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Abstract

Background

The popularity of continuous subcutaneous insulin infusion (CSII), or insulin pump therapy, as a 

way to deliver insulin more physiologically and achieve better glycaemic control in diabetic 

patients has increased over the last years. Despite the therapeutic advantages of using CSII have 

been substantiated,  the use of  CSII has also been associated with an increase in the risk of 

technical  malfunctioning  of  the  device,  leading  to  an  increased  risk  of  acute  metabolic 

complications, such as severe hypoglycaemia and diabetic ketoacidosis.  Current insulin pumps 

already incorporate systems to detect some types of faults, such as obstructions in the infusion 

set, but are not able to detect other type of faults such as the disconnection or leakage of the  

infusion set. 

Methods

In  this  paper,  we  propose  the  utilisation  of  a  validated  robust  model-based  fault  detection 

technique, based on interval analysis, for detecting disconnections of the insulin infusion set. For 

this purpose, a previously validated metabolic model of glucose regulation in type 1 diabetes and 
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a continuous glucose monitoring device were used. As a first step to assess the performance of  

the presented fault  detection system, a FDA-accepted type 1 diabetes mellitus simulator was 

employed.

Results

Of the 100 in-silico tests (10 scenarios on 10 subjests), only 2 false negatives and 1 false positive 

occurred. All faults were detected before plasma glucose concentration reached 300 mg/dL, with 

a mean plasma glucose detetion value of 163 mg/dL and a mean detection time of 200 minute.

Conclusions

Interval  model-based  fault  detection  has  been  proven  (in-silico)  to  be  an  effective  tool  for 

detecting faults in sensor-augmented continuous subcutaneous insulin infusion (CSII) systems.

Quantificating the uncertainty associated to the supervised system has been seen to be crucial for 

the good performace of the proposed approach.

1 Introduction

According to a recent meeting [1] of insulin pump experts on insulin pump safety at the request  

of the US Food and Drug Administration (FDA), insulin pump designs have made great progress 

in improving the quality of life of people with diabetes, but much more remains to be done to  

improve safety measures.

For example, many users disconnect their pumps without terminating ongoing delivery first. This 

results in insulin leakage and miscalculation of the amount infused. Another example is when, 

under circumstances not detected by the user, the infusion set becomes disconnected, preventing 

insulin from reaching the user. Such circumstances include the infusion set needle being caught 

on the infusion site tape or the needle being pulled out during sleep. These examples show that it 

is  critical  that  insulin  pumps  detect  and  inform  users  about  accidental  pump/infusion  set  

disconnections in a timely manner, a feature that, unfortunately, insulin pumps currently on the 
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market do not support.

The  idea  of  using  fault  detection  techniques  for  detecting  failures  in  insulin  pump therapy 

combined  with  continuous  glucose  monitoring  (CGM)  is  not  new and  has  been  previously 

proposed by other authors. In [2], a multivariate statistical technique was proposed to detect  

insulin pump leakages and glucose sensor bias. In [3], a model-based technique based on Linear 

Parameter Varying (LPV) modelling, using the Bergman minimal model [4], was applied in the 

context  of  critically-ill  patients.  In  [5],  another  model-based  fault  detection  technique  for 

increasing security in an artificial pancreas using the mathematical model developed in [6]. More 

recently, a model-based approach using a Kalman estimator for detecting failures in both CSII  

and CGM to improve safety during overnight glycemic control has been presented [7].

In this paper, we propose, for the first time to our knowledge, the use of a validated robust 

model-based fault detection technique [8] to detect faults in insulin pump therapy in combination 

with continuous glucose monitoring. The proposed robust fault detection technique has already 

been  successfully  applied  in  other  engineering  problems  such  as  for  detecting  failures  in 

chemical and petrochemical plants [9].

Controlling blood glucose levels in type 1 diabetes is  a complex problem affected by many 

variables  with significant  levels  of  variability   (i.e.,  insulin  sensitivity)  and uncertainty (i.e., 

carbohydrates  intake,  exercise,  etc)  [10].  Thus,  existing  mathematical  models  of  the  gluco-

regulatory system for type 1 diabetic subjects [4, 6] are just rough approximations of the reality. 

Furthermore, whereas CSII is a well-established technology, CGM [11] is a relatively young 

technology and its accuracy is still one of the main barriers for its mainstream utilization [12]. 

