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A B S T R A C T   

This paper presents the development of a robust automatic diagnosis technique that uses raw Electro-Mechanical 
Impedance (EMI) signals and deep autoencoder models to detect damage in fiber-reinforced-polymers (FRP) 
strengthened reinforced concrete (RC) elements, for which the most common failure modes occur in a sudden 
and brittle way by debonding. The contribution of this work is threefold: First, for the first time, two autoencoder 
models, convolutional and fully connected, based on an unsupervised learning framework supplemented by 
appropriate pre-processing techniques, are proposed for effective tracking of FRP-strengthened RC elements from 
raw EMI response variations in different locations of the auscultated structure; their implementation is also 
extensively investigated. The proposed framework consists of two main components, namely, dimensionality 
reduction and relationship learning. The first component is to reduce the dimensionality of the raw EMI signal 
while preserving the necessary information required, and the second component is to perform the relationship 
learning between the features with the reduced dimensionality and the stiffness reduction parameters of the 
structure. The approach is beneficial as only the EMI spectrum from the healthy structure state is considered for 
the training of the autoencoders. Second, the superior performance of the proposed framework is demonstrated. 
The results show that the proposed technique can accurately detect minor damage in its earliest stages for this 
kind of strengthened structures, while removing the need for manual or signal processing-based damage sensitive 
feature extraction from EMI signals for damage diagnosis. Finally, research presented in this work can potentially 
open up new opportunities for successful condition monitoring of this type of strengthened structures.   

1. Introduction 

Fiber Reinforced Polymers (FRPs) have been used in civil structures 
due to the advantages provided, including high tensile strength, light 
weight, the ability to customize the FRP properties, and good long-term 
durability [1–3]. Their application in reinforced concrete (RC) struc
tures has been mostly for strengthening and rehabilitation of existing 
structures, by means of the external bonding of FRP sheets/strips [4–6] 
and Near Surface Mounted (NSM) [7–10]. With its increasing use and 
technological advances, the cost drawback for FRP becomes less acute, 
aided by an overall push requiring long-term performance, resiliency, 
and life-cycle cost considerations. 

Debonding is the most common failure mode that could significantly 
affect the capacity of FRP strengthened RC members [11,12]. The 

earliest stages of debonding, originated in a local way, if not detected, 
might lead to the sudden failure of the structure. Therefore, this type of 
structures should be inspected periodically to control potential damages 
which might cause its future failure. Several non-destructive testing 
(NDT) techniques might be used for surveillance in FRP composite- RC 
structures [13,14]. However, some of these tools are expensive and 
sometimes difficult to install the measurement equipment in the field. 
The electromechanical impedance/admittance (EMI/EMA) technique 
employing low-cost and small Piezo-electric ceramic lead Zirconate 
Titanate (PZT) transducers glued onto the structure plays an important 
role within the NDTs for SHM applications. EMI method has been 
applied for various structures [15,16] and under various load-induced 
stress [17], and its simple implementation, real-time capabilities and 
superior sensitivity to structural local damages make it very suitable to 
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identify local damage in FRP strengthened RC structures like some ap
plications in the past have demonstrated [18–22]. Local damage or 
material degradation can be identified by comparing EMI signatures 
acquired from a host structure at pristine and post-damaged states using 
some statistical indices. It could be obtained from previous works that 
EMI method has sufficiently demonstrated its effectiveness and reli
ability for monitoring damage in this type of structures, and, addition
ally, has a great potential to be developed into an autonomous and 
intelligent monitoring system able to automatically identify and char
acterize the correlation of damage with the dynamic variation of EMI 
spectra. The approach should avoid any extraction of hand-crafted 
characteristics of signals and subjective assessment, which might 
result in a wrong interpretation or loss of substantial information. 

Deep learning (DL) techniques are a subset of machine learning (ML) 
and are regarded as a powerful tool to solve complex issue of damage 
classification by learning the representations of massive monitored data 
[23–25]. Among these, supervised convolutional neural networks (CNN) 
have recently emerged and proved to be successful in dealing with 
classification problems of large samples in domains such as computer 
vision, automatic video recognition, biomedical systems and recom
mender systems [26–28]. In the same way, CNN-based algorithms have 
also experienced a rapid advancement in relation to SHM in engineering 
[29–33]. These applications have demonstrated a high efficiency of 
CNNs in dealing with classification problems of large samples. DL ap
proaches might also contribute to the implementation of intelligent 
monitoring based on EMI method and a few studies have also addressed 
the EMI-based damage quantification issues using CNN approach 
[34–36]. All these previous works show that the integration of the EMI 
with DL is feasible and promising. 

However, strong limitations exist in CNN method about collecting 
sufficient reliable EMI samples. Large datasets representative of both the 
undamaged structure and the structure in different damage conditions 
are required to train efficiently a supervised learning network. Real-life 
structures cannot be artificially deteriorated to generate damaged data, 
therefore only data from the pristine structure are accessible, and un
supervised learning techniques are required. Consequently, over recent 
years, many studies have focused on approaches of unsupervised 
learning for the damage assessment in structures. Unsupervised learning 
is a process of learning from unlabelled data, such as datasets with un
defined outputs that meet a general rule and may be grouped in a pre
dictable pattern. Autoencoders are a popular and powerful deep 
learning technique that is widely used in anomalies detection. They are 
able to learn complex representations of the data, which allows them to 
detect anomalies that are not captured by traditional statistical methods. 
Due to their strong capacity for generalization, the application of 
autoencoders in vibration-based SHM has increased over the last few 
years [37–39]. Raw acceleration time series are used as the inputs for the 
autoencoder avoiding, in this way, the loss of information and exploiting 
the full potential of the neural network. Autoencoders models for 
anomaly detection are trained by learning the normal behavior of the 
structure (patterns of signals corresponding to intact conditions); no 
manual labeling of the training data is required. After that, the damage 
detection is implemented by checking whether the experimental data 
are fitted with the trained model or not. 

