
minimum of y(x) we have

cosh(yn,1) ≥ cosh(y(en)) = ± Sen
sin(en)

= ±S
en

tan(en) cos(en)
= ± S

cos(en)
.

In addition, we know that (xn,1, yn,1) is inside the strip Qn (see Proposition 2.5,
point 3), which means that xn,1 ∈ (nπ, (n+ 1/2)π). So, cos(xn,1) < 0 if n is odd,
and cos(xn,1) > 0 if n is even. This implies that ± cos(xn,1) = | cos(xn,1)| and thus
Re(λn,1) = −1∓ cos(xn,1) cosh(yn,1) = −1−| cos(xn,1)| cosh(yn,1). So we can write
the last inequality as

cosh(yn,1) ≥
S

| cos(en)|
,
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and therefore,

Re(λn,1) ≤ −1− | cos(xn,1)|
| cos(en)|

S. (29)

We now want to prove that xn,1 < en to continue inequality (29). To see this,
notice that by dividing the first equation by the second one in (32) one has the
locus of the intersections (xn,1, yn,1) as the curves

tanh(y)

y
=

tan(x)

x
.

Observe that tanh(y)/y < 1 for all y > 0. Hence, we need tan(x)/x < 1. Ob-
serve that this only holds for nπ < x < en (since tan(en)/en = 1, and tan(x)/x
is an increasing function). Therefore, necessarily xn,1 < en. Then, from this,
| cos(xn,1)| > | cos(en)|, and we can state from (29) that inequality (25) holds, that
is,

Re(λn,2) = Re(λn,1) < −1− S,

for λn,j ∈ C \ R.
Regarding the asymptotic expressions of λn,j , we now observe that for large S

or n the expansion of sqrt(1 − z2) in terms of 1/z2 for z large (where z = Sνn,j)
allows us to say that (26) is satisfied, that is

λn,j(S) = −1− (−1)jSνn,j i+ o(1).

(again, recall the sign criterion of the imaginary part for choosing j = 1 or j = 2).
In particular, for n → ∞, the leading order expansion of νn,j given in (24) gives

the leading order expansion of λn,j given in (27), from where

Re(λn,j(S)) ≃ −S log(n)

and

Im(λn,j(S)) ≃ −(−1)jSnπ

(see Figure 3). This completes the proof of part 4 of this proposition.

The case n = 0 is different. There is only one solution, namely ν0(S), for all values
of S > 0, that denotes the solution of the symmetric case equation sin(ν) = Sν in
the strip {0 ≤ Re(z) ≤ π, Im(z) ≥ 0}. Looking at the graph of sin(ν) and Sν, it is
easy to see that ν0(S) is real and belongs to (0, π) if 0 < S < 1, purely imaginary
if S > 1 (and we only consider the root with strictly positive imaginary part due
to Remark 2.4), and equal to 0 if S = 1. Indeed, in Proposition 2.2 we have seen
that ν(S) = 0 does not have a non-zero eigenfunction unless S = 1 and, hence, it is
a spurious solution. In the particular case S = 2

π it is direct to see that ν0(S) =
π
2 .

If we follow this ν0(S) for different values of S, we observe that we start with
ν0(S) → π when S → 0. Then it decreases until ν0(S) = 0 when S = 1 (actually
with a triple collision of ν0(1) = 0 with the spurious solution ν = 0 that we always
have, and the also spurious ν = −ν0(1) coming from the left half plane). And,
finally, for S > 1, one still has the spurious solution ν = 0, but the other two
solutions ν0,1(S) and ν0,2(S) will be purely imaginary and of the form ±iy0(S),
where ±y0(S) are the two real solutions of sinh y = Sy, which exist only when
S > 1. Since we only consider those with positive imaginary part, we simply call it
ν0(S). Observe that Im(ν0(S)) increases in S if S > 1.

Using the second equation of (12), we can see that λ0(S) = −1 − cos(ν0(S)) is
real and decreasing for all values of S. This is obvious for all 0 < S ≤ 1. And
for S > 1, where ν0(S) = iy0(S) is purely imaginary, we use that cos(x + iy) =
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cosx cosh y − i sinx sinh y. And, hence, λ0(S) = −1 − cosh(y0(S)) is also real and
decreasing in S. The rest of the statements in part 5 of the proposition are also
direct by using λ0(S) = −1− cos(ν0(S)).

This proves part 5 of the present proposition and, hence, completes the whole
proof.