Thus, dealing with all this variability, uncertainty and lack of accuracy is a crucial point in order  

to build a reliable model-based fault detection system to detect failures in insulin pumps.
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Unlike other previously proposed model-based approaches, our fault detection system allows to 

handle in an elegant way the high levels of uncertainty associated with the present problem. The 

way our approach deals with this uncertainty is by using interval analysis [13] in the process of 

modelling and simulation. By using interval analysis, our technique is able to minimise the false 

alarms ratio while maintaining a high level of fault sensitivity.

2 Materials and Methods

2.1 Analytical Redundancy

Analytical redundancy is a method to detect faults that compares the behaviour of a real system 

with respect to a reference one obtained from a model of the system. A fault is detected when 

they are inconsistent [14]. The main problem is that these two behaviours are seldom the same 

because the model is, by definition, inaccurate, i.e. it is an approximate representation of the 

system. This is the consequence of the uncertainties of the system and the procedure of systems'  

modelling.  This  problem  is  usually  solved  by  setting  a  threshold  for  the  residual  (R)  (i.e. 

difference  between  the  model  behaviour  and  the  actual  system)  over  which  the  system  is 

considered to be faulty. Figure 1 shows a graphical representation of the analytical redundancy 

concept.  Nevertheless,  selecting such a threshold can be a difficult  task since it  may not be 

constant  over  time and an adaptive  threshold may be  required.   One way to  overcome this 

limitation is by including the uncertainty of the system in the modelling procedure.
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Figure 1: Analytical redundancy diagram. Given the same input for the actual system and a 
model of the system, the measured output is compared with the estimated output (residual). 

If the residual (R) is bigger than a predefined threshold, the system is considered to be faulty.

2.2 Interval Analysis

One way to account for uncertainty is to take the model parameters, measurements and initial  

states as interval values [13]. Intervals only contain information about upper and lower bounds; 

thus,  in  using  intervals,  no  assumptions  are  made  about  the  probability  distribution  of  the 

uncertainty or about the independence or correlation of parameters.

The simulation of a real-valued model produces a trajectory for each output variable which is a  

curve representing the evolution of the variable of the system across time. In the case of a model  

involving interval values, a set of curves (a band) represents the evolution of each variable.

For obtaining such a reference band, we used interval analysis for solving interval valued initial-

value problems (IVPs) [13]. These methods provide numerically reliable enclosures of the exact 

solution at  sample times  t0,  t1,...,tn.  However,  interval  methods have a reputation of yielding 

highly overestimated bands. This is due primarily to the dependency (multiple instances of some 

variables) problem, which is inherent in interval arithmetic, and the wrapping problem, which 

arises when interval calculations are done in state space.

The approach described here pursues a band that is guaranteed to be complete (i.e. includes all 

the  possible  behaviours  of  the  model),  but  without  the  large  overestimation associated with 
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(1)

interval methods that would make the approach impractical. For obtaining this complete, slightly  

overestimated  band,  we  propose  the  use  of  Model  Inteval  Analysis  (MIA)  (for  a  complete 

introduction see [15]), which has been proven to be an effective way to reduce overestimation in 

interval computations [16].

2.3 Interval Model-Based Fault Detection

We  consider  a  model-reference  described  by  the  following  nonlinear,  ordinary  differential 

equation (ODE) model:

x '=f ( x ,θ ) , x (0 )=x0 ,

y=h ( x ,θ ) ,

where x is the m-dimensional state vector, θ is a p-dimensional time-invariant parameter vector, 

and y is the r-dimensional output vector. Output measurements ŷ j at t = tj are available with error 

v j= ŷ j− y j, where y j=h( x j ,θ ) and xj = x(tj). The initial states x0 are assumed to lie in a known 

interval X0. The parameter vector θ is assumed to be constant and to belong to a known interval 

Θ, which represents the set of parameter values for a fault-free system.

The measurement error  vj is bounded and assumed to belong to a known interval  Vj at each tj. 

Therefore, the output vector y j belongs to a known box Y j= ŷ j−V j. The structure of the model, 

that is, the function f ( x ,θ ), is assumed to be known (if the model structure is not known with 

certainty, or if the model structure is poorly chosen, wider parameter intervals may be needed to 

fully capture normal behaviours). We assume that  f and  h are continuously differentiable with 

respect to the uncertain quantities x (initial states x0 and parameters θ).