This paper proposes the implementation of a convolutional autoen
coder and a fully connected autoencoder for evaluating the damage 
condition of FRP strengthened RC elements from EMI signals. The 
autoencoder models encode the input raw impedance spectrum signals 
into low-dimensional representation and then the signals are recon
structed back at the decoder output. These networks offer the advantage 
of providing damage assessment without requiring additional damage 
labels, being highly sensitive to even minor damage occurrences. 
Damaged states of the structure are identified through the reconstruc
tion capability of the autoencoders for different damage states. The main 
contribution of this study, to the knowledge of the authors, is that this 
paper makes the first attempt to combine autoencoders models and EMI 

techniques for monitoring of FRP-strengthened RC elements. A frame
work, which might be named as EMI integrated autoencoder, is devel
oped to accurately predict the damage in FRP strengthened RC elements 
from raw EMI data without any pre-processing, which appears to be 
more accurate than using other metrics whose validity depends on 
several circumstances. The effectiveness of the proposed method is 
analyzed and quantified through a series of experiments. The method 
enables automatic data acquisition and identification of raw EMI signals, 
contributing to the real-time and intelligent monitoring and accurate 
assessment of the damage through the mechanical impedance change. 

2. Electromechanical impedance method 

The focus of this research is put on the development of the EMI-based 
damage assessment technique assuming that only reference or baseline 
data are labeled. EMI based techniques have shown a great potential in 
damage assessment and have been proposed in this work for structural 
health monitoring of FRP strengthened RC beams due to their high 
sensitivity to low levels of damage. 

In EMI method, a PZT transducer is bonded to the surface of the 
monitored structure by using a high strength epoxy adhesive. Then, the 
transducer is electrically excited via an impedance analyzer. Due to 
electromechanical coupling of piezoelectric transducer and the host 
structure, mechanical resonances of the structure can be observed by 
measuring the electrical parameters of the piezoelectric transducer. 
With this method, Frequency Response Function of the impedance is 
evaluated with the use of one PZT transducer acting simultaneously as 
an actuator and a sensor. 

To simplify its configuration, the patch can be regarded as a thin bar 
undergoing a uniaxial vibration along its length (x- direction) when an 
alternating electric field is applied in its thickness (z-direction). The host 
structure, connected on one side of the patch, is also assumed as a single- 
degree-of-freedom system, represented by its mechanical impedance. 
The coupled 1D electromechanical relationship was first introduced in 
[40] through the electrical admittance (reciprocal of the impedance), Y, 
of the PZT transducer as: 

Y = G(ω)+ jB(ω) = jω bl
h

(

εσ
33 − d2

31EE
11 +

Za(ω)d2
31EE

11
Za(ω) + ξZs(ω)

tan(κl)
κl

)

(1)  

where G(ω) and B(ω) are the conductance (real part of EMI) and sus
ceptance (imaginary part of EMI), respectively; ω denotes the angular 
frequency of excitation; j is 

̅̅̅̅̅̅̅
− 1

√
; b, l and h are the width, length and 

thickness of the patch, respectively; and εσ
33 = εσ

33(1 − δj) and 

EE
11 = EE

11(1 − j) are the complex electric permittivity of the patch at a 
constant stress and the complex Young’s modulus of the patch at a 
constant electric field, respectively; Zs(ω) and Za(ω) are the mechanical 
impedance of the structure and the patch, respectively; κ is the wave 
number; δ is the dielectric loss factor of the patch; η is structural me
chanical loss factor; d31 is the coupling piezoelectric constant. 

Figure 1 shows a characteristic envelope spectrum of a strengthened 
concrete beam without and with damage, respectively. 

Most of the work in the EMI technique depends on the change in the 
admittance signature of the structure between healthy and damaged 
states. More specifically, the conductance is more sensitive to mechan
ical damage of the host structure than the susceptance, which is more 
sensitive to the changes of environmental factors and sensor damage and 
its bonding [41]. Several metrics, such as root-mean square deviation 
(RMSD), mean absolute percentage deviation (MAPD), and correlation 
coefficient (CC), have been proposed to quantify this difference in the 
signature. However, as the admittance signatures have several troughs 
and peaks, the statistical metrics might become prone to be unstable in 
case of minor changes in the ambient conditions as well as measurement 
noise, predicting false damage identification. Furthermore, the sensi
tivity of alternative statistical indices is different depending on the 
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frequency band which reflects more clearly the damage to be identified. 
However, this frequency band cannot be determined in advance and its 
manual selection would involve not only a high cost but also a high 
probability of misjudgment if only a metric is used in the procedure. 
Given these shortcomings, exploiting directly the raw EMI signatures 
appears to be a more accurate alternative to detect damage and will be 
used in this work. 

3. Methodology 

In this section, the general scheme of the proposed damage identi
fication algorithm and the procedure employed for EMI data acquisition 
and generation is detailed. Two different autoencoder neural network 
architectures have been used in the study. Considering the ability of 
autoencoders to learn features, their objective is to comprehend the 
dynamic characteristics associated with impedance signatures. Specif
ically, the two developed architectures are a convolutional autoencoder 
and an autoencoder with fully connected layers [42]. 

EMI data are characterized by high-dimensional nonlinearity and 
often contain irrelevant features or noise. These characteristics can lead 
to increased training complexity, overfitting, and other issues. There
fore, the use of effective feature dimensionality reduction methods to 
reduce the complexity and redundancy of the data is very important. 
Deep autoencoders are particularly effective to remove noise and those 
less important features. This makes them particularly useful in appli
cations where data clarity and accuracy are crucial. 

Furthermore, convolutional autoencoders add an additional benefit: 
they provide invariance to the spatial features of the data. This means 
they are sensitive to certain patterns in the data, regardless of their 
position in the function. In the context of EMI analysis for SHM, this 
allows convolutional autoencoders to identify patterns of damage or 
structural anomalies anywhere in the monitored structure, making them 
powerful and flexible tools for structural integrity analysis. 

