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Pere Boadas-Vaello a,*

a Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain
b Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic
c Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
d Department of Chemistry, Analytical Chemistry Division, Faculty of Sciences, University of La Laguna, 38204 San Cristóbal de La Laguna, Tenerife, Spain
e International Clinical Research Center, St. Anne’s University Hospital, 656 91, Brno, Czech Republic
f Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
g Department of Chemistry, Faculty of Science, University of Girona, 17071, Girona, Catalonia, Spain

A R T I C L E  I N F O

Keywords:
Central neuropathic pain
spinal cord injury
mass spectrometry
Artificial intelligence
Artificial neural networks
MALDI-TOF MS
Spectral profiles

A B S T R A C T

Spinal cord injury (SCI) often leads to central neuropathic pain, a condition associated with significant morbidity 
and is challenging in terms of the clinical management. Despite extensive efforts, identifying effective biomarkers 
for neuropathic pain remains elusive. Here we propose a novel approach combining matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with artificial neural networks (ANNs) 
to discriminate between mass spectral profiles associated with chronic neuropathic pain induced by SCI in female 
mice. Functional evaluations revealed persistent chronic neuropathic pain following mild SCI as well as minor 
locomotor disruptions, confirming the value of collecting serum samples. Mass spectra analysis revealed distinct 
profiles between chronic SCI and sham controls. On applying ANNs, 100% success was achieved in distinguishing 
between the two groups through the intensities of m/z peaks. Additionally, the ANNs also successfully 
discriminated between chronic and acute SCI phases. When reflexive pain response data was integrated with 
mass spectra, there was no improvement in the classification. These findings offer insights into neuropathic pain 
pathophysiology and underscore the potential of MALDI-TOF MS coupled with ANNs as a diagnostic tool for 
chronic neuropathic pain, potentially guiding attempts to discover biomarkers and develop treatments.

1. Introduction

In addition to causing motor dysfunction, spinal cord injury (SCI) can 
also lead to the development of neuropathic pain (NP) (Ahuja et al., 
2017; Burke et al., 2017). The prevalence of NP following SCI may 
affect up to 80% of patients (Ahuja et al., 2017; Burke et al., 2017; 
Cardenas and Felix, 2009; Hunt et al., 2021), significantly impacting 
their quality of life (Failde et al., 2018; Rivers et al., 2018; Vall et al., 
2006). NP is characterized not only by reflexive pain responses but also 
by comorbid mood disorders (Murray et al., 2007; Rivers et al., 2018; 

Saurí et al., 2017), posing considerable challenges in medical man-
agement. Epidemiological data suggests that women have a heightened 
vulnerability to the development of emotional comorbid pain disorders 
(Goesling et al., 2013; Miller and Cano, 2009), highlighting the 
importance of including female sex as a criterion in the design of chronic 
pathological pain research studies.

SCI-induced neuropathic pain is a subtype of pathological pain, 
which is maladaptive rather than protective, resulting from the 
abnormal functioning of the nervous system after injury (Treede et al., 
2019). The high prevalence of pathological pain, including neuropathic 
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Contents lists available at ScienceDirect

Neurochemistry International

journal homepage: www.elsevier.com/locate/neuint

https://doi.org/10.1016/j.neuint.2024.105890
Received 9 May 2024; Received in revised form 21 October 2024; Accepted 22 October 2024  

mailto:victoria.salvado@udg.edu
mailto:pere.boadas@udg.edu
www.sciencedirect.com/science/journal/01970186
https://www.elsevier.com/locate/neuint
https://doi.org/10.1016/j.neuint.2024.105890
https://doi.org/10.1016/j.neuint.2024.105890
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuint.2024.105890&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Neurochemistry International 181 (2024) 105890

2

pain, can be attributed partly to the limited efficacy of available treat-
ments, since those used for neuropathic pain management often have 
only modest benefits and restricted to a minority of cases (Attal, 2019; 
Cohen and Mao, 2014; Pirvulescu et al., 2022). This longstanding 
inefficacy primarily stems from the challenge of precisely targeting 
underlying mechanisms (Cohen and Mao, 2014). This knowledge gap 
illustrates the unmet need for identifying specific biomarkers for path-
ological pain and without a gold standard for diagnosis or treatment, 
this health condition remains challenging to address, contributing to its 
chronicity and worsening patients’ quality of life (Morlion et al., 
2018). In this context, the pursuit of pain biomarkers for diagnostic 
purposes has emerged as a significant challenge (Chae et al., 2022). 
Despite extensive directed efforts to identify specific biomarkers for 
various pathological pain conditions, neither the Food and Drug 
Administration in the USA nor the European Medicines Agency has yet 
validated any biomarkers for chronic pain (Smith et al., 2017).

The use of proteome and metabolome for biomarker discovery, 
facilitated by advanced analytical techniques such as mass spectrom-
etry, as a method of understanding complex diseases such as patholog-
ical pain has not given positive results to date (Duncan et al., 2016). In 
this paper we propose an alternative non-targeted approach that ana-
lyses the entire proteome or metabolome without focusing on specific 
compounds. This approach has been demonstrated to be valuable for 
generating hypotheses and detecting differences between healthy and 
diseased samples (Deulofeu et al., 2021; Liu and Locasale, 2017; 
Schrimpe-Rutledge et al., 2016). In fact, single biomarkers may not be 
sufficient for clinical diagnosis, prompting the need for fingerprinting or 
profiling techniques that identify patterns of multiple proteins (Bäckryd 
et al., 2015; Duncan et al., 2016) that will offer both insights into 
disease mechanisms and identify potential treatment targets. In line 
with this approach, w recently developed an innovative, simple, and fast 
method for detecting and classifying pathological pain subtypes in 
experimental models using serum mass spectra (Deulofeu et al., 2023). 
Specifically, the analysis of pain response outcomes and MALDI-TOF MS 
serum spectra, in combination with artificial neural network (ANN) 
analyses, provides a methodology for identifying neuropathic and 
nociplastic pain subtypes and determining their origin through their 
fingerprints, without the need to identify single biomarkers (Deulofeu 
et al., 2023). However, this methodology was developed with acute 
pathological pain models, and to the best of our knowledge, there are no 
studies focused on fingerprinting discrimination of SCI-induced chronic 
neuropathic pain. It is worth mentioning that traumatic SCI in humans is 
pathophysiologically categorized into primary and secondary injuries, 
with temporal distinctions including acute (<48 h), subacute (48 h–14 
days), intermediate (14 days–6 months), and chronic (>6 months) 
phases (Norenberg et al., 2004). Considering the dynamic nature of 
these processes, the array of molecules involved in each phase may vary, 
suggesting that it might be possible to use overall molecular profiles to 
differentiate between phases. Consequently, while the fingerprinting of 
acute SCI has already been established (Deulofeu et al., 2023), it would 
be valuable to determine the specific profiles associated with chronic 
SCI.