The  simulation  of  a  model  produces  a  trajectory  for  each output  variable  which  is  a  curve 

representing the evolution of the variable of the system across time: y ( t ) , t=t0 ,…, tn. In the case 
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(5)

of an interval model, as it is a set of models indeed, a set of curves (a band) represents the 

evolution of each variable. The limits of the band are

Y ( t )=[min ( y ( t ) ) ,max ⁡( y ( t ) ) ] , t=t0 ,…, tn .

The band of system output,  generated using the parametric model with the set  of parameter 

values, describes the fault-free system behaviour. Once faults occur, the output  y ( t ) will  lie 

outside the boundary of the band, and then a fault is reported. The goals of fault detection are to 

report faults as soon as possible if they occur, and to avoid false alarms. Then, a fault is detected  

when  the  measurement  ŷ ( t ) of  the  output  y ( t ) is  not  contained  in  the  estimated  outp

ut band Y ( t ). That is

ŷ ( t ) ∉Y ( t ) .

Note that we can only say that a fault occurs when the previous statement is satisfied, but we  

cannot say that the system is non-faulty if the previous statement is not satisfied. This is due to  

the fact that a fault can be masked by its own dynamics.  Furthermore, two simultaneous faults  

could counteract each other resulting in an apparently normal behaviour.

In fact, if y ( t ) can be measured ( ŷ ( t )), the measurement is, in general, not accurate due to the 

uncertainty associated to the measuring procedure. If  this inaccuracy is not considered, false 

alarms  can  be  generated.  One  option  to  take  this  inaccuracy  into  account  is  using  interval  

measurements Ŷ ( t ). Then, a fault is detected when the intersection of the two bands is empty. 

That is

Ŷ ( t )∩Y ( t )=∅ .

Thus, the previously stated fault detection problem is reduced to solving an initial value problem 

(IVP) with interval-valued parameters and/or initial values [17]. Nevertheless, this is, in general, 

a  challenging  problem  due  to  the  overestimation  phenomenon  associated  to  the  interval 
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(6)

computations.  This drawback can be softened using an error-bounded estimation [18] of the 

exact band Y ( t ) since a fault is also detected if

Ŷ ( t )∩Y out ( t )=∅ ,

where Y out ( t ) in an external error-bounded estimation of Y ( t ), i.e. Y ( t )⊆Y out ( t ), which usually 

is much easier to obtain than Y ( t ) although it detects less faults than Y ( t ). If the obtainment of 

Y out ( t ) is still very time consuming, its computation can stop either when a fault is detected or 

when a predefined timeout  is  reached.  Figure 2 graphically describes the presented interval 

model-based fault detection approach.

Figure 2: Graphic representation of an interval model-based fault detection approach. In the upper graph, 

blue solid line represents the interval measurements and red dashed line the estimated output. In the lower 
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graph, black short bar indicates the time the fault occurs and red long bar indicates the time the fault is 

detected. Note that the moment the fault is detected is when the two bands are not intersecting.

2.3.1 Sliding Time Windows

When simulating ODE systems, the goal is to estimate the states of a system knowing some 

initial ones and the inputs to the system. Therefore, as the simulation goes on, the time distance 

between the time point, which is being estimated, and the initial one is always increasing. In the  

case of IVP with interval-valued parameters and/or initial values, this means that the computing 

effort is also increasing together with the overestimation and at some time point, the problem 

may become intractable. This problem can be solved by means of the utilisation of a sliding time  

window [8].

In fault detection, data from the system are needed to compare the real system behaviour and the 

reference one, which is obtained analytically. Therefore, any time point can be considered as an 

initial one and the estimation of the value of a variable at a time point t  can be calculated starting 

from the initial time point t0=0, which is represented by Y ( t∨t0 ), or Y ( t∨t j ) from any other 

time point  t j,  0<t j<t . So, the necessary computing effort can be limited by fixing a maximum 

lengthw=t−t j. This is especially important in real-time applications where the computation time 

is limited by the sample time.

The fault detection results obtained using several window lengths is better, i.e. there are less  

missed alarms, than the ones obtained using a single window length, whatever the length in the  

latter case. The reason for this improvement lies in the fact that a fault can be detected, or not, 

depending on the window length.

As the necessary computing effort to calculate  Y ( t∨t−w1) is larger than the one to calculate 

Y ( t∨t−w2) when w1>w2, the logical strategy is to first use the shortest window length and stop 
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when a fault is detected, thus saving computing effort and minimising the rate of missed alarms. 