Next, both proposed autoencoders will be introduced as well as their 
training methodology. 

3.1. Overview of proposed framework 

The proposed method attempts to identify damage in FRP strength
ened RC beams in an unsupervised way by using autoencoders. It means 
only EMI signatures in the intact beam state are needed for the training 
of each autoencoder models. 

The proposed framework is illustrated in Fig. 2, which consists of 
three main components. The process begins with data acquisition. In our 
study, these data are gathered by subjecting a concrete beam to various 
loads. Upon applying each load, impedance measurements are taken 
using PZT sensors. These measurements are stored in a text file struc
tured as a dataset. 

Subsequently, data preprocessing is carried out. This step involves 
rearranging the data to make them suitable for neural network pro
cessing. Moreover, the data are normalized to optimize its handling and 
are divided into three sets: training data, validation data, and evaluation 
data. Training and validation data correspond to the undamaged or 
healthy beam which is assumed as baseline stage. 

Once the data have been preprocessed, every autoencoder is trained 
using exclusively the training data. Subsequently to the training, the 
entire sequence of training data is fed again into the networks providing 
output data. A cost function defined by measuring the difference be
tween the input and output data serves to define the deviation from the 
original model and, therefore, as novelty index or indicator of the 
structural damage. Finally, the detection performance of the whole al
gorithm can be evaluated on the testing dataset which contains both 
validation and evaluation data. 

Fig. 1. Undamaged and damaged EMI spectrum of a FRP strengthened beam.  

Fig. 2. General scheme of the algorithm used to quantify damage.  
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3.2. Data acquisition 

The data set contains impedance responses captured with PZT 
transducers in different locations of the monitored structure and under 
different loading and damage conditions. All the impedances are 
measured for excitations between 10 and 100 kHz, with a frequency step 
of 12.5 Hz. It gives a total number of points in the Frequency Response 
Function of the impedance equal to 7201. The collected data are orga
nized as a function of the loading stage, sensor number and frequency. 
Furthermore, for each combination of these parameters, both the real 
and imaginary values of the impedances, denoted respectively by Zr(ω) 
and Zc(ω), are recorded. 

Most of free and open-source software libraries for machine learning 
and artificial intelligence support Python and JavaScript and mainly 
data in multi-dimensional structures or tensors. In this work, Tensor
Flow [43] and Pytorch [44] will be used. In machine learning the so 
called tensors play a big role since are fundamental data structures used 
to represent numerical data with multiple dimensions. Then, initially, 
the experimental data used in this study should be transformed to tensor 
format. In this context, a five-index tensor Ψαβµνγ, whose indices refer to 
the sensor number, loading stage, frequency, real impedance, and 
imaginary impedance, respectively, is generated. Tensor indexing is a 
powerful technique that allows to select and manipulate specific ele
ments or subsets of a tensor with ease. For instance, if α and β are 
selected to be one in the tensor, that means Ψ11µνγ will give the fre
quency and real and imaginary impedance values corresponding to the 
first sensor in the first loading stage. 

3.3. Data generation and preprocessing 

The raw EMI signatures containing the response of the structure for 
different loading stages and in different locations according to the 
location of the different PZT transducers are used as input data to the 
classification network. These measurements define the tensor Ψαβµνγ and 
carry information about the condition of the structure, including the 
possible existence of damage. 

After obtaining the tensor Ψαβµνγ, we proceed with its sorting and 
normalization, in order to prepare the data for network training. 

Firstly, the non-essential information provided by the experimental 
tests is removed. As commented previously, the real part of the imped
ance is much more sensitive to mechanical damage of the host structure 
than the imaginary part. Hence, the tensor is decomposed as: Ψαβμνγ =
{

Ψαβμν, Ψγ }
, focusing solely on Ψαβμν henceforth. 

Additionally, given that each sensor is processed individually since it 
provides only information of the structure in its vicinity, we segregate 
the tensor according to the first index, resulting in following form 
{

Ψ1βμν, Ψ2βμν,…,Ψ9βμν }
. Then, for clarity, the notation is redefined so 

that the fixed index is at the bottom, Ψβμυ
α , i.e. three variables remain, the 

loading stage, the frequency points and the value of the real impedance 
in those points. 

Subsequently, the impedance response of each sensor is individually 
standard normalized as each sensor data may have widely varying scales 
of response amplitude. Data normalization will contribute to accelerate 
the training and improve the generalization of neural networks. Min- 
max normalization is a very common method to normalize data and 
its purpose is to convert the impedance data in the frequency domain 
into a decimal between 0 and 1, according to the expression 

Φβμυ
α =

Ψβμυ
α − Min(Ψβμυ

α )

Max(Ψβμυ
α ) − Min(Ψβμυ

α )
(2)  

where Φβμυ is used to indicate the normalized impedance spectrum 
computed from the spectrum Ψβμυ

α . 
As commented previously, only normal EMI signatures are used to 

train an unsupervised network. That means the tensors with which each 

network will be trained are Φ1μυ
α ,i.e., only the undamaged initial loading 

stage will be used for this purpose. 
One of the major drawbacks of the proposed framework lies in the 

considerable amount of EMI signals which are required to train the 
autoencoder models. To collect many EMI signals is unrealistic in 
practice since a lot of time should be consumed. Data augmentation is a 
widely-used technique to overcome this limitation. This technique al
lows to generate massive synthetic training data enhancing and 
increasing the diversity of training datasets, which will contribute to 
reduce overfitting issues of the network. In this work, to augment the 
number of impedance signatures, Gaussian noise perturbations were 
added into the normalized experimental EMI spectra. This method in
volves adding small random deviations generated from a Gaussian dis
tribution to the original data, increasing the robustness and 
generalization capability of neural networks. 

The probability density function of a Gaussian distribution is defined 
as 

f
(
x|μ, σ2) =

1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ e−
(x− μ)2

2σ2 (3)  

where µ represents the mean and σ2 the variance. For the data 
augmentation process, the noise is centered around zero (µ = 0). The 
standard deviation σ determines the magnitude of the perturbations. A 
small σ results in subtle perturbations, whereas a larger σ leads to more 
pronounced deviations. 