In light of the above considerations, this study aims to evaluate the 
effectiveness of combining MALDI TOF MS with ANN analysis to classify 
mass spectral profiles associated with chronic neuropathic pain induced 
by SCI in female mice. This approach holds promise as a clinical decision 
support tool for diagnosing and monitoring chronic pain, and it could 
lay the groundwork for future investigations into multiple biomarkers 
for chronic neuropathic pain, potentially leading to the development of 
more targeted treatments.

2. Materials and methods

2.1. Animals

Adult female ICR-CD1 mice (20–30 g) were procured from Janvier 

Laboratories (France). The use of mice was minimized with experi-
mental groups comprising 14–15 mice each. The determination of the 
animal sample size required for functional evaluation was conducted 
using GRANMO (Version 7.April 12, 2012), ensuring adherence to the 
ethical guidelines established by the Animal Ethics Committee of the 
University of Barcelona. Mice were housed in standard plexiglass cages 
(28 × 28 × 15 cm) with unrestricted access to food and water, main-
tained under a 12:12 h light/dark cycle, at a temperature of 21 ± 1 ◦C, 
and humidity levels ranging from 40% to 60%. Cage cleaning occurred 
twice weekly. All mice underwent a minimum 1-h acclimatization 
period to the facility rooms before engaging in any functional or surgical 
procedures, all of which were conducted during the light cycle. Regular 
testing of sentinel mice ensured the absence of pathogens throughout the 
experimental period.

All procedures performed on animals and their care adhered to the 
ARRIVE 2.0 guidelines and complied with the ethical principles outlined 
by the International Association for the Study of Pain (I.A.S.P.) for 
assessing pain in conscious animals (Zimmermann, 1983), as detailed 
in the European Parliament and Council Directive of September 22, 
2010 (2010/63/EU). The study protocol received approval from both 
the Animal Ethics Committee of the University of Barcelona and the 
Government of Catalonia (DAAM number 8884).

2.2. Experimental design and surgical procedure

Female CD-1 WT mice were submitted to a mild SCI and data on 
reflexive pain responses (thermal hyperalgesia and mechanical allody-
nia) were collected using the von Frey test and plantar test, respectively, 
from the acute phase through to the chronic phase (0, 1, 2, 3, 6, 9, and 12 
weeks post-injury). With regarded to the surgery, following anesthesia, 
spinal cord contusion was induced using a weight-drop device as 
detailed elsewhere (Castany et al., 2023; Soler-Martínez et al., 2022), 
ensuring the induction of central neuropathic pain without inducing 
paralysis in the animals. After a dorsal laminectomy, the T8–T9 thoracic 
spinal cord segments were exposed, and a weight of 2 g was dropped 
from a height of 25 mm onto a metallic stage positioned over the 
exposed spinal cord (SCI group). Post-procedure, the wound was closed, 
and the animals were kept in a warm environment until full recovery. 
Additionally, animals received 0.5 mL of saline solution to replenish any 
potential blood volume deficit. As controls, a sham group of mice, in 
which the spinal cord was exposed but not subjected to contusion, was 
used. At the end of the experimental period, serum samples were 
collected and processed for further acquisition of mass spectra by MALDI 
TOF. Subsequently, data obtained from mass spectral profiles and 
functional evaluation procedures were used to determine whether 
combining MALDI TOF MS with ANN analysis could serve as an effective 
methodology for classifying mass spectral profiles associated with 
chronic neuropathic pain induced by SCI.

2.3. Reflexive pain response evaluation

Thermal hyperalgesia was evaluated by recording hind paw with-
drawal latency in response to radiant heat applied with the plantar test 
apparatus (#37370; Ugo Basile, Comerio, Italy) as previously described 
(Bagó-Mas et al., 2022; Deulofeu et al., 2023). Mice were allowed to 
acclimate on the tempered (29 ◦C) glass surface of the exploratory 
plantar cage. The radiant heat source was positioned under the plantar 
surface of the hind paw, with a time-limit of 25 s to avoid skin damage. 
Withdrawal latencies for both hind paws were determined from the 
average of three separate trials conducted at 5-min intervals. Both paws 
were evaluated given that the SCI model results in bilateral injury.

In the case of mechanical allodynia, quantification involved the 
assessment of 50% withdrawal thresholds using a series of von Frey 
monofilaments (bending force range: 0.04–2 g) following the up-down 
paradigm, as described previously (Bagó-Mas et al., 2022; Deulofeu 
et al., 2023). Each filament was applied to the plantar surface of the 
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mice for 2 s, with a progressively thicker filament being employed until a 
nociceptive response was observed after which a thinner filament was 
applied. Four measurements were taken using this procedure and both 
hind paws were tested and averaged. A 50% response rate was calcu-
lated using the Dixon formula (Dixon, 1980): 50% paw withdrawal 
threshold (g) = [(10(Xf + κδ)/10,000)], where Xf represents the value 
(in logarithmic units) of the final von Frey filament used, κ is a fixed 
tabular value for the pattern of positive/negative responses, and δ is the 
mean difference (in log units) between stimuli.

Finally, the locomotor activity was assessed using the Basso Mouse 
Scale (BMS) test (Basso et al., 2006), performed as described elsewhere 
(Bagó-Mas et al., 2022; Castany et al., 2023). In brief, animals were 
individually placed in a circular plastic open field (70 cm diameter x 24 
cm wall height) and given 5 min to move freely. During this time, hin-
dlimb movements were assessed based on stepping, paw position, co-
ordination, and trunk stability (the BMS score ranges from 0 (no 
hindlimb movement) to 9 (normal, coordinated gait)).

2.4. Sample collection and acquisition of mass spectra

Upon completion of the experimental protocol, all animals were 
anesthetized with sodium pentobarbital (90 mg/kg; i.p.) and blood 
collection was performed via the insertion of an intracardiac needle. The 
collected blood was subsequently centrifuged for 15 min at 4000 rpm to 
obtain serum, which was promptly frozen in dry ice and stored at − 80 ◦C 
until analysis by MALDI-TOF MS.