The  maximum  window  length  used  depends  on  the  available  computing  time  and  on  the 

accuracy of the used model.

The  algorithm  implementing  the  presented  interval  model-based  fault  detection  system  is 

summarised in  Table 1. Where,  Data is a vector containing system inputs and measurements, 

Wins is a vector of sliding time window lengths,  Y out is an external approximation of the band 

encompassing all the possible dynamic behaviours of the ODE system,  Solver is an interval-

based IVP solver (see Section 2.5) and Ŷ ( t ) is the current interval measurement.

Table 1: Interval model based fault detection algorithm.

2.4 Type 1 Diabetic Subject Model

Several metabolic models of different complexities have been proposed to represent the glucose-

insulin dynamics of  a  type 1 diabetic  (T1DM) subject  [4,  6,  19].  However,  their  suitability 

depends on the purpose for which they are used. For instance, the sophisticated model proposed 

by Dalla Man et al. [19] is suitable for creating a type 1 diabetic subject simulator [20], but is not  

as useful as prediction model for a model predictive controller (MPC), since its complexity make 
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(8)

(7)

(9)

it  difficult  to  identify  its  parameters.  On  the  other  hand,  the  minimal  model  proposed  by 

Bergman et al. [4] may not sophisticated enough to be used in a T1DM simulator, but it may be 

suitable for MPC control and other algorithms that require glucose estimation or forcasting, such 

as the current model-based fault detection approach.

In the present work, a composite metabolic model formed by the endogenous minimal model [4], 

the glucose absorption model and the subcutaneous insulin absorption model from [6] have been 

employed.  A linear version of this model was successfully used by Gillis and colleagues [21] to 

predict glucose levels using a Kalman filter state estimation with meal announcement and with a  

prediction horizon of 45 minutes.

The Bergman minimal model is represented by the equations

Ġ ( t )=−[ SG+X ( t ) ]G ( t )+SG GB+
Ra ( t )
V G

,

Ẋ ( t )=−p2 X ( t )+ p2 S1 [ I ( t )−I b ] ,

where G is plasma glucose concentration with G (0 )=Gb, I  is plasma insulin concentration with 

I (0 )=I b, where suffix  b denotes basal values,  X  is insulin action on glucose production and 

disposal with X (0 )=0, V G is the distribution volume, and SG, S I, and p2 are model parameters. 

Specifically, SG is the fractional (i.e., per unit distribution volume) glucose effectiveness, which 

measures glucose ability per se to promote glucose disposal and inhibit glucose production; S I is 

the insulin sensitivity; p2 is the rate constant describing the dynamics of insulin action, and Ra is 

the rate of glucose appearance.

In  order  to  represent  the  subcutaneous  insulin  infusion,  an  existing  model  of  subcutaneous 

insulin  absorption  was  incorporated  into  the  Bergman  minimal  model  [6].  This  model  is 

expressed by

İ ( t )=−k e I ( t )+
S2 ( t )

V I tmaxI

, 
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(11)

(10)

(12)

(13)

Ṡ1( t )=u ( t )−
S1 ( t )
tmaxI

,

Ṡ2=
S1 ( t )−S2( t )

tmaxI

,

where,  k e is the first order decay rate for insulin in plasma,  u ( t ) subcutaneous insulin infusion 

rate,  V I is  the  distribution  volume  of  plasma  insulin,  tmaxI is  the  time-to-maximum insulin 

absorption,  S1( t ) and  S2( t ) are  a  two-compartment  chain  representing  absorption  of 

subcutaneously administered short-acting (e.g. Lispro) insulin.

In order to represent the glucose absorption after the ingestion of a mixed meal,  a modified 

version of the Hovorka gastro-intestinal absorption model [6] was incorporated to the Bergman 

minimal model. The model was modified because the original one was not able to represent the 

glucose  absorption  dynamics  of  certain  mixed  meals,  especially  the  ones  where  a  second 

absorption peak is observed due to a delayed absorption. The modified model equations are