To apply the Gaussian noise to the impedance functions, for each 
data point Z(ωi), a random number f(xi) was generated from the 
Gaussian distribution. This process was repeated multiple times for each 
impedance function Z(ω), producing several augmented versions of the 
original data. In this work, each impedance spectrum Z(ωi) was 
augmented 20 times by adding Gaussian noise. For each data point Z(ωi), 
a random number f(xi) was generated from a Gaussian distribution with 
a mean of 0 and a standard deviation σ = 0.01 x Z(ωi). The value of f(xi) 
was truncated at 99.7 % to ensure that the random values do not exceed 
three standard deviations from the mean. The perturbed impedance 
function, Z′(ωi), was then obtained using the equation: 

Zʹ(ωi) = Z(ωi)+ f(ωi) (4) 

It is essential to carefully select the appropriate σ value and assess the 
quality of the augmented dataset to ensure that the introduction of 
Gaussian noise enhances the neural network’s training without intro
ducing undesirable variability. 

3.4. Autoencoders 

3.4.1. Fully connected autoencoder 
An autoencoder can be considered as an auto-associative neural 

network whose main aim is to learn a compressed representation of an 
input dataset, i.e. to convert an input vector into a code vector using a set 
of recognition weights, and subsequently, reconstruct the original or 
input data from this reduced representation using a set of generative 
weights. 

A wide variety of autoencoder-based models have been used for 
representation learning and feature dimension reduction, handling large 
amounts of unlabeled recorded data. The simplest structure of a tradi
tional autoencoder is the fully connected deep autoencoder (also known 
as dense). Its architecture (Fig. 3) consists of three main parts: an input 
layer, a hidden layer, and an output layer. The input and its corre
sponding output should be identical to each other. The hidden layer is 
formed by an encoder network, a decoder network, and a latent space. 
The encoder structure maps the input vector into a compressed hidden 
representation through successive layers with a decreasing number of 
neurons, which facilitates the reduction of dimensionality. The last layer 
of the encoder, with the smallest number of neurons, defines the latent 
space. This hidden layer or latent representation is the layer that 
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contains a compressed and lower representation of input data. A 
bottleneck is imposed in the network to enforce a compressed knowl
edge representation in this hidden layer. Subsequently, the decoder 
maps the compressed hidden representation to a reconstruction of the 
original input by progressively increasing the number of neurons in each 
layer until reconstructing the original input as faithfully as possible. 

Mathematically, from Eq. (2), an artificial neural network processes 
for each sensor, α, and each loading stage, β, the input tensor, Φμυ, 
through a series of encoder layers, reducing its dimensionality at each 
step: 

h(1)
iυ = φ(1)

(
W(1)

iμ ϕμν + b(1)
i

)

⋮
h(N)

wυ = φ(N)
(

W(N)

kw h(N− 1)
wυ + b(N)

k

)
(5)  

where h(i) (1 ≤ i ≤ N) is the encoded hidden representation, (W, b) 
represent the network’s weights and biases, and φ(i) (1 ≤ i ≤ N) are the 
activation functions for the encoder, which introduce non-linearities 
into the network. Due to the decreasing structure of the encoder, 
w ≤ j ≤ i ≤ μ. 

After encoding, the network ”decodes” the information, recon
structing the input tensor: 

h(N+1)
μk = φ(N+1)

(
W(N+1)

wk h(N)

kυ + b(N+1)
w

)

⋮
ψμν = φ(2N)

(
W(2N)

μi h(2N− 1)
iυ + b(2N)

μ

)
(6) 

In this equation, h(i) (N+1 ≤ i ≤ 2N) is the decoded hidden repre
sentation, and φ(i) (N+1 ≤ i ≤ 2N) are the activation functions for the 
decoder, also nonlinear. The output tensor, ψμυ, has the same dimensions 
as the input tensor. 

The objective is to train the autoencoder to make the output as close 
to the input as possible. For it, a cost or loss function measuring the error 
between both must be minimized. Given the nature of autoencoders, this 
function is chosen as the root mean squared error (RMSE) between the 
input tensor and the reconstructed tensor: 

ϵ =
1

2N

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

μ

∑

ν
(ψμν − ϕμν)

2
√

(7) 

As the network is only trained with data captured from the intact 
beam, it will be only able to reconstruct raw impedances of the un
damaged beam. The loss function is computed for the entire sequence of 
training data vectors providing a mean value which can be assumed as 
threshold to judge if damage occurs or not since, during the testing 
stage, sequences of impedance data (undamaged and damaged) are fed 
into the trained network. For each input data vector, the loss function is 
computed. If its value is higher than the defined threshold value it will 
be a symptom of damage. 

3.4.2. Convolutional autoencoder 
Convolutional neural networks (CNNs) are deep learning models 

used as high-performance estimators and classifiers specially to find 
patterns to analyze images. By applying a convolution operation on the 
input image through a convolution layer, a feature map of the image 
with its main patterns is created. This convolution layer is a unique layer 
that separates the CNNs from other neural networks and operates by 
applying a filter or kernel to the input data. A fundamental advantage of 
this kind of networks is their translational invariance what means a 
kernel can recognize a feature regardless of its location in the image. 
This is achieved by shifting the filter across the entire image. 

Convolutional autoencoders are a variant of the CNNs structured in 
the typical form of an autoencoder, with an encoder block, a latent 
space, and a decoder block (Fig. 4). Unlike the fully connected autoen
coders, in which dimensional reduction is achieved through dense 
layers, in convolutional autoencoders convolutional filters or kernels are 
used for this task. 