For MS analysis, a previously optimized protocol was employed 
(Deulofeu et al., 2023). Briefly, serum samples (maximum 10 μL) were 
initially diluted tenfold with double distilled water (dd-H2O) and mixed 
in a 1:1 ratio with a sinapinic acid (SA) solution containing 20 mg 
SA/mL in 60%:40% (v/v) acetonitrile (ACN): dd-H2O with 0.3% tri-
fluoroacetic acid (TFA) to enhance ionization. Subsequently, 1 μL of the 
mixture was applied in triplicate to a purified stainless-steel target plate 
(Basheer and Hajmeer, 2000; Deulofeu et al., 2023). Mass spectra 
were then obtained using a MALDI-7090 TOF mass spectrometer (Kratos 
Analytical Ltd., UK), which was equipped with 2 kHz ultra-fast solid--
state UV laser (Nd-YAG:355 nm), delayed extraction, and a micro-
channel plate detector. The laser energy was expressed in arbitrary units 
(a.u.) and set at 140 a.u., with a laser fluence of approximately 10 
mJ/mm2/pulse. The accelerating voltage was maintained at 20 kV, and 
laser repetition occurred at 5 Hz with a pulse time width of 3 ns. All 
measurements were conducted in positive linear mode, and the mass 
range analyzed ranged from 0 to 10,000 Da. The automatic mode was 
configured to record all mass spectra using a regular raster, with the 
spectra registered as the relative ion signal to the mass-to-charge (m/z) 
value. Normalization of the spectra was performed with the maximum 
peak intensity set to 100%. Additionally, matrix samples served as 
blanks and were analyzed to distinguish matrix peaks from those of the 
samples. Solutions software (Kratos Analytical Ltd.) was used for to 
evaluate and export the mass spectra.

2.5. Statistical analysis and artificial neural networks

Functional assessments (reflexive pain responses) were performed in 
a blinded manner, with each mouse assigned an identification code. To 
determine the appropriate statistical tests, data normality was first 
evaluated using the Kolmogorov-Smirnov test. Based on this assessment, 
either parametric or non-parametric methods were applied. For nor-
mally distributed data, repeated measures MANOVA (Wilks’ criterion) 
and ANOVA were utilized, followed by Duncan’s post-hoc test where 
necessary. In cases where data did not meet normality assumptions, the 
Friedman test for non-parametric repeated measures and the Kruskal- 
Wallis test, followed by the Mann-Whitney U test, were used. A signif-
icance level of α = 0.05 was applied to all statistical tests, which were 
conducted using SPSS version 25.0 for Windows. Results are expressed 
as mean ± standard deviation of the mean (SEM).

As for ANNs, they serve as a mathematical model inspired by human 
neural architecture, aiming to mimic the brain’s ability for learning and 
generalization. They excel in modeling non-linear systems where re-
lationships among variables are intricate or even unknown, while 
remaining resilient to signal-to-noise interference (Agatonovic-Kustrin 
and Beresford, 2000; Basheer and Hajmeer, 2000). Consequently, 
ANNs prove adept at pattern recognition and classification, making 
them valuable tools for clinical diagnosis (Agatonovic-Kustrin and 
Beresford, 2000; Amato et al., 2013; Basheer and Hajmeer, 2000; 
Deulofeu et al., 2019; Houska et al., 2014). ANN analyses were per-
formed as described elsewhere (Deulofeu et al., 2023). Following the 
exportation of mass spectra, the data underwent preprocessing using R 
Studio software. This involved several steps: background removal, signal 
intensity normalization, smoothing, and baseline subtraction using the 
Savitzky–Golay and Loess methods along with spectral alignment. The 
objective of this preprocessing was to minimize variance within data-
bases (Norris et al., 2007). Mass spectra were analyzed individually to 
construct databases of chronic SCI and chronic Sham models. Addi-
tionally, another database was created to compare spectral fingerprints 
across the chronic and acute models. Before commencing statistical 
analyses, the resulting files containing mass spectra information, 
including non-relevant data, were reviewed and cleaned. Only peaks 
with a variance (s2) greater than 1 were retained in the final database 
after calculating the variance of the mean intensity of different peaks. 
Z-scaling was then applied to each dataset, and principal component 
analysis (PCA) was performed using the SPSS 25.0 statistical package. 
The main m/z variables and functional data were selected to construct 
PCAs using TRAJAN 3 software, facilitating model classification. A 
multilayer perceptron network, comprising artificial neurons organized 
in input, hidden, and output layers, was employed for all experiments. 
The architecture of this ANN was optimized with the number of nodes in 
the hidden layer chosen to minimize the root mean squared error. In all 
experiments, an architecture with three nodes in the hidden layer was 
used. The inputs of the networks were the intensities of selected m/z 
signals that were specific to each model. The network was trained using 
the back-propagation algorithm with a maximum of 50,000 iterations 
and a classification confidence level of 0.05. After the training phase, the 
model’s performance was assessed using leave-one-out cross-validation 
to evaluate its predictive capability in classifying single samples 
excluded from the training dataset. Cases not identified by the ANN were 
classified as erroneous predictions.

3. Results

3.1. Chronic neuropathic pain persists following mild spinal cord injury 
with only minor disruptions to locomotor abilities

Prior to conducting MALDI-TOF MS serum analysis, the two exper-
imental groups of animals, sham_C (n = 14) and SCI_C (n = 14), un-
derwent evaluation to determine the progression of reflexive pain 
responses, thermal hyperalgesia and mechanical allodynia throughout 
the chronic phase of SCI (up to 12 weeks post-injury).

The thermal hyperalgesia data exhibited a normal distribution (p >
0.5), based on the Shapiro-Wilk test. MANOVA analysis revealed sig-
nificant effects attributed to the week (p < 0.01), injury (p < 0.001), and 
the interaction between the factors of week and injury (p < 0.01). 
Further ANOVA analysis indicated significant group differences at all 
assessment time-points post-lesion (weeks 1–6 and 12, p < 0.001; week 
9, p < 0.01). Throughout the post-injury period, spinal cord injured mice 
demonstrated decreased paw withdrawal latency to thermal stimulation 
compared to the sham group (Fig. 1A).

In terms of mechanical allodynia data, the Shapiro-Wilk test revealed 
a non-normal distribution. Consequently, non-parametric Friedman and 
Mann-Whitney U tests were employed for statistical analysis. The 
Friedman test for variance analysis indicated that data distribution 
varied across the experimental period. Subsequent Mann-Whitney U 
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tests revealed significant intergroup differences from the first to the 
eighth week post-injury (weeks 1–6, p < 0.001; week 9, p < 0.05). SCI 
mice exhibited a decrease in the paw withdrawal threshold to me-
chanical stimulation from the first to the eighth week post-injury, fol-
lowed by a subsequent recovery of the withdrawal threshold until the 
experiment’s conclusion, reaching values that were similar to those 

observed in the sham group (Fig. 1B).
With regards to locomotor activity, the Shapiro-Wilk test also 

demonstrated a non-normal distribution (p < 0.001). Friedman’s test 
further indicated significant variability in sample distribution 
throughout the experiment (p < 0.001), with the Mann-Whitney U test 
revealing significant group differences only at post-injury weeks 1 and 3 
(p < 0.01) (Fig. 1C). Importantly, no major alterations in horizontal 
locomotion were observed, indicating that all mice retained the ability 
to move freely without experiencing paralysis or significant impairment 
in coordination and locomotor functions.