Ḟ ( t )= 1
tmaxG

(−F ( t )+ AG DG ( t )+ (0.9−AG ) DGd
( t )) ,

Ṙa (t )=
1

tmaxG
(−Ra ( t )+F ( t )) ,

where  Ra is  the  plasma  appearance  of  glucose;  F is  the  glucose  appearance  in  the  first 

compartment;  DG is  the amount of  carbohydrates ingested at  time  t ;   DGd
 is  the amount of 

carbohydrates  absorbed  at  time  tmeal+tdelay during  a  certain  time  interval 

t interval=[ tmeal+tdelay , tmeal+tdelay+interval ],  being  DGd
( t interval )=DG( tmeal )/interval and  interval 

fixed to 60 minute; AG is carbohydrate bioavailability and tmaxG is the time-of-maximum glucose 

rate of appearance in the accessible glucose compartment. Note that  interval was empirically 

fixed to  60 minute in order to smooth the transition between the two absorption peaks, but it  

could also be an additional parameter to identify.
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(14)

(15)

(16)

(17)

(18)

(19)

(20)

2.5 Solving IVPs using Modal Interval Analysis

As already mentioned in Section 2.2, interval computations have the problem of overestimating 

the results due to the multiple instances of variables. In order to compute, in an efficient way, a  

tight external approximation of the model output (G ( t )), MIA was employed. For this purpose, 

the model presented in  Section 2.4 was discretized using a first forward difference derivative 

approximation (1 minute step size). Such an approximation was proven to provide equivalent 

results to the continuous form of the model. Then, symbolic manipulations were carried out in 

order to eliminate multiple instances of variables. Finally, optimality theorems from MIA [15] 

were applied to minimise the overestimation due to the multiple instances of variables that could  

not be eliminated. Thus, the following equations were obtained, 

S1 (k+1 )=S1 (k )+(u (k )−
dual(S1 (k ) )

tmaxI
)T S ,

S2 (k+1 )=S2 (k )+
S1 (k )−dual (S2 (k ) )

tmaxI

T S ,

I (k+1 )=I (k ) (1−k e T S )+
S2(k )

tmaxI V I

T S ,

F (k+1 )=F (k )+( 1
tmaxG

( AG DG (k )−dual ( F (k ) )+ (0.9−AG ) DGd
(k )))T S ,

Ra (k+1 )=Ra (k )+
F (k )−dual ( Ra (k ) )

tmaxG

T S ,

X (k+1 )=X (k )+ p2 (S I I (k )−dual ( X (k ) ))T S ,

G (k+1 )=G (k ) (1−X (k )) T S+SG (Gb−dual (G (k ) ))T S+
Ra(k )

V G

T S ,

where k  indicates the current sample,  T s is the sample time (i.e. 1 minute) and dual is a modal 

interval operator defined asdual ( [ a ,b ] ) := [b ,a ] , being a the lower bound of an interval and b the 
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upper bound. Note that, despite using the same notation, variables and parameters in Equations 

14 – 20 are their interval counterparts.

In order to solve the previous interval ODE system, the initial states were set to zero, with the  

exception of  G (0 ) and  I (0 ) that were set to their basal values (Gband  I b). The algorithm for 

solving  the  interval  ODE  system  consists  of  an  iterative  loop  that  sequentially  evaluates 

Equations 14 – 20 using MIA arithmetic. For this purpose, a MIA arithmetic library [16] was 

implemented in Matlab®. Since most of the Equations 14 – 20 satisfy optimality conditions of 

MIA [15], the resulting interval computations do not produce much overestimation. In the case 

that these optimality conditions would not have been satisfied, the  f ¿ algorithm [16], based on 

branch-and-bound  techniques  and  MIA,  could  have  been  employed  to  reduce  such 

overestimation.

When using the sliding time window strategy presented in Section 2.3.1, at each simulation step, 

the states of the model are set to their corresponding values at the beginning of the simulation 

window (e.g.  X (0 )=X (k−win )), with the exception of  G (0 ) that is set to the actual glucose 

measurement at the beginning of the window (i.e.  G (0 )=Ĝ (k−win )) with the corresponding 

uncertainty.

Regarding the length of the sliding time window, a 60 minute window length was proved to be 

effective in terms of sensitivity and specificity. Therefore, the use of multiple window lengths 

was not considered necessary. In the case of different type of faults with different dynamics, the 

use of multiple window lengths could be considered.

Finally,  note  that  estimated  blood  glucose  G (k+1) in  Equation  20 corresponds  to  Y out in 

Table 1 and that the continuous glucose measurements (Gcgm) corresponds to Ŷ  in Table 1.