An image is a two-dimensional plane composed of pixels. Then, when 
the convolution operation is applied, a function, K, moves over another 
function, I, calculating the sum of element wise multiplications as shown 
in the following equation 

(I ∗ K)(x,y) =
∑h− 1

i=0

∑w− 1

j=0
I(x+i,y+j) • K(i,j) (8)  

where h and w denote the height and width of the image, respectively. 
In our problem, since raw EMI signatures are 1-D arrays in frequency 

domain, the convolutional layers process the data and learn to extract 
features, which are used for the classification task, in one dimension. In 
this case, the convolutional filters are vectors instead of matrices. The 
convolution operation is performed according to the following expres
sion 

(I ∗ K)[n] =
∑∞

k=− ∞

I[n − k] • K[n] (9) 

The convolutional autoencoder consists of repeatedly applying these 
convolution operations, reducing progressively the input dimensions to 
obtain a compact latent space. 

The decoder process, on the other hand, seeks to increase the output 
dimensions using transposed convolution: 

y[n] = (x ∗ h)[n] =
∑∞

k=− ∞

x[k] • h[n − k] (10) 

Although transposed convolution may seem like the inverse process 
of convolution, it is not its exact mathematical inverse. However, in the 
context of neural networks, it serves to reverse the dimension reduction 
effect of a convolution. 

As with the traditional autoencoders, the main objective to be 
reached during the training is to minimize the difference between the 
input data and the output data. The same cost function of Eq. (7) can be 

Fig. 3. General scheme of a deep autoencoder network.  

Fig. 4. General scheme of a deep convolutional autoencoder.  
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used for that purpose. 

3.5. Autoencoder architecture 

Both autoencoders, fully connected and convolutional, introduced in 
Sections 3.4.1 and 3.4.2, respectively, have been used in this work. The 
first one has been implemented on the PyTorch platform while for the 
second Keras platform was used. In our project, PyTorch was chosen for 
the development of the fully connected autoencoder, because of its 
intuitive interface and efficiency in debugging and prototyping, as well 
as its competent Autograd system for gradient calculation, making easier 
the experimentation with various autoencoder configurations. For the 
convolutional autoencoder, TensorFlow was used, given its outstanding 
ability to handle convolutional neural networks, its capability to scale 
efficiently, and the ease of implementing models on various platforms, 
essential qualities for practical applications that demand both flexibility 
and high performance. This decision represents the pursuit of a balance 
between agility in experimental development and efficiency in the 
practical application of the autoencoder models. 

As commented previously, the architecture of the autoencoder 
network consists of the encoder and decoder (Figs. 3 and 4). In the 
encoder, the number of neurons in each layer will decrease. For the fully 
connected autoencoder, this transformation is carried out through a 
series of linear layers (Eq. (5)), immediately followed by activation 
functions of the PReLU type (Parametric Rectified Linear Activation). 
This type of activation function is a popular choice in deep learning and 
has the advantage of being computationally efficient and, additionally, 
can help prevent the vanishing gradient problem during training; it 
outputs the input value if it is positive, and outputs 0 if it is negative. 
Since the number of nodes decreases with each layer, the input vector is 
encoded into a low-dimensional vector. Specifically, the initial 7201- 
dimensional input is first condensed to 800 dimensions using a linear 
layer. Subsequently, a second linear layer carries out an additional 
reduction to 50 dimensions. Finally, the representation is compacted 
into an 8-dimensional latent space using a third linear layer. 

On the other hand, the decoder operates inversely to the encoder. 
This means the resulting hidden representation from the encoder is then 
decoded back to the original space. This decoding process is carried out 
through alternating linear layers with PReLU activation functions. In its 
operation, the decoder initially expands the 8-dimensional latent space 
to 50 dimensions. Then, an additional expansion brings the represen
tation to 800 dimensions. Finally, the representation is recovered to its 
original 7201 dimension. 

Other configurations of the fully connected autoencoder model with 
more layers were also tested using a trial and error process but the loss 
function did not experience any improvement. 

The detailed structure of the autoencoder network adopted in this 
work is outlined in the Table 1. 

The convolutional autoencoder shares structural similarities with the 
traditional model, mainly in its division into encoder and decoder seg
ments but, its distinctive feature lies in the incorporation of 

convolutional layers instead of linear ones. 
The encoder segment is based on multiple Conv1D layers, specialized 

in executing one-dimensional convolutions. These layers, com
plemented with PReLU activation functions and L2 regularization, aim 
to identify local patterns and, consequently, reduce the dimensionality 
of the input data. 

For its part, the decoder relies on Conv1DTranspose layers to reverse 
the compression process. These layers progressively expand the 
condensed representation until recovering the initial data dimension
ality. Similar to the encoder, the layers integrated into the decoder also 
adopt PReLU activations and L2 regularization techniques to avoid 
overfitting. 

As in the fully connected model, the configuration of the convolu
tional autoencoder involves a rigorous selection of a network architec
ture by means of a trial and error process with the goal of keeping the 
lowest reconstruction loss. At every trial selection of network architec
ture, the network was trained for 45 epochs with an input batch size of 5. 

The performance of the network with configurations of 4, 5 and 6 
encoding and decoding convolutional layers was studied. In the same 
way, different values (10− 2, 10− 3, 10− 4, 10− 5) of the L2 regularization 
parameter were checked. 

The comprehensive structure of the convolutional autoencoder 
adopted in this study is shown in Table 2. The input layer is followed by 
five convolutional layers. In agreement with the reduction of the 
dimensionality of the data, the number of filters and kernel filter sizes 
decrease progressively from the first to the fifth convolutional layer. For 
the decoder module, the same number of convolutional blocks is used as 
in encoder but in the reverse direction. Finally, at the output layer. a 
linear activation function is used. Furthermore, the regularization was 
applied with a value of 10− 3. 

3.6. Adam optimizer and model training 

In this study, Adam optimization algorithm [45], an extension of the 
stochastic gradient descent algorithm, has been employed for the 
training of both autoencoders. Adam optimizer is characterized by 
adapting during the training the learning rates for each parameter or 
weight individually. To carry out this adaptation, the algorithm calcu
lates an exponential moving average of the gradient and the squared 
gradient. For it, Adam defines two vectors, m and v, to accumulate the 
exponential moving averages of the gradient (first moment) and the 
squared gradient (second moment), respectively. 