According to defined criteria in the animal welfare protocol (Morton 
and Griffiths, 1985), all mice exhibited normal characteristics 
throughout the study period. There were no observed changes in coat or 
skin condition, vibrissae of the nose, nasal secretions, signs of autotomy, 
and weight fluctuations, nor were there displays of aggressiveness, 
allowing us to infer that the functional data obtained were not influ-
enced by any discomfort experienced by the animals.

Overall, these findings indicate that SCI-animals had developed 
significant chronic central neuropathic pain 12 weeks post-injury and so 
we can be sure that the subsequently collected serum samples corre-
sponded to mice that were expressing chronic neuropathic pain during 
the chronic phase of SCI.

3.2. Mass spectrometry data provides information that could enable the 
distinction between animals suffering from SCI-induced chronic 
pathological pain and their corresponding controls

After conducting functional in vivo experiments, triplicate serum 
samples obtained from both spinal cord injured mice (SCI_C mice) and 
sham controls (Sham_C) were analyzed using a MALDI-7090 TOF mass 
spectrometer. The resulting mass spectra were evaluated to distinguish 
between pathological samples and their respective control counterparts.

Firstly, in the visual examination of the serum mass spectra, different 
m/z regions containing multiple peaks with varying signal intensities 
between the Sham_C and SCI_C groups were detected. Despite this, the 
mass spectra profiles collected in the positive mode of both SCI_C mice 
and Sham_C control mice had similar profiles (Fig. 2) and there was no 
indication that any individual peaks might serve as a group marker.

A more comprehensive examination of the mass spectra was then 
conducted, resulting in a substantial volume of data encompassing 
numerous m/z signals in both experimental groups. Following the 
database preparation outlined in the methodology section, a total of 322 
m/z values whose intensity signals had signal-to-noise ratio (s/n) ≥ 3 
(according to the IUPAC rules) were first included in the database. Af-
terwards, the database was cleaned of non-relevant information 
involving serum signals with variances (s2) < 1 and matrix m/z values, 
leaving only intensity signals of 113 m/z values. The univariate box-plot 
analysis showed that there was significant variability between the in-
tensities of 12 of the selected m/z values of the mass spectra of both 
groups (Fig. 3A). These datasets underwent PCA to unveil potential 
distinct metabolomic patterns associated with SCI_C mice. Subse-
quently, the samples were plotted based on the three first principal 
components (PCs) on a 3D score plot, enhancing visualization and 
facilitating the identification of trends and outliers in data (Deulofeu 
et al., 2023; Monakhova and Goryacheva, 2016). Despite the overlap, 
the resulting plot clearly delineated two clusters (Fig. 3B).

Taken together, these findings indicate that most of the SCI_C serum 
mass spectrum data can be clearly differentiated from their respective 
Sham_C controls, suggesting the potential presence of metabolomic 
patterns within these mass spectra that may be analyzed by ANN to 
develop a classification method.

Fig. 1. Time-course assessment of thermal hyperalgesia, mechanical allodynia, 
and locomotor activity following mild spinal cord injury during the chronic 
phase. Mean values along with standard error of the mean (SEM) are depicted 
using points and vertical lines. Two experimental groups were compared: 
sham_C (n = 14) and SCI_C (n = 14). (A) Thermal hyperalgesia was significantly 
observed in SCI animals for up to 12 weeks post-injury (wpi), with data 
analyzed via unidirectional ANOVA. (B) Mechanical allodynia was also signif-
icantly present in SCI animals up to 9 wpi, analyzed using the Mann-Whitney 
non-parametric test. (C) Mild alterations in BMS were noted, indicating 
changes in paw position without affecting horizontal locomotion, but were only 
present in weeks 1 and 3 post-injury (significance denoted as * p < 0.05, **p <
0.01, ***p < 0.001).
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3.3. Serum spectrum profile analysis using ANNs distinguish between 
samples of SCI-induced chronic pathological pain mice and their 
corresponding chronic sham controls

A data set consisting of the intensity signals of 113 m/z was 
employed in the training and verification steps of the ANN analysis 

performed with an optimized ANN architecture (113:3:1) with 113 in-
puts (the 113 m/z values), 3 nodes in the hidden layer and 1 output 
(sham or SCI group). The optimal number of nodes was found after 
plotting the root mean square error (RMS) as a function of the number of 
nodes in the hidden layer (Fig. 4A and B). To train the ANN, more than 
50,000 training cycles (epochs) were performed without overfitting the 

Fig. 2. Representative serum mass spectra from both chronic SCI and chronic sham mice were obtained using MALDI-TOF MS during the chronic phase of the injury. 
Observable differences between the SCI_C and Sham_C groups are evident. Stars are used to indicate the signals with the highest intensities of certain m/z values.

Fig. 3. (A) Intensities of the most relevant m/z peaks found in the serum analysis by MALDI-TOF MS Data shown as the median of each group ± interquartile range 
(IQR) (*p < 0.05, **p < 0.01, ***p < 0.001); (B) PCA statistical analysis using 113 peaks (m/z values) of mass spectrum data obtained from the spinal cord injury 
model in the chronic phase of the injury. Experimental groups: Sham_C (n = 14) and SCI_C (n = 14), serum samples of each animal were analyzed by triplicate.
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system, demonstrating the robustness of the model. For the model 
verification, the leave-one-out cross validation method was performed, 
achieving a classification success rate of 100% (Fig. 4C).

Subsequently, a new data set was generated after eliminating m/z 
values that made a minimal statistical contribution to the PCs so as to 
discard potentially irrelevant values for classification. Fifty-three signals 
remained in the database and were used for a new PCA calculation. 
Thirteen PCs (eigenvalues ≥0.5), accounting for 97% of the data vari-
ability, were derived from this calculation. The subsequent score plot of 
the samples revealed two groups with a substantial overlapping region 
between them (Fig. 5A). Upon further ANN analysis using the final 13 
PCs, only two samples (one from each group) could not be classified 
correctly, indicating a 93% correct classification rate (Fig. 5B), which is 
slightly lower than the success rate obtained using the full database 
(Fig. 4C). For the ANN analysis, a network architecture featuring three 
nodes in the hidden layer was employed (Fig. 5C), and no instances of 
model overfitting were detected even after more than 50,000 epochs.