2.6 Estimation of Interval Parameters
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One common difficulty when using interval analysis for solving IVPs is to define the intervals 

associated to model parameters and initial conditions of the ODE system. One way to tackle this 

problem is using parameter identification techniques based on interval analysis [22]. However, 

these techniques, even if they are numerically sound, are usually very conservative in terms of 

the size of the provided intervals. Another technique to define such intervals consists of using 

classic parameter identification techniques (i.e., least squares) over different sets of data and to  

take the minimum and maximum identified value for each parameter [23]. In the present work, 

since the T1DM simulator [20] does not incorporate intra-subject variability, interval parameters 

were  only  used  to  deal  with  the  errors  introduced  in  the  modelling  process  and  the  errors 

associated to measurements. In order to define such intervals, classic parameter identification 

techniques  were  employed to  calculate  the  centre  of  such intervals.  Then,  the  width  of  the 

intervals was defined based on empirical and experimental evidence [24]. Even if some degree of 

experimental evidence was used to set define the magnitude of the intervals, the main criteria 

consisted  of  ensuring  that  the  interval  model  estimate  was  able  to  encompass,  as  much  as  

possible, the reference behaviour during the identification phase (see Figure 3).
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(18)Figure 3: Interval estimation of Ra (solid green line) vs. reference value from the T1DM 

simulator (dotted red line). The data corresponds to a scenario with 3 meals.
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2.6.1 Center of Interval Parameters

For calculating the centre of the interval parameters, the fmincon optimisation algorithm from the 

Matlab® Optimization Toolbox (2010b, The Matworks, Natick, MA) was used to minimize the 

sum of squared errors between a discrete version of the T1DM model (Equations 14 – 20) and 

the experimental data. Note that the 3 employes models were identified separately in order to 

avoid identifiability problems.

To identify the glucose absorption model parameters (tmaxG, tdelay andAG), the meal protocol (i.e., 

carbohydrates and intake times) and glucose rate of appearance (Ra) data were respectively used 

as input and output data. Note that Ra data is difficult to obtain in normal clinical practice, since 

it  requires  the  use  of  a  complex multi-tracer  oral  glucose  protocol  [25].  However,  different 

approaches [26,  27] have been proposed for estimating  Ra from plasma glucose and plasma 

insulin  concentration  data  that  could  be  used  for  this  purpose.  For  the  sake  of  simplicity, 

reference  Ra data  from the  T1DM simulator  [20]  were  used  in  this  work.  To  identify  the 

subcutaneous (s.c.) insulin absorption model parameters (k e, V I and tmaxI), CSII data and plasma 

insulin  measurements  (I p)  from  the  T1DM  simulator  were  used.  Finally,  CSII  data,  meal 

protocol and CGM data were employed to identify the parameters of the endogenous model (S I, 

V G,  SG and  p2).  Note  that  previously  identified  model  parameters  for  Ra and  s.c.  insulin 

absorption models were used for identifying the endogenous model parameters.

2.6.2 Width of Interval Parameters

Table 2 shows the selected uncertainty for each one of the parameters and inputs of the model. Note 

that parameters and inputs with higher variability [24], such as insulin sensitivity (S I), time-to-

maximum insulin absorption (tmaxI) and carbohydrate intake (DG) have higher uncertainty than other 

parameters with less variability, such as glucose and insulin distribution volumes (V G and V I), body 
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weight  (BW ),  and insulin  infusion (u).  The corresponding intervals  can be  easily  obtained as 

X= [ x−n % x , x+n % x ],  where  x is the estimated value and  n is the corresponding percentage 

uncertainty.

Figure 3 shows an example of  Ra interval estimation together with the reference value from the 

T1DM simulator. 

Table 2: Uncertainty on model parameters and inputs of the T1DM diabetic model expressed in 

percentage (%).

It is important to remark that in a real clinical scenario, this uncertainty should be individualized to 

each diabetic subject in order to cope with intra-subject variability. For this purpose, the method 

proposed in [23] could be employed.

As far as the error associated with the continuous glucose measurements (Gcgm) is concerned, a ±20 

mg/dL error was considered [11]. Nevertheless, the CGM noise model of the T1DM produces 

differences with respect of plasma glucose values up to 40 %, which can be considered unrealistic 

for current CGM devices. Finally, note that the dynamic lag between the plasma and interstitial 

glucose compartments has not been modelled. However, the considered uncertainty associated to 

the CGM measurement already incorporates the error due this modelling approximation.