Proposition 2.10. (Oscillation properties of the eigenfunctions)
Let Un,j(x) = (un,j(x), vn,j(x)) be an eigenfunction of A of eigenvalue λn,j. We

claim that if λn,j ∈ R, then un,j(x) and vn,j(x) have exactly n simple zeroes in the
open interval −1/2 < x < 1/2. And if λn,j ∈ C \ R then the two curves of the
complex plane z = un,j(x) and z = vn,j(x) satisfy that d/dx (arg(un,j(x))) < 0 and
d/dx (arg(vn,j(x))) > 0 for all x ∈ (−1/2, 1/2) if j = 1 (the opposite if j = 2). And∣∣limx→−1/2 arg(un,j(x))− arg(un,j(1/2))

∣∣ and ∣∣arg(vn,j(−1/2))− limx→1/2 arg(vn,j)
∣∣

are both greater than nπ and less than (n+ 1)π, for j = 1, 2.

Remark 2.11. Note that the last statement of Proposition 2.10 simply means that
both curves z = un,j(x) and z = vn,j(x) make n complete half-turns around z = 0
(see Figure 6). This measure of the non-real oscillations, called rotation number
by B. Simon in [27], also in the context of Sturm-Liouville Theory, is the natural
generalization to the complex plane of the number of zeroes of real functions.

Proof. All the eigenfunctions are complex scalar multiples of

(un,j(x), vn,j(x)) = (sin(νn,j(x+ 1/2)), (−1)nun,j(−x)) .

Since multiplication for a non-zero complex scalar is equivalent to a rotation and a
homothety, it will suffice to prove our claim for sin(νn,j(x + 1/2)). For simplicity,
let us write νn,j = α + iβ, x + 1/2 = y and un,j(x) = u(y) = sin ((α+ iβ)y) with
0 < y < 1.

If νn,j ∈ R then β = 0 and nπ < α < (n + 1)π (see Proposition 2.5), and
u(y) = sin(αy) has exactly n simple zeroes in the open interval 0 < y < 1.

If νn,j ∈ C \ R then u(y) = sin(αy) cosh(βy) + i cos(αy) sinh(βy). In particular,

|u(y)|2 > sinh2(βy), which cannot vanish if y > 0. Also, the argument of u(y), as
of every complex number, is the imaginary part of its logarithm, and

d

dy
arg(u(y)) = Im

(
u′(y)

u(y)

)
= Im

(
u′(y)u(y)

|u(y)|2

)
.

Then

Im(u′(y)u(y)) = − cos(αy) sinh(βy)
(
α cos(αy) cosh(βy) + β sin(αy) sinh(βy)

)
+

sin(αy) cosh(βy)
(
β cos(αy) cosh(βy)− α sin(αy) sinh(βy)

)
=

−α sinh(βy) cosh(βy) + β sin(αy) cos(αy) = −1

2
α sinh(2βy) +

1

2
β sin(2αy).

We know that α > 0. Now suppose that also β > 0 as well. Then, by using that
α sinh(2βy) > 2αβy (for y > 0) and also β sin(2αy) < 2βαy we conclude that the
previous expression is strictly negative for all y > 0. And strictly positive if β < 0.

To see that the total increment of arg(u(y)) for 0 < y < 1 is greater than nπ and
less than (n+ 1)π it is sufficient to observe that

Re(u(y)) = sin(αy) cosh(βy),
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and that this real function has exactly n simple zeroes in the open interval 0 < y < 1,
since nπ < α < (n+ 1)π. This concludes the proof.

-2 0 2

Real part

-2

-1

0

1

2

Im
ag

in
ar

y 
pa

rt

-2 0 2 4 6

Real part

-4

-2

0

Im
ag

in
ar

y 
pa

rt

-5 0 5

Real part

-5

0

5

Im
ag

in
ar

y 
pa

rt

-5 0 5 10

Real part

-8

-6

-4

-2

0

2

4
Im

ag
in

ar
y 

pa
rt

Figure 6. From left to right and from top to bottom, eigenfunc-
tions (un,1, vn,1), n = 1, 2, 3, 4 for S = 0.8 in the complex plane.
In all cases, the blue cross line corresponds to un,1, and the red
circle one to vn,1 We can see that the n-th eigenfunction makes n
complete half-turns. The plots for the corresponding (un,2, vn,2)
are similar.

3. The dominant eigenvalue λ0(S). This section is devoted to prove point 3 of
Theorem 1.4. Recall that the number of real eigenvalues is finite for all the values of
S > 0, and that for the non-real ones we have the asymptotic behaviour for n large
given by formula (27). Hence, we can say that for each R > 0 there are always only
a finite number of eigenvalues with Re(λ(S)) > −R. Therefore, it will be enough
to prove the strict inequality

Re(λn,j(S)) < λ0(S) for all n ≥ 1, j = 1, 2, (30)

and that the geometric and algebraic multiplicity of λ0(S) is equal to 1 for all S > 0.
Both facts are needed to prove that λ0(S) is the dominant eigenvalue of our problem
and it gives the optimal decay of the solutions, as Theorem 1.4 states and as we
will prove in Section 4. For the proof, we use the results seen of Section 2.