Overall, these findings show that the signals of the 113 m/z peaks 
extracted from the mass spectra offer valuable information for sample 
differentiation through ANN analysis, potentially representing the 
serum spectral profile or fingerprint of the chronic phase of SCI 
(Table 1).

3.4. The combination of reflexive pain response outcomes with mass 
spectra data reduces the effectiveness of ANN in successfully classifying 
pathological pain and healthy samples

Since functional data might enhance or impair ANN classification of 
pathological pain, data from the final assessment time-points of thermal 
hyperalgesia and mechanical allodynia were incorporated into the 
dataset as new variables. Initially, both of these pieces of functional data 
were added individually, resulting in two databases that combine the 
signals of the 113 m/z values with one of the pain response variables. 
Despite the mechanical allodynia data having a variance <1, they were 

still included. Both databases underwent PCA, yielding fourteen PCs that 
explained 95% of the data variability in each case. Similar sample score 
plots were generated, depicting two groups with a considerable over-
lapping area (Fig. 6A and B). The databases were then subjected to ANN 
analysis. When either thermal hyperalgesia or mechanical allodynia and 
mass spectrum data were used as inputs, three nodes were determined to 
be the optimal number in the hidden layer in both network architectures 
(Fig. 6C and D). As for the combination of mass spectrum data and 
thermal hyperalgesia, the ANN achieved correct classification of 79% of 
the samples, with only three samples from each group remaining un-
identified (Fig. 6E). Conversely, when mechanical allodynia data was 
used, an 89% classification success rate was achieved. Only three sam-
ples (two Sham_C and one SCI_C) were classified as unknown (Fig. 6F).

In the final step, both functional variables were concurrently incor-
porated into the database. Once again, PCA yielded 14 factors, which 
now accounted for 94% of the data variability. No notable differences 
were observed in the score plot of the samples compared to the two 
previous analyses (Fig. 7A). In the ANN analysis, the optimal network 
structure remained consistent with three nodes in the hidden layer 
(Fig. 7B). Notably, no instances of model overfitting were detected 
during the training process. Twenty-four samples were correctly classi-
fied into their respective groups, with only four samples (two from each 
group) remaining unidentified. Consequently, an 86% correct classifi-
cation rate was achieved using both functional variables in conjunction 
with the mass spectrum data (Fig. 7C).

Overall, the results suggest that reflexive pain response data did not 
offer significant information for the classification of samples by ANN.

3.5. The analysis of serum samples by MALDI-TOF MS in combination 
with ANN analysis is a useful tool to discriminate between chronic and 
acute central neuropathic pain samples

Once the MALDI-TOF MS and ANN method had been developed to 
differentiate chronic neuropathic and sham conditions in SCI, we 

Fig. 4. Serum spectral profile analyses by ANNs of 113 peak database. (A) Plot of the RMS against the number of nodes in the hidden layer corresponding to the 
analysis using 113 inputs; (B) General architecture of the ANN with 3 nodes in the hidden layer used for discrimination of spectral profiles; (C) Detail of the ANN 
classification output based on the 113 m/z values. Experimental groups: Sham_C (n = 14) and SCI_C (n = 14).

Fig. 5. Serum spectral profile analyses coupling MALDI-TOF MS data and ANN analysis using the intensities of 53 m/z values. (A) PCA using 53 m/z values of mass 
spectrum data obtained of the SCI model in the chronic phase of the injury; (B) plot of the RMS against the number of nodes in the hidden layer corresponding to the 
analysis using 53 inputs. Three nodes in the hidden layer were used in the analyses; (C) detail of the ANN classification output based on the 53 m/z values. 
Experimental groups: Sham_C (n = 14) and SCI_C (n = 14).
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focused on testing its ability to detect distinct pain profiles across injury 
stages. Serum from SCI_C was analyzed alongside samples from mice 
sacrificed three weeks post-injury (acute phase) in previous experiments 

(Deulofeu et al., 2023) to determine if the method could distinguish 
between the acute and chronic phases. When samples from acute and 
chronic SCI phases were evaluated together, distinct disparities were 

Table 1 
Serum spectral profile of SCI model in mice during the chronic phase. Relevant peaks used to obtain the best classification success by ANN analysis.

RELEVANT M/Z FOR THE CLASSIFICATION (Da)

60.11, 70.31, 72.24, 74.23, 86.35, 87.36, 104.48, 105.37, 105.51, 132.58, 147.73, 163.91, 176.02, 177.87, 184.86, 185.99, 186.84, 191.93, 192.06, 198.81, 199.03, 203.77,203.94, 
205.96, 206.83, 209.02, 209.89, 210.05, 210.19, 238.07, 238.24, 247.02, 248.07, 248.75, 259.31, 264.01, 264.20, 270.21, 272.29, 285.92, 286.24, 301.97, 302.31, 236.36, 346.56, 
352.25, 372.74, 386.52, 386.73, 426.52, 426.73, 428.43, 428.67, 432.59, 450.53, 450.76, 454.76, 460.77, 461.01, 461.28, 470.62, 472.60, 473.75, 474.86, 488.94, 494.69, 495.89, 
497.84, 510.01, 510.27, 510.74, 516.69, 516.97, 519.43, 519.74, 520.43, 521.76, 521.99, 525.83, 526.08, 526.33, 526.63, 526.88, 527.16, 545.86, 546.13, 547.70, 548.14, 548.44, 
679.51, 762.05, 762.35, 762.66, 782.02, 782.62, 783.89, 784.21, 784.50, 784.79, 785.14, 806.04, 806.36, 806.68, 806.97, 810.19, 810.50, 810.80, 811.13, 834.32, 834.64, 835.27

Fig. 6. Serum spectral profile analyses coupling either thermal hyperalgesia or mechanical allodynia outcomes with MALDI-TOF MS data and ANN analysis. (A) PCA 
results after adding the thermal hyperalgesia outcomes to mass spectrum data; (B) PCA results after adding the mechanical allodynia outcomes to mass spectrum 
data; (C) plot of the RMS against the number of nodes in the hidden layer corresponding to the analysis using 114 inputs (the signals of 113 m/z values and thermal 
hyperalgesia data). Three nodes in the hidden layer were used in the analyses; (D) plot of the RMS against the number of nodes in the hidden layer corresponding to 
the analysis using 114 inputs (the signals of 113 m/z values and mechanical allodynia data). Three nodes in the hidden layer were used in the analyses; (E) detail of 
the ANN classification output based on the combination of data from mass spectra and thermal hyperalgesia; (F) detail of the ANN classification output based on the 
combination of data from mass spectra and mechanical allodynia. Experimental groups: Sham_C (n = 14) and SCI_C (n = 14).