2.7 In-Silico Protocol

As a first step to assess the performance of the presented fault detection system, a FDA-accepted 

type 1 diabetes mellitus simulator (T1DM simulator) was employed [20]. It is important to remark 

that the model implemented in the T1DM simulator [19] is much a more sophisticated model than 
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the one employed in the present work (i.e. 11 vs. 35 parameters). Despite the mismatch with the 

reality being shown to be larger, the T1DM simulator is a suitable platform for testing the proposed 

fault detection approach because it is able to replicate this mismatch to a certain degree.

Thus, the T1DM simulator was used to generate the required data (i.e., plasma insulin, plasma 

glucose and glucose rate of appearance) for the testing of the fault detection technique. For this 

purpose, the 10 adult diabetic subjects of the academic version of the simulator were selected. In 

order to tune the basal-bolus therapy, a protocol consisting of adjusting the basal insulin rate in 

order to get a basal glucose level (Gb) close to 100 mg/dL and adjusting the insulin-to-carbohydrate 

ratio in order to minimise the post-prandial peak and to avoid hypoglycaemia was used. Two meal 

protocols (i.e. different meal ingestion times and different amounts of ingested carbohydrates) were 

employed. The first meal protocol (6am (30g), 2pm (60g) and 8pm (45g)) was used to identify the 

model parameters while the second one (6am (60g) 1pm (70g) 7pm (30g)) was used to test the fault 

detection technique. The idea of using two different scenarios for tuning the model and testing the 

fault detection algorithm was to create a more realistic benchmark. Nevertheless, it is important to 

emphasise that  the T1DM simulator is  an approximation of the glucose-insulin dynamics of a 

T1DM subject and it does not include the variations of insulin sensitivity during the day and other 

perturbations such as physical exercise or stress.

For each subject, 10 random faults were generated in a period of 24 hours. However, a 30 hours 

simulation period was used in order to have enough time to detect faults occurring at the end of the 

24h period. The faults consisted in a complete suppression of the insulin infusion, which in is 

equivalent  to  the  disconnection  of  the  infusion  system.  To  evaluate  the  performance  of  the 

algorithm, different metrics were employed: time interval between the occurrence fault  and its 

detection (Time); plasma glucose concentration at the moment of detection (G Detect.); insulin not 

delivered until the fault is detected (Lost Insulin); false negatives (FN) and false positives (FP), 
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being  a  false  negative  a  fault  not  detected  before  400  minutes.  Finally,  although  there  is  no 

consensus  definition  of  what  constitutes  diabetic  ketoacidosis  in  term  of  plasma  glucose 

concentration  [28],  a  threshold  of  300 mg/dL was  establish  as  a  safety  limit  to  evaluate  the 

performance of the fault detection system.

3 Results

Table 3 shows a summary of the results. Despite the detection interval being occasionally long, 

all faults were detected before the plasma glucose concentration reached the pre-defined safety 

limit (300 mg/dL). Note that the variability of the results between subjects is significant. This is 

due to the very different glucose-insulin dynamics of the subjects. Also noticeable was the low 

ratio of false negatives (2 out of 100 faults) and false positives (1 out of 1257 hours of non-faulty 

simulation), which demonstrates the robustness of the proposed approach.  Figures 4 shows an 

example of fault detection corresponding to subject adult #3 and Figure 5 shows an example of a 

false positive in subject adult #6. 

Table 3. Fault detection results for the 10 adult subjects of the T1DM simulator. Results are 
expressed as Median± SD.

HERRERO Manuscript submissionHERRERO Manuscript submission.docx 21



Figure 4: Example of fault detection in subject adult #3. In the upper graph, red dashed line represents 

the interval measurements and the green solid line the estimated interval output. In the lower graph, black 

short bar indicates the time the fault occurs and red long bar indicates the time the fault is detected.
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Figure 5: Example of false positive in subject adult #6. Note that around minute 900 the estimated 

interval output slightly falls below the interval measurement producing a false positive.

4 Discussion

Interval model-based fault detection has been proven to be an effective robust tool for detecting 

faults  in  continuous  subcutaneous  insulin  infusion  (CSII)  systems  using  continuous  glucose 

monitoring  (CGM).  In  particular,  disconnection  of  the  insulin  infusion  set,  which  current 

available insulin pumps are not able to detect, has been successfully detected. The proposed 

technique has been validated using an FDA-approved type 1 diabetic (T1DM) simulator, which 

is an accepted method for in-silico the testing of glucose controllers before clinical trials.

The proposed fault detection technique uses the well-known principle of analytical redundancy. 