The weights, w, are updated after every iteration as follows: 

wt+1 = wt −
η
̅̅̅̅vt

√
+ ϵ

mt (11)  

where wt+1 and wt are the weights at times t + 1 and t, respectively, η is 
the learning rate, mt and vt are the aggregates of gradient and squared 
gradient, respectively, at time t. Additionally, a stabilizing term, ϵ, is 
added to prevent divisions by zero. 

The terms mt and vt are updated after every iteration using the 

Table 1 
Fully Connected Autoencoder Architecture.  

Section Layer Type Input Output 

Encoder Linear 7201 800 
PReLU - - 
Linear 
PReLU 

800 
- 

50 
- 

Linear 50 8 
PReLU - - 

Decoder Linear 8 50 
PReLU - - 
Linear 
PReLU 

50 
- 

800 
- 

Linear 800 7201 
PReLU - -  

Table 2 
Convolutional Autoencoder Architecture.  

Section Layer Type Filters Kernel Activation 

Encoder Conv1D 64  5 PReLU 
Conv1D 64  3 PReLU 
Conv1D 32  3 PReLU 
Conv1D 16  3 PReLU 
Conv1D 8  3 PReLU 

Decoder Conv1DTranspose 8  3 PReLU 
Conv1DTranspose 16  5 PReLU 
Conv1DTranspose 32  5 PReLU 
Conv1DTranspose 64  5 PReLU 
Conv1DTranspose 64  10 PReLU 
Conv1D -  3 Linear  

R. Perera et al.                                                                                                                                                                                                                                  



Engineering Structures 315 (2024) 118458

7

following optimizers: 

mt+1 = β1mt +(1 − β1)gt (12)  

vt+1 = β2vt +(1 − β2)g2
t (13)  

where β1 and β2 are the parameters which control the decay rates of 
these moving averages, and gt represents the gradient of the error with 
respect to the weights at time t. 

Adam can be considered as a combination of two gradient descent 
methods, Momentum, and Root Mean Square Propagation. The choice of 
Adam as the optimizer of the autoencoders provides multiple benefits to 
the training process. Given its ability to adjust the learning rates indi
vidually for each coefficient, the algorithm tends to be less dependent on 
their initialization. Moreover, it offers greater robustness against dis
turbances and oscillations of the gradients, ensuring a more efficient and 
balanced training. 

In our problem, the model is trained by randomly initialising the 
weights. The default configuration of the Adam optimizar (β1 = 0.9, β2 =

0.999, ϵ = 10− 8, and learning rate η = 0.0001) was used for both 
autoencoders. The loss function defined in Eq. (7) was minimized with a 
batch size of 5 in 21 frames in each iteration and a no threshold in order 
to update the weights of the models. In summary, Table 3 shows the list 
of the hyperparameters used in the training of both autoencoder models. 

4. Experimental validation and discussion 

4.1. Experimental set-up 

To validate the feasibility of the proposed approach, an experimental 
test campaign was conducted on a NSM-FRP strengthened reinforced 
concrete beam. A CFRP strip with a cross-section of 1.4 mm × 10 mm 
was used as NSM reinforcement in the tensile face of the beam specimen. 
The material properties of the concrete, the reinforcement steel and the 
CFRP were the following: a) Concrete: fc = 30 MPa, Ec = 26 GPa, fct 
= 3 MPa; b) Steel: fy = 500 MPa, Es = 210 GPa; c) CFRP: ffu 
= 2500 MPa, Ef = 170 GPa. 

The total length of specimen was 1700 mm with a clear span be
tween supports of 1500 mm and a concrete cross-section area of 120 mm 
wide and 175 mm height (Fig. 5). The top and bottom internal rein
forcement consisted in two steel bars of diameter 6 mm. Steel stirrups of 
diameter 6 mm were used as shear reinforcement. 

A series of monotonic static tests with the purpose of gradually 
introducing deterioration into the specimens were performed. The load 
was applied using a hydraulic jack through a steel beam with a span of 
300 mm to distribute the symmetrical load. Concerning the loading 
procedure, from the baseline stage (D0) five loading steps (D1 to D5) 
were applied up to failure. The load level associated to each loading 
stage corresponds to the red circles of Fig. 6, which were identified from 
an analysis of the transformed section of the NSM-FRP strengthened RC 
concrete considering concrete cracking, steel yielding and FRP 
breakage. 

Fig. 7 shows the experimental loading-unloading curves for each 

loading step. The microstrain shown in this figure was captured with a 
FBG strain sensor bonded to the FRP bar and located where the left load 
point applies. In agreement with the predictions of Fig. 6, in the 
experimental tests, first cracks were detected during the second loading 
stage (D2). These cracks grew during the subsequent loading stages and, 
additionally, yielding initiated during the fourth loading stage (D4) as 
the reduction in slope in the load-strain curve demonstrates. In this 
stage, an important separation of concrete cover between two cracks 
occurred in the region located below the left load point (Fig. 8), which 
might have originated a premature secondary debonding close to this 
area. Finally, D5 is the stage immediately previous to the failure of the 
specimen, which occurred by FRP rupture. This secondary debonding 
phenomenon was localized as the slope of the curve in Fig. 7 increased. 

Before the tests, the specimen was prepared for damage detection. 
For it, four PZT transducers (PZT1 to PZT4) were first glued externally 
on the FRP surface and other four (PZT6 to PZT9) were embedded into 
the structure by bonding them directly on the FRP strip using epoxy 
adhesive with high-shear modulus (Fig. 9). Two different sizes of sensors 
were used, P-876. A12 DuraAct (61 mm × 35 mm × 0.5 mm) for PZT1 
and PZT2 and P-876. SP1 (16 mm × 13 mm × 0.5 mm) for sensors PZT3 
to PZT9. Both types of sensors are formed of the piezoelectric material 
PIC255 whose properties are listed in Table 4. 