Fig. 7. Serum spectral profile analyses coupling both reflexive pain outcomes, MALDI-TOF MS data and ANN analysis. (A) PCA results after adding both reflexive 
pain response outcomes to mass spectrum data; (B) Plot of the RMS against the number of nodes in the hidden layer corresponding to the analysis using 115 inputs 
(the signals of 113 m/z values and both thermal hyperalgesia and mechanical allodynia data). Three nodes in the hidden layer were used in the analyses; (C) detail of 
the ANN classification output based on the combination of data from mass spectra, thermal hyperalgesia and mechanical allodynia. Experimental groups: Sham_C (n 
= 14) and SCI_C (n = 14).
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observed when comparing the serum mass spectra of the SCI_C and 
SCI_A groups. Notably, all m/z values within the mass spectra of SCI_C 
mice appeared to exhibit lower intensities than the SCI_A group (Fig. 8). 
However, the most significant differences were noted within the lower 
mass range of the spectra, spanning from 100 to 1000 Da, which was 
already evident in previous studies of acute SCI samples (Deulofeu 
et al., 2023).

After mass spectra acquisition, the intensity signals corresponding to 
151 m/z values with a signal-to-noise ratio (s/n) ≥ 3 were included in 
the database. As described above, this database was cleaned by 
removing the peaks of the matrix and those from the serum with an s2 <

1, resulting in a database consisting of 55 m/z values. Subsequent sta-
tistical analysis revealed that 44 of the 55 m/z values examined had 
significant differences, predominantly characterized by lower peak in-
tensities in the serum samples of SCI_C mice compared to those of the 
SCI_A group (Fig. 9).

The data from the 55 selected m/z peaks was analyzed by PCA, 
yielding twelve factors (eigenvalues ≥0.5) that collectively accounted 
for 97% of the variability. The resulting score plot showed the samples 
forming two distinct groups (Fig. 10A), although the SCI_C containing 
three outliers separated from the main group. Subsequently, the same 
55 m/z values were used as inputs for the ANN analysis. Network 
optimization determined that the optimal number of nodes in the hidden 
layer was three (Fig. 10B). The model’s robustness was validated by the 
absence of overfitting, even after more than 50,000 epochs during the 
training process. Finally, using the leave-one-out verification method, 
all samples were accurately classified into their respective groups, 
achieving a 100% success rate (Fig. 10C).

As in previous experiments involving SCI_C and Sham_C, we sought 
to determine whether comparable outcomes could be attained with a 
reduced set of variables. To this end, we systematically eliminated those 
m/z values that had minimal impact on the PCs identified in the pre-
ceding analysis. After this refinement process, a database comprising 42 
variables underwent PCA once again, revealing 10 components (eigen-
values ≥0.4) that collectively accounted for 96% of the data variability. 
The resulting score plot of the samples resembled that obtained in the 
previous PCA, depicting two distinct groups, although with the SCI_A 
samples exhibiting greater dispersion (Fig. 10D). For the ANN analysis, a 
network featuring three nodes in the hidden layer was employed 
(Fig. 10E), and the training process was conducted without encoun-
tering overfitting issues. Identical outcomes were observed in the ANN 

analysis, with all samples being effectively classified (Fig. 10F), indi-
cating that irrelevant information for sample classification had been 
successfully eliminated from the database. No further variables could be 
eliminated from the analysis, as all the 42 m/z values were deemed to be 
informative, carrying significant weight in at least one of the previous 
PCs, and so were regarded as relevant peaks for distinguishing samples 
from spinal cord injured mice at various phases of the injury (Table 2).

4. Discussion

This study aimed to assess the effectiveness of combining MALDI- 
TOF MS with ANN analysis to classify mass spectral profiles linked to 
chronic neuropathic pain caused by SCI in female mice. This combined 
approach could show potential as a clinical decision support tool for 
diagnosing and tracking chronic pain and might also serve as a foun-
dation for future research into multiple biomarkers for chronic neuro-
pathic pain, potentially leading to the development of more precise 
treatments.

To achieve this goal, it was first necessary to collect blood samples 
from animals with chronic neuropathic pain. CD1 female mice were 
subjected to SCI, their reflexive pain responses were evaluated weekly, 
and serum was collected after 12 weeks post-injury. The functional 
evaluation of the SCI and Sham groups to determine the progression of 
reflexive pain responses, thermal hyperalgesia and mechanical allody-
nia, throughout the chronic phase of SCI (up to 12 weeks post-injury) 
showed that chronic neuropathic pain persists following mild SCI 
despite the presence of only minor disruptions to locomotor abilities. 
The lack of changes in objective measurements and observations of the 
animals’ visible state allow us to infer that the functional data obtained 
were not influenced by any discomfort experienced by the animals. 
These findings were consistent with previous observations in chronic SCI 
mice (Castany et al., 2023), confirming their proper development and 
ensuring that subsequently collected serum samples corresponded to 
mice expressing chronic neuropathic pain during the chronic phase of 
SCI. It is important to mention that while humans may take up to 6 
months to transition to the chronic phase of SCI (Ahuja et al., 2017), 
the temporal progression of SCI phases in murine experimental models is 
briefer. The immediate and acute phases typically last for approximately 
2–3 weeks post-injury (Taoka and Okajima, 1998), followed by an 
intermediate phase spanning from 3 to 6 weeks (Young, 2002). 
Following this, the chronic phase generally begins at around 6–8 weeks 

Fig. 8. Representative serum mass spectra of SCI mice in both chronic and acute phases of the injury obtained by MALDI-TOF MS. Differences between the SCI_C and 
SCI_A groups can be observed. The stars indicate the group with the highest intensity of some of the peaks. M refers to the peaks of the matrix.
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Fig. 9. Intensities of the most relevant peaks found in the serum mass spectra obtained by MALDI-TOF MS. Data shown as the median of each group ± IQR. (*p <
0.05, **p < 0.01, ***p < 0.001). Experimental groups: SCI_C (n = 14) and SCI_A (n = 15) serum samples of each animal were analyzed by triplicate.

Fig. 10. Serum spectral profile analyses coupling MALDI-TOF MS data and ANN analysis using databases of SCI_C and SC_A samples. (A) PCA using 55 m/z values of 
mass spectrum data obtained of chronic and acute spinal cord injury models; (B) plot of the RMS against the number of nodes in the hidden layer corresponding to the 
analysis using 55 inputs. Three nodes in the hidden layer were used in the analyses; (C) detail of the ANN classification output based on the 55 peaks. (D) PCA using 
42 m/z values of mass spectrum data obtained from chronic and acute spinal cord injury models; (B) plot of the RMS against the number of nodes in the hidden layer 
corresponding to the analysis using 42 inputs. Three nodes in the hidden layer were used in the analyses; (C) detail of the ANN classification output based on the 42 
peaks. Experimental groups: SCI_C (n = 14) and SCI_A (n = 15).