Interval analysis has been used to account for uncertainties in model parameters, measurements 
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and inputs. In particular, Modal Interval Analysis (MIA) was successfully used to deal with the 

problem of numeric overestimation associated to interval computations,  which can make the 

fault detection technique less sensitive or even useless if the overestimation is too big. Although 

it is not addressed in this paper, MIA allows quantifying such overestimation by computing an 

inner approximation of the exact band. Then, by comparing the outer and inner approximations, 

it is possible to have an estimate of such overestimation.

Although interval analysis approaches have the reputation of being computationally complex, it 

is not the case for the current application thanks to the use of MIA. Note that the same problem 

could not be solved using standard interval arithmetics due to the extreme overestimation of the 

results (i.e. trumpet effect). An alternative to MIA could be the use of Taylor models combined 

with interval analysis [17] or the use of interval constraint propagation combined with branch-

and-bound techniques [22]. However, the comparison of these techniques with MIA is out of the 

scope of this paper.

Intervals associated to model inputs, measurements and model parameters were selected based 

on technical specifications of the employed medical devices and clinical knowledge. However, 

some of these intervals were readjusted in order to guarantee that the interval model estimate was 

able to encompass the reference behaviour during the identification phase. It  is important to 

remark  that  in  a  real  clinical  scenario,  these  intervals  should  be  adjusted  according  to 

physiological and metabolic characteristics of the subject. In the case of parameters that have a  

strong intra-day variability, such as insulin sensitivity, different interval values could be used 

along the day, since trying to cope with all of the variability in a single interval would lead to  

low fault sensitivity.

Of the 100  in-silico tests, only 2 false negatives and 1 false positives occurred. These results 

demonstrate the robustness and high sensitivity of the proposed approach. However, the used 
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T1DM simulator does not account for intra-subject variability and other perturbation such as 

physical exercise or phycologic stress. For this reason, more tests using actual clinical data need 

to be carried out for a final validation of the proposed method.

Although the presented technique has been only used to detect one type of fault in CSII systems 

(i.e. disconnection of the insulin infusion set), it could also be used to detect other type of faults 

in the insulin infusion set such as leakages. Furthermore, the same approach could be used to 

detect  faults  in  the  CGM system (i.e.,  sensor  drift  or  loss-of-sensitivity)  or  even  to  detect 

unexpected variations in the T1DM subject glucose dynamics (i.e. illness). However, these types 

of faults may take longer to detect due to their slower dynamics.

It is important to remark that this fault detection method only detect discrepancies between the 

model and the real system. So, in a general setting where different faults can occur, it only can 

detect if there is a fault in the system, but cannot determine which one. In order to diagnose 

which fault is causing the discrepancy, a fault diagnosis module could be employed [14].

Commercially, the proposed fault detection technique could be easily integrated in a dual CSII-

CGM (sensor augmented pump) system such as the Paradigm Veo (Medtronic, Northridge, CA, 

USA) or Vibe (Animas Corporation, PA, USA). However, in order to integrate the proposed 

techniques with such technology, a certain level of user intervention would be required in order 

to account for the amount of ingested carbohydrates and the type of absorption of the ingested 

meal (e.g.  slow, medium and fast).  Since estimating the type of absorption of a meal is not 

common in standard insulin therapy, a library of different type of mixed meals [29] could be 

provided  to  the  user  in  order  to  facilitate  this  task.  Furthermore,  some  tuning  of  the  fault 

detection algorithm would be required before its utilisation. First of all, the employed model 

would  need  to  be  individualised  for  each  subject  using  retrospective  clinical  data.  Another 
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parameter that could be tuned is the length of the sliding time window. Once a fault has been 

detected, an alarm (i.e. acoustic or vibration signal) could be used in order to alert the user.

Finally, the proposed technique has been used to supervise the current basal-bolus therapy in 

CSII, but it could also be easily integrated in an artificial pancreas framework [10].

5 Conclusions

Interval  model-based  fault  detection  has  been  proven  (in-silico)  to  be  an  effective  tool  for 

detecting faults in sensor-augmented continuous subcutaneous insulin infusion (CSII) systems. 

Although the presented methodology is numerically sound (i.e. robust), the wrong quantification 

of  the involved uncertainty may lead to the accurrence of  false negatives or  false positives. 

Therefore, setting the right size of the intervals associated to model inputs, measurements and 

model parameters is crucial for the good performace of the proposed approach.
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