With the purpose of measuring the change of the impedance across 
the different stages of the beam, the terminals of the PZTs were attached 
to an impedance analyzer (Agilent HP 4192 A) for acquiring the EMI 
signatures. To measure several transducers, the device was coupled with 
a 3499B multiplexor from Agilent as well. An excitation voltage of 1 V 
provided by the impedance analyzer was imposed on the PZT trans
ducers. A scanning frequency from 10 to 100 kHz, with a step interval of 
12.5 kHz (7201 sampling points) was selected for the tests. The elec
tromechanical impedance was measured initially and after each loading 
step. The initial measurement under room temperature, defined as the 
impedance signal at the healthy state, served as a baseline for compar
ison. Five frequency sweeps were conducted for each sensor at each 
damage state, resulting in five impedance signals. Therefore, 30 mea
surements were taken by each PZT transducer. 

The data arrays derived from the raw EMI signatures for the un
damaged baseline stage were designated for training and validation of 
the autoencoders. Due to insufficient sample size and to avoid over
fitting of the networks, until 100 additional impedance signatures were 
built for each loading stage by adding Gaussian noise perturbations into 
the normalized experimental EMI spectra. Fig. 10 illustrates an example 
of the non-noisy and noisy baseline impedance spectrum for sensor 3. 
Fig. 10a shows values for all the frequency range (10–100 kHz) while 
Fig. 10b is focused only on range 40–50 kHz. 

EMI signatures in each damage condition and in each sensor were 
used to classify the stage of the beam in terms of damage severity and 
location. 

4.2. Discussion 

In this section, the capacity for damage detection of the two proposed 
autoencoders is evaluated using the scenarios presented in Section 4.1. 
For it, both models are trained using the impedance responses corre
sponding to a beam in healthy conditions (Scenario 0 in Section 4.1), i. 
e., the autoencoders are designed to accurately reproduce the signals of 
an undamaged beam, showing deficiencies when faced with a damaged 
beam signal. For training, 75 % of the baseline dataset was used, being 
the remaining 25 % used for validation. 

To demonstrate how the trained model can be used for damage 
detection, the datasets associated to scenarios 1 to 5 in Fig. 6, which 
correspond to different damage severities, are used. Fig. 11 compares 
the measured (original) and reconstructed impedance spectra with both 
autoencoders for sensor 1 and for the six loading stages. The orange lines 
represent the model predictions, while the blue ones denote the exper
imental impedance signatures. The top panel displays the predictions of 

Table 3 
Hyperparameters used in the training of both autoencoder models.  

Hyperparameter Value 

Initial Weight Setting Randomly Initialized 
Optimizer Adam 
β1 0.9 
β2 0.999 
ϵ 10− 8 

Learning Rate (η) 0.0001 
Batch Size 5 
Threshold None 
Loss Function Defined inEq. (7) 
Epochs Up to 45 (Early Stopping)  
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the convolutional autoencoder while the bottom panel those of the fully 
connected autoencoder. 

Results for load step 0 show that both autoencoder models can 
accurately predict the undamaged impedance signature. For load steps 1 
and 2, both models replicate also the impedance signals with consider
able accuracy, which is a symptom of no damage or minor damage in the 
vicinity of sensor 1. However, for load steps 3 and 4, the proposed 
autoencoders predict the impedance spectrum with some inaccuracies 

since the discrepancy between the predicted and experimental signals 
shows a clear deviation. The peaks in the blue line are not suitably 
managed by the reconstructed signal. The reason for these inaccuracies 
is that damage produces modifications to the stiffness of the beam, 
which alter the impedance signatures. Since the proposed autoencoder 
models were trained using only the training dataset from the undamaged 
beam, it cannot generate accurate predictions regarding the unknown 
testing dataset from the damaged beam. This means that the recon
struction loss between the measured and reconstructed impedance 
spectra can be used as damage-sensitive feature. 

Finally, load step 5 shows clearly a more pronounced divergence 

Fig. 5. Geometry and loading scheme of the tested beam.  

Fig. 6. Load-displacement curve for the tested beam.  

Fig. 7. Loading–unloading experimental curves.  

Fig. 8. Cracks.  
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associated to a very severe damage in the beam. It stands out that the 
convolutional autoencoder, unlike the fully connected one, produces a 
more coherent and uniform impedance prediction. Despite the higher 
coherence of the convolutional model, for the purposes of this research, 
the divergences observed in both models are fundamental, as they evi
dence significant differences between the prediction and the actual 

measurement. 
Since, as previously mentioned, both autoencoders allow extract 

automatically damage-sensitive features from the loss between the 
measured and reconstructed impedance spectra, Figs. 12 and 13 illus
trate in the form of a histogram the RMSE distribution, computed with 
Eq. (7), of the proposed autoencoder models, corresponding to different 
beam damage scenarios and to the eight sensors. While each row in 
Fig. 12 corresponds to an external sensor (PZT1 to PZT4), the rows in 
Fig. 13 are referred to the internal sensors (PZT5 to PZT8). For both 
figures, plots on the left side were computed with the convolutional 
autoencoder while those on the right column were evaluated with the 
fully connected one. Both figures show clearly how the RMSE distribu
tion of all damage scenarios (D0 to D6) varies from the undamaged case 
(scenario D0) as the level of damage increases. This variation of the 
RMSE distribution can be used in this study as damage indicator. 

RMSE values show a tendency to increase as the applied load in
creases showing a clear distinction between the baseline stage and the 
rest of loading stages. In general terms, this tendency is common in all 
sensors, so it provides useful information to assess the structural integ
rity of the beam and shows the big potential of both autoencoder models 
for damage prediction. Additionally, it can be observed how the RMSE 
indices for stages 4 and 5 are significantly higher than for the rest of 
loading states for all sensors, and, therefore, all sensors report the same 
consistent information regarding the possible severity of changes at the 
last steps. This is especially significant in sensors 2 and 9, located in the 
same zone of the beam (Fig. 9), for which very high values of RMSE are 
reached indicating a severe damage in their vicinity. 