Proof of of inequality (30). In the proof we distinguish three cases:
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1. 0 < S ≤ 1 and taking λn,j(S) ∈ R, n ≥ 1, j = 1, 2.
The existence of these real λn,j(S) only happens if S ≤ Scrit ≃ 0.2172 and,

in this case, νn,j(S) ∈ R too (see Proposition 2.5). Then it is easy to see,
just by looking at the graphs of y = sin(x) and y = Sx that, in this case,
ν0 ∈ (π/2, π) and, hence cos(ν0) < 0.

For positive real values of ν, the first equations of (12) and (13) become
Sν = | sin(ν)|. Using this and that Sν0 < Sνn,j for n ≥ 1 (see Proposition
2.5) one has also | sin(ν0)| < | sin(νn,j)|. Then, | cos(ν0)| > | cos(νn,j)|, and
finally

λn,j ≤ −1 + | cos(νn,j)| < −1 + | cos(ν0)| = −1− cos(ν0) = λ0.

2. 0 < S ≤ 1 and taking λn,j(S) ∈ C \ R, n ≥ 1, j = 1, 2.
In this case, we have νn,j(S) ∈ C \ R too, and ν0(S) ∈ R (see Proposition

2.5). First, let us see that λ0(S) ≥ −1−S when 0 < S ≤ 1. Indeed, for S = 1
the equality holds and is obvious as λ0(1) = −2 (see Proposition 2.5, point 5).
For S < 1, we recall that ν0 is the real solution of sin(ν) = Sν in the interval
(0, π). There, we have sin(ν0)/ν0 > cos(ν0). Therefore, λ0 = −1 − cos(ν0) >
−1− sin(ν0)/ν0 = −1− S.

This inequality combined with inequality(25) in Proposition 2.5 concludes
that Re(λn,j) < λ0 also in the present case.

3. S > 1.
Here, ν0(S) and all the values of νn,j(S), n ≥ 1, j = 1, 2 are non-real (see

Proposition 2.5). We write ν = x + iy and the second equations of (12) and
(13) become {

Re(λ) = −1∓ cos(x) cosh(y)
Im(λ) = ± sin(x) sinh(y),

(31)

which only need to be considered for x ≥ 0 and y > 0 (that is, j = 1), since we
are only interested in the real part of the eigenvalues. The values of x, y must
satisfy the first equations of (12) and (13), which now become the system{

sin(x) cosh(y) = ±Sx,
cos(x) sinh(y) = ±Sy.

(32)

Since x0 = Re(ν0) = 0, from the second equation in (32) (with an absolute
value) we have

sinh(y0)

y0
= S <

S

| cos(xn,1)|
=

sinh(yn,1)

yn,1
, n ≥ 1, (33)

(remember that xn,1 ∈ (nπ, (n+ 1/2)π ), see Proposition 2.5, point 3). And
from the monotonicity of the function sinh(y)/y for y > 0 we deduce that
y0 < yn,1, n ≥ 1. Now, the monotonicity of the function y/ tanh(y) gives

y0
tanh(y0)

<
yn,1

tanh(yn,1)
and therefore cosh(y0) <

sinh(y0)

y0

yn,1
tanh(yn,1)

, n ≥ 1.

Now, by using the first equality of (33), the previous inequality can be
written as

cosh(y0) < S
yn,1

sinh(yn,1)
cosh(yn,1). (34)

Finally, using (34) and the last equality of (33) in the first equation of (31)
(that can be written in the following form for n odd and even), we have

Re(λn,2) = Re(λn,1) = −1− | cos(xn,1)| cosh(yn,1) < −1− cosh(y0) = λ0,
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as we wanted to prove.

We now proceed to prove that the geometric and algebraic multiplicity of λ0(S)
is equal to one. This is the second fact needed to prove the optimal decay of the
solutions, as we will see in Section 4.

Roughly speaking, remember that the geometric multiplicity of an eigenvalue λ of
an operator A is the dimension of Ker(A−λI). And that the algebraic multiplicity
is the maximum n ∈ N such that dim(Ker(A− λI)n) = dim(Ker(A− λI)n+1). For
operators with compact resolvent, this happens for n large enough. See for exemple
H. Brezis [1] for more details.