Table 2 
Serum peaks relevant to distinguish between chronic and acute pain in spinal cord injuries.

RELEVANT M/Z FOR THE CLASSIFICATION (Da)

60.09, 70.19, 71.29, 72.21, 74.20, 84.32, 86.33, 87.35, 104.45, 105.41, 125.75, 147.73, 159.67, 176.45, 184.86, 186.86, 206.79, 209.04, 286.17, 302.24, 426.57, 442.57, 
454.79,461.25, 470.62, 474.87, 498.51, 516.89, 519.86, 521.82, 532.83, 536.00, 543.84, 548.84, 548.20, 760.51, 762.40, 782.74, 784.28, 811.16, 8717.68, 8722.75
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of the injury (Arnold and Hagg, 2011). Therefore, given that the serum 
samples were collected 12 weeks after injury, we can be confident that 
they were suitable for assessing the proposed methodology (MALDI-TOF 
MS fingerprints coupled with ANN).

With regards to the first serum spectral profile analysis, visual ex-
amination of mass spectra of both SCI_C mice and Sham_C control mice 
showed similar profiles and there was no indication that any individual 
peaks might serve as a group marker. This observation has been previ-
ously documented in acute pathological pain mouse models (Deulofeu 
et al., 2023). Specifically, no single peaks appear to align with group 
markers in models of pathological pain, including peripheral neuro-
pathic pain (CCI - chronic constriction injury of the sciatic nerve), cen-
tral neuropathic pain (acute SCI - spinal cord injury), and nociplastic 
pain states (RIM - reserpine-induced myalgia mice, and ASI - mice 
injected with intramuscular acid saline solution) (Deulofeu et al., 
2023). As has been discussed by other authors in prior experiments, the 
challenge of clearly delineating a structural m/z signal for SCI_C is yet 
another example of the current elusiveness of optimal pain biomarkers 
(Scherl, 2015). Given this failure, the proposed approach of concur-
rently measuring multiple compounds to discern overarching patterns 
(Deulofeu et al., 2023; Sisignano et al., 2019) rather than focusing 
solely on individual biomolecules emerges as the most suitable course of 
action once again. Expanding on the observational results, a detailed 
analysis of the mass spectra was performed, producing a database of 322 
m/z values with signal-to-noise ratios (S/N) ≥ 3. After removing irrel-
evant data, 113 m/z values were retained. Box-plot analyses showed 
significant differences in the intensities of 12 m/z values between the 
groups. PCA was applied to uncover distinct metabolomic patterns, 
revealing two clear clusters, despite some overlap. Applying this 
multivariate analysis approach, most of the SCI_C samples could be 
clearly differentiated from their respective Sham_C. These results sug-
gest the potential presence of metabolomic patterns within these mass 
spectra that may be analyzed by ANN to develop a classification method. 
This multivariate analysis approach proved to be highly effective in 
distinguishing between samples of SCI-induced chronic pathological 
pain mice and their corresponding sham controls.

The subsequent step involved combining MALDI-TOF mass spectral 
profiles with ANN analysis in order to develop a methodology that could 
distinguish between SCI_C samples and those of Sham_C. Given this 
success, we proceeded to evaluate whether reducing the number of 
variables could still yield the same result. The analysis was then con-
ducted using the 53 remaining signals. Although a classification rate 
above 90% was obtained, the success rate was lower compared to using 
the full database. This suggests that the 113 m/z peaks extracted from 
the mass spectra provide valuable information for sample differentiation 
through ANN analysis, potentially representing the serum spectral pro-
file or fingerprint of the chronic phase of SCI. Collectively these findings 
suggest that significant insights gleaned from mass spectra can serve as 
inputs for ANN analyses, facilitating the differentiation between serum 
samples obtained from SCI_C and those from Sham_C healthy mice.

Although all samples were accurately classified using information 
from the mass spectra alone, the influence of pain response data on the 
discrimination of the samples by ANN analysis was evaluated. In other 
words, considering the evidence that functional data can either enhance 
or diminish the success of ANN classification of pathological pain sam-
ples (Deulofeu et al., 2023), outputs from functional analyses of 
chronic models were integrated with fingerprint data to assess their 
influence on the classification of the SCI-induced chronic neuropathic 
pain model. As a result, the success rate of the ANN classification of the 
SCI-induced chronic neuropathic pain model did not improve after 
integrating functional and fingerprint data suggesting that reflexive pain 
response data (thermal hyperalgesia and mechanical allodynia) did not 
offer significant information for the classification of samples by ANN. 
These findings diverge from those observed in acute models of patho-
logical pain, where the inclusion of functional data alongside those of 
CCI, RIM6, ASI, or acute SCI enhanced the classification capacity, 

particularly in terms of thermal hyperalgesia (Deulofeu et al., 2023). 
However, it is important to note that in the present study, the decrease in 
success rates may be attributed to the slight recovery observed in the 
animals during the two functional tests at the end of the experimental 
period. In fact, these findings should be interpreted positively as they 
provide robust evidence for the presence of SCI-related chronic patho-
logical pain without the need for functional data. In other words, the 
gradual and consistent decrease in reflexive pain responses leading up to 
the chronic phase may misguidedly lead to the conclusion that there is 
an absence of neuropathic pain. However, the information provided by 
the specific spectral profile of chronic SCI indicates the presence of a 
pathological process that, if replicated in humans, should prompt cli-
nicians to continue with necessary interventions despite the absence of 
reflexive responses. This reduction in reflexive pain responses has pre-
viously been documented (Castany et al., 2023), although the chronic 
phase typically sees a rise in non-reflexive pain responses, such as 
depression, anxiety, and cognitive impairment (Castany et al., 2023; 
Wu et al., 2014a, 2014b, 2016). Given these findings, we believe that 
future experiments should focus on enhancing this methodology by 
integrating non-reflexive pain responses instead of reflexive ones in 
models of chronic pathological pain. It is hoped that this will eventually 
make it possible to distinguish between spectral profiles associated with 
non-reflexive pain responses from those linked to mood disorders that 
do not correlate with pain.