Regarding both autoencoders, the performance is very similar for all 
sensors and loading stages, except for sensors 3 and 4, where a slight 

Fig. 9. Experimental set-up for the PZT sensors.  

Table 4 
Parameters of the piezoelectric material PIC255.  

Property  Value 

Density ρ 7.80 g/cm3 

Relative permittivity ε33/ε0 1800 
Relative permittivity ε11/ε0 1750 
Dielectric loss factor tanδ 0.02 
Piezoelectric strain coefficient d31 − 180 × 10− 12 C/N 
Piezoelectric strain coefficient d33 400 × 10− 12 C/N 
Elastic compliance coefficient SE

11 16 × 10− 12 m2/N 
Elastic compliance coefficient SE

33 19 × 10− 12 m2/N  

Fig. 10. An example of comparison between the non-noisy and noisy imped
ance baseline for PZT sensor 3: (a) All frequency range (10–100 kHz); (b) 
Frequency range (40–50 kHz). 

Fig. 11. Original and reconstructed impedance signals for PZT sensor 1: (a) 
Convolutional autoencoder; (b) Fully connected autoencoder. 
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RMSE decrease between stages 0 and 1 occurs. This reduction might be 
due to small imprecisions in the estimation of the convolutional 
autoencoder, which are only evident for minor damage. 

Complementarily, Fig. 13 demonstrates that the overall behavior of 
the internal sensors is consistent with the first four. However, a pecu
liarity is identified in sensor 8, where both networks detect a larger 
discrepancy already in load step 2. This observation suggests that the 
area corresponding to this sensor experiences such damage that dis
crepancies in subsequent load steps are comparable. In contrast, sensor 9 
reiterates that damages in the early load stages are minimal. In sum
mary, it can be inferred that the beam adequately withstands the first 

three load steps, starting its fracture in the fourth step, and culminating 
in a break between the fourth and fifth steps. 

Figs. 12 and 13 show that RMSE distribution grows significantly 
when the structure is damaged, making it an appropriate damage index. 
The variation of the RMSE distribution can be used, therefore, as damage 
indicator. In this sense, an index, DILS, based on the total distance be
tween RMSE for any loading stage, RMSELS, and its value for the baseline 
stage, RMSEBaseline, might be defined as follows 

DILS =
RMSELS − RMSEBASELINE

RMSEBASELINE
(14) 

Fig. 12. RMSE distribution for PZT external sensors: (a) PZT1 - Convolutional AE; (b) PZT1 - Fully connected AE; (c) PZT2 - Convolutional AE; (d) PZT2 - Fully 
connected AE; (e) PZT3 - Convolutional AE; (f) PZT3 - Fully connected AE; (g) PZT4 - Convolutional AE; (h) PZT4 - Fully connected AE. 
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This index should be evaluated for each sensor, assuming damage 
zero in case RMSELS < RMSEBaseline. Fig. 14 shows the damage indices 
computed with Eq. (14) for all sensors and loading stages. In this figure, 
it is clear that the sensitivity of the damage index when convolutional 
autoencoder is used is higher that when fully connected model is 
applied. Furthermore, much higher damage indices are obtained for 
sensors PZT2 and PZT9 for loading stages 4 and 5, which agrees with the 
experimental observations. As commented in Section 4.1, before FRP 
rupture, a FRP premature secondary debonding originates during 
loading stages 4 and 5, in the region located where the left concentrated 
load applies. Sensors PZT2 and PZT9 are the closest sensors to this area 

which would explain the extraordinary growth of the damage index 
experienced by both during fourth and fifth loading stages, in compar
ison with the remaining sensors, and the capacity of the proposed 
methodology to identify this debonding. 

5. Conclusions 

In this study, two deep autoencoder models, convolutional and fully 
connected, integrated with a statistical-pattern- recognition-based 
approach that uses raw EMI spectra captured from PZT transducers, 
have been proposed for structural damage assessment of FRP 

Fig. 13. RMSE distribution for PZT internal sensors: (a) PZT6 - Convolutional AE; (b) PZT6 - Fully connected AE; (c) PZT7 - Convolutional AE; (d) PZT7 - Fully 
connected AE; (e) PZT8 - Convolutional AE; (f) PZT8 - Fully connected AE; (g) PZT9 - Convolutional AE; (h) PZT9 - Fully connected AE. 
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Fig. 14. Damage index: (a) PZT1; (b) PZT2; (c) PZT3; (d) PZT4; (e) PZT6; (f) PZT7; (g) PZT8; (h) PZT9.  
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strengthened RC elements. Exploiting directly the raw EMI signatures 
appears to be a more accurate alternative to detect damage than the use 
of other metrics derived from it which frequently drive to misjudgment. 

The proposed method uses the raw EMI data obtained from the 
healthy structure to train the autoencoders since, unlike other deep 
learning methods, it does not rely on damage labels for training. The 
correctness of the two proposed approaches has been validated through 
several experimental tests, presented in Section 4.1, where has been 
shown that the error in signal reconstruction from the trained autoen
coders is sensitive to damage, when considering EMI data from several 
stages of the tested beam. From this error, a damage index has been 
defined. Although the convolutional network has proved to be more 
consistent under certain damage stages, both approaches have effec
tively detected and identified the presence of minor damage in this type 
of strengthened structures as well as the secondary debonding previous 
to the failure, which provides valuable insights for their maintenance 
and safety assurance with the purpose of avoiding critical sudden and 
brittle failures for this type of strengthened structures. 

For future work, a combined use of both autoencoder models in an 
ensemble procedure might provide a more detailed and accurate diag
nosis of the structural health of the inspected structures, optimizing in 
this way the early detection of damage. Additionally, damage identifi
cation based on EMI under varying environmental conditions using 
autoencoders is also a challenge to be tackled in the future. 
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