Proposition 3.1.

1. The two components (u0, v0) of the eigenfunction corresponding to λ0(S) can
be chosen to be real and strictly positive for −1/2 < x < 1/2.

2. The multiplicity of λ0(S) (both geometric and algebraic) is equal to one.

Proof. 1. From Proposition 2.2, we know that one can take u0(x) = sin(ν0(1/2+
x)), x ∈ (−1/2, 1/2) when S ̸= 1. For 0 < S < 1 we know that 0 < ν0 < π
(Proposition 2.5, point 5), and, hence, 0 < ν0(1/2 + x) < π. Hence, the
result holds. For S > 1 we know (again from point 5 of Proposition 2.5)
that ν0 are purely imaginary, namely ν0 = iν′0 with ν′0 > 0, and we can take
u0(x) = sinh(ν′0(1/2 + x)), that is strictly positive for −1/2 < x < 1/2. For
S = 1 we know that u0(x) = 1 + 2x, x ∈ (−1/2, 1/2) (Proposition 2.2), and
the result also holds.The result also holds in all the cases for v0(x), since
v0(x) = u0(−x).

2. We know from part 2 of Proposition 2.2 that the geometric multiplicity of
λ0(S) is equal to 1. To see that the algebraic multiplicity is also equal to 1,
we will prove that it cannot be 2 or higher. That is, for the operator A defined
in (10) we want to prove that, for the eigenfunction (u0, v0) given before, the
equation (A−λ0I)(ξ, η)

T = (u0, v0)
T has no solutions satisfying the boundary

conditions ξ(−1/2) = η(1/2) = 0. More explicitly,
−Sξx − (1 + λ0)ξ + η = u0,

Sηx − (1 + λ0)η + ξ = v0,

ξ(−1/2) = η(1/2) = 0.

(35)

If we multiply both sides of the first equality by v0 and both sides of the
second by u0, integrate by parts between −1/2 and 1/2, using the boundary
values, and we add the results, then we get∫ 1

2

− 1
2

[ξ(S(v0)x − (1 + λ0)v0) + ηv0] dx

+

∫ 1
2

− 1
2

[η(−S(u0)x − (1 + λ0)u0) + ξu0] dx = 2

∫ 1
2

− 1
2

u0v0 dx.

But since (u0, v0)
T is an eigenfunction, this means that S(v0)x − (1+λ0)v0 +

u0 = 0 and −S(u0)x − (1 + λ0)u0 + v0 = 0, and the previous integral equality
becomes∫ 1

2

− 1
2

[−ξu0 + ηv0] dx+

∫ 1
2

− 1
2

[−ηv0 + ξu0] = 2

∫ 1
2

− 1
2

u0v0 dx
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which means 0 = 2
∫
u0v0 dx, and this is impossible because of part 1.

Remark 3.2. The previous proof of part 2 is reminiscent of the use of the adjoint
operator in Fredholm’s alternative. Both results given in parts 1 and 2 are in the
spirit of the statement of the Krein-Rutman Theorem but in an explicit and simpler
situation.

4. Optimal decay and asymptotic profile of the solutions. This section is of
functional-analytic character, and is devoted to proving parts 1, 2, and 4 of Theorem
1.4, and Theorem 1.3. That is the decay rate, its optimality, the asymptotic profile,
and the compactness property of the solutions, respectively. The main tool will be
the Spectral Mapping Theorem (SMT) in the following form.

Proposition 4.1. We have

σ(T (t)) = etσ(A) ∪ {0}, for t > 0

where A is our operator, defined in (10), and T (t), t ≥ 0, is the corresponding
C0-semigroup.

The proof of this result will be given below. The SMT type results allow us to
obtain information of σ(T (t)) (and, hence of the decay of the solutions) from the
knowledge of σ(A) (see [6], for instance). Since we have described σ(A) in Sections
2 and 3, this kind of result seems particularly appropriate.

Before the SMT result, we need to begin with the proof of the compactness
property of the semigroup given in Theorem 1.3. A basic step in this proof is
the results of the classical paper of A.F. Neves, H. Ribeiro, and O. Lopes, [22].
This is a well-known paper, and its results are still the basis of many recent works
on hyperbolic systems, like, for example, J.E. Muñoz Rivera and M.G.Naso [21].
Following this approach we obtain consequences essentially equal, but slightly better
than those of M. Lichtner [16].