After establishing a reliable methodology that combines MALDI-TOF 
MS with ANN analysis to differentiate between samples of SCI-induced 
chronic neuropathic and sham chronic conditions, our focus turned to 
determining its potential in discerning the distinct pain profiles across 
different phases of SCI. To this end, we investigated whether this 
methodology could effectively discriminate between the characteristics 
associated with both chronic and acute phases of SCI. Serum samples 
from the SCI_C that had been obtained so far were analyzed together 
with stored serum samples obtained from SCI mice put down three 
weeks after injury (SCI_A) in previous experiments (Deulofeu et al., 
2023). For the present study, we only used serum aliquots from these 
acute SCI mice to achieve the new objective of distinguishing between 
samples of SCI_C and SCI_A, thereby avoiding the need to use additional 
animals. As a result, the analysis of serum samples via MALDI-TOF MS, 
followed by statistical analysis using ANN, has also made it possible to 
distinguish between chronic and acute SCI-induced neuropathic pain 
within the same type of lesion without the need to rely on structural 
biomarkers or to incorporate additional functional data. Understanding 
the phase of the pathophysiological process in a patient is clinically 
relevant as this is important additional information for physicians when 
deciding on the most appropriate treatment. Furthermore, and although 
not the primary focus of the current study, the spectral profiles could 
prove useful in identifying structural biomarkers that may serve as 
pharmacological targets. Leveraging ANN and other machine learning 
models could help define specific molecular biomarker ranges that play 
a crucial role in disease detection. In other words, certain characteristic 
m/z values in molecular profiles may correspond to key biomolecules 
associated with the disease. These molecules could then be sequenced 
using tandem MS and advanced sequencing techniques. Future research 
should aim not only at identifying specific molecular profiles but also at 
pinpointing pain-specific biomarkers within the spectral data, employ-
ing techniques such as MALDI-TOF MS/MS. Although electrospray 
ionization (ESI) is commonly used as ion source in tandem mass 
spectrometry-based proteomic studies in biomedical research (Nadler 
et al., 2017), MALDI-TOF/TOF remains a relatively fast and straight-
forward alternative for qualitative and quantitative analysis of bio-
molecules (Gogichaeva and Alterman, 2012, 2019; Darie-Ion et al., 
2022), to study protein–protein interactions (PPIs), and 
post-translational modifications (PTMs). Peptides and proteins hold 
potential as clinical biomarkers due to advantageous features, such as 
user-friendly sample preparation (Dave et al., 2011; Darie-Ion et al., 
2022), preservation of non-covalent interactions, and high sensitivity, 
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along with high-throughput screening capabilities for rapid data 
acquisition (Giampà and Sgobba, 2020; Darie-Ion et al., 2022). These 
techniques have been successfully applied to analyze biofluids such as 
serum, plasma, and urine, proving effective across a wide range of dis-
eases (Darie-Ion et al., 2022).

The decision to use female mice is, in part, an acknowledgement of 
the greater susceptibility of females to emotional comorbidities in pain 
disorders (Goesling et al., 2013; Miller and Cano, 2009). Evidence 
shows that females experience greater pain prevalence and severity, and 
female mice exhibit heightened hypersensitivity after SCI compared to 
males (Lee et al., 2023). Ovarian hormones and neuroimmune mech-
anisms, such as prolactin receptor signalling, may contribute to these sex 
differences in pain (Guindon et al., 2019; Sanoja and Cervero, 2008; 
Paige et al., 2020). Transcriptomic analyses also reveal distinct gene 
expression related to neuropathic pain between sexes (Dai et al., 2022), 
suggesting that oestrogen prolongs pain sensitivity in females, while 
testosterone reduces it in males (Paige et al., 2020). Despite these facts, 
chronic pain research in women has been historically underrepresented 
(Osborne and Davis, 2022; Li et al., 2023). The more frequent pain 
and lower thresholds experienced by women (Casale et al., 2021) also 
increases the case for sex-specific approaches in pain research and 
treatment (Hoffmann et al., 2022). With regard to the potential effects 
of ovarian cycle phases on experimental female outcomes, although 
female subjects are underrepresented in preclinical studies, recent 
findings challenge the notion that the oestrous cycle significantly affects 
experimental outcomes. Behavioural assays showed no major differ-
ences across oestrous phases in anxiety, depression-like behaviours, or 
social interaction (Zeng et al., 2023; Zhao et al., 2021), and female 
mice did not exhibit greater variability than males in most traits 
(Prendergast et al., 2014). While mild effects of the oestrous cycle on 
pain response may exist (Martin, 2009), studies indicate that female 
mice can be reliably used in neuropathic pain research without strict 
oestrous cycle monitoring (Prendergast et al., 2014; Sanoja and 
Cervero, 2008). Consistency in this aspect is key for the application of 
the methodology we have developed, proving its potential applicability 
regardless of the ovarian cycle.

5. Conclusions

These findings emphasize the potential of MALDI-TOF MS integrated 
with ANNs as a diagnostic approach for chronic neuropathic pain, 
potentially facilitating the discovery of biomarkers and the development 
of new treatments.

The current research undertaken in a mice model gives rise to 
interesting questions that will need to be studied to better understand 
pain in humans. Testing will be required to determine whether the 
methodology presented here may be of use to physicians in clearly 
identifying the phase of the pathophysiological process that the patients 
are experiencing, so assisting them in the selection of the most appro-
priate interventions. Furthermore, the spectral profiles obtained 
through this methodology may prove useful in identifying structural 
biomarkers that could become pharmacological targets. With the high 
success rate observed, future experiments could concentrate solely on 
the spectral profiles obtained in this study, potentially playing a pivotal 
role in the identification of specific molecular biomarkers through as-
sociation with significant peaks for subsequent structural sequencing 
(Cho et al., 2015; Dettmer et al., 2007), which may lead to the 
development of new more specific drugs in a landscape where there are 
currently insufficient suitable treatments available (Spinal Cord Injury 
(SCI) 2016 facts and figures at a glance, 2016; Suzuki and Sakai, 
2021). The World Health Organization (WHO) estimates that over 15 
million people are currently living with SCI, with most cases resulting 
from trauma, mimicking the contusion model studied here, thus illus-
trating the clinical relevance of the present study. The WHO emphasizes 
the importance of preventing, diagnosing at an early stage, and treating 
SCI-related secondary conditions to improve quality of life, as a response 

to the chronic state that many patients are forced to live with in the 
absence of treatment for the primary conditions. Given that the main 
aim of this study was to develop a potential clinical decision support tool 
for enhancing diagnostics and potentially identifying new therapeutic 
targets, it aligns with the WHO’s priorities. Recent statistical projections 
up to 2030 using Bayesian age-period-cohort analysis have further 
emphasized the urgency, revealing an upward trend in age-standardized 
incidence rates of SCI until 2030 (Liu et al., 2023).

CRediT authorship contribution statement

Meritxell Deulofeu: Writing – review & editing, Validation, Soft-
ware, Investigation, Formal analysis, Data curation. Eladia M. Peña- 
Méndez: Writing – review & editing, Validation, Software, Methodol-
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