Proof of Theorem 1.3. Our operator A fits into the general form of linear homoge-
neous hyperbolic systems given in [22] formula (II.1) with, in their notation, n = 2,

N = 1, K =

(
S 0
0 −S

)
, C =

(
1 −1
−1 1

)
, and D = E = F = G = 0. According to

this formula, an additional equation appears, namely
d

dt
d(t) = 0 and the boundary

condition v(1/2, t) = d(t), which we can make compatible with our boundary con-
ditions by taking d(0) = 0 as the initial condition, as in the problem represented by
formula (II.4) of the same reference. Following their reasoning, our problem can be
compared to the simpler uncoupled system

ut + Sux = −u x ∈ (−1/2, 1/2)

vt − Svx = −v x ∈ (−1/2, 1/2)

u(−1/2, t) = v(1/2, t) = 0,

(36)

in the sense that if T (t) is the semigroup generated by the original equation, and
T0(t) is the semigroup generated by (36), then T (t) − T0(t) is a compact operator
for t ≥ 0 (see Theorem A from [22]). But T0(t) can be explicitly calculated:

T0(t)

(
u0(x)
v0(x)

)
=

(
e−tu0(x− St) if St− 1/2 < x, and 0 otherwise
e−tv0(x+ St) if St− 1/2 < −x, and 0 otherwise

)
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and we see that T0(t) = 0 for t > 1/S. And the conclusion is that T (t) is compact
for t > 1/S.

We can now deduce the Spectral Mapping Theorem in the form stated above.

Proof of Proposition 4.1. We know from Theorem 1.3 that A generates an eventu-
ally compact semigroup. Therefore, Corollary IV 3.12 of [6] allows us to say that
σ(T (t)) \ {0} = etσ(A), for t ≥ 0. Since we know that Re(λn,j) → −∞, j = 1, 2,
when n → ∞ (see Proposition 2.5, part 4b) we have that 0 ∈ σ(T (t)) for all t > 0.
This proves the SMT in the form given in the statement of this proposition.

With all this, we are now ready to prove the optimal decay rate and the asymp-
totic profile of the solutions of our problem.

Proof of parts 1, 2, and 4 of Theorem 1.4. Again, asA generates an eventually com-
pact semigroup (see Theorem 1.3), Corollary IV 3.12 of [6] says that s(A) = ω0(A),
where ω0(A) is the growth bound of A (that gives the order of growth of T (t)), and
s(A) is the spectral bound of A. We know from Lemma 2.1 that A has only point
spectrum. This implies that the spectral bound is s(A) = λ0(S), the dominant
eigenvalue of A described in Sections 2 and 3. As ω0(A) = s(A), this means that
for each ε > 0 there exists an M ≥ 1 such that

∥T (t)∥ ≤ Met(λ0(S)+ε) for all t ≥ 0.

But we can now improve this decay estimate, since we know that λ0(S) is geomet-
rically and algebraically simple and that sup {Re {σ(A) \ {λ0}}} < λ0 (see Lemma
2.1, inequality (30) and Proposition 3.1) .

To see this, we can divide the set σ(A) by a vertical line Re(z) = ω in such a
way that λ0 > ω and Re(λ) < ω for all λ ∈ σ(A) \ {λ0}, for some ω > 0. Let
us call Π0 and I − Π0 the spectral projections associated with this decomposition
of σ(A). Since these projections commute with A we have that T (t) = etA =
etΠ0(A) + et(I−Π0)A. The first semigroup is one-dimensional and is simply given by
etΠ0(A)U0 = etλ0Π0(U0). Applying [6], Corollary IV 3.12, again to et(I−Π0)A and
using sup{Re{σ(A) \ {λ0}}} < ω we see that

∥T (t)U0∥ = ∥etΠ0(A)U0 + et(I−Π0)AU0∥

≤ M
(
eλ0t∥Π0U0∥+ eωt∥(I −Π0)U0∥

)
≤ M ′eλ0t∥Π0U0∥.

From this we conclude that ∥T (t)∥ ≤ M ′eλ0(S) t, as stated in point 1 of Theorem 1.4.
The optimality of this inequality (point 2 of Theorem 1.4) comes from the fact the
equality holds for solutions whose initial condition is a multiple of the eigenfunction
associated to λ0(S).

From the previous inequality we also deduce point 4 of Theorem 1.4: under the
generic assumption Π0U0 ̸= 0, that is satisfied by an open and dense subset of X,
one has T (t)U0 = eλ0 tΠ0U0 + O(etω). This shows that these solutions approach
a multiple of the first eigenfunction (u0(x), v0(x)) faster (at a rate eωt or even
faster) than the rate at which they approach zero (that is, etλ0) (remember that
ω < λ0 < 0). Therefore, the first eigenfunction (u0(x), v0(x)) can be properly called
the asymptotic profile of the solutions.
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